
LSU EE 4702­1 Homework 2 Solution Due: 10 October 2012

Follow the Programming Homework Work Flow instructions on the procedures page, substitut-

ing hw2 for hw1.

The hw2 code, based on demo-8-texture, draws a helix. Due to missing normals, the surface
of the helix will not be shaded properly (see Problem 1).

The comments at the top of the file describe controls for the simulation. For this assignment
controls have been added to change the amount of detail in the helix (search for “Big Circle” and
“Small Circle”), to change how vertices are ordered (look at the i and m options), and to force
computation and communication (look at d and r).

For the solution code look for file hw2-sol.cc in the repository.

Problem 1: Run the unmodified hw2 code and pay attention to the way the helix is lit. Notice
that the shading of the helix is wrong. That’s because normals have not been specified. Modify
the code so that normals are correctly specified. To do this new arrays and a new buffer object will
have to be added.

The normal itself can easily be found by constructing a vector from the helix point (n0) and the wire surface point
(s0). That vector is constructed in part of the expression used to compute s0 in the first place, see the code below under
Before. In the solution, shown below under Solution, the vector is assigned to a separate variable, p0s0, and that
is used both to compute s0 and to compute the normal. Because of the way the helix is constructed the length of p0s0
is small r, so to compute the normalized normal just divide each element of p0s0 by small r. The solution actually
multiplies by the reciprocal of small r.

// Before: Computation of wire surface point:

pCoor s0 = p0 + cos(theta) * n0 + sin(theta) * b;

// Solution:

pVect p0s0 = cos(theta) * n0 + sin(theta) * b;

pCoor s0 = p0 + p0s0;

pVect norm0 = small_r_inv * p0s0;

Problem 2: The use of triangle strips reduces vertex redundancy compared to individual triangles.
However for the hw2 program there is still redundancy. In particular, point s1 (search for “Construct
a Helix” and scroll down to the j loop) is the same as s0 in a prior i iteration.

By using glDrawElements instead of glDrawArrays one can avoid this redundancy. That is,
the command sends each point to the GPU once and a separate index array specifies which of those
points are used, a point can be used multiple times.

(a) Modify the code to use glDrawArrays when variable opt_use_elements is true. (Use key m to
change the value of opt_use_elements.) Some code is already in place, including code declaring
and initializing the index array and the call to glDrawElements. However, the existing code still
adds the same point to the helix_coords list multiple times. The index array (indices) is set to
0, 1, 2, . . ., which makes glDrawElements equivalent to glDrawArrays.

Modify the code so that each point is added only once, making appropriate changes to
prep_indices (which is used to set indices) so that the helix is drawn correctly. See Section
10.5 of OpenGL version 4.3 for use glDrawArrays.

In the original code the inner loop added two coordinates to prep coords and the corresponding indices to
prep indices. See the code below under before. In the solution, see below under Solution, only one coordinate,
s0, is added to the list. Two indices are added, idx for s0, the other for a coordinate that will be added later, idx +

seg per small circle.

1

http://www.ece.lsu.edu/koppel/gpup/

// Before:

// Compute point on surface of wire.

pCoor s0 = p0 + cos(theta) * n0 + sin(theta) * b;

prep_coords += s0;

prep_indices += idx; // Index of point just added.

pCoor s1 = p1 + cos(theta) * n1 + sin(theta) * b;

prep_coords += s1;

prep_indices += idx + 1; // Index of point just added.

// Solution

pCoor s0 = p0 + p0s0;

prep_coords += s0;

prep_indices += idx; // This vertex.

prep_indices += idx + seg_per_small_circle;

The solution initially prepares the arrays assuming that opt use elements is true. If it’s false then it will
construct a new list of coordinates using the indices. See the checked in code.

(b) The code has a variable opt_use_strips. Modify the code so that when it’s true the helix will
be rendered using triangle strips and when it’s false it will be rendered using individual triangles.
Note: This part did not appear in the original assignment.

