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Problem 1: [15 pts] Appearing below is a geometric figure.
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(a) Complete the individual-triangle rendering pass below so that it renders the figure with all triangles
facing in the positive z direction and without overlapping triangles. Use the provided abbreviation glV.
Note: The part about facing the +z direction was not in the original exam.

�Complete code to render shape using individual triangles.

#define glV glVertex3f

glBegin(GL_TRIANGLES);

glV(2,1,3); glV(2,4,3); glV(1,2,3); // SOLUTION

glV(6,4,3); glV(4,5,3); glV(2,4,3);

glV(2,1,3); glV(6,4,3); glV(2,4,3);

glV(2,1,3); glV(6,1,3); glV(6,4,3);

glEnd();

(b) Complete the triangle-strip rendering pass below so that it renders the figure.

�Complete code to render shape using a triangle strip.

#define glV glVertex3f

glBegin(GL_TRIANGLE_STRIP);

glV(2,1,3); glV(1,2,3); // SOLUTION

glV(6,1,3); glV(2,4,3);

glV(6,4,3); glV(4,5,3);

glEnd();

2



Problem 2: [30 pts] Appearing below is shortened host and shader code based on Homework 3, in which
text was drawn on the triangular spiral. One drawback of this code is that it uses old-fashioned, deprecated,
inefficient glVertex calls. On the following pages are routines that will implement a more efficient version
of this code in which data such as ctr are placed in buffer objects and a rendering pass is performed for the

entire chain, not just one triangular spiral.

for ( int i=2; i<chain_length; i++ ) { // Host Code

pCoor p0 = balls[i-2].position, p1 = balls[i-1].position, p2 = balls[i].position;

pCoor ctr = (p0+p1+p2)/3; // Compute location of triangle center.

// --- CODE REMOVED FOR BREVITY ---

pCoor pprev = ctr;

float delta_a = 0.6 / opt_n_segs;

if ( opt_shader == SO_HW03 ) {

glBegin(GL_TRIANGLE_STRIP); // Render spiral using 1 triangle strip.

for ( int j=0; j<opt_n_segs; j++ ) {

pVect v = va[j%3]; // Vector from center to fold.

pCoor p = ctr + j * delta_a * v; // Coordinate of fold.

pNorm n = cross( p - pprev, vz ); // Normal of segment.

float tex_x = total_len_compute(j,delta_a,distv) * tex_scale;

glNormal3fv(n);

glTexCoord2f(tex_x,0); glVertex3fv(p + vz);

glTexCoord2f(tex_x,1); glVertex3fv(p - vz);

pprev = p;

}

glEnd();

} }

void vs_main_hw03() { // Vertex Shader Code

gl_Position ⇐= O = gl_ModelViewProjectionMatrix ⇐= U * gl_Vertex ⇐= I;
vertex_e = gl_ModelViewMatrix ⇐= U * gl_Vertex ⇐= I;
normal_e = normalize(gl_NormalMatrix ⇐= U * gl_Normal ⇐= I);
tex_coord = gl_MultiTexCoord0.xy ⇐= I; }

(a) But first let c denote the value of chain_length and n denote the value of opt_n_segs. Determine
the amount of data, in bytes, sent from the CPU to the GPU for the code shown above. (Do not consider
uniforms and other hidden code.)

�Amount of data sent from CPU to GPU in terms of c and n, in bytes.

The amount of data sent is (c− 2)n(3 + 2(2 + 3))4B , where the 3+ term gives the number of floats sent by glNormal3fv,

and the 2(2+3) term gives the number of floats sent by the calls to glTexCoord2f and glVertex3fv, the 4B factor accounts
for the size of a float, and (c− 2)n is the number of executions of the inner loop body.

(b) In the vertex shader above, label variables with the appropriate letter as requested below.

�Label uniform variables with a U, � shader input variables with an I, and � fixed-function shader
outputs with an O.

Solution appears above, look for ⇐= These.
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Problem 2, continued: Appearing below is the improved triangular spiral host code and shaders. The
host code prepares four buffer objects and then starts an instanced rendering pass with line strips as the
input primitive. The rendering pass uses a vertex shader and a geometry shader to complete the primitives.
(The fragment shader is not a part of this problem.) The only inputs to the vertex shader are the vertex
and instance IDs, which should be used to retrieve or compute information about the spiral segments.

