
 NVIDIA OpenGL Extension Specifications

1

NVIDIA OpenGL
Extension Specifications

February 22, 2008

 NVIDIA OpenGL Extension Specifications

 2

Copyright NVIDIA Corporation, 1999-2008.

This document is protected by copyright and contain s information
proprietary to NVIDIA Corporation.

This document is an abridged collection of OpenGL e xtension
specifications limited to those extensions for new OpenGL functionality
introduced by the GeForce 8 Series (G8 x) architecture. See the
unabridged document “NVIDIA OpenGL Extension Specif ications” for a
complete collection.

NVIDIA-specific OpenGL extension specifications, po ssibly more up-to-
date, can be found at:

 http://developer.nvidia.com/view.asp?IO=nvidia_ope ngl_specs

Other OpenGL extension specifications can be found at:

 http://oss.sgi.com/projects/ogl-sample/registry/

Corrections? Email opengl-specs@nvidia.com

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry/

NVIDIA OpenGL Extension Specifications

 3

Table of Contents

Table of NVIDIA OpenGL Extension Support 6
ARB_color_buffer_float............................. 11
ARB_depth_texture.................................. 30
ARB_draw_buffers................................... 39
ARB_fragment_program............................... 49
ARB_fragment_program_shadow........................ 140
ARB_half_float_pixel............................... 147
ARB_imaging.. 152
ARB_multisample.................................... 153
ARB_multitexture................................... 164
ARB_occlusion_query................................ 165
ARB_pixel_buffer_object............................ 183
ARB_point_parameters............................... 209
ARB_point_sprite................................... 216
ARB_shadow... 224
ARB_texture_border_clamp........................... 230
ARB_texture_compression............................ 233
ARB_texture_cube_map............................... 256
ARB_texture_env_add................................ 270
ARB_texture_env_combine............................ 273
ARB_texture_env_crossbar........................... 281
ARB_texture_env_dot3............................... 283
ARB_texture_float.................................. 286
ARB_texture_mirrored_repeat........................ 294
ARB_texture_non_power_of_two....................... 297
ARB_texture_rectangle.............................. 309
ARB_transpose_matrix............................... 328
ARB_vertex_buffer_object........................... 333
ARB_vertex_program................................. 362
ARB_window_pos..................................... 488
ATI_draw_buffers................................... 494
ATI_texture_float.................................. 500
ATI_texture_mirror_once............................ 504
EXT_abgr... 507
EXT_bgra... 510
EXT_bindable_uniform............................... 512
EXT_blend_color.................................... 525
EXT_blend_equation_separate........................ 528
EXT_blend_func_separate............................ 534
EXT_blend_minmax................................... 537
EXT_blend_subtract................................. 540
EXT_clip_volume_hint............................... 543
EXT_compiled_vertex_array.......................... 545
EXT_depth_bounds_test.............................. 548
EXT_draw_buffers2.................................. 554
EXT_draw_instanced................................. 560
EXT_draw_range_elements............................ 563
EXT_framebuffer_blit............................... 566
EXT_framebuffer_multisample........................ 578
EXT_framebuffer_object............................. 590
EXT_framebuffer_sRGB............................... 723
EXT_fog_coord...................................... 734
EXT_geometry_shader4............................... 741
EXT_gpu_program_parameters......................... 788
EXT_gpu_shader4.................................... 793
EXT_multi_draw_arrays.............................. 835
EXT_packed_float................................... 838
EXT_packed_pixels.................................. 852
EXT_paletted_texture............................... 861
EXT_pixel_buffer_object............................ 871
EXT_point_parameters............................... 880
EXT_rescale_normal................................. 885
EXT_secondary_color................................ 888
EXT_separate_specular_color........................ 896
EXT_shadow_funcs................................... 901
EXT_shared_texture_palette......................... 905
EXT_stencil_clear_tag.............................. 909
EXT_stencil_two_side............................... 921
EXT_stencil_wrap................................... 930

 NVIDIA OpenGL Extension Specifications

 4

EXT_texture3D...................................... 932
EXT_texture_array.................................. 942
EXT_texture_buffer_object.......................... 965
EXT_texture_compression_latc....................... 978
EXT_texture_compression_rgtc....................... 991
EXT_texture_compression_s3tc....................... 1005
EXT_texture_cube_map............................... 1014
EXT_texture_edge_clamp............................. 1015
EXT_texture_env_add................................ 1018
EXT_texture_env_combine............................ 1021
EXT_texture_env_dot3............................... 1027
EXT_texture_filter_anisotropic..................... 1030
EXT_texture_integer................................ 1036
EXT_texture_lod_bias............................... 1050
EXT_texture_mirror_clamp........................... 1055
EXT_texture_object................................. 1061
EXT_texture_shared_exponent........................ 1069
EXT_texture_sRGB................................... 1083
EXT_timer_query.................................... 1098
EXT_vertex_array................................... 1109
EXT_vertex_weighting............................... 1121
HP_occlusion_test.................................. 1132
IBM_rasterpos_clip................................. 1134
IBM_texture_mirrored_repeat........................ 1136
NV_blend_square.................................... 1139
NV_conditional_render.............................. 1142
NV_copy_depth_to_color............................. 1148
NV_depth_buffer_float.............................. 1152
NV_depth_clamp..................................... 1162
NV_evaluators...................................... 1167
NV_fence... 1183
NV_float_buffer.................................... 1193
NV_fog_distance.................................... 1212
NV_fragment_program................................ 1216
NV_fragment_program_option......................... 1297
NV_fragment_program2............................... 1327
NV_fragment_program4............................... 1344
NV_framebuffer_multisample_coverage................ 1359
NV_geometry_program4............................... 1365
NV_geometry_shader4................................ 1401
NV_gpu_program4.................................... 1406
NV_half_float...................................... 1515
NV_light_max_exponent.............................. 1527
NV_multisample_filter_hint......................... 1530
NV_occlusion_query................................. 1534
NV_packed_depth_stencil............................ 1547
NV_parameter_buffer_object......................... 1555
NV_pixel_data_range................................ 1562
NV_point_sprite.................................... 1576
NV_present_video................................... 1585
NV_primitive_restart............................... 1602
NV_register_combiners.............................. 1607
NV_register_combiners2............................. 1636
NV_texgen_emboss................................... 1642
NV_texgen_reflection............................... 1648
NV_texture_compression_vtc......................... 1652
NV_texture_env_combine4............................ 1657
NV_texture_expand_normal........................... 1662
NV_texture_rectangle............................... 1666
NV_texture_shader.................................. 1679
NV_texture_shader2................................. 1740
NV_texture_shader3................................. 1751
NV_transform_feedback.............................. 1768
NV_vertex_array_range.............................. 1795
NV_vertex_array_range2............................. 1808
NV_vertex_program.................................. 1811
NV_vertex_program1_1............................... 1893
NV_vertex_program2................................. 1902
NV_vertex_program2_option.......................... 1968
NV_vertex_program3................................. 1997
NV_vertex_program4................................. 2013
SGIS_generate_mipmap............................... 2028

NVIDIA OpenGL Extension Specifications

 5

SGIS_texture_lod................................... 2032
SGIX_depth_texture................................. 2039
SGIX_shadow.. 2042
SUN_slice_accum.................................... 2046
GLX_EXT_texture_from_pixmap........................ 2048
GLX_NV_swap_group.................................. 2063
GLX_NV_video_output................................ 2067
WGL_ARB_buffer_region.............................. 2075
WGL_ARB_extensions_string.......................... 2081
WGL_ARB_make_current_read.......................... 2084
WGL_ARB_pbuffer.................................... 2088
WGL_ARB_pixel_format............................... 2095
WGL_ARB_render_texture............................. 2108
WGL_ATI_pixel_format_float......................... 2125
WGL_EXT_extensions_string.......................... 2130
WGL_EXT_swap_control............................... 2132
WGL_NV_gpu_affinity................................ 2134
WGL_NV_render_depth_texture........................ 2146
WGL_NV_render_texture_rectangle.................... 2153
WGL_NV_swap_group.................................. 2157

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 6

Table of NVIDIA OpenGL Extension Support

Extension NV1x NV2 x NV3x NV4x G8x Notes
ARB_color_buffer_float R75 X
ARB_depth_texture R25+ X X X 1.4 functionality
ARB_draw_buffers R75 X 2.0 functionality
ARB_fragment_program X X X
ARB_fragment_program_shadow R55 X X
ARB_fragment_shader R60 X X 2.0 functionality, GL SL
ARB_half_float_pixel R75 R75 X
ARB_imaging R10 X X X X 1.2 imaging subset
ARB_multisample X X X X 1.3 functionality
ARB_multitexture X X X X X 1.3 functionality
ARB_occlusion_query R50 R50 R50 X 1.5 functionalit y
ARB_pixel_buffer_object R80 R80 R80 R80 X 2.1 funct ionality
ARB_point_parameters R35 R35 X X X 1.4 functionalit y
ARB_point_sprite R50 R50 R50 X X
ARB_shader_objects R60 R60 R60 X X 2.0 functionalit y, GLSL
ARB_shading_language_100 R60 R60 R60 X X 2.0 functi onality, GLSL
ARB_shadow R25+ X X X 1.4 functionality
ARB_texture_border_clamp X X X X 1.3 functionality
ARB_texture_compression X X X X X 1.3 functionality
ARB_texture_cube_map X X X X X 1.3 functionality
ARB_texture_env_add X X X X X 1.3 functionality
ARB_texture_env_combine X X X X X 1.3 functionality
ARB_texture_env_crossbar see explanation
ARB_texture_env_dot3 X X X X X 1.3 functionality
ARB_texture_mirrored_repeat R40 R40 X X X 1.4, same as IBM
ARB_texture_non_power_of_two X X 2.0 functionali ty
ARB_texture_rectangle R62 R60+ R62 R62 X
ARB_transpose_matrix X X X X X 1.3 functionality
ARB_vertex_buffer_object R65 R65 R65 R65 X 1.5 func tionality
ARB_vertex_program R40+ R40+ X X X
ARB_vertex_shader R60 R60 R60 R60 X 2.0 functionali ty, GLSL
ARB_window_pos R40 R40 X X X 1.4 functionality
ATI_draw_buffers X X
ATI_texture_float X X
ATI_texture_mirror_once X X use EXT_texture_mirr or_clamp
EXT_abgr X X X X X
EXT_bgra X X X X X 1.2 functionality
EXT_bindable_uniform X GLSL extension
EXT_blend_color X X X X X 1.4 functionality
EXT_blend_equation_separate R60 X 2.0 functional ity
EXT_blend_func_separate X X X 1.4 functionality
EXT_blend_minmax X X X X X 1.4 functionality
EXT_blend_subtract X X X X X 1.4 functionality
EXT_Cg_shader R60 R60 R60 R60 X Cg through GLSL API
EXT_clip_volume_hint R20+
EXT_compiled_vertex_array X X X X X
EXT_depth_bounds_test R50 X X NV35, NV36, NV4x in hw only
EXT_draw_buffers2 X ARB_draw_buffers extension
EXT_draw_instanced X
EXT_draw_range_elements R20 R20 X X X 1.2 functiona lity
EXT_fog_coord X X X X X 1.4 functionality
EXT_framebuffer_blit R95 R95 X
EXT_framebuffer_multisample R95 R95 X
EXT_framebuffer_object R75 R75 X
EXT_framebuffer_sRGB X
EXT_geometry_shader4 X GLSL extension
EXT_gpu_program_parameters R95 R95 R95 R95 X
EXT_gpu_shader4 X GLSL extension
EXT_multi_draw_arrays R25 R25 X X X 1.4 functionali ty
EXT_packed_depth_stencil R80 X X
EXT_packed_float X
EXT_packed_pixels X X X X X 1.2 functionality

NVIDIA OpenGL Extension Specifications Table of NVIDIA OpenGL Extension Support

 7

Extension NV1x NV2 x NV3x NV4x G8x Notes
EXT_paletted_texture X X X no NV4x hw support
EXT_pixel_buffer_object R55 R55 R55 X X 2.1 functio nality
EXT_point_parameters X X X X X 1.4 functionality
EXT_rescale_normal X X X X X 1.2 functionality
EXT_secondary_color X X X X X 1.4 functionality
EXT_separate_specular_color X X X X X 1.2 functiona lity
EXT_shadow_funcs R25+ X X X 1.5 functionality
EXT_shared_texture_palette X X X no NV4x hw suppo rt
EXT_stencil_clear_tag R70 NV44 only
EXT_stencil_two_side X X X 2.0 functionality
EXT_stencil_wrap X X X X X 1.4 functionality
EXT_texture3D sw X X X X 1.2 functionality
EXT_texture_array X
EXT_texture_buffer_object X
EXT_texture_compression_latc X
EXT_texture_compression_rgtc X
EXT_texture_compression_s3tc X X X X X
EXT_texture_cube_map X X X X X 1.2 functionality
EXT_texture_edge_clamp X X X X X 1.2 functionality
EXT_texture_env_add X X X X X 1.3 functionality
EXT_texture_env_combine X X X X X 1.3 functionality
EXT_texture_env_dot3 X X X X X 1.3 functionality
EXT_texture_filter_anisotropic X X X X X
EXT_texture_integer X
EXT_texture_lod X X X X X 1.2 functionality; no spe c
EXT_texture_lod_bias X X X X X 1.4 functionality
EXT_texture_mirror_clamp X X
EXT_texture_object X X X X X 1.1 functionality
EXT_texture_shared_exponent X
EXT_texture_sRGB X X 2.1 functionality
EXT_timer_query R80 R80 R80 X
EXT_vertex_array X X X X X 1.1 functionality
EXT_vertex_weighting X X Discontinued
KTX_buffer_region X X X X X
HP_occlusion_test R25 X X X
IBM_rasterpos_clip R40+ R40+ R40+ X X
IBM_texture_mirrored_repeat X X X X X 1.4 functiona lity
KTX_buffer_region X X X X X use ARB_buffer_region
NV_blend_square X X X X X 1.4 functionality
NV_conditional_render X
NV_copy_depth_to_color R20 X X X
NV_depth_buffer_float X
NV_depth_clamp R25+ X X X
NV_evaluators R10 X Discontinued
NV_fence X X X X X
NV_float_buffer X X X
NV_fog_distance X X X X X
NV_fragment_program X X X
NV_fragment_program_option R55 X X NV_fp features for ARB_fp
NV_fragment_program2 X X
NV_fragment_program4 X See NV_gpu_program4
NV_framebuffer_multisample_coverage Nf Nf X FBO e xtension
NV_geometry_program4 X See NV_gpu_program4
NV_geometry_shader4 X
NV_gpu_program4 X
NV_half_float X X X
NV_light_max_exponent X X X X X
NV_multisample_filter_hint X X X X
NV_occlusion_query R25 X X X
NV_packed_depth_stencil R10+ R10+ X X X
NV_parameter_buffer_object X See NV_gpu_program 4
NV_pixel_data_range R40 R40 X X X
NV_point_sprite R35+ R25 X X X
NV_present_video R165 SDI Quadro only

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 8

Extension NV1x NV2 x NV3x NV4x G8x Notes
NV_primitive_restart X X X
NV_register_combiners X X X X X
NV_register_combiners2 X X X X
NV_texgen_emboss X Discontinued
NV_texgen_reflection X X X X X use 1.3 functionalit y
NV_texture_compression_vtc X X X X
NV_texture_env_combine4 X X X X X
NV_texture_expand_normal X X X
NV_texture_rectangle X X X X X
NV_texture_shader X X X X
NV_texture_shader2 X X X X
NV_texture_shader3 R25 X X X only NV25 and up in H W
NV_transform_feedback X
NV_vertex_array_range X X X X X
NV_vertex_array_range2 R10 R10 X X X
NV_vertex_program R10 X X X X
NV_vertex_program1_1 R25 R25 X X X
NV_vertex_program2 X X X
NV_vertex_program2_option R55 X X
NV_vertex_program3 X X
NV_vertex_program4 X See NV_gpu_program4
S3_s3tc X X X X X no spec; use EXT_t_c_s3tc
SGIS_generate_mipmap R10 X X X X 1.4 functionality
SGIS_multitexture X X use 1.3 version
SGIS_texture_lod X X X X X 1.2 functionality
SGIX_depth_texture X X X X use 1.4 version
SGIX_shadow X X X X use 1.4 version
SUN_slice_accum R50 R50 R50 X X accelerated on NV3x /NV4x
GLX_EXT_texture_from_pixmap X X GLX
GLX_NV_swap_group X X X GLX, framelock Quadro onl y
GLX_NV_video_out X X X GLX, SDI Quadro only
WGL_ARB_buffer_region X X X X X Win32
WGL_ARB_extensions_string X X X X X Win32
WGL_ARB_make_current_read R55 R55 R55 X X
WGL_ARB_multisample X X X X see ARB_multisample
WGL_ARB_pixel_format R10 X X X X Win32
WGL_ARB_pbuffer R10 X X X X Win32
WGL_ARB_render_texture R25 R25 X X X Win32
WGL_ATI_pixel_format_float X X Win32
WGL_EXT_extensions_string X X X X X Win32
WGL_EXT_swap_control X X X X X Win32
WGL_NV_float_buffer X X X Win32, see NV_float_buf fer
WGL_NV_gpu_affinity R95 X Win32 SLI
WGL_NV_render_depth_texture R25 X X X Win32
WGL_NV_render_texture_rectangle R25 R25 X X X Win32
WGL_NV_swap_group X X X Win32, framelock Quadro o nly
WGL_NV_video_out X X X Win32, SDI Quadro only
WIN_swap_hint X X X X X Win32, no spec

NVIDIA OpenGL Extension Specifications Table of NVIDIA OpenGL Extension Support

 9

Key for table entries:

X = supported

Q = requires particularly Quadro cards

sw = supported by software rasterization (expect poo r performance)

Nf = Extension advertised but rendering functionality not available

R10 = introduced in the Release 10 OpenGL driver (not supported by earlier
drivers)

R20 = introduced in the Detanator XP (also known as Re lease 20) OpenGL driver
(not supported by earlier drivers)

R20+ = introduced after the Detanator XP (also known as Release 20) OpenGL
driver (not supported by earlier drivers)

R25 = introduced in the GeForce4 launch (also known as Release 25) OpenGL driver
(not supported by earlier drivers)

R25+ = introduced after the GeForce4 launch (also known as Release 25) OpenGL
driver (not supported by earlier drivers)

R35 = post-GeForce4 launch OpenGL driver release (not supported by earlier
drivers)

R40 = Detonator 40 release, August 2002.

R40+ = introduced after the Detanator 40 (also known as Release 40) OpenGL
driver (not supported by earlier drivers)

R50 = Detonator 50 release

R55 = Detonator 55 release

R60 = Detonator 60 release, May 2004

R65 = Release 65

R70 = Release 70

R80 = Release 80

R95 = Release 95

no spec = no suitable specification available

Discontinued = earlier drivers (noted by 25% gray entries) suppo rted this
extension but support for the extension is disconti nued in current and future
drivers

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 10

Notices:

Emulation: While disabled by default, older GPUs can support e xtensions
supported in hardware by newer GPUs through a proce ss called emulation though
any functionality unsupported by the older GPU must be emulated via software.
For more details see: http://developer.nvidia.com/object/nvemulate.html

Warning: The extension support columns are based on the late st & greatest
NVIDIA driver release (unless otherwise noted). Ch eck your GL_EXTENSIONS string
with glGetString at run-time to determine the speci fic supported extensions for
a particular driver version.

Discontinuation of support: NVIDIA drivers from release 95 no longer support
NV1x- and NV2x-based GPUs.

http://developer.nvidia.com/object/nvemulate.html

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 11

Name

 ARB_color_buffer_float

Name Strings

 GL_ARB_color_buffer_float
 WGL_ARB_pixel_format_float
 GLX_ARB_fbconfig_float

Contributors

 Pat Brown
 Jon Leech
 Rob Mace
 V Moya
 Brian Paul

Contact

 Dale Kirkland, NVIDIA (dkirkland 'at' nvidia.co m)

Status

 Complete. Appprove by the ARB on October 22, 20 04.

Version

 Based on the ATI_pixel_format_float extension, verion 5
 Enables based on work by Pat Brown from the col or_clamp_control proposal

 Last Modified Date: February 7, 2006
 Version 6

Number

 ARB Extension #39

Dependencies

 This extension is written against the OpenGL 2. 0 Specification
 but will work with the OpenGL 1.5 Specification .

 WGL_ARB_pixel_format is required.

 This extension interacts with ARB_fragment_prog ram.

 This extension interacts with ARB_fragment_shad er.

 This extension interacts with NV_float_buffer.

 This extension interacts with ATI_pixel_format_ float.

Overview

 The standard OpenGL pipeline is based on a fixe d-point pipeline.
 While color components are nominally floating-p oint values in the

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 12

 pipeline, components are frequently clamped to the range [0,1] to
 accomodate the fixed-point color buffer represe ntation and allow
 for fixed-point computational hardware.

 This extension adds pixel formats or visuals wi th floating-point
 RGBA color components and controls for clamping of color
 components within the pipeline.

 For a floating-point RGBA pixel format, the siz e of each float
 components is specified using the same attribut es that are used
 for defining the size of fixed-point components . 32-bit
 floating-point components are in the standard I EEE float format.
 16-bit floating-point components have 1 sign bi t, 5 exponent bits,
 and 10 mantissa bits.

 Clamping control provides a way to disable cert ain color clamps
 and allow programs, and the fixed-function pipe line, to deal in
 unclamped colors. There are controls to modify clamping of vertex
 colors, clamping of fragment colors throughout the pipeline, and
 for pixel return data.

 The default state for fragment clamping is "FIX ED_ONLY", which
 has the behavior of clamping colors for fixed-p oint color buffers
 and not clamping colors for floating-pont color buffers.

 Vertex colors are clamped by default.

IP Status

 SGI owns US Patent #6,650,327, issued November 18, 2003. SGI
 believes this patent contains necessary IP for graphics systems
 implementing floating point (FP) rasterization and FP framebuffer
 capabilities.

 SGI will not grant the ARB royalty-free use of this IP for use in
 OpenGL, but will discuss licensing on RAND term s, on an individual
 basis with companies wishing to use this IP in the context of
 conformant OpenGL implementations. SGI does not plan to make any
 special exemption for open source implementatio ns.

 Contact Doug Crisman at SGI Legal for the compl ete IP disclosure.

Issues

 1. How is this extension different from the ATI _pixel_format_float
 extension?

 RESOLVED: By default, this extension behave s like the
 ATI_pixel_format_float, but also adds additi onal controls for
 color clamping.

 2. Should the clamp controls be automatically i nferred based on
 the format of the color buffer or textures u sed?

 RESOLVED: Explicit controls should be suppo rted -- this allows
 the use of floating-point buffers to emulate fixed-point

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 13

 operation, and allows for operating on uncla mped values even
 when rendering to a fixed-point framebuffer.

 However, a default clamping mode called "FIX ED_ONLY" is defined
 that enables clamping only when rendering to a fixed-point color
 buffer, which is the default for fragment pr ocessing. This is
 done to maintain compatibility with previous extensions
 (ATI_pixel_format_float), and to allow appli cations to switch
 between fixed- and floating-point color buff ers without having
 to change the clamping mode on each switch.

 3. How does the clamping control affect the ble nding equation?

 RESOLVED: For fixed-point color buffers, th e inputs and the
 result of the blending equation are clamped. For floating-point
 color buffers, no clamping occurs.

 4. Should the requirements for the representabl e range of color
 components be increased?

 RESOLVED: No. Such a spec change would be complicated, since
 the required precision may vary based on col or buffer precision.
 Despite the fact that there is no spec requi rement, GL
 implementations should have at least as much precision/range in
 their colors as can be found in the framebuf fer.

 5. Should the vertex color clamping control app ly to RasterPos?
 WindowPos?

 RESOLVED: Yes to both. RasterPos is proces sed just like a
 vertex, so the vertex color clamping control applies
 automatically. The WindowPos language in th e OpenGL 2.0
 specification explicitly refers to color cla mping. Instead,
 we modify the language to perform normal pro cessing, but with
 lighting forced off. This will result in th e color clamping
 logic applying.

 6. What control should apply to DrawPixels RGBA components?

 RESOLVED: The fragment color clamp control.

 7. Should this extension modify the clamping of the texture
 environment color components? TEXTURE_ENV_C OLOR components
 are currently specified to be clamped to [0, 1] when TexEnv is
 called.

 RESOLVED: Yes. The texture environment col or is no longer
 clamped when specified. If fragment color c lamping is enabled,
 it will be clamped to [0,1] on use.

 8. In texture environment application, should c olor components used
 as an interpolation factor (e.g., alpha) be clamped to [0,1]?

 RESOLVED: No. For interpolation-type blend s, the weighting
 factor is normally in the range [0,1]. But the math is well-
 defined in the cases where it falls outside this range. When

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 14

 fragment color clamping is enabled, all sour ces are clamped to
 [0,1], so this is not an issue.

 9. In the COMBINE texture environment mode, shou ld any of the
 source argument operands be clamped to [0,1] even when fragment
 clamping is disabled? For example, ONE_MINU S_* mappings are
 simple in a fixed-point pipeline are simple, but more
 complicated in a floating-point one.

 RESOLVED: No. The math behind ONE_MINUS_* is well-defined for
 all inputs.

 10. Should the clamping controls affect the text ure comparison mode
 for shadow mapping?

 RESOLVED: No. The r coordinate should stil l be clamped to
 [0,1] to match the depth texture. The resul t of the
 comparison will naturally lie in the range [0,1].

 11. Should the clamping controls affect the resu lt of color sum?

 RESOLVED: Yes.

 12. Should the clamping controls affect the comp uted fog factor?

 RESOLVED: No. The fog factor is not a colo r -- it is used to
 blend between the fragment color and the fog color. The factor
 should always be clamped to [0,1].

 13. Should this extension modify the clamping of the fog color
 components? FOG_COLOR components are specif ied to be clamped
 to [0,1] when Fogfv is called.

 RESOLVED: Yes. Fog color components are no longer clamped
 when specified, but will be clamped when fog is applied if
 fragment color clamping is enabled.

 14. How does this extension interact with antial iasing application
 (Section 3.12 of the OpenGL 2.0 spec)?

 RESOLVED: Multiply floating-point alpha by coverage, even if
 the alpha value is not being used as opacity . If applications
 don't want this multiplication, they should not render
 antialiased primitives. No spec language cha nges are needed
 here.

 15. How does this extension interact with multis ample point fade
 (Section 3.13 of the OpenGL 2.0 spec)?

 RESOLVED: Multiply floating-point alpha by the fade factor,
 even if the alpha value is not being used as opacity. If
 applications don't want this multiplication, they should not
 use multisample point fade. No spec languag e changes are
 needed here.

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 15

 16. Should this extension modify the clamping of the alpha test
 reference value?

 RESOLVED: Yes. The reference value is not clamped when
 specified, by may be clamped when it is used .

 17. Should this extension modify the clamping of the constant blend
 color components?

 RESOLVED: Yes. The blend color is not clam ped when specified.
 When rendering to a fixed-point framebuffer, the blend color
 will be clamped as part of the blending oper ation.

 18. Should this extension modify the clamping of clear colors?

 RESOLVED: Yes. The clear color is not clam ped when specified.
 When clearing color buffers, the clear color is converted to
 the format of the color buffer.

 19. Should we provide a control to disable impli cit clamping of
 ReadPixels data? If so, how should it be sp ecified?

 RESOLVED: Yes. It is explicitely controlle d by the target
 CLAMP_READ_COLOR_ARB of the ClampColorARB fu nction and clamps
 the color during the final conversion.

 20. How does this extension interact with CopyPi xels?

 RESOLVED: It has no special interaction. Co pyPixels is specified
 as roughly a ReadPixels/DrawPixels sequence, but the read color
 clamp modified by this specification occur d uring final
 conversion and therefore would not apply. Th e fragment color
 clamp does affect the DrawPixels portion of the operation,
 however. The net result is that calling Cop yPixels with a
 floating-point framebuffer will clamp color components if
 fragment color clamping is enabled.

 21. Should these clamping controls interact with PushAttrib and
 PopAttrib? If so, what group should they bel ong to?

 RESOLVED: For consistency, yes. Historical ly, all enables are
 pushed and popped with both the enable bit a nd a second bit
 corresponding to the function performed by t he enable. The
 present spec calls for pushing the vertex co lor clamp with the
 lighting group and the fragment and read col or clamp with the
 color-buffer group (for lack of a better cho ice).

 22. Should this extension require a floating-poi nt color buffer
 or texture?

 RESOLVED: No. This extension provides the ability to pass an
 unclamped color between vertex and fragment programs/shaders,
 which may be useful. This was possible prior to this extension,
 by passing the color data as texture coordin ates or named
 varying variables (for vertex/fragment shade rs).

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 16

 23. Does this extension interact with the ARB_ve rtex_program or
 ARB_vertex_shader extensions?

 RESOLVED: Only in the most trivial way. Bo th of these
 extensions refer to the color clamping logic (Section 2.14.6
 in the OpenGL 2.0 specification). This exte nsion modifies that
 logic to be under control of the CLAMP_VERTE X_COLOR_ARB enable.
 It follows that this enable also controls th e clamping of vertex
 program or vertex shader results.

 24. Does this extension interact with the ARB_fr agment_program or
 ARB_fragment_shader extensions?

 RESOLVED: Yes. The only interaction is tha t the fragment color
 clamp enable determines if the final color(s) produced by the
 fragment program/shader has its components c lamped to [0,1].

 However, the fragment color clamp enable aff ects only the final
 result; it does NOT affect any computations performed during
 program execution. Note that the same clampi ng can be done
 explicitly in a fragment program or shader.
 ARB_fragment_program provides the "_SAT" opc ode suffix to clamp
 instruction results to [0,1].

 25. Should this extension modify the clamping of the texture border
 color components?

 RESOLVED: Not by this extension. See the A RB_texture_float
 extension.

 26. When using vertex and fragment programs/shad ers, should color
 clamping be specified in the shader instead?

 RESOLVED: No. All the existing program/sha der extensions call
 for the color outputs to be clamped to [0,1] , except that
 previous floating-point color buffer extensi ons disabled the
 clamp of fragment program/shader outputs.

 While it would be straightforward to have re quired that vertex
 or fragment programs manually clamp their ou tputs if desired,
 adding such a requirement at this point woul d pose compatibility
 issues. It would probably require introduct ion of a special
 directive to indicate that colors are unclam ped.

 If a GL implementation internally performs c olor clamping in a
 vertex or fragment program, it may be necess ary to recompile the
 program if the corresponding clamp enable ch anges.

 27. If certain colors in the OpenGL state vector were clamped in
 previous versions of the spec, but now have the clamping
 removed, do queries need to return clamped v alues for
 compatibility with older GL versions? Should we add new query
 tokens to return unclamped values?

 RESOLVED: To minimize impact on this specifi cation while allowing
 for compatibility with older GL versions, th e values of the
 vertex/fragment color clamp enables should a ffect queries of such

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 17

 state. If the corresponding color clamp is enabled, components
 will be clamped to [0,1] when returned. Sin ce color clamping is
 enabled by default for fixed-point color buf fers, the removal of
 the clamps will not be observable by applica tions unless they
 disable one or both clamps or choose a float ing-point buffer
 (which will not happen for "old" application s).

 Note that this spec relaxes the clamp on the current raster
 color, but we don't need to add a clamp on t he corresponding
 query. The current raster color is clamped when the GL computes
 it, unless vertex color clamping is disabled by the application.

 28. At what precision should alpha test be carri ed out? At the
 precision of the framebuffer? Or some other unspecified
 precision? What happens if you have a frame buffer with no
 alpha?

 RESOLVED: No specific precision requirements are added, except
 that the reference value used in the alpha t est should be
 converted to the same precision and in the s ame manner as the
 fragment's alpha. This requirement is intend ed to avoid cases
 where the act of converting the alpha value of a fragment to
 fixed-point (or lower-precision floating-poi nt) might change the
 result of the test.

 29. How does this extension interact with accumu lation buffers?

 RESOLVED: This extension does not modify the nature of
 accumulation buffers. Adding semantics for floating-point
 accumulation buffers is left for a possible future extension.
 The clamp on the RETURN operation is control led by the fragment
 color clamp enable.

 30. How does this extension interact with OpenGL FEEDBACK mode?

 RESOLVED: OpenGL FEEDBACK mode returns color s after clipping,
 which is done after the vertex color clampin g. Therefore, the
 colors returned will be clamped to [0,1] if and only if vertex
 color clamping is enabled. No spec language changes are
 necessary.

 31. Should we relax the language in Section 2.14 .9 (Final Color
 Processing) to not require conversion to fix ed-point?

 RESOLVED: Adding floating-point vertex color s requires that
 this language be modified. Even for the cla mped case, it seems
 reasonable for implementations to simply cla mp a floating-point
 value to [0,1] without converting to a fixed -point
 representation. This specification makes co nverting colors to
 fixed-point optional. Colors will obviously still be converted
 to fixed-point eventually if the framebuffer is fixed-point.

 32. What should be done about the "preserving th e bits" requirement
 for Color*{ub,us,ui} commands in Section 2.1 4.9?

 RESOLVED: If colors are represented as float s internally and
 the frame-buffer is fixed-point, do we requi re that the MSBs of

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 18

 fixed-point colors that don't go through lig hting, and
 non-trivial interpolation, or any non-trivia l fragment operations
 show up in the MSBs of the framebuffer?

 33. How does this extension interact with multis ample
 ALPHA_TO_COVERAGE, where an alpha value expe cted to be in the
 range [0,1] is turned into a set of coverage bits?

 UNRESOLVED: For the purposes of generating s ample coverage from
 fragment alpha, the alpha values are effecti vely clamped to
 [0,1]. Negative alpha values correspond to no coverage; alpha
 values greater than one correspond to full c overage.

 34. What happens if there are no color buffers i n the framebuffer
 and a clamp control is set to FIXED_ONLY?

 RESOLVED: The present language treats a zero -bit color buffer
 as fixed-point.

 35. Should the clamping of fragment shader outpu t gl_FragData[n]
 be controlled by the fragment color clamp.

 RESOLVED: Since the destination of the FragD ata is a color
 buffer, the fragment color clamp control sho uld apply.

 36. Should logical operations be disabled for fl oating-point
 color buffers.

 RESOLVED: Yes. This matches the behavior i n the ATI
 specification.

 37. Is it expected that a floating-point color r ead from a
 floating-point color buffer exactly match a floating-point
 color in a fragment? Will the alpha test of GL_EQUAL
 be expected to work?

 RESOLVED: This behavior is not required by t his extension.
 Floating-point data may have different preci sion at different
 parts of the pipeline.

 38. How does this extension handle the case wher e a floating-point
 and a fixed-point buffer exists?

 RESOLVED: For vertex colors, clamping occurs if any color
 buffer are floating point. Fragment colors are handled
 based on the format (fixed or float) of the color buffer
 that they will be drawn to.

New Procedures and Functions

 void ClampColorARB(enum target, enum clamp);

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 19

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 RGBA_FLOAT_MODE_ARB 0x8 820

 Accepted by the <target> parameter of ClampColo rARB and the <pname>
 parameter of GetBooleanv, GetIntegerv, GetFloat v, and GetDoublev.

 CLAMP_VERTEX_COLOR_ARB 0x8 91A
 CLAMP_FRAGMENT_COLOR_ARB 0x8 91B
 CLAMP_READ_COLOR_ARB 0x8 91C

 Accepted by the <clamp> parameter of ClampColor ARB.

 FIXED_ONLY_ARB 0x8 91D
 FALSE
 TRUE

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_TYPE_RGBA_FLOAT_ARB 0x2 1A0

 Accepted as values of the <render_type> argumen ts in the
 glXCreateNewContext and glXCreateContext functi ons

 GLX_RGBA_FLOAT_TYPE 0x2 0B9

 Accepted as a bit set in the GLX_RENDER_TYPE va riable

 GLX_RGBA_FLOAT_BIT 0x0 0000004

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16-Bit Floating-Point Numbers

 A 16-bit floating-point number has a 1-bit sign (S), a 5-bit
 exponent (E), and a 10-bit mantissa (M). The v alue of a 16-bit
 floating-point number is determined by the foll owing:

 (-1)^S * 0.0, if E = = 0 and M == 0,
 (-1)^S * 2^-14 * (M / 2^10), if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E = = 31 and M == 0, or
 NaN, if E = = 31 and M != 0,

 where

 S = floor((N mod 65536) / 32768),
 E = floor((N mod 32768) / 1024), and
 M = N mod 1024.

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 20

 Implementations are also allowed to use any of the following
 alternative encodings:

 (-1)^S * 0.0, if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M == 0, or
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M != 0,

 Any representable 16-bit floating-point value i s legal as input
 to a GL command that accepts 16-bit floating-po int data. The
 result of providing a value that is not a float ing-point number
 (such as infinity or NaN) to such a command is unspecified, but
 must not lead to GL interruption or termination . Providing a
 denormalized number or negative zero to GL must yield predictable
 results.

 Modify Section 2.13 (Current Raster Position), p. 54

 (modify last paragraph on p. 55) Lighting, text ure coordinate
 generation and transformation, and clipping are not performed by
 the WindowPos functions. Instead, in RGBA mode, the current raster
 color and secondary color are obtained from the current color and
 secondary color, respectively. If vertex color clamping is enable,
 the current raster color and secondary color ar e clamped to [0, 1].
 In color index mode, the current raster color i ndex is set to the
 current color index. The current raster textur e coordinates are
 set to the current texture coordinates, and the valid bit is set.

 Modify Section 2.14 (Colors and Coloring), p. 5 7

 (modify last paragraph on p.57) ... After light ing, RGBA colors are
 optionally clamped to the range [0,1]. ...

 Modify Section 2.14.6 (Clamping or Masking), p. 69

 (modify first and second paragraphs of section) When the GL is in
 RGBA mode and vertex color clamping is enabled, all components of
 both primary and secondary colors are clamped t o the range [0,1]
 after lighting. If color clamping is disabled, the primary and
 secondary colors are unmodified. Vertex color c lamping is controlled
 by calling

 void ClampColorARB(enum target, enum clamp)

 with a <target> set to CLAMP_VERTEX_COLOR_ARB. If <clamp> is TRUE,
 vertex color clamping is enabled; if <clamp> is FALSE, vertex color
 clamping is disabled. If <clamp> is FIXED_ONLY _ARB, vertex color
 clamping is enabled if all enabled color buffer s have fixed-point
 components.

 For a color index, the index is first converted to...

 (add paragraph at the end of the section) The s tate required for
 color clamping is an enumerant. Vertex color c lamping is initially
 TRUE.

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 21

 Replace Section 2.14.9 (Final Color Processing) , p. 71

 In RGBA mode with vertex color clamping disable d, the floating-
 point RGBA components are not modified.

 In RGBA mode with vertex clamping enabled, each color component
 (already clamped to [0,1]) may be converted (by rounding to nearest)
 to a fixed-point value with m bits. We assume t hat the fixed-point
 representation used represents each value k/(2^ m - 1), with k in the
 set {0, 1, . . . , 2^m - 1}, as k (e.g. 1.0 is represented in binary
 as a string of all ones). m must be at least as large as the number
 of bits in the corresponding component of the f ramebuffer. m must be
 at least 2 for A if the framebuffer does not co ntain an A component,
 or if there is only 1 bit of A in the framebuff er. GL
 implementations are not required to convert cla mped color components
 to fixed-point.

 Because a number of the form k/(2^m - 1) may no t be represented
 exactly as a limited-precision floating-point q uantity, we place a
 further requirement on the fixed-point conversi on of RGBA
 components. Suppose that lighting is disabled, the color associated
 with a vertex has not been clipped, and one of Colorub, Colorus, or
 Colorui was used to specify that color. When th ese conditions are
 satisfied, an RGBA component must convert to a value that matches
 the component as specified in the Color command : if m is less than
 the number of bits b with which the component w as specified, then
 the converted value must equal the most signifi cant m bits of the
 specified value; otherwise, the most significan t b bits of the
 converted value must equal the specified value.

 In color index mode, a color index is converted (by rounding to
 nearest) to a fixed-point value with at least a s many bits as there
 are in the color index portion of the framebuff er.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 126

 (modify next-to-last paragraph, p.136, "Final C onversion") ... For
 RGBA components, if fragment color clamping is enabled, each
 element is clamped to [0,1], and may be convert ed to fixed-point
 according to the rules given in section 2.14.9 (Final Color
 Processing). If fragment color clamping is dis abled, RGBA
 components are unmodified. Fragment color clam ping is controlled
 using ClampColorARB, as described in section 2. 14.6, with a
 <target> of CLAMP_FRAGMENT_COLOR_ARB.

 (add new paragraph at the end of "Final Convers ion", p.137) The
 state required for fragment color clamping is a n enumerant.
 Fragment color clamping is initially set to FIX ED_ONLY_ARB.

 Modify Section 3.8.13 (Texture Environments and Functions), p.182

 (modify third paragraph, p. 183, removing clamp ing language)
 ...TEXTURE_ENV_COLOR is set to an RGBA color b y providing four
 single-precision floating-point values. If int egers are provided

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 22

 for TEXTURE ENV COLOR, then they are converted to floating-point
 as specified in table 2.9 for signed integers.

 (replace the sixth paragraph of p. 183) If frag ment color clamping
 is enabled, all of these color values, includin g the results, are
 clamped to the range [0,1]. If fragment color clamping is
 disabled, the values are not clamped. The text ure functions are
 specified in tables 3.22, 3.23, and 3.24.

 (modify seventh paragraph of p. 183) ... ALPHA_ SCALE, respectively.
 If fragment color clamping is enabled, the argu ments and results
 used in table 3.24 are clamped to [0,1]. Other wise, the results
 are unmodified.

 Modify Section 3.9 (Color Sum), p. 191

 (modify second paragraph) ... the A component o f c_sec is unused.
 If color sum is disabled, then c_pri is assigne d to c. The
 components of c are then clamped to the range [0,1] if and only
 if fragment color clamping is enabled.

 Modify Section 3.10 (Fog), p. 191

 (modify fourth paragraph, p. 192, removing clam ping language) ...If
 these are not floating-point values, then they are converted to
 floating-point using the conversion given in ta ble 2.9 for signed
 integers. If fragment color clamping is enable d, the components of
 C_r and C_f and the result C are clamped to the range [0,1] before
 the fog blend is performed.

 Modify Section 3.11.2 (Shader Execution), p. 19 4

 (modify Shader Inputs, first paragraph, p. 196) The built-in
 variables gl_Color and gl_SecondaryColor hold t he R, G, B, and A
 components, respectively, of the fragment color and secondary
 color. If the primary color or the secondary co lor components are
 represented by the GL as fixed-point values, th ey undergo an
 implied conversion to floating-point. This con version must leave
 the values 0 and 1 invariant. Floating-point co lor components
 (resulting from a disabled vertex color clamp) are unmodified.

 (modify Shader Outputs, first paragraph, p. 196) ... These are
 gl_FragColor, gl_FragData[n], and gl_FragDepth. If fragment
 clamping is enabled, the final fragment color v alues or the final
 fragment data values written by a fragment shad er are clamped to
 the range [0, 1] and then may be converted to f ixed-point as
 described in section 2.14.9. If fragment clamp ing is disabled,
 the final fragment color values or the final fr agment data values
 are not modified. The final fragment depth...

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 Modify Chapter 4 Introduction, (p. 198)

 (modify third paragraph, p. 198) Color buffers consist of either
 unsigned integer color indices, R, G, B and opt ionally A unsigned

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 23

 integer values, or R, G, B, and optionally A fl oating-point values.
 The number of bitplanes...

 Modify Section 4.1.3 (Multisample Fragment Oper ations), p. 200

 (modify last paragraph, p. 200) ...and all 0's corresponding to all
 alpha values being 0. The alpha values used to generate a coverage
 value are clamped to the range [0,1]. It is als o intended ...

 Modify Section 4.1.5 (Alpha Test), p. 201

 (modify first paragraph of section, deleting cl amping of
 reference value) ... The test is controlled w ith

 void AlphaFunc(enum func, float ref);

 func is a symbolic constant indicating the alph a test function;
 ref is a reference value. When performing the alpha test, the GL
 will convert the reference value to the same re presentation as the
 the fragment's alpha value (floating-point or f ixed-point).
 For fixed-point, the reference value is convert ed according to the
 rules given for an A component in section 2.14. 9 and the fragment's
 alpha value is rounded to the nearest integer. The possible ...

 Modify Section 4.1.8 (Blending), p. 205

 (modify first paragraph, p. 206) Source and des tination values are
 combined according to the blend equation, quadr uplets of source and
 destination weighting factors determined by the blend functions, and
 a constant blend color to obtain a new set of R , G, B, and A values,
 as described below.

 If the color buffer is fixed-point, the compone nts of the source
 and destination values and blend factors are cl amped to [0, 1]
 prior to evaluating the blend equation, the com ponents of the
 blending result are clamped to [0,1] and conver ted to fixed-
 point values in the manner described in section 2.14.9. If the
 color buffer is floating-point, no clamping occ urs. The
 resulting four values are sent to the next oper ation.

 (modify fifth paragraph, p. 206) Fixed-point de stination
 (framebuffer) components are taken to be fixed- point values
 represented according to the scheme given in se ction 2.14.9
 (Final Color Processing). Constant color compo nents, floating-
 point destination components, and source (fragm ent) components are
 taken to be floating point values. If source co mponents are
 represented internally by the GL as either fixe d-point values they
 are also interepreted according to section 2.14 .9.

 (modify Blend Color section removing the clamp, p. 209) The
 constant color C_c to be used in blending is sp ecified with the
 command

 void BlendColor(float red, float green, floa t blue, float alpha);

 The constant color can be used in both the sour ce and destination
 blending functions.

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 24

 Replace Section 4.1.9 (Dithering), p. 209

 Dithering selects between two representable col or values or indices.
 A representable value is a value that has an ex act representation in
 the color buffer. In RGBA mode dithering selec ts, for each color
 component, either the most positive representab le color value (for
 that particular color component) that is less t han or equal to the
 incoming color component value, c, or the most negative
 representable color value that is greater than or equal to c. The
 selection may depend on the x_w and y_w coordin ates of the pixel, as
 well as on the exact value of c. If one of the two values does not
 exist, then the selection defaults to the other value.

 In color index mode dithering selects either th e largest
 representable index that is less than or equal to the incoming
 color value, c, or the smallest representable i ndex that is greater
 than or equal to c. If one of the two indices does not exist, then
 the selection defaults to the other value.

 Many dithering selection algorithms are possibl e, but an individual
 selection must depend only on the incoming colo r index or component
 value and the fragment's x and y window coordin ates. If dithering
 is disabled, then each incoming color component c is replaced with
 the most positive representable color value (fo r that particular
 component) that is less than or equal to c, or by the most negative
 representable value, if no representable value is less than or equal
 to c; a color index is rounded to the nearest r epresentable index
 value.

 Dithering is enabled with Enable and disabled w ith Disable using the
 symbolic constant DITHER. The state required i s thus a single bit.
 Initially dithering is enabled.

 Section 4.1.10 (Logical Operation), p. 210

 (insert after the first sentence, p. 210) Logi cal operation has no
 effect on a floating-point destination color bu ffer. However, if
 COLOR_LOGIC_OP is enabled, blending is still di sabled.

 Modify Section 4.2.3 (Clearing the Buffers), p. 215

 (modify second paragraph, p. 216, removing clam p of clear color)

 void ClearColor(float r, float g, float b, f loat a);

 sets the clear value for the color buffers in R GBA mode.

 (add to the end of first partial paragraph, p. 217) ... then a
 Clear directed at that buffer has no effect. F ixed-point RGBA
 color buffers are cleared to a color values der ived by taking the
 clear color, clamping to [0,1], and converting to fixed-point
 according to the rules of section 2.14.9.

 Modify Section 4.2.4 (The Accumulation Buffer), p. 217

 (modify second paragraph in section, p. 217) .. . Using ACCUM

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 25

 obtains R, G, B, and A components from the colo r buffer currently
 selected for reading (section 4.3.2). If the co lor buffer is
 fixed-point, each component is considered as a fixed-point value
 in [0,1] (see section 2.14.9) and is converted to floating-point.
 Each result is then multiplied ...

 (modify second paragraph on p. 218) The RETURN operation takes
 each color value from the accumulation buffer a nd multiplies each
 of the R, G, B, and A components by <value>. I f fragment color
 clamping is enabled, the results are then clamp ed to the range
 [0,1]. ...

 Modify Section 4.3.2 (Reading Pixels), p. 219

 (modify paragraph at top of page, p. 222) ... For a fixed-point
 color buffer, each element is taken to be a fix ed-point value in
 [0, 1] with m bits, where m is the number of bi ts in the
 corresponding color component of the selected b uffer (see
 section 2.14.9). For floating-point color buff er, the elements
 are unmodified.

 (modify second paragraph of "Final Conversion", p. 222) For an
 RGBA color, if <type> is not FLOAT, or if the C LAMP_READ_COLOR_ARB
 is TRUE, or CLAMP_READ_COLOR_ARB is FIXED_ONLY_ ARB and the selected
 color buffer is a fixed-point buffer, each comp onent is first
 clamped to [0,1]. Then the appropriate convers ion...

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.2, Data Conversions, p. 245

 (add new paragraph at the end of the section, p . 245) If fragment
 color clamping is enabled, querying of the text ure border color,
 texture environment color, fog color, alpha tes t reference value,
 blend color, and RGBA clear color will clamp th e corresponding
 state values to [0,1] before returning them. T his behavior
 provides compatibility with previous versions o f the GL that
 clamped these values when specified.

Additions to Chapter 1 of the GLX 1.3 Specification (Overview)

 None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

 None

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 26

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and
Errors)

 Replace Section 3.3.3 (p.12) Paragraph 4 to:

 The attribute GLX_RENDER_TYPE has as its value a mask
 indicating what type of GLXContext a drawable c reated with
 the corresponding GLXFBConfig can be bound to. The following
 bit settings are supported: GLX_RGBA_BIT, GLX_R GBA_FOAT_BIT,
 GLX_COLOR_INDEX_BIT. If combinations of bits a re set in the
 mask then drawables created with the GLXFBConfi g can be
 bound to those corresponding types of rendering contexts.

 Add to Section 3.3.3 (p.15) after first paragra ph:

 Note that floating point rendering is only supp orted for
 GLXPbuffer drawables. The GLX_DRAWABLE_TYPE at tribute of
 the GLXFBConfig must have the GLX_PBUFFER_BIT b it set and
 the GLX_RENDER_TYPE attribute must have the
 GLX_RGBA_FLOAT_BIT set.

 Modify Section 3.3.7 (p.25 Rendering Contexts) remove period
 at end of second paragraph and replace with:

 ; if render_type is set to GLX_RGBA_FLOAT_TYPE then a
 context that supports floating point RGBA rende ring is
 created.

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the
X Byte Stream)

 None

Additions to Chapter 5 of the GLX 1.3 Specification (Extending
OpenGL)

 None

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

 None

Additions to Chapter 7 of the GLX 1.3 Specification (Glossary)

 None

Additions to the GLX Specification

 Modify the bit field GLX_RENDER_TYPE to:

 GLX_RENDER_TYPE
 The type of pixel data. This bit field can hav e the
 following bit set: GLX_RGBA_BIT, GLX_RGBA_FLOAT _BIT,
 GLX_COLOR_INDEX_BIT

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 27

 Adds to the accepted values of the <render_type > argument
 in the glXCreateNewContext and glXCreateContext WithSGIX
 functions to:

 <render_type>
 Type of rendering context requested. This argu ment
 can have the following values: GLX_RGBA_TYPE,
 GLX_RGBA_FLOAT_TYPE, GLX_COLOR_INDEX_TYPE

GLX Protocol

 The following rendering commands are sent to th e server as part
 of a glXRender request:

 ClampColorARB
 2 12 rendering comm and length
 2 234 rendering comm and opcode
 4 CARD32 target
 4 CARD32 clamp

Additions to the WGL Specification

 Modify the values accepted by WGL_PIXEL_TYPE_AR B to:

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,
 WGL_TYPE_RGBA_FLOAT_ARB, or WGL_TYPE_COLORI NDEX_ARB.

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format with float components.

Dependencies on ARB_fragment_program

 (modify 2nd paragraph of Section 3.11.4.4 langu age) If fragment
 color clamping is enabled, the fragment's color components are first
 clamped to the range [0,1] and are optionally c onverted to fixed
 point as in section 2.14.9. If the fragment pr ogram does not write
 result.color, the color will be undefined in su bsequent stages.

Dependencies on ARB_fragment_shader

 (modify 1st paragraph of Section 3.11.6 languag e) ... are
 gl_FragColor and gl_FragDepth. If fragment col or clamping is
 enabled, the final fragment color values writte n by a fragment
 shader are clamped to the range [0,1] and are o ptionally converted
 to fixed-point as described in section 2.14.9, Final Color
 Processing. ...

Dependencies on NV_float_buffer

 Note that the WGL/GLX enumerants for the NV and ARB extensions
 do not have the same values, so it is possible to distinguish
 between "NV" and "ARB" pixel formats.

ARB_color_buffer_float NVIDIA OpenGL Extension Specifications

 28

 If NV_float_buffer and ARB_color_buffer_float a re both supported,
 restrictions imposed by NV_float_buffer are rem oved. In
 particular, antialiasing application, multisamp le fragment
 operations, alpha test, and blending are all pe rformed as
 specified in this extension. Additionally, it is not necessary to
 use a fragment program or shader to render to a floating-point
 color buffer allocated using the NV_float_buffe r extension.

 Note also that vertex color clamp portion of th is extension does
 not interact with NV_float_buffer.

Dependencies on ATI_pixel_format_float

 The basic policy of ATI_pixel_format_float rega rding clamping is
 that vertex color clamping is unaffected (still enabled) and that
 fragment color clamping is automatically disabl ed when rendering
 to floating-point color buffers.

 This extension is designed so that the defaults are compatible
 with the ATI_pixel_format_float, so there is no need for separate
 "ATI" and "ARB" floating-point pixel formats.

