
LSU EE 4702-1 Homework 1 Due: 1 September 2023

All of the code for this assignment is in the course repo. HTMLized versions of the assignment
file are at https://www.ece.lsu.edu/koppel/gpup/2023/hw01.cc.html. The solution code is at
https://www.ece.lsu.edu/koppel/gpup/2023/hw01-sol.cc.html.

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html page
for account setup and programming homework work flow.
Compile and run the homework code unmodified. It should
initially show some sine waves and radially arranged white
rectangles. See the screenshot to the upper right. Two
boxes should follow the mouse pointer around the window.
The mouse pointer should be in the center of the blue box.
A green box is nearby. The relative position and size of the
green box can be changed using the keyboard, as described
further below. After this assignment is correctly solved the
green box should show a zoomed version of what is in the
blue box. That appears in the screenshot to the lower right.

User Interface
Press Ctrl= to increase the size of the green text and Ctrl-

to decrease the size. Press F12 to generate a screenshot.
The screenshot will be written to file hw01.png or hw01-

debug.png.
To change the size of the green box use the arrow keys.

The left and right keys change the width, the up and down
keys change the height. Pressing shift and an arrow key will
move the green box relative to the blue box. It is possible
for the green box to completely cover the blue box.

Display of Performance-Related Data
The top green text line shows performance-related and other information. Size refers to the size of
the window. Mouse refers to the coordinates of the mouse pointer. Coordinate (0, 0) is at the lower
left of the window. Text frame_buffer[N] shows the index of the frame buffer corresponding to
the point under the mouse pointer. (In the assignment file frame_buffer is abbreviated to fb, for
convenience.)

Render Time and Potential Frame Rate show the CPU time needed to write the frame
buffer. They can be ignored for this assignment. See Problem 2 for the second line, the one that
starts Frame buffer writes..

Integer Coordinate and Vector Types
This assignment uses integer 2D coordinate type iCoor and integer 2D vector type iVect. These
types will just be used for this assignment, but in other code we will be using similar types, pCoor
and pVect which are for 3D and in which the components are floating-point types.

The iCoor and iVect classes each have two members, x and y:

class iCoor {

public:

iCoor(int x, int y):x(x),y(y){}

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2023/hw01.cc.html
https://www.ece.lsu.edu/koppel/gpup/2023/hw01-sol.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

int x, y;

};

class iVect {

public:

iVect(int x, int y):x(x),y(y){}

int x, y;

};

The addition, subtraction, and division operators are overloaded with these types. Here are
some examples of how to use them:

void demo() {

iCoor c0(3,4); // Set to x=3, y=4.

iCoor c1;

c1.x = 5; c1.y = 7; // Set to x=5, y=7;

iCoor c3 = c1;

// Component-wise subtraction.

// Equivalent to v1.x=c0.x-c1.x; v1.y=c0.y-c1.y;

iVect v1 = c0 - c1;

// Component-wise addition.

// Equivalent to c4.x=c1.x+v1.x; c4.y=c1.y+v1.y;

iCoor c4 = c1 + v1;

// Not allowed: Can’t add two coordinates.

iCoor c5 = c4 + c1;

}

Code Generation and Debug Support
The compiler generates an optimized version of the code, hw01, and a debug-able version of the
code, hw01-debug. The hw01-debug version is compiled with optimization turned off, which makes
it easier to debug. When needed, you are strongly encouraged to run hw01-debug under the GNU
debugger, gdb. See the material under “Running and Debugging the Assignment” on the course
procedures page. You must learn how to debug. If not, you will be at a severe disadvantage.

2

Problem 1: In the unmodified assignment, when the mouse
is near the right window edge the green box will wrap
around to the left side of the window. See the upper screen-
shot to the right, where the wrapped part is circled (almost)
in red. The lower screen shot is from code in which this
problem is correctly solved but Problem 2 is not started.
The green box does not wrap to the left side.

The green box is drawn by calling aa_rectangle_draw

(aa is for axis-aligned). The rectangle is specified by a
lower-left coordinate, p00, a width, wd, and a height, ht.
The routine draws the rectangle by calling a line drawing
routine four times. Modify aa_rectangle_draw so that the
rectangle it draws does not go beyond a window edge (and
so the green box won’t wrap).

The routine aa_rectangle_draw calls line_draw four
times. What makes this problem easy is that each line is
parallel to an axis. The x-axis values range from p00.x to
p00.x+wd. These need to be checked and possibly adjusted
to stay within the range 0 to win_width-1. Also note that
if p00.x is less than zero, the left vertical line should not be
drawn. Similar reasoning is used to skip drawing the other
three lines of the rectangle.

There is another problem on the next page.

3

Problem 2: Code near the end of render_hw01 draws the blue and green rectangles described in
the homework introduction. Add code to the routine so that the contents of the frame buffer inside
the blue rectangle is copied to the part of the frame buffer inside the green rectangle. A similar
problem was asked in 2022 Homework 1, feel free to look at its solution to help get started.

The coordinates of the lower-left of the blue rectangle, called the mag_from area in the code, is
in variable mag_from_ll, a variable of type iCoor. (See description in the problem introduction.)
The width and height are in mag_from_diag.

The coordinates of the lower-left of the green rectangle, called the mag_to area in the code, is
in variable mag_from_ll, and the width and height are in mag_to_diag.

In order to solve this problem correctly when the blue and green box overlap, the contents of
the blue box will need to be copied to intermediate storage before it is copied to the green box. Use
array (actually a vector) hw01_data.fb_area_dup for this purpose. The size is mag_from_diag.x

* mag_from_diag.y elements.
To help with your understanding of how to read and write the frame buffer an the intermediate

storage there is code that draws diagonal lines into the green and blue rectangles, and into the
intermediate storage. That code is guarded by show_starter_code. To actually toggle the visibility
of those diagonal lines press y.

The screenshot to the lower right was taken from code with the correct solution. Notice that
the green box only shows zoomed material and that one cannot see the blue box inside the green
box. The shot to the left shows an incorrect solution, one in which intermediate storage was not
used or not used properly.

Make sure that your solution works correctly when the green box is moved and re-sized. Use
the arrow keys to re-size and shift-arrow to move the green box.

4

