LSU EE 4702-1 Homework 3 Due: 17 October 2022

Problem 0: Follow the instructions on the
https://wuw.ece.lsu.edu/koppel/gpup/proc.
page for account setup and programming home-
work work flow. Compile and run the home-
work code unmodified. It should initially
show the square and triangle from the
cpu-only/demo-03-vulkun-one. cc code used
in class, but with spinning turbines. See the
screenshot to the right, which shows the cor-
rectly solved assignment. In the unsolved
code all the turbines are gray.

User Interface
Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Press F12 to
generate a screenshot. The screenshot will be written to file hw03.png or hw03-debug. png.
Initially the arrow keys, PageUp, and PageDown can be used to move around the scene. Using
the Shift modifier increases the amount of motion, using the Ctrl modifier reduces the amount
of motion. Use Home and End to rotate the eye up and down, use Insert and Delete to rotate the
eye to the sides. Press 1 to move the light around and e to move the eye (which is what the arrow
keys do when the program starts).

Assignment-Specific User Interface
The scene can be reset by pressing 1 and 2. When 1 is pressed the number of turbines and their
positions is randomly chosen. When 2 is pressed the number and positions are the same each time.
Pressing p will stop and start the turbines from spinning.

The scene can be rendered using three different pipelines, Plain, HW03-P1, and HW03-P2.
The particular set of code in use is shown by the green text to the right of Pipeline Variant.
Pressing v switches between the variants.

Code Generation and Debug Support

The compiler generates two versions of the code, hwO3 and hwO3-debug. Use hwO3 to measure
performance, but use hw03-debug for debugging. The hw03-debug version is compiled with opti-
mization turned off. You are strongly encouraged to run hw03-debug under the GNU debugger,
gdb. See the material under “Running and Debugging the Assignment” on the course procedures
page.

To help you debug your code and experiment in one way or another, the user interface lets you
change variables. In this assignment these include the variables opt_tryoutl and opt_tryout2,
which are available both in CPU code and in shader code. You can use these variables in your
code (for example, if (opt_tryoutl) { x += 5; }) to help debug, to help familiarize yourself
with how the code works, or to experiment with new ideas. Keys y and Y toggle the value of these
variables. Their values are shown in the green text.

Display of Performance-Related Data

The top green text line shows performance in various ways. The number to the right of FPS
shows the frame rate, the number of frames completed per second. On some displays 60 is the
target frame rate and anything significantly lower than that indicates mediocre performance. Next,
the green text shows whether frames are being prepared one at a time (serially), SER, or the

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html

steps in preparing a frame are being overlapped, OVR. In overlap mode commands for one frame
are recorded while commands for a prior frame may be executing. For assignments early in the
semester the mode will be kept at SER.

GPU.V shows how long the GPU spends updating the frame buffer (per frame), GPU.CU shows
the execution of CUDA code per frame. CUDA code is physics in some assignments, but not this
one and so the time should be shown as ---. On some of the lab computers the computational
accelerator GPU is different than the one performing graphics. CPU GR is the amount of time that
the CPU spends recording Vulkan graphics commands (or whatever it does in the callback installed
by vh.cbs_cmd_record.push_back). CPU PH is the amount of time that the CPU spends on
physics or whatever it does in the callback installed by the call to vh.display_cb_set.

For this assignment rendering is done by rasterization. (Other assignments will use ray tracing.)
For rasterization the second line, the one starting with Vertices, shows the number of items being
sent down the rendering pipeline per frame. Clip Prim shows the number of primitives before
clipping (in) and after clipping (out). The next line indicates whether the code was compiled with
optimization. Use the version without optimization for debugging and the version with optimization
for performance measurements.

The + and - keys can be used to change the value of certain variables. These variables
specify things such as the light intensity, sphere radius, and variables that will be needed for this
assignment. The variable currently affected by the + and - keys is shown in the bottom line of
green text. Pressing Tab cycles through the different variables. To locate variables which can be
set this way, and to see how they were set, search for variable_control.insert in the assignment
file.

