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Problem 1: [30 pts] The gs_points shader in the solution to Homework 3, Problem 2 renders protrusions,
which are blocks attached to the ring. The shader always emits five faces: the top (which we called the
diamond), and the four sides. (Since it is attached to the ring there is no need to emit a bottom face.)
Normally only the outside of the block is visible so the user can see at most three faces. That means at least
three faces that can’t be seen are emitted nevertheless. That can’t be good. In this problem shader code will
be modified to avoid those faces, and in the next problem the implications of this change will be analyzed.

The code on the next page is based on (but not identical to) the Homework 3 Problem 2 solution. The
intention is that this be solved by hand, though solving by editing code is allowed. The code from the next
page will be provided on request or may already be available.

(a) In the code below (meaning the next page) there is a 4-element Boolean array visible that is declared
but not used. Add code that sets visible[i] to true is side i is visible to the user. By no coincidence
the declaration of visible is just after code that sets face_normal_e[i] to the eye-space normal of side i.
Hint: Remember that in eye space the eye is at the origin (coordinate (0, 0, 0)). Also take advantage of the
fact that eye-space coordinates and normals are available. Another Hint: A correct solution to this problem
consists of a loop with a single statement, visible[i]=.x., with .x. replaced by [am I giving away too
much] a dot product.

�Modify code so visible[i] set to true iff face i is visible.

(b) Modify the code below so that only the visible faces are emitted. This includes the diamond on top and
the four sides of the protrusion. Feel free to use the visible array from the previous subpart (even is that
subpart has not been solved). Hint: Only one line is needed for the diamond on top. The changes needed to
the code emitting the sides are more extensive.

�Modify code so that diamond is not emitted if it is not visible.

�Modify code so that only visible sides are emitted.

Code is on the next page.
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void gs_points() {

/// Note: (Code setting ctop, etc. not shown.)
// Prepare an array of object-space coordinates of vertices describing the

// protrusion, and use that to initialize an array of eye-space coordinates.

vec3 pts_o[8] =

{ ctop, cr, cbot, cl, ctop+nc*dr, cr+nr*dr, cbot+nc*dr, cl+nr*dr };

vec4 pts_e[8];

for ( int i=0; i<8; i++ ) pts_e[i] = gl_ModelViewMatrix * vec4(pts_o[i],1);

int ord[4] = { 1, 0, 2, 3 }; // Order in which to emit vertices.

// Emit the diamond-shaped protrusion top.

color = color_diamond;

normal_e = gl_NormalMatrix * nl;

if ( dot( normal_e, pts_e[0].xyz ) < 0 ) // SOLUTION -- Part b (the if statement)

for ( int i=0; i<4; i++ ) {

vertex_e = pts_e[ord[i]]; // Retrieve vertices in the correct order.

gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex(); }

EndPrimitive();

// Compute the eye-space normal of each protrusion face.

vec3 face_normal_e[4];

for ( int i0=0; i0<4; i0++ )

face_normal_e[i0] = cross( pts_e[(i0+1) & 0x3].xyz - pts_e[i0].xyz,

pts_e[i0+4].xyz - pts_e[i0].xyz );

bool visible[4];

// SOLUTION -- Part a.

for ( int i=0; i<4; i++ ) visible[i] = dot( face_normal_e[i], pts_e[i].xyz ) < 0;

// SOLUTION -- Part b: Find the first visible side, set that to istart.

int istart = -1;

for ( int i=0; i<5; i++ ) if ( !visible[i&0x3] && visible[(i+1)&0x3] ) istart = i+1;

if ( istart == -1 ) return;

color = color_edge; // Color for sides.

for ( int i=0; i<5; i++ ) {

// int i0 = i & 0x3; // The current edge.

int i0 = ( i + istart ) & 0x3; // SOLUTION -- Part b: Start at istart.

vertex_e = pts_e[i0+4]; gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex();

vertex_e = pts_e[i0]; gl_Position = gl_ProjectionMatrix * vertex_e;

EmitVertex();

normal_e = face_normal_e[i0]; // This normal will be used for the next two vertices.

if ( !visible[i0] ) break; // SOLUTION -- Part b.

}

EndPrimitive();

}
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Problem 2: [25 pts] Assume that the previous problem has been solved correctly and so only those sides
of the protrusions facing the user are emitted. Below, roughly estimate the benefit of this improvement
when rendering protrusions by considering the amount of work done by the vertex, geometry, and fragment
shaders. Make the estimate using the original (Homework 3 solution) vertex and fragment shaders, and
the geometry shader obtained by solving the previous problem. When estimating, assume that the number
of emitted faces per protrusion drops from 5 to 2.5. (The actual number of faces emitted for a particular
protrusion with a particular eye location and orientation can range from zero [for example, if the viewer is
in the center of the ring looking at some point on the ring] to three.)

