LSUEE 4702-1 Homework 1 Due: 20 September 2017

Problem 0: Follow the instruction on the
http://www.ece.lsu.edu/koppel/gpup/proc.htm]]
page for account setup and programming homework work
flow. Compile and run the homework code unmodified.
It should initially show a string of beads stretched out
horizontally with either end fixed in space by some in-
visible force, see the illustration to the right. Pressing h
(head) will release one end (to be precise, the ball at one
end) and pressing t (tail) will release the other end. (Ac-
tually, those keys toggle the fixed-in-space status of their
respective balls.)

The cable includes a vaguely paddle-wheel like thing that includes triangular sheets of material
which will be called blades. The blades are red on one side and dark gray on the other. Each corner
of the blade connects to a different colored ball. The corner connected to the black ball is called
the base vertex, the corner connected to the green ball is called the circ vertex, and the corner
connected to the yellow ball is called the apex vertex.

The scene also includes (initially) three stationary balls, colored khaki, blue, and red. These
are called markers and are intended for debugging purposes. See routine World: :render_p1 for
an example of how to use the marker balls. Another aid for debugging are Boolean variables
opt_tryoutl and opt_tryout2. Pressing y toggles opt_tryoutl between true and false and Y
toggles opt_tryout2. The state of these variables is shown in the penultimate line of green text.
Feel free to use the marker balls and tryout variables to help write and debug your code.

There three versions of the scene, Experiment, Problem 1, and Problem 2. The version cur-
rently being displayed is shown in the penultimate line of green text (not shown in the illustration).
Pressing v cycles between the different versions. When the Experiment version is active the code
in World: :render_pO is executed. Changes to this routine won’t be graded, it’s intended to try
things out or at least to have something clean to look at after having extensively modified other
routines. The code in World: :render_pl and World: :render_p2 are active when scenes Problem
1 and Problem 2 are active. The changes to be made in these routines are described in the problems
below.

Press digits 1 through 2 to initialize different scenes, the program starts with scene 2. Scene 1
was described above, scene 2 shows a ... a ... make up your own name for it. Scene 2 is not part
of this assignment.

Initially the arrow keys, PageUp, and PageDown can be used to move around the scene. Press
(lower-case) b and then use the arrow and page keys to move the first ball around. Press 1 to move
the light around and e to move the eye (which is what the arrow keys do when the program starts).

The + and - keys can be used to change the value of certain variables to change things like the
light intensity, spring constant, and variables needed for this assignment. The variable currently
affected by the + and - keys is shown in the bottom line of green text. Pressing Tab cycles through
the different variables. Those who want to increase the spring constant to the point that the scene
explodes may be disappointed to learn that there is a protection mechanism that increases the mass
of balls when the spring constant is high enough to make the system go unstable, such balls turn
red.

Look at the comments in the file hwO1.cc for documentation on other keys.

There is a problem on the next page.



http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/proc.html

Problem 1: Version Problem 1 is initially the same

as the Experiment version, except that a marker ball is
placed at the center of each blade. Modify the code in
World: :render_p1l so that the blade has a triangular
hole in the center, see the illustration to the right. Do so
by using a triangle strip for each blade.

Problem 2: Version Problem 2 is initially the same
as the Experiment version, except that a marker ball is
placed at the center of each blade. Modify the code in
World: :render_p2 so that the blade is shaped sort of
like a volcano, as in the illustration to the right and as
described below.

Let a, b, and ¢ denote the coordinates of the apex,
base, and circ vertices. Let m denote the coordinate of
the center of the triangle (shown as mid in the code). Let
7 denote the triangle normal and following our usual
notation, @m is a vector from a to the triangle center.

The shape of the volcano will be defined by the parametric line P, (t) = a+t¢am +td 7, where
e and d are constants. Note that P,(0) is point a (the apex) if e = 1 and d = 0, point P,(1) is
the center of the triangle. For other values of e and d the line ascends the volcano as t increases.
Define Py(t) and P.(t) similarly. For this assignment set e to the value of opt_e (default, 0.3) and
d to the value of variable opt_dist. The volcano is rendered by varying ¢t from 0 to 0.9. (If ¢ varied
from 0 to 1 it would be a mountain, not a volcano.) Use variable opt_layers for the number of
values of ¢ (evenly spaced between 0 and 0.9).

(@) Modify the code in World: :render_p2 so that it renders each side of the volcano using a triangle
strip. (One side is between points a and b, one side is between b and ¢, and one is between ¢ and

a.)

(b) Choose the normals based on the shape of the volcanoes defined by parametric equation. If this
is done correctly the volcano will be smoothly colored consistent with the lighting, as illustrated.

Note that using the normal of one of the triangles adjacent to a vertex as the vertex’s normal

is an approximation. An exact surface normal can be found by taking the cross product of two

vectors that lie on the surface. Taking the (d)erivative of the parametric equation with respect to ¢
dP, (¢
dt

provides a vector along the surface. So gives a vector on the ca and ab sides.