// Host Code -- DO NOT MAKE OR ASSUME MODIFICATIONS TO THIS CODE.

for ( int i=2; i<chain_length; i++ ) {

// Put ball structures and coordinates into convenient variables.

pCoor p0 = balls[i-2].position, p1 = balls[i-1].position, p2 = balls[i].position;

pCoor ctr = (p0+p1+p2)/3; ctr_a.push_back(ctr);

// -- CODE PREPARING va_a, vz_a, and distv_a NOT SHOWN --

}

glUniform1i(5, opt_n_segs);

TO_BUFFER_OBJECT(ctr_a,1); TO_BUFFER_OBJECT(va_a,2);

TO_BUFFER_OBJECT(distv_a,3); TO_BUFFER_OBJECT(vz_a,4);

glBindBuffer(GL_ARRAY_BUFFER,0);

glDrawArraysInstanced(GL_LINE_STRIP, 0, opt_n_segs, ctr_a.size() );

(c) Modify the vertex and geometry shaders on the following pages to efficiently render the triangle spirals,
make any needed changes to the interface blocks, but do not modify or assume modifications to the host
code (above). For your convenience each shader contains a copy of the host code. Cross out or modify that
code as needed. Use the handy abbreviations at the top of the page.

�Update the interface blocks as needed.

#ifdef _VERTEX_SHADER_

out Data { // Out of Vertex Shader to Geometry Shader

int ins_id, vtx_id;

// � Add any needed declarations here.

// SOLUTION

vec4 p_e[2], p_c[2]; // Send pre-computed eye- and clip-space coords.

float tex_x; // Position of texture at fold.

};

#endif

#ifdef _GEOMETRY_SHADER_

in Data { // In to Geometry Shader from Vertex Shader

int ins_id, vtx_id;

// � Add any needed declarations here.

// SOLUTION

vec4 p_e[2], p_c[2]; // Send pre-computed eye- and clip-space coords.

float tex_x; // Position of texture at fold.

} In[2];

// Out of Geometry Shader to Fragment Shader -- No changes needed

out Data { vec3 normal_e; vec4 vertex_e; vec2 tex_coord; };

#endif
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Problem 2, continued: Vertex shader code on this page.

�Cross out unneeded code. �Cross out data type for shader outputs. �Avoid redundant computation.

�Update the interface blocks as needed.

const mat4 mv = gl_ModelViewMatrix, mvp = gl_ModelViewProjectionMatrix;

const mat3 nm = gl_NormalMatrix;

void vs_main_lines() { // Vertex Shader Main Routine

int ins_id = gl_InstanceID, vtx_id = gl_VertexID;

int j = gl_VertexID;

float delta_a = 0.6 / opt_n_segs;

vec4 distv = distv_a[ins_id];

vec3 vz = vz_a[ins_id].xyz;

float tex_scale = 0.2;

// SOLUTION

vec3 v = va_a[ins_id][j%3].xyz;

vec3 p = ctr_a[ins_id].xyz + j * delta_a * v;

for ( int i=0; i<2; i++ ) // Compute +vz and -vz coords.

{

vec4 po = vec4( p + ( i == 0 ? vz : -vz ), 1 );

p_e[i] = mv * po;

p_c[i] = mvp * po;

}

tex_x = total_len_compute(j,delta_a,distv) * tex_scale;

}

Solution appears above. The vertex shader is computing the eye- and clip-space coordinates, saving the geometry shader the need to
do so. Note that because the geometry shader primitive is a line strip, each vertex is used for two primitives. So, by doing coordinate
space conversions in the vertex shader rather than the geometry shader cuts in half the number of coordinate space conversions needed.
Whether this improves performance is a more complex question. However a requirement for this problem was to avoid redundant
computation.
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Problem 2, continued: Geometry shader code on this page.

�Cross out unneeded code. �Cross out data type for shader outputs. �Avoid redundant computation.