When answering the problems below consider the change in the amount of work done by each shader (the
change in the amount of work using the Homework 3 solution code to the amount of work using the geometry
shader from the previous problem) invocation, and the change in the number of times the shader needs to
be invoked.

(a) For this part assume a typical view of the ring. (Don’t assume that no part of the ring is visible, or other
special cases.)

�Compared with the Homework 3 solution code, the total work for the vertex shader stage after the change

above is: © about half the amount of work,
⊗

no change in the amount of work, © roughly the

same amount of work, © double the amount of work.

�Explain. Consider �work per shader and � number of shader invocations.

The vertex shader is invoked once for each protrusion. The number of protrusions has not changed and the vertex shader has not

changed so there is no change in the amount of work.

�Compared with the Homework 3 solution code, the total work for the geometry shader stage after the change

above is: © about half the amount of work, © no change in the amount of work,
⊗

roughly the

same amount of work, © double the amount of work.

�Explain. Consider �work per shader and � number of shader invocations.

The geometry shader is invoked once for each protrusion. The number of protrusions has not changed but the geometry shader sure

has. The main changes to the code are: computing the visibility of each face, determining the first side to render (value of iside),

and skipping faces that do not need to be rendered. The first two increase the amount of work and the last reduces the amount of

work. The geometry shader now has to compute visibility for each face, but that’s just an additional five dot products. Finding the

first side to render requires a five iteration loop with a simple loop body.

The number of faces emitted drops from 5 to 2.5. The code emitting a face performs two (the sides) to four (the diamond) 4 × 4
matrix/vector multiplications (the coordinate transformations), each requiring 4 × 4 = 16 multiply/add operations, in contrast

to 3 multiply/add operations for a dot product of a 3-element vector. Therefor avoiding just one transformation more than makes

up for the five dot products. The original code performed 8 + 4 + 5 × 2 = 22 transformations, the new code roughly performs

8 + 1
24 + 5 × 2 = 15 transformations, which is more than half the amount of work. When the trigonometric functions are taken

into account the amount of work is about the same.

Grading Note: An answer of half the work with a justification similar to the one above would receive full
credit.

�Compared with the Homework 3 solution code, the total work for the fragment shader stage after the change

above is:
⊗

about half the amount of work, © no change in the amount of work, © roughly the

same amount of work, © double the amount of work.
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�Explain. Consider �work per shader and � number of shader invocations.

The fragment shader has not been changed so the work per invocation is about the same. If half the number of faces are emitted

then there will be half the number of fragment shader invocations. Assuming that the projected size of the visible faces is about the

same as the invisible ones, the amount of work performed by the fragment shader will be about half.
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(b) Suppose again that the ring is visible, and suppose that each invocation of the new geometry shader
requires 10% more work than the geometry shader from the Homework 3 solution. (The extra time is needed
to detect invisible faces.) What sort of view would make that extra work increase the total time needed for
a rendering pass, and would make the extra work offset by a large reduction elsewhere?

�Characteristics of a view that would increase rendering time even with invisible faces omitted?

A view in which the projected size of the protrusions are small, say about three fragments each. A view like that can be obtained by

moving the eye far away from the ring while still looking at it. In such a view for each geometry shader invocation there will be three

fragment shader invocations. Let tg be the amount of work done by an invocation of the original geometry shader and let tf be the

amount of work done for an invocation of the fragment shader (which hasn’t changed). An invocation of the new geometry shader

performs 1.1tg work. Suppose that the original geometry shader emits six fragments for some view, and that the new one emits just

three. The amount of work performed by the old one is tg + 6tf and for the new one 1.1tg + 3tf . For the rendering time to be

increased 1.1tg + 3tf > tg + 6tf , for the work to be equal 1.1tg + 3tf = tg + 6tf , or tg = 30tf . So if the original geometry

shader performs more than 30× the work of the fragment shader, execution time will be increased with our new shader for views in

which a protrusion covers just three fragments.

�Characteristics of a view that would sharply reduce rendering time with invisible faces omitted?

A view in which the projected size of the protrusions is large and so there are lots of fragments per primitive, say 1000 per primitive.

