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Problem 1: [20 pts] The geometry shader code below is from
the solution to Homework 5. Each invocation draws the area
between two spokes. The screen shot shows how some inputs to
the geometry shader relate to the rendered image.

(a) In the original code EndPrimitive() was not called until after
after the s loop. The code below calls EndPrimitive() inside the
loop once when variation=Plan_1 and at each iteration when
variation=Plan_s. For variation=Plan_0 the code is equiva-
lent to the homework solution and it is the version used for the
screenshot.

Describe the appearance for Plan 1, draw a sketch. Explain.

Describe the appearance for Plan s, draw a sketch. Explain.

Plan 0

Plan 1

Plan s

void gs_fe_ep() {

for ( int s=0; s<=opt_segments; s++ ) {

float t = float(s) / opt_segments;

// Compute interpolated coords along spokes 0 and 1 using t.

vec4 pos0t = bez( In[0].p1, In[0].p2, In[0].v1, In[0].v2, t );

vec4 pos1t = bez( In[1].p1, In[1].p2, In[1].v1, In[1].v2, t );

// Emit the vertex along spoke 0 ( In[0] )

gl_Position = ut.clip_from_object * pos0t;

Out.vertex_e = ut.eye_from_object * pos0t;

Out.tex_coor = mix( In[0].tc1, In[0].tc2, t );

EmitVertex();

// Emit the vertex along spoke 1 ( In[1] ).

gl_Position = ut.clip_from_object * pos1t;

Out.vertex_e = ut.eye_from_object * pos1t;

Out.tex_coor = mix( In[1].tc1, In[1].tc2, t );

EmitVertex();

switch ( variation ) {

case Plan_0: break; // Original. Same as Homework 5 solution.

case Plan_1: if ( s == opt_segments/2 ) EndPrimitive(); break;

case Plan_s: EndPrimitive(); break; }

}

EndPrimitive();

}
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(b) The screenshot to the upper right is from the Homework 5 solution.
The screenshot below shows the surface between the spokes with a sine-
wavy cut. Modify the geometry shader to make that cut. Variable
width shows how far the surface should extend. A value of 0.5 means
the surface should reach halfway from one spoke to another, a value of
0.7 means the surface goes 70% of the way, etc.

Modify the shader so that the surface extends width from Spoke 0
(thus forming the sine wavy shape) taking care that the texture
appears as shown.

Don’t overdo it. Only a few lines are needed. The mix function might
come in handy.

void gs_fe_sine() {

for ( int s=0; s<=opt_segments; s++ ) {

float t = float(s) / opt_segments; // delta_t

float width = 0.5 + ampl * ( 1 + sin( t * omega ) );

// Interpolate coordinate along each spoke.

vec4 pos0t=bez( In[0].p1, In[0].p2, In[0].v1, In[0].v2, t);

vec4 pos1t=bez( In[1].p1, In[1].p2, In[1].v1, In[1].v2, t);

// Emit the vertex along spoke 0 ( In[0] )

gl_Position = ut.clip_from_object * pos0t;

Out.vertex_e = ut.eye_from_object * pos0t;

Out.tex_coor = mix( In[0].tc1, In[0].tc2, t );

EmitVertex();

// Emit the vertex along spoke 1 ( In[1] ).

gl_Position = ut.clip_from_object * pos1t;

Out.vertex_e = ut.eye_from_object * pos1t;

Out.tex_coor = mix( In[1].tc1, In[1].tc2, t );

EmitVertex();

}

EndPrimitive();

}

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3



Problem 2: [20 pts] The facing page shows CPU code that prepares the buffer set to draw the area
between the spokes from the Homework 4 and Homework 5 solutions. The Homework 4 geometry shader is
shown, the Homework 5 geometry shader code can be found in the previous problem. Texture coordinates
have been omitted for simplicity.

The questions below are about the number of shader invocations and the amount of data per frame for the
these code fragments. In your answers use ns for the value of n_spokes and ng for the value of opt_segments.
The amount of data should be given in bytes. An integer and float are each 4 bytes.

Per frame and in terms of ns and ng how many times is the vertex shader invoked for the Homework 4
version and the Homework 5 of the code?

Per frame and in terms of ns and ng how many times is the geometry shader invoked for the Homework 4
version and the Homework 5 of the code?

Per frame and in terms of ns and ng how many primitives are sent to the rasterizer for the Homework 4
version and the Homework 5 of the code?

Per frame, does the Homework 4 code make © fewer fragment shader invocations, © about the same

number of fragment shader invocations, or © more fragment shader invocations than the Homework 5
code? Explain.

