
Name Solution

GPU Programming

EE 4702-1

Midterm Examination

Wednesday, 12 November 2014 9:30–10:20 CST

Alias Phylæ has landed!

Problem 1 (18 pts)

Problem 2 (12 pts)

Problem 3 (24 pts)

Problem 4 (12 pts)

Problem 5 (14 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/gpup/

Problem 1: [18 pts] Appearing below is a simplified version of the vertex shader vs_main from Homework
4. One way to reduce the amount of computation it must perform is by pre-computing values and making
them available as vs_main inputs. For example, rather than compute radial_idx each time, it can instead
be pre-computed and stored in the w component of gl_Vertex or it can be stored in a user-defined vertex
shader input named radial_idx.

void vs_main() {

int bidx = gl_Vertex.x; int ti = gl_Vertex.y;

int radial_idx = bidx * opt_segments + ti;

float theta = (1.0/opt_segments) * radial_idx * omega;

vec3 pos1 = balls_pos[bidx-1].xyz; vec3 pos2 = balls_pos[bidx].xyz;

vec3 v12 = pos2.xyz - pos1.xyz;

vec3 p = pos1 + float(ti) / opt_segments * v12;

vec3 va = spiral_radius * normalize(vec3(0,v12.z,-v12.y));

vec3 vb = spiral_radius * normalize(cross(v12,va));

vec3 radial = va * cos(theta) + vb * sin(theta);

vec3 p_outer = p + radial; vec3 p_inner = p + 0.5 * radial;

Consider two candidates for new vertex shader inputs: va/vb (count these as one candidate) and theta.

(a) Estimate the amount by which each candidate would reduce the amount of computation to be performed
by the vertex shader.

�Computation reduction by making va/vb an input:

�Computation reduction by making theta an input:

To solve this problem we need to estimate the amount of computation performed for each candidate. As done in class we will estimate
computation by tallying the number of arithmetic operations needed.

The easier computation is for theta. Look at the line that assigns theta and the line that assigns radial idx. They perform
three multiplies, a divide, and an addition. These computations would not be necessary if theta were an input to the shader.

For va first consider the normalize. With optimization that recognizes that the x component is zero, that would be two multiplies
and an add to compute l2 = y2 + z2. A reciprocal square root and two multiplies are needed to compute (0, yl−1, zl−1), and
two more multiplies are needed for spiral radius. The total is 6 multiplies, an add, and a reciprocal square root (to compute

l−1 = 1/
√

y2 + z2). For vb we need to do a cross product which is 6 multiplies and four adds, plus 6 more multiply/adds
and a reciprocal square root for the normalize and spiral radius multiplication. The total for va and vb is 24 multiplies or
multiply/adds, 3 adds and two reciprical square roots.

Grading Note: Many students computed the amount of data rather than the amount of computation.

(b) One of the candidates would result in a large increase in CPU to GPU data transfer. Which one is it,
and why?

�Candidate causing a big increase in CPU to GPU data transfer: Variables va and vb.

�Reason for big increase:

Variables va and vb will result in a big increase in CPU to GPU traffic because, unlike theta, they need to be changed every frame.
Notice that theta only depends upon constants, such as opt segments, and things that are always the same for a particular
vertex, such as bidx. Therefore the value of theta for each vertex can be put in a buffer object and used for a new vertex shader

2

input. The buffer object would be transferred to the GPU just once. In contrast, va and vb depend on balls pos which changes
each frame.

(c) In the code above there is a much better candidate for a new vertex shader input other than va/vb or
theta. It would reduce computation by a significant amount and would not have a big impact on data
transfer. Hint: it’s not a variable, but an expression, or several expressions.

�The much better candidate for an input attribute is:

Rather than put theta in a buffer object, which would only save a small amount of computation, put values for sin(theta) and
cos(theta). Like theta, these don’t change from frame to frame, and unlike theta they save much more computation because
sin and cos are expensive to compute.

3

Problem 2: [12 pts] Appearing below is the fragment shader from the solution to Homework 4. Recall
that this shader does not render the spiral surface in places where the texture is dark, giving the appearance
of holes.

(a) Modify the shader code so that the texture itself is only applied to the front side of the spiral, and so
that the holes still appear on both sides. Hint: Can be done with a line or two of code.

