
LSU EE 4702-1 Homework 3 Due: 11 October 2024

All of the code for this assignment is in the course repo. HTMLized versions of the assignment file
are at https://www.ece.lsu.edu/koppel/gpup/2024/hw03.cc.html.

Problem 0: If not already done, follow the instructions
on https://www.ece.lsu.edu/koppel/gpup/proc.html

for account setup and programming homework work flow.
Compile and run the homework code unmodified. The
code is based on the CPU-only rendering pipeline demo in
directory cpu-only/demo-06-rend-pipe.cc and on the
solution to 2023 Homework 3. The homework code should
initially show a scene with a ring (or squat cylinder) and
some triangles, one of which looks like it is dangerously
close to a bright light, see the screenshot to the upper
right. The screenshot on the lower right shows a correct
solution to this assignment, in particular, Problem 3 in
which only triangle edges are rendered, shown as pixel-
width lines.

Homework Overview
The code in the this assignment takes the frame buffer demo code, such as demo-04-z-light, and
re-organizes it into a form closer to that of 3D acceleration libraries by separating the code that
computes the location of triangles and the location of the eye, from the code rendering triangles.
The homework code contains two major classes, World and Our_3D. Code in Our_3D is part of a
fictional 3D rendering library, the kind of code that an OpenGL or Vulkan implementation would
provide plus shaders provided by application programs. The code in World is application code that
makes use of the 3D rendering library.

It does so by passing arrays of coordinates and other data to Our_3D and then by calling
routine Our_3D::draw_rasterization to write the frame buffer based on those coordinates. In
this assignment World draws a simple scene, but it is supposed to represent applications such as
flight simulators, video games, or visualization. The code in Our_3D represents code provided as
part of a device driver that came with your video card or operating system plus any application-
programmer written shaders. The device-driver code would be written to run fast on a particular
piece of hardware, such as a video card using an RTX 4090 GPU. In this assignment though the
code is not even close to tuned to any hardware device.

Routine World::render_scene prepares a scene to be rendered. In the unmodified assignment
it consists of several triangles and a ring (a short cylinder), which is itself made from triangles.
The triangle vertex locations are specified by inserting coordinates into container coors_os, vertex
normals into norms_os, and vertex colors (material properties) into colors. The suffix _os is for
object space.

For example, the code below inserts coordinates and colors for two triangles (note that <<

inserts an item, it is an overload of vector::push_back):

vector<pCoor> coors_os;

vector<pVect4> norms_os;

vector<pColor> colors;
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coors_os << pCoor( 0, 0, 0 ) << pCoor( 9, 6, -5 ) << pCoor( 0, 7, -3 );

colors << color_white << color_white << color_white;

coors_os << pCoor(-4,2,-3) << pCoor(-2,2,-3) << pCoor(-2,0,-3);

colors << color_blue << color_green << color_red;

(The code samples here are condensed versions of the code in hw03.cc.) The vertex normals
for the triangles are computed by a loop further below. Note that coors_os is declared in
World::render_scene and so Our_3D can’t automatically see these coordinates. World::render_scene
also provides transformation matrices to Our_3D:

// Specify Transformation from Object to Eye Space: eye_from_object.

pMatrix_Translate center_eye(-eye_location);

pMatrix_Rotation rotate_eye(eye_direction,pVect(0,0,-1));
pMatrix eye_from_object = rotate_eye * center_eye;

gc.transform_eye_from_object_set(eye_from_object);

// Transform from Eye to Clip

pMatrix_Frustum clip_from_eye

( -width_m/2, width_m/2, -height_m/2, height_m/2, 1, 5000 );

gc.transform_clip_from_eye_set(clip_from_eye);