When opt use strips is false the helix will be rendered using individual triangles. For these there must be three
indices per triangle. So rather than inserting two indices per iteration, six indices are inserted. See the excerpt below:

// Solution

if (opt_use_strips) {

prep_indices += idx; // This vertex.

prep_indices += idx + seg_per_small_circle;

} else {

prep_indices += idx; // This vertex.

prep_indices += idx + seg_per_small_circle;

prep_indices += idx + seg_per_small_circle + 1;

prep_indices += idx; // This vertex.

prep_indices += idx + seg_per_small_circle + 1;

prep_indices += idx + 1;

}

Problem 3: In this problem try to measure the impact of using glDrawElements to reduce the
redundancy.

(a) Compute the amount of data sent from the CPU to the GPU in terms of the number of triangles
used in the helix with and without glDrawElements. Use T to denote the number of triangles.

Each index (element of indices) is 4 bytes, each vertex coordinate (three floats) is 12 bytes, and each normal is
12 bytes. (The color and other attributes are the same for all vertices, so they do not significantly affect the data size.)
In the solution below vertex refers to both the vertex coordinate and the normal.

For glDrawArrays with triangle strips: A total of T indices and T vertices are sent, the data size is therefore
4T + 24T = 28T bytes.

For glDrawElements with triangle strips: A total of T indices are sent, but only T/2 vertices are sent. The
total amount of data is 4T + 24T/2 = 16T bytes.

For glDrawArrays with individual triangles: A total of 3T indices and 3T vertices are sent, the data size is
therefore 3 × 4T + 3 × 24T = 84T bytes.

2

For glDrawElements with individual triangles: A total of 3T indices and T/2 vertices are sent, the data size
is therefore 3 × 4T + 24T/2 = 24T bytes.

(b) Measure the impact on performance of this difference in data size. Use the various program
options to make this performance difference large. Explain which options were used and show the
results.

Background: There are two impacts for data size, communication between the CPU and GPU, which has already
been discussed in class, and GPU memory and the GPU itself, which has not been discussed much. The solution will
discuss both impacts, however the assignments were graded only on consideration of CPU/GPU communication.

For the homework code, communication between the CPU and GPU is controlled by the “Always Send” option.
When this option is “no” indices and vertices are only sent when some helix parameter, such as “Small Circle” changes.
This data will be sent once per change and so its impact on performance will be very brief. In other words, when “Always
Send” is “no” data communication between the CPU and GPU is small, consisting of commands. When “Always Send” is
“yes” the impact of data size on performance will be proportional to the array sizes (see previous problem).

In contrast, the sending of the indices and vertices from GPU memory to the GPU must occur every frame. The
rendering pipeline is implemented in the GPU itself, the data that it reads (vertices, etc) initially is in GPU memory. The
vertex puller will read the appropriate vertices from memory and send them to the first stage of the rendering pipeline,
the vertex shader. The glDrawArrays is used the vertex puller reads vertices sequentially. When glDrawElements
is used the puller will read the indices sequentially but fetch vertices corresponding to the indices, which can be in any
order, and the same vertex can be pulled multiple times.

For glDrawArrays the amount of data read is equal to the size of the index and vertex arrays. (The glDrawAr-
rays command does not use the indices, but our vertex shader uses them.) For glDrawElements the amount of data
read from memory depends upon how clever the system is. Consider two cases, simple and “efficient”. In the simple
case, one vertex will be read for each index. The total amount of data read will be the number of elements in the index
array times the sum of the sizes of an index and a vertex. For the code in this problem using triangle strips, there will
be T index elements, an index is 4 bytes and a vertex coordinate/normal pair is 24 bytes, so the data read from memory
will be 28T bytes (this is the number under the M− > S1 column in the table below). Notice that this is more than
the 16T bytes send from CPU to GPU, that’s because each vertex is read twice in the simple case for triangle strips. For
individual triangles the difference between CPU to GPU transfer and GPU memory to shader transfer is even greater. In
this case there are 3× 4T bytes read from GPU memory for indices and 3× 24T bytes for vertices, for a total of 84T
bytes. This difference in the amount of data read should be reflected in GPU execution time.

