
LSU EE 4702-1 Homework 3 Solution Due: 17 October 2022

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming home-
work work flow. Compile and run the home-
work code unmodified. It should initially
show the square and triangle from the
cpu-only/demo-03-vulkun-one.cc code used
in class, but with spinning turbines. See the
screenshot to the right, which shows the cor-
rectly solved assignment. In the unsolved
code all the turbines are gray.

User Interface
Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Press F12 to
generate a screenshot. The screenshot will be written to file hw03.png or hw03-debug.png.

Initially the arrow keys, PageUp, and PageDown can be used to move around the scene. Using
the Shift modifier increases the amount of motion, using the Ctrl modifier reduces the amount
of motion. Use Home and End to rotate the eye up and down, use Insert and Delete to rotate the
eye to the sides. Press l to move the light around and e to move the eye (which is what the arrow
keys do when the program starts).

Assignment-Specific User Interface
The scene can be reset by pressing 1 and 2. When 1 is pressed the number of turbines and their
positions is randomly chosen. When 2 is pressed the number and positions are the same each time.
Pressing p will stop and start the turbines from spinning.

The scene can be rendered using three different pipelines, Plain, HW03-P1, and HW03-P2.
The particular set of code in use is shown by the green text to the right of Pipeline Variant.
Pressing v switches between the variants.

Code Generation and Debug Support
The compiler generates two versions of the code, hw03 and hw03-debug. Use hw03 to measure
performance, but use hw03-debug for debugging. The hw03-debug version is compiled with opti-
mization turned off. You are strongly encouraged to run hw03-debug under the GNU debugger,
gdb. See the material under “Running and Debugging the Assignment” on the course procedures
page.

To help you debug your code and experiment in one way or another, the user interface lets you
change variables. In this assignment these include the variables opt_tryout1 and opt_tryout2,
which are available both in CPU code and in shader code. You can use these variables in your
code (for example, if (opt_tryout1) { x += 5; }) to help debug, to help familiarize yourself
with how the code works, or to experiment with new ideas. Keys y and Y toggle the value of these
variables. Their values are shown in the green text.

Display of Performance-Related Data
The top green text line shows performance in various ways. The number to the right of FPS
shows the frame rate, the number of frames completed per second. On some displays 60 is the
target frame rate and anything significantly lower than that indicates mediocre performance. Next,
the green text shows whether frames are being prepared one at a time (serially), SER, or the

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html

steps in preparing a frame are being overlapped, OVR. In overlap mode commands for one frame
are recorded while commands for a prior frame may be executing. For assignments early in the
semester the mode will be kept at SER.

GPU.V shows how long the GPU spends updating the frame buffer (per frame), GPU.CU shows
the execution of CUDA code per frame. CUDA code is physics in some assignments, but not this
one and so the time should be shown as ---. On some of the lab computers the computational
accelerator GPU is different than the one performing graphics. CPU GR is the amount of time that
the CPU spends recording Vulkan graphics commands (or whatever it does in the callback installed
by vh.cbs_cmd_record.push_back). CPU PH is the amount of time that the CPU spends on
physics or whatever it does in the callback installed by the call to vh.display_cb_set.

For this assignment rendering is done by rasterization. (Other assignments will use ray tracing.)
For rasterization the second line, the one starting with Vertices, shows the number of items being
sent down the rendering pipeline per frame. Clip Prim shows the number of primitives before
clipping (in) and after clipping (out). The next line indicates whether the code was compiled with
optimization. Use the version without optimization for debugging and the version with optimization
for performance measurements.

The + and - keys can be used to change the value of certain variables. These variables
specify things such as the light intensity, sphere radius, and variables that will be needed for this
assignment. The variable currently affected by the + and - keys is shown in the bottom line of
green text. Pressing Tab cycles through the different variables. To locate variables which can be
set this way, and to see how they were set, search for variable_control.insert in the assignment
file.

