
Optimization and Architecture Effects on GPU Computing
Workload Performance

John A. Stratton*
stratton@illinois.edu

Nasser Anssari*
anssaril@illinois.edu

Christopher Rodrigues*
cirodrig@illinois.edu

I-Jui Sung* Nady Obeid*t
sungl0@illinois.edu nady.obeid@gmail.com

Liwen Chang*
lchang20@illinois.edu

Geng Daniel Liu* Wen-mei Hwu*
w-hwu@illinois.edu gengliu2@illinois.edu

ABSTRACT

*University of Illinois
Electrical and Computer Engineering

Urbana, Illinois, USA

It is unquestionable that successive hardware generations
have significantly improved CPU computing workload per­
formance over the last several years. Moore's law and DRAM
scaling have respectively increased single-chip peak instruc­
tion throughput by 3X and off-chip bandwidth by 2.2X from
NVIDIA's CeForce 8800 CTX in November 2006 to its CeForce
CTX 580 in November 2010. However, raw capability num­
bers typically underestimate the improvements in real ap­
plication performance over the same time period, due to
significant architectural feature improvements.

To demonstrate the effects of architecture features and
optimizations over time, we conducted experiments on a set
of benchmarks from diverse application domains for multi­
ple CPU architecture generations to understand how much
performance has truly been improving for those workloads.
First, we demonstrate that certain architectural features
make a huge difference in the performance of unoptimized
code, such as the inclusion of a general cache which can
improve performance by 2-4x in some situations. Second,
we describe what optimization patterns have been most es­
sential and widely applicable for improving performance for
CPU computing workloads across all architecture genera­
tions. Some important optimization patterns included data
layout transformation, converting scatter accesses to gather
accesses, CPU workload regularization, and granularity coars­
ening, each of which improved performance on some bench­
mark by over 20%, sometimes by a factor of more than 5x .
While hardware improvements to baseline unoptimized code
can reduce the speedup magnitude, these patterns remain
important for even the most recent CPUs. Finally, we iden­
tify which added architectural features created significant
new optimization opportunities, such as increased register
file capacity or reduced bandwidth penalties for misaligned
accesses, which increase performance by 2 x or more in the
optimized versions of relevant benchmarks.

Keywords

CPU, CUDA, Optimization

1. INTRODU CTION

tKLA Tencor
Milpitas, California, USA

While no community or field springs out of nothing, the
modern field of CPU computing had a major inflection point
approximately five years ago with the first support for C­
based programming languages for general computation on
CPUs. Very quickly, the community discovered and pub­
lished what worked well on CPU platforms and what didn't
at first. As the years progressed, CPU architects and ap­
plication researchers continually pushed at the boundaries
of what CPUs could do effectively, significantly improving
performance for many workloads. At this juncture, with
five years of experience and a new academic conference ex­
plicitly dedicated to novel parallel computing platforms and
applications, we would like to examine some CPU comput­
ing workloads and see how far we have come, and what is
most important to learn from the current state of the art as
we continue to move forward.

We would like to focus on two major aspects of the CPU
computing field over the last five years. The first is the op­
timization and programming patterns that have shaped op­
timized applications for CPU architectures. Several design
principles of CPU architectures have been and will likely
continue to be very consistent, such as SIMT and high de­
grees of multithreading. We have surveyed many CPU com­
puting applications and kernels and distilled what we believe
to be several key optimization techniques and design consid­
erations for high-performance CPU-computing workloads.
These techniques deserve to be covered in some detail and in
a way that can be understood across domains, because they
reflect the common patterns a new CPU programmer in any
domain should learn. In addition, we believe that these op­
timization patterns will continue to gain broader relevance
over time, because the optimization patterns we present are
fundamentally about implementing scalable, efficient paral­
lel programs on an architecture with many cores, vector exe­
cution, and limited memory bandwidth. We present our fo­
cused discussion on such optimization patterns in section 3.

Second, we present new experiments exploring the design
space of CPU architecture itself, which has been both re­
markably consistent and increasingly friendly to application
programmers over the last several years. The tipping point
of CPU computing five years ago coincided with the CPU

978-1-4673-2633-9/12/$31.00 ©2012 IEEE

Table 1: GPU Architecture Summaries

9800 GX2 S1070 GTX 480
(One GPU) (One GPU)

Released Mar. 2008 Nov. 2008 Mar. 2010
Compute 1.1 1.3 2.0
capability
SP Opslsec 576 1037 1345

GFLOPS GFLOPS GFLOPS
DRAM 64 GB/s 102 GB/s 177 GB/s
bandwidth

global mem- shared mern- general cache,
ory atomics, ory atomics,

Features shared & con- reduced coa- increased
stant memory lescing penal- shared mem-

ties ory capacity

industry shift to unified shader cores, and for good reason.
Unified compute cores running a common instruction set
enabled a single SPMD kernel to use all available process­
ing on the GPU with no special effort. However, the first
compute-capable GPUs still lacked many features, restrict­
ing the applications that could effectively use them. We
select a benchmark suite of GPU workloads, track its per­
formance through the years of GPU architecture revisions,
and analyze when and how performance improved most for
each kind of application. Our experiments, presented in sec­
tion 4 should give us some insight into what architecture
features in the accelerator design space truly mattered for
workload performance. In section 5, we summarize our in­
sights from both the optimization patterns and architecture
studies. But first, we shall describe some necessary back­
ground and methodology information.