After populating the coors_os container our user code computes the triangle normals:

for ( size_t i = 0; i < coors_os.size(); i += 3 ) {

pCoor p1 = coors_os[i], p2 = coors_os[i+1], p3 = coors_os[i+2];

pVect4 n = cross( p1, p2, p3 ).normal();

norms_os << n << n << n; }

Notice that each group of three vertices describes a triangle. That’s the case for the triangles
specified by the code so far, but not for the ring. To actually render the scene the coordinate and
color container information needs to be passed to Our_3D and then a draw command needs to be
issued. That is done by the code below:

gc.topology_strip_set(false); // Triangles *do not* form a strip.

gc.vtx_coors_set(coors_os); // Copy address of coors_os.

gc.vtx_normals_set(norms_os); // Copy address of norms_os.

gc.vtx_colors_set(colors); // Copy address of colors.

gc.draw_rasterization(); // Render the scene.

Our_3D does not copy the containers, it only keeps an address, so additional items can be added up
until gc.draw_rasterization() is called. Routine gc.draw_rasterization() paints the frame
buffer (actually a pixel array which will eventually be composited into the frame buffer).

Routine gc.draw_rasterization() is called twice per frame, the first time to render the indi-
vidual triangles, and the second time for the ring. It is possible to call gc.draw_rasterization()
once per triangle, but that would be foolish because there is a substantial per-call overhead that
would have to be borne for each triangle. So the code loads all the triangles into coors_os and
calls draw_rasterization once. Calling draw routines fewer times with more triangles per call is
especially important for “real” 3D acceleration libraries like OpenGL and Vulkan.

After preparing the individual triangles, the code prepares the ring (cylinder). The ring is
described by variables declared near the top of the routine:
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pCoor cyl_center(-1,-1,-3);

int n_segs = 50;

pVect cyl_axis( 0, 0.75, 0.05 );

float cyl_radius = 4;

Further ahead in the routine code inserts triangles for the ring. It starts by clearing (emptying)
the containers and then computing axes, ax and ay, of the ring circles.

// Empty the containers so they can be used for the next draw.

coors_os.clear(); colors.clear(); norms_os.clear();

pNorm ax(0,-cyl_axis.z,cyl_axis.y); // Find an axis orthogonal to cyl_axis.

pNorm ay = cross( cyl_axis, ax );

float delta_theta = 2 * M_PI / n_segs;

For the individual triangles above (before the ring) three vertices were inserted into coors_os

for each triangle, this is referred to as an individual triangle grouping. For the ring we will tell
Our3D to expect the vertices to be in a triangle strip grouping. In a triangle strip grouping the first
triangle is constructed from coors_os[0], coors_os[1], and coors_os[2]; the second triangle
from coors_os[3], coors_os[2], and coors_os[1], the third from coors_os[2], coors_os[3],
and coors_os[4], etc. To render T triangles requires T + 2 vertices rather than 3T . (Sharp-eyed
readers may have noticed that the order of vertices of the first and second triangle are different.
That’s intentional since vertex order determines which side is the front. The default is a counter-
clockwise [right-handed] winding order.)

A triangle strip grouping works well for the ring. A loop iterates around the circle, with the
first and last point overlapping. At each iteration a point on the lower circle, c, and upper circle,
c+cyl_axis are computed and added to the coors_os container. Both of these points have the
same surface normal, n in the code. That is added to norms_os. Note that n is the normal of the
cylinder surface, not of the triangles used to approximate the cylinder. Code in the loop body also
adds colors to the list.

for ( int i=0; i<=n_segs; i++ ) {

float theta = i * delta_theta;

pVect4 n = ax * cosf(theta) + ay * sinf(theta);

pCoor c = cyl_center + cyl_radius * n;

coors_os << c + cyl_axis << c;

norms_os << n << n;

colors << color_cyan << color_cyan;

}

Finally, Our3D is told to expect a triangle-strip grouping, pointers to the containers are pro-
vided, and the draw routine is called:

gc.topology_strip_set(true);

gc.vtx_normals_set(norms_os);

gc.vtx_coors_set(coors_os).vtx_colors_set(colors);

gc.draw_rasterization();

In this assignment code in Our_3D::draw_rasterization will also have to be modified. This
routine uses the vertex containers and transformations provided by Our_3D::draw_rasterization
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to write the frame buffer. The code itself is based on code from cpu-only demos such as demo-04-z-
light, but is re-organized to look a tiny bit more like acceleration code in a Vulkan implementation.
Some of the code in Our_3D::draw_rasterization would be driver code in a Vulkan implemen-
tation (not normally seen by an application program) and some would be shader code, something
application programs do write.