Errors

 None

New State

 (modify table 6.10, p. 271)
 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 ------------------------- ---- ----------- ------- --------------- ---- ---------
 CLAMP_VERTEX_COLOR_ARB B GetIntegerv TRUE vertex color 2.14.6 lighting/enable
 clamping
 CLAMP_FRAGMENT_COLOR_ARB B GetIntegerv FIXED_ fragment color 2.14.6 color-buffer/en able
 ONLY_ARB clamping
 CLAMP_READ_COLOR_ARB B GetIntegerv FIXED_ read color 2.14.6 color-buffer/en able
 ONLY_ARB clamping

 (modify table 6.33, p. 294)

 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 ------------------------ ---- ----------- ------- ---------------- ---- ----------
 RGBA_FLOAT_MODE_ARB B GetBooleanv - True if RGBA 2.7 -
 components are
 floats

New Implementation Dependent State

 None

Revision History

 Rev. Date Author Changes
 ---- -------- --------- --------------------- -----------------------
 1 2/26/04 Kirkland Initial version based on the ATI extension.

NVIDIA OpenGL Extension Specifications ARB_color_buffer_float

 29

 2 3/11/04 Kirkland Changed spec to be bo th a GL and WGL spec.
 Updated language for float16 number handling.
 Added bit encodings f or half values.
 Removed the clamped c olor query.
 Updated the language for dithering.

 3 7/23/04 Kirkland Added alternative enc odings options for
 float16 format.

 4 9/17/04 Kirkland Merged the color clam p control spec with
 this spec.
 Updated to reference the OpenGL 2.0 spec.
 Added the specificati on for GLX.

 5 10/1/04 Kirkland Updated IP section.
 Reviewed by the ARB a nd closed all
 UNRESOLVED issues.
 Added an invariant th at discusses the
 handling of the alpha test.

 6 2/6/07 Jon Leech Fix typos in enum nam ing.

ARB_depth_texture NVIDIA OpenGL Extension Specifications

 30

Name

 ARB_depth_texture

Name Strings

 GL_ARB_depth_texture

Status

 Complete. Approved by ARB on February 14, 2002.

Version

 Last Modified Date: 13 May 2004

Number

 ARB Extension #22

Dependencies

 OpenGL 1.1 is required.
 This extension is written against the OpenGL 1. 3 Specification.

Overview

 This is a clarification of the GL_SGIX_depth_te xture extension. The
 original overview follows:

 This extension defines a new depth texture form at. An important
 application of depth texture images is shadow c asting, but separating
 this from the shadow extension allows for the p otential use of depth
 textures in other applications such as image-ba sed rendering or
 displacement mapping. This extension does not define new depth-texture
 environment functions, such as filtering or app lying the depth values
 computed from a texture but leaves this to othe r extensions, such as
 the shadow extension.

IP Status

 None.

Issues

 (1) How is this extension different from GL_SGI X_depth_texture?

 This extension defines support for texture bo rder values, querying
 depth texel resolution, and behavior when a d epth texture is bound
 to a texture unit that's expecting RGBA texel s.

 (2) What about texture borders and the border v alue?

 Texture borders are supported. The texture b order value used for
 depth textures is the first component of TEXT URE_BORDER_COLOR.

NVIDIA OpenGL Extension Specifications ARB_depth_texture

 31

 (3) What happens when a depth texture is curren tly bound but RGBA
 texels are expected by the texture unit?

 The depth texture is treated as if it were a LUMINANCE texture.
 It's sometimes useful to render a depth compo nent texture as a
 grayscale texture.

 (4) What happens when an RGBA texture is curren tly bound but depth
 texels are expected by the texture unit?

 We do texturing in the normal way for an RGBA texture.

 (5) What about 1D, 3D and cube maps textures? Should depth textures
 be supported?

 RESOLVED: For 1D textures, yes, for orthogon ality. For 3D and cube map
 textures, no. In both cases, the R coordinat e that would be ordinarily
 be used for a shadow comparison is needed for texture lookup and won't
 contain a useful value. In theory, the shado w functionality could be
 extended to provide useful behavior for such targets, but this
 enhancement is left to a future extension.

 (6) Why "depth" textures instead of a generic, extended-precision,
 single-channel texture format?

 RESOLVED: We need a depth format so that glCo pyTex[Sub]Image()
 can copy data from the depth buffer to the te xture memory.

 (7) Is there any particular reason that depth t extures should only be
 used as LUMINANCE textures?

 RESOLVED: Add DEPTH_TEXTURE_MODE to allow dep th textures to be used
 as LUMINANCE, INTENSITY or ALPHA textures.

 (8) It is very unlikely that depth textures whe n used as LUMINANCE,
 INTENSITY or ALPHA textures are used at their full storage precision.
 Should there be a query for the actual number of bits used for
 depth textures?

 RESOLVED: No. OpenGL does not have queries fo r internal precision.
 Instead of adding it randomly for one feature , it should be looked
 in the broader context of providing it for mo re features.

 (9) How should GetTexImage work for depth text ures?

 RESOLVED: Since GetTexImage is modeled on Rea dPixels, reading depth
 components should require the DEPTH_COMPONENT format. Specifying a
 color format when querying a texture image wi th a DEPTH_COMPONENT
 base internal format should be an invalid ope ration. Likewise,
 specifying a DEPTH_COMPONENT format when quer ying a texture image
 with a color internal format should be an inv alid operation.
 This is not only consistent with ReadPixels b ut how the
 EXT_paletted_texture and NV_texture_shader ex tensions amend
 GetTexImage to return non-color texture image data.

ARB_depth_texture NVIDIA OpenGL Extension Specifications

 32

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalFormat> parameter of T exImage1D, TexImage2D,
 CopyTexImage1D and CopyTexImage2D:

 DEPTH_COMPONENT
 DEPTH_COMPONENT16_ARB 0x81A5 (same as DE PTH_COMPONENT16_SGIX)
 DEPTH_COMPONENT24_ARB 0x81A6 (same as DE PTH_COMPONENT24_SGIX)
 DEPTH_COMPONENT32_ARB 0x81A7 (same as DE PTH_COMPONENT32_SGIX)

 Accepted by the <format> parameter of GetTexIma ge, TexImage1D,
 TexImage2D, TexSubImage1D, and TexSubImage2D:

 DEPTH_COMPONENT

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_DEPTH_SIZE_ARB 0x884A

 Accepted by the <pname> parameter of TexParamet erf, TexParameteri,
 TexParameterfv, TexParameteriv, GetTexParameter fv, and GetTexParameteriv:

 DEPTH_TEXTURE_MODE_ARB 0x884B

Additions to Chapter 2 of the 1.3 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.3 Specification (Ra sterization)

 Section 3.8.1, Texture Image Specification, p. 116, change last
 sentence of first paragraph to:

 "The format STENCIL_INDEX is not allowed."

 Section 3.8.1, Texture Image Specification, p. 116, change final
 paragraph to read:

 "The selected groups are processed exactly as for DrawPixels, stopping
 just before final conversion. Each R, G, B , A or depth component (D)
 value so generated is clamped to [0,1]."

 Section 3.8.1, Texture Image Specification, p. 117, modify beginning of
 the first paragraph:

 "Components are then selected from the resu lting R, G, B, A, or D
 values to obtain a texture with the base in ternal format specified
 by..."

NVIDIA OpenGL Extension Specifications ARB_depth_texture

 33

 Section 3.8.1, Texture Image Specification, p. 117, add two new paragraphs
 after the beginning of the first paragraph:

 "Textures with a base internal format of DE PTH_COMPONENT are supported
 by texture image specification commands onl y if <target> is TEXTURE_1D,
 TEXTURE_2D, PROXY_TEXTURE_1D or PROXY_TEXTU RE_2D. Using this format in
 conjunction with any other <target> will re sult in an INVALID_OPERATION
 error."

 "Textures with a base internal format of DE PTH_COMPONENT require depth
 component data; textures with other base in ternal formats require RGBA
 component data. The error INVALID_OPERATIO N is generated if the base
 internal format is DEPTH_COMPONENT and form at is not DEPTH_COMPONENT,
 or if the base internal format is not DEPTH _COMPONENT and format is
 DEPTH_COMPONENT."

 Section 3.8.1, Texture Image Specification, p. 117, modify the last
 paragraph, which flows to p. 118:

 "... If a sized internal format is specifie d, the mapping of the R, G,
 B, A, and D values to texture components is equivalent to ..."

 (on p. 118) "... If a compressed internal f ormat is specified, the
 mapping of the R, G, B, A, and D values to texture components is
 equivalent to..."

 Section 3.8.1, Texture Image Specification, p. 118, add a new row to Table
 3.15.

 Base Internal Format RGBA Values Int ernal Components
 -------------------- ----------- --- ----------------
 DEPTH_COMPONENT D D

 Section 3.8.1, Texture Image Specification, p. 118, add three new rows and
 one new column to Table 3.16.

 Sized Internal Format Base Int. Format . .. D bits
 --------------------- ---------------- ------
 DEPTH_COMPONENT16_ARB DEPTH_COMPONENT 16
 DEPTH_COMPONENT24_ARB DEPTH_COMPONENT 24
 DEPTH_COMPONENT32_ARB DEPTH_COMPONENT 32

 Section 3.8.2, Alternate Texture Image Specific ation Commands, p. 125,
 modify first paragraph to read:

 ... "The image is taken from the framebuffe r exactly as if these
 arguments were passed to CopyPixels, with a rgument <type> set to
 COLOR or DEPTH_COMPONENT, depending on <int ernalformat>, stopping
 after pixel transfer processing is complete . RGBA data is taken
 from the current color buffer while depth c omponent data is taken
 from the depth buffer. If no depth buffer is present, the error
 INVALID_OPERATION is generated. Subsequent processing is identical
 to that described for TexImage2D, beginning with clamping of the R,
 G, B, A, or depth values from the resulting pixel groups." ...

ARB_depth_texture NVIDIA OpenGL Extension Specifications

 34

 Section 3.8.4, Texture Parameters, p. 133, appe nd table 3.19 with the
 following:

 Name Type Legal Val ues
 -------------------------- ---- --------- ----------------------
 DEPTH_TEXTURE_MODE_ARB enum LUMINANCE , INTENSITY, ALPHA

 Before current section 3.8.5, Texture Wrap Mode s, p. 134, insert the
 following new section. Renumber subsections of 3.8 appropriately.

 "3.8.5 Depth Component Textures

 Depth textures can be treated as LUMINANCE, INTENSITY or ALPHA
 textures during texture filtering and appli cation. Initially,
 depth textures are interpreted as LUMINANCE ."

 Modify section 3.8.7, Texture Minification, p. 139. Modify the last
 paragraph before the "Mipmapping" section to re ad:

 "If any of the selected tauijk, tauij, or t aui in the above
 equations refer to a border texel with i < -bs, j < bs, k < -bs,
 i >= ws-bs, j >= hs-bs, or k >= ds-bs, the n the border values
 given by the current setting of TEXTURE_BOR DER_COLOR is used
 instead of the unspecified value or values. If the texture
 contains color components, the components o f the
 TEXTURE_BORDER_COLOR vector are interpreted as an RGBA color
 to match the texture's internal format in a manner consistent
 with table 3.15. If the texture contains d epth components,
 the R component of the TEXTURE_BORDER_COLOR vector is
 interpreted as the depth component value."

Additions to Chapter 4 of the 1.3 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.3 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.3 Specification (St ate and State Requests)

 Section 6.1.3, Enumerated Queries, p. 200, edit paragraph two as follows:

 ..."Queries of TEXTURE_RED_SIZE, TEXTURE_GR EEN_SIZE,
 TEXTURE_BLUE_SIZE, TEXTURE_ALPHA_SIZE, TEXT URE_LUMINANCE_SIZE,
 TEXTURE_INTENSITY_SIZE, and TEXTURE_DEPTH_S IZE_ARB return the
 actual resolutions of the stored image arra y components, not
 the resolutions specified when the image ar ray was defined.

 Section 6.1.4, Texture Queries, p. 201, replace the sentence two of
 paragraph two as follows:

 "Calling GetTexImage with a color format wh en the internal
 format of the texture image is not a color format causes the error
 INVALID_OPERATION. Likewise, calling GetTe xImage with a format
 of GL_DEPTH_COMPONENT when the internal for mat of the texture

NVIDIA OpenGL Extension Specifications ARB_depth_texture

 35

 image is not a depth format cause the error INVALID_OPERATION.
 If the internal format of the texture image level is a color
 format (one of RED, GREEN, BLUE, ALPHA, RGB , RGBA, LUMINANCE, or
 LUMINANCE_ALPHA), then the components are a ssigned among R, G,
 B, and A according to Table 6.1, starting w ith the first group
 in the first row, and continuing by obtaini ng groups in order
 from each row and proceeding from the first row to the last, and
 from the first image to the last for three- dimensional textures.
 If the internal format of the texture image level is a depth
 format (DEPTH_COMPONENT), then each depth c omponent is assigned
 with the same ordering of rows and images."

 Replace the last sentence of paragraph four wit h:

 "Calling GetTexImage with format of COLOR_I NDEX or STENCIL_INDEX
 causes the error INVALID_ENUM."

 Section 1.6.7, Color Table Query, p.203, replac e sentence two of
 paragraph one with:

 "format and type accept the same values as do the corresponding
 parameters of GetTexImage except that a for mat of DEPTH_COMPONENT
 causes the error INVALID_ENUM."

 Section 1.6.8, Convolution Query, p.204, replac e sentence two of
 paragraph one with:

 "format and type accept the same values as do the corresponding
 parameters of GetTexImage except that a for mat of DEPTH_COMPONENT
 causes the error INVALID_ENUM."

 Section 1.6.9, Histogram Query, p.205, replace sentence two of
 paragraph one with:

 "format and type accept the same values as do the corresponding
 parameters of GetTexImage except that a for mat of DEPTH_COMPONENT
 causes the error INVALID_ENUM."

 Section 1.6.10, Minmax Query, p.205, replace se ntence two of
 paragraph one with:

 "format and type accept the same values as do the corresponding
 parameters of GetTexImage except that a for mat of DEPTH_COMPONENT
 causes the error INVALID_ENUM."

Additions to the GLX Specification

 None

Errors

 INVALID_OPERATION is generated by TexImage2D or CopyTexImage2D if
 <target> is not TEXTURE_2D or PROXY_TEXTURE_2D and <internalFormat>
 is DEPTH_COMPONENT, DEPTH_COMPONENT16_ARB, DEPTH_COMPONENT24_ARB, or
 DEPTH_COMPONENT32_ARB.

ARB_depth_texture NVIDIA OpenGL Extension Specifications

 36

 INVALID_OPERATION is generated by TexImage1D or CopyTexImage1D if
 <target> is not TEXTURE_1D or PROXY_TEXTURE_1D and <internalFormat>
 is DEPTH_COMPONENT, DEPTH_COMPONENT16_ARB, DEPTH_COMPONENT24_ARB, or
 DEPTH_COMPONENT32_ARB.

 INVALID_OPERATION is generated by TexImage1D or TexImage2D if <format>
 is DEPTH_COMPONENT and <internalFormat> is not DEPTH_COMPONENT,
 DEPTH_COMPONENT16_ARB, DEPTH_COMPONENT24_ARB, or DEPTH_COMPONENT32_ARB.

 INVALID_OPERATION is generated by TexImage1D or TexImage2D if
 <internalFormat> is DEPTH_COMPONENT, DEPTH_COMP ONENT16_ARB,
 DEPTH_COMPONENT24_ARB, or DEPTH_COMPONENT32_ARB, and <format> is not
 DEPTH_COMPONENT.

 INVALID_OPERATION is generated by TexSubImage1D or TexSubImage2D if
 <format> is DEPTH_COMPONENT and the base intern al format of the
 texture is not DEPTH_COMPONENT, DEPTH_COMPONENT 16_ARB,
 DEPTH_COMPONENT24_ARB, or DEPTH_COMPONENT32_ARB.

 INVALID_OPERATION is generated by TexSubImage1D or TexSubImage2D if
 <format> is not DEPTH_COMPONENT and the base in ternal format of
 the texture is DEPTH_COMPONENT, DEPTH_COMPONENT 16_ARB,
 DEPTH_COMPONENT24_ARB, or DEPTH_COMPONENT32_ARB.

 INVALID_OPERATION is generated by TexImage3D if <internalFormat>
 is DEPTH_COMPONENT, DEPTH_COMPONENT16_ARB, DEPTH_COMPONENT24_ARB,
 or DEPTH_COMPONENT32_ARB.

 INVALID_OPERATION is generated by CopyTexImage1 D or CopyTexImage2D if
 <internalFormat> is DEPTH_COMPONENT, DEPTH_COMP ONENT16_ARB,
 DEPTH_COMPONENT24_ARB, or DEPTH_COMPONENT32_ARB, and there is no depth
 buffer.

 INVALID_OPERATION is generated by CopyTexSubIma ge1D or CopyTexSubImage2D
 if the base internal format of the texture is D EPTH_COMPONENT and there
 is no depth buffer.

 INVALID_ENUM is generated if TexParameter[if] p arameter <pname>
 is DEPTH_TEXTURE_MODE_ARB and parameter <param> is not ALPHA,
 LUMINANCE, or INTENSITY.

 INVALID_OPERATION is generated if GetTexImage p arameter <format>
 is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, B GR, BGRA, LUMINANCE,
 or LUMINANCE_ALPHA but the internal format of t he texture level
 image is not a color format.

 INVALID_OPERATION is generated if GetTexImage p arameter <format>
 is DEPTH_COMPONENT but the internal format of t he texture level
 image is not a depth format.

 Eliminate the INVALID_ENUM generated if GetTexI mage parameter
 <format> is DEPTH_COMPONENT. (but this should still be an error for
 GetColorTable, GetConvolutionFilter, GetHistogr am, and GetMinmax).

NVIDIA OpenGL Extension Specifications ARB_depth_texture

 37

New State

 In table 6.12, Texture Objects, p. 202, add the following:

 Initi al
Get Value Type Get Command Value Description Sec. Attrib ute
------------------ ---- -------------------- ------ - ------------------------------------- ---- ------ ---
TEXTURE_DEPTH_SIZE Z+ GetTexLevelParameter 0 xD texture image i's depth resolution 3.8 -

 In table 6.16, Texture Objects, p. 224, add the following:

Get Value Type Get Command Initial Value Description Sec. Attr ibute
-------------------------- ---- ----------------- --- ------------- -------------- ----- ---- -----
DEPTH_TEXTURE_MODE_ARB Z_3 GetTexParameter[i f]v LUMINANCE depth texture mode 3.8.13 text ure

New Implementation Dependent State

 None

Revision History

 19 March 2001
 - initial version
 22 June 2001
 - added 1D textures to issue 4
 16 November 2001
 - removed TEXTURE_BORDER_DEPTH. use the fi rst component of
 TEXTURE_BORDER_COLOR to specify the depth border value.
 - Added new language in section 3.8.5 to de scribe how
 TEXTURE_BORDER_COLOR is used with depth t extures.
 - Inserted new issue item #4.
 17 November 2001
 - Changed issue 4 resolution.
 - Rewrote section 3.8.4
 12 December 2001 (Pat Brown)
 - Retargeted against the OpenGL 1.3 specifi cation.
 - Depth textures are allowed only on 1D and 2D targets. Shadowing is
 problematic for 3D and cube map textures.
 - Updated base and sized internal format ta bles.
 - Documented a couple missing error conditi ons for TexImage and
 TexSubImage calls where <format> and the texture internal format are
 incompatible.
 - Minor cleanups to provide for depth compo nents in wording that
 formerly assumed RGBA components only.
 13 December 2001
 - Removed a few lingering references to glT exImage3D.
 - Rewrite the first and last error conditio ns to be clearer.
 - replace "1.2" with "1.3" in a few places.
 - fixed a few more error conditions (Pat Brown)
 11 January 2002
 - fixed "intented" typo
 - added sentence saying that TEXTURE_LUMINA NCE_SIZE may be used
 to query the effective resolution of a de pth textures when it's
 interpreted as a luminance texture.
 18 January 2002
 - Allow depth textures to be used as LUMINA NCE, INTENSITY or ALPHA
 textures (Bimal Poddar)

ARB_depth_texture NVIDIA OpenGL Extension Specifications

 38

 21 January 2002
 - Added issue #8 to deal with actual depth texture precision.
 Fixed error to be INVALID_ENUM instead of INVALID_OPERATION.
 13 May 2004 (mjk)
 - Document GetTexImage behavior when depth texture formats are
 supported.
 - Document that GetColorTable, GetConvoluti onFilter, GetHistogram,
 and GetMinmax now differ from GetTexImage in that
 DEPTH_COMPONENT is (still) not a legal fo rmat for these
 queries.
 - Document in "New Tokens" that DEPTH_COMPO NENT is a newly accepted
 token for the <internalFormat> parameter of TexImage1D,
 TexImage2D, CopyTexImage1D and CopyTexIma ge2D; and the <format>
 parameter of GetTexImage, TexImage1D, Tex Image2D, TexSubImage1D,
 and TexSubImage2D.
 - Fix mangled sentence in 3.8.5

NVIDIA OpenGL Extension Specifications ARB_draw_buffers

 39

Name

 ARB_draw_buffers

Name Strings

 GL_ARB_draw_buffers

Contributors

 Benj Lipchak, ATI
 Bill Licea-Kane, ATI

Contact

 Rob Mace, ATI Research (mace 'at' ati.com)

IP Status

 No known IP issues.

Status

 Complete. Approved by the ARB on July 23, 2004.

Version

 Last Modified Date: July 26, 2004
 Revision: 14

Number

 ARB Extension #37

Dependencies

 The extension is written against the OpenGL 1.5 Specification.

 OpenGL 1.3 is required.

 ARB_fragment_program affects the definition of this extension.

 ARB_fragment_shader affects the definition of t his extension.

Overview

 This extension extends ARB_fragment_program and ARB_fragment_shader
 to allow multiple output colors, and provides a mechanism for
 directing those outputs to multiple color buffe rs.

Issues

 (1) How many GL_DRAW_BUFFER#_ARB enums should b e reserved?

 RESOLVED: We only need 4 currently, but for f uture expandability
 it would be nice to keep the enums in sequenc e. We'll specify
 16 for now, which will be more than enough fo r a long time.

ARB_draw_buffers NVIDIA OpenGL Extension Specifications

 40

 (2) How should multisample work when there are multiple output
 colors being rendered to multiple draw buff ers?

 Basic options are:
 (a) Color 0 is written to the multisample b uffer and then the
 multisample buffer is resolved to all t he color buffers.
 This option would be consistent with GL 's idea of a single
 multisample buffer, but would be really useless and defeat
 the purpose of multiple output colors.
 (b) Have a separate multisample color buffe r for each output
 color/draw buffer. This would be usefu l but would all
 implementations be able to handle it?
 (c) Don't allow multiple output colors and multisampling to
 be combined by restricting MAX_DRAW_BUF FERS_ARB to 1
 for contexts with multisample buffers. This is simple
 and would allow a future extension to a llow (b).

 RESOLUTION: (b) and (c). Samples will contai n separate color
 values for each output color. Implementation s that can not
 support this can restrict MAX_DRAW_BUFFERS_AR B to 1 for contexts
 with multisample buffers.

 (3) Should gl_FragColor be aliased to gl_FragDa ta[0]?

 RESOLUTION: No. A shader should write either gl_FragColor, or
 gl_FragData[n], but not both.

 Writing to gl_FragColor will write to all dra w buffers specified
 with DrawBuffersARB.

 (4) Should gl_FragData[n] be clamped?

 RESOLUTION: They will be clamped if fragment color clamping is
 enabled.

New Procedures and Functions

 void DrawBuffersARB(sizei n, const enum *bufs);

New Tokens

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv,
 and GetDoublev:

 MAX_DRAW_BUFFERS_ARB 0x8 824
 DRAW_BUFFER0_ARB 0x8 825
 DRAW_BUFFER1_ARB 0x8 826
 DRAW_BUFFER2_ARB 0x8 827
 DRAW_BUFFER3_ARB 0x8 828
 DRAW_BUFFER4_ARB 0x8 829
 DRAW_BUFFER5_ARB 0x8 82A
 DRAW_BUFFER6_ARB 0x8 82B
 DRAW_BUFFER7_ARB 0x8 82C
 DRAW_BUFFER8_ARB 0x8 82D
 DRAW_BUFFER9_ARB 0x8 82E
 DRAW_BUFFER10_ARB 0x8 82F

NVIDIA OpenGL Extension Specifications ARB_draw_buffers

 41

 DRAW_BUFFER11_ARB 0x8 830
 DRAW_BUFFER12_ARB 0x8 831
 DRAW_BUFFER13_ARB 0x8 832
 DRAW_BUFFER14_ARB 0x8 833
 DRAW_BUFFER15_ARB 0x8 834

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL
Operation)

 None

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Modify Section 3.2.1, Multisampling (p. 71)

 (replace the second paragraph with)

 An additional buffer, called the multisample bu ffer, is added to the
 framebuffer. Pixel sample values, including co lor, depth, and
 stencil values, are stored in this buffer. Sam ples contain separate
 color values for each output color. When the f ramebuffer includes a
 multisample buffer, it does not include depth o r stencil buffers,
 even if the multisample buffer does not store d epth or stencil
 values. Color buffers (left, right, front, back , and aux) do coexist
 with the multisample buffer, however.

 Modify Section 3.11.2, Fragment Program Grammar and Semantic
 Restrictions (ARB_fragment_program)

 (replace <resultBinding> grammar rule with thes e rules)

 <resultBinding> ::= "result" "." "color" <optOutputColorNum>
 | "result" "." "depth"

 <optOutputColorNum> ::= ""
 | "[" <outputColorNum> "]"

 <outputColorNum> ::= <integer> from 0 to MAX_DRAW_BUFFERS_ARB-1

 Modify Section 3.11.3.4, Fragment Program Resul ts

 (modify Table X.3)

 Binding Components Description
 ----------------------------- ---------- ----------------------------
 result.color[n] (r,g,b,a) color n
 result.depth (*,*,*,d) depth coordinate

 Table X.3 : Fragment Result Variable Bindings. Components l abeled
 "*" are unused. "[n]" is optional -- color <n> is used if
 specified; color 0 is used otherwise.

 (modify third paragraph) If a result variable binding matches
 "result.color[n]", updates to the "x", "y", "z" , and "w" components
 of the result variable modify the "r", "g", "b" , and "a" components,
 respectively, of the fragment's corresponding o utput color. If

ARB_draw_buffers NVIDIA OpenGL Extension Specifications

 42

 "result.color[n]" is not both bound by the frag ment program and
 written by some instruction of the program, the output color <n> of
 the fragment program is undefined.

 Add a new Section 3.11.4.5.3 (ARB_fragment_prog ram)

 3.11.4.5.3 Draw Buffers Program Option

 If a fragment program specifies the "ARB_draw_b uffers" option,
 it will generate multiple output colors, and th e result binding
 "result.color[n]" is allowed, as described in s ection 3.11.3.4,
 and with modified grammar rules as set forth in section 3.11.2.
 If this option is not specified, a fragment pro gram that attempts
 to bind "result.color[n]" will fail to load, an d only "result.color"
 will be allowed.

 Add a new section 3.11.6 (ARB_fragment_shader)

 Section 3.11.6 Fragment Shader Output

 The OpenGL Shading Language specification descr ibes the values that
 may be output by a fragment shader. These are g l_FragColor,
 gl_FragData[n], and gl_FragDepth. If fragment color clamping is
 enabled, the final fragment color values or the final fragment data
 values written by a fragment shader are clamped to the range [0,1]
 and then converted to fixed-point as described in section 2.13.9,
 Final Color Processing.

 The final fragment depth written by a fragment shader is first
 clamped to [0,1] then converted to fixed-point as if it were a
 window z value. See Section 2.10.1, Controlling the Viewport. Note
 that the depth range computation is NOT applied here, only the
 conversion to fixed-point.

 The OpenGL Shading Language specification defin es what happens when
 color and/or depth are not written. Those rules are repeated here.

 Writing to gl_FragColor specifies the fragment color that will be
 used by the subsequent fixed functionality pipe line. If subsequent
 fixed functionality consumes fragment color and an execution of a
 fragment shader does not write a value to gl_Fr agColor then the
 fragment color consumed is undefined.

 Writing to gl_FragData[n] specifies the fragmen t data that will be
 used by the subsequent fixed functionality pipe line. If subsequent
 fixed functionality consumes fragment data and an execution of a
 fragment shader does not write a value to gl_Fr agData[n] then the
 fragment data consumed is undefined.

 If a shader statically assigns a value to gl_Fr agColor, it may not
 assign a value to gl_FragData[n]. If a shader statically writes a
 value to gl_FragData[n], it may not assign a va lue to gl_FragColor.
 That is, a shader may assign values to either g l_FragColor or
 gl_FragData[n], but not both.

 Writing to gl_FragDepth will establish the dept h value for the
 fragment being processed. If depth buffering is enabled, and a

NVIDIA OpenGL Extension Specifications ARB_draw_buffers

 43

 shader does not write gl_FragDepth, then the fi xed function value
 for depth will be used as the fragment's depth value. If a shader
 statically assigns a value to gl_FragDepth, and there is an
 execution path through the shader that does not set gl_FragDepth,
 then the value of the fragment's depth may be u ndefined for some
 executions of the shader. That is, if a shader statically writes
 gl_FragDepth, then it is responsible for always writing it.

 Note, statically assigning a value to gl_FragCo lor, gl_FragData[n]
 or gl_FragDepth means that there is a line of c ode in the fragment
 shader source that writes a value to gl_FragCol or, gl_FragData[n]
 or gl_FragDepth, respectively, even if that lin e of code is never
 executed.

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Replace Section 4.2.1, Selecting a Buffer for W riting (p. 183)

 4.2.1 Selecting Color Buffers for Writing

 The first such operation is controlling the col or buffers into
 which each of the output colors are written. T his is accomplished
 with either DrawBuffer or DrawBuffersARB.

 The command

 void DrawBuffer(enum buf);

 defines the set of color buffers to which outpu t color 0 is written.
 <buf> is a symbolic constant specifying zero, o ne, two, or four
 buffers for writing. The constants are NONE, F RONT_LEFT,
 FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, FRONT, BACK , LEFT, RIGHT,
 FRONT_AND_BACK, and AUX0 through AUXn, where n + 1 is the number
 of available auxiliary buffers.

 The constants refer to the four potentially vis ible buffers front
 left, front right, back left, and back right, a nd to the auxiliary
 buffers. Arguments other than AUXi that omit r eference to LEFT or
 RIGHT refer to both left and right buffers. Ar guments other than
 AUXi that omit reference to FRONT or BACK refer to both front and
 back buffers. AUXi enables drawing only to aux iliary buffer i.
 Each AUXi adheres to AUXi = AUX0 + i. The cons tants and the buffers
 they indicate are summarized in Table 4.3. If DrawBuffer is
 supplied with a constant (other than NONE) that does not indicate
 any of the color buffers allocated to the GL co ntext, the error
 INVALID_OPERATION results.

 symbolic front front back back a ux
 constant left right left right i
 -------- ----- ----- ---- ----- - --
 NONE
 FRONT_LEFT *
 FRONT_RIGHT *
 BACK_LEFT *
 BACK_RIGHT *
 FRONT * *

ARB_draw_buffers NVIDIA OpenGL Extension Specifications

 44

 BACK * *
 LEFT * *
 RIGHT * *
 FRONT_AND_BACK * * * *
 AUXi *

 Table 4.3 : Arguments to DrawBuffer and the buffers that they
 indicate.

 DrawBuffer will set the draw buffer for output colors other than 0
 to NONE.

 The command

 void DrawBuffersARB(sizei n, const enum *bufs);

 defines the draw buffers to which all output co lors are written.
 <n> specifies the number of buffers in <bufs>. <bufs> is a pointer
 to an array of symbolic constants specifying th e buffer to which
 each output color is written. The constants ma y be NONE,
 FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, and AUX0 through
 AUXn, where n + 1 is the number of available au xiliary buffers. The
 draw buffers being defined correspond in order to the respective
 output colors. The draw buffer for output colo rs beyond <n> is set
 to NONE.

 Except for NONE, a buffer should not appear mor e then once in the
 array pointed to by <bufs>. Specifying a buffe r more then once
 will result in the error INVALID_OPERATION.

 If a fragment program is not using the "ARB_dra w_buffers" option,
 DrawBuffersARB specifies a set of draw buffers into which output
 color 0 is written.

 If a fragment shader writes to "gl_FragColor", DrawBuffersARB
 specifies a set of draw buffers into which the color written to
 "gl_FragColor" is written.

 The maximum number of draw buffers is implement ation dependent and
 must be at least 1. The number of draw buffers supported can
 be queried with the state MAX_DRAW_BUFFERS_ARB.

 The constants FRONT, BACK, LEFT, RIGHT, and FRO NT_AND_BACK that
 refer to multiple buffers are not valid for use in DrawBuffersARB
 and will result in the error INVALID_OPERATION.

 If DrawBuffersARB is supplied with a constant (other than NONE)
 that does not indicate any of the color buffers allocated to
 the GL context, the error INVALID_OPERATION wil l be generated. If
 <n> is greater than MAX_DRAW_BUFFERS_ARB, the e rror
 INVALID_OPERATION will be generated.

 Indicating a buffer or buffers using DrawBuffer or DrawBuffersARB
 causes subsequent pixel color value writes to a ffect the indicated
 buffers. If more than one color buffer is sele cted for drawing,
 blending and logical operations are computed an d applied
 independently for each buffer. If there are mu ltiple output colors

NVIDIA OpenGL Extension Specifications ARB_draw_buffers

 45

 being written to multiple buffers, the alpha us ed in alpha to
 coverage and alpha test is the alpha of output color 0.

 Specifying NONE as the draw buffer for an outpu t color will inhibit
 that output color from being written to any buf fer.

 Monoscopic contexts include only left buffers, while stereoscopic
 contexts include both left and right buffers. Likewise, single
 buffered contexts include only front buffers, w hile double buffered
 contexts include both front and back buffers. The type of context
 is selected at GL initialization.

 The state required to handle color buffer selec tion is an integer
 for each supported output color. In the initia l state, draw buffer
 for output color 0 is FRONT if there are no bac k buffers; otherwise
 it is BACK. The initial state of draw buffers for output colors
 other then 0 is NONE.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and
State Requests)

 None

Additions to Chapter 3 of the OpenGL Shading Langua ge 1.10 Specification
(Basics)

 Add a new Section 3.3.1, GL_ARB_draw_buffers Ex tension (p. 13)

 3.3.1 GL_ARB_draw_buffers Extension

 To use the GL_ARB_draw_buffers extension in a s hader it must be
 enabled using the #extension directive.

 The shading language preprocessor #define GL_AR B_draw_buffers will
 be defined to 1, if the GL_ARB_draw_buffers ext ension is supported.

Dependencies on ARB_fragment_program

 If ARB_fragment_program is not supported then a ll changes to
 section 3.11 of ARB_fragment_program and the fr agment program
 specific part of section 4.2.1 are removed.

Dependencies on ARB_fragment_shader

 If ARB_fragment_shader is not supported then al l changes to
 section 3.11 of ARB_fragment_shader, section 3. 3.1 of the Shading
 Language Specification, and the fragment shader specific part of
 section 4.2.1 are removed.

Interactions with possible future extensions

 If there is some other future extension that de fines multiple

ARB_draw_buffers NVIDIA OpenGL Extension Specifications

 46

 color outputs then this extension and glDrawBuf fersARB could be
 used to define the destinations for those outpu ts. This extension
 need not be used only with ARB_fragment_program .

Errors

 The error INVALID_OPERATION is generated by Dra wBuffersARB if a
 color buffer not currently allocated to the GL context is specified.

 The error INVALID_OPERATION is generated by Dra wBuffersARB if <n>
 is greater than the state MAX_DRAW_BUFFERS_ARB.

 The error INVALID_OPERATION is generated by Dra wBuffersARB if value
 in <bufs> does not correspond to one of the all owed buffers.

 The error INVALID_OPERATION is generated by Dra wBuffersARB if a draw
 buffer other then NONE is specified more then o nce in <bufs>.

New State

 (table 6.19, p227) add the following entry:

 Get Value Type Get Co mmand Initial Value Description Sectio n Attribute
 ------------------------------- ------ ------ ------- ------------- -------------------- ------ ------ ------------
 DRAW_BUFFERi_ARB Z10* GetInt egerv see 4.2.1 Draw buffer selected 4.2.1 color-buffer
 for output color i

New Implementation Dependent State

 Get Value Type Get Comm and Minimum Value Description Se c. Attribute
 --------- ---- -------- --- ------------- ------------------- -- --- ---------
 MAX_DRAW_BUFFERS_ARB Z+ GetInteg erv 1 Maximum number of 4. 2.1 -
 active draw buffers

Revision History

 Date: 7/26/2004
 Revision: 14
 - Clarified interaction of gl_FragColor and m ultiple draw buffers.
 - Updated dependencies section.
 - Added real ARB extension #.

 Date: 7/22/2004
 Revision: 13
 - Converted from ATI_draw_buffers to ARB_draw _buffers.

 Date: 7/21/2004
 Revision: 12
 - Updated intro to mention ARB_fragment_shade r.
 - Marked which sections modify ARB_fragment_p rogram and
 ARB_fragment_shader.
 - Added "Dependencies on ARB_fragment_shader" .
 - Added extension section 3.3.1 to Shading La nguage spec.
 - Resolved interaction with multisample (issu e 2).
 - Fixed typos.

 Date: 6/9/2004

NVIDIA OpenGL Extension Specifications ARB_draw_buffers

 47

 Revision: 11
 - Added GLSL integration.

 Date: 4/27/2004
 Revision: 10
 - Replaced modification to section 4.2.1 with a complete
 replacement for the section, the individual modifications were
 getting too cumbersome.
 - Added issue (2) on multisampling.

 Date: 4/15/2004
 Revision: 9
 - Specified that it is the alpha of color 0 t hat is used for alpha
 test.

 Date: 12/30/2002
 Revision: 8
 - Clarified that DrawBuffersATI will set the set of draw buffers
 to write color output 0 to when the "ATI_dr aw_buffer" fragments
 program option is not in use.

 Date: 9/27/2002
 Revision: 7
 - Fixed confusion between meaning of color bu ffer and draw buffer
 in last revision.
 - Fixed mistake in when an error is generated based on the <n>
 argument of DrawBuffersATI.

 Date: 9/26/2002
 Revision: 6
 - Cleaned up and put in sync with latest ARB_ fragment_program
 revision (#22). Some meaningless changes m ade just in the name
 of consistency.

 Date: 9/11/2002
 Revision: 5
 - Added section 3.11.4.5.3.
 - Added enum numbers to New Tokens.

 Date: 9/9/2002
 Revision: 4
 - Changed error from MAX_OUTPUT_COLORS to MAX _DRAW_BUFFERS_ATI.
 - Changed 3.10 section numbers to 3.11 to mat ch change to
 ARB_fragment_program spec.
 - Changed ARB_fragment_program from required to affects, and
 added section on interactions with it and f uture extensions
 that define multiple color outputs.

 Date: 9/6/2002
 Revision: 3
 - Changed error to INVALID OPERATION.
 - Cleaned up typos.

 Date: 8/19/2002
 Revision: 2
 - Added a paragraph that specifically points out that the
 constants that refer to multiple buffers ar e not allowed with

ARB_draw_buffers NVIDIA OpenGL Extension Specifications

 48

 DrawBuffersATI.
 - Changed bufs to <bufs> in a couple of place s.

 Date: 8/16/2002
 Revision: 1
 - First draft for circulation.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 49

Name

 ARB_fragment_program

Name Strings

 GL_ARB_fragment_program

IP Status

 Microsoft claims to own intellectual property r elated to this
 extension.

Status

 Complete. Approved by ARB on September 18, 200 2

Version

 Last Modified Date: August 22, 2003
 Revision: 26

Number

 ARB Extension #27

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 OpenGL 1.3 is required.

 EXT_texture_lod_bias or OpenGL 1.4 is required.

 OpenGL 1.4 affects the definition of this exten sion.

 ARB_vertex_blend and EXT_vertex_weighting affec t the definition of
 this extension.

 ARB_matrix_palette affects the definition of th is extension.

 ARB_transpose_matrix affects the definition of this extension.

 EXT_fog_coord affects the definition of this ex tension.

 EXT_texture_rectangle affects the definition of this extension.

 ARB_shadow interacts with this extension.

 ARB_vertex_program interacts with this extensio n.

 ATI_fragment_shader interacts with this extensi on.

 NV_fragment_program interacts with this extensi on.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 50

Overview

 Unextended OpenGL mandates a certain set of con figurable per-
 fragment computations defining texture applicat ion, texture
 environment, color sum, and fog operations. Se veral extensions have
 added further per-fragment computations to Open GL. For example,
 extensions have defined new texture environment capabilities
 (ARB_texture_env_add, ARB_texture_env_combine, ARB_texture_env_dot3,
 ARB_texture_env_crossbar), per-fragment depth c omparisons
 (ARB_depth_texture, ARB_shadow, ARB_shadow_ambi ent,
 EXT_shadow_funcs), per-fragment lighting (EXT_f ragment_lighting,
 EXT_light_texture), and environment mapped bump mapping
 (ATI_envmap_bumpmap).

 Each such extension adds a small set of relativ ely inflexible per-
 fragment computations.

 This inflexibility is in contrast to the typica l flexibility
 provided by the underlying programmable floatin g point engines
 (whether micro-coded fragment engines, DSPs, or CPUs) that are
 traditionally used to implement OpenGL's textur ing computations.
 The purpose of this extension is to expose to t he OpenGL application
 writer a significant degree of per-fragment pro grammability for
 computing fragment parameters.

 For the purposes of discussing this extension, a fragment program is
 a sequence of floating-point 4-component vector operations that
 determines how a set of program parameters (not specific to an
 individual fragment) and an input set of per-fr agment parameters are
 transformed to a set of per-fragment result par ameters.

 The per-fragment computations for standard Open GL given a particular
 set of texture and fog application modes (along with any state for
 extensions defining per-fragment computations) is, in essence, a
 fragment program. However, the sequence of ope rations is defined
 implicitly by the current OpenGL state settings rather than defined
 explicitly as a sequence of instructions.

 This extension provides an explicit mechanism f or defining fragment
 program instruction sequences for application-d efined fragment
 programs. In order to define such fragment pro grams, this extension
 defines a fragment programming model including a floating-point
 4-component vector instruction set and a relati vely large set of
 floating-point 4-component registers.

 The extension's fragment programming model is d esigned for efficient
 hardware implementation and to support a wide v ariety of fragment
 programs. By design, the entire set of existin g fragment programs
 defined by existing OpenGL per-fragment computa tion extensions can
 be implemented using the extension's fragment p rogramming model.

Issues

 This extension is closely related to ARB_vertex _program, and is in
 sync with revision 36 of that spec. ARB_fragme nt_program will
 continue to track changes made to ARB_vertex_pr ogram.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 51

 (1) Should we provide precision queries?

 RESOLVED: We've decided not to include precis ion queries.
 Implementations are expected to meet or excee d the precision
 guidelines set forth in the core GL spec, sec tion 2.1.1, p. 6,
 as ammended by this extension.

 To summarize section 2.1.1, the maximum repre sentable magnitude of
 colors must be at least 2^10, while the maxim um representable
 magnitude of other floating-point values must be at least 2^32.
 The individual results of floating-point oper ations must be
 accurate to about 1 part in 10^5.

 Here are the reasons why precision queries we re not included:
 1. It is unclear what the queries should be :
 a) min, max, [0,1) granularity
 b) min +, max +, min -, max -, [0,1) gra nularity
 c) IEEE mantissa bits, IEEE exponent bit s
 2. Due to instruction emulation, there is n o way to query the
 actual precision that can be expected. Should the query
 return the best-case or worst-case preci sion?
 3. Implementations may support multiple pre cisions, on a per-
 instruction basis or across the board. How would this be
 exposed?
 4. Current implementations are able to meet the minimum
 requirements specified in the core GL, t hanks to its
 sufficiently loose wording "... so that the individual
 results of floating-point operations are accurate to ABOUT
 1 part in 10^5." (Emphasis added.)
 5. A conformance test can act as watchdog t o ensure
 implementations are not cutting corners on precision.
 6. Adding precision queries would require a new entrypoint.

 See issue 22 regarding reduced-precision mode s.

 (2) Should the LOD biased texture sample be opt ional?

 RESOLVED: TXB support is mandatory. This exp oses useful
 functionality which enables blurring and shar pening effects. It
 will be more useful to entirely override deri vatives (scale
 factor) rather than just biasing the level-of -detail. This would
 be a future extension to fragment programs.

 It should be noted here that the bias introdu ced per-fragment by
 TXB is added to any per-object or per-stage L OD bias. If per-
 fragment LOD bias is not necessary, using the per-object and/or
 per-stage LOD biases may perform better.

 (3) Should we include the ability to bind to th e color matrix? How
 about others? Program matrices?

 RESOLVED: We will not specifically add anythi ng that depends on
 the ARB_imaging subset. So we have not inclu ded matrix bindings
 to the color matrix (or parameter bindings to the color biases,
 etc.). However, we have included matrix bind ing support and
 support for all of the matrices present in AR B_vertex_program.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 52

 (4) Should we include the ability to bind to ju st a texcoord
 attribute's S,T components? (Or just S, or S,T ,P for that matter?)

 RESOLVED: No. Issue #15 below obviates this issue by making the
 texture coordinate usage within a program exp licit, thereby making
 optimizations to reduce the number of interpo lated texture
 coordinates something an implementation can d o at compile time
 instead of having to do it during every textu re target change.

 (5) What other instructions should be added? S hould any be removed?

 RESOLVED: The differences between the ARB_ver tex_program
 instruction set and the ARB_fragment_program instruction set are
 minimal. ARB_fragment_program removes the LO G and EXP rough
 approximation instructions and the ARL addres s register load
 instruction. ARB_fragment_program adds the S IN/COS/SCS
 trigonometric instructions, the LRP linear in terpolation
 instruction, the CMP compare instruction, and the TEX/TXP/TXB/KIL
 texture instructions.

 (6) Should depth output be a program option or a mandatory feature?

 RESOLVED: Depth output capability should be m andatory.

 (6a) How should per-vertex geometric depth clip ping be handled when
 replacing depth in a fragment program?

 RESOLVED: Per-vertex geometric depth clipping should be performed
 by the GL as usual, so no spec change is requ ired. The ideal
 behavior would be to disable near and far cli pping planes when
 replacing depth, but not all implementations can natively support
 disabling individual clip planes.

 (6b) How should depth output from the fragment program be further
 processed before being handed to the per-fragme nt operations?

 RESOLVED: Depth gets clamped by GL to [0,1]. App has access to
 depth range as a bindable parameter if it wan ts to either scale
 and bias its depth to fall within the depth r ange, or to kill
 fragments outside the depth range.

 (7) If a fragment program does not write a colo r value, what should
 be the final color of the fragment ?

 RESOLVED: The final fragment color is undefin ed. Note that it may
 be perfectly reasonable to have a program tha t computes depth
 values but not colors. Fragment colors are o ften irrelevant if
 color writes are disabled (via ColorMask).

 (7a) If a fragment program does not write a dep th value, what should
 be the final depth value of the fragment?

 RESOLVED: "Depth fly-over" (using the convent ional depth produced
 by rasterization) should happen whenever a de pth-replacing program
 is not in use. A depth-replacing program is defined as a program
 that writes to result.depth in at least one i nstruction. The
 presence of a depth declaration alone DOES NO T designate a depth-

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 53

 replacing program. The intention is that a f uture extension
 introducing conditional execution will still consider a program to
 be depth-replacing even if the instruction(s) writing to
 result.depth do(es) not execute.

 Other considered definitions of depth-replaci ng program:
 1. The presence of a depth declaration -OR- the use of
 result.depth as an instruction destinati on anywhere in the
 program designates a depth-replacing pro gram.
 2. Every program is a depth-replacing progr am, but the GL
 initializes the depth output to be the d epth produced by
 rasterization. The app may then overwri te the depth output.
 3. Every program is a depth-replacing progr am, and the app is
 solely responsible for copying the depth input to depth
 output if desired.

 (8) Should relative addressing, like that defin ed in
 ARB_vertex_program, be supported in this spec?

 RESOLVED: No, relative addressing won't be in cluded in this spec.

 (9) Should full-featured operand component swiz zling, like that
 defined in ARB_vertex_program, be supported in this spec?

 RESOLVED: Yes, full swizzling is mandatory.

 (10) Should texture instructions contain specif ic limitations on
 operations that can be performed? For example, should write masks
 or operand component swizzling be disallowed?

 RESOLVED: Texture instructions are specified to be very similar to
 ALU instructions. They have been given 3-let ter names, they allow
 writemasking and saturation (which would be u seful for floating-
 point texture formats), source swizzles and n egates, and the
 ability to use parameters as sources.

 (11) Should we standardize options for stencil or aux data buffer
 outputs?

 RESOLVED: Stencil and aux data buffers will b e saved for a
 possible future extension to fragment program s.

 (12) Should depth output be pulled from the 3rd or 4th component?

 RESOLVED: 3rd component, as the 3rd component is also used for
 depth input from the "fragment.position" attr ibute.

 (13) Which stages are subsumed by fragment prog rams?

 RESOLVED: Texturing, color sum, and fog.

 (14) What should the minimum resource limits be ?

 RESOLVED: 10 attributes, 24 parameters, 4 tex ture indirections,
 48 ALU instructions, 24 texture instructions, and 16 temporaries.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 54

 (15) OpenGL provides a hierarchy of texture ena bles (cube map, 3D,
 2D, 1D). Should the texture sampling instructi ons here override
 that hierarchy and select specific texture targ ets?

 RESOLVED: Yes. This removes a potential pitf all for developers:
 leaving the hierarchy of enables in an undesi red state. It makes
 programs more readable as the intent of the s ample is more
 obvious. Finally, it allows compilers to be more aggressive as
 to which texcoord components are "don't cares " without having to
 recompile programs when fixed-function texena bles change. One
 drawback is that programs cannot be reused fo r both 2D and 3D
 texturing, for example, by simply changing th e texture enables.

 Texture sampling can be specified by instruct ions like

 TEX myTexel, fragment.texcoord[1], texture[2], 3D;

 which would indicate to use texture coordinat e set number 1 to
 sample from the texture object bound to the T EXTURE_3D target on
 texture image unit 2.

 Each texture unit can have only one "active" target. Programs are
 not allowed to reference different texture ta rgets in the same
 texture image unit. In the example above, an y other texture
 instructions using texture image unit 2 must specify the 3D
 texture target.

 Note that every texture image unit always has a texture bound to
 every texture target, whether it is a named t exture object or a
 default texture. However, the texture may no t be complete as
 defined in section 3.8.9 of the core GL spec. See issue 23.

 (16) Should aux texture units be additional uni ts on top of existing
 full-featured texture units, or should this spe c fully deprecate
 "legacy" texture units and only expose texture coordinate sets and
 texture image units?

 Background: Some implementations are able to expose more
 "texture image units" (texture maps and assoc iated parameters)
 than "texture coordinate sets" (current texco ords, texgen, and
 texture matrices). A conventional GL "textur e unit" encompasses
 both a texture image unit and a texture coord inate set as well as
 texture environment state.

 RESOLVED: Yes, deprecate "legacy" texture uni ts. This is a more
 flexible model.

 (17) Should fragment programs affect all fragme nts, or just those
 produced by the rasterization of points, lines, and triangles?

 RESOLVED: Every fragment generated by the GL is subject to
 fragment program mode. This includes point, line, and polygon
 primitives as well as pixel rectangles and bi tmaps.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 55

 (18) Should per-fragment position and fogcoord be bindable as
 fragment attributes?

 RESOLVED: Yes, interpolated fogcoord will mak e per-fragment
 fog application possible, in addition to full fog stage
 subsummation. Interpolated window position, especially depth,
 enables interesting depth-replacing algorithm s.

 (19) What characters should be used to identify individual
 components in swizzle selectors and write masks ?

 RESOLVED: ARB_vertex_program provides "xyzw". This extension
 supports "xyzw" and also provides "rgba" for better readability
 when dealing with RGBA color values. Adding support for special
 identifiers for dealing with texture coordina tes was considered
 and rejected. "strq" could be used to identi fy texture coordinate
 components, but the "r" would conflict with t he "r" from "rgba".
 "stpq" would be another possibility, but coul d be a source of
 confusion.

 (20) Should implementations be required to supp ort all programs that
 fit within the exported limits on the number of resources (e.g.,
 instructions, temporaries) that can be present in a program, even if
 it means falling back to software? Should impl ementations be
 required to reject programs that could never be accelerated?

 RESOLVED: No and no. An implementation is al lowed to fail
 ProgramStringARB due to the program exceeding native resources.
 Note that this failure must be invariant with respect to all other
 OpenGL state. In other words, a program cann ot succeed to load
 with default state, but then fail to load whe n certain GL state
 is altered. However, an implementation is no t required to fail
 when a program would exceed native resources, and is in fact
 encouraged to fallback to a software path. S ee issue 21 for a way
 of determining if this has happened.

 This notable departure from ARB_vertex_progra m was made as an
 accommodation to vendors who could not justif y implementing a
 software fallback path which would be relativ ely slow even
 compared to an ARB_vertex_program software fa llback path.

 Two issues with this decision:
 1. The API limits become hints, and one ca n no longer tell by
 visual inspection whether or not a prog ram will load on
 every implementation.
 2. Program loading will now depend on the optimizer, which may
 vary from release to release of an impl ementation. A
 program that succeeded to load when an ISV first wrote it
 may fail to load in a future driver ver sion, and vice versa.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 56

 (21) How can applications determine if their pr ograms are too large
 to run on the native (likely hardware) implemen tation, and therefore may
 run with reduced performance?