In that case 1.1tg +1000tf < tg +2000tf will hold unless one geometry shader invocation does 10, 000× the work of a fragment

shader invocation, which isn’t very likely.
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Problem 3: [5 pts] Appearing below is a correct solution to Homework 3 Problem 1, followed by a possible
alternative solution. Indicate whether the alternative solution will render the strip as intended (the same
way as the first solution) and whether there is any problem with it.

void gs_strip_plus() { // Homework 3 Solution

if ( In[2].normal_e == vec3(0,0,0) ) return;

for ( int i=0; i<3; i++ )

{

normal_e = In[i].normal_e;

vertex_e = In[i].vertex_e;

color = In[i].color;

gl_Position = In[i].gl_Position;

EmitVertex();

}

EndPrimitive();

}

void gs_strip_plus() { // A possible alternative solution.

for ( int i=0; i<3; i++ )

{

if ( In[2].normal_e == vec3(0,0,0) ) return;

normal_e = In[i].normal_e;

vertex_e = In[i].vertex_e;

color = In[i].color;

gl_Position = In[i].gl_Position;

EmitVertex();

}

EndPrimitive();

}

�Will the alternative solution render the strip correctly?

Yes.

�Explain the problem with the alternative solution.

The alternative solution will emit two vertices that will then be abandoned, wasting effort.
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Problem 4: [25 pts] Answer each question below.

(a) Any uniform variable that a vertex shader uses can be replaced by a vertex shader input. Why is that
not a good idea? Explain the impact on performance.

�Uniform variables should not be replaced by shader inputs because:

. . . because the driver will have no choice but to transfer v copies of each uniform, where v is the number of vertices. That will slow

down execution. Also, uniform variables use constant memory, and so can be accessed faster.

�How might one estimate the impact on performance for such a replacement?

Let u denote the size of the uniform variables to convert. For example, a 4×4 float transformation matrix consumes 4×4×4 = 64 B,

so if 2 transformation matrices are converted from uniforms to vertex shader inputs u = 2×64 = 128 B. Let v denote the number

of vertices in a rendering pass and Θ denote the CPU to GPU data bandwidth, for example, Θ = 500 GB/s. Then the additional

time per rendering pass would be uv
Θ .

The two matrices in a 5000-vertex rendering pass on the Θ = 500 GB/s device would add 128 B×5000
500 GB/s = 1.28µs to the pass if

sourced from the CPU.

(b) In some cases a vertex shader input can be replaced by a uniform variable. Describe a situation in which
a vertex shader input can be replaced by a uniform, and in which a shader input cannot be replaced by a
uniform. An example can be found in the shaders for Homework 3 and 4.

� Situation where vertex shader input can be replaced by a uniform. �Explain.

Answer: In the Homework 3 and 4 code all of the diamonds were the same color. So the color could have been assigned to a uniform.

Discussion: Instead it was provided using glColor. At least for the glBegin/glEnd rendering passes the driver had no way

of knowing in advance that glColor would not be changed during the rendering pass and so it would provide it as a vertex shader

input. For the glDraw rendering passes the driver could determine that the color would not change but it would need to recompile

our programmable shaders to take advantage of that fact.

� Situation where vertex shader input can not be replaced by a uniform. �Explain.

When the value won’t be the same for every vertex. For example, the vertex normal in most of our examples. Since a uniform variable

cannot be changed during a rendering pass it cannot be used for values that change.
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(c) The geometry shader must write clip-space coordinates to output variable gl_Position. Anything else
the geometry shader needs to write, such as a surface normal, can be written to variables of the programmer’s
choosing. Why does OGSL require clip-space coordinates in that way?

�Why must the geometry shader write clip-space coordinates?

�Why must it write them to a variable with a specific name, gl Position?

In the rendering pipeline the rasterization stage follows the geometry shader. The rasterization stage assembles a primitive (using

vertices emitted by the geometry or vertex shader) and then finds the pixels covered by that primitive. For each primitive it emits

a fragment. To find the pixels covered by the primitive it needs clip space coordinates (which can be easily converted into pixel

coordinates), which is why the geometry shader needs to emit clip space coordinates.

The geometry and fragment shaders (as well as vertex, tessellation, and compute shaders) are written by programmers using the

OpenGL API. In contrast the rasterization stage is part of the fixed functionality, meaning it cannot be programmed, at least by

OpenGL/OpenGL Shading Language users.