2. ARCHITECTURE EVOLUTION
GPU computing workloads are extremely diverse. Liter­

ally hundreds of GPU application optimization papers have
been published over the past few years alone. The GPU
Computing Gems books alone document dozens, from very
diverse fields [4, 5J. The SHOC OpenCL benchmark suite
(with some equivalent CUDA benchmarks) has multiple "lev­
els", benchmarking increasingly complicated codes [3J. The
SHOC level 0 benchmarks are essentially microbenchmarks
for stress-testing things like memory bandwidth. Level 1
benchmark are simple, common primatives such as reduc­
tion, scan, SGEMM, and others. Level 2 benchmarks (of
which there is only one at time of writing) are considered
full applications. The Rodinia [2J and Parboil [8J benchmark
suites overlap some with each other and with the SHOC
benchmarks, mixing "primitives" with "applications". Both
Parboil and Rodinia have CUDA and OpenCL implementa­
tions, except for two Rodinia benchmarks lacking OpenCL
support at time of writing. Because part of our goals was
to reimplement and reoptimize our benchmarks for multiple
GPU devices, we chose to work with the Parboil benchmark
suite, which has both reasonably-sized benchmarks for reim­
plementation and scripting support for multiple implemen­
tations and platforms.

All our experiments were conducted on one of three GPUs,
which are summarized in Table 1. The first system houses
an NVIDIA GeForce 9800 GX2, of which we only use one of

the included GPU chips. We chose this device as opposed
to slightly older G80-generation device because of the added
support for atomic operations to global memory, without
which some of our benchmarks would be practically impos­
sible to implement. Atomic operations to shared memory
are not supported in this device, but can often by emulated
by barriers or clever uses of shared memory consistency and
warp scheduling assumptions valid for that device. Such em­
ulated atomic operations come at a higher software develop­
ment, performance, and portability cost. Additionally, the
9800 GX2 architecture carries a harsh penalty to any imper­
fectly coalesced memory accesses, generating many DRAM
line accesses even for contiguous but simply misaligned ac­
cesses.

Experiments on a second system executed on a single GPU
of an NVIDIA Tesla S1070. That GPU, and others of com­
pute capability 1.2 and higher, support atomic operations to
shared memory, allowing for more robust and efficient com­
munication among threads in a block for certain program­
ming patterns. In addition, the S1070 removes the harshest
penalties for uncoalesced accesses, such that a misaligned ac­
cess will only transfer the two DRAM lines straddled by the
contiguous addresses. In general, the S1070's coalescing unit
will generate the fewest number of DRAM transactions nec­
essary to satisfy the requests from a single warp-instruction.

Finally, the third system consists of an NVIDIA GTX 480.
The "Fermi" GPU generation, designated by compute capa­
bilities 2.0 and higher and including the GTX 480, adds a
general cache hierarchy to the global memory system, and
increased shared memory capacity for those kernels need­
ing it. In addition, an addition to its instruction set allows
the CUDA compiler to automatically target certain access
patterns to the constant memory cache for high broadcast
performance.

Clearly, at time of publication all of these devices will
be two or more years old, which for scientific computing
implies that the performance results may not be directly
relevant for future hardware. However, the insights gained
from analyzing the feature sets should continue to be infor­
mative. While NVIDIA is unlikely to remove standardized
hardware features in future generations, determining which
features proved most impactful can help shape the acceler­
ator market as a whole towards the most useful feature set
for accelerated workloads.

3. OPTIMIZATION PATTERNS FOR

PARALLEL CHIP ARCHITECTURES
A segment of the parallel programming community has

long been interested in characterizing the programming pat­
terns that are effective for parallel systems [7, 6J. However,
in our conversations with some of authors in that field, they
have confided that they sometimes struggle with the fact
that once a parallel program is implemented, the optimiza­
tion process involves software development practices com­
pletely outside the domain of their structural patterns. We
would therefore like to begin the academic discussion of a
set of patterns systematizing the optimization of parallel
programs. The optimization patterns were drawn in partic­
ular from our informal survey of the GPU Computing Gems
contributions [4, 5J, and from a focused and detailed analysis
of the Parboil benchmarks.

Table 2 summarizes our proposed collection of optimiza-

Technique Contention Bandwidth Locality Efficiency Load Imbalance CPU Leveraging
Tiling X X
Privatization X X
Scatter to Gather Conversion X
Binning X X X X
Regularization X X X
Compaction X
Data Layout Transformation X X
Granularity Coarsening X X X X

Table 2: Issues Addressed by OptimIzatIOn Pattern

tion patterns and the goals or benefits accomplished by each.
One interesting note is that for certain goals, more than one
potential optimization technique may apply. The choice of
which technique best fits the application currently requires
significant human analysis of the code, a costly effort.

Because accelerators are highly parallel devices, many of
the techniques specifically address general performance is­
sues that arise from programming a highly parallel shared­
memory architecture, such as contention and load imbal­
ance. Some techniques are not specific to highly parallel
architectures, but avoid especially severe performance cliffs
given the design of today's accelerator architectures, such as
the especially software-driven approaches to effective band­
width utilization and locality management. Still other tech­
niques are specifically targeted towards leveraging the ben­
efits of a hybrid system, using the versatility of the CPU
to not only process necessarily sequential code regions but
to also precondition GPU kernel inputs such that kernels
can be further optimized than would be possible for general
input.

Finally, parallel architectures are fundamentally a collec­
tion of sequential processing units. When a parallel archi­
tecture is well used, the performance limitation of a program
on that architecture is the efficiency of the sequential pro­
grams running on each execution unit. Therefore, sequential
program performance optimization is still an area of inter­
est for the SPMD code executed on the accelerator. We
will not discuss those techniques here, as they are well stud­
ied and not unique to parallel programming systems, but
acknowledge that immature compiler technology sometimes
will necessitate direct programmer implementations of "triv­
ial" code optimizations.

