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ABSTRACT 

*University of Illinois 
Electrical and Computer Engineering 

Urbana, Illinois, USA 

It is unquestionable that successive hardware generations 
have significantly improved CPU computing workload per­
formance over the last several years. Moore's law and DRAM 
scaling have respectively increased single-chip peak instruc­
tion throughput by 3X and off-chip bandwidth by 2.2X from 
NVIDIA's CeForce 8800 CTX in November 2006 to its CeForce 
CTX 580 in November 2010. However, raw capability num­
bers typically underestimate the improvements in real ap­
plication performance over the same time period, due to 
significant architectural feature improvements. 

To demonstrate the effects of architecture features and 
optimizations over time, we conducted experiments on a set 
of benchmarks from diverse application domains for multi­
ple CPU architecture generations to understand how much 
performance has truly been improving for those workloads. 
First, we demonstrate that certain architectural features 
make a huge difference in the performance of unoptimized 
code, such as the inclusion of a general cache which can 
improve performance by 2-4x in some situations. Second, 
we describe what optimization patterns have been most es­
sential and widely applicable for improving performance for 
CPU computing workloads across all architecture genera­
tions. Some important optimization patterns included data 
layout transformation, converting scatter accesses to gather 
accesses, CPU workload regularization, and granularity coars­
ening, each of which improved performance on some bench­
mark by over 20%, sometimes by a factor of more than 5x . 
While hardware improvements to baseline unoptimized code 
can reduce the speedup magnitude, these patterns remain 
important for even the most recent CPUs. Finally, we iden­
tify which added architectural features created significant 
new optimization opportunities, such as increased register 
file capacity or reduced bandwidth penalties for misaligned 
accesses, which increase performance by 2 x or more in the 
optimized versions of relevant benchmarks. 
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1. INTRODU CTION 

tKLA Tencor 
Milpitas, California, USA 

While no community or field springs out of nothing, the 
modern field of CPU computing had a major inflection point 
approximately five years ago with the first support for C­
based programming languages for general computation on 
CPUs. Very quickly, the community discovered and pub­
lished what worked well on CPU platforms and what didn't 
at first. As the years progressed, CPU architects and ap­
plication researchers continually pushed at the boundaries 
of what CPUs could do effectively, significantly improving 
performance for many workloads. At this juncture, with 
five years of experience and a new academic conference ex­
plicitly dedicated to novel parallel computing platforms and 
applications, we would like to examine some CPU comput­
ing workloads and see how far we have come, and what is 
most important to learn from the current state of the art as 
we continue to move forward. 

We would like to focus on two major aspects of the CPU 
computing field over the last five years. The first is the op­
timization and programming patterns that have shaped op­
timized applications for CPU architectures. Several design 
principles of CPU architectures have been and will likely 
continue to be very consistent, such as SIMT and high de­
grees of multithreading. We have surveyed many CPU com­
puting applications and kernels and distilled what we believe 
to be several key optimization techniques and design consid­
erations for high-performance CPU-computing workloads. 
These techniques deserve to be covered in some detail and in 
a way that can be understood across domains, because they 
reflect the common patterns a new CPU programmer in any 
domain should learn. In addition, we believe that these op­
timization patterns will continue to gain broader relevance 
over time, because the optimization patterns we present are 
fundamentally about implementing scalable, efficient paral­
lel programs on an architecture with many cores, vector exe­
cution, and limited memory bandwidth. We present our fo­
cused discussion on such optimization patterns in section 3. 

Second, we present new experiments exploring the design 
space of CPU architecture itself, which has been both re­
markably consistent and increasingly friendly to application 
programmers over the last several years. The tipping point 
of CPU computing five years ago coincided with the CPU 
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Table 1: GPU Architecture Summaries 

9800 GX2 S1070 GTX 480 
(One GPU) (One GPU) 

Released Mar. 2008 Nov. 2008 Mar. 2010 
Compute 1.1 1.3 2.0 
capability 
SP Opslsec 576 1037 1345 

GFLOPS GFLOPS GFLOPS 
DRAM 64 GB/s 102 GB/s 177 GB/s 
bandwidth 

global mem- shared mern- general cache, 
ory atomics, ory atomics, 

Features shared & con- reduced coa- increased 
stant memory lescing penal- shared mem-

ties ory capacity 

industry shift to unified shader cores, and for good reason. 
Unified compute cores running a common instruction set 
enabled a single SPMD kernel to use all available process­
ing on the GPU with no special effort. However, the first 
compute-capable GPUs still lacked many features, restrict­
ing the applications that could effectively use them. We 
select a benchmark suite of GPU workloads, track its per­
formance through the years of GPU architecture revisions, 
and analyze when and how performance improved most for 
each kind of application. Our experiments, presented in sec­
tion 4 should give us some insight into what architecture 
features in the accelerator design space truly mattered for 
workload performance. In section 5, we summarize our in­
sights from both the optimization patterns and architecture 
studies. But first, we shall describe some necessary back­
ground and methodology information. 