The code in Our_3D::draw_rasterization starts by preparing the window-from-clip coordi-
nate space transformation:

Our_3D& Our_3D::draw_rasterization() {

const uint win_width = frame_buffer.width_get();

const uint win_height = frame_buffer.height_get();

// Transform from Clip to Pixel

//

pMatrix_Translate recenter(pVect(1,1,0));

pMatrix_Scale scale( win_width/2, win_height/2, 1 );

pMatrix window_from_clip = scale * recenter;

pMatrix ws_from_os = window_from_clip * clip_from_eye * eye_from_object;

pCoor eye_location = -eye_from_object.col_get(3);

Notice that clip_from_eye and eye_from_object were prepared by application code, but that
ws_from_os (window-space from object space) is prepared by Our3D. That’s because clip_from_eye
and eye_from_object depend on things that are of a concern to the application programmer, such
as where the eye is and how big the monitor is.

After preparing convenience pointers like zbuffer and colors and updating statistics, like
frame_buffer.n_vtx_frame (not shown here), the code starts the main loop which iterates over
triangles:

const size_t inc = topology_strip ? 1 : 3;

for ( size_t i=0; i+2 < coors_os.size(); i += inc ) {

frame_buffer.n_tri_frame++; // Count of number of triangles.

// Get next triangle’s object space coordinates ..

pCoor o0 = coors_os[i+0], o1 = coors_os[i+1], o2 = coors_os[i+2];

// .. convert them into unhomogenized clip-space coordinates ..

pCoor u0( ws_from_os * o0 ), u1( ws_from_os * o1 ), u2( ws_from_os * o2 );

// .. and homogenize them.

pCoor_Homogenized w0( u0 ), w1( u1 ), w2( u2 );

// Extract colors and normals too.

pColor c0 = colors[i], c1 = colors[i+1], c2 = colors[i+2];

pVect4 n0 = vtx_normals[i], n1 = vtx_normals[i+1], n2 = vtx_normals[i+2];

The loop body starts by retrieving information about a triangle, which is described by three con-
secutive elements of coors_os, etc. Note that this loop works both with individual triangle and
triangle strip groupings, the only difference is the value of inc. The retrieved object-space coor-
dinates, o0,o1,o2, are converted to window-space coordinates in two steps. Coordinates in w0, w1,
and w2 are in window space, meaning that, for example, w0.x and w0.y could be used to compute
a frame-buffer coordinate.

A deeper loop nest (b0,b1) iterates over barycentric coordinates. Recall that given barycentric
coordinates b0, b1, and b2, and points P0, P1, and P2, point S = b0P0 + b1P1 + b2P2 is inside
triangle P0P1P2 if b0 ≥ 0, b1 ≥ 0, b2 ≥ 0, and b0 + b1 + b2 = 1. Here P0 is the coordinate of a
point, but mathematically is treated like a vector from the origin to the point. (In class barycentric
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coordinates were described in a different but equivalent way: S = b1
−−−→
P0P1 + b2

−−−→
P0P2.) Some special

cases: If bi = 1 then S = Pi for i ∈ {0, 1, 2}. If b0 = 0 then S is on the edge between points P1 and
P2. That may be useful for 2024 Problem 3.