 RESOLVED: The following code snippet uses a n ative resource
 query to guarantee a program is loaded native ly (or not at all):

 GLboolean ProgramStringIsNative(GLenum target , GLenum format,
 GLsizei len, c onst GLvoid *string)
 {
 GLint errorPos, isNative;
 glProgramStringARB(target, format, len, s tring);
 glGetIntegerv(GL_PROGRAM_ERROR_POSITION_A RB, &errorPos);
 glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB ,
 GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB, & isNative);
 if ((errorPos == -1) && (isNative == 1))
 return GL_TRUE;
 else
 return GL_FALSE;
 }

 Note that a program that successfully loads, and falls under the
 native limits, is still not guaranteed to exe cute in hardware.
 Lack of other resources (e.g., texture memory) or the use of other
 OpenGL features not natively supported by the implementation
 (e.g., textures with borders) may also preven t the program from
 executing in hardware.

 (22) Should we provide applications with a meth od to control the
 level of precision used to carry out fragment p rogram computations?

 RESOLVED: Yes. The GL implementation ultima tely has control over
 the level of precision used for fragment prog ram computations.
 However, the "ARB_precision_hint_fastest" and
 "ARB_precision_hint_nicest" program options a llow applications to
 guide the GL implementation in its precision selection. The
 "fastest" option encourages the GL to minimiz e execution time,
 with possibly reduced precision. The "nicest " option encourages
 the GL to maximize precision, with possibly i ncreased execution
 time.

 If the precision hint is not "fastest", GL im plementations should
 perform low-precision operations only if they could not
 appreciably affect the final results of the p rogram. Regardless
 of the precision hint, GL implementations are discouraged from
 reducing the precision of computations so agg ressively that final
 rendering results could be seriously compromi sed due to overflow
 of intermediate values or insufficient number of mantissa bits.

 Some implementations may provide only a singl e level of precision,
 in which case these hints may have no effect. However, all
 implementations will accept these options, ev en if they are
 silently ignored.

 More explicit control of precision, such as p rovided in "C" with
 data types such as "short", "int", "float", " double", may also be

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 57

 a desirable feature, but this level of detail is left to a
 separate extension.

 (23) What is the result of a sample from an inc omplete texture?
 The definition of texture completeness can be f ound in section 3.8.9
 of the core GL spec.

 RESOLVED: The result of a sample from an inco mplete texture is the
 constant vector (0,0,0,1). The benefit of de fining the result to
 be a constant is that broken apps are guarant eed to generate
 unexpected (black) results from their bad sam ples. If we were to
 leave the result undefined, some implementati ons may generate
 expected results some of the time, for exampl e when magfiltering,
 giving app developers a false sense of correc tness in their apps.

 (24) What is a texture indirection, and how is it counted?

 RESOLVED: On some implementations, fragment programs that have
 complex texture dependency chains may not be supported, even if
 the instruction counts fit within the export ed limits. A texture
 dependency occurs when a texture instruction depends on the
 result of a previous instruction (ALU or tex ture) for use as its
 texture coordinate.

 A texture indirection can be considered a no de in the texture
 dependency chain. Each node contains a set of texture
 instructions which execute in parallel, foll owed by a sequence of
 ALU instructions. A dependent texture instr uction is one that
 uses a temporary as an input coordinate rath er than an attribute
 or a parameter. A program with no dependent texture instructions
 (or no texture instructions at all) will hav e a single node in
 its texture dependency chain, and thus a sin gle indirection.

 API-level texture indirections are counted b y keeping track of
 which temporaries are read and written withi n the current node in
 the texture dependency chain. When a textur e instruction is
 encountered, an indirection may be added and a new node started
 if either of the following two conditions is true:

 1. the source coordinate of the texture in struction is a
 temporary that has already been written in the current node,
 either by a previous texture instructio n or ALU instruction;

 2. the result of the texture instruction i s a temporary that
 has already been read or written in the current node by an
 ALU instruction.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 58

 The texture instruction provoking a new indi rection and all
 subsequent instructions are added to the new node. This process
 is repeated until the end of the program is encountered. Below
 is some pseudo-code to describe this:

 indirections = 1;
 tempsOutput = 0;
 aluTemps = 0;
 while (i = getInst())
 {
 if (i.type == TEX)
 {
 if (((i.input.type == TEMP) &&
 (tempsOutput & (1 << i.input.ind ex))) ||
 ((i.op != KILL) && (i.output.type == TEMP) &&
 (aluTemps & (1 << i.output.index))))
 {
 indirections++;
 tempsOutput = 0;
 aluTemps = 0;
 }
 } else {
 if (i.input1.type == TEMP)
 aluTemps |= (1 << i.input1.index);
 if (i.input2 && i.input2.type == TEMP)
 aluTemps |= (1 << i.input2.index);
 if (i.input3 && i.input3.type == TEMP)
 aluTemps |= (1 << i.input3.index);
 if (i.output.type == TEMP)
 aluTemps |= (1 << i.output.index);
 }
 if ((i.op != KILL) && (i.output.type == TEMP))
 tempsOutput |= (1 << i.output.index);
 }

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 59

 For example, the following programs would ha ve 1, 2, and 3
 texture indirections, respectively:

 !!ARBfp1.0
 # No texture instructions, but always 1 in direction
 MOV result.color, fragment.color;
 END

 !!ARBfp1.0
 # A simple dependent texture instruction, 2 indirections
 TEMP myColor;
 MUL myColor, fragment.texcoord[0], fragmen t.texcoord[1];
 TEX result.color, myColor, texture[0], 2D;
 END

 !!ARBfp1.0
 # A more complex example with 3 indirectio ns
 TEMP myColor1, myColor2;
 TEX myColor1, fragment.texcoord[0], textur e[0], 2D;
 MUL myColor1, myColor1, myColor1;
 TEX myColor2, fragment.texcoord[1], textur e[1], 2D;
 # so far we still only have 1 indirection
 TEX myColor2, myColor1, texture[2], 2D; # This is #2
 TEX result.color, myColor2, texture[3], 2D ; # And #3
 END

 Note that writemasks for the temporaries wri tten and swizzles
 for the temporaries read are not taken into consideration when
 counting indirections. This makes hand-coun ting of indirections
 by a developer an easier task.

 Native texture indirections may be counted d ifferently by an
 implementation to reflect its exact restrict ions, to reflect the
 true dependencies taking into account writem asks and swizzles,
 and to reflect optimizations such as instruc tion reordering.

 For implementations with no restrictions on the number of
 indirections, the maximum indirection count will equal the
 maximum texture instruction count.

 (25) How can a program reduce SCS's scalar oper and to the
 fundamental period [-PI,PI]?

 RESOLVED: Unlike the individual SIN and COS instructions, SCS
 requires that its argument be reduced ahead of time to the
 fundamental period. The reason SCS doesn't perform this
 operation automatically is that it may make unnecessary redundant
 work for programs that already have their op erand in the correct
 range. Other programs that do need to reduc e their operand
 simply need to add a block of code before th e SCS instruction:

 PARAM myParams = { 0.5, -3.14159, 6.28319, 0.15915 };
 MAD myOperand.x, myOperand.x, myParams.w, myParams.x; # a = (a/(2*PI))+0.5
 FRC myOperand.x, myOperand.x; # a = frac(a)
 MAD myOperand.x, myOperand.x, myParams.z, myParams.y # a = (a*2*PI)-PI
 ...
 SCS myResult, myOperand.x;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 60

 (26) Is depth output from a fragment program gu aranteed to be
 invariant with respect to depth produced via co nventional
 rasterization?

 RESOLVED: No. The floating-point representa tion of depth values
 output from a fragment program may lead to th e output of depth
 with less precision than the depth output by convention GL
 rasterization. For example, a floating-point representation with
 16 bits of mantissa will certainly produce de pth with lesser
 precision than that of conventional rasteriza tion used in
 conjunction with a 24-bit depth buffer, where all values are
 maintained as integers. Be aware of this whe n mixing conventional
 GL rendering with fragment program rendering.

 (27) How can conventional GL fog application be achieved within a
 fragment program?

 RESOLVED: Program options have been introduce d that allow a
 program to request fog to be applied to the f inal clamped fragment
 color before being passed along to the antial iasing application
 stage. This makes it easy for:
 1. developers to request conventional fog b ehavior
 2. implementations with dedicated fog hardw are to use it
 3. implementations without dedicated fog ha rdware, so they need
 not track fog state after compilation, a nd constantly
 recompile when fog state changes.

 The three mandatory options are ARB_fog_exp, ARB_fog_exp2, and
 ARB_fog_linear. As these options are mutuall y exclusive by
 nature, specifying more than one is not usefu l. If more than one
 is specified, the last one encountered in the <optionSequence>
 will be the one to actually modify the execut ion environment.

 (28) Why have all of the enums, entrypoints, GL X protocol, and spec
 language shared with ARB_vertex_program been re produced here?

 RESOLVED: The two extensions are independent of one another, in
 so far as an implementation need not support both of them in order
 to support one of them. Everything needed to implement or make
 use of ARB_fragment_program is present in thi s spec without the
 need to refer to the ARB_vertex_program spec. When and if these
 two extensions are incorporated into the core OpenGL, the
 significant overlap of the two will be collap sed into a single
 instance of the shared parts.

 (29) How might an implementation implement the fog options? To What
 does the extra resource consumption described i n 3.11.4.5.1
 correspond?

 RESOLVED: The following code snippets reflect possible
 implementations of the fog options. While an implementation may
 use other instruction sequences to achieve th e same result, or may
 use external fog hardware if available, all i mplementations must
 enforce the API-level resource consumption as described: 2 params,
 1 temp, 1 attribute, and 3, 4, or 2 instructi ons. "finalColor" in
 the examples below is the color that would ot herwise be

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 61

 "result.color", with components clamped to th e range [0,1].
 "result.color.a" is assumed to have already b een written, as fog
 blending does not affect the alpha component.

 EXP:
 # Exponential fog
 # f = exp(-d*z)
 #
 PARAM p = {DENSITY/LN(2), NOT USED, NOT USE D, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MUL fogFactor.x, p.x, fogCoord.x;
 EX2_SAT fogFactor.x, -fogFactor.x;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 EXP2:
 #
 # 2nd-order Exponential fog
 # f = exp(-(d*z)^2)
 #
 PARAM p = {DENSITY/SQRT(LN(2)), NOT USED, N OT USED, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MUL fogFactor.x, p.x, fogCoord.x;
 MUL fogFactor.x, fogFactor.x, fogFactor.x;
 EX2_SAT fogFactor.x, -fogFactor.x;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 LINEAR:
 #
 # Linear fog
 # f = (end-z)/(end-start)
 #
 PARAM p = {-1/(END-START), END/(END-START), NOT USED, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MAD_SAT fogFactor.x, p.x, fogCoord.x, p.y;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 (30) Why is the order of operands for the CMP i nstruction different
 than the order used by another popular graphics API?

 RESOLVED: No other graphics API was used as a basis for the
 design of ARB_fragment_program except ARB_ver tex_program, which
 did not have a CMP instruction. This indepen dent evolution
 naturally led to differences in minor details such as order of
 operands. This discrepancy is noted here to help developers
 familiar with the other API to avoid this pot ential pitfall.

 (31) Is depth offset applied to the window z va lue before it enters
 the fragment program?

 RESOLVED: As in the base OpenGL specification , the depth offset
 generated by polygon offset is added during p olygon rasterization.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 62

 The depth value provided to shaders in the fr agment.position.z
 attribute already includes polygon offset, if enabled. If the
 depth value is replaced by a fragment program , the polygon offset
 value will NOT be recomputed and added back a fter fragment program
 execution.

 NOTE: This is probably not desirable for frag ment programs that
 modify depth values since the partials used t o generate the offset
 may not match the partials of the computed de pth value.

New Procedures and Functions

 void ProgramStringARB(enum target, enum format, sizei len,
 const void *string);

 void BindProgramARB(enum target, uint program);

 void DeleteProgramsARB(sizei n, const uint *pro grams);

 void GenProgramsARB(sizei n, uint *programs);

 void ProgramEnvParameter4dARB(enum target, uint index,
 double x, double y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, uin t index,
 const double *pa rams);
 void ProgramEnvParameter4fARB(enum target, uint index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, uin t index,
 const float *par ams);

 void ProgramLocalParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramLocalParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, u int index,
 const float *p arams);

 void GetProgramEnvParameterdvARB(enum target, u int index,
 double *params);
 void GetProgramEnvParameterfvARB(enum target, u int index,
 float *params) ;

 void GetProgramLocalParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramLocalParameterfvARB(enum target, uint index,
 float *param s);

 void GetProgramivARB(enum target, enum pname, i nt *params);

 void GetProgramStringARB(enum target, enum pnam e, void *string);

 boolean IsProgramARB(uint program);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 63

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f ProgramStringARB,
 BindProgramARB, ProgramEnvParameter4[df][v]ARB,
 ProgramLocalParameter4[df][v]ARB, GetProgramEnv Parameter[df]vARB,
 GetProgramLocalParameter[df]vARB, GetProgramivA RB and
 GetProgramStringARB.

 FRAGMENT_PROGRAM_ARB 0x8804

 Accepted by the <format> parameter of ProgramSt ringARB:

 PROGRAM_FORMAT_ASCII_ARB 0x8875

 Accepted by the <pname> parameter of GetProgram ivARB:

 PROGRAM_LENGTH_ARB 0x8627
 PROGRAM_FORMAT_ARB 0x8876
 PROGRAM_BINDING_ARB 0x8677
 PROGRAM_INSTRUCTIONS_ARB 0x88A0
 MAX_PROGRAM_INSTRUCTIONS_ARB 0x88A1
 PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A2
 MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A3
 PROGRAM_TEMPORARIES_ARB 0x88A4
 MAX_PROGRAM_TEMPORARIES_ARB 0x88A5
 PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A6
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A7
 PROGRAM_PARAMETERS_ARB 0x88A8
 MAX_PROGRAM_PARAMETERS_ARB 0x88A9
 PROGRAM_NATIVE_PARAMETERS_ARB 0x88AA
 MAX_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AB
 PROGRAM_ATTRIBS_ARB 0x88AC
 MAX_PROGRAM_ATTRIBS_ARB 0x88AD
 PROGRAM_NATIVE_ATTRIBS_ARB 0x88AE
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AF
 MAX_PROGRAM_LOCAL_PARAMETERS_ARB 0x88B4
 MAX_PROGRAM_ENV_PARAMETERS_ARB 0x88B5
 PROGRAM_UNDER_NATIVE_LIMITS_ARB 0x88B6
 PROGRAM_ALU_INSTRUCTIONS_ARB 0x8805
 PROGRAM_TEX_INSTRUCTIONS_ARB 0x8806
 PROGRAM_TEX_INDIRECTIONS_ARB 0x8807
 PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x8808
 PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x8809
 PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x880A
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB 0x880B
 MAX_PROGRAM_TEX_INSTRUCTIONS_ARB 0x880C
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB 0x880D
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x880E
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x880F
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x8810

 Accepted by the <pname> parameter of GetProgram StringARB:

 PROGRAM_STRING_ARB 0x8628

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 64

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PROGRAM_ERROR_POSITION_ARB 0x864B
 CURRENT_MATRIX_ARB 0x8641
 TRANSPOSE_CURRENT_MATRIX_ARB 0x88B7
 CURRENT_MATRIX_STACK_DEPTH_ARB 0x8640
 MAX_PROGRAM_MATRICES_ARB 0x862F
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB 0x862E

 MAX_TEXTURE_COORDS_ARB 0x8871
 MAX_TEXTURE_IMAGE_UNITS_ARB 0x8872

 Accepted by the <name> parameter of GetString:

 PROGRAM_ERROR_STRING_ARB 0x8874

 Accepted by the <mode> parameter of MatrixMode:

 MATRIX0_ARB 0x88C0
 MATRIX1_ARB 0x88C1
 MATRIX2_ARB 0x88C2
 MATRIX3_ARB 0x88C3
 MATRIX4_ARB 0x88C4
 MATRIX5_ARB 0x88C5
 MATRIX6_ARB 0x88C6
 MATRIX7_ARB 0x88C7
 MATRIX8_ARB 0x88C8
 MATRIX9_ARB 0x88C9
 MATRIX10_ARB 0x88CA
 MATRIX11_ARB 0x88CB
 MATRIX12_ARB 0x88CC
 MATRIX13_ARB 0x88CD
 MATRIX14_ARB 0x88CE
 MATRIX15_ARB 0x88CF
 MATRIX16_ARB 0x88D0
 MATRIX17_ARB 0x88D1
 MATRIX18_ARB 0x88D2
 MATRIX19_ARB 0x88D3
 MATRIX20_ARB 0x88D4
 MATRIX21_ARB 0x88D5
 MATRIX22_ARB 0x88D6
 MATRIX23_ARB 0x88D7
 MATRIX24_ARB 0x88D8
 MATRIX25_ARB 0x88D9
 MATRIX26_ARB 0x88DA
 MATRIX27_ARB 0x88DB
 MATRIX28_ARB 0x88DC
 MATRIX29_ARB 0x88DD
 MATRIX30_ARB 0x88DE
 MATRIX31_ARB 0x88DF

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 65

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL
Operation)

 Modify Section 2.1.1, Floating-Point Computatio n (p. 6)

 (modify first paragraph, p. 6) ... The maximum representable
 magnitude of a floating-point number used to re present position,
 normal, or texture coordinates must be at least 2^32; the maximum
 representable magnitude for colors must be at l east 2^10. ...

 Modify Section 2.7, Vertex Specification (p. 19)

 (modify second paragraph, p. 20) Implementation s support more than
 one set of texture coordinates. The commands

 void MultiTexCoord{1234}{sifd}(enum texture, T coords);
 void MultiTexCoord{1234}{sifd}v(enum texture, T coords);

 take the coordinate set to be modified as the < texture> parameter.
 <texture> is a symbolic constant of the form TE XTUREi, indicating
 that texture coordinate set i is to be modified . The constants obey
 TEXTUREi = TEXTURE0 + i (i is in the range 0 to k-1, where k is the
 implementation-dependent number of texture unit s defined by
 MAX_TEXTURE_COORDS_ARB).

 Modify Section 2.8, Vertex Arrays (p. 21)

 (modify first paragraph, p. 21) ... The client may specify up to 5
 plus the value of MAX_TEXTURE_COORDS_ARB arrays : one each to store
 vertex coordinates...

 (modify first paragraph, p. 23) The command

 void ClientActiveTexture(enum texture);

 is used to select the vertex array client state parameters to be
 modified by the TexCoordPointer command and the array affected by
 EnableClientState and DisableClientState with p arameter
 TEXTURE_COORD_ARRAY. This command sets the cli ent state variable
 CLIENT_ACTIVE_TEXTURE. Each texture coordinate set has a client
 state vector which is selected when this comman d is invoked. This
 state vector includes the vertex array state. This call also
 selects the texture coordinate set state used f or queries of client
 state.

 (modify first paragraph, p. 28) If the number o f supported texture
 coordinate sets (the value of MAX_TEXTURE_COORD S_ARB) is k, ...

 Modify Section 2.10.2, Matrices (p. 31)

 (modify first paragraph, p. 31) The projection matrix and model-view
 matrix are set and modified with a variety of c ommands. The
 affected matrix is determined by the current ma trix mode. The
 current matrix mode is set with

 void MatrixMode(enum mode);

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 66

 which takes one of the pre-defined constants TE XTURE, MODELVIEW,
 COLOR, PROJECTION, or MATRIX<i>_ARB as the argu ment. In the case of
 MATRIX<i>_ARB, <i> is an integer between 0 and <n>-1 indicating one
 of <n> program matrices where <n> is the value of the implementation
 defined constant MAX_PROGRAM_MATRICES_ARB. Suc h program matrices
 are described in section 3.11.7. TEXTURE is de scribed later in
 section 2.10.2, and COLOR is described in secti on 3.6.3. If the
 current matrix mode is MODELVIEW, then matrix o perations apply to
 the model-view matrix; if PROJECTION, then they apply to the
 projection matrix.

 (modify first paragraph, p. 34) For each textur e coordinate set, a
 4x4 matrix is applied to the corresponding text ure coordinates...

 (modify first and second paragraphs, p. 35) The command

 void ActiveTexture(enum texture);

 specifies the active texture unit selector, ACT IVE_TEXTURE. Each
 texture unit contains up to two distinct sub-un its: a texture
 coordinate processing unit (consisting of a tex ture matrix stack and
 texture coordinate generation state) and a text ure image unit
 (consisting of all the texture state defined in Section 3.8). In
 implementations with a different number of supp orted texture
 coordinate sets and texture image units, some t exture units may
 consist of only one of the two sub-units.

 The active texture unit selector specifies the texture coordinate
 set accessed by commands involving texture coor dinate processing.
 Such commands include those accessing the curre nt matrix stack (if
 MATRIX_MODE is TEXTURE), TexGen (section 2.10.4), Enable/Disable (if
 any texture coordinate generation enum is selec ted), as well as
 queries of the current texture coordinates and current raster
 texture coordinates. If the texture coordinate set number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_COORDS_ARB, the error INVALID_OPERA TION is generated by
 any such command.

 The active texture unit selector also selects t he texture image unit
 accessed by commands involving texture image pr ocessing (section
 3.8). Such commands include all variants of Te xEnv, TexParameter,
 and TexImage commands, BindTexture, Enable/Disa ble for any texture
 target (e.g., TEXTURE_2D), and queries of all s uch state. If the
 texture image unit number corresponding to the current value of
 ACTIVE_TEXTURE is greater than or equal to the implementation-
 dependent constant MAX_TEXTURE_IMAGE_UNITS_ARB, the error
 INVALID_OPERATION is generated by any such comm and.

 ActiveTexture generates the error INVALID_ENUM if an invalid
 <texture> is specified. <texture> is a symboli c constant of the
 form TEXTUREi, indicating that texture unit i i s to be modified.
 The constants obey TEXTUREi = TEXTURE0 + i (i i s in the range 0 to
 k-1, where k is the larger of the MAX_TEXTURE_C OORDS_ARB and
 MAX_TEXTURE_IMAGE_UNITS_ARB). For compatibilit y with old OpenGL
 specifications, the implementation-dependent co nstant
 MAX_TEXTURE_UNITS specifies the number of conve ntional texture units

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 67

 supported by the implementation. Its value mus t be no larger than
 the minimum of MAX_TEXTURE_COORDS_ARB and
 MAX_TEXTURE_IMAGE_UNITS_ARB.

 (modify last paragraph, p. 35) The state requir ed to implement
 transformations consists of a <n>-value integer indicating the
 current matrix mode (where <n> is 4 + the numbe r of supported
 texture and program matrices), a stack of at le ast two 4x4 matrices
 for each of COLOR, PROJECTION, and TEXTURE with associated stack
 pointers, <n> stacks (where <n> is at least 8) of at least one 4x4
 matrix for each MATRIX<i>_ARB with associated s tack pointers, and a
 stack of at least 32 4x4 matrices with an assoc iated stack pointer
 for MODELVIEW. Initially, there is only one ma trix on each stack,
 and all matrices are set to the identity. The initial matrix mode
 is MODELVIEW. The initial value of ACTIVE_TEXT URE is TEXTURE0.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Chapter 3, Introduction (p. 58)

 (modify first paragraph, p. 58) ... Figure 3.1 diagrams the
 rasterization process. The color value assigne d to a fragment is
 initially determined by the rasterization opera tions (sections 3.3
 through 3.7) and modified by either the executi on of the texturing,
 color sum, and fog operations as defined in sec tions 3.8, 3.9, and
 3.10, or of a fragment program defined in secti on 3.11. The final
 depth value is initially determined by the rast erization operations
 and may be modified or replaced by a fragment p rogram.

 (modify Figure 3.1)

 _ +---------------+ FRAGMENT_PRO GRAM_ARB
 /|| Point | enabl e
 / | Rasterization |\ |
 / +---------------+ \ V o-------------+
 From / +---------------+ \ |
 Primitive ---> | Line |---+++--->o o |
 Assembly \ | Rasterization | / || | |
 \ +---------------+ / || | |
 \ +---------------+/ || +----- +-----+ +----+-----+
 \|| Polygon | || | Text uring | | Fragment |
 - | Rasterization | / | +----- +-----+ | Program |
 +---------------+ / | | +----+-----+
 +---------------+ / | +----- +-----+ |
 | Pixel |/ | | Colo r Sum | |
 DrawPixels --> | Rectangle | / +----- +-----+ |
 | Rasterization | / | V
 +---------------+ / +----- +-----+
 +---------------+ / | F og |---> Fragments
 Bitmap ----> | Bitmap |/ +----- ------+
 | Rasterization |
 +---------------+

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 68

 Modify Section 3.3, Points (p. 63)

 (modify first and second paragraphs, p. 64) All fragments produced
 in rasterizing a non-antialiased point are assi gned the same
 associated data, which are those of the vertex corresponding to the
 point. (delete reference to divide by q)

 If antialiasing is enabled, then ... The data associated with each
 fragment are otherwise the data associated with the point being
 rasterized. (delete reference to divide by q)

 Modify Section 3.4.1, Basic Line Segment Raster ization (p. 66)

 (modify first paragraph, p. 68) ... (Note that t=0 at p_a and t=1 at
 p_b). The value of an associated datum f from the fragment center,
 whether it be R, G, B, or A (in RGBA mode) or a color index (in
 color index mode) or the s, t, r, or q texture coordinate or the
 clip w coordinate (the depth value, window z, m ust be found using
 equation 3.3, below), is found as

 f = (1-t)*(f_a/w_a) + t*(f_b/w_b) (3.2)

 (1-t)*(1/w_a) + t*(1/w_b)

 where f_a and f_b are the data associated with the starting and
 ending endpoints of the segment, respectively; w_a and w_b are the
 clip w coordinates of the starting and ending e ndpoints of the
 segments, respectively. Note that linear inter polation would use

 f = (1-t)*f_a + t*f_b. (3.3)

 ... A GL implementation may choose to approxima te equation 3.2 with
 3.3, but this will normally lead to inacceptabl e distortion effects
 when interpolating texture coordinates or clip w coordinates.

 Modify Section 3.5.1, Basic Polygon Rasterizati on (p. 73)

 (modify third and fourth paragraphs, p. 74) Den ote a datum at p_a,
 p_b, or p_c as f_a, f_b, or f_c, respectively. Then the value f of
 a datum at a fragment produced by rasterizing a triangle is given by

 f = a*(f_a/w_a) + b*(f_b/w_b) + c*(f_c/w_c) (3.4)

 a*(1/w_a) + b*(1/w_b) + c*(1/w_c)

 where w_a, w_b, and w_c are the clip w coordina tes of p_a, p_b, and
 p_c, respectively. a, b, and c are the barycen tric coordinates of
 the fragment for which the data are produced. a, b, and c must
 correspond precisely to the ... at the fragment 's center.

 Just as with line segment rasterization, equati on 3.4 may be
 approximated by

 f = a*f_a + b*f_b + c*f_c;

 this may yield ... for texture coordinates or c lip w coordinates.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 69

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (modify third paragraph, p. 103) A fragment ari sing from a group ...
 the color and texture coordinates are given by those associated with
 the current raster position. (delete reference to divide by q)
 Groups arising from DrawPixels...

 Modify Section 3.7, Bitmaps (p. 113)

 (modify third paragraph, p. 114) Otherwise, a r ectangular array ...
 The associated data for each fragment are those associated with the
 current raster position. (delete reference to divide by q) Once
 the fragments have been produced ...

 Modify Section 3.8, Texturing (p. 115)

 (add new paragraphs before first paragraph, p. 115) Texture
 coordinate sets are mapped to RGBA colors for a pplication to
 primitives in one of two modes. The first mode , described in this
 and subsequent sections, is GL's conventional m ultitexture pipeline,
 describing texture environment and texture appl ication. The second
 mode, referred to as fragment program mode and described in section
 3.11, applies textures, color sum, and fog as s pecified in an
 application-supplied fragment program.

 The fragment program mode is enabled and disabl ed using the generic
 Enable and Disable commands, respectively, with the symbolic
 constant FRAGMENT_PROGRAM_ARB. The required st ate is one bit
 indicating whether the fragment program mode is enabled or disabled.
 In the initial state, the fragment program mode is disabled. When
 fragment program mode is enabled, texturing, co lor sum, and fog
 application stages are ignored and a general pu rpose program is
 executed instead.

 (modify first and second paragraph, p. 115) Con ventional texturing
 is employed when fragment program mode is disab led. Texturing maps
 ... color of an image at the location indicated by a fragment's
 texture coordinates to modify the fragment's pr imary RGBA color.
 Texturing does not affect the secondary color.

 An implementation may support texturing using m ore than one image at
 a time. In this case the fragment carries mult iple sets of texture
 coordinates which are used to index ...

 (add paragraph before 1st paragraph, p. 116) Ex cept when in fragment
 program mode (section 3.11), the (s,t,r) textur e coordinates used
 for texturing are the values s/q, t/q, and r/q, respectively, where
 s, t, r, and q are the texture coordinates asso ciated with the
 fragment. When in fragment program mode, the (s,t,r) texture
 coordinates are specified by the program. If q is less than or
 equal to zero, the results of texturing are und efined.

 Modify Section 3.8.7, Texture Minification (p. 135)

 (add new paragraph after first paragraph, p. 13 7) When fragment
 program mode is enabled, the derivatives of the coordinates may be
 ill-defined or non-existent. As a result, the implementation is

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 70

 free to approximate these derivatives with such techniques as
 differencing. The only requirement is that tex ture samples be
 equivalent across the two modes. In other word s, the texture sample
 chosen for a fragment of a primitive must be in variant between
 fragment program mode and conventional mode sub ject to the rules
 set forth in Appendix A, Invariance.

 Modify Section 3.8.13, Texture Application (p. 149)

 (modify fourth paragraph, p. 152) Texturing is enabled and disabled
 individually for each texture unit. If texturi ng is disabled for
 one of the units, then the fragment resulting f rom the previous unit
 is passed unaltered to the following unit. Ind ividual texture units
 beyond those specified by MAX_TEXTURE_UNITS may be incomplete and
 are always treated as disabled.

 Insert a new Section 3.11, (p. 154), between ex isting sections 3.10
 and 3.11. Renumber 3.11, Antialiasing Applicat ion, to 3.12.

 3.11 Fragment Programs

 The conventional GL texturing model described i n section 3.8 is a
 configurable but essentially hard-wired sequenc e of per-fragment
 computations based on a canonical set of per-fr agment parameters
 and texturing-related state such as texture ima ges, texture
 parameters, and texture environment parameters. The general success
 and utility of the conventional GL texturing mo del reflects its
 basic correspondence to the typical texturing r equirements of 3D
 applications.

 However when the conventional GL texturing mode l is not sufficient,
 the fragment program mode provides a substantia lly more flexible
 model for generating fragment colors. The frag ment program mode
 permits applications to define their own fragme nt programs.

 A fragment program is a character string that s pecifies a sequence
 of operations to perform. Fragment program ins tructions are
 typically 4-component vector operations that op erate on per-fragment
 attributes and program parameters. Fragment pr ograms execute on a
 per-fragment basis and operate on each fragment completely
 independently from any other fragments. Fragme nt programs execute a
 finite fixed sequence of instructions with no b ranching or looping.
 Fragment programs execute without data hazards so results computed
 in one instruction can be used immediately afte rwards. The result
 of a fragment program is a set of fragment resu lt registers that
 becomes the color used by antialiasing applicat ion and/or a depth
 value used in place of the interpolated depth v alue generated by
 conventional rasterization.

 In fragment program mode, the color sum is subs umed by the fragment
 program. An application desiring the primary a nd secondary colors
 to be summed must explicitly include this opera tion in its program.

 Fragment programs are defined to operate only i n RGBA mode. The
 results of fragment program execution are undef ined if the GL is in
 color index mode.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 71

 3.11.1 Program Objects

 The GL provides one or more program targets, ea ch identifying a
 portion of the GL that can be controlled throug h application-
 specified programs. The program target for fra gment programs is
 FRAGMENT_PROGRAM_ARB. Each program target has an associated program
 object, called the current program object. Eac h program target also
 has a default program object, which is initiall y the current program
 object.

 Each program object has an associated program s tring. The command

 ProgramStringARB(enum target, enum format, si zei len,
 const void *string);

 updates the program string for the current prog ram object for
 <target>. <format> describes the format of the program string,
 which must currently be PROGRAM_FORMAT_ASCII_AR B. <string> is a
 pointer to the array of bytes representing the program string being
 loaded, which need not be null-terminated. The length of the array
 is given by <len>. If <string> is null-termina ted, <len> should not
 include the terminator.

 When a program string is loaded, it is interpre ted according to
 syntactic and semantic rules corresponding to t he program target
 specified by <target>. If a program violates t he syntactic or
 semantic restrictions of the program target, Pr ogramStringARB
 generates the error INVALID_OPERATION. An impl ementation may also
 generate the error INVALID_OPERATION if the pro gram would exceed
 the native resource limits defined in section 6 .1.12. A program
 which fails to load due to exceeding native res ource limits must
 always fail, regardless of any other GL state.

 Additionally, ProgramString will update the pro gram error position
 (PROGRAM_ERROR_POSITION_ARB) and error string
 (PROGRAM_ERROR_STRING_ARB). If a program fails to load, the value
 of the program error position is set to the uby te offset into the
 specified program string indicating where the f irst program error
 was detected. If the program fails to load bec ause of a semantic
 restriction that is not detected until the prog ram is fully
 scanned, the error position is set to the value of <len>. If a
 program loads successfully, the error position is set to the value
 negative one. The implementation-dependent pro gram error string
 contains one or more error or warning messages. If a program loads
 succesfully, the error string may either contai n warning messages or
 be empty.

 Each program object has an associated array of program local
 parameters. The number and type of program loc al parameters is
 target- and implementation-dependent. For frag ment programs,
 program local parameters are four-component flo ating-point vectors.
 The number of vectors is given by the implement ation-dependent
 constant MAX_PROGRAM_LOCAL_PARAMETERS_ARB, whic h must be at least
 24. The commands

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 72

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 update the values of the program local paramete r numbered <index>
 belonging to the program object currently bound to <target>. For
 ProgramLocalParameter4fARB and ProgramLocalPara meter4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>,
 <z>, and <w>, respectively. For ProgramLocalPa rameter4fvARB and
 ProgramLocalParameter4dvARB, the four component s of the parameter
 are updated with the array of four values point ed to by <params>.
 The error INVALID_VALUE is generated if <index> is greater than or
 equal to the number of program local parameters supported by
 <target>.

 Additionally, each program target has an associ ated array of program
 environment parameters. Unlike program local p arameters, program
 environment parameters are shared by all progra m objects of a given
 target. The number and type of program environ ment parameters is
 target- and implementation-dependent. For frag ment programs,
 program environment parameters are four-compone nt floating-point
 vectors. The number of vectors is given by the implementation-
 dependent constant MAX_PROGRAM_ENV_PARAMETERS_A RB, which must be at
 least 24. The commands

 void ProgramEnvParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, u int index,
 const float *p arams);
 void ProgramEnvParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, u int index,
 const double * params);

 update the values of the program environment pa rameter numbered
 <index> for the given program target <target>. For
 ProgramEnvParameter4fARB and ProgramEnvParamete r4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>,
 <z>, and <w>, respectively. For ProgramEnvPara meter4fvARB and
 ProgramEnvParameter4dvARB, the four components of the parameter are
 updated with the array of four values pointed t o by <params>. The
 error INVALID_VALUE is generated if <index> is greater than or equal
 to the number of program environment parameters supported by
 <target>.

 Each program target has a default program objec t. Additionally,
 named program objects can be created and operat ed upon. The name
 space for program objects is the positive integ ers and is shared by
 programs of all targets. The name zero is rese rved by the GL.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 73

 A named program object is created by binding an unused program
 object name to a valid program target. The bin ding is effected by
 calling

 BindProgramARB(enum target, uint program);

 with <target> set to the desired program target and <program> set to
 the unused program name. The resulting program object has a program
 target given by <target> and is assigned target -specific default
 values (see section 3.11.8 for fragment program s). BindProgramARB
 may also be used to bind an existing program ob ject to a program
 target. If <program> is zero, the default prog ram object for
 <target> is bound. If <program> is the name of an existing program
 object whose associated program target is <targ et>, the named
 program object is bound. The error INVALID_OPE RATION is generated
 if <program> names an existing program object w hose associated
 program target is anything other than <target>.

 Programs objects are deleted by calling

 void DeleteProgramsARB(sizei n, const uint *p rograms);

 <programs> contains <n> names of programs to be deleted. After a
 program object is deleted, its name is again un used. If a program
 object that is bound to any target is deleted, it is as though
 BindProgramARB is first executed with same targ et and a <program> of
 zero. Unused names in <programs> are silently ignored, as is the
 value zero.

 The command

 void GenProgramsARB(sizei n, uint *programs);

 returns <n> currently unused program names in < programs>. These
 names are marked as used, for the purposes of G enProgramsARB only,
 but objects are created only when they are firs t bound using
 BindProgramARB.

 3.11.2 Fragment Program Grammar and Semantic R estrictions

 Fragment program strings are specified as an ar ray of ASCII
 characters containing the program text. When a fragment program is
 loaded by a call to ProgramStringARB, the progr am string is parsed
 into a set of tokens possibly separated by whit espace. Spaces,
 tabs, newlines, carriage returns, and comments are considered
 whitespace. Comments begin with the character "#" and are
 terminated by a newline, a carriage return, or the end of the
 program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically
 valid sequences for fragment programs. The set of valid tokens can
 be inferred from the grammar. The token "" rep resents an empty
 string and is used to indicate optional rules. A program is invalid
 if it contains any undefined tokens or characte rs.

 A fragment program is required to begin with th e header string
 "!!ARBfp1.0", without any preceding whitespace. This string

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 74

 identifies the subsequent program text as a fra gment program
 (version 1.0) that should be parsed according t o the following
 grammar and semantic rules. Program string par sing begins with the
 character immediately following the header stri ng.

 <program> ::= <optionSequence> <st atementSequence> "END"

 <optionSequence> ::= <optionSequence> <op tion>
 | ""

 <option> ::= "OPTION" <identifier > ";"

 <statementSequence> ::= <statementSequence> <statement>
 | ""

 <statement> ::= <instruction> ";"
 | <namingStatement> "; "

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>

 <ALUInstruction> ::= <VECTORop_instructio n>
 | <SCALARop_instructio n>
 | <BINSCop_instruction >
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZ_instruction>

 <TexInstruction> ::= <SAMPLE_instruction>
 | <KIL_instruction>

 <VECTORop_instruction> ::= <VECTORop> <maskedDs tReg> ","
 <vectorSrcReg>

 <VECTORop> ::= "ABS" | "ABS_SAT"
 | "FLR" | "FLR_SAT"
 | "FRC" | "FRC_SAT"
 | "LIT" | "LIT_SAT"
 | "MOV" | "MOV_SAT"

 <SCALARop_instruction> ::= <SCALARop> <maskedDs tReg> ","
 <scalarSrcReg>

 <SCALARop> ::= "COS" | "COS_SAT"
 | "EX2" | "EX2_SAT"
 | "LG2" | "LG2_SAT"
 | "RCP" | "RCP_SAT"
 | "RSQ" | "RSQ_SAT"
 | "SIN" | "SIN_SAT"
 | "SCS" | "SCS_SAT"

 <BINSCop_instruction> ::= <BINSCop> <maskedDst Reg> ","
 <scalarSrcReg> "," < scalarSrcReg>

 <BINSCop> ::= "POW" | "POW_SAT"

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 75

 <BINop_instruction> ::= <BINop> <maskedDstRe g> ","
 <vectorSrcReg> "," < vectorSrcReg>

 <BINop> ::= "ADD" | "ADD_SAT"
 | "DP3" | "DP3_SAT"
 | "DP4" | "DP4_SAT"
 | "DPH" | "DPH_SAT"
 | "DST" | "DST_SAT"
 | "MAX" | "MAX_SAT"
 | "MIN" | "MIN_SAT"
 | "MUL" | "MUL_SAT"
 | "SGE" | "SGE_SAT"
 | "SLT" | "SLT_SAT"
 | "SUB" | "SUB_SAT"
 | "XPD" | "XPD_SAT"

 <TRIop_instruction> ::= <TRIop> <maskedDstRe g> ","
 <vectorSrcReg> "," < vectorSrcReg> ","
 <vectorSrcReg>

 <TRIop> ::= "CMP" | "CMP_SAT"
 | "LRP" | "LRP_SAT"
 | "MAD" | "MAD_SAT"

 <SWZ_instruction> ::= <SWZop> <maskedDstRe g> ","
 <srcReg> "," <extend edSwizzle>

 <SWZop> ::= "SWZ" | "SWZ_SAT"

 <SAMPLE_instruction> ::= <SAMPLEop> <maskedDs tReg> ","
 <vectorSrcReg> "," < texImageUnit> ","
 <texTarget>

 <SAMPLEop> ::= "TEX" | "TEX_SAT"
 | "TXP" | "TXP_SAT"
 | "TXB" | "TXB_SAT"

 <KIL_instruction> ::= "KIL" <vectorSrcReg>

 <texImageUnit> ::= "texture" <optTexIma geUnitNum>

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <optTexImageUnitNum> ::= ""
 | "[" <texImageUnitNum > "]"

 <texImageUnitNum> ::= <integer> from 0 to
 MAX_TEXTURE_IMAGE_UN ITS_ARB-1

 <scalarSrcReg> ::= <optionalSign> <srcR eg> <scalarSuffix>

 <vectorSrcReg> ::= <optionalSign> <srcR eg> <optionalSuffix>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 76

 <maskedDstReg> ::= <dstReg> <optionalMa sk>

 <extendedSwizzle> ::= <xyzwExtendedSwizzle >
 | <rgbaExtendedSwizzle >

 <xyzwExtendedSwizzle> ::= <xyzwExtSwizComp> ", " <xyzwExtSwizComp> ","
 <xyzwExtSwizComp> ", " <xyzwExtSwizComp>

 <rgbaExtendedSwizzle> ::= <rgbaExtSwizComp> ", " <rgbaExtSwizComp> ","
 <rgbaExtSwizComp> ", " <rgbaExtSwizComp>

 <xyzwExtSwizComp> ::= <optionalSign> <xyzw ExtSwizSel>

 <rgbaExtSwizComp> ::= <optionalSign> <rgba ExtSwizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= "0"
 | "1"
 | <rgbaComponent>

 <srcReg> ::= <fragmentAttribReg>
 | <temporaryReg>
 | <progParamReg>

 <dstReg> ::= <temporaryReg>
 | <fragmentResultReg>

 <fragmentAttribReg> ::= <establishedName>
 | <fragAttribBinding>

 <temporaryReg> ::= <establishedName>

 <progParamReg> ::= <progParamSingle>
 | <progParamArray> "[" <progParamArrayAbs> "]"
 | <paramSingleItemUse>

 <progParamSingle> ::= <establishedName>

 <progParamArray> ::= <establishedName>

 <progParamArrayAbs> ::= <integer>

 <fragmentResultReg> ::= <establishedName>
 | <resultBinding>

 <scalarSuffix> ::= "." <component>

 <optionalSuffix> ::= ""
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xyzwComponent>
 | "." <rgbaComponent> <rgbaComponent>
 <rgbaComponent> <rgbaComponent>

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 77

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

 <xyzwComponent> ::= "x" | "y" | "z" | "w "

 <rgbaComponent> ::= "r" | "g" | "b" | "a "

 <optionalMask> ::= ""
 | <xyzwMask>
 | <rgbaMask>

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establishN ame> "="
 <fragAttribBinding >

 <fragAttribBinding> ::= "fragment" "." <frag AttribItem>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 78

 <fragAttribItem> ::= "color" <optColorTyp e>
 | "texcoord" <optTexCo ordNum>
 | "fogcoord"
 | "position"

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt>

 <PARAM_singleStmt> ::= "PARAM" <establishNa me> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishNa me> "[" <optArraySize> "]"
 <paramMultipleIn it>

 <optArraySize> ::= ""
 | <integer> from 1 to MAX_PROGRAM_PARAMETERS_ARB
 (maximum number of allowed program
 parameter binding s)

 <paramSingleInit> ::= "=" <paramSingleItem Decl>

 <paramMultipleInit> ::= "=" "{" <paramMultIn itList> "}"

 <paramMultInitList> ::= <paramMultipleItem>
 | <paramMultipleItem> "," <paramMultInitList>

 <paramSingleItemDecl> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstDecl>

 <paramSingleItemUse> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstUse>

 <paramMultipleItem> ::= <stateMultipleItem>
 | <programMultipleItem >
 | <paramConstDecl>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateMa trixRows>

 <stateSingleItem> ::= "state" "." <stateMa terialItem>
 | "state" "." <stateLi ghtItem>
 | "state" "." <stateLi ghtModelItem>
 | "state" "." <stateLi ghtProdItem>
 | "state" "." <stateTe xEnvItem>
 | "state" "." <stateFo gItem>
 | "state" "." <stateDe pthItem>
 | "state" "." <stateMa trixRow>

 <stateMaterialItem> ::= "material" <optFaceT ype> "." <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 79

 <stateLightItem> ::= "light" "[" <stateLi ghtNumber> "]" "."
 <stateLightPropert y>

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSpo tProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <stateL ModProperty>

 <stateLModProperty> ::= "." "ambient"
 | <optFaceType> "." "s cenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <sta teLightNumber> "]"
 <optFaceType> "." <stateLProdProperty>

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> from 0 to MAX_LIGHTS-1

 <stateTexEnvItem> ::= "texenv" <optLegacyT exUnitNum> "."
 <stateTexEnvProper ty>

 <stateTexEnvProperty> ::= "color"

 <optLegacyTexUnitNum> ::= ""
 | "[" <legacyTexUnitNu m> "]"

 <legacyTexUnitNum> ::= <integer> from 0 to MAX_TEXTURE_UNITS-1

 <stateFogItem> ::= "fog" "." <stateFogP roperty>

 <stateFogProperty> ::= "color"
 | "params"

 <stateDepthItem> ::= "depth" "." <stateDe pthProperty>

 <stateDepthProperty> ::= "range"

 <stateMatrixRow> ::= <stateMatrixItem> ". " "row" "["
 <stateMatrixRowNu m> "]"

 <stateMatrixRows> ::= <stateMatrixItem> <o ptMatrixRows>

 <optMatrixRows> ::= ""
 | "." "row" "[" <state MatrixRowNum> ".."
 <stateMatrixRowNu m> "]"

 <stateMatrixItem> ::= "matrix" "." <stateM atrixName>
 <stateOptMatModifier >

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 80

 <stateOptMatModifier> ::= ""
 | "." <stateMatModifie r>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixRowNum> ::= <integer> from 0 to 3

 <stateMatrixName> ::= "modelview" <stateOp tModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCoo rdNum>
 | "palette" "[" <state PaletteMatNum> "]"
 | "program" "[" <state ProgramMatNum> "]"

 <stateOptModMatNum> ::= ""
 | "[" <stateModMatNum> "]"

 <stateModMatNum> ::= <integer> from 0 to MAX_VERTEX_UNITS_ARB-1

 <optTexCoordNum> ::= ""
 | "[" <texCoordNum> "] "

 <texCoordNum> ::= <integer> from 0 to MAX_TEXTURE_COORDS_ARB-1

 <statePaletteMatNum> ::= <integer> from 0 to MAX_PALETTE_MATRICES_ARB-1

 <stateProgramMatNum> ::= <integer> from 0 to MAX_PROGRAM_MATRICES_ARB-1

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env"
 "[" <progEnvParamN ums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> ". ." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env"
 "[" <progEnvParamN um> "]"

 <progLocalParams> ::= "program" "." "local "
 "[" <progLocalPara mNums> "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "local "
 "[" <progLocalPara mNum> "]"

 <progEnvParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_ENV_PARA METERS_ARB - 1

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 81

 <progLocalParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_LOCAL_PA RAMETERS_ARB - 1

 <paramConstDecl> ::= <paramConstScalarDec l>
 | <paramConstVector>

 <paramConstUse> ::= <paramConstScalarUse >
 | <paramConstVector>

 <paramConstScalarDecl> ::= <signedFloatConstant >

 <paramConstScalarUse> ::= <floatConstant>

 <paramConstVector> ::= "{" <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"

 <signedFloatConstant> ::= <optionalSign> <floa tConstant>

 <floatConstant> ::= see text

 <optionalSign> ::= ""
 | "-"
 | "+"

 <TEMP_statement> ::= "TEMP" <varNameList>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <OUTPUT_statement> ::= "OUTPUT" <establishN ame> "="
 <resultBinding>

 <resultBinding> ::= "result" "." "color"
 | "result" "." "depth"

 <optFaceType> ::= ""
 | "." "front"
 | "." "back"

 <optColorType> ::= ""
 | "." "primary"
 | "." "secondary"

 <ALIAS_statement> ::= "ALIAS" <establishNa me> "="
 <establishedName>

 <establishName> ::= <identifier>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 82

 <establishedName> ::= <identifier>

 <identifier> ::= see text

 The <integer> rule matches an integer constant. The integer
 consists of a sequence of one or more digits (" 0" through "9").

 The <floatConstant> rule matches a floating-poi nt constant
 consisting of an integer part, a decimal point, a fraction part, an
 "e" or "E", and an optionally signed integer ex ponent. The integer
 and fraction parts both consist of a sequence o f one or more digits
 ("0" through "9"). Either the integer part or the fraction parts
 (not both) may be missing; either the decimal p oint or the "e" (or
 "E") and the exponent (not both) may be missing .

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z"), digits ("0" thro ugh "9), underscores
 ("_"), or dollar signs ("$"); the first charact er must not be a
 number. Upper and lower case letters are consi dered different
 (names are case-sensitive). The following stri ngs are reserved
 keywords and may not be used as identifiers:

 ABS, ABS_SAT, ADD, ADD_SAT, ALIAS, ATTRIB, CMP, CMP_SAT, COS,
 COS_SAT, DP3, DP3_SAT, DP4, DP4_SAT, DPH, D PH_SAT, DST, DST_SAT,
 END, EX2, EX2_SAT, FLR, FLR_SAT, FRC, FRC_S AT, KIL, LG2,
 LG2_SAT, LIT, LIT_SAT, LRP, LRP_SAT, MAD, M AD_SAT, MAX, MAX_SAT,
 MIN, MIN_SAT, MOV, MOV_SAT, MUL, MUL_SAT, O PTION, OUTPUT, PARAM,
 POW, POW_SAT, RCP, RCP_SAT, RSQ, RSQ_SAT, S IN, SIN_SAT, SCS,
 SCS_SAT, SGE, SGE_SAT, SLT, SLT_SAT, SUB, S UB_SAT, SWZ, SWZ_SAT,
 TEMP, TEX, TEX_SAT, TXB, TXB_SAT, TXP, TXP_ SAT, XPD, XPD_SAT,
 fragment, program, result, state, and textu re.

 The error INVALID_OPERATION is generated if a f ragment program fails
 to load because it is not syntactically correct or for one of the
 semantic restrictions described in the followin g sections.

 A successfully loaded fragment program is parse d into a sequence of
 instructions. Each instruction is identified b y its tokenized name.
 The operation of these instructions when execut ed is defined in
 section 3.11.5.

 A successfully loaded program string replaces t he program string
 previously loaded into the specified program ob ject. If the
 OUT_OF_MEMORY error is generated by ProgramStri ngARB, no change is
 made to the previous contents of the current pr ogram object.

 3.11.3 Fragment Program Variables

 Fragment programs may access a number of differ ent variables during
 their execution. The following sections define the variables that
 can be declared and used by a fragment program.

 Explicit variable declarations allow a fragment program to establish
 a variable name that can be used to refer to a specified resource in
 subsequent instructions. A fragment program wi ll fail to load if it
 declares the same variable name more than once or if it refers to a

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 83

 variable name that has not been previously decl ared in the program
 string.

 Implicit variable declarations allow a fragment program to use the
 name of certain available resources by name.

 3.11.3.1 Fragment Attributes

 Fragment program attribute variables are a set of four-component
 floating-point vectors holding the attributes o f the fragment being
 processed. Fragment attribute variables are re ad-only during
 fragment program execution.

 Fragment attribute variables can be declared ex plicitly using the
 <ATTRIB_statement> grammar rule, or implicitly using the
 <fragAttribBinding> grammar rule in an executab le instruction.

 Each fragment attribute variable is bound to a single item of
 fragment state according to the <fragAttrBindin g> grammar rule. The
 set of GL state that can be bound to a fragment attribute variable
 is given in Table X.1. Fragment attribute vari ables are initialized
 at each fragment program invocation with the cu rrent values of the
 bound state.

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 fragment.color (r,g,b,a) prima ry color
 fragment.color.primary (r,g,b,a) prima ry color
 fragment.color.secondary (r,g,b,a) secon dary color
 fragment.texcoord (s,t,r,q) textu re coordinate, unit 0
 fragment.texcoord[n] (s,t,r,q) textu re coordinate, unit n
 fragment.fogcoord (f,0,0,1) fog d istance/coordinate
 fragment.position (x,y,z,1/w) windo w position

 Table X.1: Fragment Attribute Bindings. The "Components" column
 indicates the mapping of the state in the "Un derlying State"
 column. Bindings containing "[n]" require an integer value of <n>
 to select an individual item.

 If a fragment attribute binding matches "fragme nt.color" or
 "fragment.color.primary", the "x", "y", "z", an d "w" components of
 the fragment attribute variable are filled with the "r", "g", "b",
 and "a" components, respectively, of the fragme nt color. Each
 fixed-point color component undergoes an implie d conversion to
 floating point. This conversion must leave the values 0 and 1
 invariant.

 If a fragment attribute binding matches "fragme nt.color.secondary",
 the "x", "y", "z", and "w" components of the fr agment attribute
 variable are filled with the "r", "g", "b", and "a" components,
 respectively, of the fragment secondary color. Each fixed-point
 color component undergoes an implied conversion to floating point.
 This conversion must leave the values 0 and 1 i nvariant.