2. ARCHITECTURE EVOLUTION 
GPU computing workloads are extremely diverse. Liter­

ally hundreds of GPU application optimization papers have 
been published over the past few years alone. The GPU 
Computing Gems books alone document dozens, from very 
diverse fields [4, 5J. The SHOC OpenCL benchmark suite 
(with some equivalent CUDA benchmarks) has multiple "lev­
els", benchmarking increasingly complicated codes [3J. The 
SHOC level 0 benchmarks are essentially microbenchmarks 
for stress-testing things like memory bandwidth. Level 1 
benchmark are simple, common primatives such as reduc­
tion, scan, SGEMM, and others. Level 2 benchmarks (of 
which there is only one at time of writing) are considered 
full applications. The Rodinia [2J and Parboil [8J benchmark 
suites overlap some with each other and with the SHOC 
benchmarks, mixing "primitives" with "applications". Both 
Parboil and Rodinia have CUDA and OpenCL implementa­
tions, except for two Rodinia benchmarks lacking OpenCL 
support at time of writing. Because part of our goals was 
to reimplement and reoptimize our benchmarks for multiple 
GPU devices, we chose to work with the Parboil benchmark 
suite, which has both reasonably-sized benchmarks for reim­
plementation and scripting support for multiple implemen­
tations and platforms. 

All our experiments were conducted on one of three GPUs, 
which are summarized in Table 1. The first system houses 
an NVIDIA GeForce 9800 GX2, of which we only use one of 

the included GPU chips. We chose this device as opposed 
to slightly older G80-generation device because of the added 
support for atomic operations to global memory, without 
which some of our benchmarks would be practically impos­
sible to implement. Atomic operations to shared memory 
are not supported in this device, but can often by emulated 
by barriers or clever uses of shared memory consistency and 
warp scheduling assumptions valid for that device. Such em­
ulated atomic operations come at a higher software develop­
ment, performance, and portability cost. Additionally, the 
9800 GX2 architecture carries a harsh penalty to any imper­
fectly coalesced memory accesses, generating many DRAM 
line accesses even for contiguous but simply misaligned ac­
cesses. 

Experiments on a second system executed on a single GPU 
of an NVIDIA Tesla S1070. That GPU, and others of com­
pute capability 1.2 and higher, support atomic operations to 
shared memory, allowing for more robust and efficient com­
munication among threads in a block for certain program­
ming patterns. In addition, the S1070 removes the harshest 
penalties for uncoalesced accesses, such that a misaligned ac­
cess will only transfer the two DRAM lines straddled by the 
contiguous addresses. In general, the S1070's coalescing unit 
will generate the fewest number of DRAM transactions nec­
essary to satisfy the requests from a single warp-instruction. 

Finally, the third system consists of an NVIDIA GTX 480. 
The "Fermi" GPU generation, designated by compute capa­
bilities 2.0 and higher and including the GTX 480, adds a 
general cache hierarchy to the global memory system, and 
increased shared memory capacity for those kernels need­
ing it. In addition, an addition to its instruction set allows 
the CUDA compiler to automatically target certain access 
patterns to the constant memory cache for high broadcast 
performance. 

Clearly, at time of publication all of these devices will 
be two or more years old, which for scientific computing 
implies that the performance results may not be directly 
relevant for future hardware. However, the insights gained 
from analyzing the feature sets should continue to be infor­
mative. While NVIDIA is unlikely to remove standardized 
hardware features in future generations, determining which 
features proved most impactful can help shape the acceler­
ator market as a whole towards the most useful feature set 
for accelerated workloads. 

3. OPTIMIZATION PATTERNS FOR 

PARALLEL CHIP ARCHITECTURES 
A segment of the parallel programming community has 

long been interested in characterizing the programming pat­
terns that are effective for parallel systems [7, 6J. However, 
in our conversations with some of authors in that field, they 
have confided that they sometimes struggle with the fact 
that once a parallel program is implemented, the optimiza­
tion process involves software development practices com­
pletely outside the domain of their structural patterns. We 
would therefore like to begin the academic discussion of a 
set of patterns systematizing the optimization of parallel 
programs. The optimization patterns were drawn in partic­
ular from our informal survey of the GPU Computing Gems 
contributions [4, 5J, and from a focused and detailed analysis 
of the Parboil benchmarks. 

Table 2 summarizes our proposed collection of optimiza-



Technique Contention Bandwidth Locality Efficiency Load Imbalance CPU Leveraging 
Tiling X X 
Privatization X X 
Scatter to Gather Conversion X 
Binning X X X X 
Regularization X X X 
Compaction X 
Data Layout Transformation X X 
Granularity Coarsening X X X X 

Table 2: Issues Addressed by OptimIzatIOn Pattern 

tion patterns and the goals or benefits accomplished by each. 
One interesting note is that for certain goals, more than one 
potential optimization technique may apply. The choice of 
which technique best fits the application currently requires 
significant human analysis of the code, a costly effort. 

Because accelerators are highly parallel devices, many of 
the techniques specifically address general performance is­
sues that arise from programming a highly parallel shared­
memory architecture, such as contention and load imbal­
ance. Some techniques are not specific to highly parallel 
architectures, but avoid especially severe performance cliffs 
given the design of today's accelerator architectures, such as 
the especially software-driven approaches to effective band­
width utilization and locality management. Still other tech­
niques are specifically targeted towards leveraging the ben­
efits of a hybrid system, using the versatility of the CPU 
to not only process necessarily sequential code regions but 
to also precondition GPU kernel inputs such that kernels 
can be further optimized than would be possible for general 
input. 

