
LSU EE 4702­1 Homework 2 Solution Due: 22 September 2015

Problem 0: Follow the instruction on the
http://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming
homework work flow. Compile and run the
homework code unmodified. It should show
a swinging string of beads. Press digits 1
through 3 to initialize different scenes, the
program starts with scene 1. The illustra-
tion to the right is from scene 3 generated
with a solution to Problem 1. Promptly

report any problems.

Unlike the code used for Homework 1, in this version when you manually move the head ball
motion is smooth. That is, it doesn’t jump to it’s new location in one time step, rather it moves
smoothly over 250ms. This will help with Problem 1. Another change is in the collision resolution
with the platform. In the Homework 1 code and some of the classroom demos, a ball colliding with
the platform would have the y component of its velocity flipped and its position snapped to y = 0.
In the unmodified Homework 2 code virtual springs are used to compute separation forces for balls
dropping beneath the platform.

Use the arrow keys, PageUp, and PageDown to move around the scene. Use key h to toggle
between the first (head) ball being locked in place and free. Use key t to do the same for the last
(tail) ball. Press (lower-case) b and then use the arrow and page keys to move the first ball around.
Press l to move the light around and e to move the eye.

Look at the comments in the file hw02.cc for documentation on other keys. One fun thing to
do is to lock both the first and last ball, move the head ball until the spring is stretched tight, then
release one of the balls. Press p to pause, then the space bar to single step. Note: There is nothing

to turn in for this first problem.

The solution code for this assignment has been checked into the repository in file hw02-sol.cc. For an HTML
version visit http://www.ece.lsu.edu/koppel/gpup/2015/hw02-sol.cc.html. The repository version
will always be most up to date.

Problem 1: The balls and links code used in Homework 1 and classroom demos simulated in-
destructible links. In this problem modify the Homework 2 code so that links can snap. The
illustration at the top of this assignment shows a screenshot from a solution.

First, define two variables in My_Piece_Of_The_World, one indicating a stressed threshold and
one indicating a snap threshold. These might refer to a ratio of current length to relaxed length. If
a link exceeds the snap threshold set the snapped member of Link to true. Modify the time step
routine so that forces for snapped links are ignored. (The snapped links are not removed from the
links list.)

If the link length is between the stressed threshold and snap threshold then proportionally
change the color of the link to red. Link has two color members natural_color and color.
Link::natural_color is set when a link is constructed and should not be changed. Link::color
should be set based upon link stress. If the link is not stressed set color to natural_color. If it

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/proc.html
http://www.ece.lsu.edu/koppel/gpup/2015/hw02-sol.cc.html

is stressed set color to (1-s) * natural_color + s * red, where 0 ≤ s ≤ 1 is the stress level.
(Determining a value for s is part of the problem.)

You can test your code by freezing both the head and tail balls and then using the keyboard
to move the head ball, stretching the object.

The solution bases the stress and snap threshold of a link on the ratio of its current length to the relaxed length.
This is only used for links with non-zero relaxed lengths, links with a relaxed length of zero are considered indestructible.

For each non-snapped link, the code first determines if its current length, distance between balls, is above
the stress threshold:

// First, check if link is at least stressed.

//

if (link->distance_relaxed > 0.001 // Don’t bother with very short links.

&& distance_between_balls

> link->distance_relaxed * mp.link_stressed_thd)

If so, it checks whether it is snapped, and if so it sets the snapped member to true. It also sets the color based on
the stress.

Physically simulating a snapped link is simple, just skip the code that simulates the link behavior, that’s done below
with a simple continue statement. (Another solution would be to remove snapped links from the links list.)

for (LIter link(links); link;)

{

/// SOLUTION -- Problem 1

//

if (link->snapped) continue;

// Spring Force from Neighbor Balls

//

Ball* const ball1 = link->ball1;

Ball* const ball2 = link->ball2;

Grading Note: A common mistake was to use the global value of distance relaxed rather than the link’s
value.

Problem 2: Pressing v will cycle through three views: Showing only the balls and links (the
SKEL), showing only triangles (the SKIN), and showing both. In the unmodified code the triangles
will be scattered around the trusses. Modify the code so that triangles are rendered on the surface
of the trusses, and optionally other appropriate places, such as the caps of the top.

The code for actually telling OpenGL to render the triangles should be placed in render_my_piece,
which is near the bottom of the file. It currently contains placeholder code which results in the
scattered triangles.

A solution to this problem will require new code in World::make_truss to identify which balls
form the surface and adds them to arrays, perhaps in My_Piece_Of_The_Wolrd. For example, you
might add new arrays and fill them with Ball pointers that are in the correct order for rendering.

Modify render_my_piece and other routines so that the triangles are placed on the surface, and
so that normals are set correctly. This code might use the arrays that you prepared in make_truss.

Note that the arrays need to save pointers to Balls, not coordinates, because the balls move
and so any coordinates copied during truss construction would result in a skin that doesn’t move.

Try to render the skin using strips, rather than individual triangles or other individual primi-
tives (hint).