We firmly believe that every one of the patterns we de­
scribe here has been explained in previous work, but note
that previous descriptions of these patterns as they apply to
GPU workloads are typically embedded within implementa­
tions of specific workloads. While we do not take credit for
being the first to discover any of these individual transfor­
mations, we believe that there is useful insight to be gained
by consolidating summaries of all those we found applied
to the Parboil benchmarks in a way that highlights their
generality to a variety of GPU computing workloads. By
gathering the optimization patterns together, anchored by
the real benchmarks using them, we can study how they
interact with one another, their variations among different
applications, and their individual and cumulative results on
real hardware systems.

We demonstrate the impact of each individual pattern by
presenting, for benchmarks where that pattern was particu­
larly relevant, performance improvements from the highest-

Figure 1: Tiling diagram for implicit storage (e.g. cache)
and explicit storage (e.g. scratchpad)

performing code we could write without that optimization
to the highest-performing code we have. Except where noted
otherwise, results in this section are collected from the NVIDIA
Tesla S1070 system described in Section 2.

3.1 Tiling
Tiling is perhaps the most widely used and understood

technique for best utilizing a tiered memory hierarchy. While
the technique is fundamentally the same in sequential code
optimization, the actual implementation can vary with the
design of an architecture's memory hierarchy, as shown in
Figure 1. Tiling in the context of a CPU architecture with
a large-capacity, implicitly managed cache hierarchy typi­
cally means writing regions of code that operate intensively
on smaller sections of memory. The regions could then be
repeated many times for different sections, or tiles, of data.
The application need not explicitly define the region of mem­
ory being operated on, as the hardware should automatically
respond to the heavy usage of certain regions and retain
those regions in the cache.

One of the most obvious differences of current GPU ar­
chitecture is explicitly managed on-chip memory, such as on
the right side of Figure 1. To use the small-capacity, high­
bandwidth scratchpad, software must explicitly move data
into it before use. The threads themselves are mediators be­
tween DRAM and scratchpad, under the direction of source
code written by application programmers.

Recent GPUs have also added small implicit caches to
their general memory system, providing a hybrid of im­
plicitly and explicitly managed locality mechanisms. What

Table 3: Tiling results

Benchmark I Pattern performance impact

Stencil 3.15x
TPACF 1.12x
SCEMM 6.18x

makes even cached CPUs significantly different from typi­
cal CPUs is that the ratio of cache capacity to the number
of potentially active threads is incredibly small for CPUs.
Indeed, the overall predicted trend for highly multithreaded
processors is towards more limited resources per thread [].
For instance, if all thread contexts were active in an NVIDIA
Fermi CPU and cache space were partitioned among active
threads, each thread would have a mere 32 bytes of L1 or
L2 cache space.

Clearly, neither caches nor scratchpads in current CPUs
were designed for CPU-style temporal locality and thread­
private tiles, but for overlapping accesses among threads.
A block of threads may collectively have 16kB of private
cache or scratchpad space even when all thread contexts
are active, which is often sufficient to hold worthwhile-sized
tiles of data. Therefore, the software technique of tiling is
still applicable for CPUs, but very often must take the form
of cooperative tiling using the shared resources of several
threads for sufficient impact.

The performance impacts of tiling are significant, as shown
in Table 3. The 3x improvement in performance for the
stencil benchmark corresponds to the fact that memory tiling
reduces the number of bytes accessed from global memory
per iteration from 5 words per thread to 1.25 words per
thread on average. Performance does not increase by a full
factor of 4x primarily because some accesses are still mis­
aligned, not fully utilizing DRAM bandwidth. Although
the results in Table 3 are for a cacheless CPU, our exper­
iments in Section 4.3 verify, as any CPU high-performance
programmer will assert, that software tiling is still critical
for architectures with implicit caches.

3.2 Privatization
Privatization is the transformation of taking some data

that was once common or shared among parallel tasks and
duplicating it such that different parallel tasks have a private
copy on which to operate. Parallel threads typically operate
most efficiently when they can operate completely indepen­
dently, avoiding coordination with other threads, but many
parallel algorithms require threads to interact to obtain a fi­
nal result. Privatization is applied to isolate regions of code
where threads can operate independently and efficiently, be­
fore eventually combining results.

Figure 2 shows a common multi-level privatization pat­
tern reflecting the hierarchical task decomposition common
among highly parallel systems such as clusters or single-chip
CPUs. Working up from the bottom of Figure 2, a global re­
sult is built from the partial results from many independent
tasks (thread blocks in the case of a CPU.) Those partial
results are each in turn constructed from many more "pri­
vate" results. This kind of privatization has applications in
many different kinds of algorithms. Collective operations
such as sorting or reductions will use this pattern, as will
data structures such as histograms or queues.

Private
Results

Results

Global
Results

Figure 2: Example of the common hierarchical privatization
pattern

Table 4: Privatization results

Benchmark Pattern performance impact

BFS 3.15x
Histo 2.26x (CTX 480)

One limitation of privatization is that the data footprint
of the copies and the overhead of combining the copies scale
with the amount of parallelism being exploited. This is why
privatization is an extremely powerful technique for today's
CMPs, with a relatively small number of threads, but some­
what limited for the levels of thread parallelism in highly
multithreaded architectures. Often the "private" results are
still shared by several CPU threads due to resource limita­
tions, but are intended to be constructed with as little inter­
thread cooperation as possible. As shown in Table 4, the
BFS Parboil benchmark privatizes the output work queues,
resulting in a 3x performance improvement over an unpriva­
tized implementation. Privatization allows the BFS kernels
to exchange more costly global memory atomic operations
for shared memory atomic operations, and also collects ir­
regular updates in shared memory before bulk-committing
results to the global queue in a more regular pattern, im­
proving bandwidth. For the histogram benchmark, the pri­
vatization transformation was ineffective for the S1070 due
to shared memory capacity limitations; we therefore report
CTX 480 speedups in Table 4 for that benchmark.

3.3 Scatter to Gather Transformation
A few Parboil applications demonstrate a computation

pattern where an input datum would either contribute to
many output elements, or contribute to one or more stati­
cally unknown output elements, such as shown in Figure 3.
In both either cases, a common pattern for sequential im­
plementation is to examine each input element, determine
the output elements it affects, and update each one before
moving on to the next input element.

Figure 3: Depiction of a scatter-to-gather transformation

Table 5: Scatter-to-Gather results

Benchmark Pattern performance impact (GTX 480) I
Histo 1.22 x I

This method works poorly as parallelism scales, because
the output accesses are either contentious or random or
both. Examining the previous techniques, we see that tiling
is very effective on input data, and privatization is very ef­
fective on output data. However, a kernel implemented with
a scattering approach has no input read sharing to tile, and
no outputs with multiple updates from the same thread to
privatize. In these situations, it is often very important
to transform the code such that input elements are read­
shared, but output elements are private to a parallel task.
This is more palatable than the converse case because shared
reads can be much more efficiently handled than conflicting
writes, which typically require more costly atomic opera­
tions and coherence enforcement. A conversion to gather
accesses means that privatization can be applied to output
writes, reducing their cost, while techniques such as tiling
can be applied to improve shared read efficiency.

Scatter-to-Gather transformation works exceptionally well
when the range of inputs affecting an output can be found
without direct examination of the input data contents. If
this input-to-output mapping cannot be done statically, some­
times the transformation must be supplemented with a bin­
ning operation. The Parboil Histogram benchmark gains
about 20% performance on a Fermi architecture by using
a gather-based approach instead of a scattering approach.
Results are presented on the G TX 480 because the gather
approach for the Parboil Histogram benchmark is only effec­
tive for GPUs with sufficient shared memory space to pri­
vatize a reasonable portion of the output histogram. The
S1070 system does not have sufficient scratchpad capac­
ity for the scatter-to-gather transformation to improve his­
togram benchmark performance, and is therefore inapplica­
ble as an optimization for that architecture.

3.4 Binning
A gather operation can be difficult to orchestrate without

a method of determining, based on output location, which
inputs contribute to that location. In the Parboil Histogram

Table 6: Binning results

Benchmark Pattern performance impact

CutCP 12.0x

Raw Data Keys o 1 0 0 2 3 1 5 9 7

Binned
Data

Compacted
Data o 1 2 3 5 7 9

Output dillll.1

Overflow Data for
Alternate Processing

Figure 4: An example showing the binning, regularization,
and compaction optimization patterns

benchmark, for instance, a set of work-groups redundantly
reads a section of the input data from off-chip DRAM, but
each only processes the set falling within its own output
range. 1 In general, the bandwidth cost of reexamining data
scales with the amount of parallelism. Therefore, for some
applications it is beneficial to first create a data structure
creating a map from output locations to a small subset of
the input data that may affect that output location, reducing
the redundant reading of data. This data structure creation
is called "binning", because it often reflects a sorting of input
elements into bins representing a region of space containing
those input elements. In the example of Figure 4, the un­
sorted data keys are examined and sorted into an array. If
the input dataset were very regular, the sorting by key alone
would likely create an efficiently accessible data structure.
However, in the presence of irregularity, there will either
be empty or overflowing bins for any fixed bin size, which
should be addressed by some combination of the following
two optimization patterns: regularization and compaction.

Binning can improve system performance in several ways.
If the GPU is performing both the binning and the com­
putation, the overhead of binning can be outweighed by
the improved efficiency of the main compute kernels. Al­
ternatively, the binning operation could be offioaded to the
CPU, potentially making better use of all available system
resources. Binning is applicable in particular for the CutCP
benchmark, as shown in Table 6. The speedups from binning
are often very high, because binning input data for a kernel's
input changes the fundamental computational complexity of
the kernel algorithm. A scatter-based kernel may not need
binning to get comparable computational complexity, but
even for scattering kernels, binning is important because it
can facilitate privatization of tiles of output data.

3.5 Regularization
Load imbalance has been one of the banes of parallel pro­

cessing throughout its history. Typically load imbalance is
exacerbated when the level of parallelism being exploited
increases. Architectures exploiting SIMD or SIMT vector
processing suffer from low-level imbalance if the tasks as-

1 An example of a Scatter-to-Gather transformation without
binning. Binning is not a useful technique for the Histogram
benchmark because the actual histogram contribution is no
more expensive in computation or bandwidth than the op­
eration of sorting the data into bins would be itself.

Table 7: Regularization results

Benchmark Pattern performance impact

SpMV 2.4x
MRI-Gridding 2.62x

signed to different execution lanes process different amounts
or kinds of work. GPU architectures are no exception. Fur­
thermore, if threads co-executing in a thread block have im­
balanced loads, the shared resources of the entire thread
block may be occupied until the last thread completes, po­
tentially reducing the real amount of thread-level parallelism
available for the architecture to exploit.

Some applications that exhibit load imbalance can predict
at run-time where and how the load imbalance will occur. In
the example of Figure 4, we assume that the program can
count the number of data elements for each key for much
less cost that actually calculating its contribution to its par­
ticular output. A preprocessing step can limit the amount
of imbalance in work units executed on the GPU by identi­
fying regions of load imbalance and proactively addressing
them. In our example, during the binning process, elements
that "overflow" a bin can be put in a separate data struc­
ture, which can be processed by some method less sensitive
to load imbalance.

