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Problem 1: [30 pts] The geometry shader below is based on the solution to the pre-final exam Problem 3.
The geometry shader renders a prism centered on the triangle with a hole cut in it. The prism is also called
a monolith in a playful reference to a recent news story. Notice that there is a vec2 array, pts, declared
in the shader. This array has the coordinates of the points on the pointy p from Pre-Final Exam Problem
1. The points are in the pointy p’s local coordinate space and are in the right order to render the p as a
triangle strip.

Modify the shader so that p’s are rendered instead of mono-
lith faces. Each p must be on the same plane as the monolith
face and must be the same size. That is, the p can’t extend
outside where a face would be, the bottom, top and left edge
must touch the respective edges of the face. The pointy part
must touch or be near the right edge.

See the screenshot to the right. In the screenshot some
holes have monoliths, and some have p’s. In your solution
just render p’s.

�Modify the shader to render the p’s where the monolith faces would go.

The solution is on the next page.
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void gs_mono_p() {

vec4 ctr_ce = AVG(vertex_e); // Coord at triangle center.

vec3 ctr_ne = AVG(normal_e); // Normal at triangle center.

// Render the triangle-with-a-hole using a triangle strip that wraps around hole.

for ( int ii=0; ii<=3; ii++ ) {

int i = ii % 3;

normal_e = f * In[i].normal_e + (1-f) * ctr_ne;

vertex_e = f * In[i].vertex_e + (1-f) * ctr_ce;

gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex(); // Emit inner triangle vertex.

normal_e = In[i].normal_e;

vertex_e = In[i].vertex_e;

gl_Position = In[i].gl_Position;

EmitVertex(); // Emit original triangle vertex.

}

EndPrimitive();

float size = length(In[0].vertex_e-In[1].vertex_e); // Height of monolith.

color = vec4( 0.05, 0.5, 0.05, 1 );

// Compute and save the coordinates of the top of the monolith, and surface normals.

vec3 vtx_e[3], snorm_e[3];

for ( int i=0; i<3; i++ ) {

snorm_e[i] = size * normalize( f * In[i].normal_e + (1-f) * ctr_ne );

vtx_e[i] = f * In[i].vertex_e.xyz + (1-f) * ctr_ce.xyz; }

// Local x and y coordinates of the points on the pointy p.

vec2 pts[] = { {0,0},{1,0}, {0,7},{1,6}, {4,5},{3,5}, {1,3},{1,4} };

for ( int i=0; i<3; i++ ) { // Iterate over faces of monolith.

int ni = ( i + 1 ) % 3; // Next i, possibly wrapped around.

// Compute the normal of a face of the monolith.

normal_e = normalize( cross( vtx_e[ni] - vtx_e[i], snorm_e[i].xyz ) );

// Use a triangle strip to emit one face of the monolith.

vec3 va[4] = { vtx_e[i], vtx_e[ni], vtx_e[i] + snorm_e[i], vtx_e[ni] + snorm_e[ni] };

/// SOLUTION Below
// Compute local axes for drawing pointy p and scale them so that

// the pointy p fits on the monolith face.

vec3 ax = ( vtx_e[ni] - vtx_e[i] ) / 4;

vec3 ay = snorm_e[i] / 7;

mat3 px = mat3(ax,ay,vec3(0));

for ( int p=0; p<n_pts; p++ ) { // Iterate over points describing p.

vertex_e.xyz = vtx_e[i] + px * vec3(pts[p],0);

gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex();

}

EndPrimitive();

continue;

/// SOLUTION Above
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for ( int j=0; j<4; j++ ) {

vertex_e.xyz = va[j];

gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex();

}

EndPrimitive();

}

}
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Problem 2: [15 pts] The vertex and geometry shaders below are used in rendering pipeline T , in which the
input primitives are individual triangles, and rendering pipeline S, in which the input primitive is a triangle
strip. In both cases the shaders work correctly, but there might be differences in performance.

(a) Modify the vertex and geometry shader to reduce the amount of data sent from the vertex shader to the
geometry shader. Do so by moving some of the work performed by the vertex shader to the geometry shader.
If necessary, declare new input and output variables. For this part the shaders will be run on pipeline S. Do
not make changes that result in additional computation unless those changes also reduce vertex-to-geometry
shader data transfer. Of course, your changes should not change what the shaders do.

�Modify shaders to reduce vertex-to-geometry shader data transfer.

�Don’t make a change the has no impact on data transfer but does increase the amount of computation.

The solution appears below. Vertex output gl Position is eliminated since that value can be computed in the geometry shader

using vertex e. There is certainly no need for both gl BackColor and gl FrontColor since they both carry the same value.

