
LSU EE 4702-1 Homework 1 Solution Due: 23 September 2020

The solution has been checked into the repo as file hw01-sol.cc. A colorized version is at

https://www.ece.lsu.edu/koppel/gpup/2020/hw01-sol.cc.html.

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming homework
work flow. Compile and run the homework code un-
modified. It should initially show a string of balls com-
pressed between two points, the first and last balls are
fixed in place. The balls quickly expand and eventu-
ally will form an arc-like shape. The screenshot to the
right, taken when the simulation was paused, shows
the balls uncompressing, with pointy markers showing
local axes, and a green ball showing the approximate
place where the lowermost part of the string will be
once the balls come to rest.

User Interface
Initially the arrow keys, PageUp, and PageDown can
be used to move around the scene. Press (lower-case) b
and then use the arrow and page keys to move the tail
ball around. Press l to move the light around and e to
move the eye (which is what the arrow keys do when
the program starts). Pressing Shift and an arrow key
will move by a larger distance (than if Shift were not
pressed) and pressing Ctrl and an arrow key will move
by a smaller distance. The eye can be aimed up and
down by pressing Home and End, and the eye can be
rotated by pressing Insert and Delete.

Pressing p will pause and un-pause the simulation. While the simulation is paused time can
be advanced by one frame by pressing the space bar, and by one time step by pressing Shift and
the space bar.

Press digits 1 through 4 to initialize different scenes, the program starts with scene 1. In the
unmodified code scenes 1, 2, and 3 are identical: they start with the balls arranged in a line, and
separated by springs at less than the relaxed distance. Once this assignment is solved scenes 1, 2,
and 3 will behave differently.

Pressing h (head) will grab or release one end (to be precise, the ball at one end) and pressing
t (tail) will grab or release the other end. (Actually, those keys toggle between the OC_Locked and
OC_Free constraint of their respective balls.)

Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size.
The + and - keys can be used to change the value of certain variables. These variables specify

things such as the light intensity, spring constant, and variables that may be needed for this
assignment. The variable currently affected by the + and - keys is shown in the bottom line of
green text. Pressing Tab cycles through the different variables.

Code Generation and Debug Support
The compiler generates two versions of the code, hw01 and hw01-debug. Use hw01 to measure

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2020/hw01-sol.cc.html
https://www.ece.lsu.edu/koppel/gpup/proc.html

performance, but use hw01-debug for debugging. The hw01-debug version is compiled with opti-
mization turned off and with OpenGL error checking turned on. You are strongly encouraged to
run hw01-debug under the GNU debugger, gdb. See the material under “Running and Debugging
the Assignment” on the course procedures page.

Keys y, Y, and Z toggle the value of host Boolean variables opt_tryout1, opt_tryout2,
and opt_tryout3. The user interface can also be used to modify host floating-point variable
opt_tryoutf using the Tab, +, and - keys, see the previous section. These variables are intended
for debugging and trying things out.

Problem 1: Scene 1 starts with the balls arranged in a line and the first and last balls locked in
place. The distance between adjacent balls is set to less than the spring’s relaxed distance and so
the balls are quickly pushed away from each other. They will eventually come to rest in an arc.
The goal of this problem is to modify the setup routine so that the initial position of the balls are
chosen such that the balls are closer to equilibrium when the scene starts.

In the ideal solution to this problem the balls are arranged to form a catenary, the name given
to the curve made by an ideal cable with two ends fixed in space. A catenary is close in shape to
a parabola.

This problem will be solved with a much cruder approximation: two straight lines. The code in
ball_setup_hw01 chooses a first and last position for the balls, first_pos and last_pos, denote
these Pf and Pl. Let n denote the value of chain_length, the number of balls, and let lr denote
the value of distance_relaxed. The setup routine computes nadir_pos, denote that Pn.

Call L = (n−1)lr the (relaxed) length of the chain. Assume for a moment that the chain were
an un-stretchable string, with the ends still fixed at Pf and Pl. Take a pencil and pull the string in
some direction until it is taut. (That is, until the string forms a straight line from Pf to the pencil
tip and Pl to the pencil tip.) Draw a dot. Pull in some other direction and draw a dot. Repeat ∞
times. Perhaps you’ve guessed that shape drawn this way is an ellipse. Points Pf and Pl are the
foci. Since an ellipse is defined on a plane, we need a normal. The normal used is parallel to the
xz plain. The point Pn is on this ellipse, and it is chosen so that it is the point on the ellipse with
the minimum y value.

To help understanding these concepts the location
of Pf , Pl, Pn, and the axes in the ellipse’s local space
can be visualized. To do so pause the simulation (us-
ing p) in scene 1, 2, or 3. (Switch scenes using 1, 2,
etc.) The ellipse local x, y, and z axes are shown by
red, green, and blue needles. Positions Pf , Pl, and Pf

are shown by white, red, and green featureless spheres
(which may be hidden by balls). See the screenshot to
the right and the code below hw01.markers_show in
ball_setup_hw01 to see which colors are assigned.

Pn is chosen such that ‖−−−→PfPn‖ + ‖−−−→PnPl‖ = L.
This means that the first several balls can be arranged
on the line from Pf to Pn and the remaining balls can
be arranged on the line from Pn to Pl, while keeping
the distance between adjacent balls to lr with possibly
one exception. The exception occurs when no ball is
exactly at Pn. In the exception case consider the two
balls closest to Pn. The distance from the first of these
balls, to Pn to the second of these balls will be lr, but

2

the distance between these two balls will be less than
lr.

(a) Modify the code in ball_setup_hw01 so that the balls are arranged in a straight line starting
from first_pos reaching exactly or close to nadir_pos, and ending at last_pos. The distance
between adjacent balls must be distance_relaxed except for the exception condition described
above.