Regularization is the optimization pattern of precondi­
tioning GPU kernel input to improve performance. Among
the Parboil benchmarks, there are examples of processing
work separately using a GPU kernel insensitive to imbal­
ance, offioading irregular work for the CPU to process con­
currently with the accelerated kernel. Other cases have no
visible impact on the kernel code except that load imbalance
and warp divergence are on average improved, resulting in
higher performance. Regularization increases the efficiency
of the primary accelerated kernels handling the majority of
the processing, resulting in higher system performance over­
all, with impact as listed in Table 7.

3.6 Compaction
Compaction has been a technique within extremely par­

allel, shared-memory systems and programming models for
quite some time as well. The fundamental issue is that when
parallel work units produce a varying number of output el­
ements into statically allocated output buffers, the buffer
size must be overprovisioned. Because tasks determine out­
put locations statically, unused holes or spaces in the out­
put are the consequence of overprovision, such as those bins
marked by X's in Figure 4. Output gaps interleaved with
useful data cause bandwidth efficiency to drop for DRAM
and cache architectures operating on transactions of larger,
contiguous memory chunks. Compaction is a method of co­
ordinating parallel tasks to dynamically determine output
locations such that no holes are introduced.

If compaction were a separate processing step, as depicted
in Figure 4, it would simply move all the useful data elements
into contiguous addresses, filling in the holes, while keeping
track of where each output section begins, as it will be data­
dependent [1]. More often, and in the MRI-Gridding and
BFS Parboil benchmarks where GPU computation produces
compacted output, the compaction is integrated into the
kernel producing output itself.

Table 8: Compaction results

Benchmark Memory buffer size reduction

SpMV 49%
MRI -G ridding 68%

Array of Structures struct fool
float a;
float b;
float c;
int d·

} A[8) ;

struct fool
float a [8)
float b[8)
float c [8)
int d[8);

} A;

Array of Structures of Tiled Arrays (ASTA) struct fool
float a[4)
float b[4)
float c[4)
int d[4);

} A[2);

Figure 5: Data layout example for a collection of structures.
Different layouts affect the coalescing of each warp access
and the locality of multiple accesses.

The benefits from compaction primarily stem from the re­
duced memory footprint of the compacted data format. Per­
formance impacts are typically only meaningful for bandwidth­
bound kernels, and even then only minimally if the overpro­
visioned regions of the buffers are mostly contiguous. Thus,
we quote not performance results but memory capacity re­
duction effects in Table 8. Compaction is essential for the
MRI-Gridding benchmark in particular, for which we can­
not even run uncompacted versions of reasonable datasets
on most GPUs due to insufficient global memory capacity.

3.7 Data Layout Transformation
DRAM systems supporting both CPU and GPU architec­

tures are designed to transfer data in large, contiguous lines
or rows. Poor usage of CPU cache lines or GPU coalesced
bursts will result in poor performance. However, GPU co­
alescing rules are somewhat harsher, because of the shorter
time window over which the software could make use of a
data burst from DRAM before any unused data is "dropped",
requiring retransmission if needed at a future time. In some
GPU architectures, the window is instantaneous, only ex­
posed to a single SIMD instruction. More recent architec­
tures introduce a small degree of caching extending this win­
dow, but because of the high degree of threading and the
cache's low capacity, the window in practice is still very
small. This is in contrast to CPU cache lines, which will
typically sit in the cache for a longer period of time before
being replaced.

Programmers work within the DRAM system design with
well chosen data traversal orders or task index organization.
If the elements in question are single-word data and closely
associated with task indexes, a good choice of task index
to element index mapping is typically sufficient to get good

Table 9: Data Layout results

Benchmark Pattern performance impact

LBM 1l.0x
SpMV l.21x

memory system performance. However, that pleasant situ­
ation is not always feasible. Sometimes, the data elements
needed within a particular time window are not naturally
adjacent to each other in the memory address space. Take,
for example, the diagram in Figure 5, which shows a warp
accessing fields from a set of cells for various layouts. In the
top case, using C standard data structure layout, the warp
access addresses with a large stride between them, requir­
ing multiple memory lines of mostly unused data to fulfill
the requests. The middle case of Figure 5 shows equivalent
accesses with a structure-of-arrays layout, a common trans­
formation. However, even the middle case results in a large
distance between the addresses of two fields, which are likely
to happen very close together in time.

Depending on the memory system design, performance
can be improved further by more complex layout transfor­
mation [9], perhaps resulting in a layout like that depicted
at the bottom of Figure 5 where accesses to multiple fields
will request adjacent, contiguous regions of memory. Spe­
cific examples of data layout transformation in the Parboil
benchmarks include several instances of array-of-structure to
structure-of-array transformations, a matrix transposition in
SGEMM, and a transposed sparse matrix data storage for­
mat in SpMV. We specifically isolate the data layout trans­
formation effect for the LBM benchmark, with an order-of­
magnitude speedup as shown in Table 9. Overall, trans­
formations for the purposes of achieving coalescing often
achieve very high performance gains, such as the LBM, while
layout transformations for improving memory level paral­
lelism or avoiding moderate partition camping can effect
a more modest improvement. Sung et al. report speedups
ranging from 5% to 30% for already coalesced accesses in
different benchmarks [9].

3.8 Granularity Coarsening
Granularity coarsening has been anecdotally described in

many application optimization papers, perhaps most rigor­
ously by Volkov in regards to linear algebra kernels [10].
When a larger task is decomposed into a set of fine-grained
work-items, there is almost invariably some amount of over­
head introduced in the problem decomposition. The over­
head may vary for different algorithms and kernels, but al­
most every kernel will exhibit some inefficiencies in recalcu­
lating values like address offsets or other seemingly "small"
operations in many threads. The finer the decomposition,
typically the larger the overhead incurred. In addition to in­
nate implementation inefficiencies, most real systems incur
some fixed costs creating or scheduling parallel tasks, and
communication operations tend to become more costly as
the number of communicating tasks grows.