The solution keeps gl BackColor. Since gl FrontColor and gl Position are each of type vec4 and a vec4 is 16 bytes

These changes reduce the vertex shader output data by 32 bytes.

void vs_main_basic() { // The Vertex Shader

// SOLUTION: REMOVE: gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vertex_e = gl_ModelViewMatrix * gl_Vertex;

normal_e = normalize(gl_NormalMatrix * gl_Normal);

// SOLUTION: REPLACE: gl_BackColor = gl_FrontColor = gl_Color;

gl_BackColor = gl_Color; // SOLUTION. No need to send same color twice.

tex_coord = gl_MultiTexCoord0.xy;

}

void gs_main_basic() { // The Geometry Shader

const bool type_a = glPrimitiveIDIn & 1;

vec4 color_adjust = type_a ? vec4(0.5,0.5,0.5,1) : vec4(1);

for ( int i=0; i<3; i++ )

{

gl_BackColor = gl_BackColorIn[i] * color_adjust;

// SOLUTION: REPLACE gl_FrontColor = gl_FrontColorIn[i] * color_adjust;

gl_FrontColor = gl_BackColor; // SOLUTION: Just use back color.

// SOLUTION: REPLACE gl_Position = gl_PositionIn[i];

gl_Position = gl_ProjectionMatrix * In[i].vertex_e; // SOLUTION

tex_coord = In[i].tex_coord;

normal_e = In[i].normal_e;

vertex_e = In[i].vertex_e;

EmitVertex();

}

EndPrimitive();

}
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(b) The requirement to not make changes that result in additional computation unless those changes also
reduce vertex-to-geometry shader data transfer is much easier to comply with when the shaders are run on
pipeline T . Explain why and include an example of such a change. The change should not change what the
shaders do and should be useful. (That is, move something.)

�Why is it easier to avoid additional computation when the shaders are used in pipeline T than it is when

the same shaders are used in pipeline S? �Note: Don’t compare the absolute performance of S to T ,
compare how much the change impacts computation on each pipeline.

It is easier to avoid additional computation in pipeline T because there is one execution of the i-loop body for each vertex shader

invocation and so moving a computation from the vertex shader to the i loop in the geometry shader does not change the amount

of computation (all other things being equal).

If the shaders were used with pipeline S then for each execution of the vertex shader (in all but two cases) there would be three
executions of the i-loop body (each in a different geometry shader invocation).

�Provide an example.

For example, consider a rectangle rendered as 10 triangles. (Yes, 2 would suffice, but suppose there were 10.) In pipeline T the

vertex shader would be executed 10× 3 = 30 times and the geometry shader would be executed 10 times. In each execution of the

geometry shader the i loop executes 3 iterations, and so the loop body executes a total of 10 × 3 = 30 times. In the solution to

the previous part the a matrix/vector multiply is eliminated from the vertex shader and one is added to the i loop in the geometry

shader. This move does not change the total number of matrix/vector multiplications.

If that same 10-triangle rectangle were rendered in S only 10 + 2 = 12 vertices would be sent in to the rendering pipeline and

so the vertex shader would execute only 12 times. The geometry shader would still execute 10 times and the i loop body would

still execute 30 times. So moving the matrix/vector multiplication from the vertex shader to the geometry shader would increase the

amount of work by a factor of 30
12 = 2.5.

So with pipeline S the modifications from the previous problem impact performance in two ways. The reduction in data being sent

from the vertex to geometry shader will tend to improve performance but the increase in computation will tend to reduce performance.

The 4 × 4 matrix/vector multiply consists of 16 multiply/add (MADD) operations. In current NVIDIA GPUs the time needed for

the 16 MADD instructions is much less than the time needed to move 32 bytes across the GPU chip boundary, and so even with the

additional computation the change would be worthwhile.
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Problem 3: [15 pts] In Homework 3 we experimented with two ways to render a triangle with a hole in it.
In the one-triangle method we relied on the fragment shader to render the hole. The geometry shader just
emitted one triangle with little work. In the many-triangle method we emitted several triangles, forming a
triangle-with-a-hole shape.

Based on performance measurements we found that the one-triangle method was faster. That must mean
that the extra work done by the geometry shader in the many-triangle method had more of an impact than
the extra work done by the fragment shader in the one-triangle method.

Let tg1 denote the time used by one invocation of the geometry shader for the one-triangle method, let tgm
denote the time used by one invocation of the geometry shader for the many-triangles method. Let tf1 and
tfm denote the times for one invocation of the respective fragment shaders.

Let n denote the number of spheres rendered, and let g denote the number of triangles in one sphere
tessellation. Finally, let f denote the fraction of the triangle covered by the hole.

(a) Based on these, find an expression for the total time used by the geometry shaders during a render pass
for each method.

�Total rendering pass time for geometry shader using one-triangle method:

Each invocation takes tg1, and a there is one invocation for each tessellated triangle, so the total time is ngtg1.

�Total rendering pass time for geometry shader using many-triangle method:

Each invocation takes tgm, and a there is one invocation for each tessellated triangle, so the total time is ngtgm.