�Update the interface blocks as needed.

layout ( lines ) in;

layout ( triangle_strip, max_vertices = 4 ) out;

const mat4 mv = gl_ModelViewMatrix, mvp = gl_ModelViewProjectionMatrix;

const mat3 nm = gl_NormalMatrix;

void gs_main_lines() { // Geometry Shader Main Routine

// SOLUTION

int ins_id = In[0].ins_id;

vec3 vz_e = In[0].p_e[0].xyz - In[0].p_e[1].xyz;

normal_e = normalize(cross( In[1].p_e[0].xyz-In[0].p_e[0].xyz, vz_e ));

for ( int i=0; i<2; i++ )

{

for ( int j=0; j<2; j++ )

{

tex_coord = vec2(In[i].tex_x,j);

gl_Position = In[i].p_c[j];

vertex_e = In[i].p_e[j];

EmitVertex();

}

}

EndPrimitive();

}

Solution appears above. Notice that the geometry shader input consists of two vertices, In[0] and In[1]. The In[0] vertex
corresponds to the vertex used to compute pprev on the host code. Notice how the loop nest avoids the need to duplicate code.
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Problem 3: [15 pts] Answer each CUDA question below.

(a) Both CUDA kernels below do the same thing, but one will execute much less efficiently. Explain why in
terms of the minimum request size.

__global__ void kmain_simple(float4 *d_in, float *d_out) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int elt_per_thread = ( d_app.array_size + d_app.num_threads - 1 ) / d_app.num_threads;

const int start = elt_per_thread * tid;

const int stop = start + elt_per_thread;

for ( int h=start; h<stop; h++ ) {

float4 p = d_in[h];

float sos = p.x * p.x + p.y * p.y + p.z * p.z + p.w * p.w;

d_out[h] = sos;

}

}

__global__ void kmain_efficient(float4 *d_in, float *d_out) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

for ( int h=tid; h<d_app.array_size; h += d_app.num_threads ) {

float4 p = d_in[h];

float sos = p.x * p.x + p.y * p.y + p.z * p.z + p.w * p.w;

d_out[h] = sos;

}

}

�Problem with inefficient kernel due to request size.

Each access d in[h] is to 16 bytes of data. Threads in a warp make such an access together. Assume that elt per thread =

200 and consider two consecutive threads in such an access with tid=10 and tid=11. The initial value of h for these threads will
be 2000 and 2200. That means the starting address of the data access by these two threads differs by 200× 16 = 3200 bytes and
so a request will have to be generated for each thread. Since the minimum request size for current NVIDIA devices is 32B only half
of the request will be used.

�What is the maximum request size that will avoid this inefficiency? �Explain.

For the access to d in[h] the maximum request size is 16B, for the write to d out[h] the maximum is 4B, so overall the
maximum is 4B. This guarantees that every byte of every request will be used in the simple kernel above.

(b) A CUDA kernel is to run on a GPU with 8 SMs (MPs). Configuration A consists of 4 blocks of 32 threads
each. Configuration B consists of 8 blocks of 16 threads each. Neither is very good. Explain how each one
underutilizes the hardware on current NVIDIA GPUs.

�Configuration A underutilizes hardware by . . .

. . . leaving four SMs idle. Since a block can’t run on more than on SM at a time with 4 blocks and 8 SMs, at least 4 will be idle.

�Configuration B underutilizes hardware by . . .

. . . leaving half of the warp unoccupied. Threads in an NVidia GPU are managed in units called warps, and the warp size up to now
is 32. With less than 32 threads some functional units will go unused. The truth is even with 32 threads hardware will go unused
since for Kepler (CC 3.x) up to Volta/Turing (CC 7.x) at least two and more often four warps per SM are needed to use all functional
units (and often many more than that).
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Problem 4: [40 pts] Answer each question below.

(a) The screenshot below is the Homework 3 triangular spiral with 37 segments per spiral. Imagine a spiral
with even more segments, say 1000.

With a large number of segments there will usually be a large computational load on both the vertex and
fragment shaders. In one of these shaders the computational load can be considered wasted, depending on
the eye location, even when the spiral is visible. In which shader is computation wasted, and why.

�Which shader wastes computation? �Why?

The fragment shader wastes computation because in a typical view, such as the one above, most fragments are discarded (since they
are blocked from view by segments closer to the viewer).

