
LSU EE 4702-1 Homework 2 Solution Due: 4 October 2022

Important parts of the solution are described below the complete solution code is in the repository and an html version is

available at https://www.ece.lsu.edu/koppel/gpup/2022/hw02-sol.cc.html.

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html page
for account setup and programming homework work flow.
Compile and run the homework code unmodified. It should
initially show the square and triangles from the
cpu-only/demo-05-ray-tracing.cc code used in class. See
the screenshot to the right, which shows the correctly solved
assignment. Solving this adds the green V and the paddle
wheel (the object below the square and green V).

User Interface
Press Ctrl= to increase the size of the green text and Ctrl-

to decrease the size. Press F12 to generate a screenshot.
The screenshot will be written to file hw02.png or hw02.png.

Initially the arrow keys, PageUp, and PageDown can be used to move around the scene. Using
the Shift modifier increases the amount of motion, using the Ctrl modifier reduces the amount
of motion. Use Home and End to rotate the eye up and down, use Insert and Delete to rotate the
eye to the sides. Press l to move the light around and e to move the eye (which is what the arrow
keys do when the program starts).

Assignment-Specific User Interface
The scene is rendered by using a cpu-only ray tracing routine. (So don’t complain if it’s slow.)
There are two ray-tracing routines, the one in use is shown in the green text to the right of
Showing routine. Pressing 1 switches to render_ray_trace, this should be used for Problems
1 and 2. Pressing 2 switches to render_ray_trace_os (the os is for object space). Routine
render_ray_trace_os won’t work until Problem 3 is solved correctly.

Code Generation and Debug Support
The compiler generates two versions of the code, hw02 and hw02-debug. Use hw02 to measure
performance, but use hw02-debug for debugging. The hw02-debug version is compiled with opti-
mization turned off. You are strongly encouraged to run hw02-debug under the GNU debugger,
gdb. See the material under “Running and Debugging the Assignment” on the course procedures
page.

To help you debug your code and experiment in one way or another, the user interface lets
you change variables. In this assignment these include the variables hw02_info.opt_tryout1

and hw02_info.opt_tryout2. You can use these variables in your code (for example, if (

hw02_info.opt_tryout1) { x += 5; }) to help debug, to help familiarize yourself with how
the code works, or to experiment with new ideas. Keys y and Y toggle the value of these variables.
Their values are shown in the green text.

Display of Performance-Related Data
The top green text line shows performance-related and other information. Size refers to the size of
the window. Mouse refers to the coordinates of the mouse pointer. Coordinate (0, 0) is at the lower
left of the window. Text frame_buffer[N] shows the index of the frame buffer corresponding to

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2022/hw02-sol.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

the point under the mouse pointer. (In the assignment file frame_buffer is abbreviated to fb, for
convenience.)

Render Time and Potential Frame Rate show the CPU time needed to write the frame
buffer. They can be ignored for this assignment. See Problem 2 for the second line, the one that
starts Frame buffer writes..

pc2

pc3

pc4

Problem 1: The code in routine prep_secene in-
cludes a fragment that draws a square (by writing the
frame buffer) consisting of a purple and gold triangle.
Add code beneath that that draws the V-like figure il-
lustrated to the right. Draw the figure using only a few
triangles, and do so without overlapping triangles. It
might help to make each triangle a different color. The
screenshot at the beginning of the assignment shows
the V-like figure in green.

See 2016 Midterm Exam Problem 1 and 2018 Fi-
nal Exam Problem 1 for roughly similar problems.

The solution code is shown below (along with some preced-

ing code, and the resulting figure appears in the screenshot to the

right. Notice that point pc4 was computed so that the gold tri-

angle does not overlap the green triangle. In most submissions the

corresponding point was hand-computed and then its value placed

in a pCoor constructor. Having the code compute it is more re-

liable and easier—once you get used to working with coordinates

and vectors.

// Add a square consisting of a red and green triangle.

colors << color_lsu_spirit_gold << color_lsu_spirit_purple;

coors_os << pCoor(-7,0,-2) << pCoor(-7,2,-2) << pCoor(-5,0,-2);

coors_os << pCoor(-7,2,-2) << pCoor(-5,2,-2) << pCoor(-5,0,-2);

// SOLUTION -- Problem 1

pCoor pc2(-3.8,2,-2), pc3(-2.75,0,-2);

pCoor pc4 = pc3 + 0.2 * pVect(pc3,pc2);

coors_os << pCoor(-4,2,-2) << pc2 << pc3;

coors_os << pCoor(-4,2,-2) << pCoor(-3.25,0,-2) << pc3;

coors_os << pc4 << pCoor(-2,2,-2) << pc3;

colors << color_green << color_lsu_spirit_purple << color_lsu_spirit_gold;

2

p1
p2

p3

p4

Problem 2: Modify the code in prep_scene below
the comment reading Problem 2 so that it renders a
paddle-wheel-like object, as shown in the lower part of
the screenshot to the right. The position and shape of
the paddle wheel is determined by variables p1, p2, p3,
p4, and n_pieces, see the diagram below the screen-
shot. Points p1 and p4 define the axis of a cylinder
(actually two cylinders sharing the same axis but of
different radii). Point p2 is on the surface of one cylin-
der and point p3 is on the surface of the other, larger,
cylinder. Points p1, p2, and p3 will always form a
line, and that line is orthogonal to the cylinder axis.
The first paddle wheel blade is positioned as shown in
the diagram (the rectangle with solid lines). A com-
plete paddle wheel should have n_pieces-1 additional
blades equally spaced around the cylinder axis.