The CUDA and OpenCL programming models lend them­
selves to an "elemental" style of decomposition, where the
source code of the kernel is scalar, processing a single ele­
ment, with as many threads created as there are elements to
process. With this extreme level of decomposition, the level

4-way
paraliel

2·way
parallel

...... Time

I Redundant

'MOO

Figure 6: Granularity coarsening and resulting efficiency
gains. Each shaded box represents an executed instruction
or operation.

Table 10: Granularity Coarsening results

Benchmark Pattern performance impact

SGEMM l.96x
CutCP 1.3x

of redundancy and other inefficiencies can be surprisingly
high, but difficult to address within the elemental-function
methodology as the cost of communicating between different
tasks is still higher than the cost of redundant computation.

Granularity coarsening is essentially a de-parallelization
of a program. Instead of executing code where each thread
processes one element, each thread processes several. Fig­
ure 6 shows a coarsening transformation by a factor of six.
By putting several threads together, redundant operations
that were previously executed once by each original thread
have their redundant executions reduced by a factor of the
degree of coarsening. Furthermore, what had been shared
reads or conflicting writes to a variable in the untransformed
code become private uses of data. In the example of Fig­
ure 6, although task parallelism was reduced by a factor of
six, the total number of operations required to compute the
full output was reduced by nearly two-thirds. The efficiency
gains make incremental coarsening worthwhile so long as the
amount of parallelism is still sufficient to occupy the parallel
resources of the device. Examples of specific efficiency gains
are shown in Table 10.

3.9 Summary
Table 11 shows a compact representation of which opti­

mization patterns were relevant for each benchmark. Note
that the table does not convey the relative importance of
each optimization pattern to each benchmark. In our expe­
rience, a given benchmark's performance improvement due
to optimization is typically dominated by one or two opti­
mizations, with others making smaller contributions. Also,
note that certain optimization patterns are widely applica­
ble, such as granularity coarsening, while others are only
applicable to applications with certain characteristics, such
as binning. Finally, we would like to point out that some of
the optimization patterns are clustered. Regularization and
compaction, for instance, are typically combined rather than
applied separately, because both are applicable for similar
workload characteristics.

We are not necessarily convinced that these optimization

Table 11: Applicability of optimization patterns to each benchmark
Scatter to

Benchmark Tiling Privatization Gather Binning
cutcp X X X
mri-q X
mri-gridding X X X
sad X
stencil X
tpacf X X
Ibm
sgemm X
spmv
bfs X
histo X X

patterns are a comprehensive list, and would not be sur­
prised to see other application domains introduce optimiza­
tion patterns not represented in our studied benchmarks.
However, given the generality of the patterns that we have
seen so far, we do suggest that at least some of these op­
timization patterns will be applicable to almost any GPU
application workload.

4. PERFORMANCE IMPACT OF

ARCHITECTURES
Having explored the workload and optimization character­

istics demonstrated by the Parboil benchmarks, we can now
discuss in more detail the impact of different GPU architec­
ture features on workload performance. Such a study could
be approached multiple ways, with each method leading to
particular insights. Due to space constraints, we would like
to focus on three primary methods of inquiry. In the first,
we assume that GPU workloads are in a state of perpet­
ual hardware-software co-design and optimization. Our ex­
perimental results under this methodology will show how
optimized software targets new features in each successive
hardware generation, and how architecture changes amplify
the benefit of particular optimization patterns. Secondly,
we examine the other end of the optimization spectrum, to
see how a simple, unoptimized implementation of each of
the Parboil benchmarks improves with successive hardware
generations. These results will tell us how well implicit or
compiler-targeted hardware features are finding ways to im­
prove performance without explicit software support. Fi­
nally, we would like to compare the performance gains of
code optimization for each architecture generation, to un­
derstand how different architectures change or preserve the
optimization process. Unfortunately, the Parboil datasets
for the MRI-Gridding benchmarks were large enough that
the GPU global memory capacity of both the 9800 GX2 and
the S1070 were insufficient to collect baseline results. This
both highlights the necessity of the compaction optimiza­
tion for this benchmark, and prevents us from analyzing its
performance any further.

4.1 Hardware-Software Co-Design Results
We optimized each of the benchmarks for each of the GPU

architectures studied, and recorded the speedups achieved
by successive architecture generations in Figure 7. Because
the implementations for the earlier generations were already
optimized around most of the performance cliffs of those
architectures, the advances made by successive generations
are typically near the increase in raw bandwidth or instruc­
tion throughput. Architecture feature improvements with

Data Layout Granularity
Regularization Compaction Transformation Coarsening

X X
X X

X X X
X
X
X

X
X X

X X X X
X X

X

peak GFLOPS
peak BW

OJ bfs ... + ... u c 8 cutcp · · · · · · ·x · · ·
ro
E histo -.�.-

.g Ibm _ . - G · _ .
OJ sgemm
c. mri-q ·-··e··-·

N 4 sad• .. . x
CJ spmv --A-
0 stencil ---A.---
0 tpacf ex:> ···v···
m
Q; > 2 0
C. ::J

"0
OJ
OJ C.

(j)

9800 GX2 S1070 GTX 480

Figure 7: Performance of code optimized for each succes­
sive GPU generation, plotted against raw throughput and
bandwidth scaling for comparison

a moderate impact on optimized workload performance in­
clude increased register file capacity, which boosted the per­
formance of applications such as SGEMM and SAD in par­
ticular because of the extensive register tiling of those bench­
marks. The performance improvement for register tiled bench­
marks came less from the opportunity of additional register
tiling, which reaches asymptotically low incremental benefits
and had little impact in practice, but more from the archi­
tecture's ability to increase occupancy for the same degree
of register tiling.

