
LSU EE 47021 Homework 4 Solution Due: 20 November 2012

For the problems below refer to Chapter 2, Programming Model, and Chapter 4, Hardware

Implementation, in the NVIDIA CUDA Compute Unified Device Architecture Programming Guide

available locally via

http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf.

Problem 1: The kernel below is launched in a configuration of grid size of (1024, 1, 1) and block
size of (256, 1, 1). (The components are (x, y, z).)

__global__ void dots_iterate1() {

int thread_count = /* Omitted so things aren’t too obvious. */;

int idx_start = threadIdx.x + blockIdx.x * blockDim.x;

for (int idx = idx_start; idx < array_size; idx += thread_count)

b[idx] = v0 + v1 * a[idx]; }

(a) How many threads are there? How many blocks? How many warps?
The grid size is the same as the number of blocks 1024 × 1 × 1 = 1024.
The number of threads is the product of the block size and grid size: 1024 × 256 = 21028 = 218 = 262144.
The number of warps in a block is ⌈B/32⌉, where B is the block size. The number total number of warps is the

blocks per warp times the number of warps. For this example that’s 218/25 = 213 = 8192.

(b) Suppose the array size is 5 × 105 = 500 00010 = 7 a12016 elements. How many threads will
perform two iterations? One iteration? Zero iterations?

Two iterations: 237856, one iteration 262144. Zero: none.

(c) A GPU has four multiprocessors. Explain why launch configurations of four and eight blocks
are each better than a launch configuration of six blocks. Use the code above as an example.

Each block is assigned to one multiprocessor (in other words a single block can’t run on two multiprocessors at the
same time). If the number of blocks is not a multiple of the number of multiprocessors then some multiprocessors will be
assigned more blocks than others. If each block takes the same amount of time to execute, an uneven distribution will
result in execution time being longer than it has to be. The smaller the number of blocks the worse the problem is.

For example, suppose the kernel above was launched in two configurations, both having 256-thread blocks. One
configuration has six blocks each taking 80ms (or about 325 iterations per thread) or one with eight blocks each taking
60ms (or about 244 iterations per thread). For the six-block launch two multiprocessors will be assigned two blocks
and two will be assigned one block. The kernel will finish in 2 × 80ms = 160ms. In the eight-block launch each
multiprocessor will be two blocks, the kernel will finish in 2 × 60ms = 120ms.

Note that the launch configuration given in this problem, 1024 blocks, is large enough so that load imbalance is not
much of a problem with current GPU sizes, where the larger ones have about 16 multiprocessors.

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf

Problem 2: Consider the kernel code below. It is launched with a block size of 512 threads and
a grid size of 64 blocks. The array has 220 = 1048 576 elements.

__global__ void dots_iterate15() {

int thread_count = /* Omitted so things aren’t too obvious. */;

int tid = threadIdx.x + blockIdx.x * blockDim.x; // Not used in code.

int idx_start = blockIdx.x + threadIdx.x * gridDim.x;

for (int idx = idx_start; idx < array_size; idx += thread_count)

b[idx] = v0 + v1 * a[idx];

}

(a) The table below shows various information about selected threads in the launch described above.
The first three columns should be self-explanatory. The three columns headed idx show the element
number (value of idx in the code above) accessed by the respective thread in the first, second, and
third iteration of the for loop. Each row has at least one column filled. Fill the remaining columns.

Solution appears below. Notice that consecutive thread ids do not access consecutive elements. In fact, the situation
is far worse. Adjacent arrray elements are accessed by different blocks. For example, element 0 is accessed by block 0
and element 1 by block 1. These may be on different multiprocessors. Since the memory system brings in data in 128-byte
units, much of that data will go unused.

-- idx --- -- idx --- -- idx ---

tid blockIdx.x threadIdx.x First Iter Second Iter Third Iter

0 0 0 0 32768 65536

1 0 1 64 32832 65600

2 0 2 128 32896 65664

0 0 0 0 32768 65536

512 1 0 1 32769 65537

1024 2 0 2 32770 65538

513 1 1 65 32833 65601

2