 If a fragment attribute binding matches "fragme nt.texcoord" or
 "fragment.texcoord[n]", the "x", "y", "z", and "w" components of the
 fragment attribute variable are filled with the "s", "t", "r", and

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 84

 "q" components, respectively, of the fragment t exture coordinates
 for texture unit <n>. If "[n]" is omitted, tex ture unit zero is
 used.

 If a fragment attribute binding matches "fragme nt.fogcoord", the "x"
 component of the fragment attribute variable is filled with either
 the fragment eye distance or the fog coordinate , depending on
 whether the fog source is set to FRAGMENT_DEPTH _EXT or
 FOG_COORDINATE_EXT, respectively. The "y", "z" , and "w" coordinates
 are filled with 0, 0, and 1, respectively.

 If a fragment attribute binding matches "fragme nt.position", the "x"
 and "y" components of the fragment attribute va riable are filled
 with the (x,y) window coordinates of the fragme nt center, relative
 to the lower left corner of the window. The "z " component is filled
 with the fragment's z window coordinate. This z window coordinate
 undergoes an implied conversion to floating poi nt. This conversion
 must leave the values 0 and 1 invariant. The " w" component is
 filled with the reciprocal of the fragment's cl ip w coordinate.

 On some implementations, the components of frag ment.position may be
 generated by interpolating per-vertex position values. This may
 produce x and y window coordinates that don't e xactly match those of
 the fragment center and z window coordinates th at do not exactly
 match those generated by fixed-function rasteri zation. Therefore,
 there is no guaranteed invariance between the f inal z window
 coordinates of fragments processed by fragment programs that write
 depth values and fragments processed by any oth er means, even if the
 fragment programs in question simply copy the z value from the
 fragment.position binding.

 3.11.3.2 Fragment Program Parameters

 Fragment program parameter variables are a set of four-component
 floating-point vectors used as constants during fragment program
 execution. Fragment program parameters retain their values across
 fragment program invocations, although their va lues can change
 between invocations due to GL state changes.

 Single program parameter variables and arrays o f program parameter
 variables can be declared explicitly using the <PARAM_statement>
 grammar rule. Single program parameter variabl es can also be
 declared implicitly using the <paramSingleItemU se> grammar rule in
 an executable instruction.

 Each single program parameter variable is bound to a constant vector
 or to a GL state vector according to the <param SingleInit> grammar
 rule. Individual items of a program parameter array are bound to
 constant vectors or GL state vectors according to the
 <programMultipleInit> grammar rule. The set of GL state that can be
 bound to program parameter variables are given in Tables X.2.1
 through X.2.4.

 Constant Bindings

 A program parameter variable can be bound to a scalar or vector
 constant using the <paramConstDecl> grammar rul e (explicit

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 85

 declarations) or the <paramConstUse> grammar ru le (implicit
 declarations).

 If a program parameter binding matches the <par amConstScalarDecl> or
 <paramConstScalarUse> grammar rules, the corres ponding program
 parameter variable is bound to the vector (X,X, X,X), where X is the
 value of the specified constant. Note that the
 <paramConstScalarUse> grammar rule, used only i n implicit
 declarations, allows only non-negative constant s. This
 disambiguates cases like "-2", which could conc eivably be taken to
 mean either the vector "(2,2,2,2)" with all com ponents negated or
 "(-2,-2,-2,-2)" without negation. Only the for mer interpretation is
 allowed by the grammar.

 If a program parameter binding matches <paramCo nstVector>, the
 corresponding program parameter variable is bou nd to the vector
 (X,Y,Z,W), where X, Y, Z, and W are the values corresponding to the
 first, second, third, and fourth match of <sign edFloatConstant>. If
 fewer than four constants are specified, Y, Z, and W assume the
 values 0.0, 0.0, and 1.0, if their respective c onstants are not
 specified.

 Program parameter variables initialized to cons tant values can never
 be modified.

 Program Environment/Local Parameter Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 program.env[a] (x,y,z,w) pr ogram environment
 pa rameter a
 program.local[a] (x,y,z,w) pr ogram local parameter a
 program.env[a..b] (x,y,z,w) pr ogram environment
 pa rameters a through b
 program.local[a..b] (x,y,z,w) pr ogram local parameters
 a through b

 Table X.2.1: Program Environment/Local Param eter Bindings. <a>
 and indicate parameter numbers, where <a> must be less than or
 equal to .

 If a program parameter binding matches "program .env[a]" or
 "program.local[a]", the four components of the program parameter
 variable are filled with the four components of program environment
 parameter <a> or program local parameter <a>, r espectively.

 Additionally, for program parameter array bindi ngs,
 "program.env[a..b]" and "program.local[a..b]" a re equivalent to
 specifying program environment parameters <a> t hrough in order
 or program local parameters <a> through in order, respectively.
 In either case, a program will fail to load if <a> is greater than
 .

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 86

 Material Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.material.ambient (r,g,b,a) fr ont ambient material color
 state.material.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.specular (r,g,b,a) fr ont specular material color
 state.material.emission (r,g,b,a) fr ont emissive material color
 state.material.shininess (s,0,0,1) fr ont material shininess
 state.material.front.ambient (r,g,b,a) fr ont ambient material color
 state.material.front.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.front.specular (r,g,b,a) fr ont specular material color
 state.material.front.emission (r,g,b,a) fr ont emissive material color
 state.material.front.shininess (s,0,0,1) fr ont material shininess
 state.material.back.ambient (r,g,b,a) ba ck ambient material color
 state.material.back.diffuse (r,g,b,a) ba ck diffuse material color
 state.material.back.specular (r,g,b,a) ba ck specular material color
 state.material.back.emission (r,g,b,a) ba ck emissive material color
 state.material.back.shininess (s,0,0,1) ba ck material shininess

 Table X.2.2: Material Property Bindings. If a material face is
 not specified in the binding, the front prope rty is used.

 If a program parameter binding matches any of t he material
 properties listed in Table X.2.2, the program p arameter variable is
 filled according to the table. For ambient, di ffuse, specular, or
 emissive colors, the "x", "y", "z", and "w" com ponents are filled
 with the "r", "g", "b", and "a" components, res pectively, of the
 corresponding material color. For material shi niness, the "x"
 component is filled with the material's specula r exponent, and the
 "y", "z", and "w" components are filled with 0, 0, and 1,
 respectively. Bindings containing ".back" refe r to the back
 material; all other bindings refer to the front material.

 Material properties can be changed inside a Beg in/End pair, either
 directly by calling Material, or indirectly thr ough color material.
 However, such property changes are not guarante ed to update program
 parameter bindings until the following End comm and. Program
 parameter variables bound to material propertie s changed inside a
 Begin/End pair are undefined until the followin g End command.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 87

 Light Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.light[n].ambient (r,g,b,a) li ght n ambient color
 state.light[n].diffuse (r,g,b,a) li ght n diffuse color
 state.light[n].specular (r,g,b,a) li ght n specular color
 state.light[n].position (x,y,z,w) li ght n position
 state.light[n].attenuation (a,b,c,e) li ght n attenuation constants
 an d spot light exponent
 state.light[n].spot.direction (x,y,z,c) li ght n spot direction and
 cu toff angle cosine
 state.light[n].half (x,y,z,1) li ght n infinite half-angle
 state.lightmodel.ambient (r,g,b,a) li ght model ambient color
 state.lightmodel.scenecolor (r,g,b,a) li ght model front scene color
 state.lightmodel . (r,g,b,a) li ght model front scene color
 front.scenecolor
 state.lightmodel . (r,g,b,a) li ght model back scene color
 back.scenecolor
 state.lightprod[n].ambient (r,g,b,a) li ght n / front material
 am bient color product
 state.lightprod[n].diffuse (r,g,b,a) li ght n / front material
 di ffuse color product
 state.lightprod[n].specular (r,g,b,a) li ght n / front material
 sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.specular sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.specular sp ecular color product

 Table X.2.3: Light Property Bindings. <n> in dicates a light
 number.

 If a program parameter binding matches "state.l ight[n].ambient",
 "state.light[n].diffuse", or "state.light[n].sp ecular", the "x",
 "y", "z", and "w" components of the program par ameter variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of
 the corresponding light color.

 If a program parameter binding matches "state.l ight[n].position",
 the "x", "y", "z", and "w" components of the pr ogram parameter
 variable are filled with the "x", "y", "z", and "w" components,
 respectively, of the light position.

 If a program parameter binding matches "state.l ight[n].attenuation",
 the "x", "y", and "z" components of the program parameter variable
 are filled with the constant, linear, and quadr atic attenuation
 parameters of the specified light, respectively (section 2.13.1).

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 88

 The "w" component of the program parameter vari able is filled with
 the spot light exponent of the specified light.

 If a program parameter binding matches
 "state.light[n].spot.direction", the "x", "y", and "z" components of
 the program parameter variable are filled with the "x", "y", and "z"
 components of the spot light direction of the s pecified light,
 respectively (section 2.13.1). The "w" compone nt of the program
 parameter variable is filled with the cosine of the spot light
 cutoff angle of the specified light.

 If a program parameter binding matches "state.l ight[n].half", the
 "x", "y", and "z" components of the program par ameter variable are
 filled with the x, y, and z components, respect ively, of the
 normalized infinite half-angle vector

 h_inf = || P + (0, 0, 1) ||.

 The "w" component is filled with 1. In the com putation of h_inf, P
 consists of the x, y, and z coordinates of the normalized vector
 from the eye position P_e to the eye-space ligh t position P_pli
 (section 2.13.1). h_inf is defined to correspo nd to the normalized
 half-angle vector when using an infinite light (w coordinate of the
 position is zero) and an infinite viewer (v_bs is FALSE). For local
 lights or a local viewer, h_inf is well-defined but does not match
 the normalized half-angle vector, which will va ry depending on the
 vertex position.

 If a program parameter binding matches "state.l ightmodel.ambient",
 the "x", "y", "z", and "w" components of the pr ogram parameter
 variable are filled with the "r", "g", "b", and "a" components of
 the light model ambient color, respectively.

 If a program parameter binding matches "state.l ightmodel.scenecolor"
 or "state.lightmodel.front.scenecolor", the "x" , "y", and "z"
 components of the program parameter variable ar e filled with the
 "r", "g", and "b" components respectively of th e "front scene color"

 c_scene = a_cs * a_cm + e_cm,

 where a_cs is the light model ambient color, a_ cm is the front
 ambient material color, and e_cm is the front e missive material
 color. The "w" component of the program parame ter variable is
 filled with the alpha component of the front di ffuse material color.
 If a program parameter binding matches
 "state.lightmodel.back.scenecolor", a similar b ack scene color,
 computed using back-facing material properties, is used. The front
 and back scene colors match the values that wou ld be assigned to
 vertices using conventional lighting if all lig hts were disabled.

 If a program parameter binding matches anything beginning with
 "state.lightprod[n]", the "x", "y", and "z" com ponents of the
 program parameter variable are filled with the "r", "g", and "b"
 components, respectively, of the corresponding light product. The
 three light product components are the products of the corresponding
 color components of the specified material prop erty and the light
 color of the specified light (see Table X.2.3). The "w" component

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 89

 of the program parameter variable is filled wit h the alpha component
 of the specified material property.

 Light products depend on material properties, w hich can be changed
 inside a Begin/End pair. Such property changes are not guaranteed
 to take effect until the following End command. Program parameter
 variables bound to light products whose corresp onding material
 property changes inside a Begin/End pair are un defined until the
 following End command.

 Texture Environment Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texenv[n].color (r,g,b,a) textur e environment n color

 Table X.2.4: Texture Environment Property Bi ndings. "[n]" is
 optional -- texture unit <n> is used if speci fied; texture unit 0
 is used otherwise.

 If a program parameter binding matches "state.t exenv[n].color", the
 "x", "y", "z", and "w" components of the progra m parameter variable
 are filled with the "r", "g", "b", and "a" comp onents, respectively,
 of the corresponding texture environment color. Note that only
 "legacy" texture units, as queried by MAX_TEXTU RE_UNITS, include
 texture environment state. Texture image units and texture
 coordinate sets do not have associated texture environment state.

 Fog Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.fog.color (r,g,b,a) RGB fog color (section 3.11)
 state.fog.params (d,s,e,r) fog density, linear start
 and end, and 1/(end-start)
 (sec tion 3.11)

 Table X.2.5: Fog Property Bindings

 If a program parameter binding matches "state.f og.color", the "x",
 "y", "z", and "w" components of the program par ameter variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of
 the fog color (section 3.11).

 If a program parameter binding matches "state.f og.params", the "x",
 "y", and "z" components of the program paramete r variable are filled
 with the fog density, linear fog start, and lin ear fog end
 parameters (section 3.11), respectively. The " w" component is
 filled with 1/(end-start), where end and start are the linear fog
 end and start parameters, respectively.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 90

 Depth Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.depth.range (n,f,d,1) Dept h range near, far, and
 (far -near) (section 2.10.1)

 Table X.2.6: Depth Property Bindings

 If a program parameter binding matches "state.d epth.range", the "x"
 and "y" components of the program parameter var iable are filled with
 the mappings of near and far clipping planes to window coordinates,
 respectively. The "z" component is filled with the difference of
 the mappings of near and far clipping planes, f ar minus near. The
 "w" component is filled with 1.

 Matrix Property Bindings

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 * state.matrix.modelview[n] modelvi ew matrix n
 state.matrix.projection project ion matrix
 state.matrix.mvp modelvi ew-projection matrix
 * state.matrix.texture[n] texture matrix n
 state.matrix.palette[n] modelvi ew palette matrix n
 state.matrix.program[n] program matrix n

 Table X.2.7: Base Matrix Property Bindings. The "[n]" syntax
 indicates a specific matrix number. For mode lview and texture
 matrices, a matrix number is optional, and ma trix zero will be
 used if the matrix number is omitted. These base bindings may
 further be modified by a inverse/transpose se lector and a row
 selector.

 If the beginning of a program parameter binding matches any of the
 matrix binding names listed in Table X.2.7, the binding corresponds
 to a 4x4 matrix. If the parameter binding is f ollowed by
 ".inverse", ".transpose", or ".invtrans" (<stat eMatModifier> grammar
 rule), the inverse, transpose, or transpose of the inverse,
 respectively, of the matrix specified in Table X.2.7 is selected.
 Otherwise, the matrix specified in Table X.2.7 is selected. If the
 specified matrix is poorly-conditioned (singula r or nearly so), its
 inverse matrix is undefined. The binding name "state.matrix.mvp"
 refers to the product of modelview matrix zero and the projection
 matrix, defined as

 MVP = P * M0,

 where P is the projection matrix and M0 is mode lview matrix zero.

 If the selected matrix is followed by ".row[<a>]" (matching the
 <stateMatrixRow> grammar rule), the "x", "y", " z", and "w"
 components of the program parameter variable ar e filled with the
 four entries of row <a> of the selected matrix. In the example,

 PARAM m0 = state.matrix.modelview[1].row[0];
 PARAM m1 = state.matrix.projection.transpose. row[3];

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 91

 the variable "m0" is set to the first row (row 0) of modelview
 matrix 1 and "m1" is set to the last row (row 3) of the transpose of
 the projection matrix.

 For program parameter array bindings, multiple rows of the selected
 matrix can be bound via the <stateMatrixRows> g rammar rule. If the
 selected matrix binding is followed by ".row[<a >..]", the result
 is equivalent to specifying matrix rows <a> thr ough , in order.
 A program will fail to load if <a> is greater t han . If no row
 selection is specified (<optMatrixRows> matches ""), matrix rows 0
 through 3 are bound in order. In the example,

 PARAM m2[] = { state.matrix.program[0].row[1. .2] };
 PARAM m3[] = { state.matrix.program[0].transp ose };

 the array "m2" has two entries, containing rows 1 and 2 of program
 matrix zero, and "m3" has four entries, contain ing all four rows of
 the transpose of program matrix zero.

 Program Parameter Arrays

 A program parameter array variable can be decla red explicitly by
 matching the <PARAM_multipleStmt> grammar rule. Programs can
 optionally specify the number of individual pro gram parameters in
 the array, using the <optArraySize> grammar rul e. Program parameter
 arrays may not be declared implicity.

 Individual parameter variables in a program par ameter array are
 bound to GL state vectors or constant vectors a s specified by the
 grammar rule <paramMultInitList>. Each individ ual parameter in the
 array is bound in turn as described above.

 The total number of entries in the array is equ al to the number of
 parameters bound in the initializer list. A fr agment program that
 specifies an array size (<optArraySize> matches <integer>) that does
 not match the number of parameter bindings in t he initialization
 list will fail to load.

 Program parameter array variables may only be a ccessed using
 absolute addressing by matching the <progParamA rrayAbs> grammar
 rule. Array accesses are checked against the l imits of the array.
 If any fragment program instruction accesses a program parameter
 array with an out-of-range index (greater than or equal to the size
 of the array), the fragment program will fail t o load.

 Individual state vectors can have no more than one unique binding in
 any given program. The GL will automatically c ombine multiple
 bindings of the same state vector into a single unique binding.

 3.11.3.3 Fragment Program Temporaries

 Fragment program temporary variables are a set of four-component
 floating-point vectors used to hold temporary r esults during
 fragment program execution. Temporaries do not persist between
 program invocations, and are undefined at the b eginning of each
 fragment program invocation.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 92

 Fragment program temporary variables can be dec lared explicitly
 using the <TEMP_statement> grammar rule. Each such statement can
 declare one or more temporaries. Fragment prog ram temporary
 variables can not be declared implicitly.

 3.11.3.4 Fragment Program Results

 Fragment program result variables are a set of four component
 floating-point vectors used to hold the final r esults of a fragment
 program. Fragment program result variables are write-only during
 fragment program execution.

 Fragment program result variables can be declar ed explicitly using
 the <OUTPUT_statement> grammar rule, or implici tly using the
 <resultBinding> grammar rule in an executable i nstruction. Each
 fragment program result variable is bound to a fragment attribute
 used in subsequent back-end processing. The se t of fragment program
 result variable bindings is given in Table X.3.

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.color (r,g,b,a) co lor
 result.depth (*,*,d,*) de pth coordinate

 Table X.3: Fragment Result Variable Bindings . Components labeled
 "*" are unused.

 If a result variable binding matches "result.co lor", updates to the
 "x", "y", "z", and "w" components of the result variable modify the
 "r", "g", "b", and "a" components, respectively , of the fragment's
 output color. If "result.color" is not both bo und by the fragment
 program and written by some instruction of the program, the output
 color of the fragment program is undefined.

 If a result variable binding matches "result.de pth", updates to the
 "z" component of the result variable modify the fragment's output
 depth value. If "result.depth" is not both bou nd by the fragment
 program and written by some instruction of the program, the
 interpolated depth value produced by rasterizat ion is used as if
 fragment program mode is not enabled. Writes t o any component of
 depth other than the "z" component have no effe ct.

 3.11.3.5 Fragment Program Aliases

 Fragment programs can create aliases by matchin g the
 <ALIAS_statement> grammar rule. Aliases allow programs to use
 multiple variable names to refer to a single un derlying variable.
 For example, the statement

 ALIAS var1 = var0

 establishes a variable name named "var1". Subs equent references to
 "var1" in the program text are treated as refer ences to "var0". The
 left hand side of an ALIAS statement must be a new variable name,
 and the right hand side must be an established variable name.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 93

 Aliases are not considered variable declaration s, so do not count
 against the limits on the number of variable de clarations allowed in
 the program text.

 3.11.3.6 Fragment Program Resource Limits

 The fragment program execution environment prov ides implementation-
 dependent resource limits on the number of ALU instructions, texture
 instructions, total instructions (ALU or textur e), temporary
 variable declarations, program parameter bindin gs, or texture
 indirections. A program that exceeds any of th ese resource limits
 will fail to load. The resource limits for fra gment programs can be
 queried by calling GetProgramiv (section 6.1.12) with a target of
 FRAGMENT_PROGRAM_ARB.

 The limit on fragment program ALU instructions can be queried with
 a <pname> of MAX_PROGRAM_ALU_INSTRUCTIONS_ARB, and must be at least
 48. Each ALU instruction in the program (match es of the
 <ALUInstruction> grammar rule) counts against t his limit.

 The limit on fragment program texture instructi ons can be queried
 with a <pname> of MAX_PROGRAM_TEX_INSTRUCTIONS_ ARB, and must be at
 least 24. Each texture instruction in the prog ram (matches of the
 <TexInstruction> grammar rule) counts against t his limit.

 The limit on fragment program total instruction s can be queried with
 a <pname> of MAX_PROGRAM_INSTRUCTIONS_ARB, and must be at least 72.
 Each instruction in the program (matching the < instruction> grammar
 rule) counts against this limit. Note that the limit on total
 instructions is not necessarily equal to the su m of the limits on
 ALU instructions and texture instructions.

 The limit on fragment program texture indirecti ons can be queried
 with a <pname> of MAX_PROGRAM_TEX_INDIRECTIONS_ ARB, and must be at
 least 4. Texture indirections are described in 3.11.6. If an
 implementation has no limit on texture indirect ions, the limit will
 be equal to the limit on texture instructions.

 The limit on fragment program temporary variabl e declarations can be
 queried with a <pname> of MAX_PROGRAM_TEMPORARI ES_ARB, and must be at
 least 16. Each temporary declared in the progr am, using the
 <TEMP_statement> grammar rule, counts against t his limit. Aliases
 of declared temporaries do not.

 The limit on fragment program attribute binding s can be queried with
 a <pname> of MAX_PROGRAM_ATTRIBS_ARB and must b e at least 10. Each
 distinct vertex attribute bound explicitly or i mplicitly in the
 program counts against this limit; vertex attri butes bound multiple
 times count only once.

 The limit on fragment program parameter binding s can be queried with
 a <pname> of MAX_PROGRAM_PARAMETERS_ARB, and mu st be at least 24.
 Each distinct GL state vector bound explicitly or implicitly in the
 program counts against this limit; GL state vec tors bound multiple
 times count only once. Every other constant ve ctor bound in the
 program is counted if and only if an identical constant vector has
 not already been counted. Two constant vectors are considered

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 94

 identical if the four component values are nume rically equivalent.
 Recall that scalar constants bound in a program are treated as
 vector constants with the scalar value replicat ed.

 In addition to the limits described above, the GL provides a similar
 set of implementation-dependent native resource limits. These
 limits, specified in Section 6.1.12, provide gu idance as to whether
 the program is small enough to use a "native" m ode where fragment
 programs may be executed with higher performanc e. The native
 resource limits and usage counts are implementa tion-dependent and
 may not exactly correspond to limits and counts described above.
 A program's native resource consumption may be reduced by program
 optimizations performed by the GL. Native reso urce consumption may
 be increased due to emulation of instructions o r any other program
 features not natively supported by an implement ation. Notably, an
 additional texture indirection may be consumed due to an
 implementation's lack of native support for tex ture instructions
 with source coordinate swizzles or parameter so urce coordinates,
 which may require emulation by prepending ALU i nstructions. An
 implementation may also fail to natively suppor t all combinations of
 attributes described in Table X.1, even if the total number of
 bound attributes is fewer than the native attri bute limit. In this
 case the program is still considered to exceed the native resource
 limits, as queried by PROGRAM_UNDER_NATIVE_LIMI TS_ARB (section
 6.1.12).

 To assist in resource counting, the GL addition ally provides
 GetProgram queries to determine the resource us age and native
 resource usage of the currently bound program, and to determine
 whether the bound program exceeds any native re source limit.

 Programs that exceed any native resource limit may or may not load
 depending on the implementation.

 3.11.4 Fragment Program Execution Environment

 If fragment program mode is enabled, the curren tly bound fragment
 program is executed when any fragment is produc ed by rasterization.

 If fragment program mode is enabled and the cur rently bound program
 object does not contain a valid fragment progra m, the error
 INVALID_OPERATION will be generated by Begin, R asterPos, and any
 command that implicitly calls Begin (e.g., Draw Arrays).

 Fragment programs execute a sequence of instruc tions without
 branching. Fragment programs begin by executin g the first
 instruction in the program, and execute instruc tions in the order
 specified in the program until the last instruc tion is completed.

 There are 33 fragment program instructions. Th e instructions and
 their respective input and output parameters ar e summarized in
 Table X.5.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 95

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS v v absolute valu e
 ADD v,v v add
 CMP v,v,v v compare
 COS s ssss cosine with r eduction to [-PI,PI]
 DP3 v,v ssss 3-component d ot product
 DP4 v,v ssss 4-component d ot product
 DPH v,v ssss homogeneous d ot product
 DST v,v v distance vect or
 EX2 s ssss exponential b ase 2
 FLR v v floor
 FRC v v fraction
 KIL v v kill fragment
 LG2 s ssss logarithm bas e 2
 LIT v v compute light coefficients
 LRP v,v,v v linear interp olation
 MAD v,v,v v multiply and add
 MAX v,v v maximum
 MIN v,v v minimum
 MOV v v move
 MUL v,v v multiply
 POW s,s ssss exponentiate
 RCP s ssss reciprocal
 RSQ s ssss reciprocal sq uare root
 SCS s ss-- sine/cosine w ithout reduction
 SGE v,v v set on greate r than or equal
 SIN s ssss sine with red uction to [-PI,PI]
 SLT v,v v set on less t han
 SUB v,v v subtract
 SWZ v v extended swiz zle
 TEX v,u,t v texture sampl e
 TXB v,u,t v texture sampl e with bias
 TXP v,u,t v texture sampl e with projection
 XPD v,v v cross product

 Table X.5: Summary of fragment program instr uctions. "v"
 indicates a floating-point vector input or ou tput, "s" indicates a
 floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component result vector , "ss--" indicates
 two scalar outputs in the first two component s, "u" indicates a
 texture image unit identifier, and "t" indica tes a texture target.

 3.11.4.1 Fragment Program Operands

 Most fragment program instructions operate on f loating-point vectors
 or scalars, as indicated by the grammar rules < vectorSrcReg> and
 <scalarSrcReg>, respectively.

 Vector and scalar operands can be obtained from fragment attribute,
 program parameter, or temporary registers, as i ndicated by the
 <srcReg> rule. For scalar operands, a single v ector component is
 selected by the <scalarSuffix> rule, where the characters "x", "y",
 "z", and "w", or "r", "g", "b", and "a" select the first, second,
 third, and fourth components, respectively, of the vector.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 96

 Vector operands can be swizzled according to th e <optionalSuffix>
 rule. In its most general form, the <optionalS uffix> rule matches
 the pattern ".????" where each question mark is replaced with one of
 "x", "y", "z", "w", "r", "g", "b", or "a". For such patterns, the
 first, second, third, and fourth components of the operand are taken
 from the vector components named by the first, second, third, and
 fourth character of the pattern, respectively. For example, if the
 swizzle suffix is ".yzzx" or ".gbbr" and the sp ecified source
 contains {2,8,9,0}, the swizzled operand used b y the instruction is
 {8,9,9,2}.

 If the <optionalSuffix> rule matches "", it is treated as though it
 were ".xyzw". If the <optionalSuffix> rule mat ches (ignoring
 whitespace) ".x", ".y", ".z", or ".w", these ar e treated the same as
 ".xxxx", ".yyyy", ".zzzz", and ".wwww" respecti vely. Likewise, if
 the <optionalSuffix> rule matches ".r", ".g", " .b", or ".a", these
 are treated the same as ".rrrr", ".gggg", ".bbb b", and ".aaaa"
 respectively.

 Floating-point scalar or vector operands can op tionally be negated
 according to the <optionalSign> rule in <scalar SrcReg> and
 <vectorSrcReg>. If the <optionalSign> matches "-", each operand or
 operand component is negated.

 The following pseudo-code spells out the operan d generation process.
 In the example, "float" is a floating-point sca lar type, while
 "floatVec" is a four-component vector. "source " refers to the
 register used for the operand, matching the <sr cReg> rule. "negate"
 is TRUE if the <optionalSign> rule in <scalarSr cReg> or
 <vectorSrcReg> matches "-" and FALSE otherwise. The ".c***",
 ".*c**", ".**c*", ".***c" modifiers refer to th e x, y, z, and w
 components obtained by the swizzle operation; t he ".c" modifier
 refers to the single component selected for a s calar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 97

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 3.11.4.2 Fragment Program Parameter Arrays

 A fragment program can load a single element of a program parameter
 array using only absolute addressing. Program parameter arrays are
 accessed when the <progParamArrayAbs> rule is m atched. The offset
 of the selected entry in the array is given by the number matching
 <progParamRegNum>. If the offset exceeds the s ize of the
 array, the results of the access are undefined, but may not lead to
 program or GL termination.

 3.11.4.3 Fragment Program Destination Register Update

 Fragment program instructions write a 4-compone nt result vector to a
 single temporary or fragment result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.
 Optional clamping of each component of the dest ination register to
 the range [0,1] is controlled by an opcode modi fier.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "", all
 components are enabled. Otherwise, the optiona l mask names the
 individual components to enable. The character s "x", "y", "z", and
 "w", or "r", "g", "b", and "a" match the first, second, third, and
 fourth components, respectively. For example, an optional mask of
 ".xzw" indicates that the x, z, and w component s should be enabled
 for writing but the y component should not. Th e grammar requires
 that the destination register mask components m ust be listed in
 "xyzw", or "rgba" order. Component names from one set (xyzw or
 rgba) cannot be mixed with component names from another set. For
 example, ".rgw" is not a valid writemask.

 Each component of the destination register is u pdated with the
 result of the fragment program instruction if a nd only if the
 component is enabled for writes by the componen t write mask.
 Otherwise, the component of the destination reg ister remains
 unchanged.

 If the instruction opcode has the "_SAT" suffix , requesting
 saturated result vectors, each component of the result vector
 enabled in the writemask is clamped to the rang e [0,1] before being
 updated in the destination register.

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 98

 refers to the component write mask given by the <optionalMask> rule.
 "clamp" is TRUE if the instruction specifies th at the result should
 be clamped. "result" and "destination" refer t o the result vector
 and the register selected by <dstReg>, respecti vely.

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;

 // Clamp the result vector components to [0,1], if requested.
 if (instrClamp) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Merge the converted result into the de stination register,
 // under control of the compile-time writ e mask.
 merged = destination;
 if (instrMask.x) {
 merged.x = result.x;
 }
 if (instrMask.y) {
 merged.y = result.y;
 }
 if (instrMask.z) {
 merged.z = result.z;
 }
 if (instrMask.w) {
 merged.w = result.w;
 }

 // Write out the new destination register .
 destination = merged;
 }

 3.11.4.4 Fragment Program Result Processing

 As a fragment program executes, it will write t o either one or two
 result registers that are mapped to the fragmen t's color and depth.

 The fragment's color components are first clamp ed to the range [0,1]
 then converted to fixed point as in section 2.1 3.9. If the fragment
 program does not write result.color, the color will be undefined in
 subsequent stages.

 If the fragment program contains an instruction to write to
 result.depth, the fragment's depth is replaced by the value of the
 "z" component of result.depth. This z value is first clamped to the
 range [0,1] then converted to fixed-point as if it were a window z
 value (section 2.10.1). If the fragment progra m does not write
 result.depth, the fragment's original depth is unmodified.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 99

 3.11.4.5 Fragment Program Options

 The <optionSequence> grammar rule provides a me chanism for programs
 to indicate that one or more extended language features are used by
 the program. All program options used by the p rogram must be
 declared at the beginning of the program string . Each program
 option specified in a program string will modif y the syntactic or
 semantic rules used to interpet the program and the execution
 environment used to execute the program. Progr am options not
 present in the program string are ignored, even if they are
 supported by the GL.

 The <identifier> token in the <option> rule mus t match the name of a
 program option supported by the implementation. To avoid option
 name conflicts, option identifiers are required to begin with a
 vendor prefix. A program will fail to load if it specifies a
 program option not supported by the GL.

 Fragment program options should confine their s emantic changes to
 the domain of fragment programs. Support for a fragment program
 option should not change the specification and behavior of fragment
 programs not requesting use of that option.

 3.11.4.5.1 Fog Application Fragment Program Op tions

 If a fragment program specifies one of the opti ons "ARB_fog_exp",
 "ARB_fog_exp2", or "ARB_fog_linear", the progra m will apply fog to
 the program's final clamped color using a fog m ode of EXP, EXP2, or
 LINEAR, respectively, as described in section 3 .10.

 When a fog option is specified in a fragment pr ogram, semantic
 restrictions are added to indicate that a fragm ent program
 will fail to load if the number of temporaries it contains exceeds
 the implementation-dependent limit minus 1, if the number of
 attributes it contains exceeds the implementati on-dependent limit
 minus 1, or if the number of parameters it cont ains exceeds the
 implementation-dependent limit minus 2.

 Additionally, when the ARB_fog_exp option is sp ecified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 3. When the ARB_fog_exp2 option is speci fied in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 4. When the ARB_fog_linear option is spe cified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 2.

 Only one fog application option may be specifie d by any given
 fragment program. A fragment program that spec ifies more than one
 of the program options "ARB_fog_exp", "ARB_fog_ exp2", and
 "ARB_fog_linear", will fail to load.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 100

 3.11.4.5.2 Precision Hint Options

 Fragment program computations are carried out a t an implementation-
 dependent precision. However, some implementat ions may be able to
 perform fragment program computations at more t han one precision,
 and may be able to trade off computation precis ion for performance.

 If a fragment program specifies the "ARB_precis ion_hint_fastest"
 program option, implementations should select p recision to minimize
 program execution time, with possibly reduced p recision. If a
 fragment program specifies the "ARB_precision_h int_nicest" program
 option, implementations should maximize the pre cision, with possibly
 increased execution time.

 Only one precision control option may be specif ied by any given
 fragment program. A fragment program that spec ifies both the
 "ARB_precision_hint_fastest" and "ARB_precision _hint_nicest" program
 options will fail to load.

 3.11.5 Fragment Program ALU Instruction Set

 The following sections describe the set of supp orted fragment
 program instructions. Each section contains ps eudocode describing
 the instruction. Instructions will have up to three operands,
 referred to as "op0", "op1", and "op2". The op erands are loaded
 using the mechanisms specified in section 3.11. 4.1. The variables
 "tmp", "tmp0", "tmp1", and "tmp2" describe scal ars or vectors used
 to hold intermediate results in the instruction . Instructions will
 generate a result vector called "result". The result vector is then
 written to the destination register specified i n the instruction as
 described in section 3.11.4.3.

 3.11.5.1 ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value
 operation on the single operand to yield a resu lt vector.

 tmp = VectorLoad(op0);
 result.x = fabs(tmp.x);
 result.y = fabs(tmp.y);
 result.z = fabs(tmp.z);
 result.w = fabs(tmp.w);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 101

 3.11.5.2 ADD: Add

 The ADD instruction performs a component-wise a dd of the two
 operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following rules apply to addition:

 1. <x> + <y> == <y> + <x>, for all <x> and <y >.
 2. <x> + 0.0 == <x>, for all <x>.

 3.11.5.3 CMP: Compare

 The CMP instructions performs a component-wise comparison of the
 first operand against zero, and copies the valu es of the second or
 third operands based on the results of the comp are.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = (tmp0.x < 0.0) ? tmp1.x : tmp2.x;
 result.y = (tmp0.y < 0.0) ? tmp1.y : tmp2.y;
 result.z = (tmp0.z < 0.0) ? tmp1.z : tmp2.z;
 result.w = (tmp0.w < 0.0) ? tmp1.w : tmp2.w;

 3.11.5.4 COS: Cosine

 The COS instruction approximates the trigonomet ric cosine of the
 angle specified by the scalar operand and repli cates it to all four
 components of the result vector. The angle is specified in radians
 and does not have to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 3.11.5.5 DP3: Three-Component Dot Product

 The DP3 instruction computes a three-component dot product of the
 two operands (using the first three components) and replicates the
 dot product to all four components of the resul t vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + (tmp0.z * tmp1.z);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 102

 3.11.5.6 DP4: Four-Component Dot Product

 The DP4 instruction computes a four-component d ot product of the two
 operands and replicates the dot product to all four components of
 the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1.w);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 3.11.5.7 DPH: Homogeneous Dot Product

 The DPH instruction computes a three-component dot product of the
 two operands (using the x, y, and z components) , adds the w
 component of the second operand, and replicates the sum to all four
 components of the result vector. This is equiv alent to a four-
 component dot product where the w component of the first operand is
 forced to 1.0.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 3.11.5.8 DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA,
 d^2, d^2, NA] and the second operand should be of the form [NA, 1/d,
 NA, 1/d], where NA values are not relevant to t he calculation and d
 is a vector length. If both vectors satisfy th ese conditions, the
 result vector will be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3
 instruction (using the same vector for both ope rands) and 1/d can be
 obtained from d^2 using the RSQ instruction.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 103

 This distance vector is useful for per-fragment light attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 3.11.5.9 EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates the approximation to all four components of
 the result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 3.11.5.10 FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is
 defined as the largest integer less than or equ al to the value. The
 floor of 2.3 is 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 3.11.5.11 FRC: Fraction

 The FRC instruction extracts the fractional por tion of each
 component of the operand to generate a result v ector. The
 fractional portion of a component is defined as the result after
 subtracting off the floor of the component (see FLR), and is always
 in the range [0.0, 1.0).

 For negative values, the fractional portion is NOT the number
 written to the right of the decimal point -- th e fractional portion
 of -1.7 is not 0.7 -- it is 0.3. 0.3 is produc ed by subtracting the
 floor of -1.7 (-2.0) from -1.7.

 tmp = VectorLoad(op0);
 result.x = fraction(tmp.x);
 result.y = fraction(tmp.y);
 result.z = fraction(tmp.z);
 result.w = fraction(tmp.w);

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 104

 3.11.5.12 LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 If the scalar operand is zero or negative, the result is undefined.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 105

 3.11.5.13 LIT: Light Coefficients

 The LIT instruction accelerates per-fragment li ghting by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the single operand is assumed
 to hold a diffuse dot product (n dot VP_pli, as in the vertex
 lighting equations in Section 2.13.1). The "y" component of the
 operand is assumed to hold a specular dot produ ct (n dot h_i). The
 "w" component of the operand is assumed to hold the specular
 exponent of the material (s_rm), and is clamped to the range (-128,
 +128) exclusive.

 The "x" component of the result vector receives the value that
 should be multiplied by the ambient light/mater ial product (always
 1.0). The "y" component of the result vector r eceives the value
 that should be multiplied by the diffuse light/ material product
 (n dot VP_pli). The "z" component of the resul t vector receives the
 value that should be multiplied by the specular light/material
 product (f_i * (n dot h_i) ^ s_rm). The "w" co mponent of the result
 is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is
 done in the standard per-vertex lighting operat ions. In addition,
 if the diffuse dot product is zero or negative, the specular
 coefficient is forced to zero.

 tmp = VectorLoad(op0);
 if (tmp.x < 0) tmp.x = 0;
 if (tmp.y < 0) tmp.y = 0;
 if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0 -epsilon);
 else if (tmp.w > 128-epsilon) tmp.w = 128-eps ilon;
 result.x = 1.0;
 result.y = tmp.x;
 result.z = (tmp.x > 0) ? RoughApproxPower(tmp .y, tmp.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation function may b e defined in terms of
 the base 2 exponentiation and logarithm approxi mation operations in
 the EX2 and LG2 instructions, where

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 In particular, the approximation may not be any more accurate than
 the underlying EX2 and LG2 operations.

 Also, since 0^0 is defined to be 1, RoughApprox Power(0.0, 0.0) will
 produce 1.0.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 106

 3.11.5.14 LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation
 between the second and third operands using the first operand as the
 blend factor.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 3.11.5.15 MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the
 third operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 The multiplication and addition operations in t his instruction are
 subject to the same rules as described for the MUL and ADD
 instructions.

 3.11.5.16 MAX: Maximum

 The MAX instruction computes component-wise max imums of the values
 in the two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1. x;
 result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1. y;
 result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1. z;
 result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1. w;

 3.11.5.17 MIN: Minimum

 The MIN instruction computes component-wise min imums of the values
 in the two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0. x;
 result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0. y;
 result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0. z;
 result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0. w;

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 107

 3.11.5.18 MOV: Move

 The MOV instruction copies the value of the ope rand to yield a
 result vector.

 result = VectorLoad(op0);

 3.11.5.19 MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two
 operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following rules apply to multiplication:

 1. <x> * <y> == <y> * <x>, for all <x> and <y >.
 2. +/-0.0 * <x> = +/-0.0, at least for all <x > that correspond to
 representable numbers (IEEE "not a number" and "infinity"
 encodings may be exceptions).
 3. +1.0 * <x> = <x>, for all <x>.

 Multiplication by zero and one should be invari ant, as it may be
 used to evaluate conditional expressions withou t branching.

 3.11.5.20 POW: Exponentiate

 The POW instruction approximates the value of t he first scalar
 operand raised to the power of the second scala r operand and
 replicates it to all four components of the res ult vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function may b e implemented using
 the base 2 exponentiation and logarithm approxi mation operations in
 the EX2 and LG2 instructions. In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 Note that a logarithm may be involved even for cases where the
 exponent is an integer. This means that it may not be possible to
 exponentiate correctly with a negative base. I n constrast, it is
 possible in a "normal" mathematical formulation to raise negative
 numbers to integral powers (e.g., (-3)^2== 9, a nd (-0.5)^-2==4).

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 108

 3.11.5.21 RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The following rule applies to reciprocation:

 1. ApproxReciprocal(+1.0) = +1.0.

 3.11.5.22 RSQ: Reciprocal Square Root

 The RSQ instruction approximates the reciprocal of the square root
 of the absolute value of the scalar operand and replicates it to all
 four components of the result vector.

 tmp = fabs(ScalarLoad(op0));
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 3.11.5.23 SCS: Sine/Cosine

 The SCS instruction approximates the trigonomet ric sine and cosine
 of the angle specified by the scalar operand an d places the cosine
 in the x component and the sine in the y compon ent of the result
 vector. The z and w components of the result v ector are undefined.
 The angle is specified in radians and must be i n the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxSine(tmp);

 If the scalar operand is not in the range [-PI, PI], the result
 vector is undefined.

 3.11.5.24 SGE: Set On Greater or Equal Than

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the
 corresponding component of the first operands i s greater than or
 equal that of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 109

 3.11.5.25 SIN: Sine

 The SIN instruction approximates the trigonomet ric sine of the angle
 specified by the scalar operand and replicates it to all four
 components of the result vector. The angle is specified in radians
 and does not have to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 3.11.5.26 SLT: Set On Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the
 corresponding component of the first operand is less than that of
 the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

 3.11.5.27 SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the
 second operand from the first to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 110

 3.11.5.28 SWZ: Extended Swizzle

 The SWZ instruction loads the single vector ope rand, and performs a
 swizzle operation more powerful than that provi ded for loading
 normal vector operands to yield an instruction vector.

 After the operand is loaded, the "x", "y", "z", and "w" components
 of the result vector are selected by the first, second, third, and
 fourth matches of the <xyzwExtSwizComp> or <rgb aExtSwizComp> pattern
 in the <extendedSwizzle> rule.

 A result component can be selected from any of the four components
 of the operand or the constants 0.0 and 1.0. T he result component
 can also be optionally negated. The following pseudocode describes
 the component selection method. "operand" refe rs to the vector
 operand. "select" is an enumerant where the va lues ZERO, ONE, X, Y,
 Z, and W correspond to the <xyzwExtSwizSel> rul e matching "0", "1", "x",
 "y", "z", and "w", respectively, or the <rgbaEx tSwizSel> rule
 matching "0", 1", "r", "g", "b", and "a", respe ctively. "negate" is
 TRUE if and only if the <optionalSign> rule in <xyzwExtSwizComp>
 or <rgbaExtSwizComp> matches "-".

 float ExtSwizComponent(floatVec operand, enum select, boolean negate)
 {
 float result;
 switch (select) {
 case ZERO: result = 0.0; break;
 case ONE: result = 1.0; break;
 case X: result = operand.x; break;
 case Y: result = operand.y; break;
 case Z: result = operand.z; break;
 case W: result = operand.w; break;
 }
 if (negate) {
 result = -result;
 }
 return result;
 }

 The entire extended swizzle operation is then d efined using the
 following pseudocode:

 tmp = VectorLoad(op0);
 result.x = ExtSwizComponent(tmp, xSelect, xNe gate);
 result.y = ExtSwizComponent(tmp, ySelect, yNe gate);
 result.z = ExtSwizComponent(tmp, zSelect, zNe gate);
 result.w = ExtSwizComponent(tmp, wSelect, wNe gate);

 "xSelect", "xNegate", "ySelect", "yNegate", "zS elect", "zNegate",
 "wSelect", and "wNegate" correspond to the "sel ect" and "negate"
 values above for the four <xyzwExtSwizComp> or <rgbaExtSwizComp>
 matches.

 Since this instruction allows for component sel ection and negation
 for each individual component, the grammar does not allow the use of
 the normal swizzle and negation operations allo wed for vector
 operands in other instructions.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 111

 3.11.5.29 XPD: Cross Product

 The XPD instruction computes the cross product using the first three
 components of its two vector operands to genera te the x, y, and z
 components of the result vector. The w compone nt of the result
 vector is undefined.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
 result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
 result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

 3.11.6 Fragment Program Texture Instruction Se t

 The first three texture instructions described below specify the
 mapping of 4-tuple vectors to colors of an imag e. The sampling of
 the texture works as described in section 3.8, except that texture
 environments and texture functions are not appl icable, and the
 texture enables hierarchy is replaced by explic it references to
 the desired texture target (i.e., 1D, 2D, 3D, c ube map, rectangle).
 These texture instructions specify how the 4-tu ple is mapped into
 the coordinates used for sampling. The followi ng function is used
 to describe the texture sampling in the descrip tions below:

 vec4 TextureSample(float s, float t, float r, float lodBias,
 int texImageUnit, enum tex Target);

 Note that not all three texture coordinates, s, t, and r, are
 used by all texture targets. In particular, 1D texture targets only
 use the s component, and 2D and rectangle (non- power-of-two) texture
 targets only use the s and t components. The d escriptions of the
 texture instructions below supply all three com ponents, as would be
 the case with 3D or cube map targets.

 If a fragment program samples from a texture ta rget on a texture
 image unit where the bound texture object is no t complete, as
 defined in section 3.8.9, the result will be th e vector
 (R, G, B, A) = (0, 0, 0, 1).

 A fragment program will fail to load if it atte mpts to sample from
 multiple texture targets on the same texture im age unit. For
 example, the following program would fail to lo ad:

 !!ARBfp1.0
 TEX result.color, fragment.texcoord[0], textu re[0], 2D;
 TEX result.depth, fragment.texcoord[1], textu re[0], 3D;
 END

 The fourth texture instruction described below, KIL, does not sample
 from a texture, but rather prevents further pro cessing of the
 current fragment if any component of its 4-tupl e vector is less than
 zero.

 A dependent texture instruction is one that sam ples using a texture
 coordinate residing in a temporary, rather than in an attribute or

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 112

 a parameter. A program may have a chain of dep endent texture
 instructions, where the result of the first tex ture instruction is
 used as the coordinate for a second texture ins truction, which is in
 turn used as the coordinate for a third texture instruction, and so
 on. Each node in this chain is termed an indir ection, and can be
 thought of as a set of texture samples that exe cute in parallel
 followed by a sequence of ALU instructions.

 Some implementations may have limitations on ho w long the dependency
 chain may be, and so indirections are counted a s a resource just
 like instructions or temporaries are counted. All programs have at
 least one indirection, or one node in this chai n, even if the
 program performs no texture operation. Each in struction encountered
 is included in this node until a texture instru ction is encountered

 - whose texture coordinate is a temporary tha t has been previously
 written in the current node; or

 - whose result vector is a temporary that is also the operand or
 result vector of a previous ALU instruction in the current node.

 A new node is then started, including the textu re instruction and
 all subsequent instructions, and the process re peats for all
 instructions in the program. Note that for sim plicity in counting,
 result writemasks and operand suffixes are not taken into
 consideration when counting indirections.

 3.11.6.1 TEX: Map coordinate to color

 The TEX instruction takes the first three compo nents of
 its source vector, and maps them to s, t, and r . These coordinates
 are used to sample from the specified texture t arget on the
 specified texture image unit in a manner consis tent with its
 parameters. The resulting sample is mapped to RGBA as described in
 table 3.21 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

 3.11.6.2 TXP: Project coordinate and map to co lor

 The TXP instruction divides the first three com ponents of its source
 vector by the fourth component and maps the res ults to s, t, and r.
 These coordinates are used to sample from the s pecified texture
 target on the specified texture image unit in a manner consistent
 with its parameters. The resulting sample is m apped to RGBA as
 described in table 3.21 and written to the resu lt vector. If the
 value of the fourth component of the source vec tor is less than or
 equal to zero, the result vector is undefined.

 tmp = VectorLoad(op0);
 tmp.x = tmp.x / tmp.w;
 tmp.y = tmp.y / tmp.w;
 tmp.z = tmp.z / tmp.w;
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 113

 3.11.6.3 TXB: Map coordinate to color while bi asing its LOD

 The TXB instruction takes the first three compo nents of its source
 vector and maps them to s, t, and r. These coo rdinates are used to
 sample from the specified texture target on the specified texture
 image unit in a manner consistent with its para meters.
 Additionally, the fourth component of the sourc e vector is applied
 to equation 3.14 as fragment_bias below to furt her bias the level of
 detail.

 lambda'(x,y) = log2[p(x,y)] +
 clamp(texobj_bias + texunit_bia s + fragment_bias)

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, t mp.w, op1, op2);

 3.11.6.4 KIL: Kill fragment

 Rather than mapping a coordinate set to a color , this function
 prevents a fragment from receiving any future p rocessing. If any
 component of its source vector is negative, the processing of this
 fragment will be discontinued and no further ou tputs to this
 fragment will occur. Subsequent stages of the GL pipeline will be
 skipped for this fragment.

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 3.11.7 Program Matrices

 In addition to GL's conventional matrices, seve ral additional
 program matrices are available for use as progr am parameters. These
 matrices have names of the form MATRIX<i>_ARB w here <i> is between
 zero and <n>-1 where <n> is the value of the im plementation-
 dependent constant MAX_PROGRAM_MATRICES_ARB. T he MATRIX<i>_ARB
 constants obey MATRIX<i>_ARB = MATRIX0_ARB + <i >. The value of
 MAX_PROGRAM_MATRICES_ARB must be at least eight . The maximum stack
 depth for program matrices is defined by the
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB and must be at least 1.

 3.11.8 Required Fragment Program State

 The state required to support program objects o f all targets
 consists of:

 an integer for the program error position, in itially -1;

 an array of ubytes for the program error stri ng, initially empty;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 114

 and the state that must be maintained to indi cate which integers
 are currently in use as program object names.

 The state required to support the fragment prog ram target consists
 of:

 a bit indicating whether or not fragment prog ram mode is enabled,
 initially disabled;

 a set of MAX_PROGRAM_ENV_PARAMETERS_ARB four- component floating-
 point program environment parameters, initial ly set to (0,0,0,0);

 an unsigned integer naming the currently boun d fragment program,
 initially zero;

 The state required for each fragment program ob ject consists of:

 an unsigned integer indicating the program ob ject name;

 an array of type ubyte containing the program string, initially
 empty;

 an unsigned integer holding the length of the program string,
 initially zero;

 an enum indicating the program string format, initially
 PROGRAM_FORMAT_ASCII_ARB;

 a bit indicating whether or not the program e xceeds the native
 limits;

 six unsigned integers holding the number of i nstruction (ALU,
 texture, and total), texture indirection, tem porary variable, and
 program parameter binding resources used by t he program, initially
 all zero;

 six unsigned integers holding the number of n ative instruction
 (ALU, texture, and total), texture indirectio n, temporary
 variable, and program parameter binding resou rces used by the
 program, initially all zero;

 and a set of MAX_PROGRAM_LOCAL_PARAMETERS_ARB four-component
 floating-point program local parameters, init ially set to
 (0,0,0,0).

 Initially, no fragment program objects exist.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 115

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 Modify Section 5.4, Display Lists (p. 191)

 (modify third paragraph, p. 195) ... These are IsList, GenLists,
 ..., IsProgramARB, GenProgramsARB, and DeletePr ogramsARB, as well as
 IsEnabled and all the Get commands (chapter 6).

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 Modify Section 6.1.2, Data Conversions (p. 198)

 (add before last paragraph, p. 198) The matrix selected by the
 current matrix mode can be queried by calling G etBooleanv,
 GetIntegerv, GetFloatv, and GetDoublev with <pn ame> set to
 CURRENT_MATRIX_ARB; the matrix will be returned in transposed form
 with <pname> set to TRANSPOSE_CURRENT_MATRIX_AR B. The depth of the
 selected matrix stack can be queried with <pnam e> set to
 CURRENT_MATRIX_STACK_DEPTH_ARB. Querying CURRE NT_MATRIX_ARB and
 CURRENT_MATRIX_STACK_DEPTH_ARB is the only mean s for querying the
 matrix and matrix stack depth of the program ma trices described in
 section 3.11.7.

 (add to end of last paragraph, p. 199) Queries of texture state
 variables corresponding to texture coordinate p rocessing unit
 (namely, TexGen state and enables, and matrices) will produce an
 INVALID_OPERATION error if the value of ACTIVE_ TEXTURE is greater
 than or equal to MAX_TEXTURE_COORDS_ARB. All o ther texture state
 queries will result in an INVALID_OPERATION err or if the value of
 ACTIVE_TEXTURE is greater than or equal to
 MAX_TEXTURE_IMAGE_UNITS_ARB.

 Modify Section 6.1.11, Pointer and String Queri es (p. 206)

 (modify last paragraph, p. 206) ... The possibl e values for <name>
 are VENDOR, RENDERER, VERSION, EXTENSIONS, and
 PROGRAM_ERROR_STRING_ARB.

 (add after last paragraph of section, p. 207) Q ueries of
 PROGRAM_ERROR_STRING_ARB return a pointer to an implementation-
 dependent program load error string. If the la st call to
 ProgramStringARB failed to load a program, the returned string
 describes at least one reason why the program f ailed to load. If
 the last call to ProgramStringARB successfully loaded a program, the
 returned string may be empty (containing only a zero terminator) or
 may contain one or more implementation-dependen t warning messages.
 The contents of the error string are guaranteed to remain constant
 only until the next ProgramStringARB command, w hich may overwrite
 the error string.

