
LSU EE 47021 Homework 1 Due: 19 September 2014

Some of the effort for this homework assignment is in learning to use the various pieces of

software, such as a text editor. Those less familiar with Linux software development procedures

might seek out a more knowledgeable classmate to minimize frustration and wasted time.

Problem 0: Follow the instruction on the http://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming homework work flow. Compile and run the homework
code unmodified. It should show a line of balls drop to the platform. Promptly report any problems.

Use the arrow keys, PageUp, and PageDown to move around the scene. Use key h to toggle
between the first (head) ball being locked in place and free. Use key t to do the same for the last
(tail) ball. Press (lower-case) b and then use the arrow and page keys to move the first ball around.
Press l to move the light around and e to move the eye. Press 1 to set up scene 1, press 2 to set
up scene 2.

Look at the comments in the file hw01.cc for documentation on other keys. One fun thing to
do is to lock both the first and last ball, move the head ball until the spring is stretched tight, then
release one of the balls. Press p to pause, then the space bar to single step. Note: There is nothing

to turn in for this first problem.

Problem 1: Pressing 1 sets up scene 1 (by calling ball_setup_1), the pendulum, and pressing
2 sets up scene 2. In an unmodified assignment setting up scene 2 only freezes the head and tail
balls in place, it makes no other changes.

Modify scene 2 (look for code ball_setup_2) so that it places the balls evenly spaced in a
straight line. The first ball (ball[0]) should be placed at position first_ball (which is declared
in the routine), the last ball (ball[chain_length-1]) should be placed at position last_ball, and
the other balls should be spaced evenly between them. The total number of balls is chain_length.

The modified code should make good use of the coordinate classes. For example, DON’T set
x, y, and y members individually.

The mathematics for this problem is fairly simple: you need to find a vector pointing from
first_ball to last_ball whose length is the distance between two adjacent balls. Look at
ball_setup_1 to see how balls are initialized.

Problem 2: Pressing w toggles a twirl op-
tion on and off. In the unmodified code
that just toggles variable opt_twirl be-
tween true and false and changes an in-
dicator on the upper-left area of the screen.
Modify the code so that when opt_twirl

is true forces are applied to the balls that
will cause them to move around an axis de-
fined by the first and last balls. (See the
illustration to the right.)

The magnitude of the force should be 1 and the direction should be orthogonal to the axis
defined by the first and last ball and the shortest line from the ball to that axis. (As though the
ball were embedded in a rotating cylinder with the first and last balls on the axis.) The solution
to this problem should go in the time_step_cpu routine.

The mathematics for this problem is a little more complex, but still basic. Write an equation
for the line connecting the head and tail (first and last) balls (the axis), say S = B0 + tv, where

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/proc.html


B0 is the first ball and v is a vector pointing towards the last ball. If we are choosing a force for
ball B, we need to find the point on the axis closest to B. For such a point

−→

SB will be orthogonal
to v. One can use a property of the dot product to solve for S and another operation to find the
force direction, a vector orthogonal to both v and

−→

SB.

2