�Modify so holes are on both sides, but texture just on front.

void fs_main() {

vec4 color = is_edge ? gl_FrontMaterial.ambient :

gl_FrontFacing ? gl_FrontMaterial.diffuse : gl_BackMaterial.diffuse;

vec4 texel = is_edge ? vec4(1,1,1,1) : texture(tex_unit_0,gl_TexCoord[0].xy);

bool hole = texel.r + texel.g + texel.b < 0.05;

if (hole) discard;

// SOLUTION: Only use texel to color surface for non-edge front-facing prims.

vec4 texel_apply = is_edge || !gl_FrontFacing ? vec4(1,1,1,1) : texel;

gl_FragColor = texel_apply * generic_lighting(vertex_e, color, normalize(normal_e));

gl_FragDepth = gl_FragCoord.z;

}

(b) The fragment shader code below, based on Homework 4, is supposed to use different colors for the front,
back, and edge of the spiral. The code below has an error and the commented-out line shows the correct
code. How will this error change the appearance of the spiral?

�With this error spiral will appear. . .

Short answer: . . . with the exact same color everywhere, that is, there will be no shading based upon light location, etc.

Long answer: The lighting routine is not being applied. The lighting routine returns a color based on our color but taking into
account the location and orientation of the vertex (the other input parameters) and the location and color of the light (which are
uniform variables). In the erroneous code none of this is being done, instead our color is being used and so the color of the spiral
will be exactly the same everywhere.

void fs_main() {

vec4 our_color = is_edge ? gl_FrontMaterial.ambient :

gl_FrontFacing ? gl_FrontMaterial.diffuse : gl_BackMaterial.diffuse;

vec4 texel = is_edge ? vec4(1,1,1,1) : texture(tex_unit_0,gl_TexCoord[0].xy);

bool hole = texel.r + texel.g + texel.b < 0.05;

if (hole) discard;

// gl_FragColor = texel * generic_lighting(vertex_e, our_color, normalize(normal_e));

gl_FragColor = texel * our_color;

gl_FragDepth = gl_FragCoord.z;

}

4

Problem 3: [24 pts] Answer each question below.

(a) An object at point P1 is moving at velocity v1 just before collision with a wall with normal ŵ. The
collision is completely elastic, meaning the object’s speed (the magnitude of velocity) will not change. Write
an expression for the velocity after the collision?

�Expression showing velocity after collision:

Short answer: v1 − 2 (v1 · ŵ) ŵ.

The speed by which the point is moving towards the wall is found by taking the dot product of the velocity with the wall normal:
v1 · ŵ. The approach velocity is the vector (v1 · ŵ) ŵ. This velocity gets reversed by the collision, so the velocity after collision is
v1 − 2 (v1 · ŵ) ŵ.

(b) An object at P1 is connected to an object at P2 by an ideal spring having a relaxed distance of d and a
spring constant h. Write an expression for the force on P1 due to this spring.

�Expression giving force on P1 due to spring:

The distance between the points is ||
−−−→
P1P2||. The magnitude of the force due to the spring is given by ||

−−−→
P1P2||−d. (A positive force

value pulls the points towards each other.) The force on P1 is
(

||
−−−→
P1P2|| − d

)

P̂1P2, where P̂1P2 is vector
−−−→
P1P2 normalized.

(c) Point P1 in 3D space has homogeneous coordinate (3, 4, 6, 0.5). What is the corresponding Cartesian
(ordinary every day) coordinate?

�Cartesian coordinate is:

The Cartesian coordinate is (3/0.5, 4/0.5, 6/0.5) = (6, 8, 12).

(d) Homogeneous coordinates make it possible to express certain transformations using matrix multiplication
that would not be possible with ordinary Cartesian coordinates. Name one such transformation.

�Transformation that’s not possible using matrix multiplication with Cartesian coordinates:

There were two covered in class, translation and projection. Either answer would be correct. A scale transformation can be done
using a feature of homogeneous coordinates, but scale transformations can also be done for Cartesian coordinates, and so scale
transformation is not a correct answer.

5

Problem 4: [12 pts] Answer each question below.

(a) Our user’s eye is at location (x, y, z) in our coordinate system. How do we provide this information to
OpenGL (using the compatibility profile)? Be specific.

�User’s location given to OpenGL by . . .

Short Answer: We specify a modelview matrix that translates point (x, y, z) to the origin.

