
Name Solution

GPU Programming

EE 4702-1

Midterm Examination

Wednesday, 18 October 2017 11:30–12:20 CDT

Alias Think of something, quick!

Problem 1 (30 pts)

Problem 2 (20 pts)

Problem 3 (25 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/gpup/

pl

ppnp

vl
Problem 1: [30 pts] The illustration to the right shows a ring
surrounding the point at which a line crosses a plane. When
completed the code fragment below will render the ring. The
line is defined by parametric equation P (t) = pl+t×vl. Point
pp is on the plane and vector np is normal to the plane. The
ring is circular and is on the plane.

(a) Modify the code below so that t is assigned the value for
which pc is on the plane.

�Compute t such that P (t) is on the plane.

This is of course a line/plane intercept problem. We need to find t such that
−−−−→
P (t)Pp · np = 0, where Pp is pp and np is np.

First, separate t,

0 =
−−−−→
P (t)Pp · np

=(Pp − P (t)) · np

=(Pp − Pl − tvl) · np

=
(

−−→
PlPp − tvl

)

· np

=
−−→
PlPp · np − tvl · np

then finish solving for t:

t =

−−→
PlPp · np

vl · np

The code below computes t this way.

2

(b) Modify the code below to render the ring. Use r1 for the inner radius and r2 for the outer radius. Render
it using slices sets of triangles. Use variable pc even if you haven’t yet solved the previous part.

� Include: �Code to set up the rendering pass, � to set the color (red), � to set the correct normal,

� and to compute and set vertex coordinates.

Solution appears below.

World::render_ring(pCoor pl, pVect vl, // Line definition.

pCoor pp, pNorm np, // Plane definition.

float r1, float r2){ // Ring radii.

pVect vlp(pl,pp); // SOLUTION

float t = dot(vlp,np) / dot(vl,np); // SOLUTION

pCoor pc = pl + t * vl;

// SOLUTION - Compute axis for drawing ring.

pNorm ax(pc,pp);

pNorm ay = cross(np,ax);

glBegin(GL_TRIANGLE_STRIP);

glNormal3fv(np);

glColor3fv(color_red);

const int slices = 100;

const float delta_theta = 2 * M_PI / slices;

for (int i=0; i<=slices; i++) {

const float theta = i * delta_theta;

pVect d = ax * cos(theta) + ay * sin(theta);

glVertex3fv(pc + r1 * d);

glVertex3fv(pc + r2 * d);

}

}

3

Problem 2: [20 pts] Recall that in Homework 2 a sphere was rendered using a spiral slice. The coordinates
of the slice were placed in a buffer object and a sphere was rendered by performing multiple rendering passes
each using the same buffer object but a different transformation. Let c denote the number of coordinates in
the buffer object, and s denote the number of slices per sphere.

(a) What is the size of the buffer object, in bytes? Hint: This is an easy question.

� Size of buffer object, in bytes. � State any assumptions made.

Short answer: 4× 4cB = 16cB, with pCoor used for a coordinate, which I assume I remember correctly.

Explanation: The buffer object holds c coordinates, each coordinate is a pCoor. A pCoor is a structure holding four floats, so
its size is 4× 4B.

(b) Appearing below is the code rendering a sphere, adapted from the Homework 2 solution. Based on this
code, estimate the amount of data send from the CPU to the GPU to render the sphere, not counting the

buffer object.

pMatrix_Rotation rot_xz(pVect(0,1,0), delta_theta), rot_yz(pVect(1,0,0), M_PI);

// Code to render one sphere.

glTranslatefv(ball->position);

glScale1f(ball->radius);

glMultTransposeMatrixf(pMatrix_Rotation(ball->orientation));

for (int j=0; j<2; j++) {

for (int i=0; i<s/2; i++) {

glColor3fv(i & 1 ? color_lsu_spirit_purple : ball->color);

glDrawArrays(GL_TRIANGLE_STRIP,0,c);

glMultTransposeMatrixf(rot_xz);

}

glMultTransposeMatrixf(rot_yz);

}

� In terms of s, amount of data sent to GPU to render sphere.

Short Answer: For each slice a new modelview matrix and color are sent to the GPU, for a total of 64 + 12 = 76B per slice. For

the entire sphere 76sB .

Explanation: The modelview matrix has 4 × 4 = 16 elements of size 4 bytes each, for a total size of 43 = 64B. The color size
is 3 × 4 = 12B. Because glColor3fv is called just before the rendering pass is started it should be clear that it is sent once
per rendering pass, contributing 12sB of data. The number of times the modelview matrix is sent to the GPU depends upon the
OpenGL implementation. The commands glTranslatefv, glScale1f, and glMultTransposeMatrixf are all used to
modify the default matrix (modelview in this case). An eager implementation might send the matrix each time one of these was
called. A lazy implementation would update the copy of the modelview matrix on the CPU, but only send it to the GPU when a
rendering pass is initiated. (In this situation lazy is better.) This solution assumes a lazy implementation. Since the loop body (which
contains the command initiating the rendering pass, glDrawArrays) is executed 2 × s

2 = s times the array is sent s times and
so the array contributes 64sB of data per sphere. (An eager implementation would send the matrix 3 + 2(1 + s

2) times, with the
commands before the loop contribute the 3 term, and the 1+ part contributed by the glMultTransposeMatrixf at the end of
the j loop.)

4

(c) Buffer object BO2 holds coordinates to render an entire sphere, not just a slice, s× c coordinates total.
Buffer object BO1 holds the slice discussed above. Suppose that initially all data is on the CPU. Let n be
the number of sphere to be rendered. In terms of s and c, what is the smallest value of n for which using
BO2 will require less data than BO1?

�Break-even value for n:

Using BO1 the total amount of data for n spheres is 16c+ 76ns. Using BO2 the total amount of data is 16sc+ 76n. Equating

and solving for n yields n = 16c(s−1)
76(s−1) = 16

76c.

5

Problem 3: [25 pts] The diagram below shows a texture on the left-hand side and a scene to be rendered
on the right. The scene consists of three triangles with the texture applied. The text in the texture, written
by Mathy Vanhoef, is from the description of a widespread vulnerability in WiFi WPA2 implementations.
See https://www.krackattacks.com, and please, Fall 2017 people, update your OS and wireless access
point firmware. Grading Note: The description of where the text came from was not in the original exam.

The KRACK vulnerability became public two days before the midterm exam.

We discovered serious weaknesses

in WPA2, a protocol that secures all

modern protected Wi-Fi networks.

An attacker within range of a victim

can exploit these weaknesses using

key reinstallation attacks (KRACKs).

We

modern protected Wi-Fi networks.

An attacker within range of a victim

Texture

0 50 100 150
0

50

100

Object Space Coordinates

x

y

a

b

c

d

e

f

g

(a) Complete the code below so that it renders the triangles with the texture applied as shown. The color
and normal have already been set, just specify vertex and texture coordinates. Use abbreviation glV for
glVertex2f and glT for glTexCoord2f. Only specify x and y components for the vertex coordinates.

� Specify � texture and � vertex coordinates so that the scene is rendered as shown.

Solution appears below in blue. The solution uses the full function names, such as glTexCoord2f. On the exam it would be okay
to use the abbreviations glT and glV.

glBegin(GL_TRIANGLES);

glNormal3f(0,0,1);

glColor3f(0.5,0.5,0.5);

glTexCoord2f(0,1); // SOLUTION: Texture coord for Vtx a.

glVertex2f(30,110); // Vertex a

// SOLUTION (below): Specify the remaining texture and vertex coords.

glTexCoord2f(0,.85); glVertex2f(30,70); // Vertex b

glTexCoord2f(0.1, 1); glVertex2f(70,110); // Vertex c

glTexCoord2f(0, .66); glVertex2f(50,50); // Vertex d

glTexCoord2f(0, .33); glVertex2f(50,10); // Vertex e

glTexCoord2f(1, .33); glVertex2f(160,10); // Vertex g

glTexCoord2f(0, .66); glVertex2f(50,50); // Vertex d

glTexCoord2f(1, .33); glVertex2f(160,10); // Vertex g

glTexCoord2f(1, .66); glVertex2f(160,50); // Vertex f

glEnd();

6

https://www.krackattacks.com

Problem 3, continued:

We discovered serious weaknesses

in WPA2, a protocol that secures all

modern protected Wi-Fi networks.

An attacker within range of a victim

can exploit these weaknesses using

key reinstallation attacks (KRACKs).

We

modern protected Wi-Fi networks.

An attacker within range of a victim

Texture

0 50 100 150
0

50

100

Object Space Coordinates

x

y

a

b

c

d

e

f

g

(b) Suppose that defg in the diagram above is four pixels across and two pixels down. Suppose that texturing
were set up to use only a single mipmap level and nearest filtering. Explain how defg could appear all white
in that case.

�At 4× 2 pixels defg all white because:

Because the center of each pixel just happens to be over a part of the texture that’s white. That’s not so unlikely because most of
the texture is white.

(c) Explain how the 4 × 2 rectangle would appear with linear filtering and mipmap levels. Explain the key
points of linear texture filtering.

�Appearance with mipap levels and linear filtering.

The rectangle would appear gray.

�Key points of filtering.

Given a texture of width w, the width of the texture at mipmap level i is w2−i. (Mipmap level 0 is the original image.) The color of
a texel at mipmap level i might be the average of the four texels that it covers at mipmap level i− 1. (This method of determining
the color of a texel at a particular mipmap level is similar to the method used for determining the color of a filtered texel for a
fragment.)

