
LSU EE 4702­1 Homework 4 Due: 16 November 2018

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming homework work
flow. Compile and run the homework code unmodified.
It should initially show a scene from the links code, the
one showing a vaguely tree-like form, the silly tree, con-

structed from flexible links and balls. See the screenshot
to the upper right. The screenshots at the middle and
lower right were taken from correctly solved code.

Non-Assignment-Specific User Interface
Pressing h (head) will grab or release one end (to be
precise, the ball at one end) and pressing t (tail) will
grab or release the other end. (Actually, those keys tog-

gle the fixed-in-space status of their respective balls.)

Press digits 1 through 4 to initialize different
scenes, the program starts with scene 1. Scene 1 starts
with the balls arranged in the tree-like form.

Press Ctrl = to increase the size of the green text

and Ctrl - to decrease the size. Initially the arrow

keys, PageUp , and PageDown can be used to move

around the scene. Press (lower-case) b and then use
the arrow and page keys to move the first ball around.
Press l to move the light around and e to move the
eye (which is what the arrow keys do when the program
starts).

The + and - keys can be used to change the

value of certain variables. These variables control things
like light intensity and options needed for this assign-
ment. The variable currently affected by the + and
- keys is shown in the bottom line of green text next to

VAR. Pressing Tab cycles through the different vari-
ables.

Look at the comments in the file hw04.cc for docu-
mentation on other keys.

Code Generation and Debug Support
The compiler generates two versions of the code, hw04 and hw04-debug. Use hw04 to measure
performance, but use hw04-debug for debugging. The hw04-debug version was compiled with

optimization turned off and with OpenGL error checking turned on.

Keys y , Y , and Z toggle the value of host Boolean variables opt_tryout1, opt_tryout2,
and opt_tryout3 and corresponding shader variables tryout.x, tryout.y, and tryout.z. The

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html


user interface can also be used to modify host floating-point variable opt_tryoutf and correspond-

ing shader variable tryoutf using the Tab , + , and - keys, see the previous section. These
variables are intended for debugging and trying things out.

Sphere Rendering
The sphere can be rendered using two methods, the tessellated sphere, and the true spheremethods.
The option in use is toggled by pressing (lower case) z and the current setting is shown next to
Sphere in the green text. Both TRUE and HW04 indicate the true sphere method, TESS indicates
the tessellated sphere method.

The tessellated sphere method is the one initially covered in class in which the sphere is
approximated by triangles. A buffer object holds the triangles’ vertex coordinates arranged for a
triangle strip rendering pass. Those coordinates are in a local coordinate space in which the sphere
center is at the origin and the sphere has a radius of 1. The number of triangles is based on variable

opt_slices, larger values result in a closer approximation to a sphere.

The rendering pass for both tessellated and true spheres is done in routine render_bunch_render
in file shapes.h. For both cases three additional buffer objects are prepared, one holding the sphere
orientation, sphere_rot, one holding the sphere coordinates and radius, sphere_pos_rad, and one

holding the sphere color sphere_color. There is one element in each buffer object for each sphere.
An element of sphere_rot is a 4× 4 matrix, which rotates a coordinate from local to global space
(but does not perform translation or scaling). Because of differences in matrix layout, the corre-
sponding matrix in shader code rotates from global to local space. Each element of sphere_pos_rad
is a 4-element vector. The first three components form the coordinate of the sphere center in global
space. The 4th component is the sphere’s radius. Each element of sphere_color is a 4-element

vector, which holds the red, green, blue, and alpha color components.

The tessellated spheres are rendered in an instanced pass. The pipeline inputs are taken from
the vertex buffer object, and the number of instances is set to the number of spheres. The shaders

in hw04-shdr-sphere.cc render the sphere (and its shadow volumes). The input to the vertex
shader, vs_main_instances_sphere(), is a triangle (sphere surface) coordinate in local space. It
converts it into global (object) space using the instance ID to get the location, orientation, and
radius from the buffer objects described above. The color is retrieved by the fragment shader.