Finally, parallel architectures are fundamentally a collec­
tion of sequential processing units. When a parallel archi­
tecture is well used, the performance limitation of a program 
on that architecture is the efficiency of the sequential pro­
grams running on each execution unit. Therefore, sequential 
program performance optimization is still an area of inter­
est for the SPMD code executed on the accelerator. We 
will not discuss those techniques here, as they are well stud­
ied and not unique to parallel programming systems, but 
acknowledge that immature compiler technology sometimes 
will necessitate direct programmer implementations of "triv­
ial" code optimizations. 

We firmly believe that every one of the patterns we de­
scribe here has been explained in previous work, but note 
that previous descriptions of these patterns as they apply to 
GPU workloads are typically embedded within implementa­
tions of specific workloads. While we do not take credit for 
being the first to discover any of these individual transfor­
mations, we believe that there is useful insight to be gained 
by consolidating summaries of all those we found applied 
to the Parboil benchmarks in a way that highlights their 
generality to a variety of GPU computing workloads. By 
gathering the optimization patterns together, anchored by 
the real benchmarks using them, we can study how they 
interact with one another, their variations among different 
applications, and their individual and cumulative results on 
real hardware systems. 

We demonstrate the impact of each individual pattern by 
presenting, for benchmarks where that pattern was particu­
larly relevant, performance improvements from the highest-

Figure 1: Tiling diagram for implicit storage (e.g. cache) 
and explicit storage (e.g. scratchpad) 

performing code we could write without that optimization 
to the highest-performing code we have. Except where noted 
otherwise, results in this section are collected from the NVIDIA 
Tesla S1070 system described in Section 2. 

3.1 Tiling 
Tiling is perhaps the most widely used and understood 

technique for best utilizing a tiered memory hierarchy. While 
the technique is fundamentally the same in sequential code 
optimization, the actual implementation can vary with the 
design of an architecture's memory hierarchy, as shown in 
Figure 1. Tiling in the context of a CPU architecture with 
a large-capacity, implicitly managed cache hierarchy typi­
cally means writing regions of code that operate intensively 
on smaller sections of memory. The regions could then be 
repeated many times for different sections, or tiles, of data. 
The application need not explicitly define the region of mem­
ory being operated on, as the hardware should automatically 
respond to the heavy usage of certain regions and retain 
those regions in the cache. 

One of the most obvious differences of current GPU ar­
chitecture is explicitly managed on-chip memory, such as on 
the right side of Figure 1. To use the small-capacity, high­
bandwidth scratchpad, software must explicitly move data 
into it before use. The threads themselves are mediators be­
tween DRAM and scratchpad, under the direction of source 
code written by application programmers. 

Recent GPUs have also added small implicit caches to 
their general memory system, providing a hybrid of im­
plicitly and explicitly managed locality mechanisms. What 



Table 3: Tiling results 

Benchmark I Pattern performance impact 

Stencil 3.15x 
TPACF 1.12x 
SCEMM 6.18x 

makes even cached CPUs significantly different from typi­
cal CPUs is that the ratio of cache capacity to the number 
of potentially active threads is incredibly small for CPUs. 
Indeed, the overall predicted trend for highly multithreaded 
processors is towards more limited resources per thread []. 
For instance, if all thread contexts were active in an NVIDIA 
Fermi CPU and cache space were partitioned among active 
threads, each thread would have a mere 32 bytes of L1 or 
L2 cache space. 

Clearly, neither caches nor scratchpads in current CPUs 
were designed for CPU-style temporal locality and thread­
private tiles, but for overlapping accesses among threads. 
A block of threads may collectively have 16kB of private 
cache or scratchpad space even when all thread contexts 
are active, which is often sufficient to hold worthwhile-sized 
tiles of data. Therefore, the software technique of tiling is 
still applicable for CPUs, but very often must take the form 
of cooperative tiling using the shared resources of several 
threads for sufficient impact. 

The performance impacts of tiling are significant, as shown 
in Table 3. The 3x improvement in performance for the 
stencil benchmark corresponds to the fact that memory tiling 
reduces the number of bytes accessed from global memory 
per iteration from 5 words per thread to 1.25 words per 
thread on average. Performance does not increase by a full 
factor of 4x primarily because some accesses are still mis­
aligned, not fully utilizing DRAM bandwidth. Although 
the results in Table 3 are for a cacheless CPU, our exper­
iments in Section 4.3 verify, as any CPU high-performance 
programmer will assert, that software tiling is still critical 
for architectures with implicit caches. 

3.2 Privatization 
Privatization is the transformation of taking some data 

that was once common or shared among parallel tasks and 
duplicating it such that different parallel tasks have a private 
copy on which to operate. Parallel threads typically operate 
most efficiently when they can operate completely indepen­
dently, avoiding coordination with other threads, but many 
parallel algorithms require threads to interact to obtain a fi­
nal result. Privatization is applied to isolate regions of code 
where threads can operate independently and efficiently, be­
fore eventually combining results. 

Figure 2 shows a common multi-level privatization pat­
tern reflecting the hierarchical task decomposition common 
among highly parallel systems such as clusters or single-chip 
CPUs. Working up from the bottom of Figure 2, a global re­
sult is built from the partial results from many independent 
tasks (thread blocks in the case of a CPU. ) Those partial 
results are each in turn constructed from many more "pri­
vate" results. This kind of privatization has applications in 
many different kinds of algorithms. Collective operations 
such as sorting or reductions will use this pattern, as will 
data structures such as histograms or queues. 