Since we aren’t interested in points outside the triangle the inner loop limits b1 ∈ [0, 1 − b0]
and b2 = 1− b0 − b1. See the code below.

for ( float b0=0; b0<=1; b0 += db0 )

for ( float b1=0; b1<=1-b0; b1 += db1 ) {

frame_buffer.n_frag_frame++; // Count of number of fragments.

const float b2 = 1 - b0 - b1;

pCoor wf = b0*w0 + b1*w1 + b2*w2;

if ( uint(wf.x) >= win_width || uint(wf.y) >= win_height ) continue;

const size_t idx = wf.x + int(wf.y) * win_width;

Since the goal is to find a frame-buffer coordinate the barycentric coordinates are used in the
code above to compute wf (window-space fragment) using window-space coordinates of the triangle
vertices. After computing wf the code makes sure it is within the frame buffer.

To compute the lighted color of the fragment the code needs to find the object-space coordinates
of the fragment. That can not be computed by the expression b0*o0 + b1*o1 + b2*o2 because
b0, b1, and b2 are window-space barycentric coordinates. To find the fragment object-space co-
ordinate and to interpolate any other vertex properties we need object-space (perspective-correct)
barycentric coordinates. These are computed and used to interpolate the object-space coordinates,
vertex normal, and color:

// Compute perspective-correct barycentric coordinates.

float bc0 = b0 / ( b2 * u0ou2 + b1 * u0ou1 + b0 );

float bc1 = b1 / ( b2 * u1ou2 + b0 * u1ou0 + b1 );

float bc2 = 1 - bc0 - bc1;

pCoor of = bc0*o0 + bc1*o1 + bc2*o2;

pNorm n = bc0*n0 + bc1*n1 + bc2*n2;

pColor color = bc0*c0 + bc1*c1 + bc2*c2;

For this assignment it is not important to understand the derivation of the object-space barycentric
coordinates, however it is important to understand the difference between object-space and window-
space coordinates.

With these, the lighted color can be computed and written to the frame buffer:

// Compute Lighted Color

pNorm frag_to_light(of,light_location);
pVect frag_to_eye(of,eye_location);
float cos_angle_eye = dot( n, frag_to_eye );

float cos_angle_light = dot( n, frag_to_light );

bool illumination_visible =

( cos_angle_light > 0 ) == ( cos_angle_eye > 0 );

float clamped_phase = illumination_visible ? fabs(cos_angle_light) : 0;

pColor lighted_color =

( light_ambient

+ clamped_phase / frag_to_light.magnitude * light_color ) * color;

// Write the frame (color) buffer with the lighted color

frame_buffer[ idx ] = lighted_color.int_rgb();
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User Interface
Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Press F12 to
generate a screenshot. The screenshot will be written to file hw03-x.png or hw03-debug-x.png,
where x is the number of previous screenshots generated. The first screenshot may be garbled.

Initially the arrow keys, PageUp, and PageDown, can be used to move around the scene. The eye
direction cannot be changed, but feel free to add this functionality if you want it. After pressing l

the motion keys will move the light instead of the eye, and after pressing e the motion keys operate
on the eye.

The light intensity can be adjusted by pressing + and -. (This only works for this assignment.)

Assignment-Specific User Interface
Pressing p toggles between computing the lighted color per fragment or per vertex. The setting
is shown in the second line of green text to the right of label Lighting per. The value is shown in
variable opt_light_frag, set to true for per-fragment lighting.

Pressing n cycles through three ways of display triangle edges NONE, meaning the triangles
are shown in the usual way, PIXEL, meaning only triangle edges are to be shown and that the edges
are a few pixels wide, and WORLD, meaning that triangle edges are to be 0.1 object-space units
wide. Variable opt_lines is cycled by n, see Problem 3 for more information. Until Problem 3
is solved correctly only NONE will work. (Of course, it’s possible even that won’t work. If that
happens to you don’t feel shy about asking for help.)

Display of Performance-Related Data
The top green text line shows performance-related and other information. Frame shows the number
of times render_scene has been called. It should only increment on key presses and certain window
manager events (such as minimizing and unminimizing). Size refers to the size of the window.
Mouse refers to the coordinates of the mouse pointer. Coordinate (0, 0) is at the lower left of
the window. Text frame_buffer[N] shows the index of the frame buffer corresponding to the
point under the mouse pointer. (In the assignment file frame_buffer is abbreviated to fb, for
convenience.)