 Insert a new Section 6.1.12, Program Queries (p . 207), between
 existing sections 6.1.11 and 6.1.12.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 116

 6.1.12 Program Queries

 The commands

 void GetProgramEnvParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramEnvParameterfvARB(enum target, uint index,
 float *param s);

 obtain the current value for the program enviro nment parameter
 numbered <index> for the given program target < target>, and places
 the information in the array <params>. The err or INVALID_ENUM is
 generated if <target> specifies a nonexistent p rogram target or a
 program target that does not support program en vironment parameters.
 The error INVALID_VALUE is generated if <index> is greater than or
 equal to the implementation-dependent number of supported program
 environment parameters for the program target.

 When <target> is FRAGMENT_PROGRAM_ARB, each pro gram parameter
 returned is an array of four values.

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);

 obtain the current value for the program local parameter numbered
 <index> belonging to the program object current ly bound to <target>,
 and places the information in the array <params >. The error
 INVALID_ENUM is generated if <target> specifies a nonexistent
 program target or a program target that does no t support program
 local parameters. The error INVALID_VALUE is g enerated if <index>
 is greater than or equal to the implementation- dependent number of
 supported program local parameters for the prog ram target.

 When the program target type is FRAGMENT_PROGRA M_ARB, each program
 local parameter returned is an array of four va lues.

 The command

 void GetProgramivARB(enum target, enum pname, int *params);

 obtains program state for the program target <t arget>, writing the
 state into the array given by <params>. GetPro gramivARB can be used
 to determine the properties of the currently bo und program object or
 implementation limits for <target>.

 If <pname> is PROGRAM_LENGTH_ARB, PROGRAM_FORMA T_ARB, or
 PROGRAM_BINDING_ARB, GetProgramivARB returns on e integer holding the
 program string length (in bytes), program strin g format, and program
 name, respectively, for the program object curr ently bound to
 <target>.

 If <pname> is MAX_PROGRAM_LOCAL_PARAMETERS_ARB or
 MAX_PROGRAM_ENV_PARAMETERS_ARB, GetProgramivARB returns one integer

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 117

 holding the maximum number of program local par ameters or program
 environment parameters, respectively, supported for the program
 target <target>.

 If <pname> is MAX_PROGRAM_INSTRUCTIONS_ARB,
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB, MAX_PROGRAM_TEX_INSTRUCTIONS_ARB,
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB, MAX_PROGRAM_TEMPORARIES_ARB,
 MAX_PROGRAM_PARAMETERS_ARB, or MAX_PROGRAM_ATTRIBS_ARB,
 GetProgramivARB returns a single integer giving the maximum number
 of total instructions, ALU instructions, textur e instructions,
 texture indirections, temporaries, parameters, and attributes that
 can be used by a program of type <target>. If <pname> is
 PROGRAM_INSTRUCTIONS_ARB, PROGRAM_ALU_INSTRUCTIONS_ARB,
 PROGRAM_TEX_INSTRUCTIONS_ARB, PROGRAM_TEX_INDIRECTIONS_ARB,
 PROGRAM_TEMPORARIES_ARB, PROGRAM_PARAMETERS_ARB, or
 PROGRAM_ATTRIBS_ARB, GetProgramivARB returns a single integer giving
 the number of total instructions, ALU instructi ons, texture
 instructions, texture indirections, temporaries , parameters, and
 attributes used by the current program for <tar get>.

 If <pname> is MAX_PROGRAM_NATIVE_INSTRUCTIONS_A RB,
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB,
 MAX_PROGRAM_NATIVE_PARAMETERS_ARB, or
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB, GetProgramivARB returns a single
 integer giving the maximum number of native ins truction, ALU
 instruction, texture instruction, texture indir ection, temporary,
 parameter, and attribute resources available to a program of type
 <target>. If <pname> is PROGRAM_NATIVE_INSTRUC TIONS_ARB,
 PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB,
 PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB,
 PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB,
 PROGRAM_NATIVE_TEMPORARIES_ARB, PROGRAM_NATIVE_PARAMETERS_ARB, or
 PROGRAM_NATIVE_ATTRIBS_ARB, GetProgramivARB ret urns a single integer
 giving the number of native instruction, ALU in struction, texture
 instruction, texture indirection, temporary, pa rameter, and
 attribute resources consumed by the program cur rently bound to
 <target>. Native resource counts will reflect the results of
 implementation-dependent scheduling and optimiz ation algorithms
 applied by the GL, as well as emulation of non- native features. If
 <pname> is PROGRAM_UNDER_NATIVE_LIMITS_ARB, Get ProgramivARB returns
 0 if the native resource consumption of the pro gram currently bound
 to <target> exceeds the number of available res ources for any
 resource type, and 1 otherwise.

 The command

 void GetProgramStringARB(enum target, enum pn ame, void *string);

 obtains the program string for the program obje ct bound to <target>
 and places the information in the array <string >. <pname> must be
 PROGRAM_STRING_ARB. <n> ubytes are returned in to the array program
 where <n> is the length of the program in ubyte s, as returned by
 GetProgramivARB when <pname> is PROGRAM_LENGTH_ ARB. The program
 string is always returned using the format give n when the program

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 118

 string was specified.

 The command

 boolean IsProgramARB(uint program);

 returns TRUE if <program> is the name of a prog ram object. If
 <program> is zero or is a non-zero value that i s not the name of a
 program object, or if an error condition occurs , IsProgramARB
 returns FALSE. A name returned by GenProgramsA RB, but not yet
 bound, is not the name of a program object.

 Modify Section 6.2, State Tables (p. 216)

 (add to caption of Table 6.5) When accessing th e current texture
 coordinates (CURRENT_TEXTURE_COORDS) or the tex ture coordinates
 associated with raster position (CURRENT_RASTER _TEXTURE_COORDS), the
 active texture unit selector (ACTIVE_TEXTURE) m ust be less than the
 implementation dependent maximum number of text ure coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

 (add to caption of Table 6.8) When accessing th e texture matrix
 stack (TEXTURE_MATRIX, TRANSPOSE_TEXTURE_MATRIX) or the texture
 matrix stack pointer (TEXTURE_STACK_DEPTH), the active texture unit
 selector (ACTIVE_TEXTURE) must be less than the implementation
 dependent maximum number of texture coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

 (split Table 6.17 into two tables, Texture Envi ronment and Texture
 Coordinate Generation; move active texture unit selector and texture
 coordinate generation state to table 6.18; renu mber subsequent
 tables)

 (add to captions of Tables 6.14, 6.15, 6.16) Th e active texture unit
 selector (ACTIVE_TEXTURE) identifies which text ure object is
 accessed, and must be less than the implementat ion dependent maximum
 number of texture image units (MAX_TEXTURE_IMAG E_UNITS_ARB).

 (add to caption of Table 6.18) With the excepti on of ACTIVE_TEXTURE,
 the active texture unit selector (ACTIVE_TEXTUR E) identifies which
 texture coordinate set is accessed, and must be less than the
 implementation dependent maximum number of text ure coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 Add to end of Section A.3 (p. 242):

 Rule 4. Fragment program instructions not re levant to the
 calculation of any result must have no effect on that result.

 Rule 5. Fragment program instructions releva nt to the calculation
 of any result must always produce the identic al result.

 Instructions relevant to the calculation of a r esult are any
 instructions in a sequence of instructions that eventually determine
 the source values for the calculation under con sideration.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 119

 There is no guaranteed invariance between fragm ent colors generated
 by conventional GL texturing mode and fragment colors generated by
 fragment program mode. Multi-pass rendering al gorithms that require
 rendering invariances to operate correctly shou ld not mix
 conventional GL fragment texturing mode with fr agment program mode
 for different rendering passes. However, such algorithms will
 operate correctly if the algorithms limit thems elves to a single
 mode of fragment color generation.

 There is no guaranteed invariance between the f inal z window
 coordinates of fragments processed by fragment programs that write
 depth values and fragments processed by any oth er means, even if the
 fragment programs in question simply copy the z value from the
 "fragment.position" binding. Multi-pass render ing algorithms that
 use depth-replacing fragment programs should us e depth-replacing
 fragment programs on each pass to guarantee ide ntical z values.

 The texture sample chosen for a fragment of a p rimitive must be
 invariant between fragment program mode and con ventional texture
 application mode subject to these conditions:

 1. All state with the exception of fragment p rogram state is
 identical

 2. The primitives generating the fragments ar e identical

 3. The sample in the fragment program mode is the result of a
 'TEX' instruction (or a 'TXP' instruction with a unity q)

 4. The texture coordinate operand for the tex ture instruction uses
 the same texture coordinate set as the con ventional mode sample

 5. The texture coordinate operand for the tex ture instruction has
 not been the result of any other operation s in the fragment
 program

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

 Changes to program objects shared between multi ple rendering
 contexts will be serialized (i.e., the changes will occur in a
 specific order).

 Changes to a program object made by one renderi ng context are not
 guaranteed to take effect in another rendering context until the
 other calls BindProgram to bind the program obj ect.

 When a program object is deleted by one renderi ng context, the
 object itself is not destroyed until it is no l onger the current
 program object in any context. However, the na me of the deleted
 object is removed from the program object name space, so the next
 attempt to bind a program using the same name w ill create a new
 program object. Recall that destroying a progr am object bound in

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 120

 the current rendering context effectively unbin ds the object being
 destroyed.

Dependencies on OpenGL 1.4

 If OpenGL 1.4 is not supported, the modified eq uation for the
 calculation of level of detail by the TXB instr uction in 3.11.6.3
 should read

 lambda'(x,y) = log2[p(x,y)] +
 clamp(texunit_bias + fragment_ bias)

Dependencies on EXT_vertex_weighting and ARB_vertex _blend

 If EXT_vertex_weighting and ARB_vertex_blend ar e both not supported,
 all discussions of multiple modelview matrices should be removed.

 In particular, the line in the grammar

 <stateMatrixName> ::= "modelview" <state OptModMatNum>

 should be changed to

 <stateMatrixName> ::= "modelview"

 and the rules <stateOptModMatNum> and <stateMod MatNum> should be
 deleted. The first line of Table X.2.7 should be modified to read:

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 state.matrix.modelview modelvi ew matrix

 The caption for Table X.2.7 should be modified to exclude optional
 modelview matrix number. Subsequent references to "modelview matrix
 zero" and "modelview matrix 1" should be change d to "modelview
 matrix" and the example "state.matrix.modelview [1].row[0]" should be
 changed to "state.matrix.modelview.row[0]".

Dependencies on ARB_matrix_palette:

 If ARB_matrix_palette is not supported, all dis cussions of the
 matrix palette should be removed.

 In particular, the line

 "palette" "[" <statePaletteMatNum> "]"

 should be removed from the <stateMatrixName> gr ammar rule, and the
 <statePaletteMatNum> grammar rule should be rem oved entirely.
 "state.matrix.palette[n]" should be removed fro m Table X.2.7.

Dependencies on ARB_transpose_matrix

 If ARB_transpose_matrix is not supported, the d iscussion of
 TRANSPOSE_CURRENT_MATRIX_ARB in the edits to se ction 6.1.2 should be
 removed.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 121

Dependencies on EXT_fog_coord

 If EXT_fog_coord is not supported, references t o "fog coordinate"
 in the definition of the "fragment.fogcoord" at tribute should be
 removed.

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, the d iscussion of the
 rectangle (non-power-of-two) texture target in section 3.11.6 should
 be removed, and the line

 "RECT"

 should be removed from the <texTarget> grammar rule.

Interactions with ARB_shadow

 The texture comparison introduced by ARB_shadow can be expressed in
 terms of a fragment program, and in fact use th e same internal
 resources on some implementations. Therefore, if fragment program
 mode is enabled, the GL behaves as if TEXTURE_C OMPARE_MODE_ARB is
 NONE.

Interactions with ARB_vertex_program

 The program object management entrypoints descr ibed in sections
 2.14.1 (for vertex programs) and 3.11.1 (for fr agment programs)
 are shared by both program targets. The PROGRA M_ERROR_STRING_ARB
 and program queries in sections 6.1.11 and 6.1. 12 are also shared,
 as are all common tokens.

 The Errors section should be modified to genera te INVALID_OPERATION
 from the Get command with argument CURRENT_MATR IX_ARB,
 TRANSPOSE_CURRENT_MATRIX_ARB, and CURRENT_MATRIX_STACK_DEPTH_ARB
 when the current matrix mode is TEXTURE.

 In the presence of ARB_vertex_program, ARB_frag ment_program must
 recognize and return appropriate values for the GetProgram <pname>
 tokens introduced in that spec but not otherwis e shared by
 ARB_fragment_program:

 PROGRAM_ADDRESS_REGISTERS_ARB 0x88B0
 MAX_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B1
 PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B2
 MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B3

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 122

 The following tables list new program object st ate and
 implementation-dependent state:

Get Value Type Get Command Initial Value Description Sec Attrib
-------------------- ----- ----------- -------- --------------- ---------------------- -------- ------
PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 address registers
PROGRAM_NATIVE_ADDRESS_ Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 REGISTERS_ARB address registers

 Table X.7. Program Object State. Program obje ct queries return attributes
 of the program object currently bound to the pr ogram target <target>.

 Minimum
Get Value Type Get Comm and Value Description Sec. Attrib
--------- ---- -------- --- ------- ----------- ---- ------
MAX_PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetProgr amivARB 0 maximum program 6.1.12 -
 address registers
MAX_PROGRAM_NATIVE_ADDRESS_ Z+ GetProgr amivARB 0 maximum program native 6.1.12 -
 REGISTERS_ARB address registers

 Table X.10. New Implementation-Dependent Value s Introduced by
 ARB_vertex_program.

 In the presence of ARB_fragment_program, ARB_ve rtex_program must
 recognize and return appropriate values for the GetProgram <pname>
 tokens introduced in this spec. The following tables list new
 program object state and implementation-depende nt state:

Get Value Type Get Com mand Initial Value Description Sec Attrib
-------------------- ----- ------- ------------ --------------- -------------------- -- -------- ------
PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 ALU instructions
PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 texture instructions
PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 texture indirections
PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 ALU instructions
PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 texture instructions
PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 texture indirections

Table X.7. Program Object State. Program object q ueries return attributes of
the program object currently bound to the program t arget <target>.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 123

 Minimum
 Get Value Type Get Command Value Description S ec. Attrib
 --------- ---- ----------- ------- ----------- - --- ------
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 ALU instructions
 MAX_PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 texture instructions
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 texture indirections
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 ALU instructions
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 texture instructions
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 texture indirections

 Table X.10. New Implementation-Dependent Value s Introduced by
 ARB_fragment_program.

Interactions with ATI_fragment_shader

 The existing ATI_fragment_shader extension, if supported, also
 provides a similar fragment programming model. Mixing the two
 models in a single application is possible but not recommended.
 FRAGMENT_PROGRAM_ARB has priority over FRAGMENT _SHADER_ATI if
 both are enabled.

Interactions with NV_fragment_program

 The NV_fragment_program extension, if supported , also provides a
 similar programming model. This extension is i ncompatible with
 NV_fragment_program in a number of different wa ys. Mixing the two
 models in a single application is possible but not recommended. The
 interactions between the extensions are defined below.

 Functions, enumerants, and programs defined in NV_fragment_program
 are called "NV functions", "NV enumerants", and "NV programs,"
 respectively. Functions, enumerants, and progr ams defined in
 ARB_fragment_program are called "ARB functions" , "ARB enumerants",
 and "ARB programs," respectively.

 The following GL state is identical in the two extensions:

 - Fragment program mode enable. The NV and A RB enumerants have
 different values, but the same effect.

 - Program error position.

 - Program error string.

 - NV_fragment_program and ARB_fragment_progra m "program local
 parameters."

 - Fragment program names, targets, formats, p rogram string,
 program string lengths, and residency infor mation. The ARB and
 NV query functions operate differently. Th e ARB query function
 does not allow queries of target (passed in to the query) and
 residency information. The NV query functi on does not allow
 queries of program name (passed in to the q uery) or format. The
 format of NV programs is always PROGRAM_FOR MAT_ASCII_ARB.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 124

 - Program object name space. Program objects are created
 differently in the NV and ARB specs. Under the NV spec, program
 objects are created by calling LoadProgramN V. Under the ARB
 spec, program objects are created by callin g BindProgramARB with
 an unused program name.

 The following state is provided only by ARB_fra gment_program:

 - Program environment parameters.

 - Implementation-dependent limits on the numb er of instructions,
 ALU instructions, texture instructions, tex ture indirections,
 program parameters, fragment attributes, re source counts, and
 native resource counts. The instruction li mit is baked into the
 NV spec. Implementations supporting NV_fra gment_program have no
 specific restrictions on the number of ALU instructions, texture
 instructions, texture indirections, or frag ment attributes used.
 Such implementations also have no limit on program parameters
 used, except that no more than one may be u sed by any single
 program instruction.

 The following state is provided only by NV_frag ment_program:

 - Named program parameters (variables defined in the program text
 and updated by name).

 The following are additional functional differe nces between
 ARB_fragment_program and NV_fragment_program:

 - NV programs use a set of register names, wi th no support for
 user-defined variables (other than paramete rs in the program).
 ARB programs provide no support for fixed v ariable names; all
 variables must be declared, explicitly or i mplicitly, in the
 program.

 - ARB programs support parameter variables th at can be bound to
 selected GL state variables, and are update d automatically when
 the underlying state changes. NV programs provide no such
 support; applications must set program para meters themselves.

 - ARB_fragment_program doesn't provide explic it support for
 multiple data types (fx12, fp16, fp32) desc ribed in
 NV_fragment_program, and provides no mechan ism for controlling
 the precision used to carry out arithmetic operations.

 - ARB_fragment_program doesn't support condit ion codes,
 conditional writemasks, or the "C" instruct ion suffix that
 specifies a condition code update.

 - ARB_fragment_program doesn't support an abs olute value operator
 that can be applied to a source vector as i t is loaded.

 - ARB_fragment_program doesn't define behavio r for many floating-
 point special cases. On platforms where NV _fragment_program is
 supported, ARB programs will have the same special-case
 behavior.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 125

 - Language to declare program parameters is s lightly different
 (NV_fragment_program has "DECLARE" and "DEF INE";
 ARB_fragment_program has "PARAM").

 - NV_fragment_program provides a number of in structions not found
 in ARB_fragment_program:

 * DDX, DDY: partial derivatives relative to x and y.

 * "PK*" and "UP*": packing and unpacking instructions.

 * RFL: reflection vector.

 * SEQ, SFL, SGT, SLE, SNE, STR: set on e qual, false, greater
 than, less than or equal, not equal, an d true, respectively.

 * TXD: texture lookup w/partials.

 * X2D: 2D coordinate transformation.

 - ARB_fragment_program provides several instr uctions not found in
 NV_fragment_program, and there are a few in struction set
 differences:

 * ABS: absolute value. ABS instructions are unnecessary in
 NV_fragment_program because of the fr ee absolute value on
 input operator. Equivalent to:

 MOV dst, |src|;

 * CMP: compare. Roughly equivalent to t he following
 sequence, but may be optimized furthe r:

 SLT tmp, src0;
 LRP dst, tmp, src1, src2;

 * DPH: homogenous dot product. Equivale nt to:

 DP3 tmp, src0, src1;
 ADD dst, tmp, src0.w;

 * KIL: kill fragment. Both extensions s upport this
 instruction, but the ARB instruction takes a vector
 operand rather than a condition code.

 * SCS: sine/cosine. Emulated using the separate SIN and COS
 instructions in NV_fragment_program, which also have no
 restriction on the input values.

 * SWZ: extended swizzle. On NV_fragment _program platforms,
 this instruction will be emulated usi ng a single MAD
 instruction and a program parameter c onstant.

 * TXB: texture sample with bias. Not ex posed in the
 NV_fragment_program API.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 126

 * XPD: cross product. Emulated using a MUL and a MAD
 instruction.

GLX Protocol

 The following rendering commands are sent to t he server as part of
 a glXRender request:

 BindProgramARB
 2 12 rendering c ommand length
 2 4180 rendering c ommand opcode
 4 ENUM target
 4 CARD32 program

 ProgramEnvParameter4fvARB
 2 32 rendering c ommand length
 2 4184 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramEnvParameter4dvARB
 2 44 rendering c ommand length
 2 4185 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 ProgramLocalParameter4fvARB
 2 32 rendering c ommand length
 2 4215 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramLocalParameter4dvARB
 2 44 rendering c ommand length
 2 4216 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 The ProgramStringARB is potentially large, and hence can be sent in
 a glXRender or glXRenderLarge request.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 127

 ProgramStringARB
 2 16+len+p rendering c ommand length
 2 4217 rendering c ommand opcode
 4 ENUM target
 4 ENUM format
 4 sizei len
 len LISTofBYTE program
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the
 command opcode and command length fields a bove are expanded to
 4 bytes each:

 4 16+len+p rendering c ommand length
 4 4217 rendering c ommand opcode

 The remaining commands are non-rendering comman ds. These commands
 are sent separately (i.e., not as part of a glX Render or
 glXRenderLarge request), using the glXVendorPri vateWithReply
 request:

 DeleteProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 1294 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

 GenProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1295 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 programs

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 128

 GetProgramEnvParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1296 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramEnvParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1297 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 129

 GetProgramLocalParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1305 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramLocalParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1306 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 130

 GetProgramivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1307 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetProgramStringARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1308 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 (n+p)/4 reply lengt h
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=p ad(n)

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 131

 IsProgramARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1304 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused

Errors

 The error INVALID_OPERATION is generated by Pro gramStringARB if the
 program string <string> is syntactically incorr ect or violates any
 semantic restriction of the execution environme nt of the specified
 program target <target>. The error INVALID_OPE RATION may also be
 generated by ProgramStringARB if the specified program would exceed
 native resource limits of the implementation.

 The error INVALID_OPERATION is generated by Bin dProgramARB if
 <program> is the name of a program whose target does not match
 <target>.

 The error INVALID_VALUE is generated by command s
 ProgramEnvParameter{fd}ARB, ProgramEnvParameter {fd}vARB, and
 GetProgramEnvParameter{fd}vARB if <index> is gr eater than or equal
 to the value of MAX_PROGRAM_ENV_PARAMETERS_ARB corresponding to the
 program target <target>.

 The error INVALID_VALUE is generated by command s
 ProgramLocalParameter4{fd}ARB, ProgramLocalPara meter4{fd}vARB, and
 GetProgramLocalParameter{fd}vARB if <index> is greater than or equal
 to the value of MAX_PROGRAM_LOCAL_PARAMETERS_AR B corresponding to
 the program target <target>.

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or any
 command that performs an explicit Begin is call ed when fragment
 program mode is enabled and the currently bound fragment program
 object does not contain a valid fragment progra m.

 The error INVALID_OPERATION is generated by any command accessing
 texture coordinate processing state if the text ure unit number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_COORDS_ARB. Such commands include: GetTexGen{if}v;
 TexGen{ifd}, TexGen{ifd}v; Disable, Enable, IsE nabled with argument
 TEXTURE_GEN_{STRQ}; Get with argument CURRENT_T EXTURE_COORDS,
 CURRENT_RASTER_TEXTURE_COORDS, TEXTURE_STACK_DEPTH, TEXTURE_MATRIX,
 TRANSPOSE_TEXTURE_MATRIX; when the current matr ix mode is TEXTURE,
 Frustum, LoadIdentity, LoadMatrix{fd}, LoadTran sposeMatrix{fd},
 MultMatrix{fd}, MultTransposeMatrix{fd}, Ortho, PopMatrix,
 PushMatrix, Rotate{fd}, Scale{fd}, Translate{fd }.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 132

 The error INVALID_OPERATION is generated by any command accessing
 texture image processing state if the texture u nit number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_IMAGE_UNITS_ARB. Such commands inc lude: BindTexture;
 GetCompressedTexImage, GetTexEnv{if}v, GetTexIm age,
 GetTexLevelParameter{if}v, GetTexParameter{if}v ; TexEnv{if},
 TexEnv{if}v, TexParameter{if}, TexParameter{if} v; Disable, Enable,
 IsEnabled with argument TEXTURE_{123}D, TEXTURE _CUBE_MAP; Get with
 argument TEXTURE_BINDING_{123}D, TEXTURE_BINDIN G_CUBE_MAP;
 CompressedTexImage{123}D, CompressedTexSubImage {123}D,
 CopyTexImage{12}D, CopyTexSubImage{123}D, TexIm age{123}D,
 TexSubImage{123}D.

New State

Get Value Type Get Command Initial Value Description Section Attribut e
-------------------------- ------ ------------- ------------- ------------------ ------- -------- ----
FRAGMENT_PROGRAM_ARB B IsEnabled False fragment program 3.8 enable
 enable
- 24+xR4 GetProgramEnv- (0,0,0,0) program environment 3.11.1 -
 ParameterARB parameters
PROGRAM_ERROR_POSITION_ARB Z GetIntegerv -1 last program error 3.11.1 -
 position
PROGRAM_ERROR_STRING_ARB 0+xub GetString "" last program error 3.11.1 -
 string

 Table X.6. New Accessible State Introduced by ARB_fragment_program.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 133

Get Value Type Get Com mand Initial Value Description Sec Attrib
-------------------- ----- ------- ------------ --------------- -------------------- -- -------- ------
PROGRAM_BINDING_ARB Z+ GetProg ramivARB object-specific bound program name 6.1.12 -
PROGRAM_LENGTH_ARB Z+ GetProg ramivARB 0 bound program length 6.1.12 -
PROGRAM_FORMAT_ARB Z1 GetProg ramivARB PROGRAM_FORMAT_ bound program format 6.1.12 -
 ASCII_ARB
PROGRAM_STRING_ARB ubxn GetProg ramStringARB (empty) bound program string 6.1.12 -
PROGRAM_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 total instructions
PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 ALU instructions
PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 texture instructions
PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 texture indirections
PROGRAM_TEMPORARIES_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 temporaries
PROGRAM_PARAMETERS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 parameter bindings
PROGRAM_ATTRIBS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 attribute bindings
PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 instructions
PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 ALU instructions
PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 texture instructions
PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 texture indirections
PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 temporaries
PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 parameter bindings
PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 attribute bindings
PROGRAM_UNDER_NATIVE_LIMITS_ARB B GetProg ramivARB 0 bound program under 6.1.12 -
 native resource limi ts
- 24+xR4 GetProg ramLocal- (0,0,0,0) bound program local 3.11.1 -
 Paramet erARB parameter value

Table X.7. Program Object State. Program object q ueries return attributes of
the program object currently bound to the program t arget <target>.

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ------------------------ -------- ---------
- 16+xR4 - undefined t emporary registers 3.11.3.3 -
- 2xR4 - undefined f ragment result registers 3.11.3.4 -

Table X.8. Fragment Program Per-fragment Execution State. All per-fragment
execution state registers are uninitialized at the beginning of program
execution.

Get Value Type Get Co mmand Initial Value Description Sec Attribute
------------------------------ -------- ------ -------- ------------- ------------------- ---- --- ---------
CURRENT_MATRIX_ARB m*n*xM 4̂ GetFlo atv Identity current matrix 6.1. 2 -
CURRENT_MATRIX_STACK_DEPTH_ARB m*Z+ GetInt egerv 1 current stack depth 6.1. 2 -

Table X.9. Current matrix state where m is the tot al number of matrices
including texture matrices and program matrices and n is the number of
matrices on each particular matrix stack. Note tha t this state is aliased
with existing matrix state.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 134

New Implementation Dependent State

 Minimum
Get Value Type Get Command Value Description Sec . Attrib
--------- ---- ---- ------- ------- ----------- --- - ------
MAX_TEXTURE_COORDS_ARB Z+ GetI ntegerv 2 number of texture 2.7 -
 coordinate sets
MAX_TEXTURE_IMAGE_UNITS_ARB Z+ GetI ntegerv 2 number of texture 2.1 0.2 -
 image units
MAX_PROGRAM_ENV_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 3.1 1.1 -
 env parameters
MAX_PROGRAM_LOCAL_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 3.1 1.1 -
 local parameters
MAX_PROGRAM_MATRICES_ARB Z+ GetI ntegerv 8 (not to maximum number of 3.1 1.7 -
 exceed 32) program matrices
MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB Z+ GetI ntegerv 1 maximum program 3.1 1.7 -
 matrix stack depth
MAX_PROGRAM_INSTRUCTIONS_ARB Z+ GetP rogramivARB 72 maximum program 6.1 .12 -
 total instructions
MAX_PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetP rogramivARB 48 number of frag. prg. 6.1 .12 -
 ALU instructions
MAX_PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetP rogramivARB 24 number of frag. prg. 6.1 .12 -
 texture instructions
MAX_PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetP rogramivARB 4 number of frag. prg. 6.1 .12 -
 texture indirections
MAX_PROGRAM_TEMPORARIES_ARB Z+ GetP rogramivARB 16 maximum program 6.1 .12 -
 temporaries
MAX_PROGRAM_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 6.1 .12 -
 parameter bindings
MAX_PROGRAM_ATTRIBS_ARB Z+ GetP rogramivARB 10 maximum program 6.1 .12 -
 attribute bindings
MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 total instructions
MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 ALU instructions
MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 texture instructions
MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 texture indirections
MAX_PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 temporaries
MAX_PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 parameter bindings
MAX_PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 attribute bindings

Table X.10. New Implementation-Dependent Values In troduced by
ARB_fragment_program. Values queried by GetProgram require a <pname> of
FRAGMENT_PROGRAM_ARB.

Sample Usage

 The following program shows how to perform a si mple modulation
 between the interpolated color and a single tex ture:

 !!ARBfp1.0
 # Simple program to show how to code up the d efault texture environment
 ATTRIB tex = fragment.texcoord; #first s et of texture coordinates
 ATTRIB col = fragment.color.primary; #diffuse interpolated color
 OUTPUT outColor = result.color;
 TEMP tmp;
 TXP tmp, tex, texture, 2D; #sample the texture
 MUL outColor, tmp, col; #perform the modulation
 END

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 135

 The following is an example the simulates a chr ome surface:

 !!ARBfp1.0
 ########################
 # Input Textures:
 #-----------------------
 # Texture 0 contains the default 2D texture u sed for general mapping
 # Texture 2 contains a 1D pointlight falloff map
 # Texture 3 contains a 2D map for calculating specular lighting
 # Texture 4 contains normalizer cube map
 # Input Texture Coordinates:
 #-----------------------
 # TexCoord1 contains the calculated normal
 # TexCoord2 contains the light to vertex vect or
 # TexCoord3 contains the half-vector in tange nt space
 # TexCoord4 contains the light vector in tang ent space
 # TexCoord5 contains the eye vector in tangen t space
 ########################
 TEMP NdotH, lV, L;
 ALIAS diffuse = L;
 PARAM half = { 0.5, 0.5, 0.5, 0.5 };
 ATTRIB norm_tc = fragment.texcoord[1];
 ATTRIB lv_tc = fragment.texcoord[2];
 ATTRIB half_tc = fragment.texcoord[3];
 ATTRIB light_tc = fragment.texcoord[4];
 ATTRIB eye_tc = fragment.texcoord[5];
 OUTPUT oCol = result.color;
 TEX L, light_tc, texture[4], CUBE; # Samp le cube map normalizer
 # Calculate diffuse lighting (N.L)
 SUB L, L, half; # Bias L and then multiply by 2
 ADD L, L, L;
 DP3 diffuse, norm_tc, L; # N.L
 # Calculate specular lighting component { (N. H), |H|^2 }
 DP3 NdotH.x, norm_tc, half_tc;
 DP3 NdotH.y, half_tc, half_tc;
 DP3 lV.x, lv_tc, lv_tc; # lV = (|ligh t to vertex|)^2
 #############
 # Pass 2
 #############
 TEMP base, specular;
 ALIAS atten = lV;
 TEX base, eye_tc, texture[0], 2D; # sample en viroment map using eye vector
 TEX atten, lV, texture[2], 1D; # Sampl e attenuation map
 TEX specular, NdotH, texture[3], 2D; # Sampl e specular NHHH map=(N.H)^256
 # specular = (N.H)^256 * (N.L)
 # this ensures a pixel is only lit if facing the light (since the specular
 # exponent makes negative N.H positive we mus t do this)
 MUL specular, specular, diffuse;
 # specular = specular * environment map
 MUL specular, base, specular;
 # diffuse = diffuse * environment map
 MUL diffuse, base, diffuse;
 # outColor = (specular * environment map) + (diffuse * environment map)
 ADD base, specular, diffuse;
 # Apply point light attenutaion
 MUL oCol, base, atten.r;
 END

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 136

Revision History

 Date: 8/22/2003
 Revision: 26
 - Added list of commands generating errors wh en active texture
 unit selector is out of range.
 - Fixed typo in <stateMatrixItem> rule.
 - Clarified behavior of fragment.position.z w ith respect to depth
 offset.

 Date: 2/26/2003
 Revision: 25
 - Fixed description of KIL instruction to ref lect less than zero
 test, not less than or equal to zero.
 - Clarified the processing of incoming and ou tgoing depths and
 colors to reflect the conversion to floatin g-point on input and
 the conversion to fixed-point on output.

 Date: 1/10/2003
 Revision: 24
 - Fixed bug where "state.matrix.mvp" was spec ified incorrectly.
 It should be P*M0 rather than M0*P.
 - Added issue warning about CMP opcode's orde r of operands.

 Date: 10/22/2002
 Revision: 23
 - Fixed reference to <extSwizComp> rule in 3. 11.5.28. Instead
 reference both <xyzwExtSwizComp> and <rgbaE xtSwizComp> rules.

 Date: 10/02/2002
 Revision: 22
 - Fixed typo in section 3.11.1, where 8 progr am environment and
 8 program local parameters are listed as th e minimums instead
 of 24 of each. Table X.10 had the correct values.
 - Fixed <stateTexEnvItem> to refer to legacy texture units.
 - Fixed typos in issue 29 pseudo-code, added some clarification.

 Date: 9/19/2002
 Revision: 21
 - Added clarifying paragraph for native textu re indirection
 counting, offering examples of possible cas es where texture
 indirections may be increased.
 - Fixed typos in issues 25 and 29.

 Date: 9/16/2002
 Revision: 20
 - Added precision hint program options.
 - Fixed various typos, reworded some parts fo r consistency.
 - Updated issues list.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 137

 Date: 9/13/2002
 Revision: 19
 - Promoted minimum precision of texture coord inates in 2.1.1.
 - Added ARB_fog_* program options.
 - Removed modification to 3.9, put clamps in 3.11.4.4.
 - Made 'texture' a reserved keyword in the gr ammar.
 - Fixed various typos.
 - Updated section 3.11.6.
 - Updated issues list.

 Date: 9/11/2002
 Revision: 18
 - Updated for consistency with ARB_vertex_pro gram revision 36.
 - Depth output moved to 3rd component of resu lt.depth.
 - Fixed various typos, reworded things in man y places.
 - Added NV_fragment_program interactions.
 - Updated issues list.

 Date: 9/09/2002
 Revision: 17
 - Added fogcoord and position attributes.
 - Moved fragment program section to 3.11, aft er fog.
 - Changed MAX_TEXTURE_UNITS/MAX_AUX_TEXTURE_U NITS to
 MAX_TEXTURE_COORDS/MAX_TEXTURE_IMAGE_UNITS.
 - Removed TRC and MOD instructions.
 - Added SIN and COS instructions.
 - Added more clarity to resource consumption wording.
 - Added invariance wording concerning depth-r eplacement.
 - Added rule that a program that fails to loa d must always fail to
 load, regardless of GL state.
 - Updated issues list.

 Date: 8/30/2002
 Revision: 16
 - Improved texture indirection description.
 - Defined result of sample from incomplete te xture as (0,0,0,1).
 - Removed PROGRAMS_LOAD_OVER_NATIVE_LIMITS_AR B per-target query.
 - Allowed ProgramStringARB to fail on non-nat ive programs.
 - Updated issues list.

 Date: 8/28/2002
 Revision: 15
 - Updated for consistency with ARB_vertex_pro gram revision 35.
 - Added PROGRAMS_LOAD_OVER_NATIVE_LIMITS_ARB per-target query.
 - Changed MAX_AUX_TEXTURE_UNITS_ARB enum valu e.
 - Updated issues list.

 Date: 8/22/2002
 Revision: 14
 - Added sine/cosine instruction (SCS).
 - Updated texture sample grammar, replaced te xenables hierarchy.
 - Added EXT_vertex_weighting and ARB_vertex_b lend dependency.
 - Updated issues list.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 138

 Date: 8/14/2002
 Revision: 13
 - Fixed <paramConstant> grammar rule.
 - Updated issues list.

 Date: 8/06/2002
 Revision: 12
 - Fixed various typos.
 - Updated issues list.
 - Added wording to 3.10.3.6 to reflect that n ative resource
 consumption may increase due to emulated in structions.

 Date: 7/29/2002
 Revision: 11
 - Updated for consistency with ARB_vertex_pro gram revision 34.
 - Added support for matrix binding.
 - Removed precision queries.
 - Updated issues list.

 Date: 7/16/2002
 Revision: 10
 - Updated for consistency with ARB_vertex_pro gram revision 31.
 - Added fog params and depth range bindings t o grammar.
 - Removed stpq writemasks and swizzles from g rammar.
 - Required swizzle components to come from sa me set, xyzw or rgba.

 Date: 7/10/2002
 Revision: 9
 - Made fog params and depth range bindable.
 - Changed texture instruction names to match 3-letter format.
 - Made texture instructions more consistent w ith ALU instructions.
 - Increased minimums for implementation-depen dent values.
 - Re-introduced 4-components swizzles and the SWZ instruction.
 - Updated issues list.

 Date: 7/03/2002
 Revision: 8
 - Fixed typos.
 - Added DST, LIT, SGE, SLT instructions.
 - Changed FRC definition to match ARB_vertex_ program, added MOD
 instruction to expose fmod(arg, 1.0) behavi or.

 Date: 6/25/2002
 Revision: 7
 - Updated for consistency with ARB_vertex_pro gram revision 29.

 Date: 6/19/2002
 Revision: 6
 - Updated for consistency with ARB_vertex_pro gram revision 28.
 - Changed from ATI to ARB prefix/suffix.
 - Started using single integer revision numbe r.
 - Added a few more issues to the list.

 Date: 6/14/2002
 Revision: 1.4
 - Updated for consistency with ARB_vertex_pro gram revision 27.
 - Added a few more issues to the list.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 139

 Date: 6/05/2002
 Revision: 1.3
 - Updated for consistency with ARB_vertex_pro gram revision 26.
 - Incorporated program object management, rem oving dependency on
 ARB_vertex_program.
 - Added interaction with ARB_shadow.

 Date: 6/03/2002
 Revision: 1.2
 - Updated for consistency with ARB_vertex_pro gram revision 25.
 - Fixed TexInstructions to use <texSrcReg>, i .e. no parameters.
 - Added TRC, POW, DPH instructions, updated F RC and LRP.
 - Added fog color parameter binding.

 Date: 5/23/2002
 Revision: 1.1
 - Updated for consistency with ARB_vertex_pro gram revision 24.
 - Added GetProgramfvATI entrypoint for queryi ng precision values.

 Date: 5/10/2002
 Revision: 1.0
 - First draft for circulation.

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 140

Name

 ARB_fragment_program_shadow

Name Strings

 GL_ARB_fragment_program_shadow

IP Status

 Unknown, but Microsoft claims to own intellectu al property
 related to ARB_fragment_program. This extensio n is
 an extension to ARB_fragment_program.

Status

 Complete. Approved by ARB on December 16, 2003

Version

 Last Modified Date: December 8, 2003
 Revision: 5

Number

 ARB Extension #36

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 ARB_fragment_program is required.

 ARB_shadow is required.

 EXT_texture_rectange affects the definition of this extension.

Overview

 This extension extends ARB_fragment_program to remove
 the interaction with ARB_shadow.

 This extension defines the program option
 "ARB_fragment_program_shadow".

 If a fragment program specifies the option
 "ARB_fragment_program_shadow"

 SHADOW1D, SHADOW2D, SHADOWRECT

 are added as texture targets. When shadow map comparisons are
 desired, specify the SHADOW1D, SHADOW2D, or SHA DOWRECT texture
 targets in texture instructions.

 Programs must assure that the comparison mode f or each depth
 texture (TEXTURE_COMPARE_MODE) and/or the inter nal texture
 format (DEPTH_COMPONENT) and the targets of the texture lookup

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 141

 instructions match. Otherwise, if the comparis on mode
 and/or the internal texture format are inconsis tent with the
 texture target, the results of the texture look up are undefined.

Issues

 (1) What should this extension be called?

 RESOLVED: ARB_fragment_program_shadow. Shad ow support
 is the only new feature. The name ARB_fragme nt_program2
 should be used for a far more major revision to
 ARB_fragment_program. ARB_fragment_program1_ 1 is
 less descriptive.

 (2) Should this extension use the header string "!!ARBfp1.1" or
 a program option "ARB_fragment_program_shadow"?

 RESOLVED: Program option "ARB_fragment_progra m_shadow".

 (3) What form should the ARB_fragment_program_s hadow option take?

 a. New sampler instructions.
 SHX result.color.a, fragment.texcoord[1], texture[0], 2D;

 b. New texture modifiers.
 TEX result.color.a, fragment.texcoord[1], texture[0], 2D,SHADOW;

 c. New texture targets.
 TEX result.color.a, fragment.texcoord[1], texture[0], SHADOW2D;

 d. New sampler instructions AND new textur e modifiers.
 SHX result.color.a, fragment.texcoord[1], texture[0], 2D,SHADOW;

 e. New sampler instructions AND new textur e targets.
 SHX result.color.a, fragment.texcoord[1], texture[0], SHADOW2D;

 RESOLVED: Choose the simplest option c, add ne w texture targets.

 All of the above forms are functionally equival ent.

 An earlier draft proposed option a, adding six new shadow
 instructions. The required shadow instructions are
 three variants of shadow instruction (non-proje ctive, projective,
 and biased), and the same instructions with the modifier _SAT.

 Option b adds texture modifiers but requires ad ditional semantic
 restrictions.

 Option c adds texture targets only. It is a su fficient
 and simple change to one grammar rule.

 Option d and e are listed for completeness. Th ey require
 additional instructions and additional semantic restrictions.

 Note that option e is most similar to the resol ution of this issue
 by ARB_fragment_shader and the OpenGL Shading L anguage. The OpenGL
 Shading Language has both built-in texture and shadow functions and

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 142

 sampler types, analogous to texture instruction s and texture targets.
 The resolution here drops the added reduntancy and potential error
 checking in favor of simplicity, but is otherwi se consistent.
 This resolution is also consistent with the pre cident already
 established in ARB_fragment_program, since we h ave a TEX instruction,
 not a TEX1D, TEX2D, TEXCUBE, TEX3D, TEXRECT ins tructions.

 (4) How should ARB_fragment_program_shadow func tion?

 a. Simply remove the interaction with ARB_s hadow so that
 TEXTURE_COMPARE_MODE behaves exactly as specified in the
 OpenGL 1.4 specification.

 b. Add "SHADOW" targets to texture lookup i nstructions.
 TEXTURE_COMPARE_MODE is ignored. For sa mples from a SHADOW
 target TEXTURE_COMPARE_MODE is treated a s COMPARE_R_TO_TEXTURE;
 otherwise, it is treated as NONE.

 c. Like (b), but with undefined results if TEXTURE_COMPARE_MODE
 and/or the internal format of the textur e does not match the
 target.

 d. A hybrid of (a) and (b), where the SHADO W target means to
 use the TEXTURE_COMPARE_MODE state.

 RESOLVED - Option c, undefined behavior when the target and
 mode do not match.

 Program text is not simply loaded, it is comp iled, optimized
 and then loaded. Options a and d would remov e information from
 the optimizer. Which components of the textu re coordinate are
 required for the sample? Specifically, is th e r component of the
 texture coordinate required? Options b and c are both sufficient
 and retain the information required by optimi zers. Option c is
 consistent with the resolution chosen by ARB_ fragment_shader.

 (5) What if additional texture compare modes ar e added by
 future extensions to ARB_SHADOW?

 We do not anticipate future extensions adding a dditional texture
 compare modes. Only the additional mode COMPAR E_T_TO_TEXTURE
 has even marginal utility, and then only for SH ADOW1D targets.
 However, a future extension adding additional t exture compare modes
 is not precluded. The language in this specifi cation is carefully,
 if somewhat awkwardly, written to say the TEXTU RE_COMPARE_MODE either
 "is NONE" or "is not NONE.

 (6) Does EXT_shadow_funcs interact with this ex tension?

 RESOLVED: It doesn't. ARB_shadow supports LEQUAL or GEQUAL
 comparison functions. EXT_shadow_funcs simp ly adds
 the additional functions LESS, GREATER, EQUA L, NOTEQUAL,
 ALWAYS, and NEVER. Whichever function is sp ecified will
 be used for the comparison function.

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 143

 (7) Does ARB_shadow_ambient interact with this extension?

 RESOLVED: It doesn't. ARB_shadow returns a result
 in the range [0,1]. ARB_shadow_ambient simp ly
 maps this range to [TEXTURE_COMPARE_FAIL_ARB , 1].
 The result will be returned in the specified range.

 (8) How would an existing fragment program be p orted to use the
 program option ARB_fragment_program_shadow?

 RESOLVED: Fairly simply, but with a caveat on undefined behavior.

 !!ARBfp1.0
 # A simple example of shadow map (R <= Dt)
 #
 # SHOULD make sure that the 2D texture bound to texture unit 0:
 # texture format of DEPTH_COMPONENT (for highest quality comparison)
 # TEXTURE_MAG_FILTER is NEAREST
 # TEXTURE_MIN_FILTER is NEAREST or NEARES T_MIPMAP_NEAREST
 # Assumes DEPTH_TEXTURE_MODE is LUMINANCE or INTENSITY
 #
 TEMP Result;
 ALIAS Dt = Result;
 TEX Dt, fragment.texcoord[0], texture[0], 2D ;
 SGE Result, Dt.x, fragment.texcoord[0].z; # R <= Dt

 !!ARBfp1.0
 OPTION ARB_fragment_program_shadow;
 # A simple example of shadow map (R<= Dt)
 #
 # MUST make sure that the 2D texture bound t o texture unit 0:
 # texture format of DEPTH_COMPONENT and a
 # TEXTURE_COMPARE_MODE of COMPARE_R_TO_TE XTURE
 # Otherwise, the Result is undefined.
 #
 # Remember also that to get R <= Dt to set:
 # TEXTURE_COMPARE_FUNC of LEQUAL
 #
 # A single compare equivalent to the above e xample will result if:
 # TEXTURE_MAG_FILTER is NEAREST
 # TEXTURE_MIN_FILTER is NEAREST or NEARES T_MIPMAP_NEAREST
 # Otherwise, percent closer filtering may be applied.
 #
 TEMP Result;
 TEX Result, fragment.texcoord[0], texture[0] , SHADOW2D;

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 144

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.11.2 Fragment Program Grammar and Semantic
 Restrictions

 Replace <texTarget> grammar rule with

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"
 | <shadowTarget> (if p rogram option is present)

 <shadowTarget> ::= "SHADOW1D"
 | "SHADOW2D"
 | "SHADOWRECT"

 Add Section 3.11.4.5.3 Fragment Program Shadow Option

 If a fragment program specifies the "ARB_fragme nt_program_shadow"
 program option, the <texTarget> rule is modifie d to add the
 texture targets SHADOW1D, SHADOW2D and SHADOWRE CT (See Section 3.11.2).

 Modify Section 3.11.6 Fragment Program Texture Instruction Set

 (replace 1st through 4th paragraphs with the fo llowing paragraphs)

 The first three texture instructions described below specify
 the mapping of 4-tuple input vectors to 4-tuple output vectors.
 The sampling of the texture works as described in section 3.8, except
 that texture environments and texture functions are not applicable,
 and the texture enables hierarchy is replaced b y explicit references
 to the desired texture target (i.e., 1D, 2D, 3D , cube map, rectangle).
 These texture instructions specify how the 4-tu ple is mapped into
 the coordinates used for sampling. The followi ng function is used
 to describe the texture sampling in the descrip tions below:

 vec4 TextureSample(float s, float t, float r, float lodBias,
 int texImageUnit, enum tex Target);

 Note that not all three texture coordinates, s, t, and r, are
 used by all texture targets. In particular, 1D texture targets only
 use the s component. 2D and RECT (non-power-of -two) texture
 targets only use the s and t components. SHADO W1D texture
 targets only use the s and r components. The d escriptions of the
 texture instructions below supply all three com ponents, as would
 be the case with CUBE, 3D, SHADOW2D, and SHADOW RECT targets.

 If a fragment program samples from a texture ta rget on a texture
 image unit where the bound texture object is no t complete, as
 defined in section 3.8.9, the result will be th e vector
 (R, G, B, A) = (0, 0, 0, 1).

 If a fragment program does not specify the
 "ARB_fragment_program_shadow" program option, a nd if a fragment

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 145

 program samples from a texture target of 1D, 2D , or RECT, it is as
 if TEXTURE_COMPARE_MODE_ARB is NONE.

 If a fragment program specifies the "ARB_fragme nt_program_shadow"
 program option, the result returned of a sample from a texture target
 on a texture image unit is undefined if:

 the texture target is 1D, 2D, or RECT, and
 the texture object's internal format is DEPTH _COMPONENT_ARB, and
 the TEXTURE_COMPARE_MODE_ARB is not NONE;

 or

 the texture target is SHADOW1D, SHADOW2D, SHA DOWRECT, and
 the texture object's internal format is DEP TH_COMPONENT_ARB, and
 the TEXTURE_COMPARE_MODE_ARB is NONE;

 or

 the texture target is SHADOW1D, SHADOW2D, SHA DOWRECT, and
 the texture object's internal format is not DEPTH_COMPONENT_ARB.

 A fragment program will fail to load if it atte mpts to sample from
 multiple texture targets on the same texture im age unit. For example,
 the following programs would fail to load:

 !!ARBfp1.0
 TEX result.color.rgb, fragment.texcoord[0], t exture[0], 2D;
 TEX result.color.a, fragment.texcoord[1], t exture[0], 3D;
 END

 !!ARBfp1.0
 OPTION ARB_fragment_program_shadow;
 TEX result.color.rgb, fragment.texcoord[0], t exture[0], 2D;
 TEX result.color.a, fragment.texcoord[1], t exture[0], SHADOW2D;
 END

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 146

Additions to the AGL/GLX/WGL Specifications

 None

Dependencies on EXT_texture_rectangle

 If EXT_texture_rectangle is not supported:

 Section 3.11.2 should be modified by removing t he line:

 | "SHADOWRECT"

 from the <shadowTarget> grammar rule;

 and Section 3.11.6 should be modified by removi ng the discussion
 of the rectangle shadow texture target.

NVIDIA OpenGL Extension Specifications ARB_half_float_pixel

 147

Name

 ARB_half_float_pixel

Name Strings

 GL_ARB_half_float_pixel

Contributors

 Pat Brown
 Jon Leech
 Rob Mace
 Brian Paul

Contact

 Dale Kirkland, NVIDIA (dkirkland 'at' nvidia.co m)

Status

 Complete. Appprove by the ARB on October 22, 20 04.

Version

 Last Modified Date: October 1, 2004
 Version: 6

Number

 ARB Extension #40

Dependencies

 This extension is written against the OpenGL 2. 0 Specification
 but will work with the OpenGL 1.5 Specification .

 Based on the NV_half_float extension.

 This extension interacts with ARB_color_buffer_ float.

Overview

 This extension introduces a new data type for h alf-precision (16-bit)
 floating-point quantities. The floating-point format is very similar
 to the IEEE single-precision floating-point sta ndard, except that it
 has only 5 exponent bits and 10 mantissa bits. Half-precision floats
 are smaller than full precision floats and prov ide a larger dynamic
 range than similarly sized normalized scalar da ta types.

 This extension allows applications to use half- precision floating-
 point data when specifying pixel data. It exte nds the existing image
 specification commands to accept the new data t ype.

 Floating-point data is clamped to [0, 1] at var ious places in the
 GL unless clamping is disabled with the ARB_col or_buffer_float
 extension.

ARB_half_float_pixel NVIDIA OpenGL Extension Specifications

 148

IP Status

 SGI owns US Patent #6,650,327, issued November 18, 2003. SGI
 believes this patent contains necessary IP for graphics systems
 implementing floating point (FP) rasterization and FP framebuffer
 capabilities.

 SGI will not grant the ARB royalty-free use of this IP for use in
 OpenGL, but will discuss licensing on RAND term s, on an individual
 basis with companies wishing to use this IP in the context of
 conformant OpenGL implementations. SGI does not plan to make any
 special exemption for open source implementatio ns.

 Contact Doug Crisman at SGI Legal for the compl ete IP disclosure.

Issues

 1. How is this extension different from the NV_ half_float extension?

 This extension does not add new commands for specifying half-
 precision vertex data, and all imaging funct ions have been listed
 for supporting the "half" type.

 2. What should the new data type be called? "h alf"? "hfloat"?

 RESOLVED: half . This convention builds on the convention of
 using the type "double" to describe double-p recision floating-
 point numbers. Here, "half" will refer to h alf-precision
 floating-point numbers.

 Even though the 16-bit float data type is a first-class data type,
 it is still more problematic than the other types in the sense
 that no native programming languages support the data type.
 "hfloat/hf" would have reflected a second-cl ass status better
 than "half/h".

 Both names are not without conflicting prece dents. The name "half"
 is used to connote 16-bit scalar values on s ome 32-bit CPU
 architectures (e.g., PowerPC). The name "hf loat" has been used to
 describe 128-bit floating-point data on VAX systems.

 3. Should half-precision data be accepted by co mmands in the imaging
 subset that accept pixel data?

 RESOLVED: Yes, all functions in the core Op enGL and the imaging
 subset that accept pixel data accept half-pr ecision data.