Private 
Results 

Results 

Global 
Results 

Figure 2: Example of the common hierarchical privatization 
pattern 

Table 4: Privatization results 

Benchmark Pattern performance impact 

BFS 3.15x 
Histo 2.26x (CTX 480) 

One limitation of privatization is that the data footprint 
of the copies and the overhead of combining the copies scale 
with the amount of parallelism being exploited. This is why 
privatization is an extremely powerful technique for today's 
CMPs, with a relatively small number of threads, but some­
what limited for the levels of thread parallelism in highly 
multithreaded architectures. Often the "private" results are 
still shared by several CPU threads due to resource limita­
tions, but are intended to be constructed with as little inter­
thread cooperation as possible. As shown in Table 4, the 
BFS Parboil benchmark privatizes the output work queues, 
resulting in a 3x performance improvement over an unpriva­
tized implementation. Privatization allows the BFS kernels 
to exchange more costly global memory atomic operations 
for shared memory atomic operations, and also collects ir­
regular updates in shared memory before bulk-committing 
results to the global queue in a more regular pattern, im­
proving bandwidth. For the histogram benchmark, the pri­
vatization transformation was ineffective for the S1070 due 
to shared memory capacity limitations; we therefore report 
CTX 480 speedups in Table 4 for that benchmark. 

3.3 Scatter to Gather Transformation 
A few Parboil applications demonstrate a computation 

pattern where an input datum would either contribute to 
many output elements, or contribute to one or more stati­
cally unknown output elements, such as shown in Figure 3. 
In both either cases, a common pattern for sequential im­
plementation is to examine each input element, determine 
the output elements it affects, and update each one before 
moving on to the next input element. 



Figure 3: Depiction of a scatter-to-gather transformation 

Table 5: Scatter-to-Gather results 

Benchmark Pattern performance impact (GTX 480) I 
Histo 1.22 x I 

This method works poorly as parallelism scales, because 
the output accesses are either contentious or random or 
both. Examining the previous techniques, we see that tiling 
is very effective on input data, and privatization is very ef­
fective on output data. However, a kernel implemented with 
a scattering approach has no input read sharing to tile, and 
no outputs with multiple updates from the same thread to 
privatize. In these situations, it is often very important 
to transform the code such that input elements are read­
shared, but output elements are private to a parallel task. 
This is more palatable than the converse case because shared 
reads can be much more efficiently handled than conflicting 
writes, which typically require more costly atomic opera­
tions and coherence enforcement. A conversion to gather 
accesses means that privatization can be applied to output 
writes, reducing their cost, while techniques such as tiling 
can be applied to improve shared read efficiency. 

Scatter-to-Gather transformation works exceptionally well 
when the range of inputs affecting an output can be found 
without direct examination of the input data contents. If 
this input-to-output mapping cannot be done statically, some­
times the transformation must be supplemented with a bin­
ning operation. The Parboil Histogram benchmark gains 
about 20% performance on a Fermi architecture by using 
a gather-based approach instead of a scattering approach. 
Results are presented on the G TX 480 because the gather 
approach for the Parboil Histogram benchmark is only effec­
tive for GPUs with sufficient shared memory space to pri­
vatize a reasonable portion of the output histogram. The 
S1070 system does not have sufficient scratchpad capac­
ity for the scatter-to-gather transformation to improve his­
togram benchmark performance, and is therefore inapplica­
ble as an optimization for that architecture. 

3.4 Binning 
A gather operation can be difficult to orchestrate without 

a method of determining, based on output location, which 
inputs contribute to that location. In the Parboil Histogram 

Table 6: Binning results 

Benchmark Pattern performance impact 

CutCP 12.0x 

Raw Data Keys o 1 0 0 2  3 1 5 9 7 

Binned 
Data 

Compacted 
Data o 1 2 3 5 7 9 

Output dillll.1 

Overflow Data for 
Alternate Processing 

Figure 4: An example showing the binning, regularization, 
and compaction optimization patterns 

benchmark, for instance, a set of work-groups redundantly 
reads a section of the input data from off-chip DRAM, but 
each only processes the set falling within its own output 
range. 1 In general, the bandwidth cost of reexamining data 
scales with the amount of parallelism. Therefore, for some 
applications it is beneficial to first create a data structure 
creating a map from output locations to a small subset of 
the input data that may affect that output location, reducing 
the redundant reading of data. This data structure creation 
is called "binning", because it often reflects a sorting of input 
elements into bins representing a region of space containing 
those input elements. In the example of Figure 4, the un­
sorted data keys are examined and sorted into an array. If 
the input dataset were very regular, the sorting by key alone 
would likely create an efficiently accessible data structure. 
However, in the presence of irregularity, there will either 
be empty or overflowing bins for any fixed bin size, which 
should be addressed by some combination of the following 
two optimization patterns: regularization and compaction. 

Binning can improve system performance in several ways. 
If the GPU is performing both the binning and the com­
putation, the overhead of binning can be outweighed by 
the improved efficiency of the main compute kernels. Al­
ternatively, the binning operation could be offioaded to the 
CPU, potentially making better use of all available system 
resources. Binning is applicable in particular for the CutCP 
benchmark, as shown in Table 6. The speedups from binning 
are often very high, because binning input data for a kernel's 
input changes the fundamental computational complexity of 
the kernel algorithm. A scatter-based kernel may not need 
binning to get comparable computational complexity, but 
even for scattering kernels, binning is important because it 
can facilitate privatization of tiles of output data. 