Sketch two views in which the spiral is visible. In one the computational load is high and mostly wasted. In
the other the computational load is lower and not wasted.

�View with lower load and little waste. �View with high load and waste.

There will be little waste when spiral normal is aligned with the z axis. In such a view all or most fragments are visible (and there
won’t be many of them). There will be lots of waste when the spiral normal is orthogonal to z. In that case only one or two segments
are visible, fragments for the rest of the segments are discarded.

NEED TO ADD SKETCH. If you are preparing for the 2019 final exam, ask for the sketch to be put in this solution. (Not the one
you may have printed, the one on the Web site.)
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(b) The OpenGL call glColor is used to specify a color, say purple glColor3f(1,0,1);. In typical use is
that the color that will be written to the frame buffer? Explain.

�Are the arguments to glColor the exact color to be written to the frame buffer? �Explain.

No. In typical use the value sent by calling glColor is used by the vertex shader to compute a lighted color. The fragment shader
mixes the lighted color, actually a value interpolated from the lighted colors provided by all of the vertices making the primitive, with
texture values. The result of that will be written to the frame buffer (if tests, such as the z test, pass).

(c) Describe the difference between the flat, noperspective, and smooth interpolation qualifiers.

�The flat qualifier’s feature, �the noperspective qualifier’s, feature, �the smooth qualifier’s, feature.

Short Answer: flat, value is taken from the provoking vertex; noperspective, value is linearly interpolated between the vertices
based on coordinates in clip space; smooth, value is linearly interpolated between the vertices based on coordinates in object space.

Explanation: The values provided to the fragment shader from variables declared using the flat qualifier will be the values written
by the provoking (last) vertex of the primitive. For example, suppose color were declared flat vec4 color;, and the colors sent
for the three vertices of a triangle were red, green, and blue. The triangle would be blue.

For both noperspective and smooth the value is interpolated linearly from the values provided for each vertex. With smooth
the interpolation is based on object space coordinates, which is realistic but computationally expensive, while with noperspective
the interpolation uses window space coordinates, which is easier to do but won’t look right. Consider a line primitive with an attribute
tex x. Suppose the value for first vertex is tex x=0 and for the second vertexi is tex x=1. For the declaration noperspective
float tex x, a value of 0.5 would be find at the point halfway between the two vertices based on a distance measured from the
monitor. (Don’t do this at home, you might scratch your monitor.) For the declaration smooth float tex x the 0.5 value is
halfway between the two vertices measured object space.

(d) Consider a rendering pass using triangles as the primitive. OpenGL (compatibily profile) allows one to
specify a normal for each triangle vertex, but as we all know a triangle, geometrically, has just one normal.
Why would one specify different normals for each vertex? Explain how such normals are chosen.

�Why might one choose different normals for each vertex of a triangle?

�Give an example and describe how those normals are chosen.

Because the triangle is approximating a surface, so by providing the normal of that surface, rather than that of the triangle, lighting
will be more realistic. For example, if the triangles are approximating a cylinder use the cylinder surface normal.
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(e) Describe what the inputs to the rasterization stage are, what the rasterization stage does, and what its
outputs are.

�Rasterization stage input, � rasterization stage job, � rasterization stage output:

The input to rasterization is a primitive, which is the set of vertices corresponding to a primitive (say, three vertices for a triangle). The
rasterization stage emits one fragment for each pixel that the primitive covers. The fragment consists of the attributes interpolated
based on the fragment’s position within the primitive.

(f) The true-sphere shader used in class rendered spheres perfectly. Would it make sense to use a similar
approach to write a true-cube shader that can perfectly render a cube?

�Does a true cube shader make sense? �Explain.

It does not make sense because a cube can be perfectly rendered using triangles. That was not possible for a sphere because, of
course, the surface of a sphere is round and the flat surface of a triangle would only approximate the sphere surface.

(g) The unlabeled diagram below shows how shadow volumes can be used to render shadows. On the diagram
show the location of the eye and light source, fragment(s) found to be in the shade, and fragment(s) found
to be illuminated.

� Show: � eye, � light source, � shaded fragment(s), � illuminated fragment(s).

Solution appears below.
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