 4. Should the special representations NaN, INF, and denormal be
 supported?

 RESOLVED: Implementation dependent. The sp ec reflects that Nan
 and INF produce unspecified results. Denorm alized numbers can
 be treated as a value of 0.

NVIDIA OpenGL Extension Specifications ARB_half_float_pixel

 149

New Tokens

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, TexImage3D, GetTexImage , TexSubImage1D,
 TexSubImage2D, TexSubImage3D, GetHistogram, Get Minmax,
 ConvolutionFilter1D, ConvolutionFilter2D, GetCo nvolutionFilter,
 SeparableFilter2D, GetSeparableFilter, ColorTab le, ColorSubTable,
 and GetColorTable:

 HALF_FLOAT_ARB 0x140B

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16-Bit Floating-Point Numbers

 A 16-bit floating-point number has a 1-bit sign (S), a 5-bit
 exponent (E), and a 10-bit mantissa (M). The v alue of a 16-bit
 floating-point number is determined by the foll owing:

 (-1)^S * 0.0, if E = = 0 and M == 0,
 (-1)^S * 2^-14 * (M / 2^10), if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E = = 31 and M == 0, or
 NaN, if E = = 31 and M != 0,

 where

 S = floor((N mod 65536) / 32768),
 E = floor((N mod 32768) / 1024), and
 M = N mod 1024.

 Implementations are also allowed to use any of the following
 alternative encodings:

 (-1)^S * 0.0, if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M == 0, or
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M != 0,

 Any representable 16-bit floating-point value i s legal as input
 to a GL command that accepts 16-bit floating-po int data. The
 result of providing a value that is not a float ing-point number
 (such as infinity or NaN) to such a command is unspecified, but
 must not lead to GL interruption or termination . Providing a
 denormalized number or negative zero to GL must yield predictable
 results.

 (modify Table 2.2, p. 9) -- add new row

 Minimum
 GL Type Bit Width Description
 ------- --------- -------------------- ---------------
 half 16 half-precision float ing-point value
 encoded in an unsign ed scalar

ARB_half_float_pixel NVIDIA OpenGL Extension Specifications

 150

 Modify Section 2.14, (Colors and Coloring), p. 59

 (modify Table 2.9, p. 59) Add new row to the t able:

 GL Type Conversion
 ------- ----------
 half c

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 126)

 (modify Table 3.5, p. 128 -- add new row)

 type Parameter Corresponding Spec ial
 Token Name GL Data Type Interpr etation
 -------------- ------------- ------- -------
 HALF_FLOAT_ARB half N o

 (modify Unpacking, p. 129) Data are taken from host memory as a
 sequence of signed or unsigned bytes (GL data t ypes byte and ubyte),
 signed or unsigned integers (GL data types int and uint), or
 floating-point values (GL data types half and f loat).

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 Modify Section 4.3.2, Reading Pixels (p. 219)

 (modify Final Conversion, p. 222) For an index, if the type is not
 FLOAT or HALF_FLOAT_ARB, final conversion consi sts of masking the
 index with the value given in Table 4.6; if the type is FLOAT or
 HALF_FLOAT_ARB, then the integer index is conve rted to a GL float
 or half data value.

 (modify Table 4.7, p. 224 -- add new row)

 type Parameter GL Data Type Component Conversion Formula
 -------------- ------------ --------- -------------------
 HALF_FLOAT_ARB half c = f

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

NVIDIA OpenGL Extension Specifications ARB_half_float_pixel

 151

GLX Protocol (Modification to the GLX 1.3 Protocol Encoding Specification)

 Modify Appendix A, Pixel Data (p. 148)

 (Modify Table A.1, p. 149 -- add new row for HALF_FLOAT_ARB data)

 type Encoding Protocol Typ e nbytes
 ------------- -------- ------------ - ------
 HALF_FLOAT_ARB 0x140B CARD16 2

Errors

 None

New State

 None

New Implementation Dependent State

 None

Revision History

 Rev. Date Author Changes
 ---- -------- --------- --------------------- -----------------------
 1 12/15/03 Kirkland Initial version based on the NV_half_float
 specification.

 2 2/26/04 Kirkland Changed NVIDIA_xxx to NV_xxx.
 Changed the issue res olution for INF and NaN.

 3 3/11/04 Kirkland Updated language for float16 number handling.
 Added bit encodings f or half values.
 Added issue dealing w ith name "half".

 4 7/23/04 Kirkland Added alternative enc odings options for
 float16 format.

 5 9/17/04 Kirkland Updated to reference OpenGL 2.0 spec.

 6 10/1/04 Kirkland Updated IP section.

ARB_imaging NVIDIA OpenGL Extension Specifications

 152

Name

 ARB_imaging

Name Strings

 GL_ARB_imaging

NOTE: This extension does not have its own specific ation document, since
 it has been included in the OpenGL 1.2.1 Specif ication (downloadable
 from www.opengl.org). Please refer to the 1.2.1 Specification for
 more information.

NVIDIA OpenGL Extension Specifications ARB_multisample

 153

Name

 ARB_multisample

Name Strings

 GL_ARB_multisample
 GLX_ARB_multisample
 WGL_ARB_multisample

Status

 Approved by ARB on 12/8/1999.
 GLX protocol must still be defined.

Version

 Last Modified Date: December 15, 1999
 Author Revision: 0.5

 Based on: SGIS_Multisample Specification
 Date: 1994/11/22 Revision: 1.14

Number

 ARB Extension #5

Dependencies

 WGL_EXT_extensions_string is required.
 WGL_EXT_pixel_format is required.

Overview

 This extension provides a mechanism to antialia s all GL primitives:
 points, lines, polygons, bitmaps, and images. The technique is to
 sample all primitives multiple times at each pi xel. The color
 sample values are resolved to a single, display able color each time
 a pixel is updated, so the antialiasing appears to be automatic at
 the application level. Because each sample inc ludes depth and
 stencil information, the depth and stencil func tions perform
 equivalently to the single-sample mode.

 An additional buffer, called the multisample bu ffer, is added to
 the framebuffer. Pixel sample values, includin g color, depth, and
 stencil values, are stored in this buffer. Whe n the framebuffer
 includes a multisample buffer, it does not also include separate
 depth or stencil buffers, even if the multisamp le buffer does not
 store depth or stencil values. Color buffers (left/right, front/
 back, and aux) do coexist with the multisample buffer, however.

 Multisample antialiasing is most valuable for r endering polygons,
 because it requires no sorting for hidden surfa ce elimination, and
 it correctly handles adjacent polygons, object silhouettes, and
 even intersecting polygons. If only points or lines are being
 rendered, the "smooth" antialiasing mechanism p rovided by the base
 GL may result in a higher quality image. This extension is

ARB_multisample NVIDIA OpenGL Extension Specifications

 154

 designed to allow multisample and smooth antial iasing techniques
 to be alternated during the rendering of a sing le scene.

IP Status

 TBD

Issues

 1. Multiple passes have been taken out. Is thi s acceptable?

 RESOLUTION: Yes. This can be added back wi th an additional
 extension if needed.

 2. Would SampleAlphaARB be a better name for th e function
 SampleMaskARB? If so, the name SAMPLE_MASK_ ARB should also be
 changed to SAMPLE_ALPHA_ARB.

 RESOLUTION: Names containing "mask" were ch anged to use
 "coverage" instead.

 3. Should the SampleCoverageARB function be cha nged to allow
 blending between more than two objects?

 RESOLUTION: Not addressed by this extension . An additional
 extension has been proposed that allows a co verage range for
 each object. The coverage range is a min an d max value that
 can be used to blend multiple objects at dif ferent level-of-
 detail fading. The SampleCoverageARB functi on will layer on
 this new extension.

New Procedures and Functions

 void SampleCoverageARB(clampf value,
 boolean invert);

New Tokens

 Accepted by the <attribList> parameter of glXCh ooseVisual, and by
 the <attrib> parameter of glXGetConfig:

 GLX_SAMPLE_BUFFERS_ARB 100000
 GLX_SAMPLES_ARB 100001

 Accepted by the <piAttributes> parameter of
 wglGetPixelFormatAttribivEXT, wglGetPixelFormat AttribfvEXT, and
 the <piAttribIList> and <pfAttribIList> of wglC hoosePixelFormatEXT:

 WGL_SAMPLE_BUFFERS_ARB 0x2041
 WGL_SAMPLES_ARB 0x2042

NVIDIA OpenGL Extension Specifications ARB_multisample

 155

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 MULTISAMPLE_ARB 0x809D
 SAMPLE_ALPHA_TO_COVERAGE_ARB 0x809E
 SAMPLE_ALPHA_TO_ONE_ARB 0x809F
 SAMPLE_COVERAGE_ARB 0x80A0

 Accepted by the <mask> parameter of PushAttrib:

 MULTISAMPLE_BIT_ARB 0x2000 0000

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev,
 GetIntegerv, and GetFloatv:

 SAMPLE_BUFFERS_ARB 0x80A8
 SAMPLES_ARB 0x80A9
 SAMPLE_COVERAGE_VALUE_ARB 0x80AA
 SAMPLE_COVERAGE_INVERT_ARB 0x80AB

Additions to Chapter 2 of the 1.2.1 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2.1 Specification (Rasterization)

 If SAMPLE_BUFFERS_ARB is a value of one, the ra sterization of all
 GL primitives is changed, and is referred to as multisample
 rasterization. Otherwise, primitive rasterizat ion operates as it is
 described in the GL specification, and is refer red to as single-
 sample rasterization. The value of SAMPLE_BUFF ERS_ARB is an
 implementation dependent constant, and is queri ed by calling
 GetIntegerv with <pname> set to SAMPLE_BUFFERS_ ARB. This value is
 the same as GLX_SAMPLE_BUFFERS_ARB or WGL_SAMPL E_BUFFERS_ARB for
 the visual or pixel format associated with the context.

 During multisample rendering the contents of a pixel fragment are
 changed in two ways. First, each fragment incl udes a coverage
 value with SAMPLES_ARB bits. The value of SAMP LES_ARB is an
 implementation-dependent constant, and is queri ed by calling
 GetIntegerv with <pname> set to SAMPLES_ARB. S econd, each fragment
 includes SAMPLES_ARB depth values, instead of t he single depth
 value that is maintained in single-sample rende ring mode. Each
 pixel fragment thus consists of integer x and y grid coordinates,
 a color, SAMPLES_ARB depth values, texture coor dinates, and a
 coverage value with a maximum of SAMPLES_ARB bi ts.

 The behavior of multisample rasterization is a function of
 MULTISAMPLE_ARB, which is enabled and disabled by calling Enable or
 Disable, with <cap> set to MULTISAMPLE_ARB. It s value is queried
 using IsEnabled, with <cap> set to MULTISAMPLE_ ARB.

 If MULTISAMPLE_ARB is disabled, multisample ras terization of all
 primitives is equivalent to single-sample raste rization, except
 that the fragment coverage value is set to full coverage. The
 depth values may all be set to the single value that would have

ARB_multisample NVIDIA OpenGL Extension Specifications

 156

 been assigned by single-sample rasterization, o r they may be
 assigned as described below for multisample ras terization.

 If MULTISAMPLE_ARB is enabled, multisample rast erization of all
 primitives differs substantially from single-sa mple rasterization.
 It is understood that each pixel in the framebu ffer has SAMPLES_ARB
 locations associated with it. These locations are exact positions,
 rather than regions or areas, and each is refer red to as a sample
 point. The sample points associated with a pixe l may be located
 inside or outside of the unit square that is co nsidered to bound
 the pixel. Furthermore, the relative locations of sample points
 may be identical for each pixel in the framebuf fer, or they may
 differ.

 If the sample locations differ per pixel, they should be aligned to
 window, not screen, boundaries. Otherwise rend ering results will
 be window-position specific. The invariance re quirement described
 in section 3.1 is relaxed for all enabled multi sample rendering,
 because the sample locations may be a function of pixel location.

 It is not possible to query the actual sample l ocations of a pixel.

 Point Multisample Rasterization
 [Insert before section 3.3.1]

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is a value of
 one, then points are rasterized using the follo wing algorithm,
 regardless of whether point antialiasing (POINT _SMOOTH) is enabled
 or disabled. Point rasterization produces a fr agment for each
 framebuffer pixel with one or more sample point s that intersect the
 region lying within the circle having diameter equal to the current
 point width and centered at the point's (Xw,Yw) . Coverage bits
 that correspond to sample points that intersect the circular region
 are 1, other coverage bits are 0. All depth va lues of the fragment
 are assigned the depth value of the point being rasterized. Other
 data associated with each fragment are the data associated with the
 point being rasterized.

 Point size range and number of gradations are e quivalent to those
 supported for antialiased points.

 Line Multisample Rasterization
 [Insert before section 3.4.3]

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is a value of
 one, then lines are rasterized using the follow ing algorithm,
 regardless of whether line antialiasing (LINE_S MOOTH) is enabled
 or disabled. Line rasterization produces a frag ment for each
 framebuffer pixel with one or more sample point s that intersect the
 rectangular region that is described in the Ant ialiasing section of
 3.4.2 (Other Line Segment Features). If line s tippling is enabled,
 the rectangular region is subdivided into adjac ent unit-length
 rectangles, with some rectangles eliminated acc ording to the
 procedure given under Line Stipple, where "frag ment" is replaced
 by "rectangle".

NVIDIA OpenGL Extension Specifications ARB_multisample

 157

 Coverage bits that correspond to sample points that intersect a
 retained rectangle are 1, other coverage bits a re 0. Each depth
 value is produced by substituting the correspon ding sample location
 into equation 3.1, then using the result to eva luate equation 3.3.
 The data associated with each fragment are othe rwise computed by
 evaluating equation 3.1 at the fragment center, then substituting
 into equation 3.2.

 Line width range and number of gradations are e quivalent to those
 supported for antialiased lines.

 Polygon Multisample Rasterization
 [Insert before section 3.5.6]

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is a value of
 one, then polygons are rasterized using the fol lowing algorithm,
 regardless of whether polygon antialiasing (POL YGON_SMOOTH) is
 enabled or disabled. Polygon rasterization prod uces a fragment for
 each framebuffer pixel with one or more sample points that satisfy
 the point sampling criteria described in sectio n 3.5.1, including
 the special treatment for sample points that li e on a polygon
 boundary edge. If a polygon is culled, based o n its orientation
 and the CullFace mode, then no fragments are pr oduced during
 rasterization. Fragments are culled by the poly gon stipple just as
 they are for aliased and antialiased polygons.

 Coverage bits that correspond to sample points that satisfy the
 point sampling criteria are 1, other coverage b its are 0. Each
 depth value is produced by substituting the cor responding sample
 location into the barycentric equations describ ed in section 3.5.1,
 using the approximation to equation 3.4 that om its w components.
 The data associated with each fragment are othe rwise computed by
 barycentric evaluation using the fragment's cen ter point.

 The rasterization described above applies only to the FILL state of
 PolygonMode. For POINT and LINE, the rasteriza tions described in
 the Point Multisample Rasterization and the Lin e Multisample
 Rasterization sections apply.

 Pixel Rectangle Multisample Rasterization
 [Insert before section 3.6.5]

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is a value of
 one, then pixel rectangles are rasterized using the following
 algorithm. Let (Xrp,Yrp) be the current raster position. (If the
 current raster position is invalid, then DrawPi xels is ignored.)
 If a particular group (index or components) is the nth in a row and
 belongs to the mth row, consider the region in window coordinates
 bounded by the rectangle with corners

 (Xrp + Zx*n, Yrp + Zy*m)

 and

 (Xrp + Zx*(n+1), Yrp + Zy*(m+1))

 where Zx and Zy are the pixel zoom factors spec ified by PixelZoom,

ARB_multisample NVIDIA OpenGL Extension Specifications

 158

 and may each be either positive or negative. A fragment
 representing group n,m is produced for each fra mebuffer pixel with
 one or more sample points that lie inside, or o n the bottom or
 left boundary, of this rectangle. Each fragmen t so produced takes
 its associated data from the group and from the current raster
 position, in a manner consistent with the discu ssion in the
 Conversion to Fragments subsection of section 3 .6.4 of the GL
 specification. All depth sample values are ass igned the same
 value, taken either from the group (if it is a depth component
 group) or from the current raster position (if it is not).

 A single pixel rectangle will generate multiple , perhaps very many
 fragments for the same framebuffer pixel, depen ding on the pixel
 zoom factors.

 Bitmap Multisample Rasterization
 [Insert at the end section 3.7]

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is a value of
 one, then bitmaps are rasterized using the foll owing algorithm. If
 the current raster position is invalid, the bit map is ignored.
 Otherwise, a screen-aligned array of pixel-size rectangles is
 constructed, with its lower-left corner at (Xrp ,Yrp), and its upper
 right corner at (Xrp+w,Yrp+h), where w and h ar e the width and
 height of the bitmap. Rectangles in this array are eliminated if
 the corresponding bit in the bitmap is zero, an d are retained
 otherwise. Bitmap rasterization produces a fra gment for each
 framebuffer pixel with one or more sample point s either inside or
 on the bottom or left edge of a retained rectan gle.

 Coverage bits that correspond to sample points either inside or on
 the bottom or left edge of a retained rectangle are 1, other
 coverage bits are 0. The associated data for e ach fragment are
 those associated with the current raster positi on. Once the
 fragments have been produced, the current raste r position is
 updated exactly as it is in the single-sample r asterization case.

Additions to Chapter 4 of the 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

 Multisample Fragment Operations
 [Insert after section 4.1.2]

 This step modifies fragment alpha and coverage values based on the
 values of SAMPLE_ALPHA_TO_COVERAGE_ARB, SAMPLE_ ALPHA_TO_ONE_ARB,
 SAMPLE_COVERAGE_ARB, SAMPLE_COVERAGE_VALUE_ARB, and
 SAMPLE_COVERAGE_INVERT_ARB. No changes to the fragment alpha or
 coverage values are made at this step if MULTIS AMPLE_ARB is
 disabled, or if SAMPLE_BUFFERS_ARB is not a val ue of one.

 SAMPLE_ALPHA_TO_COVERAGE_ARB, SAMPLE_ALPHA_TO_ONE_ARB, and
 SAMPLE_COVERAGE_ARB are enabled and disabled by calling Enable and
 Disable with <cap> specified as one of the thre e token values. All
 three values are queried by calling IsEnabled, with <cap> set to
 the desired token value. If SAMPLE_ALPHA_TO_COV ERAGE_ARB is
 enabled, the fragment alpha value is used to ge nerate a temporary
 coverage value, which is then ANDed with the fr agment coverage

NVIDIA OpenGL Extension Specifications ARB_multisample

 159

 value. Otherwise the fragment coverage value i s unchanged at
 this point.

 This specification does not require a specific algorithm for
 converting an alpha value to a temporary covera ge value. It is
 intended that the number of 1's in the temporar y coverage be
 proportional to the alpha value, with all 1's c orresponding to the
 maximum alpha value, and all 0's corresponding to an alpha value
 of 0. It is also intended that the algorithm b e pseudo-random in
 nature, to avoid image artifacts due to regular coverage sample
 locations. The algorithm can and probably shou ld be different
 at different pixel locations. If it does diffe r, it should be
 defined relative to window, not screen, coordin ates, so that
 rendering results are invariant with respect to window position.

 Next, if SAMPLE_ALPHA_TO_ONE_ARB is enabled, fr agment alpha is
 replaced by the maximum representable alpha val ue. Otherwise,
 fragment alpha value is not changed.

 Finally, if SAMPLE_COVERAGE_ARB is enabled, the fragment coverage
 is ANDed with another temporary coverage. This temporary coverage
 is generated in the same manner as the one desc ribed above, but as
 a function of the value of SAMPLE_COVERAGE_VALU E_ARB. The function
 need not be identical, but it must have the sam e properties of
 proportionality and invariance. If SAMPLE_COVE RAGE_INVERT_ARB is
 TRUE, the temporary coverage is inverted (all b it values are
 inverted) before it is ANDed with the fragment coverage.

 The values of SAMPLE_COVERAGE_VALUE_ARB and
 SAMPLE_COVERAGE_INVERT_ARB are specified simult aneously by calling
 SampleCoverageARB, with <value> set to the desi red coverage value,
 and <invert> set to TRUE or FALSE. <value> is c lamped to [0,1]
 before being stored as SAMPLE_COVERAGE_VALUE_AR B.
 SAMPLE_COVERAGE_VALUE_ARB is queried by calling GetFloatv with
 <pname> set to SAMPLE_COVERAGE_VALUE_ARB.
 SAMPLE_COVERAGE_INVERT_ARB is queried by callin g GetBooleanv with
 <pname> set to SAMPLE_COVERAGE_INVERT_ARB.

 Multisample Fragment Operations
 [Insert after section 4.1.8]

 If the DrawBuffers mode is NONE, no change is m ade to any
 multisample or color buffer. Otherwise, fragme nt processing is as
 described below.

 If MULTISAMPLE_ARB is enabled, and SAMPLE_BUFFE RS_ARB is one, the
 stencil test, depth test, blending, and ditheri ng operations
 are performed for each pixel sample, rather tha n just once for each
 fragment. Failure of the stencil or depth test results in
 termination of the processing of that sample, r ather than
 discarding of the fragment. All operations are performed on the
 color, depth, and stencil values stored in the multisample buffer
 (to be described in a following section). The contents of the
 color buffers are not modified at this point.

 Stencil, depth, blending, and dithering operati ons are performed
 for a pixel sample only if that sample's fragme nt coverage bit is

ARB_multisample NVIDIA OpenGL Extension Specifications

 160

 a value of 1. If the corresponding coverage bi t is 0, no
 operations are performed for that sample. Dept h operations use
 the fragment depth value that is specific for e ach sample. The
 single fragment color value is used for all sam ple operations,
 however, as is the current stencil value.

 If MULTISAMPLE_ARB is disabled, and SAMPLE_BUFF ERS_ARB is one, the
 fragment may be treated exactly as described ab ove, with
 optimization possible because the fragment cove rage must be set
 to full coverage. Further optimization is allow ed, however. An
 implementation may choose to identify a centerm ost sample, and to
 perform stencil and depth tests on only that sa mple. Regardless
 of the outcome of the stencil test, all multisa mple buffer stencil
 sample values are set to the appropriate new st encil value. If
 the depth test passes, all multisample buffer d epth sample values
 are set to the depth of the fragment's centermo st sample's depth
 value, and all multisample buffer color sample values are set to
 the color value of the incoming fragment. Othe rwise, no change is
 made to any multisample buffer color or depth v alue.

 After all operations have been completed on the multisample buffer,
 the color sample values are combined to produce a single color
 value, and that value is written into each colo r buffer that is
 currently enabled, based on the DrawBuffers mod e. An
 implementation may defer the writing of the col or buffer until a
 later time, but the state of the framebuffer mu st behave as if the
 color buffer was updated as each fragment was p rocessed. The
 method of combination is not specified, though a simple average
 computed independently for each color component is recommended.

 Fine Control of Multisample Buffer Updates
 [Insert at the end of section 4.2.2]

 When SAMPLE_BUFFERS_ARB is one, ColorMask, Dept hMask, and
 StencilMask control the modification of values in the multisample
 buffer. The color mask has no effect on modifi cations to the color
 buffers. If the color mask is entirely disable d, the color sample
 values must still be combined (as described abo ve) and the result
 used to replace the color values of the buffers enabled by
 DrawBuffers.

 Clearing the Multisample Buffer
 [Insert as a subsection for section 4.2.3]

 The color samples of the multisample buffer are cleared when one or
 more color buffers are cleared, as specified by the Clear mask bit
 COLOR_BUFFER_BIT and the DrawBuffers mode. If the DrawBuffers mode
 is NONE, the color samples of the multisample b uffer cannot be
 cleared.

 Clear mask bits DEPTH_BUFFER_BIT and STENCIL_BU FFER_BIT indicate
 that the depth and stencil samples of the multi sample buffer are to
 be cleared. If Clear mask bit DEPTH_BUFFER_BIT is specified, and
 if the DrawBuffers mode is not NONE, then the m ultisample depth
 buffer samples are cleared. Likewise, if Clear mask bit
 STENCIL_BUFFER_BIT is specified, and if the Dra wBuffers mode is
 not NONE, then the multisample stencil buffer i s cleared.

NVIDIA OpenGL Extension Specifications ARB_multisample

 161

 Reading Pixels
 [These changes are made to the text in section 4.3.2, following the
 subheading Obtaining Pixels from the Framebuffe r.]

 Follow the sentence "If there is no depth buffe r, the error
 INVALID_OPERATION occurs." with: If there is a multisample buffer
 (SAMPLE_BUFFERS_ARB is 1) then values are obtai ned from the depth
 samples in this buffer. It is recommended that the depth value
 of the centermost sample be used, though implem entations may choose
 any function of the depth sample values at each pixel.

 Follow the sentence "if there is no stencil buf fer, the error
 INVALID_OPERATION occurs." with: If there is a multisample buffer,
 then values are obtained from the stencil sampl es in this buffer.
 It is recommended that the stencil value of the centermost sample
 be used, though implementations may choose any function of the
 stencil sample values at each pixel.

 [This extension makes no change to the way that color values are
 obtained from the framebuffer.]

Additions to Chapter 5 of the 1.2.1 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State
Requests)

 An additional group of state variables, MULTISA MPLE_BIT_ARB, is
 defined by this extension. When PushAttrib is called with bit
 MULTISAMPLE_BIT_ARB set, the multisample group of state variables
 is pushed onto the attribute stack. When PopAt trib is called,
 these state variables are restored to their pre vious values if
 they were pushed. Some multisample state is in cluded in the
 ENABLE_BIT group as well. In order to avoid inc ompatibility with
 GL implementations that do not support SGIS_mul tisample,
 ALL_ATTRIB_BITS does not include MULTISAMPLE_BI T_ARB.

Additions to the GLX Specification

 The parameter GLX_SAMPLE_BUFFERS_ARB is added t o glXGetConfig.
 When queried, by calling glXGetConfig with <att rib> set to
 GLX_SAMPLE_BUFFERS_ARB, it returns the number o f multisample
 buffers included in the visual. For a normal v isual, the return
 value is zero. A return value of one indicates that a single
 multisample buffer is available. The number of samples per pixel
 is queried by calling glXGetConfig with <attrib > set to
 GLX_SAMPLES_ARB. It is understood that the num ber of color, depth,
 and stencil bits per sample in the multisample buffer are as
 specified by the GLX_*_SIZE parameters. It is also understood that
 there are no single-sample depth or stencil buf fers associated with
 this visual -- the only depth and stencil buffe rs are those in the
 multisample buffer. GLX_SAMPLES_ARB is zero if
 GLX_SAMPLE_BUFFERS_ARB is zero.

ARB_multisample NVIDIA OpenGL Extension Specifications

 162

 glXChooseVisual accepts GLX_SAMPLE_BUFFERS_ARB in <attribList>,
 followed by the minimum number of multisample b uffers that can be
 accepted. Visuals with the smallest number of multisample buffers
 that meets or exceeds the specified minimum num ber are preferred.
 Currently operation with more than one multisam ple buffer is
 undefined, so the returned value will be either zero or one.

 glXChooseVisual accepts GLX_SAMPLES_ARB in <att ribList>, followed
 by the minimum number of samples that can be ac cepted in the
 multisample buffer. Visuals with the smallest number of samples
 that meets or exceeds the specified minimum num ber are preferred.

 If the color samples in the multisample buffer store fewer bits
 than are stored in the color buffers, this fact will not be
 reported accurately. Presumably a compression scheme is being
 employed, and is expected to maintain an aggreg ate resolution
 equal to that of the color buffers.

GLX Protocol

 TBD

Additions to the WGL Specification

 The parameter WGL_SAMPLE_BUFFERS_ARB is added t o
 wglGetPixelFormatAttrib*v. When queried, by cal ling
 wglGetPixelFormatAttrib*v with <piAttributes> s et to
 WGL_SAMPLE_BUFFERS_ARB, it returns the number o f multisample
 buffers included in the pixel format. For a no rmal pixel format,
 the return value is zero. A return value of on e indicates that a
 single multisample buffer is available. The nu mber of samples per
 pixel is queried by calling wglGetPixelFormatAt trib*v with
 <piAttributes> set to WGL_SAMPLES_ARB. It is u nderstood that the
 number of color, depth, and stencil bits per sa mple in the
 multisample buffer are as specified by the WGL_ *_SIZE parameters.
 It is also understood that there are no single- sample depth or
 stencil buffers associated with this visual -- the only depth and
 stencil buffers are those in the multisample bu ffer.
 WGL_SAMPLES_ARB is zero if WGL_SAMPLE_BUFFERS_A RB is zero.

 wglChoosePixelFormatEXT accepts WGL_SAMPLE_BUFF ERS_ARB in
 <piAttribIList> and <pfAttribIList> with the co rresponding value
 set to the minimum number of multisample buffer s that can be
 accepted. Pixel formats with the smallest numb er of multisample
 buffers that meets or exceeds the specified min imum number are
 preferred. Currently operation with more than o ne multisample
 buffer is undefined, so the returned value will be either zero or
 one.

 If the color samples in the multisample buffer store fewer bits
 than are stored in the color buffers, this fact will not be
 reported accurately. Presumably a compression scheme is being
 employed, and is expected to maintain an aggreg ate resolution
 equal to that of the color buffers.

NVIDIA OpenGL Extension Specifications ARB_multisample

 163

Errors

 INVALID_OPERATION is generated if SampleCoverag eARB is called
 between the execution of Begin and the executio n of the
 corresponding End.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
MULTISAMPLE_ARB IsEnabled B TRUE multisample/enable
SAMPLE_ALPHA_TO_COVERAGE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_ALPHA_TO_ONE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_COVERAGE_ARB IsEnabled B FALSE multisample/enable
SAMPLE_COVERAGE_VALUE_ARB GetFloatv R+ 1 multisample
SAMPLE_COVERAGE_INVERT_ARB GetBooleanv B FALSE multisample

New Implementation Dependent State

 Get Value Get Command Type Minimum Value
 --------- ----------- ---- -------------
 SAMPLE_BUFFERS_ARB GetIntegerv Z+ 0
 SAMPLES_ARB GetIntegerv Z+ 0

Conformance Testing

 TBD

Revision History

 09/20/1999 0.1
 - First ARB draft based on the original SGI draft.

 10/1/1999 0.2
 - Added query for the number of passes.

 11/8/1999 0.3
 - Fixed numerous typos reported by E&S.

 12/7/1999 0.4
 - Removed the multiple pass feature.
 - Resolved the working group issues at the ARB meeting.
 - Added language that stated that SAMPLE_BU FFERS_ARB is the
 same value as either GLX_SAMPLE_BUFFERS_A RB or
 WGL_SAMPLE_BUFFERS_ARB.

 12/15/1999 0.5
 - Added back in the statement about ALL_ATT RIB_BITS not
 including MULTISAMPLE_BIT_ARB.

ARB_multitexture NVIDIA OpenGL Extension Specifications

 164

Name Strings

 ARB_multitexture

Name Strings

 GL_ARB_multitexture

Status

 Complete. Approved by ARB on 9/15/1998

NOTE: This extension no longer has its own specific ation document, since
 it has been included in the OpenGL 1.2.1 Specif ication (downloadable
 from www.opengl.org). Please refer to the 1.2.1 Specification for
 more information.

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 165

Name

 ARB_occlusion_query

Name Strings

 GL_ARB_occlusion_query

Notice

 Copyright NVIDIA Corporation, 2001-2003.

IP Status

 HP has claimed that they hold IP around use of this extension. HP
 has committed to releasing rights to this IP to the ARB if the
 functionality is included in OpenGL (April 10, 2003).

Status

 Approved by the ARB (version 1.0), June 10, 200 3, pending further minor
 revisions

Version

 NVIDIA Date: June 24, 2003
 $Id: //sw/main/docs/OpenGL/specs/GL_ARB_occlusi on_query.txt#2 $

Number

 ARB Extension #29

Dependencies

 Written based on the wording of the OpenGL 1.4 specification.

 HP_occlusion_test affects the definition of thi s extension.

Overview

 This extension defines a mechanism whereby an a pplication can query
 the number of pixels (or, more precisely, sampl es) drawn by a
 primitive or group of primitives.

 The primary purpose of such a query (hereafter referred to as an
 "occlusion query") is to determine the visibili ty of an object.
 Typically, the application will render the majo r occluders in the
 scene, then perform an occlusion query for the bounding box of each
 detail object in the scene. Only if said bound ing box is visible,
 i.e., if at least one sample is drawn, should t he corresponding object
 be drawn.

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 166

 The earlier HP_occlusion_test extension defined a similar mechanism,
 but it had two major shortcomings.

 - It returned the result as a simple GL_TRUE/GL _FALSE result, when in
 fact it is often useful to know exactly how m any samples were
 drawn.

 - It provided only a simple "stop-and-wait" mod el for using multiple
 queries. The application begins an occlusion test and ends it;
 then, at some later point, it asks for the re sult, at which point
 the driver must stop and wait until the resul t from the previous
 test is back before the application can even begin the next one.
 This is a very simple model, but its performa nce is mediocre when
 an application wishes to perform many queries , and it eliminates
 most of the opportunities for parallelism bet ween the CPU and GPU.

 This extension solves both of those problems. It returns as its
 result the number of samples that pass the dept h and stencil tests,
 and it encapsulates occlusion queries in "query objects" that allow
 applications to issue many queries before askin g for the result of
 any one. As a result, they can overlap the tim e it takes for the
 occlusion query results to be returned with oth er, more useful work,
 such as rendering other parts of the scene or p erforming other
 computations on the CPU.

 There are many situations where a pixel/sample count, rather than a
 boolean result, is useful.

 - Objects that are visible but cover only a ver y small number of
 pixels can be skipped at a minimal reduction of image quality.

 - Knowing exactly how many pixels an object mig ht cover may help the
 application decide which level-of-detail mode l should be used. If
 only a few pixels are visible, a low-detail m odel may be
 acceptable.

 - "Depth peeling" techniques, such as order-ind ependent transparency,
 need to know when to stop rendering more laye rs; it is difficult to
 determine a priori how many layers are needed . A boolean result
 allows applications to stop when more layers will not affect the
 image at all, but this will likely result in unacceptable
 performance. Instead, it makes more sense to stop rendering when
 the number of pixels in each layer falls belo w a given threshold.

 - Occlusion queries can replace glReadPixels of the depth buffer to
 determine whether (for example) a light sourc e is visible for the
 purposes of a lens flare effect or a halo to simulate glare. Pixel
 counts allow you to compute the percentage of the light source that
 is visible, and the brightness of these effec ts can be modulated
 accordingly.

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 167

Issues

 How is this extension different from NV_occlusi on_query?

 The following changes have been made.
 - A "target" parameter has been added. Onl y one target exists at
 present, SAMPLES_PASSED_ARB, but future e xtensions could add
 additional types of queries.
 - Terminology changed slightly. "Pixel" wa s being used
 incorrectly, where "fragment" or "sample" would be more
 accurate.
 - Various NVIDIA-specific references have b een removed.
 - Interactions with multisample have been c hanged slightly to
 allow implementations based on either a s ample count or a
 fragment count. The result is returned i n units of samples.
 - Clarified that using an id of zero is ill egal.
 - Added missing spec language for IsQuery e ntry point.
 - General language, issues, etc. cleanup.
 - HP_occlusion_test is no longer required.
 - Modified the minimum required counter bit s to be dependent on
 the implementation's maximum viewport or the value 0
 - Clarified that active query state is per target server state.
 This implies that a loop of QUERY_RESULT_ AVAILABLE_ARB will
 return TRUE in finite time. NV_occlusion _query asked
 that the application flush to prevent an infinite loop.
 - Clarified the behavior of the async QUERY _RESULT_AVAILABLE_ARB
 command.
 - When the count of samples that pass the o cclusion query overflows,
 the value should saturate.

 Should we use an object-based interface?

 RESOLVED: Yes, this makes the interface muc h simpler, and it is
 friendly for indirect rendering.

 What is the difference between a "query object" and an "occlusion
 query"?

 "Occlusion query" is a synonym for "query o bject used with target
 SAMPLES_PASSED".

 Should we offer a way to poll whether an occlus ion query has
 completed and its result is available?

 RESOLVED. Yes, this allows applications to use CPU time
 that might have been spent spinning more us efully. However,
 the polling method introduced in the NV_occ lusion_query spec
 allowed for a potential infinite loop if th e application does
 not do a flush. This version of the spec c larifies the behavior
 which now makes such a flush unnecessary.

 Is GetQueryObjectuivARB necessary?

 RESOLVED: Yes, it makes using a 32-bit coun t less painful.

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 168

 Should there be a limit on how many queries can be outstanding?

 RESOLVED: No. This would make the extensio n much more
 difficult to spec and use. Allowing this d oes not add any
 significant implementation burden; and even if drivers have some
 internal limit on the number of outstanding queries, it is not
 expected that applications will need to kno w this to achieve
 optimal or near-optimal performance.

 What happens if BeginQueryARB is called when a query is already
 outstanding for a different object on the same target?

 RESOLVED: This is an INVALID_OPERATION erro r.

 What happens if BeginQueryARB is called with an ID of a query that is
 already in progress?

 RESOLVED: This is also an INVALID_OPERATION error.

 What parameters should EndQueryARB have?

 RESOLVED: Just a target. It doesn't need t o take an "id"
 argument, since this would be redundant -- only one query can be
 active for any given target at a given time .

 How many bits should we require the samples-pas sed count to be, at
 minimum?

 RESOLVED. The largest minimum that can be r equired of a GL
 implementation is 32, the minimum bit width of an int or uint.

 The minimum number of bits required for the samples-passed count
 will be dependent on the implementation's m aximum viewport size.
 In order to allow for two overdraws in the case of only one sample
 buffer, the minimum counter precision (n) w ill be determined by:

 n = min (32 , ceil (log2 (maxViewportWidth x maxViewportHeight x
 1 sample x 2 overdraws)))

 An implementation can either set QUERY_COUN TER_BITS_ARB to
 the value 0, or to some number greater than or equal to n.
 If an implementation returns 0 for QUERY_CO UNTER_BITS_ARB,
 then the occlusion queries will always retu rn that zero samples
 passed the occlusion test, and so an applic ation should not use
 occlusion queries on that implementation.

 Note that other targets may come along in t he future that require
 more or fewer bits.

 What should we do about overflows?

 RESOLVED: Overflows are required to saturat e, though it is
 expected that several current implementatio ns will not conform
 to this requirement.

 The ideal behavior is to saturate. This en sures that you always
 get a "large" result when you render many s amples. It also

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 169

 ensures that apps which want a boolean test can do this without
 worrying about the rare case where the resu lt ends up exactly
 at zero after wrapping.

 Either way, it's unlikely that this matters much as long as a
 sufficient number of bits are required.

 What is the interaction with multisample?

 RESOLVED: We count samples, not pixels -- e ven if MULTISAMPLE is
 disabled but SAMPLE_BUFFERS is 1.

 A given fragment may have anywhere between zero and SAMPLES of
 its samples covered. Ideally, the samples- passed count would be
 incremented by the precise number of sample s, but we permit
 implementations to instead increment the sa mples-passed count by
 SAMPLES if at least one sample in a given f ragment is covered.

 Note that the depth/stencil test optimizati on whereby
 implementations may choose to depth test at only one of the
 samples when MULTISAMPLE is disabled does n ot cause this to
 become ill-specified, because we are counti ng the number of
 samples that are still alive _after_ the d epth test stage.
 The particular mechanism used to decide whe ther to kill or keep
 those samples is not relevant.

 Exactly what stage in the pipeline are we count ing samples at?

 RESOLVED: We are counting immediately after _both_ the depth
 and stencil tests, i.e., samples that pass both. Note that the
 depth test comes after the stencil test, so to say that it is
 the number that pass the depth test is suff icient; though it
 is often conceptually helpful to think of t he depth and stencil
 tests as being combined, because the depth test's result impacts
 the stencil operation used.

 Is it guaranteed that occlusion queries return in order?

 RESOLVED: Yes. It makes sense to do this. If occlusion test X
 occurred before occlusion query Y, and the driver informs the app
 that occlusion query Y is done, the app can infer that occlusion
 query X is also done. For applications tha t do poll, this allows
 them to do so with less effort.

 Will polling a query without a Flush possibly c ause an infinite loop?

 RESOLVED: No. An infinite loop was possibl e in the original
 NV_occlusion_query spec if an application d id not perform a flush
 prior to polling. This behavior was remove d in this version of
 the spec as it violated language in the cor e GL spec.

 Instead of allowing for an infinite loop, p erforming a
 QUERY_RESULT_AVAILABLE_ARB will perform a f lush if the result
 is not ready yet on the first time it is qu eried. This ensures
 that the async query will return true in fi nite time.

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 170

 This behavior is not a significant performa nce loss over
 the original version of the spec. A flush would need to be
 performed at some point anyway and the flus h performed when
 QUERY_RESULT_AVAILABLE_ARB is requested wil l only occur *if the
 result is not back yet*.

 What should be the interaction between this spe c and
 HP_occlusion_test?

 RESOLVED: Whereas NV_occlusion_query requir ed that you implement
 HP_occlusion_test, and even went so far as to specify the precise
 behavior of HP_occlusion_test (since the HP _occlusion_test spec
 did not contain those details), this spec d oes not. This spec
 explains the interaction with HP_occlusion_ test, but does not
 attempt to double as a spec for that extens ion.

 What happens if HP_occlusion_test and ARB_occlu sion_query usage is
 overlapped?

 RESOLVED: The two can be overlapped safely. Counting is enabled
 if either an occlusion query is active *or* OCCLUSION_TEST_HP is
 enabled. The alternative (producing an err or) does not work --
 it would require that PopAttrib be capable of producing an error,
 which would be rather problematic.

 Note that BeginQueryARB, not EndQueryARB, r esets the sample
 count (and therefore the occlusion test res ult). This can avoid
 certain types of strange behavior where an occlusion query's
 samples-passed count does not always corres pond to the samples
 rendered during the occlusion query. The s pec would make sense
 the other way, but the behavior would be st range.

 Should there be a "target" parameter to BeginQu eryARB?

 RESOLVED: Yes. Whereas NV_occlusion_query wasn't trying to solve
 a problem beyond simple occlusion queries, this extension creates
 a framework useful for future queries.

 Does GenQueriesARB need a "target" parameter?

 RESOLVED: No. A query can be reused any nu mber of times with any
 targets.

 How can one ask for the currently active query?

 RESOLVED: A new entry point has been added to query information
 about a given query target. This makes it unnecessary to add two
 new enumerants (# of bits and current query ID) for each new
 target that is introduced.

 Are query objects shareable between multiple co ntexts?

 RESOLVED: No. Query objects are lightweigh t and we normally
 share large data across contexts. Also, be ing able to share query
 objects across contexts is not particularly useful. In order to
 do the async query across contexts, a query on one context would
 have to be finished before the other contex t could query it.

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 171

 What happens when an app begins a query on a ta rget, ends it, begins a
 query on the same target with the same id, ends it, and then tries
 to retrieve data about the query using GetQuery Objecti[u]vARB?
 Which query does the GetQueryObjecti[u]vARB ret urn results for?

 RESOLVED. In this case, the result retriev ed from
 GetQueryObjecti[u]vARB will be from the la st query on that
 target and id. The result returned from Ge tQueryObjecti[u]vARB
 will always be from the last BeginQueryARB/ EndQueryARB pair on
 that target and id.

 Is this extension useful for saving geometry, f ill rate, or both?

 The answer to this question is to some exte nt implementation-
 dependent, but it is expected that it is mo st useful for reducing
 geometry workload, and less so for fill rat e.

 For the cost of rendering a bounding box, y ou can potentially
 save rendering a normal object. A bounding box consists of only
 12 triangles, whereas the original object m ight have contained
 thousands or even millions of triangles.

 Using bounding box occlusion queries may ei ther help or hurt in
 fill-limited situations, because rendering the pixels of a
 bounding box is not free. In most situatio ns, a bounding box
 will probably have more pixels than the ori ginal object. Those
 pixels can probably be rendered more quickl y, though, since they
 involve only Z reads (no Z writes or color traffic), and they
 need not be textured or otherwise shaded.

 In multipass rendering situations, however, occlusion queries can
 almost always save fill rate, because wrapp ing an object with an
 occlusion query is generally cheap. See "U sage Examples" for an
 illustration.

 What can be said about guaranteeing correctness when using
 occlusion queries, especially as it relates to invariance?

 Invariance is critical to guarantee the cor rectness of occlusion
 queries. If occlusion queries go through a different code path
 than standard rendering, the fragments rend ered may be different.

 However, the invariance issues are difficul t at best to solve.
 Because of the vagaries of floating-point p recision, it is
 difficult to guarantee that rendering a bou nding box will render
 at least as many pixels with equal or small er Z values than the
 object itself would have rendered.

 Likewise, many other aspects of rendering s tate tend to be
 different when performing an occlusion quer y. Color and depth
 writes are typically disabled, as are textu ring, vertex programs,
 and any fancy per-fragment math. So unless all these features
 have guarantees of invariance themselves (u nlikely at best),
 requiring invariance for ARB_occlusion_quer y would be futile.

 In general, implementations are recommended to be fully invariant

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 172

 with respect to whether any given type of q uery is active,
 insofar as it is possible. That is, having an occlusion query
 active should not affect the operation of a ny other stage of
 the pipeline. Following this rule is essen tial to numerous
 occlusion query algorithms working correctl y. However, to permit
 implementations where this feature is imple mented in software,
 this rule is only a recommendation, not a r equirement.

 Another unrelated problem that can threaten correctness is near
 and far clipping. The bounding box of an o bject may penetrate the
 near clip plane, even though the original o bject may not have.
 In such a circumstance, a bounding box occl usion query may
 produce an incorrect result. Whenever you design an algorithm
 using occlusion queries, it is best to be c areful about the near
 and far clip planes.

 How can frame-to-frame coherency help applicati ons using this
 extension get even higher performance?

 Usually, if an object is visible one frame, it will be visible
 the next frame, and if it is not visible, i t will not be visible
 the next frame.

 Of course, for most applications, "usually" isn't good enough.
 It is undesirable, but acceptable, to rende r an object that
 isn't visible, because that only costs pe rformance. It is
 generally unacceptable to *not* render an o bject that *is*
 visible.

 The simplest approach is that visible objec ts should be checked
 every N frames (where, say, N=5) to see if they have become
 occluded, while objects that were occluded last frame must be
 rechecked again in the current frame to gua rantee that they are
 still occluded. This will reduce the numbe r of wasteful
 occlusion queries by almost a factor of N.

 Other, more complicated techniques exist bu t are beyond the scope
 of this extension document.

 Do occlusion queries make other visibility algo rithms obsolete?

 No.

 Occlusion queries are helpful, but they are not a cure-all. They
 should be only one of many items in your ba g of tricks to decide
 whether objects are visible or invisible. They are not an excuse
 to skip frustum culling, or precomputing vi sibility using portals
 for static environments, or other standard visibility techniques.

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 173

New Procedures and Functions

 void GenQueriesARB(sizei n, uint *ids);
 void DeleteQueriesARB(sizei n, const uint *ids) ;
 boolean IsQueryARB(uint id);
 void BeginQueryARB(enum target, uint id);
 void EndQueryARB(enum target);
 void GetQueryivARB(enum target, enum pname, int *params);
 void GetQueryObjectivARB(uint id, enum pname, i nt *params);
 void GetQueryObjectuivARB(uint id, enum pname, uint *params);

New Tokens

 Accepted by the <target> parameter of BeginQuer yARB, EndQueryARB,
 and GetQueryivARB:

 SAMPLES_PASSED_ARB 0x8914

 Accepted by the <pname> parameter of GetQueryiv ARB:

 QUERY_COUNTER_BITS_ARB 0x8864
 CURRENT_QUERY_ARB 0x8865

 Accepted by the <pname> parameter of GetQueryOb jectivARB and
 GetQueryObjectuivARB:

 QUERY_RESULT_ARB 0x8866
 QUERY_RESULT_AVAILABLE_ARB 0x8867

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 Modify Section 2.1, OpenGL Fundamentals (p. 4)

 (modify fourth paragraph, p. 4) It also means that queries and
 pixel read operations return state consistent w ith complete
 execution of all previously invoked GL commands , except where
 explicitly specified otherwise

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Add a new section "Occlusion Queries" between s ections 4.1.6 and
 4.1.7:

 "4.1.6A Occlusion Queries

 Occlusion queries can be used to track the numb er of fragments or
 samples that pass the depth test.

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 174

 Occlusion queries are associated with query obj ects. The command

 void GenQueriesARB(sizei n, uint *ids);

 returns <n> previously unused query object name s in <ids>. These
 names are marked as used, but no object is asso ciated with them until
 the first time they are used by BeginQueryARB. Query objects contain
 one piece of state, an integer result value. T his result value is
 initialized to zero when the object is created. Any positive integer
 except for zero (which is reserved for the GL) is a valid query
 object name.

 Query objects are deleted by calling

 void DeleteQueriesARB(sizei n, const uint *id s);

 <ids> contains <n> names of query objects to be deleted. After a
 query object is deleted, its name is again unus ed. Unused names in
 <ids> are silently ignored.

 An occlusion query can be started and finished by calling

 void BeginQueryARB(enum target, uint id);
 void EndQueryARB(enum target);

 where <target> is SAMPLES_PASSED_ARB. If Begin QueryARB is called
 with an unused <id>, that name is marked as use d and associated with
 a new query object. If BeginQueryARB is called while another query
 is already in progress with the same target, an INVALID_OPERATION
 error is generated. If EndQueryARB is called w hile no query with the
 same target is in progress, an INVALID_OPERATIO N error is generated.
 Calling either GenQueriesARB or DeleteQueriesAR B while any query of
 any target is active causes an INVALID_OPERATIO N error to be
 generated.

 BeginQueryARB with a <target> of SAMPLES_PASSED _ARB resets the
 current samples-passed count to zero and sets t he query active
 state to TRUE and the active query id to <id>. EndQueryARB with
 a target of SAMPLES_PASSED_ARB initializes a co py of the current
 samples-passed count into the active occlusion query object's results
 value, sets the active occlusion query object's result available to
 FALSE, sets the query active state to FALSE, an d the active query
 id to 0.

 If BeginQueryARB is called with an <id> of zero , or where <id> is the
 name of a query currently in progress, an INVAL ID_OPERATION error is
 generated.

 When an occlusion query is active, the samples- passed count increases
 by a certain quantity for each fragment that pa sses the depth test.
 If the value of SAMPLE_BUFFERS is 0, then the s amples-passed count
 increases by 1 for each fragment. If the value of SAMPLE_BUFFERS is
 1, then the samples-passed count increases by t he number of samples
 whose coverage bit is set. However, implementa tions, at their
 discretion, are allowed to instead increase the samples-passed count
 by the value of SAMPLES if any sample in the fr agment is covered.

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 175

 If the samples-passed count overflows, i.e., ex ceeds the value 2^n-1
 (where n is the number of bits in the samples-p assed count), its
 value becomes undefined. It is recommended, bu t not required, that
 implementations handle this overflow case by sa turating at 2^n-1 and
 incrementing no further.

 The necessary state is a single bit indicating whether an occlusion
 query is active, the identifier of the currentl y active occlusion
 query, and a counter keeping track of the numbe r of samples that
 have passed."

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 Add to the end of Section 5.4 "Display Lists":

 "DeleteQueriesARB, GenQueriesARB, IsQueryARB, G etQueryivARB,
 GetQueryObjectivARB, and GetQueryObjectuivARB a re not compiled into
 display lists but are executed immediately."

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 Add a new section 6.1.13 "Occlusion Queries":

 "The command

 boolean IsQueryARB(uint id);

 returns TRUE if <id> is the name of a query obj ect. If <id> is zero,
 or if <id> is a non-zero value that is not the name of a query
 object, IsQueryARB returns FALSE.

 Information about a query target can be queried with the command

 void GetQueryivARB(enum target, enum pname, i nt *params);

 If <pname> is CURRENT_QUERY_ARB, the name of th e currently active
 query for <target>, or zero if no query is acti ve, will be placed in
 <params>.

 If <pname> is QUERY_COUNTER_BITS_ARB, the numbe r of bits in the
 counter for <target> will be placed in <params> . The minimum number
 of query counter bits allowed is a function of the implementation's
 maximum viewport dimensions (MAX_VIEWPORT_DIMS) . If the counter
 is non-zero, then the counter must be able to r epresent at least
 two overdraws for every pixel in the viewport u sing only one sample
 buffer. The formula to compute the allowable m inimum value is below
 (where n is the minimum number of bits):

 n = (min (32, ceil (log2 (maxViewportWidth x maxViewportHeight x 2))))
 or 0

 If the value of n is 0, then the result from Ge tQueryiv(SAMPLES_PASSED_ARB)
 will always return 0,

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 176

 The state of a query object can be queried with the commands

 void GetQueryObjectivARB(uint id, enum pname, int *params);
 void GetQueryObjectuivARB(uint id, enum pname , uint *params);

 If <id> is not the name of a query object, or i f the query object
 named by <id> is currently active, then an INVA LID_OPERATION error is
 generated.

 If <pname> is QUERY_RESULT_ARB, then the query object's result value
 is placed in <params>.

 Often, query object results will be returned as ynchronously with
 respect to the host processor's operation. As a result, sometimes,
 if a result is queried, the host must wait unti l the result is back.
 If <pname> is QUERY_RESULT_AVAILABLE_ARB, the v alue placed in <params>
 indicates whether or not such a wait would occu r if the result of
 that query object were to be queried presently. A result of TRUE
 means no wait would be required; a result of FA LSE means that some
 wait would occur. It must always be true that if the result for
 one query is available, the result for all prev ious queries must
 also be available at that point in time.

 Querying the state for a given occlusion query forces that occlusion
 query to complete within a finite amount of tim e.