The single feature with the most performance impact over­
all was the global memory cache added in the GTX 480
generation. Even for optimized codes, scratchpad usage can
introduce meaningful inefficiencies into the software. That
overhead is typically overcome by the performance improve­
ment due to captured locality otherwise unattainable in the
absence of a cache, but does put scratchpad at a disad­
vantage to implicit caches for certain workloads. Further­
more, the GTX 480's cache captures what private scratch­
pads never can: shared locality among different thread blocks
and access patterns with irregular locality. The spmv bench­
mark performance increases for the GTX 480 primarily from
the caching of irregular accesses to the dense vector. The
stencil benchmark benefits from caching because any mem-

100 peak GFLOPS 0
peak BW /

/
Q) bfs ... + ... / u c:: cutcp)(.... /
ro /
E histo _.-+.- /

Ibm _ . - G· _ . /
.g / . .

sgemm .. .•.. . / Q) 0/ a. mri-q ·_·· e · · _·
N sad /
x
C) 10 spmv
0 stencil 0 tpacf co (J)
(jj

./ :�"
D > 0 ./.::','

,�::-",� a. :::l
"0 ./ ··x
Q) Q) a.

(J)

9800 GX2 S1070 GTX 480

Figure 8: Performance of unoptimized code across GPU
generations, plotted against raw throughput and bandwidth
scaling for comparison

ory tiling approach in that benchmark must address the fact
that the sizes of input tile needed to compute an output tile
does not match the output tile size. Thread blocks sizes
must be chosen to fit either the input or output tile size,
resulting in inefficiencies from idle threads or increased soft­
ware complexity for explicitly copying input tiles, respec­
tively. In addition the tile borders overlap with the working
sets of other thread blocks, exposing locality that cannot
be captured with private scratch pad memory. The version
of the stencil benchmark optimized for the GTX 480 actu­
ally avoids memory tiling, improving the efficiency of the
instruction stream by relying on the cache and thread block
scheduling policy to capture locality. The cache also sig­
nificantly improves the BFS benchmark's performance by
caching the end of the output queue while threads in a block
incrementally add to its taiL

Surprisingly, atomic operations to shared memory had less
performance impact than we expected. On further analy­
sis, we found that privatization optimizations had reduced
contention on shared memory locations requiring atomic up­
dates to the point that the overhead of our software atomic
updates, which scales with contention, was not so high as to
make hardware assisted atomics indispensable. While our
iterative atomic update methods were limited to certain sit­
uations, the versions optimized for the 9800 GX2 targeted
those situations specifically, resulting in sufficient atomic up­
date performance.

Finally, we note that the BFS benchmark in particular
does not scale very well with regards to the number of SMs in
the system. The BFS kernel that fills the GPU and performs
device-wide barrier synchronizations in certain kernels does
not perform as well on the S0170 as on the narrower 9800
GX2 and GTX 480 devices. As it is likely that machine
widths will be increasing on average in the future, it seems
reasonable to expect that using atomic operations for chip­
wide synchronizations will become increasingly inefficient,
and should perhaps be avoided if possible.

4.2 Baseline Performance Improvements
Figure 8 shows the performance improvement of a sin­

gle, optimization-agnostic implementation across the differ­
ent GPU generations, again plotted against the raw through­
put and bandwidth improvements of the devices themselves.
The definition of "unoptimized" is somewhat slippery, be­
cause it is always possible to write less efficient code by
doing some kind of useless computation. Our philosophy
while writing these baseline versions was to write the sim­
plest functional code that seemed reasonable to us. We can­
not claim that the baseline versions of all the benchmarks
are equivalently unoptimized, but believe we can still learn
some useful insights by paying attention to what "inefficien­
cies" are automatically mitigated or eliminated by particular
architectures.

Generally, we can see that the performance trends are
definitely positive, and significantly higher in magnitude
than the improvement of optimized code versions. In sev­
eral instances, one architecture generation brings order-of­
magintude speedups over the previous generation, mostly
for benchmarks with artificially poor memory bandwidth
performance for uniform or misaligned accesses on the 9800
GX2 surging in performance when those limitations were re­
moved in the S1070. The Fermi generation improved global
memory broadcast accesses further by automatically pro­
moting them to use the constant memory cache. Broadcast
accesses are those where each thread in a warp loads from
exactly the same address in a particular instruction. The
GPU's constant cache supports this access pattern with very
high performance. The constant cache design of the GTX
480 architecture enables the CUDA compiler to automati­
cally transform accesses to use it under certain conditions,
which reduces pressure on the general global memory cache
and resultx in significant speedups for unoptimized mri-q,
tpacf, and sgemm implementations.

Despite the raw bandwidth improvements of the S1070
over the 9800 GX2, the strided access pattern of the unop­
timized Ibm benchmark saw practically no performance im­
provement. It was not until the cache of the GTX 480 that
its performance meaningfully improved. The GTX 480 cache
also had significant impact on the performance of codes with
had shared locality in the accesses among thread blocks that
was not exploited by explicit memory tiling, in particular the
stencil benchmark.