Assignment Background
The key element of this assignment is the rendering of will be called turbines here. (They may not
be shaped like real turbines.) Structure Fan_Info describes the shape of a turbine and how the
blades should be colored. The description is similar though not identical to the way the paddle
wheel from Homework 2 was described.
struct Fan_Info {

pCoor pos_axis_top, pos_axis_bottom;

pVect axis_to_cyl;

float outer_radius;

int n_blades;

pColor blade_O_front_upper, blade_O_front_lower;

pColor blade_O_back_upper, blade_O_back_lower;

pColor blade_i_front_upper, blade_i_front_lower;

pColor blade_i_back_upper, blade_i_back_lower;

int serial;
+;

The values of coordinates and vectors used above are in a local coordinate space. A transfor-
mation matrix is used to move the turbine to its intended position. In this assignment there is one
Fan_Info object fan_info, and a array of transformation matrices, fans_xforms. (The code to
generate triangles corresponding to the turbines has already been written. Look for case PV_Plain
in the code.)

Routine fan_setup writes both fan_info and fans_xforms, it is called when 1 or 2 is pressed.
Each time fan_setup executes it increments fan_info.serial. The purpose of fan_info.serial
is to make it possible for other code to detect when fan_info has changed. (That is relevant to
this assignment.)

In this assignment the turbines are to be rendered by the three pipeline variants, plain, hw03p1,

2

and hw03p2. (See the assignment-specific user interface section, above.) The code for the plain
variant is complete (except maybe for the colors, see Problem 1).
The plain variant uses VPipeline pipe_plain and buffer set bset_plain. Here is an excerpt
of the code, omitting the normals for brevity (the complete code is in hw03.cc):
case PV_Plain:
for (auto& m: fans_xforms)
for (int i=0; i<f.n_blades; i++) {
float theta = theta_0 + i * delta_theta;
pCoor pl_last, p2_last;
for (int j=0; j<=n_slices; j++) {
float eta = theta + j * delta_eta;
pVect v = ax * cosf(eta) + ay * sinf(eta);
pCoor pa = f.pos_axis_top + delta_vz * j;
pCoor p3 =m * (pa + rl *x v);
pCoor p4 = m * (pa + f.outer_radius * v);
if C(j) A
bset_plain << pl_last << p3 << p2_last;
bset_plain << p2_last << p3 << p4;
bset_plain << gray << gray << gray << gray << gray << gray;
}
pl_last = p3; p2_last = p4;
}
}

The j loop computes triangles for one blade, the i loop computes triangles for one turbine,
and the m loop computes the set of turbines. Those concerned about computational waste will be
appalled by the loop nest above. Why? First, the same color is used over and over, surely there
must be a better way of specifying the same color a zillion times. That will be fixed in Problem
1, and in a way that allows both front and back colors to be used. Another wasteful issue is the
fact that each iteration of the m loop does almost exactly the same thing, the only difference is the
value of m. That will be fixed in Problem 2.

Code Overview
Routine World: :render is called each time the frame buffer is to be prepared. It is similar to other
render routines used in class, the parts relevant to this assignment will be discussed here.

Objects pipe_plain and pipe_hw03 are VPipeline instances. World: :render initializes both
of them, though in the solution to this assignment the initialization of pipe_hw03 will need to be
modified.

Some notes on how to work with the VPipeline, VVertex_Buffer_Set, and the buffer types
can be found in this under-construction Vulkan course library note set.

https://www.ece.lsu.edu/koppel/gpup/slides/nset-4-vulkan-rp.pdf

Problem 1: Modify the code in render so that the
turbine uses colors specified in fan_info and helpfully
written to variables bO_f1, etc. The blade_0 colors
are to be used by the blade emitted when i=0 in the
case PV_Plain loop nest. The blade_i colors are to
be used when i>0. The front color is to be used for
the front of the blade, and back for the back. (See the
fragment shader routine, fs_main, in hwO3-shdr.cc.)
Each iteration of the j loop emits two triangles. The
first is the upper triangle and the second is the lower
triangle. See the screenshot to the right. In the screen-
shot blade 0 has distinct upper- and lower-triangle col-
ors, but in the other blades they are the same. Don’t
assume that this will always be the case.

There are three parts to this problem, only the last, part c, really needs to be solved. But
solving them in order may be helpful.

(a) Modify the code for the PV_Plain case so that it uses the front colors from the fan_info
structure, as described above. Just the front colors for this part because the PV_Plain pipeline
variant can’t take back colors. Note that this part is much easier than the others.