2

The key to this problem is getting a list of vertices—ball positions—in the correct order for rendering. The solution
does so by adding code to the make truss routine. (Yes, you need to read and understand that routine.) A new loop
nest is added with the outer loop iterating over sides and the inner loop iterating along the side of the truss. A new class,
Strip, is defined to hold the balls for a side of the truss. For a truss with four sides (the default), four strips would be
used. In addition to ball pointers, Strip holds a color. A new class Strips is defined to hold the strips, that’s added
to Truss Info and My Piece Of The World.

for (int j=0; j<num_sides; j++) {

Strip* const strip = new Strip(color_chocolate);

truss_info->strips += strip;

for (int i=0; i<num_units; i++)

{

const int idx = j + num_sides * i;

// Compute the index of the ball at (i, (j-1) mod num_sides).

//

const int pn_idx = idx + (j == 0 ? num_sides - 1 : -1);

// Add the ball corresponding to (i,j).

//

strip->balls += bprep[idx];

strip->balls += bprep[pn_idx];

} }

After each truss is constructed the contents of strips for the truss is added to the strips for our piece of the
world. (Sure, this step would not be necessary if there was only one strips, and the code in make truss just added
directly to that.)

The contents of strips is used by code in render my piece to render a skin. A loop iterates over the strips,
and the loop body starts by allocating, if necessary, storage for coordinates and normals

for (SIter strip(mp.strips); strip;)

{

const int elts = strip->balls.size();

if (elts > buffer_elts)

{

buffer_elts = elts;

coord_buffer =

(pCoor*) realloc(coord_buffer,elts*sizeof(coord_buffer[0]));

norm_buffer =

(pVect*) realloc(norm_buffer,elts*sizeof(norm_buffer[0]));

}

It then fills the two arrays: coord buffer, the array of vertex coordinates, and norm buffer, the array of
normals. The coordinates are simply copied from the ball object:

for (int i=0; i<elts; i++)

coord_buffer[i] = strip->balls[i]->position;

Normals have to be computed. If the trusses didn’t bend, it would be easy to compute a normal, just take the cross
product of three ball positions and use that for an entire strip. But since the links change length normals can vary. In the
solution below normals are computed based on several neighboring triangles.

for (int i=0; i<elts-2; i+=2)

3

{

pVect vlateral0(coord_buffer[i],coord_buffer[i+1]);

pVect vlateral1(coord_buffer[i+2],coord_buffer[i+3]);

pVect vleft(coord_buffer[i],coord_buffer[i+2]);

pVect vright(coord_buffer[i+1],coord_buffer[i+3]);

pNorm nleft0(cross(vlateral0,vleft));

pNorm nright0(cross(vlateral0,vright));

pNorm nleft1(cross(vlateral1,vleft));

pNorm nright1(cross(vlateral1,vright));

if (i == 0)

{

norm_buffer[0] = nleft0;

norm_buffer[1] = nright0;

}

norm_buffer[i] += nleft0;

norm_buffer[i+1] += nright0;

norm_buffer[i+2] = nleft1;

norm_buffer[i+3] = nright1;

if (i == elts - 3)

{

norm_buffer[i+2] += nleft1;

norm_buffer[i+3] += nright1;}}

Once the arrays are set up it’s a simple matter to render them. (Note that buffer objects are not being used because
the vertex and normal arrays are each used just once.)

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, sizeof(pCoor), coord_buffer);

glEnableClientState(GL_NORMAL_ARRAY);

glNormalPointer(GL_FLOAT, 0, norm_buffer);

glColor3fv(strip->color);

glDrawArrays(GL_TRIANGLE_STRIP, 0, elts);

glDisableClientState(GL_NORMAL_ARRAY);

glDisableClientState(GL_VERTEX_ARRAY);

Problem 3: The unmodified code does not simulate friction along the platform. Modify it so that
it does. The time step routine uses a virtual spring to compute a separation force for any ball
moving under the platform. Use this separation force to compute a friction force, and apply the
friction force in the opposite direction along the platform.

The existing code computes a quantity, force up, for a ball in contact with the platform. It is the force exerted
by the platform on the ball. In this discussion let fu be force up.

We need to compute a frictional force, fs, which will slow down sliding along the platform. Because of the way
frictional forces work, the magnitude of fs will be k‖fu‖, where k is a friction coefficient. For no particular reason, the
solution sets k = 0.1. The friction force magnitude is computed by:

const float fric_coefficient = 0.1;

const float fric_force_mag = fric_coefficient * force_up;

The direction of the frictional force will be in the direction of the ball’s motion along the platform. Since the platform
is aligned with the xz plane that velocity is obtained by setting the y component to zero. The code below computes the
direction of this velocity:

4

pNorm surface_v(ball->velocity.x,0,ball->velocity.z);

The change in velocity due to the frictional force is computed for the time step:

const float delta_v_surf = fric_force_mag / mass * delta_t;

If this ∆V were small we could then add it on to the delta v computed for the ball based on other forces (gravity
and the links), using the direction vector we computed above:

delta_v -= delta_v_surf * surface_v;

But, what if it’s large? Frictional forces can reduce the velocity to zero, but they can’t reverse it. So we check
whether friction will reverse velocity, and if so we set delta v so that velocity along the platform goes to zero:

if (delta_v_surf > surface_v.magnitude)

delta_v = pVect(-ball->velocity.x,delta_v.y,-ball->velocity.z);

else

delta_v -= delta_v_surf * surface_v;

5

