LSU EE 4702-1 Homework 1 Due: 9 September 2025
"""""""""""""""""""""" Solution Formatted 16:43, 18 October 2025

All of the code for this assignment is in the course repo. HTMLized versions of the assignment file

for account setup and programming homework work flow.
Compile and run the homework code unmodified. It should
initially show some sine waves and some radially arranged
white rectangles with an inner red circle and an outer green
ring (which is just another name for a thick green circle).
See the screenshot to the upper right. dots. In the lower
image, taken from a correct solution. Though it can’t be
seen in the screenshots, the render time is much lower. Also,
there is a blue circle inside of which the image appears dis-
torted.

Display of Performance-Related Data
The top green text line shows performance-related and other
information. Size refers to the size of the window. Mouse
refers to the coordinates of the mouse pointer. Coordinate
(0,0) is at the lower left of the window. Text frame_buffer [N]
shows the index of the frame buffer corresponding to the
point under the mouse pointer. (In the assignment file
frame_buffer is abbreviated to fb, for convenience.)
Render Time and Potential Frame Rate show the
CPU time needed to write the frame buffer. They can be
ignored for this assignment.

General User Interface

Press Ctrl= to increase the size of the green text and Ctrl-
to decrease the size. Press F12 to generate a screenshot.
The screenshot will be written to file hwO1.png or hwO1-
debug.png.

The value of two Boolean debug-support variables, tryoutO and tryoutl, are shown in the
green text, pressing y toggles tryoutO (between true and false) and pressing Y toggles tryoutl.
The variables are available in routine render_hwO1 and circle_draw_hw01, use them to try things
out.

Problem-Specific User Interface
The circle can be drawn by two routines circle_draw_hwO1 (where part of the solution is to be
placed) and circle_draw_parametric (which is there for reference). Pressing ¢ will toggle between
two routines. The routine currently being used is shown in the last line of green text to the right
of Circle Routine.

Pressing z will increase the distortion factor, v, and pressing u will decrease it. Distortion,
which should appear in the blue circle, won’t be seen until Problem 2 is solved correctly.

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2025/hw01.cc.html
https://www.ece.lsu.edu/koppel/gpup/2025/hw01-sol.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

Code Generation and Debug Support

The compiler generates an optimized version of the code, hw0O1, and a debug-able version of the
code, hwO1-debug. The hwO1-debug version is compiled with optimization turned off, which makes
it easier to debug. When needed, you are strongly encouraged to run hwO1-debug under the GNU
debugger, gdb. See the material under “Running and Debugging the Assignment” on the course
procedures page. You must learn how to debug. If not, you will be at a severe disadvantage.

To help you debug your code and experiment in one way or another, the user interface lets you
change variables. These are tryoutO and tryoutl. You can use these variables in your code (for
example, if (tryoutl) { x += 5; }) to help debug, to help familiarize yourself with how the
code works, or to experiment with new ideas. Keys y andY to toggle their values, which are shown
in the green text at the label Tryout 0,1:.

Homework Code Overview

For this assignment the code in routines hwO1_render and circle_draw will be modified. The
code in hwO1_render writes the frame buffer with sine waves and a circle of rectangles radiating
from a point. The code for the sine waves and circle of rectangles is there for references, but it does
not need to be modified for this assignment.

Resources

A good reference for C++ is https://en.cppreference.com/w/. See Homework 1 assigned in
the past few semesters for similar problems. In particular, in 2023 Homework 1 Problem 2 part of
the frame buffer around the mouse pointer was to be copied to another part of the frame buffer.
Something like this copying is also done in Problem 2 in this assignment.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of C++ syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out programming and graphics resources.
It is okay to make use of AI LLM tools such as ChatGPT and Copilot to generate sample code.
(Do not assume LLM output is correct. Treat LLM output the same way one might treat legal
advice given by a lawyer character in a movie: it may sound impressive, but it can range from sage
advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations

To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for C++ programming and to seek out any additional help and
resources that might be needed. (Of course this doesn’t mean asking someone else to solve it for
you.) Students are expected to experiment to learn how graphics work, and how to code C++
sequences. FExperimentation might be done on past homework assignments. Students are also
expected to learn what error messages mean by consulting documentation and by asking others
(including Dr. Koppelman), and also to develop debugging skills. It is the students’ responsibility
to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning processes that takes
effort, but one that also provides the satisfaction of progress and of developing skills and under-
standing.

https://en.cppreference.com/w/

Problem 1: Routine circle_draw_parametric draws a circle (ring) into the frame buffer:

void circle_draw_parametric(pFrame_Buffer& fb, HWO1_Data& hwO1_data,
int ctr_x, int ctr_y, int r_outer, int r_inner, uint32_t co)
{
int win_width = fb.width_get();
float delta_theta = asinf(1.0f/r_outer);
for (float theta = 0; theta < 2*numbers::pi; theta += delta_theta)
{

float cth = cosf(theta), sth = sinf (theta);
for (int r = r_inner; r<=r_outer; r++)
{
int x = ctr_x + r * cth, y = ctr_y + r * sth;
fb[y * win_width + x] = co;
3}

