LSU EE 4702-1 Homework 5 Due: 28 Nov 2022, 23:59 CST

Problem 0: Follow the instructions on the https://www.ece.lsu.edu/koppel/gpup/proc.html
page for account setup and programming homework work flow. Compile and run the homework
code unmodified. It should initially look like the screenshot below on left. This shows involute
gears, which are much better than the crude gears in the midterm exam. The screenshot on the
right is taken from a correct solution to Problem 1.

User Interface

Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Press F12 to
generate a screenshot. The screenshot will be written to file hwO5.png or hwO5-debug. png.

Initially the arrow keys, PageUp, and PageDown can be used to move around the scene. Using
the Shift modifier increases the amount of motion, using the Ctrl modifier reduces the amount
of motion. Use Home and End to rotate the eye up and down, use Insert and Delete to rotate
the eye to the sides. Press 1 to move the light around, press e to move the eye (which is what the
arrow keys do when the program starts), and press b to move the gears around.

Assignment-Specific User Interface
The scene can be reset by pressing 1. Pressing 2 and 3 set up scenes, but those two haven’t been
tested. Pressing p will stop and start the gears from spinning. The gears can be rendered using
three different shaders (each using their own pipeline), Base, HW05-P1, and HW05-P2. Pressing
v (upper or lower-case) cycles through the shaders.

The number of teeth in the gears can be changed by adjusting VAR Num Teeth, and the number
of gears can be changed by adjusting Num Gears. When Problem 2 is correctly solved rendering a
large number of gears will be more efficient.

Code Generation and Debug Support

The compiler generates two versions of the code, hwO5 and hwO5-debug. Use hwO5 to measure
performance, but use hw05-debug for debugging. The hw05-debug version is compiled with opti-
mization turned off. You are strongly encouraged to run hw05-debug under the GNU debugger,
gdb. See the material under “Running and Debugging the Assignment” on the course procedures
page.

To help you debug your code and experiment in one way or another, the user interface lets
you change variables. In this assignment these include the Boolean variables opt_tryoutl and
opt_tryout2, and floating-point variable opt_tryoutf, which are available both in CPU code and
in shader code. You can use these variables in your code (for example, if (opt_tryoutl) { x
+= 5; }) to help debug, to help familiarize yourself with how the code works, or to experiment
with new ideas. Keys y and Y toggle the value of the Boolean variables. Their values are shown in
the green text. The VAR mechanism can be used to change opt_tryoutf.

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html

Display of Performance-Related Data

The top green text line shows performance in various ways. The number to the right of FPS
shows the frame rate, the number of frames completed per second. On some displays 60 is the
target frame rate and anything significantly lower than that indicates mediocre performance. Next,
the green text shows whether frames are being prepared one at a time (serially), SER, or the
steps in preparing a frame are being overlapped, OVR. In overlap mode commands for one frame
are recorded while commands for a prior frame may be executing. For assignments early in the
semester the mode will be kept at SER.

GPU.V shows how long the GPU spends updating the frame buffer (per frame), GPU.CU shows
the execution of CUDA code per frame. CUDA code is physics in some assignments, but not this
one and so the time should be shown as ---. On some of the lab computers the computational
accelerator GPU is different than the one performing graphics. CPU GR is the amount of time that
the CPU spends recording Vulkan graphics commands (or whatever it does in the callback installed
by vh.cbs_cmd_record.push_back). CPU PH is the amount of time that the CPU spends on
physics or whatever it does in the callback installed by the call to vh.display_cb_set.

For this assignment rendering is done by rasterization. (Other assignments will use ray tracing.)
For rasterization the second line, the one starting with Vertices, shows the number of items being
sent down the rendering pipeline per frame. Clip Prim shows the number of primitives before
clipping (in) and after clipping (out). The next line indicates whether the code was compiled with
optimization. Use the version without optimization for debugging and the version with optimization
for performance measurements.

The + and - keys can be used to change the value of certain variables. These variables
specify things such as the light intensity, sphere radius, and variables that will be needed for this
assignment. The variable currently affected by the + and - keys is shown in the bottom line of
green text. Pressing Tab cycles through the different variables. To locate variables which can be
set this way, and to see how they were set, search for variable_control.insert in the assignment
file.

Code Overview
Routine World: :render is called each time the frame buffer is to be prepared. It is similar to other
render routines used in class, the parts relevant to this assignment will be discussed here.