Assignment Background
The key element of this assignment is the rendering of will be called turbines here. (They may not
be shaped like real turbines.) Structure Fan_Info describes the shape of a turbine and how the
blades should be colored. The description is similar though not identical to the way the paddle
wheel from Homework 2 was described.
struct Fan_Info {

pCoor pos_axis_top, pos_axis_bottom;

pVect axis_to_cyl;

float outer_radius;

int n_blades;

pColor blade_0_front_upper, blade_0_front_lower;

pColor blade_0_back_upper, blade_0_back_lower;

pColor blade_i_front_upper, blade_i_front_lower;

pColor blade_i_back_upper, blade_i_back_lower;

int serial;

};

The values of coordinates and vectors used above are in a local coordinate space. A transfor-
mation matrix is used to move the turbine to its intended position. In this assignment there is one
Fan_Info object fan_info, and a array of transformation matrices, fans_xforms. (The code to
generate triangles corresponding to the turbines has already been written. Look for case PV_Plain

in the code.)

Routine fan_setup writes both fan_info and fans_xforms, it is called when 1 or 2 is pressed.
Each time fan_setup executes it increments fan_info.serial. The purpose of fan_info.serial
is to make it possible for other code to detect when fan_info has changed. (That is relevant to
this assignment.)

In this assignment the turbines are to be rendered by the three pipeline variants, plain, hw03p1,

2

and hw03p2. (See the assignment-specific user interface section, above.) The code for the plain
variant is complete (except maybe for the colors, see Problem 1).

The plain variant uses VPipeline pipe_plain and buffer set bset_plain. Here is an excerpt
of the code, omitting the normals for brevity (the complete code is in hw03.cc):
case PV_Plain:

for (auto& m: fans_xforms)

for (int i=0; i<f.n_blades; i++) {

float theta = theta_0 + i * delta_theta;

pCoor p1_last, p2_last;

for (int j=0; j<=n_slices; j++) {

float eta = theta + j * delta_eta;

pVect v = ax * cosf(eta) + ay * sinf(eta);

pCoor pa = f.pos_axis_top + delta_vz * j;

pCoor p3 = m * (pa + r1 * v);

pCoor p4 = m * (pa + f.outer_radius * v);

if (j) {

bset_plain << p1_last << p3 << p2_last;

bset_plain << p2_last << p3 << p4;

bset_plain << gray << gray << gray << gray << gray << gray;

}

p1_last = p3; p2_last = p4;

}

}

The j loop computes triangles for one blade, the i loop computes triangles for one turbine,
and the m loop computes the set of turbines. Those concerned about computational waste will be
appalled by the loop nest above. Why? First, the same color is used over and over, surely there
must be a better way of specifying the same color a zillion times. That will be fixed in Problem
1, and in a way that allows both front and back colors to be used. Another wasteful issue is the
fact that each iteration of the m loop does almost exactly the same thing, the only difference is the
value of m. That will be fixed in Problem 2.

Code Overview
Routine World::render is called each time the frame buffer is to be prepared. It is similar to other
render routines used in class, the parts relevant to this assignment will be discussed here.

Objects pipe_plain and pipe_hw03 are VPipeline instances. World::render initializes both
of them, though in the solution to this assignment the initialization of pipe_hw03 will need to be
modified.

Some notes on how to work with the VPipeline, VVertex_Buffer_Set, and the buffer types
can be found in this under-construction Vulkan course library note set.

3

https://www.ece.lsu.edu/koppel/gpup/slides/nset-4-vulkan-rp.pdf

Problem 1: Modify the code in render so that the
turbine uses colors specified in fan_info and helpfully
written to variables b0_fl, etc. The blade_0 colors
are to be used by the blade emitted when i=0 in the
case PV_Plain loop nest. The blade_i colors are to
be used when i>0. The front color is to be used for
the front of the blade, and back for the back. (See the
fragment shader routine, fs_main, in hw03-shdr.cc.)
Each iteration of the j loop emits two triangles. The
first is the upper triangle and the second is the lower
triangle. See the screenshot to the right. In the screen-
shot blade 0 has distinct upper- and lower-triangle col-
ors, but in the other blades they are the same. Don’t
assume that this will always be the case.

There are three parts to this problem, only the last, part c, really needs to be solved. But
solving them in order may be helpful.