 If multiple queries are issued on the same targ et and id prior to
 calling GetQueryObject[u]iVARB, the result retu rned will always be
 from the last query issued. The results from a ny queries before
 the last one will be lost if the results are no t retrieved before
 starting a new query on the same target and id. "

Dependencies on HP_occlusion_test

 When GetIntegerv is called with <pname> of OCCL USION_TEST_RESULT_HP,
 the current samples-passed count is reset to ze ro. The occlusion
 test result is TRUE when the samples-passed cou nt is nonzero, and
 FALSE when it is zero. Sample counting is acti ve (i.e. the samples-
 passed count increases as fragments are drawn) whenever either an
 occlusion query is active *or* OCCLUSION_TEST_H P is enabled.

GLX Protocol

 Seven new GL commands are added.

 The following two rendering commands are sent t o the server as part
 of a glXRender request:

 BeginQueryARB
 2 12 rendering c ommand length
 2 ???? rendering c ommand opcode
 4 ENUM target
 4 CARD32 id

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 177

 EndQueryARB
 2 8 rendering c ommand length
 2 ???? rendering c ommand opcode
 4 ENUM target

 The remaining fivecommands are non-rendering co mmands. These
 commands are sent separately (i.e., not as part of a glXRender or
 glXRenderLarge request), using the glXVendorPri vateWithReply
 request:

 DeleteQueriesARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 ids

 GenQueriesARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 queries

 IsQueryARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused
 1 1 reply

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 178

 GetQueryivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetQueryObjectivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 179

 GetQueryObjectuivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 CARD32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofCARD32 params

Errors

 The error INVALID_VALUE is generated if GenQuer iesARB is called where
 <n> is negative.

 The error INVALID_VALUE is generated if DeleteQ ueriesARB is called
 where <n> is negative.

 The error INVALID_OPERATION is generated if Gen QueriesARB or
 DeleteQueriesARB is called when a query of any target is active.

 The error INVALID_ENUM is generated if BeginQue ryARB, EndQueryARB, or
 GetQueryivARB is called where <target> is not S AMPLES_PASSED_ARB.

 The error INVALID_OPERATION is generated if Beg inQueryARB is called
 when a query of the given <target> is already a ctive.

 The error INVALID_OPERATION is generated if End QueryARB is called
 when a query of the given <target> is not activ e.

 The error INVALID_OPERATION is generated if Beg inQueryARB is called
 where <id> is zero.

 The error INVALID_OPERATION is generated if Beg inQueryARB is called
 where <id> is is the name of a query currently in progress.

 The error INVALID_ENUM is generated if GetQuery ivARB is called where
 <pname> is not QUERY_COUNTER_BITS_ARB or CURREN T_QUERY_ARB.

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 180

 The error INVALID_OPERATION is generated if Get QueryObjectivARB or
 GetQueryObjectuivARB is called where <id> is no t the name of a query
 object.

 The error INVALID_OPERATION is generated if Get QueryObjectivARB or
 GetQueryObjectuivARB is called where <id> is th e name of a currently
 active query object.

 The error INVALID_ENUM is generated if GetQuery ObjectivARB or
 GetQueryObjectuivARB is called where <pname> is not QUERY_RESULT_ARB
 or QUERY_RESULT_AVAILABLE_ARB.

 The error INVALID_OPERATION is generated if any of the commands
 defined in this extension is executed between t he execution of Begin
 and the corresponding execution of End.

New State

(table 6.18, p. 233)

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------- ------ ----------- ------ ---------
- B - FALSE query active 4.1.6A -
CURRENT_QUERY_ARB Z+ GetQueryiv 0 active query ID 4.1.6A -
- Z+ - 0 samples-passed count 4.1.6A -

New Implementation Dependent State

(table 6.29, p. 224) Add the following entry:

Get Value Type Get Command Minim um Value Description Sec Attribute
---------------------- ---- ----------- ----- -------- ---------------- ------ ---------
QUERY_COUNTER_BITS_ARB Z+ GetQueryiv see 6 .1.13 Number of bits in 6.1.13 -
 query counter

Revision History

 none yet

NVIDIA OpenGL Extension Specifications ARB_occlusion_query

 181

Usage Examples

 Here is some rough sample code that illustrates how this extension
 can be used.

 GLuint queries[N];
 GLuint sampleCount;
 GLint available;
 GLuint bitsSupported;

 // check to make sure functionality is supp orted
 glGetQueryiv(GL_QUERY_COUNTER_BITS_ARB, &bi tsSupported);
 if (bitsSupported == 0) {
 // render scene without using occlusion queries
 }

 glGenQueriesARB(N, queries);
 ...
 // before this point, render major occluder s
 glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, G L_FALSE);
 glDepthMask(GL_FALSE);
 // also disable texturing and any fancy sha ders
 for (i = 0; i < N; i++) {
 glBeginQueryARB(GL_SAMPLES_PASSED_ARB, queries[i]);
 // render bounding box for object i
 glEndQueryARB(GL_SAMPLES_PASSED_ARB);
 }

 glFlush();

 // Do other work until "most" of the querie s are back, to avoid
 // wasting time spinning
 i = N*3/4; // instead of N-1, to prevent th e GPU from going idle
 do {
 DoSomeStuff();
 glGetQueryObjectivARB(queries[i],
 GL_QUERY_RESULT_A VAILABLE_ARB,
 &available);
 } while (!available);

 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_T RUE);
 glDepthMask(GL_TRUE);
 // reenable other state, such as texturing
 for (i = 0; i < N; i++) {
 glGetQueryObjectuivARB(queries[i], GL_Q UERY_RESULT_ARB,
 &sampleCount);
 if (sampleCount > 0) {
 // render object i
 }
 }

ARB_occlusion_query NVIDIA OpenGL Extension Specifications

 182

 Here is some rough sample code for a simple mul tipass rendering
 application that does not use occlusion queries .

 for (i = 0; i < N; i++) {
 // First rendering pass
 glDisable(GL_BLEND);
 glDepthFunc(GL_LESS);
 glDepthMask(GL_TRUE);
 // configure shader 0
 // render object i

 // Second rendering pass
 glEnable(GL_BLEND);
 glBlendFunc(...);
 glDepthFunc(GL_EQUAL);
 glDepthMask(GL_FALSE);
 // configure shader 1
 // render object i
 }

 Here is the previous example, enhanced using oc clusion queries.

 GLuint queries[N];
 GLuint sampleCount;

 glGenQueriesARB(N, queries);
 ...
 // First rendering pass plus almost-free vi sibility checks
 glDisable(GL_BLEND);
 glDepthFunc(GL_LESS);
 glDepthMask(GL_TRUE);
 // configure shader 0
 for (i = 0; i < N; i++) {
 glBeginQueryARB(GL_SAMPLES_PASSED_ARB, queries[i]);
 // render object i
 glEndQueryARB(GL_SAMPLES_PASSED_ARB);
 }

 // Second pass only on objects that were vi sible
 glEnable(GL_BLEND);
 glBlendFunc(...);
 glDepthFunc(GL_EQUAL);
 glDepthMask(GL_FALSE);
 // configure shader 1
 for (i = 0; i < N; i++) {
 glGetQueryObjectuivARB(queries[i], GL_Q UERY_RESULT_ARB,
 &sampleCount);
 if (sampleCount > 0) {
 // render object i
 }
 }

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 183

Name

 ARB_pixel_buffer_object

Name Strings

 GL_ARB_pixel_buffer_object

Status

 Complete. Approved by ARB on December 7, 2004.

Contributors

 Ralf Biermann
 Nick Carter
 Derek Cornish
 Matt Craighead
 Mark Kilgard
 Dale Kirkland
 Jon Leech
 Brian Paul
 Thomas Roell
 Ian Romanick
 Jeremy Sandmel

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)
 Ralf Biermann, NVIDIA Corporation (rbiermann 'a t' nvidia.com)
 Derek Cornish, NVIDIA Corporation (dcornish 'at ' nvidia.com)

IP Status

 None.

Version

 Last Modified Date: December 8, 2004
 Revision: 1.0

Number

 ARB Extension #42

Dependencies

 Written based on the wording of the OpenGL 2.0 specification.

 Assumes support for (at least) OpenGL 1.5 or th e
 ARB_vertex_buffer_object extension.

 NV_pixel_data_range affects the definition of t his extension.

 EXT_pixel_buffer_object interacts with this ext ension.

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 184

Overview

 This extension expands on the interface provide d by the
 ARB_vertex_buffer_object extension (and later i ntegrated into OpenGL
 1.5) in order to permit buffer objects to be us ed not only with vertex
 array data, but also with pixel data. The inte nt is to provide more
 acceleration opportunities for OpenGL pixel com mands.

 While a single buffer object can be bound for b oth vertex arrays and
 pixel commands, we use the designations vertex buffer object (VBO)
 and pixel buffer object (PBO) to indicate their particular usage in
 a given situation.

 Recall that buffer objects conceptually are not hing more than arrays
 of bytes, just like any chunk of memory. ARB_v ertex_buffer_object
 allows GL commands to source data from a buffer object by binding the
 buffer object to a given target and then overlo ading a certain set of
 GL commands' pointer arguments to refer to offs ets inside the buffer,
 rather than pointers to user memory. An offset is encoded in a
 pointer by adding the offset to a null pointer.

 This extension does not add any new functionali ty to buffer objects
 themselves. It simply adds two new targets to which buffer objects
 can be bound: GL_PIXEL_PACK_BUFFER and GL_PIXEL _UNPACK_BUFFER. When a
 buffer object is bound to the GL_PIXEL_PACK_BUF FER target, commands
 such as glReadPixels pack (write) their data in to a buffer object.
 When a buffer object is bound to the GL_PIXEL_U NPACK_BUFFER target,
 commands such as glDrawPixels and glTexImage2D unpack (read) their
 data from a buffer object.

 There are a several approaches to improve graph ics performance
 with PBOs. Some of the most interesting approa ches are:

 - Streaming texture updates: If the applicatio n uses
 glMapBuffer/glUnmapBuffer to write its data f or glTexSubImage into
 a buffer object, at least one of the data cop ies usually required
 to download a texture can be eliminated, sign ificantly increasing
 texture download performance.

 - Streaming draw pixels: When glDrawPixels sour ces client memory,
 OpenGL says the client memory can be modified immediately after the
 glDrawPixels command returns without disturbi ng the drawn image.
 This typically necessitates unpacking and cop ying the image prior
 to glDrawPixels returning. However, when usi ng glDrawPixels with
 a pixel pack buffer object, glDrawPixels may return prior to image
 unpacking because future modification of the buffer data requires
 explicit commands (glMapBuffer, glBufferData, or glBufferSubData).

 - Asynchronous glReadPixels: If an application needs to read back a
 number of images and process them with the CP U, the existing GL
 interface makes it nearly impossible to pipel ine this operation.
 The driver will typically send the hardware a readback command
 when glReadPixels is called, and then wait fo r all of the data to
 be available before returning control to the application. Then,
 the application can either process the data i mmediately or call
 glReadPixels again; in neither case will the readback overlap with
 the processing. If the application issues se veral readbacks

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 185

 into several buffer objects, however, and the n maps each one to
 process its data, then the readbacks can proc eed in parallel with
 the data processing.

 - Render to vertex array: The application can use a fragment
 program to render some image into one of its buffers, then read
 this image out into a buffer object via glRea dPixels. Then, it can
 use this buffer object as a source of vertex data.

Issues

 1) How does this extension relate to ARB_verte x_buffer_object?

 It builds on the ARB_vertex_buffer_object f ramework by adding
 two new targets that buffers can be bound t o.

 2) How does this extension relate to NV_pixel_ data_range?

 This extension relates to NV_pixel_data_ran ge in the same way
 that ARB_vertex_buffer_object relates to NV _vertex_array_range.
 To paraphrase the ARB_vertex_buffer_object spec, here are the
 main differences:

 - Applications are no longer responsible fo r memory management
 and synchronization.

 - Applications may still access high-perfor mance memory directly,
 but this is optional, and such access is more restricted.

 - Buffer changes (glBindBuffer) are general ly expected to be
 very lightweight, rather than extremely h eavyweight
 (glPixelDataRangeNV).

 - A platform-specific allocator such as wgl /glXAllocateMemoryNV
 is no longer required.

 3) Can a given buffer be used for both vertex and pixel data?

 RESOLVED: YES. All buffers can be used wit h all buffer bindings,
 in whatever combinations the application fi nds useful. Consider
 yourself warned, however, by the following issue.

 4) May implementations make use of the target as a hint to select
 an appropriate memory space for the buffer?

 RESOLVED: YES, as long as such behavior is transparent to the
 application. Some implementations may choo se, for example, that
 they would rather stream vertex data from A GP memory, element
 (index) data from video memory, and pixel d ata from video memory.
 In fact, one can imagine arbitrarily compli cated heuristics for
 selecting the memory space, based on factor s such as the target,
 the "usage" argument, and the application's observed behavior.

 While it is entirely legal to create a buff er object by binding
 it to GL_ARRAY_BUFFER and loading it with d ata, then using it
 with the GL_PIXEL_UNPACK_BUFFER_ARB or GL_P IXEL_PACK_BUFFER_ARB
 binding, such behavior is liable to confuse the driver and may

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 186

 hurt performance. If the driver implemente d the hypothetical
 heuristic described earlier, such a buffer might have already
 been located in AGP memory, and so the driv er would have to choose
 between two bad options: relocate the buffe r into video memory, or
 accept lower performance caused by streamin g pixel data from AGP.

 5) Should all pixel path commands be supported , or just a subset
 of them?

 RESOLVED: ALL. While there is little reaso n to believe that,
 say, glConvolutionFilter2D would benefit fr om this extension,
 there is no reason _not_ to support it. Th e complete list of
 commands affected by this extension is list ed in issues 17 and 18.

 6) Should glPixelMap and glGetPixelMap be supp orted?

 RESOLVED: YES. They're not really pixel pa th operations, but,
 again, there is no good reason to omit oper ations, and they _are_
 operations that pass around big chunks of p ixel-related data.
 If we support glPolygonStipple, surely we s hould support this.

 7) How does the buffer binding state push/pop?

 RESOLVED: As part of the pixel store client state. This is
 analogous to how the ARB_vertex_buffer_obje ct bindings
 pushed/popped as part of the vertex array c lient state.

 8) Should NV_pixel_data_range (PDR) be used co ncurrently with pixel
 buffer objects ?

 RESOLVED: NO. While it would be possible to allocate a memory
 range for PDR, using a pointer into this me mory range with one
 of the commands affected by PBOs will not w ork if a pixel buffer
 object other than zero is bound to the buff er binding point
 affecting the command.

 Pixel buffer objects always have higher pre cedence than PDR.

 9) Should the INVALID_OPERATION error be gener ated if a pixel
 command would access data outside the range of the bound PBO?

 RESOLVED: YES. This requires considering the command parameters
 (such as width/height/depth/format/type/poi nter), the current
 pixel store (pack/unpack) state, and the co mmand operation itself
 to determine the maximum addressed byte for the pixel command.

 Brian Paul strongly recommends this behavio r.

 This behavior should increase the reliabili ty of using PBO and
 guard against programmer mistakes.

 This is particularly important for glReadPi xels where returning
 data into a region outside the PBO could ca use corruption of
 application memory.

 Such bounds checking is substantially more expensive for VBO
 accesses because bounds checking on a per-v ertex element basis

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 187

 for each of multiple enabled vertex arrays prior to performing
 the command compromises the performance jus tification of VBO.

 10) If a pixel command with a bound PBO accesse s data outside the
 range of the PBO, thereby generating a GL_I NVALID_OPERATION error,
 can the pixel command end up being partiall y processed?

 RESOLVED: NO. As for all GL errors except ing GL_OUT_OF_MEMORY
 situations, "the command generating the err or is ignored so that
 it has no effect on GL state or framebuffer contents."

 This means implementations must determine b efore the pixel command
 is performed whether the resulting read or write operations on
 the bound PBO will exceed the size of the P BO.

 This means an implementation is NOT allowed to detect out of
 bounds accesses in the middle of performing the command.

 11) How expensive is it to predetermine whether a pixel command
 accessing a PBO would have an out of bounds access?

 See the "Appendix on Pack/Unpack Range" to see the computations
 involved in computing the access limit.

 Implementations can further specialize and optimize the check
 to make this out of bounds checking negligi ble for any sizable
 pixel payload.

 12) Should feedback and select buffers output r esults into a
 buffer object?

 RESOLVED: That might be useful for a futur e extension but is
 not appropriate for this extension. New ta rgets (other than
 PIXEL_PACK_BUFFER_ARB and PIXEL_UNPACK_BUFF ER_ARB) make sense.

 13) Should NV_pixel_data_range interactions be documented in
 this specification?

 RESOLVED: YES. Interactions with NV_pixel _data_range are
 important to document to facilitate develop ers migrating to
 the multi-vendor ARB_pixel_buffer_object ex tension. Discussion of
 interactions is limited to the issues and e xample usage sections.

 Other ARB specifications follow this policy , and Jon Leech agrees
 with this policy.

 14) Should an INVALID_OPERATION error be genera ted if the offset
 within a pixel buffer to a datum comprising of N basic machine
 units is not a multiple of N?

 RESOLVED: YES. This was stated for VBOs b ut no error was
 defined if the rule was violated. Perhaps this needs to be
 better specified for VBO.

 For PBO, it is reasonable and cheap to enfo rce the alignment rule.
 For pixel commands it means making sure the offset is evenly
 divisible by the component or group size in basic machine units.

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 188

 This check is independent of the pixel stor e state because the
 pixel store state is specified in terms of pixels (not basic
 machine units) so pixel store addressing ca nnot create an
 unaligned access as long as the base offset is aligned.

 Certain commands (specifically glPolygonSti pple,
 glGetPolygonStipple, glBitmap, glCompressed TexImage1D,
 glCompressedTexImage2D, glCompressedTexImag e3D,
 glCompressedTexSubImage1D, glCompressedTexS ubImage2D,
 glCompressedTexSubImage3D, and glGetCompres sedTexImage) are not
 affected by this error because the data acc essed is addressed
 at the granularity of basic machine units.

 15) Various commands do not make explicit refer ence to supporting
 packing or unpacking from a pixel buffer ob ject but rather specify
 that parameters are handled in the same man ner as glDrawPixels,
 glReadPixels, or the glCompressedTexImage c ommands. So do such
 commands (example: glCompressedTexSubImage2 D) use pixel buffers?

 RESOLVED: YES. Commands that have their b ehavior defined based
 on commands that read or write from pixel b uffers will themselves
 read or write from pixel buffers. Relying on this reduces the
 amount of specification language to be upda ted.

 16) What is the complete list of commands that can unpack (read)
 pixels from the current pixel unpack buffer object?

 glBitmap
 glColorSubTable
 glColorTable
 glCompressedTexImage1D
 glCompressedTexImage2D
 glCompressedTexImage3D
 glCompressedTexSubImage1D
 glCompressedTexSubImage2D
 glCompressedTexSubImage3D
 glConvolutionFilter1D
 glConvolutionFilter2D
 glDrawPixels
 glPixelMapfv
 glPixelMapuiv
 glPixelMapusv
 glPolygonStipple
 glSeparableFilter2D
 glTexImage1D
 glTexImage2D
 glTexImage3D
 glTexSubImage1D
 glTexSubImage2D
 glTexSubImage3D

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 189

 17) What is the complete list of commands that can pack (write)
 pixels into the current pixel pack buffer o bject?

 glGetCompressedTexImage
 glGetConvolutionFilter
 glGetHistogram
 glGetMinmax
 glGetPixelMapfv
 glGetPixelMapuiv
 glGetPixelMapusv
 glGetPolygonStipple
 glGetSeparableFilter,
 glGetTexImage
 glReadPixels

 18) How does support for pixel buffer objects a ffect the GLX protocol?

 UNRESOLVED: See the "GLX Protocol" section .

 19) Prior to this extension, passing zero for t he data argument of
 glTexImage1D, glTexImage2D, and glTexImage3 D defined a texture
 image level without supplying an image. Ho w does this behavior
 change with this extension?

 RESOLVED: The "unspecified image" behavior of the glTexImage
 calls only applies when bound to a zero pix el unpack buffer
 object.

 When bound to a non-zero pixel unpack buffe r object, the data
 argument to these calls is treated as an of fset rather than
 a pointer so zero is a reasonable and even likely value that
 corresponds to the very beginning of the bu ffer object's data.

 So to create a texture image level with uns pecified image data,
 you MUST bind to the zero pixel unpack buff er object.

 See the ammended language at the end of sec tion 3.8.1.

 20) How does this extension support video frame grabbers?

 RESOLVED: This extension extends buffer ob jects so they can
 operate with pixel commands, rather than ju st vertex array
 commands.

 We anticipate that a future extension may p rovide a mechanism
 for transferring video frames from video fr ame grabber hardware
 or vertices from motion capture hardware (o r any other source
 of aquired real-time data) directly into a buffer object to
 eliminate a copy. Ideally, such transfers would be possible
 without requiring mapping of the buffer obj ect. But this
 extension does not provide such functionali ty.

 We anticipate such functionality to involve binding a buffer
 object to a new target type, configuring a source (or sink) for
 data (video frames, motion capture vertex s ets, etc.), and then
 commands to initiate data transfers to the bound buffer object.

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 190

 21) Can this ARB extension share the same enume rants with the EXT
 version of this functionality?

 RESOLVED: YES. The ARB extension is funct ionally compatible
 with EXT_pixel_buffer_object except that th e ARB version adds
 additional error checks for alignment and b uffer bounds checking.

 The EXT behavior in the case of alignment v iolations and buffer
 bounds overflow are technically undefined. The ARB extension
 simply defines the EXT extension's undefine d behavior to be an
 OpenGL error.

 Using the same enumerants with firmed up er ror checking (that
 would otherwise indicate buggy usage) is pr eferable to two sets
 of enumerants where the older EXT set simpl y allows sloppy usage.

 22) The expected usage parameters (GL_STREAM_DR AW, etc.) for
 glBufferData are not clearly specified. Ho w can they be improved?

 RESOLVED: To improve the clarity, replace the phrase "specified
 once" with "specified once per repetition o f the usage pattern" so
 that it is clear for the STREAM_* usage mod es (and the STATIC_*
 usage modes too, just much less frequently) that the repeated
 specification is part of a pattern and it i s expected that the
 buffer can be, and will be for the STREAM_* usage patterns,
 specified again after being used and this i s likely to repeat.

 Additionally, the *_COPY and *_DRAW usage p atterns can source
 the data with "a GL drawing command" but al so with image
 specification commands so change this phras e to "a GL drawing
 or image specification command."

 23) Is this the "right" way to expose render-to -vertex-array?

 DISCUSSION: You can use this extension to render an image
 into a framebuffer, copy the pixels into a buffer object with
 glReadPixels, and then configure vertex arr ays to source the pixel
 data as vertex attributes. This necessaril y involves a copy
 from the framebuffer to the buffer object. Future extensions
 may provide mechanisms for copy-free render -to-vertex-array
 capabilities but that is not a design goal of this extension.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData,
 GetBufferParameteriv, and GetBufferPointerv:

 PIXEL_PACK_BUFFER_ARB 0x88EB
 PIXEL_UNPACK_BUFFER_ARB 0x88EC

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 191

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PIXEL_PACK_BUFFER_BINDING_ARB 0x88ED
 PIXEL_UNPACK_BUFFER_BINDING_ARB 0x88EF

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

 -- Section 2.9 "Buffer Objects"

 Replace the first two paragraphs with:

 "The vertex data arrays described in section 2. 8 are stored in
 client memory. It is sometimes desirable to st ore frequently accessed
 client data, such as vertex array and pixel dat a, in high-performance
 server memory. GL buffer objects provide a mec hanism for clients to
 use to allocate, initialize, and access such me mory."

 The name space for buffer objects is the unsign ed integer, with zero
 reserved for the GL. A buffer object is create d by binding an unused
 name to a buffer target. A buffer object is bo und by calling

 void BindBuffer(enum target, uint buffer);

 /target/ must be one of ARRAY_BUFFER, ELEMENT_A RRAY_BUFFER,
 PIXEL_UNPACK_BUFFER_ARB, or PIXEL_PACK_BUFFER_A RB. The ARRAY_BUFFER
 target is discussed in section 2.9.1 The ELEME NT_ARRAY_BUFFER target
 is discussed in section 2.9.2. The PIXEL_UNPAC K_BUFFER_ARB and
 PIXEL_PACK_BUFFER_ARB targets are discussed lat er in sections 3.6,
 4.3.2, and 6.1. If the buffer object named /bu ffer/ has not been
 previously bound or has been deleted since the last binding, the
 GL creates a new state vector, initialized with a zero-sized memory
 buffer and comprising the state values listed i n table 2.6."

 Replace the 5th paragraph with:

 "Initially, each buffer object target is bound to zero. There is
 no buffer object corresponding to the name zero so client attempts
 to modify or query buffer object state for a ta rget bound to zero
 generate an INVALID_OPERATION error."

 Replace the phrase listing the valid targets fo r BufferData in the
 9th paragraph with:

 "with target set to one of ARRAY_BUFFER, ELEMEN T_ARRAY_BUFFER,
 PIXEL_UNPACK_BUFFER_ARB, or PIXEL_PACK_BUFFER_A RB,"

 In the 10th paragraph describing buffer object usage modes, replace
 the phrase "specified once" with "specified onc e per repetition of
 the usage pattern" for the STREAM_* and STATIC_ * usage values.

 Also in the 10th paragraph describing buffer ob ject usage modes,
 replace the phrases "of a GL drawing command." and "for GL drawing
 commands." with "for GL drawing and image speci fication commands." for
 the *_DRAW and *_COPY usage values.

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 192

 Replace the phrase listing the valid targets fo r BufferSubData in
 the 15th paragraph with:

 "with target set to one of ARRAY_BUFFER, ELEMEN T_ARRAY_BUFFER,
 PIXEL_UNPACK_BUFFER_ARB, or PIXEL_PACK_BUFFER_A RB."

 Replace the phrase listing the valid targets fo r MapBuffer in the
 16th paragraph with:

 "with target set to one of ARRAY_BUFFER, ELEMEN T_ARRAY_BUFFER,
 PIXEL_UNPACK_BUFFER_ARB, or PIXEL_PACK_BUFFER_A RB."

 Replace the phrase listing the valid targets fo r UnmapBuffer in the
 21st paragraph with:

 "with target set to one of ARRAY_BUFFER, ELEMEN T_ARRAY_BUFFER,
 PIXEL_UNPACK_BUFFER_ARB, or PIXEL_PACK_BUFFER_A RB."

 -- Section 2.9.2 "Array Indices in Buffer Objects"

 Delete the 3rd paragraph that explains how the ELEMENT_ARRAY_BUFFER
 target is acceptable for the commands specified in section 2.9.
 The updated section 2.9 language already says t his.

 -- NEW Section 2.9.3 "Buffer Object Required State "

 "The state required to support buffer objects c onsists of binding
 names for the array buffer, element buffer, pix el unpack buffer, and
 pixel pack buffer. Additionally, each vertex a rray has an associated
 binding so there is a buffer object binding for each of the vertex
 array, normal array, color array, index array, multiple texture
 coordinate arrays, edge flag array, secondary c olor array, fog
 coordinate array, and vertex attribute arrays. The initial values for
 all buffer object bindings is zero.

 The state of each buffer object consists of a b uffer size in basic
 machine units, a usage parameter, an access par ameter, a mapped
 boolean, a pointer to the mapped buffer (NULL i f unmapped), and the
 sized array of basic machine units for the buff er data."

Additions to Chapter 3 of the 1.2.1 Specification (Rasterization)

 -- Section 3.6 "Pixel Rectangles"

 Replace the 1st sentence in the 2nd paragraph:

 "A number of parameters control the encoding of pixels in buffer
 object or client memory (for reading and writin g) and how pixels
 are processed before being placed in or after b eing read from the
 framebuffer (for reading, writing, and copying) ."

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 193

 -- RENAME Section 3.6.1 "Pixel Storage Modes and P ixel Buffer Objects"

 Add to the end of the section:

 "In addition to storing pixel data in client me mory, pixel data
 may also be stored in buffer objects (described in section 2.9).
 The current pixel unpack and pack buffer object s are designated
 by the PIXEL_UNPACK_BUFFER_ARB and PIXEL_PACK_B UFFER_ARB targets
 respectively.

 Initially, zero is bound for the PIXEL_UNPACK_B UFFER_ARB, indicating
 that image specification commands such as DrawP ixels source their
 pixels from client memory pointer parameters. However, if a non-zero
 buffer object is bound as the current pixel unp ack buffer, then
 the pointer parameter is treated as an offset i nto the designated
 buffer object."

 -- Section 3.6.3 "Pixel Transfer Modes", page 116.

 Replace the last phrase in the 2nd paragraph wi th:

 "and /values/ refers to an array of size map va lues."

 [values is no longer necessarily a pointer.]

 Add the following paragraph after the third par agraph:

 "If a pixel unpack buffer is bound (as indicate d by a non-zero
 value of PIXEL_UNPACK_BUFFER_BINDING_ARB), /val ues/ is an offset
 into the pixel unpack buffer; otherwise, /value s/ is a pointer to a
 block client memory. All pixel storage and pix el transfer modes are
 ignored when specifying a pixel map. n machine units are read where
 n is the /size/ of the pixel map times the size of a float, uint,
 or ushort datum in basic machine units, dependi ng on the respective
 PixelMap version. If a pixel unpack buffer obj ect is bound and data+n
 is greater than the size of the pixel buffer, I NVALID_OPERATION
 results. If a pixel unpack buffer object is bo und and /values/ is
 not evenly divisible into the number of basic m achine units needed
 to store in memory a float, uint, or ushort dat um depending on their
 respective PixelMap version, INVALID_OPERATION results."

 -- Section 3.6.4 "Rasterization of Pixel Rectangle s", page 126.

 Change the 1st sentence of the 1st paragraph to read:

 "The process of drawing pixels encoded in buffe r objects or client
 memory is diagrammed in figure 3.7."

 Change the 4th sentence of the 2nd paragraph to read:

 "/data/ refers to the data to be drawn."

 [data is no longer necessarily a pointer.]

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 194

 Change the initial phrase in the 1st sentence o f the 1st paragraph
 after "Unpacking" to read:

 "Data are taken from the currently bound pixel unpack buffer or
 client memory as a sequence of..."

 Insert this paragraph after the 1st paragraph a fter "Unpacking":

 "If a pixel unpack buffer is bound (as indicate d by a non-zero
 value of PIXEL_UNPACK_BUFFER_BINDING_ARB), /dat a/ is an offset
 into the pixel unpack buffer and the pixels are unpacked from the
 buffer relative to this offset; otherwise, /dat a/ is a pointer to
 a block client memory and the pixels are unpack ed from the client
 memory relative to the pointer. If a pixel unp ack buffer object
 is bound and unpacking the pixel data according to the process
 described below would access memory beyond the size of the pixel
 unpack buffer's memory size, INVALID_OPERATION results. If a pixel
 unpack buffer object is bound and /data/ is not evenly divisible
 into the number of basic machine units needed t o store in memory the
 corresponding GL data type from table 3.5 for t he /type/ parameter,
 INVALID_OPERATION results."

 -- Section 3.8.1 "Texture Image Specification", pa ge 150.

 Replace the last phrase in the 2nd to last sent ence in the 1st
 paragraph with:

 "and a reference to the image data in the curre ntly bound pixel unpack
 buffer or client memory."

 Replace the 1st sentence in the 13th paragraph with:

 "The image itself (referred to by /data/) is a sequence of groups
 of values."

 Replace the last paragraph with:

 "If the data argument of TexImage1D, TexImage2D , or TexImage3D
 is a null pointer (a zero-valued pointer in the C implementation)
 and the pixel unpack buffer object is zero, a o ne-, two-, or three-
 dimensional texture array is created with the s pecified target, level,
 internalformat, width, height, and depth border , but with unspecified
 image contents. In this case no pixel values a re access in client
 memory, and no pixel processing is performed. Errors are generated,
 however, exactly as though the data pointer wer e valid. Otherwise if
 the pixel unpack buffer object is non-zero, the data argument is
 treatedly normally to refer to the beginning of the pixel unpack
 buffer object's data."

 -- Section 3.8.3 "Compressed Texture Images", page 163.

 Replace the 3rd sentence of the 2nd paragraph w ith:

 "/data/ refers to compressed image data stored in the compressed
 image format corresponding to internalformat. If a pixel
 unpack buffer is bound (as indicated by a non-z ero value of
 PIXEL_UNPACK_BUFFER_BINDING_ARB), /data/ is an offset into the

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 195

 pixel unpack buffer and the compressed data is read from the buffer
 relative to this offset; otherwise, /data/ is a pointer to a block
 client memory and the compressed data is read f rom the client memory
 relative to the pointer."

 Replace the 2nd sentence in the 3rd paragraph w ith:

 "Compressed texture images are treated as an ar ray of /imageSize/
 ubytes relative to /data/. If a pixel unpack b uffer object is bound
 and data+imageSize is greater than the size of the pixel buffer,
 INVALID_OPERATION results."

Additions to Chapter 4 of the 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

 -- Section 4.3.2 "Reading Pixels", page 219.

 Replace 1st sentence of the 1st paragraph with:

 "The method for reading pixels from the framebu ffer and placing them in
 pixel pack buffer or client memory is diagramme d in figure 4.2."

 Add this paragraph after the 1st paragraph:

 "Initially, zero is bound for the PIXEL_PACK_BU FFER_ARB, indicating
 that image read and query commands such as Read Pixels return
 pixels results into client memory pointer param eters. However, if
 a non-zero buffer object is bound as the curren t pixel pack buffer,
 then the pointer parameter is treated as an off set into the designated
 buffer object."

 Rename "Placement in Client Memory" to "Placeme nt in Pixel Pack
 Buffer or Client Memory".

 Insert this paragraph after the newly renamed " Placement in Pixel
 Pack Buffer or Client Memory" heading:

 "If a pixel pack buffer is bound (as indicated by a non-zero value
 of PIXEL_PACK_BUFFER_BINDING_ARB), /data/ is an offset into the
 pixel pack buffer and the pixels are packed int o the
 buffer relative to this offset; otherwise, /dat a/ is a pointer to a
 block client memory and the pixels are packed i nto the client memory
 relative to the pointer. If a pixel pack buffe r object is bound and
 packing the pixel data according to the pixel p ack storage state
 would access memory beyond the size of the pixe l pack buffer's
 memory size, INVALID_OPERATION results. If a p ixel pack buffer object
 is bound and /data/ is not evenly divisible int o the number of basic
 machine units needed to store in memory the cor responding GL data type
 from table 3.5 for the /type/ parameter, INVALI D_OPERATION results."

Additions to Chapter 5 of the 1.2.1 Specification (Special Functions)

 None

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 196

Additions to Chapter 6 of the 1.2.1 Specification (State and State
Requests)

 -- Section 6.1.3 "Enumerated Queries".

 After the sentence in the last paragraph descri bing GetPixelMap, add:

 "The GetPixelMapfv, GetPixelMapuiv, and GetPixe lMapusv commands
 write all the values in the named pixel map to /data/. If a
 pixel pack buffer is bound (as indicated by a n on-zero value of
 PIXEL_PACK_BUFFER_BINDING_ARB), /data/ is an of fset into the pixel
 pack buffer; otherwise, /data/ is a pointer to a block client memory.
 All pixel storage and pixel transfer modes are ignored when returning a
 pixel map. n machine units are written where n is the size of the
 pixel map times the size of FLOAT, UNSIGNED_INT , or UNSIGNED_SHORT
 respectively in basic machine units. If a pixe l pack buffer object
 is bound and data+n is greater than the size of the pixel buffer,
 generate INVALID_OPERATION."

 -- Section 6.1.4 "Texture Queries".

 Remove the mention of img in the last phrase in the last sentence
 of the 1st paragraph so the sentence reads:

 "lod is a level-of-detail number, format is a p ixel format from
 table 3.6, and type is a pixel type from table 3.5."

 Replace the 3rd sentence of the 2nd paragraph w ith:

 "These groups are then packed and placed in cli ent or pixel buffer
 object memory. If a pixel pack buffer is bound (as indicated by a
 non-zero value of PIXEL_PACK_BUFFER_BINDING_ARB), /img/ is an offset
 into the pixel pack buffer; otherwise, /img/ is a pointer to a block
 client memory."

 Add to the end of the 4th paragraph:

 "If a pixel pack buffer object is bound and pac king the texture
 image into the buffer's memory would exceed the size of the buffer,
 generate INVALID_OPERATION."

 Replace the 2nd sentence of the 5th paragraph w ith:

 "When called, GetCompressedTexImage writes n ub ytes of compressed
 image data to the pixel pack buffer or client m emory pointed to by
 ptr, where n is the texture image's TEXTURE_COM PRESSED_IMAGE_SIZE
 value.

 Add to the end of the 6th paragraph:

 "If a pixel pack buffer object is bound and ptr +n is greater than
 the size of the buffer, generate INVALID_OPERAT ION."

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 197

 -- Section 6.1.5 "Stipple Query".

 "The pattern is packed into client or pixel pac k buffer memory
 according to the procedures given in section 4. 3.2 for ReadPixels;
 ..."

 -- Section 6.1.7 "Color Table Query".

 "The one-dimensional color table image is retur ned to client or
 pixel pack buffer memory starting at table."

 -- Section 6.1.8 "Convolution Query".

 "The one-dimensional or two-dimensional image i s returned to client
 or pixel pack buffer memory starting at image."

 "The row and column images are returned to clie nt or pixel pack
 buffer memory starting at row and column respec tively."

 -- Section 6.1.9 "Histogram Query".

 "The one-dimensional histogram table image is r eturned to client or
 pixel pack buffer memory starting at values."

 -- Section 6.1.10 "Minmax Query".

 "A one-dimensional image of width 2 is returned to client or pixel
 pack buffer memory starting at values."

 -- Section 6.1.13 "Buffer Object Queries".

 Change the 2nd sentence of the 2nd paragraph to read:

 "target is ARRAY_BUFFER, ELEMENT_ARRAY_BUFFER, PIXEL_PACK_BUFFER_ARB,
 or PIXEL_UNPACK_BUFFER_ARB."

 Change the last phrase in the 1st sentence of t he 4th paragraph to:

 "with target set to ARRAY_BUFFER, ELMENT_ARRAY_ BUFFER,
 PIXEL_PACK_BUFFER_ARB, or PIXEL_UNPACK_BUFFER_A RB and pname set
 to BUFFER_MAP_POINTER."

GLX Protocol

 XXX still-in-progress

 (ARB_vertex_buffer_object has similar issues an d lacks specified
 GLX protocol for its functionality. This discu ssion just addresses
 the issues created by pixel buffer objects, not buffer objects
 in general.)

 Pixel buffers, like texture objects and display lists, are server-side
 state.

 Prior to pixel buffer objects, pixel storage st ate for image packing
 and unpacking was considered client-side state. However, pixel

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 198

 buffers create the new situation where the serv er performs packing
 and unpacking into server-side pixel buffers.

 The GLX protocol is designed so that the amount of unpacking done
 by the client is parameterized with the request . In other words,
 the client can do as much unpacking as it wants , and then tell the
 server what unpacking remains to be done by sen ding the appropriate
 pixel storage parameters along with the image.

 This means the GLX protocol for rendering comma nds involving pixel
 data includes pixel store state for unpacking.

 This means, in theory, the existing protocol fo r rendering commands
 with pixel data is sufficient for manipulating pixel buffers.
 A command (for example, glDrawPixels) could bui ld a protocol request
 containing the current pixel unpack state and s pecify zero bytes of
 image payload when operating on a pixel buffer object.

 In practice, while this addresses command requi ring unpacking of
 pixel data, commands that require packing of pi xel data (for example,
 glReadPixels) to return pixel data do not have protocol fields for
 pixel store pack state.

 Fortunately, the GLX protocol, through foresigh t or oversight,
 has GLX protocol and non-rendering command opco des (109 and 110)
 assigned for glPixelStoref and glPixelStorei re spectively.

 It is better to use the existing protocol to se nd glPixelStorei and
 glPixelStoref GLX commands. This solves the pr oblem of server-side
 pixel state the same way for both pack and unpa ck state. It may also
 allow implementations to minimize validation ov erhead for pixel
 commands because the pixel store modes are stat eful rather than
 being parameters sent with every pixel command.

 To avoid creating useless protocol overhead for applications not using
 pixel buffer objects, and hence not requiring s erver-side knowledge
 of pixel store state, the GLX client library is free to defer pixel
 store commands until just prior to pixel comman ds operating on pixel
 buffer objects that require server-side pixel s tore state.

 There is no GLX protocol however for glPushClie ntAttrib and
 glPopClientAttrib. New protocol should be spec ified for these
 commands. These commands are also needed for v ertex buffer objects
 because the vertex array state becomes server-s ide.

 When bound to an pixel unpack buffer object, th e pixel payload for a
 non-reply pixel command (for example, glTexImag e2D) can be ignored.
 In fact, GLX client implementations are expecte d to send zero bytes
 of pixel payload in this case.

 When bound to a pixel pack buffer object, the r eply for pixel commands
 that return pixel data (for example, glReadPixe ls) is not required
 since the pixel data is actually transferred to the server-side pixel
 pack buffer object. Indeed, forcing an unneces sary reply would hinder
 the performance advantages of using pixel buffe r objects

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 199

 Therefore, protocol for "no reply" version of t he following commands
 is specified:

 GetCompressedTexImage_noreply
 GetConvolutionFilter_noreply
 GetHistogram_noreply
 GetMinmax_noreply
 GetPixelMapfv_noreply
 GetPixelMapuiv_noreply
 GetPixelMapusv_noreply
 GetPolygonStipple_noreply
 GetSeparableFilter,_noreply
 GetTexImage_noreply
 ReadPixels_noreply

 If a "no reply" command is sent when the curren t pixel pack
 buffer object binding is zero, a GLXBadContextS tate error should
 be generated by the server.

Errors

 INVALID_ENUM is generated if the <target> param eter of
 BindBuffer, BufferData, BufferSubData, MapBuffe r, UnmapBuffer,
 GetBufferSubData, GetBufferParameteriv, or GetB ufferPointerv is not
 one of ARRAY_BUFFER, ELEMENT_ARRAY_BUFFER, PIXE L_PACK_BUFFER_ARB,
 or PIXEL_UNPACK_BUFFER_ARB.

 INVALID_OPERATION is generated if Bitmap, Color SubTable, ColorTable,
 CompressedTexImage1D, CompressedTexImage2D, Com pressedTexImage3D,
 CompressedTexSubImage1D, CompressedTexSubImage2 D,
 CompressedTexSubImage3D, ConvolutionFilter1D, C onvolutionFilter2D,
 DrawPixels, PixelMapfv, PixelMapuiv, PixelMapus v, PolygonStipple,
 SeparableFilter2D, TexImage1D, TexImage2D, TexI mage3D, TexSubImage1D,
 TexSubImage2D, or TexSubImage3D would unpack (r ead) data from the
 currently bound PIXEL_UNPACK_BUFFER_ARB buffer object such that
 the memory reads required for the command would exceed the memory
 (data store) size of the buffer object.

 INVALID_OPERATION is generated if GetColorTable ,
 GetCompressedTexImage, GetConvolutionFilter, Ge tHistogram, GetMinmax,
 GetPixelMapfv, GetPixelMapuiv, GetPixelMapusv, GetPolygonStipple,
 GetSeparableFilter, GetTexImage, or ReadPixels would pack (write) data
 to the currently bound PIXEL_PACK_BUFFER_ARB bu ffer object such that
 the memory writes required for the command woul d exceed the memory
 (data store) size of the buffer object.

 INVALID_OPERATION is generated by GetColorTable , GetConvolutionFilter,
 GetHistogram, GetMinmax, GetSeparableFilter, Ge tTexImage and ReadPixels
 if the current PIXEL_PACK_BUFFER_BINDING_ARB va lue is non-zero and the
 table/image/values/span/img/data parameter is n ot evenly divisible
 into the number of basic machine units needed t o store in memory a
 datum indicated by the type parameter.

 INVALID_OPERATION is generated by ColorTable, C olorSubTable,
 ConvolutionFilter2D, ConvolutionFilter1D, Separ ableFilter2D,
 TexImage1D, TexImage2D, TexImage3D, TexSubImage 1D,
 TexSubImage2D, TexSubImage3D, and DrawPixels if the current

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 200

 PIXEL_UNPACK_BUFFER_BINDING_ARB value is non-ze ro and the data
 parameter is not evenly divisible into the numb er of basic machine
 units needed to store in memory a datum indicat ed by the type
 parameter.

 INVALID_OPERATION is generated by GetPixelMapfv if the current
 PIXEL_PACK_BUFFER_BINDING_ARB value is non-zero and the data parameter
 is not evenly divisible into the number of basi c machine units needed
 to store in memory a float datum.

 INVALID_OPERATION is generated by GetPixelMapui v if the current
 PIXEL_PACK_BUFFER_BINDING_ARB value is non-zero and the data parameter
 is not evenly divisible into the number of basi c machine units needed
 to store in memory a uint datum.

 INVALID_OPERATION is generated by GetPixelMapus v if the current
 PIXEL_PACK_BUFFER_BINDING_ARB value is non-zero and the data parameter
 is not evenly divisible into the number of basi c machine units needed
 to store in memory a ushort datum.

 INVALID_OPERATION is generated by PixelMapfv if the current
 PIXEL_UNPACK_BUFFER_BINDING_ARB value is non-ze ro and the data
 parameter is not evenly divisible into the numb er of basic machine
 units needed to store in memory a float datum.

 INVALID_OPERATION is generated by PixelMapuiv i f the current
 PIXEL_UNPACK_BUFFER_BINDING_ARB value is non-ze ro and the data
 parameter is not evenly divisible into the numb er of basic machine
 units needed to store in memory a uint datum.

 INVALID_OPERATION is generated by PixelMapusv i f the current
 PIXEL_UNPACK_BUFFER_BINDING_ARB value is non-ze ro and the data
 parameter is not evenly divisible into the numb er of basic machine
 units needed to store in memory a ushort datum.

Dependencies on EXT_pixel_buffer_object

 When this extension is supported, the EXT_pixel _buffer_object
 functionality adopts the tighter alignment and buffer bounds overflow
 error generation behavior of ARB_pixel_buffer_o bject (previously,
 EXT_pixel_buffer_object was not explicit about what happened in
 these situations). This is because the two ext ensions share the
 same enumerants.

Dependencies on NV_pixel_data_range

 A non-zero pixel pack buffer binding takes prio rity over the
 READ_PIXEL_DATA_RANGE_NV enable.

 A non-zero pixel unpack buffer binding takes pr iority over the
 WRITE_PIXEL_DATA_RANGE_NV enable.

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 201

New State

(table 6.20, Pixels, p. 235)

 Initial
 Get Value Type Get Com mand Value Sec Attribute
 ------------------------------- ---- ------- ---- ------- ------ -----------
 PIXEL_PACK_BUFFER_BINDING_ARB Z+ GetInte gerv 0 4.3.5 pixel-store
 PIXEL_UNPACK_BUFFER_BINDING_ARB Z+ GetInte gerv 0 6.1.13 pixel-store

New Implementation Dependent State

 (none)

Usage Examples

 Convenient macro definition for specifying buff er offsets:

 #define BUFFER_OFFSET(i) ((char *)NULL + (i))

 Example 1: Render to vertex array:

 const int numberVertices = 100;

 // Create a buffer object for a number of v ertices consisting of
 // 4 float values per vertex
 glGenBuffers(1, vertexBuffer);
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, vert exBuffer);
 glBufferData(GL_PIXEL_PACK_BUFFER_ARB, numb erVertices*4,
 NULL, GL_DYNAMIC_DRAW);

 // Render vertex data into 100x1 strip of f ramebuffer using a
 // fragment program
 glBindProgram(FRAGMENT_PROGRAM_ARB, fragmen tProgram);
 glDrawBuffer(GL_BACK);
 renderVertexData();
 glBindProgramARB(FRAGMENT_PROGRAM_ARB, 0);

 // Read the vertex data back from framebuff er
 glReadBuffer(GL_BACK);
 glReadPixels(0, 0, numberVertices, 1, GL_BG RA, GL_FLOAT,
 BUFFER_OFFSET(0));

 // Change the binding point of the buffer o bject to
 // the vertex array binding point
 glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer) ;

 glEnableClientState(VERTEX_ARRAY);
 glVertexPointer(4, GL_FLOAT, 0, BUFFER_OFFS ET(0));
 glDrawArrays(TRIANGLE_STRIP, 0, numberVerti ces);

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 202

 Example 2: Streaming textures

 Streaming textures using NV_pixel_data_range:

 const int texWidth = 256;
 const int texHeight = 256;
 const int texsize = texWidth * texHeight * 4;
 void *pdrMemory, *texData;

 pdrMemory = glAllocateMemoryNV(texsize, 0.0 , 1.0, 1.0);

 glPixelDataRangeNV(GL_WRITE_PIXEL_DATA_RANG E_NV, texsize,
 pdrMemory);

 glEnableClientState(GL_WRITE_PIXEL_DATA_RAN GE_NV);

 // Define texture level (without an image)
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, te xWidth, texHeight, 0,
 GL_BGRA, GL_UNSIGNED_BYTE, NUL L);
 // Setup texture environment
 ...

 texData = getNextImage();

 while (texData) {

 memcpy(pdrMemory, texData, texsize);

 glFlushPixelDataRangeNV(GL_WRITE_PIXEL_ DATA_RANGE_NV);

 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, texWidth, texHeight,
 GL_BGRA, GL_UNSIGNED_BY TE, pdrMemory);

 // Draw textured geometry
 glBegin(GL_QUADS);
 ...
 glEnd();

 texData = getNextImage();
 }

 glDisableClientState(GL_WRITE_PIXEL_DATA_RA NGE_NV);

 glFreeMemoryNV(pdrMemory);

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 203

 Streaming textures using pixel buffer objects:

 const int texWidth = 256;
 const int texHeight = 256;
 const int texsize = texWidth * texHeight * 4;
 void *pboMemory, *texData;

 // Define texture level zero (without an im age); notice the
 // explicit bind to the zero pixel unpack b uffer object so that
 // pass NULL for the image data leaves the texture image
 // unspecified.
 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0) ;
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, te xWidth, texHeight, 0,
 GL_BGRA, GL_UNSIGNED_BYTE, NUL L);

 // Create and bind texture image buffer obj ect
 glGenBuffers(1, &texBuffer);
 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, te xBuffer);

 // Setup texture environment
 ...

 texData = getNextImage();

 while (texData) {

 // Reset the contents of the texSize-si zed buffer object
 glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB , texSize, NULL,
 GL_STREAM_DRAW);

 // Map the texture image buffer (the co ntents of which
 // are undefined due to the previous gl BufferData)
 pboMemory = glMapBuffer(GL_PIXEL_UNPACK _BUFFER_ARB,
 GL_WRITE_ONLY);

 // Modify (sub-)buffer data
 memcpy(pboMemory, texData, texsize);

 // Unmap the texture image buffer
 glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER_AR B);

 // Update (sub-)teximage from texture i mage buffer
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, texWidth, texHeight,
 GL_BGRA, GL_UNSIGNED_BY TE, BUFFER_OFFSET(0));

 // Draw textured geometry
 glBegin(GL_QUADS);
 ...
 glEnd();

 texData = getNextImage();
 }

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0) ;

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 204

 Example 3: Asynchronous glReadPixels

 Traditional glReadPixels:

 const int imagewidth = 640;
 const int imageheight = 480;
 GLubyte readBuffer[imagewidth*imageheight*4];

 // Render to framebuffer
 glDrawBuffer(GL_BACK);
 renderScene()

 // Read image from framebuffer
 glReadBuffer(GL_BACK);
 glReadPixels(0, 0, imagewidth, imageheight, GL_BGRA,
 GL_UNSIGNED_BYTE, readBuffer);

 // Process image when glReadPixels returns after reading the
 // whole buffer
 processImage(readBuffer);

 Asynchronous glReadPixels:

 const int imagewidth = 640;
 const int imageheight = 480;
 const int imageSize = imagewidth*imageheigh t*4;

 glGenBuffers(2, imageBuffers);

 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[0]);
 glBufferData(GL_PIXEL_PACK_BUFFER_ARB, imag eSize / 2, NULL,
 GL_STREAM_READ);

 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[1]);
 glBufferData(GL_PIXEL_PACK_BUFFER_ARB, imag eSize / 2, NULL,
 GL_STREAM_READ);

 // Render to framebuffer
 glDrawBuffer(GL_BACK);
 renderScene();

 // Bind two different buffer objects and st art the glReadPixels
 // asynchronously. Each call will return di rectly after
 // starting the DMA transfer.
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[0]);
 glReadPixels(0, 0, imagewidth, imageheight/ 2, GL_BGRA,
 GL_UNSIGNED_BYTE, BUFFER_OFFSE T(0));

 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[1]);
 glReadPixels(0, imageheight/2, imagewidth, imageheight/2, GL_BGRA,
 GL_UNSIGNED_BYTE, BUFFER_OFFSE T(0));

 // Process partial images. Mapping the buf fer waits for
 // outstanding DMA transfers into the buffe r to finish.
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[0]);
 pboMemory1 = glMapBuffer(GL_PIXEL_PACK_BUFF ER_ARB,
 GL_READ_ONLY);

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 205

 processImage(pboMemory1);
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[1]);
 pboMemory2 = glMapBuffer(GL_PIXEL_PACK_BUFF ER_ARB,
 GL_READ_ONLY);
 processImage(pboMemory2);

 // Unmap the image buffers
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[0]);
 glUnmapBuffer(GL_PIXEL_PACK_BUFFER_ARB);
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, imag eBuffers[1]);
 glUnmapBuffer(GL_PIXEL_PACK_BUFFER_ARB);

Appendix on Pack/Unpack Range

 The complexity of OpenGL's pixel pack/unpack st ate makes it difficult
 to express succinctly what range of a pixel buf fer object will be
 accessed by a pixel command.

 The following code, following the conventions o f the SGI OpenGL
 Sample Implementation, returns the limit (one b yte more than the
 maximum allowed offset into the buffer object) for the memory a
 pixel command will read/write.