Per frame and in terms of ns and ng how much data is sent from the CPU to the GPU for the Homework 4
version and the Homework 5 of the code? Account for data in the buffer sets and in storage buffers
pos1, v1, etc.
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/// Homework 4 CPU Code: Input topology is a triangle strip. Vertex attribute: pCoor
for ( size_t i = 0; i < n_spokes; i++ ) {

size_t i2 = (i+1) % n_spokes;

int link_idx_1 = hw04_stuff.ribs[i]->idx, int link_idx_2 = hw04_stuff.ribs[i2]->idx;

pCoor pos11 = lis_pos1[link_idx_1], pos12 = lis_pos2[link_idx_1];

pVect v11 = lis_v1[link_idx_1], v12 = lis_v2[link_idx_1];

pCoor pos21 = lis_pos1[link_idx_2], pos22 = lis_pos2[link_idx_2];

pVect v21 = lis_v1[link_idx_2], v22 = lis_v2[link_idx_2];

for ( int s=0; s<=opt_segments; s++ ) {

const float t = float(s) / opt_segments;

pCoor pos1t = bez(pos11,pos12,v11,v12,t), pos2t = bez(pos21,pos22,v21,v22,t);

if ( s == 0 ) bset_hw04_p2 << pos1t;

bset_hw04_p2 << pos1t << pos2t;

if ( s == opt_segments ) bset_hw04_p2 << pos2t;

}

}

bset_hw04_p2.to_dev(); pipe_hw04_p2.record_draw( cb, bset_hw04_p2 );

/// Homework 4 Vertex Shader
void vs_main() { Out.vertex_o = in_vertex_o; }

/// Homework 4 Geometry Shader
void gs_main() {

vec3 normal_o = cross( In[1].vertex_o.xyz - In[0].vertex_o.xyz,

In[2].vertex_o.xyz - In[0].vertex_o.xyz );

vec3 normal_e = mat3( ut.eye_from_object ) * normal_o;

for ( int i=0; i<3; i++ ) {

gl_Position = ut.clip_from_object * In[i].vertex_o;

Out.normal_e = normal_e;

Out.vertex_e = ut.eye_from_object * In[i].vertex_o;

EmitVertex();

}

EndPrimitive();

}

/// Homework 5 CPU Code: Input topology is a line strip. Vertex attribute: integer (link_idx)
for ( size_t i = 0; i <= n_spokes; i++ )

bset_hw05 << hw05_stuff.spokes[i%n_spokes]->idx; // Insert link index.

bset_hw05.to_dev(); pipe_hw05.record_draw( cb, bset_hw05 );

/// Homework 5 Vertex Shader
void vs_hw05() {

Out.p1 = pos1[in_link_idx]; Out.p2 = pos2[in_link_idx]; // Get coords from storage buffer.

Out.v1 = v1[in_link_idx]; Out.v2 = v2[in_link_idx]; }

// See prior problem for geometry shader.
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Problem 3: [10 pts] Appearing below are hourglass shapes with vertices numbered. The code below inserts
vertex coordinates into a buffer set as part of an unsuccessful attempt to render that shape. The inserted
coordinates are correct (and the vertex numbers shown in the comments match the diagram). The problem
is their order and the number of times each vertex is inserted. (Vertex 4 is inserted twice, but that’s not the
only problem.)

bset_hg

<< pCoor(0,0) // Vtx 0

<< pCoor(4,0) // Vtx 1

<< pCoor(1,1) // Vtx 2

<< pCoor(1,3) // Vtx 4

<< pCoor(2,1) // Vtx 3

<< pCoor(2,3) // Vtx 5

<< pCoor(4,5) // Vtx 7

<< pCoor(0,5) // Vtx 6

<< pCoor(1,3); // Vtx 4

Do not try to fix the code. Instead show the result of rendering with these coordinates for the topologies
requested below.

On the diagram on the left sketch the triangles that will be rendered by the code below when the pipeline
is set up for a triangle list.

On the diagram on the right sketch the triangles that will be rendered by the code below when the pipeline
is set up for a triangle strip.

Triangle List
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y
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Triangle Strip
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Problem 4: [15 pts] Answer the following texture questions.

(a) A texture at MIPMAP level 4 is 8192 bytes. What is the size of the image at MIPMAP level 5?

The size of the image at level 5 is:

(b) The images below illustrate a problem that can occur when a texel size is much smaller than a pixel size.
The texture image shows a white picket fence with green behind the fence (probably grass).

Pixel to fill. Texel used to determine
pixel color. (Green)

Pixel boundaries.
Texels much smaller
than pixels.

Texel used to determine
pixel color. (White)

Suppose the eye in the scene illustrated above is slowly moving from left to right. What would be the major
problem with the appearance of the scene?