3.5 Regularization 
Load imbalance has been one of the banes of parallel pro­

cessing throughout its history. Typically load imbalance is 
exacerbated when the level of parallelism being exploited 
increases. Architectures exploiting SIMD or SIMT vector 
processing suffer from low-level imbalance if the tasks as-

1 An example of a Scatter-to-Gather transformation without 
binning. Binning is not a useful technique for the Histogram 
benchmark because the actual histogram contribution is no 
more expensive in computation or bandwidth than the op­
eration of sorting the data into bins would be itself. 



Table 7: Regularization results 

Benchmark Pattern performance impact 

SpMV 2.4x 
MRI-Gridding 2.62x 

signed to different execution lanes process different amounts 
or kinds of work. GPU architectures are no exception. Fur­
thermore, if threads co-executing in a thread block have im­
balanced loads, the shared resources of the entire thread 
block may be occupied until the last thread completes, po­
tentially reducing the real amount of thread-level parallelism 
available for the architecture to exploit. 

Some applications that exhibit load imbalance can predict 
at run-time where and how the load imbalance will occur. In 
the example of Figure 4, we assume that the program can 
count the number of data elements for each key for much 
less cost that actually calculating its contribution to its par­
ticular output. A preprocessing step can limit the amount 
of imbalance in work units executed on the GPU by identi­
fying regions of load imbalance and proactively addressing 
them. In our example, during the binning process, elements 
that "overflow" a bin can be put in a separate data struc­
ture, which can be processed by some method less sensitive 
to load imbalance. 

Regularization is the optimization pattern of precondi­
tioning GPU kernel input to improve performance. Among 
the Parboil benchmarks, there are examples of processing 
work separately using a GPU kernel insensitive to imbal­
ance, offioading irregular work for the CPU to process con­
currently with the accelerated kernel. Other cases have no 
visible impact on the kernel code except that load imbalance 
and warp divergence are on average improved, resulting in 
higher performance. Regularization increases the efficiency 
of the primary accelerated kernels handling the majority of 
the processing, resulting in higher system performance over­
all, with impact as listed in Table 7. 

3.6 Compaction 
Compaction has been a technique within extremely par­

allel, shared-memory systems and programming models for 
quite some time as well. The fundamental issue is that when 
parallel work units produce a varying number of output el­
ements into statically allocated output buffers, the buffer 
size must be overprovisioned. Because tasks determine out­
put locations statically, unused holes or spaces in the out­
put are the consequence of overprovision, such as those bins 
marked by X's in Figure 4. Output gaps interleaved with 
useful data cause bandwidth efficiency to drop for DRAM 
and cache architectures operating on transactions of larger, 
contiguous memory chunks. Compaction is a method of co­
ordinating parallel tasks to dynamically determine output 
locations such that no holes are introduced. 

If compaction were a separate processing step, as depicted 
in Figure 4, it would simply move all the useful data elements 
into contiguous addresses, filling in the holes, while keeping 
track of where each output section begins, as it will be data­
dependent [1]. More often, and in the MRI-Gridding and 
BFS Parboil benchmarks where GPU computation produces 
compacted output, the compaction is integrated into the 
kernel producing output itself. 

Table 8: Compaction results 

Benchmark Memory buffer size reduction 

SpMV 49% 
MRI -G ridding 68% 

Array of Structures struct fool 
float a; 
float b; 
float c; 
int d· 

} A[8) ; 

struct fool 
float a [8) 
float b[8) 
float c [8) 
int d[8); 

} A; 

Array of Structures of Tiled Arrays (ASTA) struct fool 
float a[4) 
float b[4) 
float c[4) 
int d[4); 

} A[2); 

Figure 5: Data layout example for a collection of structures. 
Different layouts affect the coalescing of each warp access 
and the locality of multiple accesses. 

The benefits from compaction primarily stem from the re­
duced memory footprint of the compacted data format. Per­
formance impacts are typically only meaningful for bandwidth­
bound kernels, and even then only minimally if the overpro­
visioned regions of the buffers are mostly contiguous. Thus, 
we quote not performance results but memory capacity re­
duction effects in Table 8. Compaction is essential for the 
MRI-Gridding benchmark in particular, for which we can­
not even run uncompacted versions of reasonable datasets 
on most GPUs due to insufficient global memory capacity. 

3.7 Data Layout Transformation 
DRAM systems supporting both CPU and GPU architec­

tures are designed to transfer data in large, contiguous lines 
or rows. Poor usage of CPU cache lines or GPU coalesced 
bursts will result in poor performance. However, GPU co­
alescing rules are somewhat harsher, because of the shorter 
time window over which the software could make use of a 
data burst from DRAM before any unused data is "dropped", 
requiring retransmission if needed at a future time. In some 
GPU architectures, the window is instantaneous, only ex­
posed to a single SIMD instruction. More recent architec­
tures introduce a small degree of caching extending this win­
dow, but because of the high degree of threading and the 
cache's low capacity, the window in practice is still very 
small. This is in contrast to CPU cache lines, which will 
typically sit in the cache for a longer period of time before 
being replaced. 

