
LSU EE 4702­1 Homework 5 Due: 30 November 2012

Follow the Programming Homework Work Flow instructions on the procedures page, substituting

hw5 for hw1. Also, update the include directory.

Use http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf, the NVIDIA CUDA

Compute Unified Device Architecture Programming Guide, as a reference. The code in this assign-

ment requires OpenGL 4.3 and CUDA, which should be installed on snow, ice, and frost.

Problem 0: Follow the class procedures
for homework but substitute hw05 for the
assignment. Compile and run the code. It
should display our familiar helix, but this
time it’s a simulated spring, and it should
be drooping under gravity, see the illustra-
tion to the right. The physics can be per-
formed by both CPU and GPU, by default
it runs on the CPU, pressing ’a’ will toggle
it.

The CPU code can prevent interpenetration, this option is initially off, it can be toggled by
pressing ’i’. The option was turned off when the image above was captured, notice that the bottom
loops of the spring interpenetrate. The code for interpenetration can be found in time_step_cpu,
it uses a brute-force approach, comparing every segment of the helix to every other, making it very
slow. The goal of this assignment is not to use a clever broad-phase collision detection scheme to
avoid O(n2) comparisons, but instead use the GPU to do the calculations faster. (In “real life” one
might use both broad-scale collision detection and a GPU to do calculations.)

Problem 1: The routine time_step_cpu contains the CPU interpenetration code, clearly identi-
fied by comments. For this problem put the interpenetration code in CUDA kernel time_step, in
file hw5-cuda.cu. The time_step kernel is launched in a configuration with one thread per helix
segment. Each thread should test “its” segment against other segments. A correct solution will be
faster than the CPU, but should still be slow.

Problem 2: By GPU parallelism standards, the number of threads launched for the time_step

routine is not large. In the default configuration there are 160 segments, just five warps. That will
underutilize any GPU.

For this problem, add a new kernel to perform the interpenetration test. The new kernel should
be launched with more threads than segments, taking advantage of more parallelism. Modify
the existing time_step kernel so that it does not modify helix_position (but it still updates
helix_velocity and the other two state variables). The new kernel should compute forces based
on interpenetration tests, use that to update velocity, and then update the position.

A good solution of this problem requires the use of shared memory, atomic operations, and
synchronization. That will be covered next week.

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf

