LSUEE 4702-1 Homework 4 sotion Due: 11 November 2015

PYQHTTY\HQW Solution

The solution has been checked into the repository, 100K for files that start with hwo4-sol. For colorized HTML

versions Visit http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol.cc.html|,

http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol-shdr.cc.htmlf and

http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol-shdr-1inks.cc.htmll.

Problem 0: Follow the instruction on the
http://www.ece.lsu.edu/koppel/gpup/proc.html]
page for account setup and programming home-
work work flow. Compile and run the homework
code unmodified. It should start with an 8-arm
gyroscope. Press the + and - keys to change the
number of arms. Press digits 1 through 3 to ini-
tialize different scenes, the program starts with
scene 3.

Pressing v’ cycles between shaders.

The code in this package includes the fric-
tion model asked for in Homework 2. The links
however are unbreakable and there’s no skin.

Also, shadows are deactivated by default to
make the solution to this assignment easier.

Use the arrow keys, PageUp, and PageDown to move around the scene. Use key h to toggle
between the first (head) ball being locked in place and free. Use key t to do the same for the last
(tail) ball. Press (lower-case) b and then use the arrow and page keys to move the first ball around.
Press 1 to move the light around and e to move the eye.

Note: There is nothing to turn in for this first problem.

Problem 1: The geometry shader gs_main_simple in file hwO4-shdr.cc passes triangles through
unmodified. We know that when rendering spheres and cylinders (at least the cylinders that we
use for links) a triangle that’s not facing the user will be behind one that is facing the user. It
makes sense to discard such triangles early.

(@) Modify the geometry shader so that it does not emit triangles based on whether they are facing
the user and the value of uniform variable tri_cull. If tri_cull is zero always emit the triangle.
If it is 1, emit the triangle only if the triangle front is facing the user. If tri_cull is 2 emit the
triangle only if the back is facing the user. Base this on the triangle coordinates, not the normals.
The value of tri_cull can be changed by pressing c.

First, QO\'\'\PUIQ the U'\&ﬂg\‘é normal in eye space, that's pUI in variable gnorm_e N the code below. The U\M\g\@
normal should be po'mt'mg out of the SPT\QYQ. Next, Q()mpUIQ 2 vector pomt‘mg towards the user. In eye space The user is
at the origin, 8o for an eye-space vertex at (z,y, z) vector (—x, —y, —z) Points at the user. The code assigns the dot
produet of the two vectors 10 visibility. If the dot p\”OGUQt i8 pos'\t'\\/e then the U\Qﬂg\@ 18 TQng The user. Fma\\y,
the code returns Q&Ny based on the s'\gn of the dot pfOGUQt and the value of tri_cull.

// SOLUTION -- Code in file hw0O4-sol-shdr.cc, routine gs_main_simple();
vec3 gnorm_e = Cross
(In[1].vertex_e.xyz - In[0].vertex_e.xyz,

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol.cc.html
http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol-shdr.cc.html
http://www.ece.lsu.edu/koppel/gpup/2015/hw04-sol-shdr-links.cc.html
http://www.ece.lsu.edu/koppel/gpup/proc.html

In[2] .vertex_e.xyz - In[1].vertex_e.xyz);
vec3 to_user = -In[0].vertex_e.xyz;

float visibility = dot(gnorm_e, to_user);
if (tri_cull == 1 &% visibility < O) return;
if (tri_cull == 2 && visibility > O) return;

(b) Estimate the amount of work saved. Use the following symbols: Let ¢,, ¢4, and ¢y be the
amount of work done by an invocation of the vertex, geometry, and fragment shaders respectively.
For example, if we rendered one triangle covering 22 pixels the total work would be 3¢, + ¢4 +22¢y
units. For your answer let n; denote the number of triangles, and make reasonable choices for other
quantities.

WOrkK 18 saved because we omy have to render one Nalf or less of the SPT\QTQ or Q\j\mGQY. Since we are Qu\\'mg U\&ﬂg\@S
in the g@om@try shader we are YQGUng the amount of work in the Tr&gm@nt shader (S'\T\QQ it's after the g@om@try Sh&dQY),
DUT we aren't YQGUng the amount of work perform@d by the vertex shader (SmQQ it's before the geometry SY\QGQY}. We
are QQIU&\\y QYQQUﬂg more work for the g@om@try shader since it needs 1o test whather to cull & trmg\@.

To determine how much work is saved we need to know the average number of TY&%\T\QMS per tr'\gng\@.. Let nyf
denote the average number of TY&ngmS per U'\&ﬂg\é. Without eu\\'mg the Tragment shader will be invoked Ny Times,
performing r¢n pcy Work. Assuming that we eull haif the triangles (whieh is conservative-we'll usually cull more) and
that the average number of TY&ngMS per tﬂ&ﬂg\@ is the same on culled tr'\ang\es (WmQT\ is 2 litTle unfair, there will USU&\\y
De less sinee they are farther away) the amount of work saved for the will be £nenpcy.