The center of the circle is at pixel coordinate ctr_x, ctr_y, the inner radius is r_inner and
the outer radius is r_outer. Pixels of the frame buffer from the inner and outer radius are set to
color co, or at least they should, but some pixels are skipped. The routine is based on a parametric

r cos 6
rsin } '

The routine above is not the best way of drawing a circle in pixel space (which is what we
are using) because it calls trig functions (sine and cosine) many times (and that’s computationally
costly), because it doesn’t write every pixel, and because it writes some pixels multiple times. (If
delta_theta is made small enough it would write every pixel at least once, but it would be writing
many more pixels multiple times.)

The fundamental problem with the routine above is that we are iterating over 6 and r, a
better approach is to iterate over pixel coordinates. In the unmodified assignment the code in
circle_draw_hwO1 does iterate over pixel coordinates:

description of a circle: P(0) = C + [

void circle_draw_hw01 (pFrame_Buffer& fb, HWO1_Data& hwO1_data,
int ctr_x, int ctr_y, int r_outer, int r_inner, uint32_t co)
{
const int win_width [[maybe_unused]] = fb.width_get();
const int win_height [[maybe_unused]] = fb.height_get();
/// WARNING: Ridiculously inefficient.
for (int x = 0; x < win_width; x++)
for (int y = 0; y < win_height; y++)
{
int dx = x - ctr_x, dy =y - ctr_y;
int dsg = dx * dx + dy * dy;
if (dsq > r_outer * r_outer) continue;
if (dsq < r_inner * r_inner) continue;
fb[y * win_width + x] = co;

The code iterates over every pixel in the frame buffer, and checks whether that pixel is on
the circle (between the inner and outer radii). On the plus side this code won’t skip any pixels,
it won’t write the same pixel twice, it doesn’t call any trigonometry functions, and it even avoids
computing a square root. But all of those positives are outweighed by the fact that it checks every
single pixel in the frame buffer!

Modify the code so that it iterates over fewer pixels. Consider solutions that keep the two-level
loop nest, but in which the loop bounds are chosen so that the body is executed fewer times.

Consider the following ideas:

Idea 1: Modify the loop bounds so that x and y iterate over a bounding box that contains the
circle. (A bounding box of a circle is the smallest possible box containing the circle. Any smaller
and a part of the circle would be outside the box.)

Idea 2: Compute the limits on the y loop as a function of x. (Note that Idea 2 replaces or
modifies the Idea 1 code.)

Idea 3: Have x and y iterate over only one quadrant of the circle, but have the loop body write
four pixels (one write for the quadrant corresponding to x and y, and the other three writes for the
other three quadrants.)

solution on next page.

solution code appears Dalow.

void circle_draw_hw01 (pFrame_Buffer& fb, HWO1_Data& hwO1_data,

{

int ctr_x, int ctr_y, int r_outer, int r_inner, uint32_t co)

const int win_width [[maybe_unused]] = fb.width_get();
const int win_height [[maybe_unused]] = fb.height_get();

// Pre-compute the squares of the inner and outer radii.
//

int r_o_sq = r_outer * r_outer;

int r_i_sq = r_inner * r_inner;

// The term "ring" refers to the area from r_inner to r_outer.

//

// Technically ring refers to the parts of the circle at

// (ctr_x,ctr_y) of radius r_outer which are not also parts of the
// circle at (ctr_x,ctr_y) of radius r_inner.

// Compute frame buffer array index of center of circle.
//

int idx_ctr = ctr_y * win_width + ctr_x;

// Idea 1 (and 3): Iterate over circle-local coordinates, ly and lx.
// Center of circle is at 1x=0, 1ly=0.

//
for (int ly = 0; 1ly <= r_outer; ly++)
{
// Idea 2: (with x and y swapped)
// Compute range of x values over the ring at ly.
//
int 1x0 = sqrtf(max(0, r_i_sq - 1y * 1y));
int 1x1 = sqrtf(max(0, r_o_sq - ly * 1y));
// Compute frame buffer array index distance from center of
// circle to the pixel at (1x=0, ly):
//
int ly_ww = ly * win_width;
for (int 1x = 1x0; 1x <= 1x1; 1x++)
{
// Idea 3: Draw a pixel in each of four quadrants of the circle.
//
fb[idx_ctr + ly_ww + 1x] = co;
fb[idx_ctr + ly_ww - 1x] = co;
fb[idx_ctr - ly_ww + 1x] = co;
fb[idx_ctr - ly_ww - 1x] = co;
}
}

Problem 2: A blue circle is drawn near the end of routine
render_hwO1 in a call to circle_draw. Modify the code
after this point so that the portion of the frame buffer inside
the blue circle (but not the blue circle itself) is distorted as
follows:

Let C denote the center of the circle (in the code the
center is in variable ctr) and R its radius (mag_r in the
code). Let P =];x] denote the coordinates of a pixel
inside the circle. !