(a) Modify the code for the PV_Plain case so that it uses the front colors from the fan_info

structure, as described above. Just the front colors for this part because the PV_Plain pipeline
variant can’t take back colors. Note that this part is much easier than the others.

To solve this the code in case PV Plain that inserts colors into the buffer set must be changed so that it inserts

the chosen colors. Before the change that code is:

for (int j=0; j<=n_slices; j++) {

float eta = theta + j * delta_eta;

pVect v = ax * cosf(eta) + ay * sinf(eta);

pCoor pa = f.pos_axis_top + delta_vz * j;

pCoor p3 = m * (pa + r1 * v);

pCoor p4 = m * (pa + f.outer_radius * v);

if (j) {

pNorm n = cross(v,pVect(p3,p1_last));

bset_plain << p1_last << p3 << p2_last;

bset_plain << p2_last << p3 << p4;

bset_plain << n << n << n << n << n << n;

bset_plain << color_light_gray << color_light_gray;

bset_plain << color_light_gray << color_light_gray;

bset_plain << color_light_gray << color_light_gray;

}

p1_last = p3; p2_last = p4;

}

Notice that the code inserts six copies of color light gray into the buffer set, that colors two triangles, an upper

triangle and a lower triangle. As a first step we can change those to the provided front colors for blade i:

if (j) {

pNorm n = cross(v,pVect(p3,p1_last));

bset_plain << p1_last << p3 << p2_last;

bset_plain << p2_last << p3 << p4;

bset_plain << n << n << n << n << n << n;

bset_plain

4

<< f.blade_i_front_upper << f.blade_i_front_upper

<< f.blade_i_front_upper

<< f.blade_i_front_lower << f.blade_i_front_lower

<< f.blade_i_front_lower;

}

Notice that two colors are used, one for the upper and one for the lower triangle. To use separate colors for blade 0 and

the other blades use an if statement with the condition checking i, the blade number:

if (j) {

pNorm n = cross(v,pVect(p3,p1_last));

bset_plain << p1_last << p3 << p2_last;

bset_plain << p2_last << p3 << p4;

bset_plain << n << n << n << n << n << n;

if (!i)

bset_plain

<< f.blade_0_front_upper << f.blade_0_front_upper

<< f.blade_0_front_upper

<< f.blade_0_front_lower << f.blade_0_front_lower

<< f.blade_0_front_lower;

else

bset_plain

<< f.blade_i_front_upper << f.blade_i_front_upper

<< f.blade_i_front_upper

<< f.blade_i_front_lower << f.blade_i_front_lower

<< f.blade_i_front_lower;

}

The shaders used for the PV Plain case use the same color for front and back so to get the back colors a new shader is

needed. That’s parts b and c of this problem.

5

(b) For this part (and the next one) write a new set of shaders in hw03_shdr.cc and modify the
CPU code (in many places in hw03.cc) so that instead of using a color as a vertex attribute, an
integer is used instead. Call this integer a color set index. The idea is to replace the code that uses
colors:
bset_hw03 << color_red << color_blue << color_red;

with code that uses indices
bset_hw03 << 1 << 2 << 1;

The indices refers to colors that will have been placed in a uniform object as part of the
solution. The example above implies that 1 refers to position 1 somewhere in the uniform (maybe
an array element), which presumable holds red. But for this problem the color index should be
used to refer to a pair of colors, front and back. For this subproblem use an existing uniform object
to store the colors, but in the next part declare your own. To make things easier, the shader code
already expects that there might be an integer input and there might not be a color input:

// Vertex Shader Inputs

layout (location = LOC_IN_POS) in vec4 in_vertex_o;

layout (location = LOC_IN_NORMAL) in vec3 in_normal_o;

#ifdef LOC_IN_COLOR

layout (location = LOC_IN_COLOR) in vec4 in_color;

#endif

#ifdef LOC_IN_INT1

layout (location = LOC_IN_INT1) in int in_color_idx;

#endif

The following changes need to be made to the shader code:

• A color array(s) must be added to an existing uniform. Note that a color can be declared
pColor in CPU code but must be declared vec4 in shader code.

