
LSU EE 4702­1 Homework 4 Due: 10 October 2016

Note: These problems were originally part of Homework 3. Solve this assignment in file

hw03.cc, the same one used for Homework 3.

Problem 0: If necessary, follow the instructions on the
http://www.ece.lsu.edu/koppel/gpup/proc.html page for account setup and programming home-
work work flow. Compile and run the homework code unmodified. It should initially show a vaguely
umbrella-shaped object hanging in space.

The screenshot on the right
shows what the object should look
like after Problem 1 of Homework 3
is solved correctly.

Press digits 1 through 2 to ini-
tialize different scenes, the program
starts with scene 2. Scene 1 shows a
balls connected in a rectangular spi-
ral. Promptly report any problems.

Use key h to toggle between
the first (head) ball being locked in
place and free. Use key t to do the
same for the last (tail) ball.

Initially the arrow keys, PageUp,
and PageDown can be used to move
around the scene. Press (lower-case)
b and then use the arrow and page
keys to move the first ball around.
Press l to move the light around
and e to move the eye (which is
what the arrow keys do when the
program starts).

Look at the comments in the file hw03.cc for documentation on other keys.
In Homework 2 and in the demos given so far in class, the physical model consisted of point

masses connected by ideal springs, and these were rendered using spheres and cylinders.
This assignment code simulates a world that includes spheres that are connected either by

links attached to the sphere surface or ideal springs “attached” to the sphere center (as in the
prior homework). The links that connect to the sphere surface can apply linear force and torque,
and they can bend. In the physical model each link consists of two perfectly rigid pieces, one
end connected to the respective balls and the other end connected to each other by ideal springs
arranged in a circle. (The total length of the two rigid pieces serves as the relaxed distance of the
link itself.) The links bend around this connection.

Since a link can bend it would not make sense to render it as a cylinder. Instead they are
rendered as cubic Hermite curves. Consider a link that connects balls B1 and B2 with centers at
C1 and C2. Let P1 and P2 denote the coordinate where the link attaches to B1 and B2. The link is
rendered as a cubic Hermite curve parametrically described by L(t) = (2t3− 3t2+1)

−−→
0P1+(−2t3 +

3t2)
−−→
0P2 + s(t3 − 2t2 + 1)

−−−→
C1P1 + s(t3 − t2)

−−−→
P2C2, where s is the stiffness of the links and is set to

s = ‖2.5
−−−→
P1P2‖ in the code.
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In hw03.cc routine render_link_1 and render_link_2 render these new curved links as
triangle strips. The i loop moves along the curve, the value of L(t) is assigned to variable ctr.

The derivative dL(t)
dt

gives the direction of the curve. That is assigned to tan. The j loop draws a
cylinder (sort of) around the curve.

Problem 1: Modify render_link_2 so that it uses buffer objects for vertices, normals, and texture
coordinates as described below. (To switch between render_link_1 and render_link_2 press z.)

(a) Modify the routine so that it uses a buffer object to hold texture coordinates. The buffer object
should be written just once and used each time. (This will result in text appearing compressed on
short links and stretched on long ones.)

(b) Modify the routine so that it uses a set of buffer objects to hold the vertices and normals
of curved links. (See the next part.) These buffer objects will have to be updated each time
render_link_2 is called.

(c) Modify the routine so that it uses another set of buffer objects to hold the vertices and normals
of straight links. These buffer objects should be written to once and used many times. Straight
links, because they use re-cycled buffer objects, should be shown in pale green.

A link is straight if the link directions (dir1 and dir2 in the code) are the same direction as
the line connecting the link endpoints (pos1 and pos2) in the code. Consider a link straight if the
link directions are close enough to the line connecting their endpoints. After the scene calms down,
the vertical links in the umbrella should be considered straight, and perhaps the four links on top.
If gravity is turned off (g) all links should be considered straight.

All straight links are in the shape of a cylinder. They differ however in their lengths and
orientations and placement. For straight links you will need to use a transformation so that the
straight link used to populate the buffer object is transformed for the link for which it will be used.

To solve this correctly storage will be needed for the buffer object names, and information
about the link it describes. Declare members in World for this purpose. Do not declare variables
in global scope.

For this problem, the best way to construct a rotation matrix is by combining unit vectors to
form either the rows or columns of a matrix. These can be constructed using pMatrix_Rows and
pMatrix_Cols. For example pMatrix_Rows rot(v1,v2,v3); constructs a matrix rot whose rows
are v1, v2, and v3, respectively. Let v1, v2, and v3 be some orthogonal unit vectors in some global
space. Matrix rot can be used to convert a point to some local space, such that direction v1 in
object space is the x axis in the local space, etc. With pMatrix_Cols rot(v1,v2,v3); a point
can be transformed to a global space. For this homework problem, one might set v3 to the link
direction of the straight link (making the link direction the z axis in a local space), see the code
for suggestions for x and y directions.

To solve this problem two transformations are needed. One, to transform the straight link in
the buffer object to some local space. A second one is needed to transform it for the link that’s
needed.

Do not construct a link in some local space and re-use that. It’s not a bad thing to do in
general, but don’t do it here.
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