LSU EE 4702-1 Homework 4 Due: 14 November 2024

All of the code for this assignment is in the course repo. HTMLized versions of the assignment file
are at https://www.ece.lsu.edu/koppel/gpup/2024/hw04.cc.html.

Problem 0: If not already done, follow the instructions
onhttps://www.ece.lsu.edu/koppel/gpup/proc.html
for account setup and programming homework work flow.
Compile and run the homework code unmodified. The
homework code should initially show a scene with a ro-
tating hyperboloid of one sheet, see the screenshot on the
upper right. The screenshot on the lower right shows a
correct solution to this assignment, in particular, the hy-
perboloid is rendered using a triangle strip (notice the
vertex count) and it can be illuminated from behind.

Homework Overview

The code in this assignment explores methods of drawing
a hyperboloid of one sheet in Vulkan. The baseline code in
the unmodified assignment draws the hyperboloid using
individual triangles.

User Interface

Press Ctrl= to increase the size of the green text and
Ctrl- to decrease the size. Press F12 to generate a screen-
shot. The screenshot will be written to file hwO4.png or
hwO4-debug.png. Press F10 to start recording a video,
and press F10 to stop it. The video will be in file hwO4-
1.o0gg or hwO4-debug-1.o0gg.

Initially the arrow keys, PageUp, and PageDown, can be used to move around the scene. Using
the Shift modifier when pressing one of these keys increases the amount of motion, using the Ctrl
modifier reduces the amount of motion. Use Home and End to rotate the eye up and down, use
Insert and Delete to rotate the eye to the sides.

After pressing 1 the motion keys will move the light instead of the eye, after pressing b the
motion keys will move the head ball around, and after pressing e the motion keys operate on the
eye.

The simulation can be paused and resumed by pressing p or the space bar. Pressing the space
bar while paused will advance the simulation by 1/30s. Gravity can be toggled on and off by
pressing g.

The + and - keys can be used to change the value of certain variables. These variables specify
things such as the gravitational acceleration, dynamic friction, and variables that will be needed
for this assignment.

The variable currently affected by the + and - keys is shown in the bottom line of green text.
Pressing Tab and Shift-Tab cycles through the different variables. To locate variables which can be
set this way, and to see how they were set, search for variable_control.insert in the assignment
file.

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2024/hw04.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

Assignment-Specific User Interface
Pressing 1 generates a new hyperboloid. The first two are hard-coded, and after that they are
randomly generated. Pressing 2 shows the first hyperboloid again.

Pressing v switches between using a pipeline using a triangle list (individual triangles) and a
triangle strip. The setting is shown in the second line of green text to the right of label Pipeline
Variant.

Display of Performance-Related Data

The top green text line shows performance in various ways. The number to the right of FPS
shows the frame rate, the number of frames completed per second. On some displays 60 is the
target frame rate and anything significantly lower than that indicates mediocre performance. Next,
the green text shows whether frames are being prepared one at a time (serially), SER, or the
steps in preparing a frame are being overlapped, OVR. In overlap mode commands for one frame
are recorded while commands for a prior frame may be executing. For assignments early in the
semester the mode will be kept at SER.

GPU.V shows how long the GPU spends updating the frame buffer (per frame), GPU.CU shows
the execution of CUDA code per frame. CUDA code is physics in some assignments, but not this
one and so the time should be shown as ---. On some of the lab computers the computational
accelerator GPU is different than the one performing graphics. CPU GR is the amount of time that
the CPU spends recording Vulkan graphics commands (or whatever it does in the callback installed
by vh.cbs_cmd_record.push_back). CPU PH is the amount of time that the CPU spends on
physics or whatever it does in the callback installed by the call to vh.display_cb_set.

For rasterization the second line, the one starting with Vertices, shows the number of items
being sent down the rendering pipeline per frame. Clip Prim shows the number of primitives before
clipping (in) and after clipping (out). The next line indicates whether the code was compiled with
optimization. Use the version without optimization for debugging and the version with optimization
for performance measurements.

Code Generation and Debug Support

The compiler generates an optimized version of the code, hw04, and a debug-able version of the
code, hwO4-debug. The hw04-debug version is compiled with optimization turned off, which makes
it easier to debug. When needed, you are strongly encouraged to run hwO4-debug under the GNU
debugger, gdb. See the material under “Running and Debugging the Assignment” on the course
procedures page. You must learn how to debug. If not, you will be at a severe disadvantage.

To help you debug your code and experiment in one way or another, the user interface lets
you change variables. In most assignments these include the variables opt_tryoutl, opt_tryout2,
opt_tryout3, and opt_tryoutf, available in CPU and shader code. You can use these variables
in your code (for example, if (opt_tryoutl) { x += 5; }) to help debug, to help familiarize
yourself with how the code works, or to experiment with new ideas. Keys y, Y, and Z toggle the
value of host Boolean variables opt_tryoutl, opt_tryout2, and opt_tryout3. The user interface
can also be used to modify host floating-point variable opt_tryoutf using the Tab, +, and - keys,
see the previous section.