Major problem with appearance:

The solution to the problem is to use the average color of all the texels covering each pixel.

When and where are texels averaged together? Why doesn’t this averaging have an impact on rendering
speed?
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Problem 5: [20 pts] Answer the following questions about low-level rendering code.

(a) The loop nest below iterates over the barycentric coordinates of a triangle to find fragments to write
into the frame buffer. Variables w0, w1, and w2 hold the window-space coordinates of the triangle vertices.
Consider increments db0 and db1.

for ( float b0=0; b0<=1; b0 += db0 )

for ( float b1=0; b1<=1-b0; b1 += db1 ) {

const float b2 = 1 - b0 - b1;

pCoor wf = b0*w0 + b1*w1 + b2*w2; // Window-space coordinate of fragment.

frame_buffer[ wf.x + int(wf.y) * win_width ] = color; }

Describe the consequences if db0 and db1 are too small. Consider both correctness and performance.

Describe the consequences if db0 and db1 are too large. Consider both correctness and performance.

(b) The rasterization code below uses either eye-space (perspective correct) barycentric coordinates bc0,
bc1, and bc2 or window-space barycentric coordinates to interpolate texture coordinates tc0, tc1, and tc2.
Suppose a scene consists of two triangles forming a rectangle, and a texture is applied to the rectangle. The
texture image shows a ruler (for measuring lengths).

for ( float b0=0; b0<=1; b0 += db0 )

for ( float b1=0; b1<=1-b0; b1 += db1 ) {

const float b2 = 1 - b0 - b1;

pCoor wf = b0*w0 + b1*w1 + b2*w2; // Window-space coordinate of fragment.

float bc0 = 1/(f.w0ow2z*(1-b0)/b0+1), bc1 = 1/(f.w1ow2z*(1-b1)/b1+1), bc2 = 1-bc0-bc1;

if ( use_eye ) tc = bc0*tc0 + bc1*tc1 + bc2*tc2; // Eye-space interpolation.

else tc = b0*tc0 + b1*tc1 + b2*tc2; // Window-space interpolation.

texel = texture2D(tc); // Look up and filter texel.

frame_buffer[ wf.x + int(wf.y) * win_width ] = color * texel; }

Should use eye be © true or © false? Explain.

Show an image of the rectangle rendered with use eye=true and with use eye=false. Choose a
view in which the two will appear different (but the same view for both settings of use eye.
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(c) Consider two scenes. Scene I has T triangles, Scene II has 3T triangles. Scene II was created by splitting
each Scene I triangle into three triangles that cover the same area so that Scenes I and II appear to be
identical.

How would the time to render Scene II compare to the time to render Scene I on a typical rasterization

pipeline (not the ray tracing pipeline below)? © About the same, © a little more time, or © a lot
more time. Explain.

Appearing below is our super-simple CPU-only ray-tracing code.

// Outer Loops (yw, xw): Iterate over each pixel.

for ( uint yw = 0; yw < win_height; yw++ )

for ( uint xw = 0; xw < win_width; xw++ )

{

pCoor px_e = window_ll_e + window_dx_e * xw + window_dy_e * yw;

pVect ray(px_e); // Ray From Eye to Pixel.

float tmin = 1e10; // Distance to closest triangle found so far.

// Inner Loop (it): Iterate over each triangle.

for ( auto it = coors_es.begin(); it != coors_es.end(); ) {

pCoor e0 = *it++, e1 = *it++, e2 = *it++; // Get Triangle

// Find where ray intercepts plane defined by triangle.

pVect v01(e0,e1), v02(e0,e2);

pVect nt = cross(v01,v02);

float t = dot( pVect(e0), nt ) / dot( ray, nt );

/// Remaining code not shown.

How would the time to render Scene II compare to the time to render Scene I on the ray tracing code above?

© About the same, © a little more time, or © a lot more time. Explain.

Explain the difference between “real” ray-tracing code and the code above which makes the previous question
about Scene I and Scene II unfair.
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Problem 6: [15 pts] Answer each question below.

(a) Compute the dot product of vectors

 1
2
3

 and

 4
5
6

.

 1
2
3

 ·

 4
5
6

 =

(b) Compute a vector orthogonal to

 1
2
3

.

A vector orthogonal to

 1
2
3

 is:

(c) Write a parametric equation of a line, S(t), that passes through points P1 and P2 and such that S(0) = P1

and S(1) = P2. Also for this line find an expression t(x1) which gives the value of t for which the x component
of the point is x1.

S(t) =

t(x1) =

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



This page intentionally left blank.
I had many more questions, but it’s only a 2-hour exam.

The reason that this page is blank, BTW, is to provide some privacy for the answer to the last question.
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