Let’s suppose that the geometry shader emits coordinates (which it has to) and a color (which it “wants to”) for each vertex. The

color is read by the fragment shader which will do something with it, probably compute a lighted color. The geometry and fragment

shaders were written by the same person or team, and so they will have agreed on a name for the variable holding the color, say

coler. The rasterization stage only sees coler as a four-element vector, but has no idea what it’s for and so the name is not

important.

In contrast, the rasterization stage needs clip-space coordinates and so those must be written to a variable with a specific name.

(d) The true sphere shader presented in class rendered a sphere perfectly. Why would there be no advantage
in a true cube shader?

�No advantage to a true cube shader because:

The true sphere shader renders a perfect sphere, meaning that exactly the pixels covered by the sphere are written. In contrast, when

a sphere is approximated using triangles (the first method presented in class) the outline of the sphere will be a polygon rather than

a circle unless the a very large number of triangles are used.

There is no similar problem when rendering a cube. A cube can be modeled using 12 triangles, and they will perfectly match the

surface of a cube (if done correctly). Cube normals are easy too, there are only six of them. Since a cube can be perfectly rendered

using triangles, there is no need for a true cube fragment shader.

(e) The shadow volume code and our lighting code took advantage of built in variables describing how user
code set lighting state such as
gl_LightSource[i].position, which provides the position of light i. Light position and other lighting
variables are deprecated, meaning they may be removed in future versions of OpenGL.

�Why are they deprecated?

The are deprecated because lighting can easily be computed by vertex or fragment shaders. Those shaders can declare their own

uniform variables for light positions and whatever else they need, and use those to compute lighted colors.

�Why were they there in the first place?

OpenGL is intended to provide a uniform API that can be used on a variety of 3D graphics accelerators.

Early graphics accelerators were not programmable (one could not write shaders) and so one had no choice but to use built-in lighting

functionality. Execution of an OpenGL command such as glLightfv(GL LIGHT0, GL POSITION, light location)

might write a special hardware register (actually a memory location that the hardware monitors) with the coordinates on one

device, but use a totally different method to set position on another device. The device might have had specialized hardware to

compute lighting or might have been programmable, but only by the manufacturer.
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GPUs became programmable, and over time their instruction sets became more general purpose, making specialized hardware for

lighting and other graphics tasks unnecessary.
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Problem 5: [15 pts] Many of our fragment shaders make library function calls such as
texture(tex_unit_0,TexCoord) to obtain a filtered texel located at coordinate TexCoord. Coordinate
TexCoord is something the shader code provided. Consider an alternative method of obtaining a texel in
which the user prepares an array of texels bound to a buffer object named my_texture. The fragment shader
might obtain the texel using code such as my_texel[twid*TexCoord.x + twid*tht*TexCoord.y], where
twid is the width of the texture image and tht is the height of the image.

(a) Explain why the code fragment my_texel[twid*TexCoord.x + twid*tht*TexCoord.y] might return a
texel, but not a filtered texel. In particular, what would need to be done for it to be filtered, and why could
it not provide the benefit of mipmap levels. Remember that my_texel is an ordinary array of RGBA values
from a texture image (called texels). Each element is a vec4, the vec4 members are .r, .g, .b, and .a.

� my texel[twid*TexCoord.x + twid*tht*TexCoord.y] could not return a filtered texel because:

To compute a filtered texel one needs to take some kind of a weighted average of texels that cover a pixel. A simple array lookup

will just return one texel. There’s no way to filter in advance since one can’t usually predict pixel size and placement in advance, and

there would be way too many possibilities anyway.

�Roughly, how could code accessing the texel array my texel return a filtered texel?

The code accessing my texel could find the indices (values of TexCoord.x and TexCoord.y) of all texels covering the pixel of

interest, retrieve those, and then compute a weighted average of them. (Some texels would only partially cover the pixel.)

�Explain why accessing the single texel array could not provide the benefit of multiple mipmap levels.

Because each MIPMAP level would need to be a different array, at least if a single index were used.

(b) The library function texture is part of the OpenGL shading language. Unlike gl_LightSource, texture
is not deprecated, meaning that it won’t be removed from OpenGL anytime soon. Why is it that lighting-
related features are deprecated while texture accesses and filtering are not deprecated?

�The texture function and most other texture-related features are not deprecated because:

. . . because texel filtering is compute intensive. GPUs have specialized hardware, texture units, for filtering texels, and so driver-

specific routines are needed. If a user were to write code that made use of the texture units, that code would have to be specific to

a particular GPU or would have to be written for all of the GPUs that the code might run on. Using the texture function is far

more convenient.
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