Each time 1 (or 2 when Problem 3 is solved) is
pressed new values for the variables will be chosen.
Pressing those keys might help in debugging.

Hint: Review the code for drawing a circle from
the Circles section of the math slides. For this problem
there will be four circles, two at the top of the cylin-
der, and two at the bottom. At each iteration of an
n_pieces iteration loop find a point on each circle and
connect them to form a blade. The illustration shows
just one top circle and one bottom circle. Point p2 is
on the illustrated top circle, and point p3 is on a top
circle that’s not shown.

The solution appears below. Note that only one sine and cosine are computed per iteration. They are used to

construct a vector v. From v a longer version, v2 is computed which requires just 3 multiplications. The only remaining

operation needed to compute the four points on the blade is coordinate/vector addition.

Grading Note: Many solutions unnecessarily computed a separate ax and ay for the upper and lower circles. If

the two circles have the same normal and are not rotated with respect to each other then the same ax and ay can be

used for both. Also, its less expensive to compute vx=r*ax and vy=r*ay outside the loop, and then use vx and vy

inside the loop.

pVect vx(p1,p2), vz(p1,p4);
pNorm ax(vx), ay(cross(vz,ax));

pVect vy = ay * ax.magnitude;

float r2or1 = pNorm(p1,p3).magnitude / ax.magnitude;

float delta_theta = 2 * M_PI / n_pieces;

for (int i=0; i<n_pieces; i++) {

float theta = i * delta_theta;

pVect v = vx * cosf(theta) + vy * sinf(theta);

pVect v2 = v * r2or1;

coors_os << p1 + v << p1 + v2 << p4 + v;

coors_os << p1 + v2 << p4 + v2 << p4 + v;

colors << color_lemon_chiffon << color_lemon_chiffon; }

3

Problem 3: Modify routine render_ray_trace_os so that checks for ray/triangle intercepts using
object-space coordinates. This routine is used after 2 is pressed. Routine render_ray_trace_os

starts out by computing the pixel coordinate (px_e) and ray in eye space:

for (uint yw=0; yw < win_height; yw++) for (uint xw=0; xw < win_width; xw++)

{

// Eye-Space Coordinate of Pixel.

pCoor px_e = window_ll_e + window_dx_e * xw + window_dy_e * yw;

// Ray From Eye to Pixel in Eye Space.

pVect ray(pCoor(0,0,0), px_e);

But the routine iterates over the object space coordinates of triangles:

for (auto it = coors_os.begin(); it != coors_os.end();) {

pCoor o0 = *it++, o1 = *it++, o2 = *it++;

uint32_t color = *ic++;

pVect tn(o0,o1,o2); // Triangle normal.

float t = dot(pVect(pCoor(0,0,0),o0), tn) / dot(ray, tn); /// WRONG!

pCoor s = t * ray; /// WRONG!

This code is incorrect because the ray is in eye space but the triangle normal and vertex o0 are in
object space. Also, s is not computed correctly.

Fix these problems by computing a px_o and ray, both in object space. Do not fix this by
using a transformation matrix within the loop nest. Instead directly compute a px_o in object
space, consider using variables window_ll_o, and others to compute px_o. Also, please remove the
code for px_e.

When this problem is correctly solved there should be no difference between rendering with 1

and 2.
Please review the material on line/plain intercepts to help with this problem.
There are two sets of changes that need to be made: computing the pixel coordinate in object space, and modifying

the parts of the code that refer to the eye location.

To compute the pixel location in object space we need the window corners in object space, which are given (win-

dow ll o, . . .), and the object space dx and dy (referred to as derivatives in this context), which are not given. Like

their eye-space counterparts, they are computed by dividing the object-space width and height by the window-space width

and height:

pVect window_dx_o = pVect(window_ll_o, window_lr_o) / win_width;

pVect window_dy_o = pVect(window_ll_o, window_ul_o) / win_height;

This is correct because object space is mapped to eye space only by a rotation and translation.

The eye location in eye space is at the origin. In object space the eye location is kept in variable hw02 info.eye location.

Places that refer to the eye location implicitly, need to be updated to use the variable. There are two such places, the

one which computes the ray vector, and one that computes the intercept. For the ray the eye-space pixel coordinate is

replaced with the object-space pixel coordinate and the object-space eye location is used:

// Ray From Eye to Pixel.

// pVect ray(pCoor(0,0,0), px_e); // <- Before change.

pVect ray(eye_location, px_o); // <- After change.

4

(In the original assignment the ray was confusingly computed using pVect ray(px e). This
form of the pVect constructor in effect computes ray = px e - pCoor(0,0,0), which forms a
vector as a difference between two coordinates. Of course, computationally subtracting zero does
nothing and the constructor doesn’t try to subtract zero. The problem is that beginners looking at
pVect ray(px e) might start to forget the difference between a vector and coordinate.)

The code computing the ray triangle intercept computes a vector from a triangle vertex, o0, and the eye. That too

needs the eye-space eye coordinate, pCoor(0,0,0), replaced with the variable:

// float t = dot(pVect(pCoor(0,0,0), o0), tn) / dot(ray, tn); // <- Beffore

float t = dot(pVect(eye_location, o0), tn) / dot(ray, tn);

Finally, the intercept point needs to be computed from the eye location:

pCoor s = eye_location + t * ray;

5