• The changes to the uniform in the shader code must be made to the corresponding structure
in the CPU code.

• Modify the shaders so that they get the correct color using the color set index, named
in color idx in the shader code.

• The shaders should no longer use the in color input.

• Compute a front and back lighted color in the vertex shader.

• Modify the vertex shader out declaration and the fragment shader in declaration to accom-
modate the back color.

• Modify the fragment shader to use the back color when appropriate.

On the CPU side the following changes are needed:

• Add the color declarations to the struct used for colors (corresponding to the uniform used
in the shader code).

• Populate the uniform with the fan info colors.

• Modify the code in the PV HW03 P1 case so that it uses color set indices rather than colors.

When this problem is solved correctly the colors should match the screenshots.

See the solution to part c.

6

(c) In the previous subpart the colors might have been placed in the Uni_Light_Simple or Uni_Misc
structures because they were already there. In this subproblem define a new structure and use that
for a new buffer. The new buffer will need to be declared in World, initialized and later destroyed
in World::setup_and_run. In World::render the new uniform will need to be bound to the
pipe_hw03 descriptor set (that’s what ds stands for) when pipe_hw03 is initialized, and explicitly
copied to_dev, preferably only when the colors change (see the serial member of fan_info). Most
of the steps needed for your new buffer will match those for uni_light_simple and uni_misc.

To solve this problem a structure will be prepared that has two arrays of color, front and back. The different

colors (blade 0 upper front, blade 0 lower front, etc) will be written into the arrays. Color index 0 will use the first element

(for front and back), etc.

First, declare a structure to hold the colors. Because data in this structure will be sent to the GPU it is important

the structure members are plain old data (POD), meaning they don’t have member functions and they aren’t pointers.

The structure used in this solution is:

constexpr int ncolors = 10;

struct HW03_Colors {

pColor front[ncolors], back[ncolors];

};

Next, we need to declare a VBufferV object to hold this structure. This will be put in the World class (near the end),

which holds the other parts of our scene:

enum Pipeline_Variant { PV_Plain, PV_HW03_P1, PV_HW03_P2, PV_SIZE };

int pipeline_variant;

VBufferV<HW03_Colors> uni_hw03_colors;

Notice that to declare a VBufferV we need to use the type of the data, HW03 Colors, in the template parameter.

The name of the object is uni hw03 colors.

Next, we need to initialize uni hw03 colors. Initialization is done once, and we’ll do it in World::setup and run,

where other buffers are initialized. When initializing a buffer we need to specify what the buffer will be used for. In this

case, our usage is as a uniform buffer. Here is the initialization with some context:

fan_info.serial = 0;

uni_hw03_colors.init(vh.qs,vk::BufferUsageFlagBits::eUniformBuffer);

bset_p2_serial = 0;

opt_pause = false;

scene_setup_1();

The first argument, vh.qs, is something like a context and provides various information needed to complete the initial-

ization.

Vulkan pipelines don’t automatically have access to uniform variables. In order for a pipeline’s shaders to access a

uniform we must bind the uniform to the pipeline. With the course library a buffer is bound to a pipeline by calling one of

the ds member functions, in this case using ds uniform use(LABEL,BUFFER). Here LABEL is a string that is used

in the shader code to specify the location of the uniform variable in the descriptor set. BUFFER is a Vulkan buffer

handle (type vk::Buffer). The Homework 3 pipeline, pipe hw03, is initialized as follows (in World::render):

if (!pipe_hw03)

pipe_hw03

.init(vh.qs)

7

.ds_uniform_use("BIND_LIGHT_SIMPLE", uni_light_simple)

.ds_uniform_use("BIND_MISC", uni_misc)

.ds_uniform_use("BIND_HW03", uni_hw03_colors) // SOLUTION -- Prob 1c

.shader_inputs_info_set<pCoor,pNorm,int>() // SOLUTION -- Prob 2

.shader_code_set

("hw03-shdr-sol.cc", "vs_main();", nullptr, "fs_main();")

.topology_set(vk::PrimitiveTopology::eTriangleList)

.create();

Notice that the second argument to ds uniform use is uni hw03 colors, a VBufferV object, not a Vulkan

buffer handle. The VBufferV object has a cast operator-overload that returns the handle, so uni hw03 colors can

be used wherever a vk::Buffer type is expected. (The shader inputs info set change will be discussed later.)

