
LSU EE 4702­1 Homework 1 Due: 14 September 2015

Some of the effort for this homework assignment is in learning to use the various pieces of

software, such as a text editor. Those less familiar with Linux software development procedures

might seek out a more knowledgeable classmate to minimize frustration and wasted time.

Problem 0: Follow the instruction on the
http://www.ece.lsu.edu/koppel/gpup/proc.html page for account
setup and programming homework work flow. Compile and run the
homework code unmodified. It should show a swinging string of beads.
Press digits 1 through 4 to initialize different scenes, the program starts
with scene 1. The illustration to the right is from scene 3. Promptly re-

port any problems.

Use the arrow keys, PageUp, and PageDown to move around the
scene. Use key h to toggle between the first (head) ball being locked in
place and free. Use key t to do the same for the last (tail) ball. Press
(lower-case) b and then use the arrow and page keys to move the first
ball around. Press l to move the light around and e to move the eye.

Look at the comments in the file hw01.cc for documentation on
other keys. One fun thing to do is to lock both the first and last ball,
move the head ball until the spring is stretched tight, then release one
of the balls. Press p to pause, then the space bar to single step. Note:

There is nothing to turn in for this first problem.

Problem 1: Pressing 2 shows scene 2, a truss and three marker
balls. The truss should fall but the marker balls should stay in
place. Modify the code in balls_setup_2 so that the ends of
the truss (the peak of the pyramid at each end) are initially in
the same position as the cyan marker balls and so that a lon-
gitudinal (long direction) link passes through the green marker
ball, see the screen shot to the right.

The locations of the marker balls are declared at the top
of balls_setup_2, and a little further below there is a place
for a solution. The problem can be solved by initializing vari-
ables spacing, delta_unit, loc_x, and loc_z correctly.

Of course, the truss must be between the head and tail
balls and should have chain_length units. The modified code
should make good use of the coordinate classes. For example,
DON’T set x, y, and y members individually.

The mathematics for this problem is fairly simple: you need to find the vector pointing from
head_pos to tail_pos, call that vector the axis. The vector delta_unit should be some fraction
of the axis vector. Find the closest point on the axis to surface_point, call it S. Use S to find
loc_x, loc_y and spacing.

To test out a solution it might be helpful to pause simulation before switching to scene 2. Then
switch to scene 2 and check whether the cyan balls are at the head and tail locations and whether
the green ball is on a longitudinal link.

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/proc.html


Problem 2: When w is pressed the simulator will call routine balls_twirl, which currently does
nothing. Modify the routine balls_twirl so that it adds velocity to balls in a direction around
the axis defined by the position of head_ball and tail_ball (if these are defined). The amount of
velocity should be based on the distance from the axis, so that collection of balls rotates as a unit.

The mathematics for solving this problem are similar to the mathematics for the first problem.
Write an equation for the line connecting the head and tail balls (the axis), say S = B0 + tv, where
B0 is the first ball and v is a vector pointing towards the last ball. If we are choosing a velocity
change for ball B, we need to find the point on the axis closest to B. For such a point

−→

SB will be
orthogonal to v. One can use a property of the dot product to solve for S and another operation
to find the force direction, a vector orthogonal to both v and

−→

SB.

Problem 3: Modify ball_setup_4 so that it adds
two or four more trusses to the existing truss, these
should be neatly attached to the center of the orig-
inal truss and should fall on a plane normal to the
original truss. See the illustration to the right.

The truss should be well balanced, so that when
it is twirled (using w from the previous problem) it
balances like a gyroscope.

To solve this problem examine the code in rou-
tine make_truss, and also pay attention to the com-
ments that describe how balls and links are added to
the lists balls and links.

2