Cy— P,

Letv=C—-P = {Cy—Py

to P. In vector notation P = C'+wv. Let d denote the length
of v, which in this case is the distance from C to P. (If you
don’t know how to compute the distance, look it up.)

For this problem define distorted distance d’ = R (%)’y,
where v is a distortion factor. Note that for v = 1 we just
have d’ = d. Given a distorted distance we can define an
alternative pixel coordinate P’ = C' + %v.

Modify the code in hwO1_render so that every pixel P
in the blue circle is written with the frame buffer contents
at P’ as defined above. In the code variable ctr is the
circle center (see how it’s used in the call to circle_draw).
Variable mag_r is R, and gamma is v. Variable P is P; your
code can just use x and y. In the code variable v is v; your
code can just use dx and dy. The code computes d?, but
not d. Using the user interface, the value of gamma can be
modified by pressing z and u, and its value is shown on the
third line of green text.

] denote the vector from C

Some things to watch out for: most of the variables are declared int. To work correctly d’
must be computed using floating point operands. Let xp and yp denote the coordinates of P’. If
these are used to compute a frame buffer index, fb[yp * win_width + xp], make sure that yp
is an integer, or cast it to an integer otherwise yp * win_width won’t give the correct result.

Finally, and importantly remember that the pixel being read (at coordinate P’) must be from

6

the frame buffer before it was modified by the code that fills the blue circle. So code like fb[y
* win_width + x] = fb[int(yp) * win_width + xp]; won’t work correctly because the pixel
being read, fb[int(yp) * win_width + xpl;, might have already been written. So, the area
inside the blue circle first needs to be copied to a buffer area and that buffer area needs to be used
when writing inside the blue circle. Before writing any pixels in the blue circle first copy them to
array fb_dup. Array fb_dup is of size (2(R + 1))?, and so it has enough space for the blue pixels.
It’s okay of a bounding box around the blue circle is copied into £b_dup.

Once the blue circle are is copied to fb_dup one can get the distortion effect by writing £fb[
int(yp) * win_width + xp] = fb_dupl b_y * b_width + b_x], where b_width is the width of
the area copied (which can’t be larger than 2(R + 1)) and b_y and b_x are relative to a corner of
the copied area. See 2023 Homework 1 Problem 2 and its solution for more on how to use such a
buffer area (called fb_area_dup) in that problem.

An axeerpt from the solution appears below. The eomp\@te solution is in the repository in fle hwO1-sol.cc.

int idx_ctr = ctr.y * win_width + ctr.x;
int mag_r_sq = mag_r * mag_r;
int mag_2r = 2 * mag_r;

// Copy area under blue circle to fb_dup.
//
for (int x = -mag_r; x < mag_r; x++)
for (int y
fb_dup[(y + mag_r) * mag 2r + x + mag_r]
(ctr.y + y) * win_width + ctr.x + x];

= -mag_r; y < mag_r; y++)

//

// This also copies pixels outside the circle. We don’t need the
// pixels outside the circle, but we copy them anyway because it
// might take more time to determine whether a pixel is in the
// circle than to copy it.

const float mag_r_inv = 1.0 / mag_r;

// Evf Change x and y bounds so they iterate over a blue circle bounding box.
// Actually, iterate over one quadrant of circle in local coordinates.
//
for (int 1x = 0; 1lx < mag_r; lx++)
for (int 1y = 0; ly < mag_r; ly++)
{
// Skip this iteration if we are not inside the circle.
//
int len_sqg = lx*1x + lyx*ly;
if (len_sq > mag r_sq) break;

// Compute distance from pixel to circle center ..

//

float d = powf(len_sq, 0.5);

//

// .. and the distorted distance.
//

float d_prime = powf(d * mag_r_inv, gamma) * mag_r;

// Scale 1x and ly based on the distorted distance.
//

int 1x_src

d ? 1x * d_prime / d : 0;
d ? 1y * d_prime / d : 0;

int ly_src
//

// Note: because d_prime is a float 1lx is converted (promoted)
// to a float before performing the multiplication 1lx * d_prime.

// For each quadrant, read the pixel at lx_src, ly_src from fb_dup,
// and write it to fp.
//
fb[idx_ctr + ly * win_width + 1x]
fb_dup[(mag_r+ly_src) * mag_2r + lx_src + mag_r];
fb[idx_ctr + ly * win_width - 1x]
fb_dup[(mag_r+ly_src) * mag 2r - lx_src + mag_r];
fb[idx_ctr - ly * win_width - 1x] =
fb_dup[(mag_r-ly_src) * mag 2r - lx_src + mag_r];
fb[idx_ctr - ly * win_width + 1x] =
fb_dup[(mag_r-ly_src) * mag 2r + lx_src + mag_r];
//
// It would not be correct to both read and write from fb, since
// the pixel read might be an already distorted pixel.