Object uni hw03 colors needs to be written with the proper colors. That is done further down in the render

routine, just below the convenience variables (which weren’t used, because the fully spelled out versions are more readable):

pColor bi_fl [[maybe_unused]] = f.blade_i_front_lower;

pColor bi_bu [[maybe_unused]] = f.blade_i_back_upper;

pColor bi_bl [[maybe_unused]] = f.blade_i_back_lower;

if (pipeline_variant != PV_Plain)

{

uni_hw03_colors->front[0] = f.blade_0_front_upper;

uni_hw03_colors->back[0] = f.blade_0_back_upper;

uni_hw03_colors->front[1] = f.blade_0_front_lower;

uni_hw03_colors->back[1] = f.blade_0_back_lower;

uni_hw03_colors->front[2] = f.blade_i_front_upper;

uni_hw03_colors->back[2] = f.blade_i_back_upper;

uni_hw03_colors->front[3] = f.blade_i_front_lower;

uni_hw03_colors->back[3] = f.blade_i_back_lower;

uni_hw03_colors.to_dev();

}

Notice that the code is using uni hw03 colors as though it were a pointer to the structure. It’s not really a pointer,

it’s just that the -> operator has been overloaded to provide convenient access to an object of the type specified in the

template parameter used to declare the VBufferV<T> object (here T is the template parameter). After writing the

colors, member to dev is called. This copies the CPU version of the structure to the GPU (the device).

The code above that writes uni hw03 colors and calls to dev is guarded by an if statement. The if avoids

writing uni hw03 colors when we are using the plain shader (which doesn’t use the uniform). A good thing to add

to the if condition would be a check of whether the colors have changed (in the fan info structure). If they hadn’t

changed since uni hw03 colors was last written there would be no reason to write them again. The code above

though wastefully updates the colors every frame.

At this point a uniform buffer holding the colors has been prepared and sent to the GPU. Next, we need to stream

color indices rather than colors into the rendering pipeline. Originally the pipeline was set up to expect three vertex

attribute, a pCoor, pNorm, and pColor, set by the VPipeline shader inputs info set member function:

if (!pipe_hw03)

pipe_hw03

.init(vh.qs)

.ds_uniform_use("BIND_LIGHT_SIMPLE", uni_light_simple)

.ds_uniform_use("BIND_MISC", uni_misc)

.shader_inputs_info_set<pCoor,pNorm,pColor>()

8

.shader_code_set

("hw03-shdr.cc", "vs_main();", nullptr, "fs_main();")

.topology_set(vk::PrimitiveTopology::eTriangleList)

.create();

As seen further above, the pColor type has been replaced by an int. The unmodified code already has a declaration

ready for the integer attribute:

#ifdef LOC_IN_COLOR

layout (location = LOC_IN_COLOR) in vec4 in_color;

#endif

#ifdef LOC_IN_INT1

layout (location = LOC_IN_INT1) in int in_color_idx;

#endif

So the vertex shader will use variable in color idx for the vertex index. Returning to the CPU code, we need to

replace colors with color indices. Here, we are using 0 for blade 0 upper (front and back), 1 for blade 0 lower (front and

back), etc. (The bare numbers are okay here (barely) but in real life it would be better to define some symbols with

meaningful names, such as enumeration constants.) The code updating the buffer set needs to use these numbers:

if (j)

{

pNorm n = cross(p1_last,p3,p2_last);

bset_hw03_p1 << p1_last << p3 << p2_last;

bset_hw03_p1 << p2_last << p3 << p4;

bset_hw03_p1 << n << n << n << n << n << n;

if (!i) bset_hw03_p1 << 0 << 0 << 0 << 1 << 1 << 1;

else bset_hw03_p1 << 2 << 2 << 2 << 3 << 3 << 3;