Render Time and Potential Frame Rate show the CPU time needed to write the frame
buffer. They can be ignored for this assignment.

The last line of green text shows the number of items processed by the rendering pipeline
per frame. One should be able to estimate these numbers. For example, if one is rendering using
individual triangles one should be able to compute the number of triangles from the number of
vertices. Fragments shows the number of fragments processed by what we will call the rasterizer.
Recall that a fragment is a part of a triangle covering a pixel. In draw_rasterization look for the
place where n_frag_frame is incremented. Pixels is the number of times that the frame buffer is
written with a fragment. (Not every fragment is written.)

Code Generation and Debug Support
The compiler generates an optimized version of the code, hw03, and a debug-able version of the
code, hw03-debug. The hw03-debug version is compiled with optimization turned off, which makes
it easier to debug. When needed, you are strongly encouraged to run hw03-debug under the GNU
debugger, gdb. See the material under “Running and Debugging the Assignment” on the course
procedures page. You must learn how to debug. If not, you will be at a severe disadvantage.

To help you debug your code and experiment in one way or another, the user interface lets you
change variables. In most assignments these include the variables opt_tryout1 and opt_tryout2.
You can use these variables in your code (for example, if ( opt_tryout1 ) { x += 5; }) to
help debug, to help familiarize yourself with how the code works, or to experiment with new ideas.
Keys y and Y toggle the value of host Boolean variables opt_tryout1 and opt_tryout2.
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Problem 1: For this problem modify the code in routine
World::render_scene() so that it emits the two trian-
gles described below. The screenshot to the upper-right
shows the unmodified assignment, the screen shot to the
lower right shows the scene with the two new triangles: a
purple triangle in the the center and a salmon triangle (it
looks brown) in the lower center.

(a) Modify the code so it emits a purple triangle adjacent
to the multicolored (red/green/blue) triangle. The top-
left vertex of the purple triangle should be at the same
coordinate as the green vertex of the multi-colored tri-
angle. The lower vertex of the purple triangle should be
halfway between the green and blue vertex. The upper
edge of the purple triangle should be on the same line
as the red/green edge and should be the same length as
the red/green edge. Note: This is an easy problem once
you find the place in the code that emits the multi-colored
triangle.

(b) A common problem encountered by some working with graphics demos is figuring out where
the light is. Here we will fix that problem by adding a triangle that points at the light: the brown
(the color is actually salmon) triangle in the cyan ring.

Modify the code so that it renders the salmon triangle as follows. Two vertices are on the
cylinder axis (one at the bottom and one at the top). The third vertex points toward the light.
Place it on the line from the top vertex to the light. The length of the edge from the top vertex to
the light should be two. Use variable color_salmon for the color, or choose your own color. The
light location is in variable World::light_location.

Problem 2: When the code starts it shows a scene with
the light close to a green (actually dark olive green) and
a gray triangle. As with all demos covered in class so far,
lighting is computed at each fragment. Back in the twen-
tieth century the amount of computation needed to com-
pute lighting was considered substantial. So rather than
compute the lighted color for every fragment in a raster-
ized triangle, the lighted color would only be computed at
each vertex. The lighted color at a fragment would be a
blend of the lighted colors of the three vertices, using the
barycentric coordinates as the blend weights. Note that
the code already does such blending for color (material
property) which can be seen in the multi-colored triangle.

Computing the lighted color only for vertices can
save a substantial amount of computation. In our de-
fault scene (in a draft of this homework assignment) there
are 57 vertices and 2141934 fragments, so our code does
2141934

57 = 37577.8 times more lighted color computations
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than it would do if a lighted color were only computed for
each vertex.

In the screenshot to the upper right a lighted color is computed for each fragment, in the
screenshot to the lower right a lighted color is computed for each vertex. In some places the
difference is obvious, such as the disappearance of the bright spot on the green triangle. There’s
no spot because lighted colors are a blend of the three vertices, and each vertex is further from
the light than the center of the bright spot. The difference in lighting is much more subtle for
primitives further from the light and for smaller primitives, such as the cyan ring.

