LSU EE 4702-1 Homework 3 Due: 6 November 2020

Problem 0: Follow the instructions on the https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming homework work flow. Compile and run the homework
code unmodified. It should initially show a scene from the links code (in projbase/links), the
one showing a vaguely tree-like form, the silly tree, constructed from flexible links and balls. In
the original links code the balls are ordinary spheres. In this assignment the spheres are to have
triangular holes, as shown in screenshot below, which shows a closeup after Problem 1 or 2 is solved
correctly. (Problems 1 and 2 do the same thing in different Ways.)

CJ 0.077 s m \1
ul w A7l T“‘w I
') Tryou Y}Im»SPH[R[

Non-Assignment-Specific User Interface
Press digits 1 through 4 to initialize different scenes, the program starts with scene 1. Scene 1
starts with the balls arranged in the tree-like form.

Press p to pause the simulation.

Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Initially
the arrow keys, PageUp, and PageDown can be used to move around the scene. Using the Shift
modifier increases the amount of motion, using the Ctrl modifier reduces the amount of motion.
Use Home and End to rotate the eye up and down, use Insert and Delete to rotate the eye to the
sides. Press 1 to move the light around and e to move the eye (which is what the arrow keys do
when the program starts).

The + and - keys can be used to change the value of certain variables. These variables control
things like light intensity and options needed for this assignment. The variable currently affected
by the + and - keys is shown in the bottom line of green text next to VAR. Pressing Tab cycles
forward through the different variables.

Look at the comments in the file hw03. cc for documentation on other keys.

Assignment-Specific User Interface

The sphere can be rendered by three different shaders, HW03-0NE, HWO3-MANY, and HWO3-TRI. The
shader being used is shown to the right of Sphere in the green text. To cycle through the shaders
press z.

The size of the hole is specified by variable opt_hw03_hole_frac. This can be modified using
the UI, look for that variable name to the right of VAR.

Pressing n toggles between computing sphere lighting based on triangle normals, TRI, and
sphere normals, SPHERE. When solving the problems it might help to rendering using triangle
normals so that you can see where your hole is positioned within the triangle. But then switch to
sphere normals to make sure the lighting is done correctly.

1


https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html

Graphics and Performance Investigation Options
The user interface can be used to toggle various rendering options and for generating a screenshot.

The scenes differ in the number of objects, which include spheres, links, and the platform
(which for this assignment we’ll consider one object). The rendering of objects by type can be
toggled on and off by pressing !, @, #, for spheres, links, and the platform. See the green text line
starting with Hide.

Pressing F12 will write a screenshot to file hw03.png. Any existing screenshot will be silently
overwritten so be sure to rename files that you want to keep.

The rendering of shadows is toggled by o and the rendering of reflections it toggled by r.
Their state is shown in the green text next to Effect:. Pressing n will toggle how surface normals
are computed for tessellated spheres, the possibilities are to use the triangle normal or the sphere
normal. The use of the triangle normals makes it easier to see the triangles from which the sphere
was tessellated.

Display of Performance-Related Data
The top green text line shows performance in various ways. XF shows the number of display frames
per frame buffer update. An ideal number is 1. A 2 means that two display frame update were
done in the time needed to update the frame buffer once, presumably because the code could not
update the frame buffer fast enough. GPU.GL shows how long the GPU spends updating the
frame buffer (per frame), GPU.CU shows how long the computational accelerator takes per frame.
The computational accelerator computes physics in this assignment. On the lab computers the
computational accelerator GPU is different than the one performing graphics. CPU GR is the
amount of time that the CPU spends on graphics, and CPU PH is the amount of time that the
CPU spends on physics.

The second line, the one starting with Vertices, shows the number of items being sent down
the rendering pipeline per frame. Clip Prim shows the number of primitives before clipping (in) and
after clipping (out).

Code Generation and Debug Support

The compiler generates two versions of the code, hwO3 and hw03-debug. Use hw03 to measure
performance, but use hw03-debug for debugging. The hw03-debug version is compiled with opti-
mization turned off and with OpenGL error checking turned on. You are strongly encouraged to
run hw03-debug under the GNU debugger, gdb. See the material under “Running and Debugging
the Assignment” on the course procedures page.

When OpenGL error checking is on (as it is in the debug version) helpful error and warning
messages will be printed about misuse or abuse of the OpenGL API. These will appear on the
terminal window (which might be a gdb session) from which hw03-debug was started.

Keys y, Y, and Z toggle the value of host Boolean variables opt_tryoutl, opt_tryout2, and
opt_tryout3. and corresponding shader variables tryout.x, tryout.y, and tryout.z. The user
interface can also be used to modify host floating-point variable opt_tryoutf and corresponding
shader variable tryoutf using the Tab, +, and - keys, see the previous section. These variables are
intended for debugging and trying things out.

Problem 1: Modify the code in gs_main_many_triangles and perhaps fs_main_many_triangles
in file hwO03-shdr.cc so that each triangle used to tessellate the sphere has a triangular hole in
it. (See the screenshot on the first page.) The relative size of the triangle should be based on
the value of opt_hw03_hole_frac. Variable opt_hw03_hole_frac ranges from 0 to 1 (and can be
controlled using the UI). When opt_hw03_hole_frac is 0.05 there should be a tiny hole, when
opt_hw03_hole_frac is 0.95 there should be a large hole. At 0, there is no hole, at 1 the sphere
itself should be invisible.



In this problem the hole effect should be achieved by having the geometry shader emit primi-

tives for the area surrounding the hole.

Problem 2: Modify the code in shader rou-
tines fs_main_one_triangle and perhaps rou-
tine gs_main_one_triangle so that each tri-
angle used to tessellate the sphere has a tri-
angular hole in it, the same kind of hole as
in the previous problem. In this problem do
so by discarding a fragment if it would be
within the hole.

To assist with this solution the geom-
etry and fragment shaders have been mod-
ified to draw lines, see the screen shot to
the right. Figure out how those lines are
drawn, and modify the shaders so that there
is a hole. Note that calling built-in function

It should be possible to see the inside sphere surface and beyond through the hole.

The texture should be applied in the same position as it would be if there was no hole. That
is, when switching between the HW03 and TRI shaders the position of the texture should not
move.

Don’t forget to set the number of output vertices in the geometry shader. Don’t set them to
more than you need.

Be sure to set normals correctly. To check that they are correct cycle through the different
shaders using the z key. The coloring of the sphere should be the same for the HW03 and TRI
shaders.

Do not expect shadows to work correctly. In particular, light won’t go through the holes
interrupting the shadow cast by the part of the sphere that is present.

discard in the fragment shader discards the
fragment. For your convenience there is a
variable hole_here that can be set for those
fragment at a hole.

The size of the holes in the one-triangle shader must match the size in the many-triangle
shader.

Problem 3: Which appears to be the better method? That is, which uses more computational
resources? See if you can determine any difference in performance between the two.