Next, the shader code needs to be modified to use these changes. There are two changes: first, we need to have the

shader code compute two colors, front and back; second we need to use the colors from the uniform. Using the uniform

colors is easy. We start by declaring the uniform object. When declaring a uniform be careful to use the same location

label that we specified when binding it to the pipeline:

const int ncolors = 10;

layout (binding = BIND_HW03) uniform I_can_forget_this_name_no_problem

{

vec4 front[ncolors], back[ncolors];

} uc;

Notice that the uniform itself is named uc (for uniform color). Next, get the colors from uc.front and uc.back in

the vertex shader routine, vs main:

vec3 vec_vl = uni_light.position.xyz - vertex_e.xyz;

float dist_to_light = length(vec_vl);

float phase = abs(dot(normal_e, vec_vl/dist_to_light));

color = uni_light.color * uc.front[in_color_idx] * phase / dist_to_light;

// color = uni_light.color * in_color * phase / dist_to_light; // Before

color_back = uni_light.color * uc.back[in_color_idx] * phase / dist_to_light;

The code using the pre-solution color attribute, in color, is commented out. Notice that in color idx is used to

index both the front and back colors.

9

Finally, we need to carry both the front and back lighted color through the rendering pipeline and modify the

fragment shader to use the appropriate color. Add color back to the shader interfaces:

// Vertex Shader Output

layout (location = 0) out Data_VF

{

vec4 color;

vec4 color_back;

};

Further below, the fragment shader input:

// Fragment Shader Input

layout (location = 0) in Data_VF

{

vec4 color;

vec4 color_back;

};

The change to the fragment shader is simple, since it was already coded to use a separate front and back color, but used

the same color for both:

void fs_main()
{

frag_color = gl_FrontFacing ? color : color_back;

}

It might seem wasteful to send both the front and back colors down the pipeline when only one of them will be used.

The problem is that the vertex shader can’t tell which side of the primitive is facing the eye because it only has access

to one vertex. If the normal always pointed out of the front face then the vertex shader could substitute the correct side.

But historically (meaning compatibility profile OpenGL) did not require that a normal point out of the front face, or that

it even be used at all.

10

Problem 2: As mentioned in the introductory material, the code in PV_Plain and PV_HW03_P1

is wasteful because it re-computes the triangles for all the turbines, even though each turbine is
identical (except for position and orientation). In this problem add code to the PV_HW03_P2 case
that writes triangles to bset_hw03_p2 for just one turbine. In fact, only write these when the serial
in fan_info changes. Make sure not to reset the buffer set only when it needs to be re-populated.
Next, record a draw for each transformation matrix. The code should look something like this:

for (auto& m: fans_xforms)

{

pMatrix global_from_local = ..;

pipe_hw03.ds_set(transform * global_from_local);

pipe_hw03.record_draw(cb, bset_hw03_p2);

}

The pipe_hw03.ds_set line is setting the eye_from_object matrix used by the pipeline. A
draw is then recorded using the one-turbine buffer set. The loop iterates for each pipeline. In
contrast, the code for the plain and problem 1 variants record one draw for all the turbines. They
must spend more time preparing the buffer set, and it takes longer to send the buffer set from the
CPU to the GPU. When this problem is solved correctly the buffer set is much smaller. Though it
is used many times, it is only sent from the CPU to the GPU once (or each time it changes). There
is a downside to this method: there is the overhead of setting up the draw, including changing the
transform. That will be fixed in later assignments (using instances and storage arrays)

If this is solved correctly then the appearance using the problem 1 and 2 variants should be
the same.