Programmers work within the DRAM system design with 
well chosen data traversal orders or task index organization. 
If the elements in question are single-word data and closely 
associated with task indexes, a good choice of task index 
to element index mapping is typically sufficient to get good 



Table 9: Data Layout results 

Benchmark Pattern performance impact 

LBM 1l.0x 
SpMV l.21x 

memory system performance. However, that pleasant situ­
ation is not always feasible. Sometimes, the data elements 
needed within a particular time window are not naturally 
adjacent to each other in the memory address space. Take, 
for example, the diagram in Figure 5, which shows a warp 
accessing fields from a set of cells for various layouts. In the 
top case, using C standard data structure layout, the warp 
access addresses with a large stride between them, requir­
ing multiple memory lines of mostly unused data to fulfill 
the requests. The middle case of Figure 5 shows equivalent 
accesses with a structure-of-arrays layout, a common trans­
formation. However, even the middle case results in a large 
distance between the addresses of two fields, which are likely 
to happen very close together in time. 

Depending on the memory system design, performance 
can be improved further by more complex layout transfor­
mation [9], perhaps resulting in a layout like that depicted 
at the bottom of Figure 5 where accesses to multiple fields 
will request adjacent, contiguous regions of memory. Spe­
cific examples of data layout transformation in the Parboil 
benchmarks include several instances of array-of-structure to 
structure-of-array transformations, a matrix transposition in 
SGEMM, and a transposed sparse matrix data storage for­
mat in SpMV. We specifically isolate the data layout trans­
formation effect for the LBM benchmark, with an order-of­
magnitude speedup as shown in Table 9. Overall, trans­
formations for the purposes of achieving coalescing often 
achieve very high performance gains, such as the LBM, while 
layout transformations for improving memory level paral­
lelism or avoiding moderate partition camping can effect 
a more modest improvement. Sung et al. report speedups 
ranging from 5% to 30% for already coalesced accesses in 
different benchmarks [9]. 

3.8 Granularity Coarsening 
Granularity coarsening has been anecdotally described in 

many application optimization papers, perhaps most rigor­
ously by Volkov in regards to linear algebra kernels [10]. 
When a larger task is decomposed into a set of fine-grained 
work-items, there is almost invariably some amount of over­
head introduced in the problem decomposition. The over­
head may vary for different algorithms and kernels, but al­
most every kernel will exhibit some inefficiencies in recalcu­
lating values like address offsets or other seemingly "small" 
operations in many threads. The finer the decomposition, 
typically the larger the overhead incurred. In addition to in­
nate implementation inefficiencies, most real systems incur 
some fixed costs creating or scheduling parallel tasks, and 
communication operations tend to become more costly as 
the number of communicating tasks grows. 

The CUDA and OpenCL programming models lend them­
selves to an "elemental" style of decomposition, where the 
source code of the kernel is scalar, processing a single ele­
ment, with as many threads created as there are elements to 
process. With this extreme level of decomposition, the level 
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Figure 6: Granularity coarsening and resulting efficiency 
gains. Each shaded box represents an executed instruction 
or operation. 

Table 10: Granularity Coarsening results 

Benchmark Pattern performance impact 

SGEMM l.96x 
CutCP 1.3x 

of redundancy and other inefficiencies can be surprisingly 
high, but difficult to address within the elemental-function 
methodology as the cost of communicating between different 
tasks is still higher than the cost of redundant computation. 

Granularity coarsening is essentially a de-parallelization 
of a program. Instead of executing code where each thread 
processes one element, each thread processes several. Fig­
ure 6 shows a coarsening transformation by a factor of six. 
By putting several threads together, redundant operations 
that were previously executed once by each original thread 
have their redundant executions reduced by a factor of the 
degree of coarsening. Furthermore, what had been shared 
reads or conflicting writes to a variable in the untransformed 
code become private uses of data. In the example of Fig­
ure 6, although task parallelism was reduced by a factor of 
six, the total number of operations required to compute the 
full output was reduced by nearly two-thirds. The efficiency 
gains make incremental coarsening worthwhile so long as the 
amount of parallelism is still sufficient to occupy the parallel 
resources of the device. Examples of specific efficiency gains 
are shown in Table 10. 

3.9 Summary 
Table 11 shows a compact representation of which opti­

mization patterns were relevant for each benchmark. Note 
that the table does not convey the relative importance of 
each optimization pattern to each benchmark. In our expe­
rience, a given benchmark's performance improvement due 
to optimization is typically dominated by one or two opti­
mizations, with others making smaller contributions. Also, 
note that certain optimization patterns are widely applica­
ble, such as granularity coarsening, while others are only 
applicable to applications with certain characteristics, such 
as binning. Finally, we would like to point out that some of 
the optimization patterns are clustered. Regularization and 
compaction, for instance, are typically combined rather than 
applied separately, because both are applicable for similar 
workload characteristics. 

We are not necessarily convinced that these optimization 



Table 11: Applicability of optimization patterns to each benchmark 
Scatter to 

Benchmark Tiling Privatization Gather Binning 
cutcp X X X 
mri-q X 
mri-gridding X X X 
sad X 
stencil X 
tpacf X X 
Ibm 
sgemm X 
spmv 
bfs X 
histo X X 

patterns are a comprehensive list, and would not be sur­
prised to see other application domains introduce optimiza­
tion patterns not represented in our studied benchmarks. 
However, given the generality of the patterns that we have 
seen so far, we do suggest that at least some of these op­
timization patterns will be applicable to almost any GPU 
application workload. 