For the “efficient” case each vertex will be read from GPU memory once, even if its index appears multiple times.
In that case the amount of data read from GPU memory is the same as the amount of data sent from CPU to GPU. For
triangle strips that’s 16T bytes, compared to 28T for the simple method. There are quotes around “efficient” to hint
that the reduction in data volume over the simple method might come at some cost. That is the cost of holding on to the
fetched vertices (before or after vertex processing) until their last use.

Solution: To determine the impact on performance with data size the code was executed for two helix sizes,
both have more triangles than the default. The primitive type (triangle strip or individual triangles), draw command
(glDrawArrays or glDrawElements) was varied, and data-resend options were varied. For reference, the data
transfer sizes also appear in the table. Column M->S1 shows the amount of data read from GPU memory to the GPU
for the simple case, where the number of vertices read is equal to the number of indices. The data under M->S2 shows
the amount of data read for the “efficient” case, where the number of vertices read is equal to the number of distinct

indices (which is equal to the number of vertices in the array).

3

Key: Strip, Triangle Strips; Array, glDrawArrays

Indiv, Individual Tri; Elmnt, glDrawElements

0: Only re-send data for changes. 1: Always re-send data.

C->G: Amount of data sent from CPU to GPU.

M->S1: Amount of data sent from GPU memory to shader, assumption 1.

M->S2: Amount of data sent from GPU memory to shader, assumption 2.

Small Circle: 40 Big Circle: 70 - Only recompute on change

Config GPU CPU Data Data Data

C->G M->S1 M->S2

Strip Array 1 2.6 0.9 28T 28T 28T

Indiv Array 1 4.5 1.9 84T 84T 84T

Strip Elmnt 1 2.3 0.7 16T 28T 16T

Indiv Elmnt 1 2.5 0.8 24T 84T 24T

Strip Array 0 1.9 0.4 0 28T 28T

Indiv Array 0 2.5 0.4 0 84T 84T

Strip Elmnt 0 1.9 0.4 0 28T 16T

Indiv Elmnt 0 1.9 0.4 0 84T 24T

Small Circle: 100 Big Circle: 100 - Only recompute on change.

Config GPU CPU Data Data Data # of Vtx

C->G M->S1 M->S2 Shader Runs

Strip Array 0 2.8 0.4 0 28T 28T T T

Indiv Array 0 5.0 0.4 0 84T 84T 3T 3T

Strip Elmnt 0 2.8 0.4 0 28T 16T T 0.5T

Indiv Elmnt 0 2.9 0.4 0 84T 24T 3T 0.5T

Look first at the “Always Send” entries, those with a 1 in the config column. Both the CPU and GPU times are
roughly proportional to the amount of data sent. The worst time is for individual triangles with glDrawArrays, the
time for the other options are much better.

When “Always Send” is “no” CPU time does not vary with the other options, as expected. What’s interesting is the
GPU time. It’s only large for individual triangles with arrays. The effect is also seen in the second table, which has data
on a helix with a larger number of triangles. The GPU time is consistent with the “efficient” case.

(c) Try to determine if there is any difference in performance due to computation. There would be
less computation using glDrawElements if the vertex shader were run on each vertex only once.
But does that actually happen? Explain which options were used and show the results.

The second table above also includes columns showing the number of times the vertex shader is run per triangle,
based on different assumptions. The first Vtx column shows the number of vertex shader runs assuming that the vertex
shader is run once per index, the second column is the number of runs under the assumption that it is run once per vertex.
The last two rows provide the best basis for comparison. The slightly lower performance of the individual triangle row
might be due to the 3T shader runs (versus T for the strips) but it also might just be due to the amount of memory read.

4

