
LSU EE 4702-1 Homework 3 Due: 1 November 2019

Problem 0: Follow the instructions on the https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and program-
ming homework work flow. Compile and
run the homework code unmodified. It
should initially show a string of beads
hanging from a ring. The ring is shown
as a cylinder surrounded by green-colored
protrusions with tan-colored tops, based
on the solution to Homework 2. You
may notice that in the screenshot to the
right there are a large number of protru-
sions.

If the Homework 2 solution were used to render so many protrusions the frame rate would be very
low, but as can be seen (perhaps after zooming) the code generating the screenshot above can keep
up (the frame rate is about 60 FPS and there are no skipped frames [XF is 1]). That code is the
solution to Problem 2 in this assignment, in which the protrusions are generated using shaders.

As you may remember one possible reason the code is slow is because protrusion geometry is
re-computed each frame. That was true in Homework 2, but in the code for this assignment the
geometry is only re-computed when something changes. Therefore performance problems are only
due to the overhead of sending vertices to the rendering pipeline one-by-one (rather than using
arrays).

Assignment-Specific User Interface
The code in this assignment uses one of three shaders, shown to the right of Shader on the HW03
line of the green text. The shader in use can be changed by pressing v. Shader FIXED uses the
OpenGL default shaders, as was used in previous assignments. Shader STRIP-PLUS is for use in
Problem 1. When STRIP-PLUS is in use the protrusions are rendered using a single triangle strip.
They won’t look good until Problem 1 is solved. When shader POINTS is used the protrusions are
rendered using primitive type GL_POINTS in a glDrawArrays rendering pass. Code for this will be
completed as part of Problem 2. The shaders are in file hw03-shdr.cc. STRIP-PLUS uses vertex
shader vs_strip_plus and geometry shader gs_strip_plus, while POINTS uses vertex shader
vs_points and geometry shader gs_points. Both use the same fragment shader (which is not
part of this assignment).

To change the protrusion size modify variable Bump Size as shown to the right of VAR.

Previous Assignment User Interface
When the simulation starts the head (first, zero) ball is attached to the ring and can slide freely
along the ring. Pressing r (lower-case) will toggle between the head ball sliding freely and the head
ball rotating along the ring at a fixed rate. The green text line starting with HW02: shows the
state of the ball’s attachment to the ring and of the ring itself. On this line the text to the right
of Head Contr (head ball constraint) is RING-F if the ball is sliding freely, RING-A (animated) if
the ball is rotating with the ring, FREE if the ball is not attached to anything, and LOCKED if
the ball is fixed in space (does not change its position). The last two states can be obtained by
pressing h (head). (Press h and r to familiarize yourself with the behavior, and be sure to read the

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html


next Common User Interface section which describes other available UI features, such as moving
the viewer and pausing simulation.)

When in mode RING-A the rotation rate is determined by variable VAR Rotation rate (variable
hw01.omega in the code). See the Common User Interface section below to see how to change that
and other variables.

Pressing f toggles friction on and off, the state is shown to the right of Friction and by the
color of the ring. When friction is turned on the ring color is yellowish, like sandpaper. Pressing R

spins the ring.

Common User Interface
Press h (head) will grab or release one end (to be precise, the ball at one end) and pressing t

(tail) will grab or release the other end. (Actually, those keys toggle between the OC_Locked and
OC_Free constraint of their respective balls.)

Press digits 1 through 4 to initialize different scenes, the program starts with scene 1. Scene 1
starts with the balls arranged almost vertically. Scene 2 starts with the balls arranged horizontally,
and they will start swinging. Each time scene 1 and 2 are initialized the ring is positioned to a new
position. In scenes 3 and 4 the ring is always positioned the same way.

Press Ctrl= to increase the size of the green text and Ctrl- to decrease the size. Initially
the arrow keys, PageUp, and PageDown can be used to move around the scene. Press (lower-case)
b and then use the arrow and page keys to move the tail ball around. Press l to move the light
around and e to move the eye (which is what the arrow keys do when the program starts).

The + and - keys can be used to change the value of certain variables to change things like the
light intensity, spring constant, and variables needed for this assignment. The variable currently
affected by the + and - keys is shown in the bottom line of green text. Pressing Tab cycles through
the different variables.

Code Generation and Debug Support
The compiler generates two versions of the code, hw03 and hw03-debug. Use hw03 to measure
performance, but use hw03-debug for debugging. The hw03-debug version is compiled with opti-
mization turned off and with OpenGL error checking turned on. You are strongly encouraged to
run hw03-debug under the GNU debugger, gdb. See the material under “Running and Debugging
the Assignment” on the course procedures page.

Keys y, Y, and Z toggle the value of host Boolean variables opt_tryout1, opt_tryout2, and
opt_tryout3. and corresponding shader variables tryout.x, tryout.y, and tryout.z. The user
interface can also be used to modify host floating-point variable opt_tryoutf and corresponding
shader variable tryoutf using the Tab, +, and - keys, see the previous section. These variables are
intended for debugging and trying things out.

There are problems on the next page.

2



Problem 1: One frustration with triangle strips is that in order to start a new strip you either
need to start a new rendering pass (which slows things down) or else you need to duplicate both
the vertex that ends the old strip and starts the new strip (which is inelegant). Fortunately this
frustration will be in the past once this problem is solved!

When shader STRIP-PLUS is used the protrusions will all be rendered using a single triangle
strip. The shader is already written so that only the normal of the third (provoking) vertex is used
for lighting.

Modify the _strip_plus shaders in file hw03-shdr.cc and the code in World::render_cylinder

in file hw03.cc so that a new strip will be started when needed without having to start a new ren-
dering pass. Signal the start of a new strip by sending something down the rendering pipeline. For
example, you might set the normal of the first two vertices of a strip to the zero vector.

Problem 2: The _points shaders are to be used in a glDrawArrays rendering pass with input
primitive point and with no inputs to the vertex shaders other than gl_VertexID.

Modify the _points shaders so that they generate the protrusions themselves using only
gl_VertexID and uniform variables. As a convenience some useful uniform variables are set, but
you’ll need to set others to complete the problem. See the code in render_cylinder.

When this problem is successfully solved Bump Size (bump was the old name of protrusion)
can be set small without impacting performance).

• Do not source any arrays into the rendering pipeline.

• Delete existing code in the points shaders that’s not needed.

• Don’t forget to modify the interface blocks (both vertex shader output and geometry shader
input).

• Make sure that normals are correctly computed. Check normals by switching between shaders
and comparing the shading of the edges.

3