No ball should be placed below nadir_pos. The first ball must be at first_pos and the last
ball must be at last_pos. See the screenshot above.

If this is solved correctly the two balls near last_pos should twitch (because they are closer
than their relaxed distance). Initially the two lowest balls should be near the green marker (the
location of nadir_pos) and the white and red spherical markers should not be visible.

To help debug your solution pause the simulation using p, then start the scene, 1. Compare
your placement of the balls to the marker balls.

Consider the loop that computes positions in the unmodified code:

pNorm dfn(first_pos,nadir_pos), dln(last_pos,nadir_pos);
for (int i=0; i<chain_length; i++)

{

Ball* const ball = &balls[i];

pCoor pos = first_pos + i * first_last_dist / (chain_length-1) * ax;

The balls need to be arranged on a line either starting at first pos and toward nadir pos or on a line from

nadir pos to last pos. The balls on each line will be spaced exactly distance relaxed apart.

A simple way to solve the problem is to compute the value of i for the first ball on the line from nadir pos

to last pos. That’s called i dir change in the solution (below). It’s computed by dividing the distance from

first pos to nadir pos by distance relaxed and rounding up.

Then ball->position is set based on its distance from first pos if i < i dir change, otherwise based

on its distance from last pos.

pNorm dfn(first_pos,nadir_pos), dln(last_pos,nadir_pos);
const int i_dir_change = 0.9999f + dfn.magnitude / distance_relaxed;

for (int i=0; i<chain_length; i++)

{

Ball* const ball = &balls[i];

ball->position = i < i_dir_change

? first_pos + i * distance_relaxed * dfn

: last_pos + (chain_length - 1 - i) * distance_relaxed * dln;

Grading note: many solutions were more complicated than they needed to be for two reasons. First, some solutions

computed the coordinates of the balls on the line toward last pos based on their distance from nadir pos. That

made the code a bit messier. What made the code messier still was the attempt to find this distance within the loop, in

some cases using a second iterator for the balls toward last pos.

(b) In this problem that twitching when a scene is started will be fixed. The solution is not
ideal from a physical model point-of-view, but it makes a decent question. Modify the code so
that each spring can have its own relaxed distance. Do so by adding a relaxed distance member
to Ball and using it appropriately. The code in ball_setup_hw01 must set this new member
to distance_relaxed for all balls except for one. That one ball is the one that’s closer to its
neighbor. Set it to the appropriate distance if opt_special_dist_relaxed is true, otherwise set it
to distance_relaxed. Modify the code in time_step_cpu so that the per-ball distance_relaxed

3

values will be used. Part of this problem is deciding whether the value of distance_relaxed set
for a ball applies to its connection to its predecessor in the balls array or to its connection with
its successor.

Use scene 2 for this problem. In scene 2 (and 3) opt_special_dist_relaxed is true.
If this is solved directly scene 2 should start without a sudden twitch. Instead the balls will

gently come to rest in the correct place.

In the solution below a new member, Ball::distance relaxed, was added that holds the relaxed distance

of the spring connecting a ball to its predecessor. (That means ball->distance relaxed for the first ball is

meaningless.) For the ball closest to nadir pos on the line towards last pos ball->distance relaxed is set

to the distance to the previous ball, otherwise it is set to the global distance relaxed:

ball->distance_relaxed =

opt_special_dist_relaxed && i == i_dir_change

? pNorm(balls[i-1].position,ball->position).magnitude

: distance_relaxed;

The time step routine needs to be modified so that it uses the correct Ball::distance relaxed when

computing spring stretch. The inner loop in the time step routine finds the force between ball and neigh-

bor ball. Since Ball::distance relaxed is the spring to the predecessor (lower numbered) ball, the code

should use Ball::distance relaxed from the higher-numbered ball. That is done by the code below, which has

been shortened for clarity:

for (int i=0; i<chain_length; i++) {

Ball* const ball = &balls[i];

ball->force = ball->mass * gravity_accel;

for (int direction: { -1, +1 }) {

const int n_idx = i + direction; // Compute neighbor index.

if (n_idx < 0 or n_idx >= chain_length) continue;

Ball* const neighbor_ball = &balls[n_idx];

pNorm ball_to_neighbor(ball->position, neighbor_ball->position);

const float distance_between_balls = ball_to_neighbor.magnitude;

const int idx_gt = max(i,n_idx);

const float spring_stretch =

distance_between_balls

- balls[idx_gt].distance_relaxed * fabs(direction);

One common problem was not realizing that a single distance relaxed member of Ball would have to refer to

either the ball’s predecessor or successor. In those incorrect solutions the time step routine itself would determine

what other ball ball->distance relaxed was supposed to connect to. That was wrong because it makes ball-

>distance relaxed something that could only be used for one particular setup.

(c) Modify the code in ball_setup_hw01 so that when opt_spin is true (which is the case in
scene 3) the balls are given an initial velocity so that they rotate rigidly around the line defined by
first_pos and last_pos. To do this set the ball velocity. Note that balls closer to the line will
have a lower velocity.

If this is solved correctly the balls will swing around the axis while generally keeping their
shape.

To solve this find the distance from a ball to the line defined by first pos and last pos and multiply that by

az, which is the normal to the plane defined by first pos, last pos, and nadir pos. In the solution this was

done in a separate loop for reasons of clarity. The velocity could have been set in the main i loop.

4

pNorm spin_dir = cross(first_pos,nadir_pos,last_pos);

if (opt_spin) for (auto& b: balls) {

pVect to_b0(b.position, first_pos);

const float dist = dot(to_b0, ay);

b.velocity = dist * 10 * spin_dir;

}

5