All shaders use buffer set bset_gear_strip, in which vertices are arranged for a triangle strip.
The gear shape consists of cylindrical portions called lands, and also includes faces, the part of a
tooth that makes contact with a tooth on another gear. The shape of a face is an involute of a
circle. With this face shape the point of contact between two gears follows a straight line.

Recall that in Homework 4 the surface normal was eliminated from the buffer set so as to
reduce the amount of data sent. Here the surface normal is back and for a reason. The normal is
for the approximated surface (cylinder or involute) not of a triangle.

The buffer set holds the coordinates of a gear in a local coordinate space. In that space the
gear axis is aligned with the z, with the center of the gear at x = 0,y = 0. Array buf_gear_xforms
holds a transformation matrix for each gear that moves it to the desired position. The gears are
arranged in a circle and are positioned so that the teeth mesh. Gear rotation is done using matrix
rot, computed in the render routine. For the Base and Problem 1 shaders, rot is and should be
used to update the set of transformation matrices sent to the shaders. (That’s done in the ds_set
member function, see Problem 2.) For the Problem 2 shader it is used to update the transformation
matrices, but shouldn’t be.

In this assignment there is no need to change the code that prepares the buffer set.

Some notes on how to work with the VPipeline, VVertex_Buffer_Set, and the buffer types
can be found in this under-construction Vulkan course library note set.

2

https://www.ece.lsu.edu/koppel/gpup/slides/nset-4-vulkan-rp.pdf

Problem 1: The gears in the upper screen-
shot consists only of faces and lands, but not
the sides of the gears. The sides are visible
in the lower screenshot.

Modify the shaders in the Problem 1
area of hwO5-shdr.cc and code in hw05.cc
so that the pipeline pipe_gear_probl ren-
ders the sides of the gears, with the radius of
the hole set to gear_info.radius_inner *
0.5. The color should be set to color set 6
(light steel blue).

It should come as no surprise that the
sides will be emitted in the geometry shader.
Most of the solution should be in the shader
code. Do not change the vertex shader in-
puts. It will be necessary send over some
data as uniforms, Uni_Misc can be used.

It might be helpful to look at built-in
variable gl_VertexIndex, available in the ver-
tex shader. For the first vertex its value
is zero, for the second its value is one, and
so on. Because of the way the gear is con-
structed, odd values of gl_VertexIndex will
be on one side of the gear (perhaps facing
up), and even values will be on the other.

e Do not change the vertex shader inputs.
e Set the radius of the hole to gear_info.radius_inner * 0.5.
e Set the color to index 6.

e Be sure to correctly compute the normal.

Problem 2: As pointed out in an earlier assignment, performing multiple draws can be ineffi-
cient, this is the case for the Problem 1 pipeline because a draw is performed for each element in
buf_gears_xforms:

case HW_Shader_Probl:
for (auto m: buf_gears_xforms)
{
pipe_gear_probl.ds_set(transform * m * rot);
pipe_gear_probl.record_draw(cb, bset_gear_strip);
3

break;

case HW_Shader_Prob2:
pipe_gear_prob2.ds_set(transform * buf_gears_xforms[0] * rot); // This is wrong.
pipe_gear_prob2.record_draw_instanced(cb, bset_gear_strip, opt_n_gears);
break;

The Problem 2 pipeline is rendered using an instanced draw. In an instanced draw the vertices
(the ones in bset_gear_strip in the example above) are sent to the pipeline multiple times. In
the example above they are sent opt_n_gears times (once for each gear). In the vertex shader the
value of built-in variable gl_InstanceIndex is set to O for the first gear (or instance), 1 for the
second gear, and so on.

void vs_main_prob2() {
int inst = gl_Instancelndex;
vertex_c = ut.clip_from_object * in_vertex_o;

For your solving convenience, the contents of buf_gears_xforms has been sent to the GPU
and made available as a storage buffer named gears_xform. That storage buffer is only sent over
when the position of the gears changes. The storage buffer is not sent over for gear rotation and it
should not be sent over for rotation, so don’t change that.

The unmodified code will seem to show just one gear when using the Problem 2 shader. It
is actually showing opt_n_gears gears, but they are all in the same position, which is not what
we want. Modify the code in the Problem 2 section of hwO5-shdr.cc and in hw05.cc so that the
instanced draw works correctly (showing the gears in the same place as the other shaders) and is
reasonable efficient. There is no need to include the sides that were completed for Problem 1.

e Modify the code so that the instanced draw works.
e The gears should turn.
e Do not send over buf_gears_xforms just to update rotation.

e If solved correctly CPU time should go down, especially with a large number of gears.