First, populate the buffer set for this problem, bset hw03 p2, with the with the vertices for just one turbine. That

turbine will be left in its local coordinate space. That is the global-from-local transformation, m from fans xforms,

won’t be applied, nor will the animation angle theta 0. For reference, here is part of the code for PV HW03 P1:

// Code for Problem 1 (not this problem)

bset_hw03_p1.reset(pipe_hw03);

for (auto& m: fans_xforms)

for (int i=0; i<f.n_blades; i++) {

float theta = theta_0 + i * delta_theta;

pCoor p1_last, p2_last;

for (int j=0; j<=n_slices; j++) {

float eta = theta + j * delta_eta;

pVect v = ax * cosf(eta) + ay * sinf(eta);

pCoor pa = f.pos_axis_top + delta_vz * j;

pCoor p3 = m * (pa + r1 * v);

pCoor p4 = m * (pa + f.outer_radius * v);

For this problem the m loop will be omitted, theta will be computed without theta 0, and (of course) m will not be

used to transform coordinates to global space:

if (bset_p2_serial != fan_info.serial) {

bset_p2_serial = fan_info.serial;

bset_hw03_p2.reset(pipe_hw03);

for (int i=0; i<f.n_blades; i++) {

float theta = i * delta_theta;

pCoor p1_last, p2_last;

for (int j=0; j<=n_slices; j++) {

11

float eta = theta + j * delta_eta;

pVect v = ax * cosf(eta) + ay * sinf(eta);

pCoor pa = f.pos_axis_top + delta_vz * j;

pCoor p3 = pa + r1 * v;

pCoor p4 = pa + f.outer_radius * v;

The code above lacks the m loop, but does include a new if statement (the first line in the fragment above). That

if condition insures that the buffer set is only updated if it does not contain the latest data. As described in the

Assignment Background section, variable fan info.serial is incremented whenever the fan changes (for example,

after pressing 1 or 2). In order to determine when bset hw03 p2 is stale (outdated) a new variable has been added,

World::bset p2 serial. It is initialized to zero and then, as can be seen in the fragment above, is updated whenever

bset hw03 p2 is updated.

Another important thing to notice about the code above is that bset hw03 p2 is only reset and sent to dev

when the buffer needs is updated. (Once it is reset, the data is lost, so if it were reset every frame nothing would appear

after the first frame.) Calling to dev each frame would defeat the purpose of only updating it when it changes. That

is, we’d be sending data from the CPU to the GPU that the GPU already has.

Finally, the transformation implementing the turbine rotation needs to be applied. The unmodified code already

applies the global-from-local transform:

// Code without the solution to Problem 2.

for (auto& m: fans_xforms) {

pMatrix global_from_local = m; // Need to modify this for Problem 2

pipe_hw03.ds_set(transform * global_from_local);

pipe_hw03.record_draw(cb, bset_hw03_p2);

}

Variable theta 0 specifies the amount of rotation (the animation rotation) and changes each frame. Since we don’t

want to resend bset hw03 p2 every frame theta 0 can’t be used to compute the coordinates in bset hw03 p2.

Instead, a rotation matrix will be computed and that will be used to update the set of transformation matrices used by

the shaders. The shaders use the following uniforms to hold the transformations:

layout (binding = BIND_TRANSFORM) uniform Uni_Transform

{

mat4 eye_from_object, clip_from_eye, clip_from_object;

mat4 object_from_eye, eye_from_clip;

} ut;

Here they are part of the file hw03-shdr.cc, but they could have been included from transform.h. These matrices

are updated by the VTransform class (transform object) that is part of the course library. Typically transform

holds a eye-from-global and clip-from-eye transformation. A global-from-local transform can be specified for a particular

pipeline by calling the pipe.ds set(transform * global from local) member function.

The unmodified Problem 2 code already has a loop calling this function using m as the global-from-local transform.

But m does not include the animation realized by theta 0. So to include that effect we need to compute a rotation

matrix that rotates theta 0 radians around the az axis, and then use it to update the global-from-local transform:

pMatrix_Rotation rot(az,theta_0);
for (auto& m: fans_xforms) {

pipe_hw03.ds_set(transform * m * rot);

pipe_hw03.record_draw(cb, bset_hw03_p2);

}

Matrix rot rotates theta 0 around az, which is the z axis in the turbine local coordinate space (the space used to

construct the turbine). It is important to apply rot before m. That is had we called .ds set(transform * rot

* m); then the rotation would be done in the global space and would be all wrong.

12

Ideally, with the solution above the Problem 2 pipeline should run much faster. It does not (as of this writing)

probably due to avoidable inefficiencies in updating the descriptor set.

13