With linear-mipmap-linear filtering enabled, the filtered texel corresponding to a pixel is computed using the two closest mipmap
levels, call them levels i and i+ 1. Level i is chosen so that the texels are smaller than the pixels and at level i+ 1 the texels are
larger than the pixels. The filtered texel is based on a weighted average of up to four pixels at each of the two levels. The weight for
a texel is based on the fraction of the pixel covered by the texel.

7

Problem 4: [25 pts] Answer each question below.

(a) Show a transformation matrix M that will translate a homogeneous coordinate P to P +





7
6
5



. (That

is, find M such that MP = P +





7
6
5



.) Only show nonzero array elements.

�M =

The transformation matrix is:

M =







1 0 0 7
0 1 0 6
0 0 1 5
0 0 0 1







(b) Describe the “from” and “to” coordinate spaces for the following OpenGL matrices:

�The ModelView matrix maps a coordinate from � object space to � eye space.

�The Projection matrix maps a coordinate from � eye space to � clip space.

8

(c) Show two drawings, each consisting of four triangles. The one should be well-suited for rendering using
a triangle strip, for the other a triangle strip should make no difference.

� Show a 4-triangle example well-suited to triangle strips and one in which a � triangle strip doesn’t help
at all.

The well-suited triangle strip appears on the upper left. What makes this effective is that except for the starting (1,2) and ending
(5,6) vertices, each vertex is shared by three triangles. Triangle strips don’t help at all when there aren’t any shared vertices, as in
the drawing on the upper right. In the bottom drawing, labeled Partially Effective, triangle strips are better than individual triangles,
but since 7 rather than 6 vertices are needed, they are not most effective. A triangle fan would be the best choice for this drawing.

Grading Note: Many answers to the doesn’t-help part seemed to be based on the assumption that the triangles had to be touching
in some way. If that were the case the question could be answered by having a vertex of one triangle touching an edge (but not a
vertex) of another triangle.

Triangle Strip Most E�ective

(4+2 = 6 vertices needed).

1

2

3

4

5

6

1 3

5

2

4

6

7 9

11

8

10

12

Triangle Strip Least E�ective

(4*3 = 12 vertices needed).

Vertex shared by 3 triangles.

Vertex shared by >3 triangles.

Triangle Strip Partially E�ective (7 vertices needed).

1

2, 5

3 4 6

7

No shared vertices.

9

(d) Suppose that buffer object o30 has 30 sphere coordinates and buffer object o1k has 1000 sphere coordi-
nates. In both buffer objects the sphere coordinates are well chosen. They will be used to render a sphere
which is fully visible. Note: In the original exam the sizes were 1000 and 10,000.

�Describe a situation in which the sphere would look better using o1k than using o30 and � describe a

situation in which the sphere would look the same with o1k as with o30. �Explain.

Short Answer: o1k looks better when the projected sphere is large (covers alot of the window [frame buffer]), they look about the
same when the projected sphere size is small. For the large sphere o30 can look bad because there are many pixels between triangle
vertices so there will be straight lines where the modeled object is curved.

Long Answer: The sphere would look better using o1k than with o30 if the distance between triangle vertices using o30 were many
pixels. A triangle edge would appear as a straight line and this would be most apparent along the limb (edge) of the sphere. With
o1k these lines would be shorter, and so the curve would be better approximated. In contrast, if the entire sphere covered a small
fraction of the window, then even using o30 the distance between vertices in a triangle would be only a pixel or two and so the edge
of the sphere would appear properly curved either way.

Grading Note: Many answered that the situations differed in the use of surface normals for computing lighting. This is only partly
correct. If triangle normals are used then the change in lighting from one triangle to another would be sudden making the triangle
boundaries obvious. For that reason, o1k might look better since the triangles are smaller. In contrast, if sphere surface normals are
used then the lighted color at points that are nearby but on different triangles would be almost the same (because being nearby there
normals would be almost identical). So in this situation fewer vertices are needed for good appearance away from the sphere limb.
However, the limb (edge) of the sphere would still look bad for o30 since it is constructed of relatively long straight lines.

Suppose that it takes much more time to render a sphere using o1k than with o30. The vertex, geometry,
and fragment shader stages are running custom written code which could use some tuning.

�Which shaders should be tuned to potentially fix the performance problem? �Which shaders be ignored?

�Explain.

The vertex shader is run once for each vertex. Since o1k has many more vertices the vertex shader could be responsible for the low
performance. The same argument can be made for the geometry shader. In contrast, the fragment shader is run once per fragment
and the number of fragments will be the same using o1k and o30 since the projected size of the sphere would be the same. For that
reason there is no need to tune the fragment shader.

10

