
LSU EE 47021 Homework 3 Due: 11 October 2018

Problem 0: Follow the instructions on the
https://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming homework work
flow. Compile and run the homework code unmodified.
It should initially show the scene from the solution to
Homework 2, in which balls are connected by links in a
zig-zag pattern, and the triangles formed by each adja-
cent group of three balls are filled with a strip folded into
a triangular spiral (the louvers). See the screenshot to
the upper right (press f twice to see that coloring). The
screenshot to the lower right is from a completely solved
assignment.

Non-Assignment-Specific User Interface
Pressing h (head) will grab or release one end (to be
precise, the ball at one end) and pressing t (tail) will grab
or release the other end. (Actually, those keys toggle the
fixed-in-space status of their respective balls.)

Press digits 1 through 4 to initialize different scenes,
the program starts with scene 1. Scene 1 starts with the
balls arranged almost vertically. The other scenes are
not used in this assignment.

Press Ctrl= to increase the size of the green text
and Ctrl- to decrease the size. Initially the arrow keys,
PageUp, and PageDown can be used to move around the
scene. Press (lower-case) b and then use the arrow and
page keys to move the first ball around. Press l to move
the light around and e to move the eye (which is what
the arrow keys do when the program starts).

The + and - keys can be used to change the value
of certain variables to change things like the light inten-
sity, spring constant, and variables needed for this as-
signment. The variable currently affected by the + and -

keys is shown in the bottom line of green text. Pressing
Tab cycles through the different variables.

Look at the comments in the file hw03.cc for docu-
mentation on other keys.

Code Generation and Debug Support
The compiler generates two versions of the code, hw03 and hw03-debug. Use hw03 to measure
performance, but use hw03-debug for debugging. The hw03-debug version was compiled with
optimization turned off and with OpenGL error checking turned on.

Keys y and Y toggle the value of host Boolean variables opt_tryout_1 and opt_tryout_2 and
corresponding shader variables tryout.x and tryout.y. The user interface can also be used to
modify host floating-point variable opt_tryoutf and corresponding shader variable tryoutf using

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/proc.html


the Tab, +, and - keys, see the previous section. These variables are intended for debugging and
trying things out.

Shaders and Rendering Passes
The spiral triangle can be rendered using three different sets of shaders, Fixed, Plain, and HW03.
The shader in use is shown in the green text near the upper left. Pressing f cycles through the
shaders. The code in routine hw03_render sets up and uses these shaders. For the Fixed and
Plain shaders it will emit each triangular spiral using many triangle strips, the method used in
Homework 2; see the code near the comment “Small Strips Rendering.” For the HW03 shader each
triangular spiral is rendered using one long triangle strip, see the code near the comment “Large
Strip Rendering.” By now everyone should see that the Large Strip Rendering code is more efficient
since it uses fewer rendering passes (thus suffering less overhead setting up a rendering passes) and
because it sends fewer vertices into the rendering pipeline.

Physics Model and Graphics
The physics model in the Homework 3 code is the same as the one used in Homework 2, in which
springs are arranged to maintain the balls in a zig-zag pattern.

Pressing w will toggle shadows on and off. The triangular spirals do not cast shadows, and
shadows are not part of this assignment.

Problem 1: When run with the Fixed shader the triangular spiral is colored green (okay, chartreuse)
on the outside and salmon on the inside. These colors are obtained by setting the material front
and back properties. With the HW03 shaders the color is a purple gradient, see the screen shot at
the beginning of the assignment. The gradient is due to the interpolation of the normals from one
fold of the triangle strip to the next.

(a) Modify the hw03 vertex and fragment shader related code in hw03-shdr.cc so that the correct
normal is used to compute lighting. Hint: A correct solution requires modifying a declaration in

the shader code. That’s one word to be inserted.

(b) Modify the hw03 vertex and fragment shaders in hw03-shdr.cc so that the front and back colors
are used when the hw03 shaders are active. The front and back colors are set by glMaterialfv

calls in hw03_render.

• Use the OpenGL Shading Language documentation to find the built-in names of the uniform
variables holding these values. (Look for the Built-In Variables chapter.)

• Do not declare your own variables for the front and back colors. Ordinarily declaring your
own variables for material properties would be a good thing in this situation because it avoids
the use of deprecated functionality. However the point of this problem is familiarization with
OGSL documentation.

• Don’t needlessly increase the amount of data sent between shaders.

Problem 2: Notice that in routine hw03_render (in hw03.cc) a texture unit is set up with a
texture object named texid_spiral_image. Modify code in hw03_render and the hw03 shaders
in hw03-shdr.cc so that the texture is applied to the spiral so that the start of the text on the
texture image is at the center of the spiral and so that text can be continuously read following the
spiral from the center on outward. The text includes consecutive integers starting at zero.

The screenshot to the lower right shows the texture correctly applied (and with other parts of
this assignment solved). The screenshot to the lower left shows a flaw. This problem can be solved
two ways, the first will receive only partial credit, a correct solution to the second will receive full
credit.

2



For both solutions:

• The size of the text must be the same on all parts of the spiral. That is, the inner segments
should not show squished text and the aspect ratio should be consistent.

• It should be possible to continuously read the text starting from the spiral center. That is,
it should be as though the texture image was cut into horizontal strips and these strips were
glued together to make one long strip, which was folded into the spiral. The text at the end
of the spiral does not need to reach the text at the end of the texture image.

(a) For Partial Credit: Modify the code in hw03_render in and around the “Small Strips Render-
ing” block to emit texture coordinates that will result in the texture appearing approximately as
described above. In limiting changes to hw03_render this way flaws such as the one circled in red
above are unavoidable. There is no need to solve this part if the subproblem below is solved.

(b) Modify the code in hw03_render in and around the “Large Strip Rendering” block and in the
hw03 shaders in file hw03-shdr.cc so that the texture appears as described above. The texture
coordinates or equivalent emitted for this problem can also be used to solve the next problem. For
full credit there should be no repetition and no gaps (except for the end of the spiral not reaching
the end of the texture image).

Problem 3: Modify the code in hw03_render in and around the “Large Strip Rendering” block
and in the hw03 shaders in file hw03-shdr.cc so that the edges of the strip appear rounded, like
the edges of a metal tape measure. The screenshot on the upper right has the rounding effect, the
one on the upper left does not have the rounding effect.

Do so by rotating the normal used for lighting away from the center of the spiral. Perform
the rotation by combining the normal currently used for lighting with the triangle normal (nz in

3



hw03_render). The blending should be done near the edges of the strip, elsewhere just use the
existing normal for lighting.

• There is starter code in the fragment shader to solve this problem. Finish it.

• Make sure that the normal is computed correctly. The more closely the normal points to the
light, the more brightly lit the object. Pay attention to the shading in the screenshot for the
correct solution.

• Do not waste data bandwidth delivering the triangle normal to the shaders.

• Consider using the texture coordinates from the previous problem to detect distance from
the strip edge.

4