4. PERFORMANCE IMPACT OF 

ARCHITECTURES 
Having explored the workload and optimization character­

istics demonstrated by the Parboil benchmarks, we can now 
discuss in more detail the impact of different GPU architec­
ture features on workload performance. Such a study could 
be approached multiple ways, with each method leading to 
particular insights. Due to space constraints, we would like 
to focus on three primary methods of inquiry. In the first, 
we assume that GPU workloads are in a state of perpet­
ual hardware-software co-design and optimization. Our ex­
perimental results under this methodology will show how 
optimized software targets new features in each successive 
hardware generation, and how architecture changes amplify 
the benefit of particular optimization patterns. Secondly, 
we examine the other end of the optimization spectrum, to 
see how a simple, unoptimized implementation of each of 
the Parboil benchmarks improves with successive hardware 
generations. These results will tell us how well implicit or 
compiler-targeted hardware features are finding ways to im­
prove performance without explicit software support. Fi­
nally, we would like to compare the performance gains of 
code optimization for each architecture generation, to un­
derstand how different architectures change or preserve the 
optimization process. Unfortunately, the Parboil datasets 
for the MRI-Gridding benchmarks were large enough that 
the GPU global memory capacity of both the 9800 GX2 and 
the S1070 were insufficient to collect baseline results. This 
both highlights the necessity of the compaction optimiza­
tion for this benchmark, and prevents us from analyzing its 
performance any further. 

4.1 Hardware-Software Co-Design Results 
We optimized each of the benchmarks for each of the GPU 

architectures studied, and recorded the speedups achieved 
by successive architecture generations in Figure 7. Because 
the implementations for the earlier generations were already 
optimized around most of the performance cliffs of those 
architectures, the advances made by successive generations 
are typically near the increase in raw bandwidth or instruc­
tion throughput. Architecture feature improvements with 
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Figure 7: Performance of code optimized for each succes­
sive GPU generation, plotted against raw throughput and 
bandwidth scaling for comparison 

a moderate impact on optimized workload performance in­
clude increased register file capacity, which boosted the per­
formance of applications such as SGEMM and SAD in par­
ticular because of the extensive register tiling of those bench­
marks. The performance improvement for register tiled bench­
marks came less from the opportunity of additional register 
tiling, which reaches asymptotically low incremental benefits 
and had little impact in practice, but more from the archi­
tecture's ability to increase occupancy for the same degree 
of register tiling. 

The single feature with the most performance impact over­
all was the global memory cache added in the GTX 480 
generation. Even for optimized codes, scratchpad usage can 
introduce meaningful inefficiencies into the software. That 
overhead is typically overcome by the performance improve­
ment due to captured locality otherwise unattainable in the 
absence of a cache, but does put scratchpad at a disad­
vantage to implicit caches for certain workloads. Further­
more, the GTX 480's cache captures what private scratch­
pads never can: shared locality among different thread blocks 
and access patterns with irregular locality. The spmv bench­
mark performance increases for the GTX 480 primarily from 
the caching of irregular accesses to the dense vector. The 
stencil benchmark benefits from caching because any mem-



100 peak GFLOPS 0 
peak BW / 

/ 
Q) bfs ... + ... / u c:: cutcp ....... )( .... / 
ro / 
E histo _.-+.- / 

Ibm _ .  - G· _ .  / 
.g / . .  

sgemm .. .•.. . / Q) 0/ a. mri-q ·_·· e · · _· 
N sad / 
x 
C) 10 spmv 
0 stencil 0 tpacf co (J) 
(jj 

./ :�" 
D > 0 ./.::',' 

,�::-",� a. :::l 
"0 ./ .... ··x 
Q) Q) a. 

(J) 

9800 GX2 S1070 GTX 480 

Figure 8: Performance of unoptimized code across GPU 
generations, plotted against raw throughput and bandwidth 
scaling for comparison 

ory tiling approach in that benchmark must address the fact 
that the sizes of input tile needed to compute an output tile 
does not match the output tile size. Thread blocks sizes 
must be chosen to fit either the input or output tile size, 
resulting in inefficiencies from idle threads or increased soft­
ware complexity for explicitly copying input tiles, respec­
tively. In addition the tile borders overlap with the working 
sets of other thread blocks, exposing locality that cannot 
be captured with private scratch pad memory. The version 
of the stencil benchmark optimized for the GTX 480 actu­
ally avoids memory tiling, improving the efficiency of the 
instruction stream by relying on the cache and thread block 
scheduling policy to capture locality. The cache also sig­
nificantly improves the BFS benchmark's performance by 
caching the end of the output queue while threads in a block 
incrementally add to its taiL 

Surprisingly, atomic operations to shared memory had less 
performance impact than we expected. On further analy­
sis, we found that privatization optimizations had reduced 
contention on shared memory locations requiring atomic up­
dates to the point that the overhead of our software atomic 
updates, which scales with contention, was not so high as to 
make hardware assisted atomics indispensable. While our 
iterative atomic update methods were limited to certain sit­
uations, the versions optimized for the 9800 GX2 targeted 
those situations specifically, resulting in sufficient atomic up­
date performance. 