Resources

A good reference for C++ is https://en.cppreference.com/w/. Solutions to the shader pro-
gramming problems may (will) require the use of library functions. See Chapter 8 of The OpenGL
Shading Language Version 4.6 specification. Also see 2014 Homework 4-6 (especially 6), the spi-
ral, to see examples of how the pipeline input topology can be chosen to provide data needed by
the geometry shader, even though the topology class (point, line, triangle) does not geometrically
correspond to what is being drawn.

https://en.cppreference.com/w/

Problem 1: The code in World: :render prepares Vulkan for rendering a scene including some
triangles, and a hyperboloid of one sheet. It also writes the green text. T'wo pipelines are used to
render the hyperboloid, pipe_hyperb and pipe_hyperb_strip. Other than the primitive topology,

both are identical.
The code computes hyperboloid vertex coordinates and normals and writes them to host

containers coords and norms:

for (int side = 0; side <= n_sides; side++) {
float theta = side * delta_theta;
pMatrix_Rotation rot(hyperb_az,theta);
pCoor line_bot_pos = bot_ctr + rot * bot_vx;
pVect 1_dv = rot * line_dv;

for (int lev = 0; lev <= n_levels; lev++) {
pCoor p_line = line_bot_pos + lev * 1_dv;
coords[lev] [side] = p_line;
pCoor ctr = bot_ctr + lev * delta_z;
pVect tc = cross(hyperb_az,pVect(ctr,p_line));
pNorm n = cross(tc,l_dv);
norms[lev] [side] = n;

}
Variable 1lev indicates the level (position along the hyperboloid axis) and side indicates a position
around the circle at a level. Both are integers and are used to index the container. (See the
complete code in the assignment file, and if necessary review Homework 2 which also worked with
hyperboloids.) Notice that the lev loop moves along a straight line and that each iteration of the

side loop rotates that line around the hyperboloid axis.

Continued on next page.

Variable pipeline_variant indicates which pipeline and vertex grouping to use. Pressing v
toggles it between PV_Individ (triangle list [individual triangles|) and PV_Strip (triangle strip).
Next, the code prepares a buffer set for the appropriate pipeline. In the unsolved assignment only
individual triangles will work correctly.

switch (pipeline_variant) {
case PV_Individ:

bset_hyperb.reset (pipe_hyperb) ;
for (int side = 0; side < n_sides; side++)
for (int lev = 0; lev < n_levels; lev++)
{
pCoor p00 = coords[lev] [side];
pCoor pOl = coords[lev] [side+1];
pCoor pl0 = coords[lev+1] [side];
pCoor pll = coords[lev+1] [side+1];

bset_hyperb << p00 << pOl1 << p10;
bset_hyperb << p01l << pll << pil0;

pNorm n00 = norms[lev] [side];
pNorm nO1 = norms[lev] [side+1];
pNorm ni10 = norms[lev+1] [side];
pNorm nll = norms[lev+1] [side+1];

bset_hyperb << n00 << n01 << nl0;
bset_hyperb << n01 << nll << nl0;

int ¢l = side == 0 ? (lev/2 75 : 2) : 1;
int ¢c2 = side == 07 (lev}2 ?7 3 : 4) : 1;

bset_hyperb << cl << cl << ¢l << ¢2 << ¢2 << ¢2;
b

break;

The code above inserts coordinates, normals, and color indices into buffer set bset_hyperb in
the correct order for individual triangles. The color indices, c1 and c2, are integers. They refer to
colors stored in array uni_hw03_colors, which is prepared in World: :render. A single index, such
as 1, specifies both a front color and a back color. Though a different color index can be assigned
to each vertex of a triangle, the geometry shader only uses the color index of the third vertex for
coloring.

In the unsolved assignment the PV_Strip is identical to the code under PV_Individ. As a
result the triangle strip pipeline will be fed with vertices in individual triangle order. As a result
coloring will not be correct and the number of vertices will be 3x what they should be.

Modify the PV_Strip case in the switch (not shown above) so that vertices are inserted in
the correct order for a triangle strip. In a correct solution the version using triangle strips will be
identical in appearance to the one using a triangle list, but using one third the number of vertices.

To do this correctly one must use multiple triangle strips, either one per value of side or one
per value of lev. When starting a new triangle strip (restarting a strip) use 0 for the color index of

4

the first two vertices. If triangle strips are not restarted properly extra triangles will be rendered,
affecting at least coloring.

Problem 2: 1In the unmodified assignment the fragment shader, fs_main in file hwO4-shdr.cc,
applies a simple lighting algorithm that uses a diffuse coloring model to compute the lighted color of
the fragment. First, the shader computes the value of attenuation which indicates how much light
is reaching the fragment based on the distance from the fragment to the light and the angle, and on
whether the light is on the side of the triangle that we can see (variable 1it_side is true). If the
light is on the opposite side of the triangle ((variable 1it_side is false) then attenuation is set
to zero. The shader then combines the visible color material property, light color, and attenuation
to compute the lighted color:

void fs_main() {
// Vector from fragment to light.
vec3 vec_vl = uni_light.position.xyz - vertex_e.xyz;

// Distance squared.
float dist_sq = dot(vec_vl, vec_vl);

// False if the light illuminates the side we can’t see.
bool lit_side = dot(normal_e, vec_vl)>0 == dot(normal_e, -vertex_e.xyz)>0;

// Amount of light reaching the fragment.
float attenuation = 1lit_side ? abs(dot(normal_e, vec_vl) / dist_sq) : O;

// Material color.
vecd mat_color = gl _FrontFacing 7 uc.front[color_idx] : uc.back[color_idx];

// Compute lighted color.
frag_color = mat_color * uni_light.color * attenuation;

The lighting code above models an opaque material. Modify the code above to modify a
translucent material as follows: If the lit side of the fragment is visible then compute the lighted
color as shown above (and in the unmodified assignment). If the lit side is not visible then combine
the front and back colors in some way so that the visible color is a combination of the two, and is
darker than if the light were on the visible side. See the lower screenshot on the first page of this
assignment.