(b) For this part (and the next one) write a new set of shaders in hw0O3_shdr.cc and modify the
CPU code (in many places in hw03.cc) so that instead of using a color as a vertex attribute, an
integer is used instead. Call this integer a color set index. The idea is to replace the code that uses
colors:
bset_hw03 << color_red << color_blue << color_red;
with code that uses indices
bset_hw03 << 1 << 2 << 1;

The indices refers to colors that will have been placed in a uniform object as part of the
solution. The example above implies that 1 refers to position 1 somewhere in the uniform (maybe
an array element), which presumable holds red. But for this problem the color index should be
used to refer to a pair of colors, front and back. For this subproblem use an existing uniform object
to store the colors, but in the next part declare your own. To make things easier, the shader code
already expects that there might be an integer input and there might not be a color input:

// Vertex Shader Inputs

layout (location = LOC_IN_POS) in vec4 in_vertex_o;
layout (location = LOC_IN_NORMAL) in vec3 in_normal_o;
#ifdef LOC_IN_COLOR

layout (location = LOC_IN_COLOR) in vec4 in_color;
#endif
#ifdef LOC_IN_INT1

layout (location = LOC_IN_INT1) in int in_color_idx;
#endif

The following changes need to be made to the shader code:

e A color array(s) must be added to an existing uniform. Note that a color can be declared
pColor in CPU code but must be declared vec4 in shader code.

4

e The changes to the uniform in the shader code must be made to the corresponding structure
in the CPU code.

e Modify the shaders so that they get the correct color using the color set index, named
in_color_idx in the shader code.

e The shaders should no longer use the in_color input.
e Compute a front and back lighted color in the vertex shader.

e Modify the vertex shader out declaration and the fragment shader in declaration to accom-
modate the back color.

e Modify the fragment shader to use the back color when appropriate.
On the CPU side the following changes are needed:

e Add the color declarations to the struct used for colors (corresponding to the uniform used
in the shader code).

e Populate the uniform with the fan_info colors.

e Modify the code in the PV_.HWO3_P1 case so that it uses color set indices rather than colors.

When this problem is solved correctly the colors should match the screenshots.

(¢) In the previous subpart the colors might have been placed in the Uni_Light_Simple or Uni_Misc
structures because they were already there. In this subproblem define a new structure and use that
for a new buffer. The new buffer will need to be declared in World, initialized and later destroyed
in World::setup_and_run. In World::render the new uniform will need to be bound to the
pipe_hw03 descriptor set (that’s what ds stands for) when pipe_hwO03 is initialized, and explicitly
copied to_dev, preferably only when the colors change (see the serial member of fan_info). Most
of the steps needed for your new buffer will match those for uni_light_simple and uni_misc.

Problem 2: As mentioned in the introductory material, the code in PV_Plain and PV_HW03_P1

is wasteful because it re-computes the triangles for all the turbines, even though each turbine is

identical (except for position and orientation). In this problem add code to the PV_HWO3_P2 case

that writes triangles to bset_hw03_p2 for just one turbine. In fact, only write these when the serial

in fan_info changes. Make sure not to reset the buffer set only when it needs to be re-populated.

Next, record a draw for each transformation matrix. The code should look something like this:
for (auto& m: fans_xforms)

{
pMatrix global_from_local = ..;
pipe_hw03.ds_set(transform * global_from_local);
pipe_hwO3.record_draw(cb, bset_hw03_p2);

}

The pipe_hw03.ds_set line is setting the eye_from_object matrix used by the pipeline. A
draw is then recorded using the one-turbine buffer set. The loop iterates for each pipeline. In
contrast, the code for the plain and problem 1 variants record one draw for all the turbines. They
must spend more time preparing the buffer set, and it takes longer to send the buffer set from the
CPU to the GPU. When this problem is solved correctly the buffer set is much smaller. Though it
is used many times, it is only sent from the CPU to the GPU once (or each time it changes). There
is a downside to this method: there is the overhead of setting up the draw, including changing the
transform. That will be fixed in later assignments (using instances and storage arrays)

5

If this is solved correctly then the appearance using the problem 1 and 2 variants should be
the same.