TO see how mueh of & p@rTormane@ '\mpaet that has we need to 100k at the other shaders. With or without Qu\\'mg
the amount of work done by the vertex shader is nycy,, assum'mg that tﬂang\@ smps are used and '\gnor'mg The two-vertex
St&YIUp per Sph@f@. The geometry shader does 4 little more work to check whaether a tr'\ang\@ can be culled, but it a
tﬂ&mg\@ is culled it does less work. Assume that overall, the amount of work does not Qh&ﬂg%. Then the work done i
n4c, WIth OF Without culling,

The absolute amount of work saved 1S gn¢npcy. The speedup with culling (the time without culling divided by
the time with culling) is given by

1
NiCy + NiCq + N fCy

NtCy + NiCq + NN fCr
It ngcy i8 \Mg@ Qompared 10 ¢, and Cg substantial amount of work will be saved.

(¢) Try to determine actual values for ¢, ¢4, and ¢y by running your code. Pause the simulation to
make sure the physics isn’t hogging CPU. The number of vertices is shown on the green text near
the top, the total number is at the end of the line. Triangle strips are used for both the balls and
the links. Pressing the + and - keys when setup 3 is visible will change the number of arms on the
gyroscope, use this to vary the number of balls and links.

Problem 2: The instance shader code rendering links shows all links the same color.

(a) Modify the shaders in hwO4-shdr-links.cc so that that the fragment shader obtains the color
using a value based on glVertex_ID rather than reading the color itself from on of its inputs. Only
the vertex shader has access to glVertex_ID, define shader inputs and outputs as needed to send
its value to the fragment shader.

Modify other shaders in this file consistently to remove the old code passing color data through
the pipeline.

Note: The original version of the problem was to use pre-defined fragment shader variable
glVertex_ID. As a student pointed out, there is no such variable in the fragment shader.

In the unmodified code, color travels from the CPU, U\Y()Ugh the Tragmo.nt shader, g@ometry shader, and ﬂﬂ&\\y
r@geh'mg the Trggment shader where it is used. 1t is unmodified in its }ourn@y from CPU 10 Trggm@nt shader, meamng that

2

the vertex and g@om@try shader p&SS its value unmodified. The color i t\ij vec4, which 18 16 byIQS. In our solution,
rather than passing & 16-byte color through the pipaline wa'll pass a 4-byte vartex ID (sort of 4 link numbar) through the
p'\pe\‘me, and have the Tragmem shader 100k Up the color values from an array USH\g the vertex 1D as an array index.

To '\mp\emem this we need to modn‘y both the CPU code, in hwO4. cc, and the shader code, in hwO4-shdr-
links.cc.UnthQNMRmntmeﬂmrmm@smehw04—sol.ccQndhw04—sol—shdr-1inks.cc)

In the shader code interface blocks all occurrences of vec4 color are YQP\&QQG With int vtx_id. For examp\ce,

// Interface block for vertex shader output / geometry shader input.
out Data_to_GS {

ivec2 indices;

/// SOLUTION -- Problem 2

// Replace vec4 color with int vtx_id;

// vecd color;

int vtx_id;

};

Similar changes would be made o the other interface bloeks. The solution above ShOWS vec4d color commented
Out. In real life we would just delete the line and rety on the repositories diff Tunction To tell us what was there before.

In the vertex shader we need 1o assigh vtx_id, and in the fragment shader we need to use it. The enanged routines
are shown below.

void vs_main() {
indices = gl_Vertex;
vtx_id = gl_VertexID;
}

void fs_main() {
/// SOLUTION -- Problem 2
// Use vtx_id to retrieve color.
//

vec4d color = links_color([vtx_id];

gl_FragColor = generic_lighting(vertex_e, color, normalize(normal_e));
gl_FragCoord.z;

gl_FragDepth

The code above reads the color from array 1inks_color, which is & bufer object. In the shader code we need to
declare tha array, providing the data type (vec4) and also a binding point (3). The interface block name, Links_Color
is ignored in this code.

/// SOLUTION -- Problem 2
layout (binding = 3) buffer Links_Color { vec4 links_color[]; };

In the CPU code we need 1o ereate & buffer object for the colors, prepare an array of link colors, copy the array to
the butrer object, and then bind the butfer object 1o hinding point 3 (U\Q number used in the layout declaration QDO\/Q).
The added code is shown below with surrounding code removed. In other words the additions below are in the declaration
of the World class and in routine render_objects.

// In class World declare buffer object name, and array for colors.
/7

GLuint links_color_bo;

pColor *links_color;

// In World::render_objects: Just once, generate a buffer object name.
glGenBuffers(1,&links_color_bo);

// In World::render_objects: Whenever more space is needed, allocate.
delete links_color;
links_color = new pColor[links_size];

// In World::render_objects: Whenever links change, update color array.
if (link_change) for (LIter link(links); link;) {
links_indices[link].x = link->ballil->idx;
links_indices[link].y = link->ball2->idx;
links_color[link] = link->color; /// SOLUTION -- Problem 2
}

// In World::render_objects: Whenever links change, update buffer object.
glBindBuffer (GL_ARRAY_BUFFER,links_color_bo);
glBufferData
(GL_ARRAY_BUFFER,
links.size() * sizeof(links_color[0]), // Amount of data (bytes) to copy.
links_color,
GL_STATIC_DRAW); // Hint about who, when, how accessed.