Long Answer: The location of a user’s eye is specified using the OpenGL modelview matrix. To provide this information we must
specify a modelview matrix that moves the user’s eye to the origin. Moving the user’s eye to the origin only requires a translation
transformation, but for the modelview matrix we also want to rotate the scene so that our user’s computer monitor is facing the −z
direction.

(b) The series of transformations performed by OpenGL (and shaders) maps 3D coordinates in our coordi-
nate space to window space which are the 2D window coordinates corresponding to pixel locations. This
transformation preserves coordinates’ z component. Why is the z component needed, and how is it used?

�The z component is used for . . .

The z component is used to decide which of two fragments located at the same pixel should be discarded (or how they should be
blended together). Normally, the fragment further from the user would be discarded, but OpenGL allows for other possibilities.

This processes occurs after the fragment shader stage. The z component of the fragment to be written is compared to the z
component already written into the frame buffer. If the fragment passes this depth test (the comparison) it is written, replacing (or
blending with) the fragment that is already there (effectively discarding the old fragment). If the fragment fails the depth test it itself
is discarded.

6

Problem 5: [14 pts] The diagram below shows a simplified form of the OpenGL rendering pipeline.

Vertex

Shader

Geo-

metry

Shader

Frag-

ment

Shader

Raster-

izer

1

Vtx

1

Tri

>= 0

Tri

1

Tri

>> 1

Frag

1

Frag

0 or 1

Frag

1

Vtx

Frame

Buffer

Update

v1
v2
v3

v1
v2
v3

v1
v2
v3

v1
v2
v3

v v
f
f
f
f

f
f
f
f

f
f
f
f

f
f
f
f

f f

1

Frag

f

(a) The diagram shows 16 f’s at the output of the rasterizer stage, but that’s not necessarily the actual
number.

�What does the actual number of f’s depend on?

The number of f’s depends upon the projected size of the triangle (the size of the triangle on the user’s screen), and the resolution
of the user’s screen.

�How could one increase the number of f’s without changing the input, (V1V2V3).

One could change the modelview matrix so that the user is closer to the triangle. Another option would be to increase the size of the
window or render to a higher resolution device.

Grading Note: For some reason, most people answered “get a higher resolution monitor.” Does something

about the test remind people of Christmas?

(b) The boxes with rounded corners are part of what’s called the fixed functionality. What does that mean,
and why are those stages part of it.

�Fixed functionality means . . .

The fixed functionality parts of the pipeline are parts that cannot be programmed. The Kronos Group (the organization defining the
OpenGL standard) made those parts fixed function for performance reasons.

�The Rasterizer and Frame Buffer Update are fixed functionality because . . .

. . . hardware is capable of performing the respective function better than software. Therefore making it programmable might improve
flexibility, but it would slow down performance.

7

Problem 6: [20 pts] Answer each question below.

(a) The code below specifies vertices using a triangle strip. Modify the code so that it renders the same
triangles using individual triangles.

�Modify code to use individual triangles �without changing what’s rendered.

glBegin(GL_TRIANGLES);

for (int i=0 ; i<num_v-2 ; i++)

{

glVertex3fv(coord[i]);

glVertex3fv(coord[i+1]);

glVertex3fv(coord[i+2]);

}

glEnd();

(b) There is an important difference between specifying a color using glColor and glMaterial. One of them
allows each vertex to have its own color, the other allows different properties to be set, such as ambient,
diffuse, and specular but all vertices in a rendering pass must share these colors. Note: This question applies

only to the compatibility profile.

�The command that allows each vertex to have its own color is:

The command is glColor, which specifies a vertex attribute.

�Why can’t each vertex have its own set of color properties using either of these commands?

To limit the amount of data needed for each vertex. If each vertex could have its own full set of colors that would require more than
eight 4-element vectors (values for the four types of material properties for each of two sides).

(c) Describe how the GL_LINEAR_MIPMAP_LINEAR minification method computes a filtered texel. Indicate
how many texels are read from texture images, which images are read, and how they are combined.

�Number of texture images read:

An original texture image is used to construct a series of MIPMAP layers, with successively smaller widths, down to a width of one
pixel. For GL LINEAR MIPMAP LINEAR filtering two layers (texture images) are read, the two whose texels are closest in size to
the pixel to be written.

�Number of texels read:

Four texels are read from each layer, for a total of eight texels.

�How they are combined:

A weighted average of the texel values is computed. The weight is based on how much of the texel covers the pixel to be written.

8