Finally, we note that the BFS benchmark in particular 
does not scale very well with regards to the number of SMs in 
the system. The BFS kernel that fills the GPU and performs 
device-wide barrier synchronizations in certain kernels does 
not perform as well on the S0170 as on the narrower 9800 
GX2 and GTX 480 devices. As it is likely that machine 
widths will be increasing on average in the future, it seems 
reasonable to expect that using atomic operations for chip­
wide synchronizations will become increasingly inefficient, 
and should perhaps be avoided if possible. 

4.2 Baseline Performance Improvements 
Figure 8 shows the performance improvement of a sin­

gle, optimization-agnostic implementation across the differ­
ent GPU generations, again plotted against the raw through­
put and bandwidth improvements of the devices themselves. 
The definition of "unoptimized" is somewhat slippery, be­
cause it is always possible to write less efficient code by 
doing some kind of useless computation. Our philosophy 
while writing these baseline versions was to write the sim­
plest functional code that seemed reasonable to us. We can­
not claim that the baseline versions of all the benchmarks 
are equivalently unoptimized, but believe we can still learn 
some useful insights by paying attention to what "inefficien­
cies" are automatically mitigated or eliminated by particular 
architectures. 

Generally, we can see that the performance trends are 
definitely positive, and significantly higher in magnitude 
than the improvement of optimized code versions. In sev­
eral instances, one architecture generation brings order-of­
magintude speedups over the previous generation, mostly 
for benchmarks with artificially poor memory bandwidth 
performance for uniform or misaligned accesses on the 9800 
GX2 surging in performance when those limitations were re­
moved in the S1070. The Fermi generation improved global 
memory broadcast accesses further by automatically pro­
moting them to use the constant memory cache. Broadcast 
accesses are those where each thread in a warp loads from 
exactly the same address in a particular instruction. The 
GPU's constant cache supports this access pattern with very 
high performance. The constant cache design of the GTX 
480 architecture enables the CUDA compiler to automati­
cally transform accesses to use it under certain conditions, 
which reduces pressure on the general global memory cache 
and resultx in significant speedups for unoptimized mri-q, 
tpacf, and sgemm implementations. 

Despite the raw bandwidth improvements of the S1070 
over the 9800 GX2, the strided access pattern of the unop­
timized Ibm benchmark saw practically no performance im­
provement. It was not until the cache of the GTX 480 that 
its performance meaningfully improved. The GTX 480 cache 
also had significant impact on the performance of codes with 
had shared locality in the accesses among thread blocks that 
was not exploited by explicit memory tiling, in particular the 
stencil benchmark. 

4.3 Optimization & Architecture Interactions 
Finally, we examine the performance improvements of op­

timization for each benchmark and GPU generation, with 
results presented in Figure 9. Overall trend is significantly 
downward, implying that optimizations in general are be­
coming less critical over time. Conversely, we can say that 
many of the performance cliffs avoided by optimization are 
becoming less steep with successive architecture generations. 
However, there are some exceptions. The binning optimiza­
tion pattern, exemplified by the cutcp benchmark in particu­
lar, results in consistently high speedups due to the change in 
fundamental algorithmic complexity, as should be expected. 
Also, while architectures are becoming slightly less sensitive 
to imperfect access patterns, good data layout remains ex­
tremely important, as exemplified by the Ibm benchmark's 
5x performance improvement from layout transformation, 
even on the Fermi architecture. For the sgemm benchmark, 
register tiling results in consistently high speedups. For 
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Figure 9: Speedup of optimizations for each GPU generation 

such "simple" codes, the primary bottleneck is instruction 
stream efficiency: how many instructions compute neces­
sary floating-point operations relative to how many instruc­
tions calculate addresses or move memory around. Even 
when artificial bandwidth inefficiencies are addressed by the 
Fermi architecture, a significant speedup can be expected 
from good register tiling. 

5. CONCLUSIONS 
Hundreds of articles have been published on optimizing 

applications for GPUs, and for good reason. In this pa­
per, we have verified that for nearly all applications, hand­
optimization has great performance rewards for GPU archi­
tectures. Additionally, those application optimizations are 
worth explaining and sharing, because certain patterns of 
optimization are applicable for a wide range of workloads. 
Each optimization pattern discussed in this paper was some­
what applicable for at least two benchmarks, and critically 
important for one or two as well. 

We can also verify that some of the "worst" days of GPU 
computing are now behind us. Although legacy GPUs will 
still linger in the marketplace for several years, NVIDIA and 
other vendors seem to be getting on track with the design 
philosophy that unoptimized code exists, matters, and must 
be addressed. While major optimizations like binning or 
good choice of data layout should continue to be forefront 
in the minds of developers, others we are beginning to think 
of as good things to do if there is time instead of essential 
for getting any kind of reasonable performance. 

Finally, based on experiments on past architectures, we 
can say with some confidence that if there were some way 

of making these optimization patterns unnecessary, it would 
have been done by now. Many of the optimization patterns 
could be applied to any parallel system, and are still relevant 
for today's multicore CPUs after decades of research and 
experience with high-performance parallel systems. 

While innovation may still surprise us, it seems like man­
ual program optimization, and in particular the optimiza­
tion patterns we have presented in this paper, will continue 
to be relevant forparallel architectures in general, and GPUs 
specifically, for years to come. Software developers for high­
performance applications would do well to brush up on these 
optimization patterns, and to continue to publish optimiza­
tion insights either applying these general patterns to spe­
cific contexts, or possibly describing new optimization pat­
terns. 
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