4.3 Optimization & Architecture Interactions
Finally, we examine the performance improvements of op­

timization for each benchmark and GPU generation, with
results presented in Figure 9. Overall trend is significantly
downward, implying that optimizations in general are be­
coming less critical over time. Conversely, we can say that
many of the performance cliffs avoided by optimization are
becoming less steep with successive architecture generations.
However, there are some exceptions. The binning optimiza­
tion pattern, exemplified by the cutcp benchmark in particu­
lar, results in consistently high speedups due to the change in
fundamental algorithmic complexity, as should be expected.
Also, while architectures are becoming slightly less sensitive
to imperfect access patterns, good data layout remains ex­
tremely important, as exemplified by the Ibm benchmark's
5x performance improvement from layout transformation,
even on the Fermi architecture. For the sgemm benchmark,
register tiling results in consistently high speedups. For

128

"O W

.� �
64

.� E 32
- 0 e.'t:: O w 3 e. 16 c:
w o > :.;::::; o ro e.c 8 :::l W "O E W w w -e. e. 4 U) �

2

,
Q

"
. . ,

" . ,

bfs -+­
cutcp - - -)(- - ­

histo - - - -lIE - - ­
Ibm · · · · · · u · · · · ·

sgemm _ -
mri-q _ . - G · _ .

sad - - - e- - -"
', spmv · _ · · A · · _ · ,

" ', stencil - - - - ... -- -
--" , tpacf -v-

)f - - - - - -\::��".��:.j::o�..: - - - - _ _ _ _ _ _ -x

�- .;� -

9800 GX2 S1070 GTX 480

Figure 9: Speedup of optimizations for each GPU generation

such "simple" codes, the primary bottleneck is instruction
stream efficiency: how many instructions compute neces­
sary floating-point operations relative to how many instruc­
tions calculate addresses or move memory around. Even
when artificial bandwidth inefficiencies are addressed by the
Fermi architecture, a significant speedup can be expected
from good register tiling.

5. CONCLUSIONS
Hundreds of articles have been published on optimizing

applications for GPUs, and for good reason. In this pa­
per, we have verified that for nearly all applications, hand­
optimization has great performance rewards for GPU archi­
tectures. Additionally, those application optimizations are
worth explaining and sharing, because certain patterns of
optimization are applicable for a wide range of workloads.
Each optimization pattern discussed in this paper was some­
what applicable for at least two benchmarks, and critically
important for one or two as well.

We can also verify that some of the "worst" days of GPU
computing are now behind us. Although legacy GPUs will
still linger in the marketplace for several years, NVIDIA and
other vendors seem to be getting on track with the design
philosophy that unoptimized code exists, matters, and must
be addressed. While major optimizations like binning or
good choice of data layout should continue to be forefront
in the minds of developers, others we are beginning to think
of as good things to do if there is time instead of essential
for getting any kind of reasonable performance.

Finally, based on experiments on past architectures, we
can say with some confidence that if there were some way

of making these optimization patterns unnecessary, it would
have been done by now. Many of the optimization patterns
could be applied to any parallel system, and are still relevant
for today's multicore CPUs after decades of research and
experience with high-performance parallel systems.

While innovation may still surprise us, it seems like man­
ual program optimization, and in particular the optimiza­
tion patterns we have presented in this paper, will continue
to be relevant forparallel architectures in general, and GPUs
specifically, for years to come. Software developers for high­
performance applications would do well to brush up on these
optimization patterns, and to continue to publish optimiza­
tion insights either applying these general patterns to spe­
cific contexts, or possibly describing new optimization pat­
terns.

References
[1] M. Billeter, O . Olsson, and U. Assarsson . Efficient stream com­

paction on wide SIMD many-core architectures . In Proceedings
of the 2009 Conference on High Perfo rmance Graphics, HPG
'09, pages 1 59-166, New York, NY, USA, Aug. 2009. ACM .

[2] S. Che, M. Boyer, J . Meng, D. Tarjan, J. Sheaffer, S . - H . Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous com­
puting. In Proceedings of the IEEE Int ernational Symposium
on Wo rkload Characterization 2009, IISWC '09, pages 44-54,
Washington, DC, USA, Oct. 2009. IEEE Computer Society.

[3] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. T he Scalable Het­
erOgeneous Computing (SHOC) benchmark suite. In Pro ceed­
ings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, GPGPU ' 10, pages 63-74, New
York, NY, USA, Mar. 2 0 1 0 . ACM .

[4] W.-m. W. Hwu, editor. GP U Comp uting G ems Emerald Edi­
tion. Morgan Kaufmann, San Francisco, CA, USA, Feb. 20 1 1 .

[5] W.-m. W . Hwu, editor. GP U Computing G ems Jade Edition.
Morgan Kaufmann, San Francisco, CA, USA, Oct. 20 1 1 .

[6] K . Keutzer, B . L . Massingill, T . G . Mattson, and B . A . Sanders.
A design pattern language for engineering (parallel) software:
merging the PLPP and OPL projects. In Proceedings of the
2 0 1 0 Workshop o n Parallel Programming Patterns, ParaPLoP
' 1 0, pages 9 : 1-9 : 8, New York, NY, USA, 2 0 1 0 . ACM.

[7] T. Mattson, B. Sanders, and B. Massingill. Patterns fo r Parallel
Programming. Addison-Wesley, Boston, MA, USA, first edition,
Sept. 2004.

[8] J . A . Stratton, C. Rodrigrues, 1.-J. Sung, N . Obeid, L. Chang,
G. Liu, and W.-m. W. Hwu. T he Parboil benchmarks . Tech­
nical Report IMPACT - 1 2- 0 1 , University of Illinois at Urbana­
Champaign, Urbana, Mar. 2 0 1 2 .

[9] 1 . -J . Sung, J . A . Stratton, and W . mei W . Hwu. Data layout
transformation exploiting memory-level parallelism in structured
grid many-core applications . In Conference on Parallel A r­
chitectures and Compilation Techniques, pages 5 1 3-522, Sept.
2 0 1 0 .

[1 0] V . Volkov and J . W . Demmel. Benchmarking GPUs t o tune dense
linear algebra. In Proceedings of the 2008 A CM/IEEE Confer­
ence on Supercomputing, SC ' 08, pages 3 1 : 1-3 1 : 1 1 , Piscataway,
NJ, USA, Nov . 2008 . IEEE Press .