// In World::render_objects:
// Just before rendering pass, bind buffer object to point 3.
glBindBufferBase (GL_SHADER_STORAGE_BUFFER,3,links_color_bo);

Possible Test question: Describe what would happ@n if each change above ('m the SO\UUOT\) were omitted. In pElYUQU\&Y
indicate whaether it would be 4 compile Qrror, & runtime error, Or just & wrong answer. For example, it the declaration
GLuint links_color_bo were omitted there would be 4 compile error.

Problem 3: Modify gs_main_simple so that it can emit a second triangle that looks like it is
being peeled off a moving sphere by the rushing air. The second triangle should be the same shape
as the original triangle and should share one edge with the original triangle. See the illustration at
the beginning of this assignment. The choice of shared edge and the angle of the triangle should
be based in some way on the velocity of the ball.

There are three parts to this solution: getting velocity Motion vel_e

<
values 1o the shader, identifying the shared edge (the one m

that remains on the surface of the SthYQ, and determining a

pOsition for the free vertex.
The changes needed to get the ball velocity to the shader < dot(p_O,veI_e)+|

are similar to the changes needed o get link colors to the T1OP View p_ 0
shader in the previous problem. About the only significant
difference s that when we rendered links, eaeh link was ren-
dered 48 & oint (the geometry shader converted the “point”
Into 4 eylinder), and so the vertex ID could be used £0 100kup
the color. Spheres are rendered using an instanced draw.

Original

—>
Shared Edge Triangle

(Axis) T

Free Vertex

For an instanced draw the vertex ID indieates a point on the b1

sphere’s surface, while the primitive 1D indicates which sphere ’<l dot(p_l,vel_e)+|
s being rendered. Therefore will use the primitive 1D 10 100k Peeled Triangle

up velocity. Side View

s
The bulk of the solution is in routine gs_peel, which \

is called by gs_main_simple. ROUTING gs_main_simple

calls gs_peel batore it rendars a triangle on the sphere sur- Original

face. If gs_peel returns true it means that it has emitted a Triangle — >
pecled triangle, in which case gs_main_simple Omits the

original triangle colored red. Otherwise, gs main_simple Sphere Surface

OMits the original triangle colored yellow.

Routine gs_peel identinies the shared edge by inding the triang)e vertex that's furthest downstream of the direction
of motion. That's done by taking the dot product of each vertex with the velocity veetor and ehoosing the smallest value
(see the illustration above). (To get a feel for how this works consider veloeity vector v = [—2.1,0,0]. The dot product
of v With coordinate [x,y, z] is —2.1z. The vertex with the largest 2 componaent is the furthest downstream.) Since
aye-space vertex coordinates are available, the object-space veloeity vector read from the array, vel_o, is converted to
aye space coordinates, vel_e. All of that is done by the simplified code below:

vec3 vel_o = balls_velocity[In[0].inst_id].xyz;
vec3 vel_e = gl_NormalMatrix * vel_o;

float upstr_amt[3];

for (int i=0; i<3; i++) upstr_amt[i] = dot(In[i].vertex_e.xyz,vel_e);
int min01 = upstr_amt[0] < upstr_amt[1] 7 0 : 1;

int free_i = upstr_amt[min01] < upstr_amt[2] ? minO1 : 2;

// Get the indices of the other two vertices.
int a0 = (free_i + 1) % 3;

int al = (free_i + 2) % 3;

vec3 p_0 = In[al].vertex_e.xyz;
vec3 p_1 = In[al] .vertex_e.xyz;
vec3 p_f = In[free_i].vertex_e.xyz;

Baecause we don't want the triangle 1o change shape, the free vertex will De constrained to move in a cirele with the
center being the closest point on the shared edge to the free vertex, that point is called p_c in the code. The shared edge
15 called axis. We need 1o compute Two Vectors that we can use to find points on this circle, those vectors are called

v_cf and v_up in the code:

vec3 axis = p_1 - p_0; // Shared edge.
vec3 axis_n = normalize(axis);

vec3 v_0f = p_f - p_0;

vec3 p_c = p_0 + axis_n * dot(axis_n,v_0f);
vecd v_cf = p_f - p_c;

float len_cf_sq = dot(v_cf,v_cf);

float len_cf = sqrt(len_cf_sq);

vec3 v_up = cross(axis_n,v_cf);

v_cf cos(theta)
+ v_up sin(theta)

p 0

S\xe

p_f

Free Vertex

p 1

p_r_max

Arbitrary
point.