(a) Modify the code in Our_3D::draw_rasterization so that when opt_light_frag is false
lighting is only computed for each vertex. When opt_light_frag is true lighting should be
computed the way it is now. Make sure that lighting for each vertex is computed just once,
even when primitives are offered as a triangle strip.

To get a better understanding of how many times lighting is computed put the line if (

opt_tryout1 ) frame_buffer.n_vtx_frame--; in the place where the lighted color is being
computed in your code. In the unmodified assignment that would be in this code:

float clamped_phase =

illumination_visible ? fabs(cos_angle_light) : 0;

pColor lighted_color =

( light_ambient

+ clamped_phase / frag_to_light.magnitude * light_color )

* color;

if ( opt_tryout1 ) frame_buffer.n_vtx_frame--; // Add this for familiarization.

//

// Write the frame (color) buffer with the lighted color

//

frame_buffer[ idx ] = lighted_color.int_rgb();

When running the code with this modification look at the bottom line of green text near
Vertices and press y (lower-case wye). If you’ve solved the assignment correctly the text should
show Vertices 0 when Tryout1 is on (look at the middle of the second line of green text). If the
number is instead a large negative value, say -1573915, then the code is computing lighted colors
way too many times. It is also possible that it is a much smaller magnitude negative number, say
117− 105× 3 = −198. That’s better but not a full credit answer.

There’s another problem on the next page.
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Problem 3: For many 3D graphics systems surfaces are
approximated by triangles. To help with debugging, tun-
ing, and familiarization it can be helpful to make the tri-
angles’ locations obvious by showing only the edges. See
the two lower screenshots.

Variable opt_lines specifies how triangles should be
rendered. When opt_lines= Lines_None the triangles
should be filled, which is how they are rendered nor-
mally, shown in the upper screenshot. When opt_lines=

Lines_Pixel rendered triangle edges should be only about
two pixels thick, see the middle screenshot. When opt_lines=

Lines_World triangle edges should be 0.1 object-space
units thick, see the lower screenshot. Note that in all
cases the lighted color of the edges is computed in the
same way as the full triangle. The second line of green
text shows the value of opt_lines, and its value can by
cycled by pressing n. (The letter el was already used for
light.)

There is an important difference in appearance be-
tween pixel mode and world mode. In pixel mode the
rendered thickness is the same for every triangle, regard-
less of its size, distance from the eye, and orientation. In
contrast in world mode the closer an edge is to the eye the
larger its thickness in its projection on the frame buffer.
Look closely at the thickness of the edges of the triangles making up the near and far portions of
the cyan ring. The closer edges are thicker (even if your perceptual system is trying to tell you
otherwise). Also look at the gray triangle in the upper left. Its edges appear thinner than nearby
triangles because the gray triangle is facing up and so we see the triangle (and its edges) edge-on.

Modify the code in Our_3D::draw_rasterization so that it renders triangle edges as described
above. One might be tempted to solve the problem by using a line-drawing routine (such as one
from the early frame buffer demos or past homework assignments). Try to avoid that since it can
not easily be made to work for world mode once edge thickness and lighting are taken into account.
Instead, use the barycentric coordinates to determine how close a fragment is to an edge.

To help you get started there is a switch ( opt_lines ) statement with the three cases.
Code in a case should test the barycentric coordinates and if some condition is true, continue. For
example,

switch ( opt_lines ){

case Lines_None: break;

case Lines_Pixel:

if ( bx0 ... ) continue;

break;

where bx0 is either b0 or bc0. A correct solution depends on using the right barycentric coor-
dinates in each case either the window-space coordinates, b0,b1,b2, or the perspective-correct
coordinates, bc0,bc1,bc2. If necessary, re-read the material on barycentric coordinates in the
homework overview above.
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