(b) Find an expression for the time used by the fragment shaders. Use nf1 for the total number of fragment
shader invocations in the one-triangle method. (But use it for both expressions.)

�Total rendering pass time for fragment shader using one-triangle method:

This is simply nf1tf1.

�Total rendering pass time for fragment shader using many-triangle method:

Since no nfm has been provided it must be estimated: nfm = fnf1. So the total time is fnf1tfm.

(c) What does nf1 depend on? How can nf1 be made larger or smaller when viewing a scene without changing
the primitives sent into the rendering pipeline. That is, one can’t send fewer spheres or more spheres into
the rendering pipeline.

�Quantity nf1 depends on:

It depends on the number of pixels covered by the spheres.

� It can be changed when viewing a scene by:

. . . by moving the eye further from the scene to reduce nf1 or closer to the scene to increase nf1.
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Problem 4: [40 pts] Answer each question below.

(a) The two shaders below do the same thing, though slightly differently.

void vs_plan_a() {

vertex_e = gl_ModelViewMatrix * gl_Vertex;

gl_Position = gl_ProjectionMatrix * vertex_e;

}

void vs_plan_b() {

vertex_e = gl_ModelViewMatrix * gl_Vertex;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

OpenGL is provided a modelview matrix and a projection matrix at the beginning of a rendering pass. In
both vs_plan_a and vs_plan_b there are two matrix/vector multiplies, which require 42 = 16 multiply/
add operations each. But vs_plan_b uses gl_ModelViewProjectionMatrix, which is the product of the
modelview and projection matrices. The product of these two matrices is computed using 43 = 64 multiply/
add operations. That brings the total to 16 + 16 + 64 = 96 operations, much more than 32 for vs_plan_a,
right?

�Describe the flaw with this argument.

The product is computed before the rendering pass, and it is computed at most once per rendering pass. (That is because it is

a uniform variable.) A rendering pass is expected to have a large number of vertex shader invocations. Suppose there are 1000

invocations. So the 43 = 64 operations needed to compute the product is tiny compared to the computation performed by the

vertex shaders, 32, 000 operations.

�Describe a case when the argument is correct, but explain why this case does not reflect typical use.

It would be correct if a rendering pass processed just one vertex.
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(b) Answer the following questions about view volumes.

�What is a view volume?

It is the part of the scene that is visible. In OpenGL it is the part of the scene inside of a cube from clip-space coordinate (-1,-1,-1)

to (1,1,1).

� It is easy to determine whether a vertex is in the view volume by using its coordinate in © object space,

© eye space, or �© clip space (check one).

�Given the coordinate in that space, how can one tell whether it is inside or outside the view volume?

It is in clip space if the absolute value of each component is ≤ 1 after homogenization.

� It is easy to determine whether some triangles are in the view volume. � Provide an example of such a
triangle and � explain why.

It is easy if all three vertices are in the view volume. In that case no part of the triangle can be outside the view volume.

�Provide an example of a triangle for which it is not so easy to determine if it is in the view volume.� Illustrate with a diagram.

One in which all three vertices are outside the view volume. FINISH.
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(c) Describe how suitable an OpenGL uniform variable is for the following:

�Explain whether this a suitable use for a uniform variable: To hold the lighted color computed by a vertex
shader.

That won’t work because uniform variables cannot be written by shaders, including vertex shaders. Even if the uniform were written

by some other means, each vertex can have a different lighted color but the value of a uniform variable must be the same for every

vertex in a rendering pass.

�Explain whether this a suitable use for a uniform variable: To hold the location of a light source.

That is suitable because that would be the same for every vertex.

(d) Vertex coordinates are usually three dimensional but texture coordinates are usually two dimensional.
Why? (Ignore the w component in your answer.)

�Texture coordinates have two, not three, dimensions because:

Because textures are mapped on to triangles, which are two dimensional.
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(e) In many of our sphere examples we put the coordinates into a buffer object.

�What are the advantages of a buffer object over using individual glVertex calls to feed a rendering pipeline?

Much lower overhead compared to calling glVertex to provide one vertex coordinate.

�What are the advantages of a buffer object over using a client (CPU) array to feed a rendering pipeline?

With a client array the data must be sent from the GPU to the CPU for each rendering pass, even if that data hasn’t changed. A

buffer object can be reused.

(f) A homogeneous coordinate consists of four components, compared to just three for ordinary Cartesian
coordinates. Homogeneous coordinates increase the amount of work needed for a matrix/vector multiply
from 9 to 16 multiplications. Transformations are realized by multiplying a transformation matrix by a
coordinate.

�Describe a transformation that cannot be done without homogeneous coordinates.

Translation.

�Describe a transformation that can be done using ordinary Cartesian coordinates.

Scale. Also rotation.
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