The rendering pass for the true spheres is also started in render_bunch_render. In this
rendering pass there is no vertex shader input other than the vertex ID. The input primitive is
a point and the number of vertices is set equal to the number of spheres. This pass uses code
in hw04-shdr-hw04.cc. The geometry shader, gs_main, computes the coordinates of a square
that will frame the sphere as seen from the user, and emits two triangles that form this square.
The input to the fragment shader, fs_main, is the coordinate on this square corresponding to the

fragment location. It computes the point on the sphere surface intersected by a line from the eye
to the fragment location. If there is no intersection the fragment is discarded, otherwise a normal
and texture coordinates are computed. To compute the texture coordinates the sphere rotation
must be taken into account.

The code in fs_main has some variables to be used in this assignment, they are described in
the problems.

Graphics and Performance Investigation Options
The user interface can be used to toggle various rendering options and for generating a screenshot.

Pressing F12 will write a screenshot to file hw04.png (FOO.png, where FOO is the name of the
executable, such as hw04-debug). Any existing screenshot will be silently overwritten so be sure to
rename files that you want to keep.

2



The rendering of shadows is toggled by o and the rendering of reflections it toggled by r .
Their state is shown in the green text next to Effect:. Pressing n will toggle how surface normals
are computed for tessellated spheres, the possibilities are to use the triangle normal or the sphere

normal. The use of the triangle normals makes it easier to see the triangles from which the sphere
was tessellated.

The scenes differ in the number of objects, which include spheres, links, and the platform
(which for this assignment we’ll consider one object). The rendering of objects by type can be

toggled on and off by pressing ! , @ , # , for spheres, links, and the platform. See the green
text line starting with Hide.

Display of Performance-Related Data
The top green text line shows performance in various ways. XF shows the number of display frames
per frame buffer update. An ideal number is 1. A 2 means that two display frame update were
done in the time needed to update the frame buffer once, presumably because the code could not
update the frame buffer fast enough. GPU.GL shows how long the GPU spends updating the

frame buffer (per frame), GPU.CU shows how long the computational accelerator takes per frame.
The computational accelerator computes physics in this assignment. On the lab computers the
computational accelerator GPU is different than the one performing graphics. CPU GR is the
amount of time that the CPU spends on graphics, and CPU PH is the amount of time that the
CPU spends on physics.

The second line, the one starting with Vertices, shows the number of items being sent down
the rendering pipeline per frame. Clip Prim shows the number of primitives before clipping (in) and
after clipping (out).

Problem 1: The code in fs_main (in file hw04-shdr-hw04.cc so that when holes is true (see
the code) the sphere is not visible in the locations described below and when lenses is true the
sphere is only visible in those same locations, in both cases show the inside of the sphere when
appropriate. See the screen shots at the top of the assignment.

Variable opt_n_holes_eqt specifies roughly how many holes there should be along a circum-

ference (such as the equator on a globe). Distribute the holes roughly evenly and so that 80% of a
line along the sphere connecting the centers of two adjacent holes would be over holes (40% over
one hole, 20% on the rendered surface, 40% over the other hole).

The hole locations should rotate with the sphere, just as texture coordinates do. That is, the
part of a texture that touches a hole should not change as the sphere rotates.

Note that the fragment shader computes the same kind of eta and theta angle values used
to construct the sphere, and from those computes the texture coordinates. Those same eta and
theta values can be used to find hole locations. For example, if n is the number of holes along
the equator, the ηh value for a hole might be ηh = ⌊η n

π
+ 1

2
⌋π

n
, where η is the eta value for the

fragment. The ηh and θh value can be used to find the surface coordinates of a hole, and from that

one can find the distance from the hole center to the fragment. The fragment is in the hole if this
distance is below some threshold.

(a) Modify fs_main so that the sphere surface is not rendered where there are holes when holes is
true, or so that the sphere surface is rendered only where there are holes when lenses is true.

(b) If there is a hole in the front surface of a sphere render the back surface of the sphere. When
doing so compute the correct normal and check for the presence of a hole. If the back surface is
visible set front to false.

3



Pay attention to:

• Shader compilation and link errors. These are sent to stdout when the program starts to
run.

• Coordinate spaces. The code uses suffix l for sphere local space, e for eye space and o for
object (global) space.

4