 /*
 ** Compute offset limit into user's data consid ering all pixel
 ** store modes. This offset limit is ONE MORE than the largest byte
 ** offset for the image.
 */
 static GLsizeiptr OffsetLimitImage3D(__GLpixelS toreMode *pixelStoreMode,
 GLsizei wi dth, GLsizei height,
 GLsizei de pth,
 GLenum for mat, GLenum type,
 const GLvo id *userdata,
 GLint skip _images)
 {
 const GLint line_length = pixelStoreMode->l ineLength;
 const GLint image_height = pixelStoreMode-> imageHeight;
 const GLint alignment = pixelStoreMode->ali gnment;
 const GLint skip_pixels = pixelStoreMode->s kipPixels;
 const GLint skip_lines = pixelStoreMode->sk ipLines;

 GLsizeiptr offsetLimit = (GLsizeiptr) userd ata;

 GLint rowsize;
 GLint padding;
 GLint imagesize;

 assert(width > 0);
 assert(height > 0);
 assert(depth > 0);

 assert(line_length >= 0);
 assert(image_height >= 0);

 assert(skip_pixels >= 0);
 assert(skip_lines >= 0);
 assert(skip_images >= 0);

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 206

 assert((alignment == 1) ||
 (alignment == 2) ||
 (alignment == 4) ||
 (alignment == 8));

 /* All formats except GL_BITMAP fall out tr ivially */
 if (type == GL_BITMAP) {
 const GLint groups_per_line = (line_len gth > 0) ?
 line_leng th : width;
 const GLint rows_per_image = (image_hei ght > 0) ?
 image_heig ht : height;

 assert(1 == __glElementsPerGroup(format , type));

 rowsize = (groups_per_line + 7) / 8;
 padding = rowsize & (alignment-1);
 if (padding) {
 rowsize += alignment - padding;
 }
 imagesize = rows_per_image * rowsize;

 offsetLimit += imagesize * (skip_ima ges + depth-1);
 offsetLimit += rowsize * (skip_lin es + height-1);
 offsetLimit += (skip_pixels + width+7)/ 8;
 } else {
 const GLint components = __glElementsPe rGroup(format, type);
 const GLint element_size = __glBytesPer Element(type);
 const GLint group_size = element_size * components;

 if (0 == (line_length | image_height | skip_pixels |
 skip_lines | skip_pixels)) {
 // Fast path: when above pixel stor e modes are all zero.
 rowsize = width * group_size;
 // Default alignment is 4 so allow arbitrary alignment
 // on fast path.
 padding = rowsize & (alignment-1);
 if (padding) {
 rowsize += alignment - padding;
 }
 imagesize = depth * height * rowsiz e;
 offsetLimit += imagesize;
 } else {
 // General path: when one or more n on-zero pixel store modes.
 const GLint groups_per_line = (line _length > 0) ?
 line_ length : width;
 const GLint rows_per_image = (image _height > 0) ?
 image_ height : height;

 rowsize = groups_per_line * group_s ize;
 padding = rowsize & (alignment-1);
 if (padding) {
 rowsize += alignment - padding;
 }
 imagesize = rows_per_image * rowsiz e;

NVIDIA OpenGL Extension Specifications ARB_pixel_buffer_object

 207

 offsetLimit += imagesize * (skip _images + depth-1);
 offsetLimit += rowsize * (skip _lines + height-1);
 offsetLimit += group_size * (skip _pixels + width);
 }
 }
 return offsetLimit;
 }

 GLsizeiptr __glOffsetLimitImage3D(__GLpixelStor eMode *pixelStoreMode,
 GLsizei width , GLsizei height,
 GLsizei depth ,
 GLenum format , GLenum type,
 const GLvoid *userdata)
 {
 return OffsetLimitImage3D(pixelStoreMode,
 width, height, de pth, format, type,
 userdata,
 pixelStoreMode->s kipImages);
 }

 GLsizeiptr __glOffsetLimitImage(__GLpixelStoreM ode *pixelStoreMode,
 GLsizei width, GLsizei height,
 GLenum format, GLenum type,
 const GLvoid *u serdata)
 {
 /* NOTE: Non-3D image max offset computatio ns ignore (treat as zero)
 the unpackModes.skipImages state! */
 return OffsetLimitImage3D(pixelStoreMode,
 width, height, 1, format, type,
 userdata,
 0); // Treat ski pImages as zero.
 }

Revision History

 revision 0.3: mjk

 Numbered issues.

 Add issues 14 through 18.

 Remove all gl/GL prefix/suffixing in specif ication sections. Use
 gl/GL prefix/suffixing in sections other th an the specification
 sections. Leaving off prefixes in non-speci fication sections is
 ambiguous, particularly within example sour ce code.

 Base specification language updates on Open GL 2.0 specification.

 Add buffer object required state section.

 Added GL_INVALID_OPERATION when an offset a ccessed (read or
 written) for a pixel command from/to a pixe l buffer object would
 exceed the size of the buffer object.

 Added GL_INVALID_OPERATION when for misalig ned offsets.

ARB_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 208

 Added "Appendix on Pack/Unpack Range".

 Add GLX protocol discussion.

 revision 0.4: mjk

 Fixed grammar issues from Brian Paul.

 Improved example code and fixed grammar fro m Nick Carter.

 Explain how a NULL data parameter to glTexI mage commands works.

 revision 0.5: mjk

 Clarify that glBufferData usage modes apply to drawing _and_
 image specification commands.

 revision 0.6: mjk

 Add "streaming draw pixels" to the list of interesting approaches
 for this extension in the Overview.

 Add issue discussing the relationship of th is extension to data
 aquisition hardware.

 revision 0.7: mjk

 Assign enumerant values to match the EXT_pi xel_buffer_object values.

 Add issue explaining why the ARB extension shares enums with
 EXT_pixel_buffer_object.

 Apply Dale's suggestion to improve the clar ity of the usage
 pattern parameters to glBufferData.

 revision 0.8 mjk

 Typo fixes from Ian Romanick and Nick Carte r.

 revision 1.0 mjk

 Add issue 23 for Jeremy about render-to-ver tex-array. Move
 render-to-vertex-array justification in ove rview to bottom of
 the list.

NVIDIA OpenGL Extension Specifications ARB_point_parameters

 209

Name

 ARB_point_parameters

Name Strings

 GL_ARB_point_parameters

Status

 Approved by the ARB, 21 June 2000.

Version

 Revision Date: March 12, 2002
 Version: 0.5

 Based on: EXT_point_parameters
 $Date: 1997/08/21 21:26:36 $ $Revisi on: 1.6 $

Number

 ARB Extension #14

Dependencies

 OpenGL 1.0 is required.
 ARB_multisample affects the definition of this extension.
 The extension is written against the OpenGL 1.2 .1 Specification.

Overview

 This extension supports additional geometric ch aracteristics of
 points. It can be used to render particles or t iny light sources,
 commonly referred to as "Light points".

 The raster brightness of a point is a function of the point area,
 point color, point transparency, and the respon se of the display's
 electron gun and phosphor. The point area and t he point transparency
 are derived from the point size, currently prov ided with the <size>
 parameter of glPointSize.

 The primary motivation is to allow the size of a point to be
 affected by distance attenuation. When distance attenuation has an
 effect, the final point size decreases as the d istance of the point
 from the eye increases.

 The secondary motivation is a mean to control t he mapping from the
 point size to the raster point area and point t ransparency. This is
 done in order to increase the dynamic range of the raster brightness
 of points. In other words, the alpha component of a point may be
 decreased (and its transparency increased) as i ts area shrinks below
 a defined threshold.

ARB_point_parameters NVIDIA OpenGL Extension Specifications

 210

 This extension defines a derived point size to be closely related to
 point brightness. The brightness of a point is given by:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 brightness(Pe) = Brightness * dist_atten(|P e|)

 where 'Pe' is the point in eye coordinates, and 'Brightness' is some
 initial value proportional to the square of the size provided with
 PointSize. Here we simplify the raster brightne ss to be a function
 of the rasterized point area and point transpar ency.

 brightness(Pe) brightness (Pe) >= Threshold_Area
 area(Pe) =
 Threshold_Area Otherwise

 factor(Pe) = brightness(Pe)/Threshold_Area

 alpha(Pe) = Alpha * factor(Pe)

 where 'Alpha' comes with the point color (possi bly modified by
 lighting).

 'Threshold_Area' above is in area units. Thus, it is proportional to
 the square of the threshold provided by the pro grammer through this
 extension.

 The new point size derivation method applies to all points, while
 the threshold applies to multisample points onl y.

IP Status

 None.

Issues

 * Does point alpha modification affect the curr ent color ?

 No.

 * Do we need a special function GetPointParamet erfvARB, or get by
 with GetFloat ?

 GetFloat is sufficient.

 * If alpha is 0, then we could toss the point b efore it reaches the
 fragment stage.

 No. This can be achieved with enabling the a lpha test with
 reference of 0 and function of LEQUAL.

 * Do we need a disable for applying the thresho ld ? The default
 threshold value is 1.0. It is applied even if the point size is
 constant.

NVIDIA OpenGL Extension Specifications ARB_point_parameters

 211

 If the default threshold is not overridden, t he area of
 multisample points with provided constant siz e of less than 1.0,
 is mapped to 1.0, while the alpha component i s modulated
 accordingly, to compensate for the larger are a. For multisample
 points this is not a problem, as there are no relevant
 applications yet. As mentioned above, the thr eshold does not apply
 to alias or antialias points.

 The alternative is to have a disable of thres hold application, and
 state that threshold (if not disabled) applie s to non antialias
 points only (that is, alias and multisample p oints).

 The behavior without an enable/disable looks fine.

 * Future extensions (to the extension)

 1. POINT_FADE_ALPHA_CLAMP_ARB

 When the derived point size is larger than th e threshold size
 defined by the POINT_FADE_THRESHOLD_SIZE_ARB parameter, it might
 be desired to clamp the computed alpha to a m inimum value, in
 order to keep the point visible. In this case the formula below
 change:

 factor = (derived_size/threshold)^2

 factor clamp <= factor
 clamped_value =
 clamp facto r < clamp

 1.0 deriv ed_size >= threshold
 alpha *=
 clamped_value Other wise

 where clamp is defined by the POINT_FADE_ALPH A_CLAMP_ARB new
 parameter.

New Procedures and Functions

 void PointParameterfARB(enum pname,
 float param);
 void PointParameterfvARB(enum pname,
 float *params);

New Tokens

 Accepted by the <pname> parameter of PointParam eterfARB, and the
 <pname> of Get:

 POINT_SIZE_MIN_ARB
 POINT_SIZE_MAX_ARB
 POINT_FADE_THRESHOLD_SIZE_ARB

ARB_point_parameters NVIDIA OpenGL Extension Specifications

 212

 Accepted by the <pname> parameter of PointParam eterfvARB, and the
 <pname> of Get:

 POINT_SIZE_MIN_ARB 0x8126
 POINT_SIZE_MAX_ARB 0x8127
 POINT_FADE_THRESHOLD_SIZE_ARB 0x8128
 POINT_DISTANCE_ATTENUATION_ARB 0x8129

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 In section 3.3 , the following is inserted after the description o f
 PointSize:

 The point size is multiplied with a distance at tenuation factor
 and clamped as follows:

 derived_size = Clamp(size * sqrt(dist_atten (dist)))

 where dist_atten is specified as

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 and 'd' is the eye-coordinate distance from the eye, (0, 0, 0, 1) in
 eye coordinates, to the vertex.

 The derived point size is clamped to a given ra nge, and then
 clamped to the implementation-dependent point s ize range.

 If multisampling is enabled, an implementation may optionally fade
 the point alpha (section 3.12) instead of allow ing the size to go
 below a given threshold. In this case, the dia meter of the
 rasterized point is

 derived_size der ived_size >= threshold
 diameter =
 threshold Oth erwise

 and the fade factor is computed as follows:

 1 der ived_size >= threshold
 fade =
 (derived_size/threshold)^2 Oth erwise

 The distance attenuation function coefficients, 'a', 'b', and 'c',
 the bounds of the clamp, and the point fade 'th reshold', are
 specified with

 void PointParameterfARB(enum pname, float param);
 void PointParameterfvARB(enum pname, const float *params);

NVIDIA OpenGL Extension Specifications ARB_point_parameters

 213

 If <pname> is POINT_SIZE_MIN_ARB or POINT_SIZE_ MAX_ARB, then
 <param> specifies, or <params> points to the lo wer or upper bound
 respectively on the derived point size. If the lower bound is
 greater than the upper bound, the resulting poi nt size is
 undefined. If <pname> is POINT_DISTANCE_ATTENU ATION_ARB, then
 <params> points to the coefficients 'a', 'b', a nd 'c'. If <pname>
 is POINT_FADE_THRESHOLD_SIZE_ARB, <param> speci fies, or <params>
 points to the point fade threshold.

 This extension doesn't change the feedback or s election behavior of
 points.

 In section 3.11 , the word "Finally" is removed from the first
 sentence.

 Add the following after section 3.11.

 Section 3.12 Multisample Point Fade

 If multisampling is enabled and the rasterized fragment results
 from a point primitive, then the computed fade factor is applied
 to the fragment. In RGBA mode, the fade factor is multiplied by
 the fragment's alpha (A) value to yield a final alpha value. In
 color index mode, the fade factor has no effect .

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None

Additions to the GLX / WGL / AGL Specifications

 None

ARB_point_parameters NVIDIA OpenGL Extension Specifications

 214

GLX Protocol

 Two new GL rendering commands are added. The fo llowing commands are
 sent to the server as part of a glXRender reque st:

 PointParameterfARB
 2 8+4*n rendering c ommand length
 2 2065 rendering c ommand opcode
 4 ENUM pname
 0x8126 n=1 POINT_SIZE_ MIN_ARB
 0x8127 n=1 POINT_SIZE_ MAX_ARB
 0x8128 n=1 POINT_FADE_ THRESHOLD_SIZE_ARB
 4 FLOAT32 param

 PointParameterfvARB
 2 8+4*n rendering c ommand length
 2 2066 rendering c ommand opcode
 4 ENUM pname
 0x8126 n=1 POINT_SIZE_ MIN_ARB
 0x8127 n=1 POINT_SIZE_ MAX_ARB
 0x8128 n=1 POINT_FADE_ THRESHOLD_SIZE_ARB
 0x8129 n=3 POINT_DISTA NCE_ATTENUATION_ARB
 4*n LISTofFLOAT32 params

Dependencies on ARB_multisample

 If ARB_multisample is not implemented, then the references to
 multisample points are invalid, and should be i gnored.

Errors

 INVALID_ENUM is generated if PointParameterfARB parameter <pname> is
 not POINT_SIZE_MIN_ARB, POINT_SIZE_MAX_ARB, or
 POINT_FADE_THRESHOLD_SIZE_ARB.

 INVALID_ENUM is generated if PointParameterfvAR B parameter <pname>
 is not POINT_SIZE_MIN_ARB, POINT_SIZE_MAX_ARB,
 POINT_FADE_THRESHOLD_SIZE_ARB, or POINT_DISTANC E_ATTENUATION_ARB

 INVALID_VALUE is generated when values are out of range according
 to:

 <pname> valid r ange
 -------- ------- ----
 POINT_SIZE_MIN_ARB >= 0
 POINT_SIZE_MAX_ARB >= 0
 POINT_FADE_THRESHOLD_SIZE_ARB >= 0

NVIDIA OpenGL Extension Specifications ARB_point_parameters

 215

New State

(table 6.11, p. 201)
 Initial
Get Value Type Get Com mand Value Description Sec. Attribute
--------- ---- ------- ---- ------- ----------- ---- ---------
POINT_SIZE_MIN_ARB R+ GetFloa tv 0.0 Attenuated 3.3 point
 Min point
 size
POINT_SIZE_MAX_ARB R+ GetFloa tv M Attenuated 3.3 point
 Max point
 size
POINT_FADE_THRESHOLD_SIZE_ARB R+ GetFloa tv 1.0 Threshold 3.3 point
 for alpha
 attenuation
POINT_DISTANCE_ATTENUATION_ARB 3xR GetFloa tv (1.0,0.0,0.0) 3.3 point
 Attenuation
 coefficients

 M is the larger of the max antialiased and non antialiased point
 sizes.

New Implementation Dependent State

 None

Revision History

 11/09/1999 0.1
 - First ARB draft based on the original SGI and EXT drafts.

 12/07/1999 0.2
 - clarified behavior when POINT_SIZE_MIN ex ceeds POINT_SIZE_MAX
 - clarified when the point size is clamped to the supported range
 - removed issues from "Errors" section
 - fixed various typos
 - Updated to new extension template
 - added GLX protocol

 04/20/2000 0.3
 - rewritten to fit within the context of th e 1.2 specification
 - added language describing where the fade alpha is applied.
 - added language which indicates that some implementations may not
 implement POINT_FADE_THRESHOLD_SIZE_ARB

 06/20/2000 0.4
 - removed alternate behavior for fade alpha , since it is optional
 - added new section describing fade alpha a pplication

 03/12/2002 0.5
 - added GLX protocol for PointParameterfARB and assigned ropcodes

ARB_point_sprite NVIDIA OpenGL Extension Specifications

 216

Name

 ARB_point_sprite

Name Strings

 GL_ARB_point_sprite

IP Status

 No known IP issues.

Status

 Approved by the ARB on July 24, 2003.

Version

 Last Modified Date: July 22, 2003
 Revision: 7

Number

 ARB Extension #35

Dependencies

 Written based on the wording of the OpenGL 1.4 specification.

 NV_point_sprite affects the definition of this extension.

Overview

 Applications such as particle systems have tend ed to use OpenGL quads
 rather than points to render their geometry, si nce they would like
 to use a custom-drawn texture for each particle , rather than the
 traditional OpenGL round antialiased points, an d each fragment in
 a point has the same texture coordinates as eve ry other fragment.

 Unfortunately, specifying the geometry for thes e quads can be
 expensive, since it quadruples the amount of ge ometry required, and
 may also require the application to do extra pr ocessing to compute
 the location of each vertex.

 The purpose of this extension is to allow such applications to use
 points rather than quads. When GL_POINT_SPRITE _ARB is enabled,
 the state of point antialiasing is ignored. Fo r each texture unit,
 the app can then specify whether to replace the existing texture
 coordinates with point sprite texture coordinat es, which are
 interpolated across the point.

Issues

 * Should this spec say that point sprites get converted into quads?

 RESOLVED: No, this would make the spec much uglier, because then
 we'd have to say that polygon smooth and st ipple get turned off,

NVIDIA OpenGL Extension Specifications ARB_point_sprite

 217

 etc. Better to provide a formula for compu ting the texture
 coordinates and leave them as points.

 * How are point sprite texture coordinates co mputed?

 RESOLVED: They move smoothly as the point m oves around on the
 screen, even though the pixels touched by t he point do not. The
 exact formula is given in the spec below.

 A point sprite can be thought of as a quad whose upper-left corner
 has (s,t) texture coordinates of (0,0) and whose lower-right
 corner has texture coordinates of (1,1), as illustrated in
 the following figure. In the figure "P" is the center of
 the point sprite, and "O" is the origin (0, 0) of the window
 coordinate system. Note that the y window coordinate increases
 from bottom-to-top but the t texture coordi nate of point sprites
 increases from top-to-bottom.

 ^
 +y| (0,0)
 | +-----+
 | | |
 | | P |
 | | |
 | +-----+
 | (1,1)
 | +x
 O--------------->

 Applications using a single texture for bot h point sprites and
 other geometry need to account for the fixe d coordinate mapping
 of point sprites.

 * Is the ARB specification different from the NV version?

 RESOLVED: Yes. The point sprite R mode ha s been removed.
 The wording has also been updated to reflec t version 1.4 of the
 core OpenGL specification however. The enu merant values are
 unchanged.

 * How do point sizes for point sprites work?

 RESOLVED: This specification treats point s prite sizes like
 antialiased point sizes, but with more leni ency. Implementations
 may choose to not clamp the point size to t he antialiased point
 size range. The set of point sprite sizes available must be
 a superset of the antialiased point sizes. However, whereas
 antialiased point sizes are all evenly spac ed by the point size
 granularity, point sprites can have an arbi trary set of sizes.
 This lets implementations use, e.g., floati ng-point sizes.

 * Should there be a way to query the list of supported point sprite
 sizes?

 RESOLVED: No. If an implementation were to use, say, a single-
 precision IEEE float to represent point siz es, the list would
 be rather long.

ARB_point_sprite NVIDIA OpenGL Extension Specifications

 218

 * Do mipmaps apply to point sprites?

 RESOLVED: Yes. They are similar to quads i n this respect.

 * What of this extension's state is per-textu re unit and what
 of this extension's state is state is globa l?

 RESOLVED: The GL_POINT_SPRITE_ARB enable is global.
 The COORD_REPLACE_ARB state is per-texture unit (state set by
 TexEnv is per-texture unit).

 * Should there be a global on/off switch for point sprites, or
 should the per-unit enable imply that switc h?

 RESOLVED: There is a global switch to turn it on and off. This
 is probably more convenient for both driver and app, and it
 simplifies the spec.

 * What should the TexEnv mode for point sprit es be called?

 RESOLVED: COORD_REPLACE_ARB.

 * What is the interaction with multisample po ints, which are round?

 RESOLVED: Point sprites are rasterized as s quares, even in
 multisample mode. Leaving them as round po ints would make the
 feature useless.

 * How does the point sprite extension interac t with fragment
 program extensions (ARB_fragment_program, N V_fragment_program,
 etc)?

 RESOLVED: The primary issue is how the inte rpolated texture
 coordinate set appears when fragment attrib ute variables
 (ARB terminology) or fragment program attri bute registers (NV
 terminology) are accessed.

 When point sprite is enabled and the GL_COO RD_REPLACE_ARB state
 for a given texture unit is GL_TRUE, the te xture coordinate
 set for that texture unit is (s,t,0,1) wher e the point
 sprite-overridden s and t are described in the amended Section
 3.3 below. The important point is that r a nd q are forced to
 0 and 1, respectively.

 For fragment program extensions, r and q co rrespond to the z
 and w components of the respective fragment attribute.

 * How does this extension interact with Polyg onMode?

 RESOLVED: If a polygon is rendered in poin t mode and
 POINT_SPRITE_ARB is enabled, its vertices w ill be rendered as
 point sprites.

NVIDIA OpenGL Extension Specifications ARB_point_sprite

 219

 * How does this extension interact with the p oint size attenuation
 functionality in ARB_point_parameters and O penGL 1.4?

 RESOLVED: Point sprites sizes are attenuat ed just like the
 sizes of non-sprite points.

 * What push/pop attribute bits control the st ate of this extension?

 RESOLVED: POINT_BIT for all the state. Al so ENABLE_BIT for
 the POINT_SPRITE_ARB enable.

 * How are point sprites clipped?

 RESOLVED: Point sprites are transformed as points, and standard
 point clipping operations are performed. T his can cause point
 sprites that move off the edge of the scree n to disappear
 abruptly, in the same way that regular poin ts do. As with
 any other primitive, standard per-fragment clipping operations
 (scissoring, window ownership test) still a pply.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f TexEnvi, TexEnviv,
 TexEnvf, TexEnvfv, GetTexEnviv, and GetTexEnvfv :

 POINT_SPRITE_ARB 0x8861

 When the <target> parameter of TexEnvf, TexEnvf v, TexEnvi, TexEnviv,
 GetTexEnvfv, or GetTexEnviv is POINT_SPRITE_ARB , then the value of
 <pname> may be:

 COORD_REPLACE_ARB 0x8862

 When the <target> and <pname> parameters of Tex Envf, TexEnvfv,
 TexEnvi, or TexEnviv are POINT_SPRITE_ARB and C OORD_REPLACE_ARB
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 FALSE
 TRUE

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 None.

ARB_point_sprite NVIDIA OpenGL Extension Specifications

 220

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 Insert the following paragraphs after the secon d paragraph of section
 3.3 (page 66):

 "Point sprites are enabled or disabled by calli ng Enable or Disable
 with the symbolic constant POINT_SPRITE_ARB. T he default state is
 for point sprites to be disabled. When point s prites are enabled,
 the state of the point antialiasing enable is i gnored.

 The point sprite texture coordinate replacement mode is set with one
 of the commands

 void TexEnv{if}(enum target, enum pname, T pa ram)
 void TexEnv{if}v(enum target, enum pname, con st T *params)

 where target is POINT_SPRITE_ARB and pname is C OORD_REPLACE_ARB.
 The possible values for param are FALSE and TRU E. The default
 value for each texture unit is for point sprite texture coordinate
 replacement to be disabled."

 Replace the first two sentences of the second p aragraph of section
 3.3.1 (page 67) with the following:

 "The effect of a point width other than 1.0 dep ends on the state of
 point antialiasing and point sprites. If antia liasing and point
 sprites are disabled, ..."

 Replace the first sentences of the fourth parag raph of section 3.3.1
 (page 68) with the following:

 "If antialiasing is enabled and point sprites a re disabled, ..."

 Insert the following paragraphs at the end of s ection 3.3.1 (page
 70):

 "When point sprites are enabled, then point ras terization produces
 a fragment for each framebuffer pixel whose cen ter lies inside a
 square centered at the point's (x_w, y_w), with side length equal
 to the current point size.

 All fragments produced in rasterizing a point s prite are assigned the
 same associated data, which are those of the ve rtex corresponding to
 the point, with texture coordinates s, t, and r replaced with s/q,
 t/q, and r/q, respectively. If q is less than or equal to zero,
 the results are undefined. However, for each t exture unit where
 COORD_REPLACE_ARB is TRUE, these texture coordi nates are replaced
 with point sprite texture coordinates. The s c oordinate varies
 from 0 to 1 across the point horizontally left- to-right, while the
 t coordinate varies from 0 to 1 vertically top- to-bottom. The r and
 q coordinates are replaced with the constants 0 and 1, respectively.

NVIDIA OpenGL Extension Specifications ARB_point_sprite

 221

 The following formula is used to evaluate the s and t coordinates:

 s = 1/2 + (x_f + 1/2 - x_w) / size
 t = 1/2 - (y_f + 1/2 - y_w) / size

 where size is the point's size, x_f and y_f are the (integral)
 window coordinates of the fragment, and x_w and y_w are the exact,
 unrounded window coordinates of the vertex for the point.

 The widths supported for point sprites must be a superset of those
 supported for antialiased points. There is no requirement that these
 widths must be equally spaced. If an unsupport ed width is requested,
 the nearest supported width is used instead."

 Replace the text of section 3.3.2 (page 70) wit h the following:

 "The state required to control point rasterizat ion consists of the
 floating-point point width, three floating-poin t values specifying
 the minimum and maximum point size and the poin t fade threshold
 size, three floating-point values specifying th e distance attenuation
 coefficients, a bit indicating whether or not a ntialiasing is enabled,
 a bit indicating whether or not point sprites a re enabled, and a
 bit for the point sprite texture coordinate rep lacement mode for
 each texture unit."

 Replace the text of section 3.3.3 (page 70) wit h the following:

 "If MULTISAMPLE is enabled, and the value of SA MPLE_BUFFERS is
 one, then points are rasterized using the follo wing algorithm,
 regardless of whether point antialiasing (POINT _SMOOTH) is enabled
 or disabled. Point rasterization produces a fr agment for each
 framebuffer pixel with one or more sample point s that intersect a
 region centered at the point's (x_w, y_w). Thi s region is a circle
 having diameter equal to the current point widt h if POINT_SPRITE_ARB
 is disabled, or a square with side equal to the current point width if
 POINT_SPRITE_ARB is enabled. Coverage bits tha t correspond to sample
 points that intersect the region are 1, other c overage bits are 0.
 All data associated with each sample for the fr agment are the data
 associated with the point being rasterized, wit h the exception of
 texture coordinates when POINT_SPRITE_ARB is en abled; these texture
 coordinates are computed as described in sectio n 3.3.

 Point size range and number of gradations are e quivalent to those
 supported for antialiased points when POINT_SPR ITE_ARB is disabled.
 The set of point sizes supported is equivalent to those for point
 sprites without multisample when POINT_SPRITE_A RB is enabled."

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special
Functions)

 None.

ARB_point_sprite NVIDIA OpenGL Extension Specifications

 222

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 None.

Interactions with NV_point_sprite

 ARB_point_sprite is a functional subset of NV_p oint_sprite.

 The only functional difference between the exte nsions is that
 NV_point_sprite provides the POINT_SPRITE_R_MOD E_NV control. This
 mode allows applications to specify how the r t exture coordinates for
 point sprites are replaced. The r coordinate c an be replaced with
 the corresponding s texture coordinate ("S" mod e), left unchanged
 ("R" mode), or replaced with the constant zero ("ZERO" mode).
 ARB_point_sprite always replaces r texture coor diantes of point
 sprites with zero.

 Since ARB_point_sprite is functionally compatib le with the default
 r mode from NV_point_sprite, the two extensions can coexist nicely.
 Enumerant values from NV_point_sprite are reuse d.

 If NV_point_sprite is supported, the language d escribing the
 replacement of r coordinates for point sprites (forced to zero)
 is replaced with the corresponding language fro m NV_point_sprite
 (controlled by POINT_SPRITE_R_MODE_NV).

Errors

 None.

New State

(table 6.12, p. 220)

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
POINT_SPRITE_ARB B IsEnabled False point sprite enable 3.3 point/enable

(table 6.17, p. 225)

Get Value Type Get Command Initial Val ue Description Sec Attribute
--------- ---- ----------- ----------- -- ----------- --- ---------
COORD_REPLACE_ARB 2* x B GetTexEnviv False coordinate replacement 3.3 point
 enable

NVIDIA OpenGL Extension Specifications ARB_point_sprite

 223

Revision History

 Initially based on the NV_point_sprite specific ation but updated for
 OpenGL 1.4.

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 7 07/22/03 pbrown Marked point paramete r issue resolved.

 6 07/18/03 pbrown Removed POINT_SPRITE_ R_MODE_CONTROL.

 Expanded on spec issu e documenting the
 inversion of the "t" texture coordinate
 relative to the "y" w indow coordinate.
 Added issues on inter action with
 PolygonMode, clipping , and point parameters.
 Documented interactio n with NV_point_sprite.
 Removed now unneeded point parameter
 interaction section a nd GLX protocol.

ARB_shadow NVIDIA OpenGL Extension Specifications

 224

Name

 ARB_shadow

Name Strings

 GL_ARB_shadow

Contact

 Brian Paul (brian_e_paul 'at' yahoo.com)

Status

 Complete. Approved by ARB on February 14, 2002.

Version

 Last Modified Date: 21 January 2002

Number

 ARB Extension #23

Dependencies

 OpenGL 1.1 is required.
 ARB_depth_texture is required.
 This extension is written against the OpenGL 1. 3 Specification.

Overview

 This extension clarifies the GL_SGIX_shadow ext ension.

 This extension supports comparing the texture R coordinate to a depth
 texture value in order to produce a boolean tex ture value. This can
 be used to implement shadow maps.

 The extension is written in generic terms such that other texture
 comparison modes can be accommodated in the fut ure.

IP Status

 XXX None?

Issues

 (1) How is this extension different from GL_SGI X_shadow?

 - It defines GL behaviour when the currently bound texture is not
 a depth texture.
 - It specifies that R is clamped to [0,1].
 - We use the standard GL_LEQUAL and GL_GEQUAL tokens instead of
 defining new ones.
 - The result may be ALPHA, LUMINANCE or INTEN SITY.
 - A bit more is said about how depth textures are sampled.
 - The extension is generalized for comparison modes.

NVIDIA OpenGL Extension Specifications ARB_shadow

 225

 (2) Should we use GL_LEQUAL and GL_EQUAL instea d of
 GL_TEXTURE_LEQUAL_R_SGIX and GL_TEXTURE_GEQUA L_R_SGIX?

 RESOLUTION: Yes. The old tokens are misleadi ng. For example,
 the GL_TEXTURE_LEQUAL_R_SGIX token should rea lly have been named
 GL_R_LEQUAL_TEXTURE_SGIX since we're comparin g R <= TEXTURE.
 This extension uses the standard GL_LEQUAL an d GL_GEQUAL tokens.
 Also, the original shadow spec seems to be in consistant with
 what was really implemented in hardware.

 (3) Use TEXTURE_COMPARE_OPERATOR_ARB or TEXTURE _COMPARE_FUNC_ARB?

 RESOLVED: Use TEXTURE_COMPARE_FUNC_ARB to be more consistant with
 the conventions of glDepthFunc(), glStencilFu nc(), etc which use
 the GL_LEQUAL, GL_GEQUAL, etc tokens.

 (4) Should the result of the texture comparison be a LUMINANCE,
 INTENSITY or ALPHA texel?

 RESOLVED: Allow any of them. This is controll ed by
 DEPTH_TEXTURE_MODE_ARB defined in ARB_depth_t exture extension.

 (5) What if TEXTURE_COMPARE_MODE_ARB is set to COMPARE_R_TO_TEXTURE
 but the the currently bound texture is not a depth texture?

 RESOLVED: If the currently bound texture is a color (or paletted
 or color index) texture then the texture unit treats it in the
 usual manner and all texture comparison logic is bypassed.

 (6) Should the R value be clamped to [0,1] befo re the comparison?

 RESOLUTION: Yes, that makes sense since the d epth texels are in
 the range [0,1]. Note that clamping R to [0, 1] really only matters
 at the values 0 and 1.

 (7) How is bilinear or trilinear filtering impl emented?

 RESOLUTION: We suggest an implementation beha viour but leave the
 details up to the implementation. Difference s here amount to the
 quality and softness of shadow edges. Specif ic filtering
 algorithms could be expressed via layered ext ensions. We're
 intentionally vague here to avoid IP and pate nt issues.

 (8) Is GL_ARB_shadow the right name for this ex tension?

 RESOLVED: Probably. While this extension is expressed in rather
 generic terms which may be used by future ext ensions, it implements
 a rather specific operation at this time.

 (9) What about GL_SGIX_shadow_ambient?

 RESOLUTION: Omit that functionality. It can be accomplished with
 advanced texture extensions such as GL_NV_reg ister_combiners.
 GL_SGIX_shadow_ambient usually can't be imple mented with existing
 hardware so it'll be offered as GL_ARB_shadow _ambient, rather than
 burdon this extension with it.

ARB_shadow NVIDIA OpenGL Extension Specifications

 226

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameter of TexParamet erf, TexParameteri,
 TexParameterfv, TexParameteriv, GetTexParameter fv, and GetTexParameteriv:

 TEXTURE_COMPARE_MODE_ARB 0x884C
 TEXTURE_COMPARE_FUNC_ARB 0x884D

 Accepted by the <param> parameter of TexParamet erf, TexParameteri,
 TexParameterfv, and TexParameteriv when the <pn ame> parameter is
 TEXTURE_COMPARE_MODE_ARB:

 COMPARE_R_TO_TEXTURE_ARB 0x884E

Additions to Chapter 2 of the 1.3 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.3 Specification (Ra sterization)

 Section 3.8.4, Texture Parameters, p. 133, appe nd table 3.19 with the
 following:

 Name Type Legal Val ues
 -------------------------- ---- --------- ----------------------
 TEXTURE_COMPARE_MODE_ARB enum NONE, COM PARE_R_TO_TEXTURE
 TEXTURE_COMPARE_FUNC_ARB enum LEQUAL, G EQUAL

 After section 3.8.12, Texture Environments and Texture Functions,
 p. 149, insert the following new sections (and renumber subsequent
 sections):

 "3.8.13 Texture Comparison Modes

 TEXTURE_COMPARE_MODE_ARB can be used to com pute the texture value
 according to a comparison function. TEXTUR E_COMPARE_MODE_ARB
 specifies the comparison operands, and TEXT URE_COMPARE_FUNC_ARB
 specifies the comparison function. The for mat of the resulting
 texture sample is specified by the DEPTH_TE XTURE_MODE_ARB.

 3.8.13.1 Depth Texture Comparison Mode

 If the currently bound texture's format is DEPTH_COMPONENT then
 TEXTURE_COMPARE_MODE_ARB, TEXTURE_COMPARE_FUNC_ARB and
 DEPTH_TEXTURE_MODE_ARB control the output o f the texture unit
 as described below. However, if the curren tly bound texture is
 not DEPTH_COMPONENT then the texture unit o perates in the normal
 manner and texture comparison is bypassed.

 Let Dt (D subscript t) be the depth texture value, in the range
 [0, 1]. Let R be the interpolated texture coordinate clamped to

NVIDIA OpenGL Extension Specifications ARB_shadow

 227

 the range [0, 1]. Then the effective textu re value Lt, It, or At
 is computed by

 if TEXTURE_COMPARE_MODE_ARB = NONE

 r = Dt

 else if TEXTURE_COMPARE_MODE_ARB = COMPARE_ R_TO_TEXTURE_ARB

 if TEXTURE_COMPARE_FUNC_ARB = LEQUAL

 { 1.0, if R <= Dt
 r = {
 { 0.0, if R > Dt

 else if TEXTURE_COMPARE_FUNC_ARB = GEQU AL

 { 1.0, if R >= Dt
 r = {
 { 0.0, if R < Dt

 endif

 if DEPTH_TEXTURE_MODE_ARB = LUMINANCE

 Lt = r

 else if DEPTH_TEXTURE_MODE_ARB = INTENS ITY

 It = r

 else if DEPTH_TEXTURE_MODE_ARB = ALPHA

 At = r

 endif

 endif

 If TEXTURE_MAG_FILTER is not NEAREST or TEX TURE_MIN_FILTER is
 not NEAREST or NEAREST_MIPMAP_NEAREST then r may be computed by
 comparing more than one depth texture value to the texture R
 coordinate. The details of this are implem entation-dependent
 but r should be a value in the range [0, 1] which is proportional
 to the number of comparison passes or failu res.

Additions to Chapter 4 of the 1.3 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.3 Specification (Sp ecial Functions)

 None

ARB_shadow NVIDIA OpenGL Extension Specifications

 228

Additions to Chapter 6 of the 1.3 Specification (St ate and State Requests)

 In section 6.1.3, p. 200, insert the following after the fourth
 paragraph:

 "The texture compare mode and texture compare f unction may be queried
 by calling GetTexParameteriv or GetTexParameter fv with <pname> set to
 TEXTURE_COMPARE_MODE_ARB, or TEXTURE_COMPARE_FUNC_ARB, respectively."

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated if TexParameter[if] p arameter <pname>
 is TEXTURE_COMPARE_MODE_ARB and parameter <para m> is not NONE or
 COMPARE_R_TO_TEXTURE.

 INVALID_ENUM is generated if TexParameter[if] p arameter <pname>
 is TEXTURE_COMPARE_FUNC_ARB and parameter <para m> is not LEQUAL or
 GEQUAL.

New State

 In table 6.16, Texture Objects, p. 224, add the following:

Get Value Type Get Command Initial Value Description Sec. Attribut e
-------------------------- ---- ----------------- --- ------------- -------------- ----- -------- -
TEXTURE_COMPARE_MODE_ARB Z_2 GetTexParameter[i f]v NONE compare mode 3.8.13 texture
TEXTURE_COMPARE_FUNC_ARB Z_2 GetTexParameter[i f]v LEQUAL compare func 3.8.13 texture

New Implementation Dependent State

 None

Revision History

 19 March 2001
 - initial revision
 20 March 2001
 - use GL_LEQUAL, GL_GEQUAL tokens
 - removed TEXTURE_COMPARE_FAIL_VALUE_ARB
 16 April 2001
 - renamed TEXTURE_COMPARE_OPERATOR_ARB to T EXTURE_COMPARE_FUNC_ARB
 - replace TEXTURE_COMPARE_ARB with TEXTURE_ COMPARE_MODE_ARB
 22 April 2001
 - added TEXTURE_COMPARE_RESULT
 23 April 2001
 - minor tweaks
 22 June 2001
 - fixed grammatical errors
 16 November 2001
 - Change default value of TEXTURE_COMPARE_M ODE_ARB to LUMINANCE.
 17 November 2001
 - Resolved issue 5
 - cleaned up new section 3.8.7.1 yet again

NVIDIA OpenGL Extension Specifications ARB_shadow

 229

 12 December 2001
 - rewritten against the OpenGL 1.3 spec
 3 January 2002
 - fixed a typo found by Bimal
 18 January 2002
 - Since depth textures can now allow ALPHA, INTENSITY, LUMINANCE mode,
 there was no need for TEXTURE_COMPARE_RES ULT_ARB.
 21 January 2002
 - Fixed error to be INVALID_ENUM instead of INVALID_OPERATION.

ARB_texture_border_clamp NVIDIA OpenGL Extension Specifications

 230

Name

 ARB_texture_border_clamp

Name Strings

 GL_ARB_texture_border_clamp

Status

 Complete. Approved by the ARB, 20 June 2000

Version

 1.0, 22 June 2000

Number

 ARB Extension #13

Dependencies

 OpenGL 1.0 is required.

 This extension is written against the OpenGL 1. 2.1 Specification.

 This extension is based on and intended to repl ace
 GL_SGIS_texture_border_clamp.

Overview

 The base OpenGL provides clamping such that the texture coordinates are
 limited to exactly the range [0,1]. When a tex ture coordinate is clamped
 using this algorithm, the texture sampling filt er straddles the edge of
 the texture image, taking 1/2 its sample values from within the texture
 image, and the other 1/2 from the texture borde r. It is sometimes
 desirable for a texture to be clamped to the bo rder color, rather than to
 an average of the border and edge colors.

 This extension defines an additional texture cl amping algorithm.
 CLAMP_TO_BORDER_ARB clamps texture coordinates at all mipmap levels such
 that NEAREST and LINEAR filters return only the color of the border
 texels.

IP Status

 No known IP issues.

Issues

 (1) Is this formulation correct for higher-orde r texture filters
 (e.g., cubic or anisotropic filters)?

 RESOLVED: No. A more appropriate formulati on would clamp the texture
 coordinates in texel space.

NVIDIA OpenGL Extension Specifications ARB_texture_border_clamp

 231

New Procedures and Functions

 None.

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf, and
 by the <params> parameter of TexParameteriv and TexParameterfv, when their
 <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WR AP_T, or TEXTURE_WRAP_R:

 CLAMP_TO_BORDER_ARB 0x812D

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Table 3.17, p. 124, editing only the fol lowing lines:

 Name Type Legal Values
 ============== ======= =================== =
 TEXTURE_WRAP_S integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB

 Modify Section 3.8.4, Texture Wrap Modes , p.124

 (add at the end of the section, p. 125)

 CLAMP_TO_BORDER_ARB clamps texture coordinates at all mipmaps such that
 the texture filter always samples border texels for fragments whose
 corresponding texture coordinate is sufficientl y far outside the range
 [0,1]. The color returned when clamping is der ived only from the border
 texels of the texture image, or from the consta nt border color if the
 texture image does not have a border.

 Texture coordinates are clamped to the range [m in, max]. The minimum
 value is defined as

 min = -1 / 2N

 where N is the size (not including borders) of the one-, two-, or
 three-dimensional texture image in the directio n of clamping. The maximum
 value is defined as

 max = 1 - min

 so that clamping is always symmetric about the [0,1] mapped range of a
 texture coordinate.

ARB_texture_border_clamp NVIDIA OpenGL Extension Specifications

 232

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 None.

New State

 Only the type information changes for these par ameters.

 (table 6.13, p. 203)
 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ---- --- -------- ------- ----------- ---- ---------
 TEXTURE_WRAP_S 3+ x Z4 Get TexParameter REPEAT Texture wrap 3.8 texture
 TEXTURE_WRAP_T 3+ x Z4 Get TexParameter REPEAT Texture wrap 3.8 texture
 TEXTURE_WRAP_R 3+ x Z4 Get TexParameter REPEAT Texture wrap 3.8 texture

Revision History

 1.0, 06/22/2000 prbrown1: Added issue w.r.t. higher order filters.

 0.2, 05/23/2000 prbrown1: Removed dependency on SGIS_texture_filter4
 per ARB guidelines .

 0.1, 05/02/2000 prbrown1: Initial revision - - mostly stolen from
 GL_SGIS_texture_bo rder_clamp.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 233

Name

 ARB_texture_compression

Name Strings

 GL_ARB_texture_compression

Status

 FINAL VERSION -- APPROVED BY OPENGL ARB, 3/16/2 000.

Version

 Final 1.03, 23 May 2000 (supersedes Final 1.0, 24 March 2000 -
 contains a few minor f ixes documented in
 the Revision History b elow).

Number

 ARB Extension #12

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 1. 2.1 Specification.

 This extension is written against the GLX Exten sions for OpenGL
 Specification (Version 1.3).

 Depends on GL_ARB_texture_cube_map, as cube map s may be stored in
 compressed form.

Overview

 Compressing texture images can reduce texture m emory utilization and
 improve performance when rendering textured pri mitives. This extension
 allows OpenGL applications to use compressed te xture images by providing:

 (1) A framework upon which extensions provi ding specific compressed
 image formats can be built.

 (2) A set of generic compressed internal fo rmats that allow
 applications to specify that texture im ages should be stored in
 compressed form without needing to code for specific compression
 formats.

 An application can define compressed texture im ages by providing a texture
 image stored in a specific compressed image for mat. This extension does
 not define any specific compressed image format s, but it does provide the
 mechanisms necessary to enable other extensions that do.

 An application can also define compressed textu re images by providing an
 uncompressed texture image but specifying a com pressed internal format.
 In this case, the GL will automatically compres s the texture image using
 the appropriate image format. Compressed inter nal formats can either be

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 234

 specific (as above) or generic. Generic compre ssed internal formats are
 not actual image formats, but are instead mappe d into one of the specific
 compressed formats provided by the GL (or to an uncompressed base internal
 format if no appropriate compressed format is a vailable). Generic
 compressed internal formats allow applications to use texture compression
 without needing to code to any particular compr ession algorithm. Generic
 compressed formats allow the use of texture com pression across a wide
 range of platforms with differing compression a lgorithms and also allow
 future GL implementations to substitute improve d compression methods
 transparently.

 Compressed texture images can be obtained from the GL in uncompressed form
 by calling GetTexImage and in compressed form b y calling
 GetCompressedTexImageARB. Queried compressed i mages can be saved and
 later reused by calling CompressedTexImage[123] DARB. Pre-compressed
 texture images do not need to be processed by t he GL and should
 significantly improve texture loading performan ce relative to uncompressed
 images.

 This extension does not define specific compres sed image formats (e.g.,
 S3TC, FXT1), nor does it provide means to encod e or decode such images.
 To support images in a specific compressed form at, a hardware vendor
 would:

 (1) Provide a new extension defininig specifi c compressed
 <internalformat> and <format> tokens for TexImage[123]D,
 TexSubImage[123]D, CopyTexImage[12]D, Com pressedTexImage[123]DARB,
 CompressedTexSubImage[123]DARB, and GetCo mpressedTexImageARB calls.

 (2) Specify the encoding of compressed images of that specific format.

 (3) Specify a method for deriving the size of compressed images of that
 specific format, using the <internalforma t>, <width>, <height>,
 <depth> parameters, and (if necessary) th e compressed image itself.

IP Status

 No known intellectual property issues on this g eneral extension.

 Specific compression algorithms used to impleme nt this extension (and any
 other specific texture compression extensions) may be protected and
 require licensing agreements.

Issues

 (1) Should we define additional internal format s that strongly tie an
 underlying compression algorithm to the format?

 RESOLVED: Not here. Explicit compressed for mats will be provided by
 other extensions built on top of this one.

 (2) Should we provide additional compression st ate that gives more control
 on the level/quality of compression? If so, ho w?

 RESOLVED: Yes, as a hint. Could have also b een implemented as a [0.0,
 1.0] floating-point TexParameter "quality" st ate variable (such as the
 JPEG quality scale found in many apps). This control will affect only

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 235

 the speed (and quality) with which a driver c ompresses incoming images,
 but will not affect the compressed image form at selected by the driver.

 As the spec is currently formulated, the requ irement that quality
 control not affect compression format selecti on could have been relaxed
 by loosening the invariance requirements (so that the quality control
 can affect the choice of internal format). T he risk was the potential
 for subtle mipmap consistency issues if the h int changes.

 (3) Most current compression algorithms handle primarily RGB and RGBA
 images. Does it make sense having generic comp ressed formats for alpha,
 intensity, luminance, and luminance-alpha?

 RESOLVED: Yes. It is conceivable that some or all of these formats may
 be compressed. Implementations not having co mpression algorithms for
 these formats can simply choose not to compre ss and use the appropriate
 base internal format instead.

 (4) Full GetTexImage support requires that the renderer decompress the
 whole image. Should this extra implementation burden be imposed on the
 renderer?

 RESOLVED: Yes, returning the uncompressed im age is a useful feature for
 evaluating the quality of the compressed imag e. A decompression engine
 may also be required for a number of other ar eas, including software
 rasterization.

 (5) Full TexSubImage support may require that t he renderer decompress
 portions of the image (or perhaps the whole ima ge), do a merge, and then
 recompress. Even if this were done, portions o f the image outside the
 "modified" area may also be modified due to los sy compression. Should this
 extra implementation burden be imposed on the r enderer?

 RESOLVED: No. To avoid the complications in volved with modifying a
 compressed texture image, only the lower-left corner may be modified by
 TexSubImage. In addition, after calling TexS ubImage, the "unmodified"
 portion of the image is left undefined. An IN VALID_OPERATION error
 results from any other TexSubImage calls.

 This behavior allows for the use of compresse d images whose dimensions
 are not powers of two, which TexImage will no t accept. The recommended
 sequence of calls for defining such images is to first call TexImage
 with a NULL <data> pointer and the image size parameters padded out to
 the next power of two, and then call Compress edTexSubImageARB or
 TexSubImage with <xoffset>, <yoffset>, and <z offset> parameters of zero
 and the compressed data pointed to by <data>. This behavior also allows
 TexSubImage to be used as a light-weight repl acement of TexImage, where
 only the image contents are modified.

 Certain compressed formats may allow a wider variety of edits -- their
 specifications will document the restrictions under which these edits
 are permitted. it is impossible to document such restrictions for
 unknown generic formats. It is desirable to keep the behavior of
 generic formats and the specific formats they map to as consistent as
 possible.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 236

 (6) What do the return values of the component sizes (RED_BITS,
 GREEN_BITS, ...) give for compressed textures? Compressed proxy textures?

 RESOLVED: Some behavior has to be defined. F or both normal and proxy
 textures, we return the bit depths of an unco mpressed sized image that
 would most closely match the quality of the c ompression algorithm for an
 "average" texture image. Since compressed im age quality is highly data
 dependent, the actual compressed image qualit y may be better or worse
 than the renderer's best guess at the best ma tching sized internal
 format. To implement this feature in a drive r, it is expected that an
 error analysis would be done on a set of repr esentative images, and the
 resultant "equivalent bit depths" would be ha rdwired constants.

 (7) What should GetTexLevelParameter with TEXTU RE_COMPRESSED_
 IMAGE_SIZE_ARB return for existing uncompressed formats? For proxy
 textures?

 RESOLVED: For both, an INVALID_OPERATION erro r results. The actual
 image to be compressed is not available for p roxies, so actually
 compressing the specified image is not an opt ion.

 For uncompressed internal formats, we could r eturn the actual amount of
 memory taken by the texture image. Such a me chanism might be useful as
 a metric of "how much space does this texture image take". It's not
 particularly useful for an application based texture management scheme,
 since there is no information available indic ating the amount of
 available memory. In addition, because of im plementation-dependent
 hardware constraints, the amount of texture m emory consumed by a texture
 object is not necessarily equal to the sum of the memory consumed by
 each of its mipmaps. The OpenGL ARB decided against adopting this
 behavior when this specification was approved .

 (8) What about texture borders?

 RESOLVED: Not a problem for generic compress ed formats since a base
 internal format can be used if borders are no t supported in the
 compressed image format. Borders may pose pr oblems for specific
 compression extensions, and compressed textur es with borders might well
 be disallowed by those extensions.

 (9) Should certain pixel operations be disallow ed for compressed texture
 internal formats (e.g., PixelStorage, PixelTran sfer)? What about byte
 swapping?

 RESOLVED: For uncompressed source images, al l pixel storage and pixel
 transfer modes will be applied prior to compr ession. For compressed
 source images, all pixel storage and transfer modes will be ignored.
 The encoding of compressed images should be s pecified as a byte stream
 that matches the disk file format defined for the corresponding image
 type.

 (10) Should functionality be provided to allow applications to save
 compressed images to disk and reuse them in sub sequent runs without
 programming to specific formats? If so, how?

 RESOLVED: Yes. This can be done without kno wledge of specific
 compression formats in the following manner:

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 237

 * Call TexImage with an uncompressed image and a generic compressed
 internal format. The texture image will be compressed by the GL, if
 possible.

 * Call GetTexLevelParameteriv with a <value > of TEXTURE_COMPRESSED_ARB
 to determine if the GL was able to store the image in compressed
 form.

 * Call GetTexLevelParameteriv with a <value > of
 TEXTURE_INTERNAL_FORMAT to determine the specific compressed image
 format in which the image is stored.

 * Call GetTexLevelParameteriv with a <value > of
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB to dete rmine the size (in ubytes)
 of the compressed image that will be retu rned by the GL. Allocate a
 buffer of at least this size.

 * Call GetCompressedTexImageARB. The GL wi ll write the compressed
 texture image into the allocated buffer.

 * Save the returned compressed image to dis k, along with the
 associated width, height, depth, border p arameters and the returned
 values of TEXTURE_COMPRESSED_IMAGE_SIZE_A RB and
 TEXTURE_INTERNAL_FORMAT.

 * Load the compressed image and its paramet ers, and call
 CompressedTexImage_[123]DARB to use the c ompressed image. The value
 of TEXTURE_INTERNAL_FORMAT should be used as <internalFormat> and
 the value of TEXTURE_COMPRESSED_IMAGE_SIZ E_ARB should be used as
 <imageSize>.

 The saved images will be valid as long as the y are used on a device
 supporting the returned <internalFormat> para meter. If the saved images
 are used on a device that does not support th e compressed internal
 format, an INVALID_ENUM error would be genera ted by the call to
 CompressedTexImage_[123]D because of the unkn own format.

 Note also that to reliably determine if the G L will compress an image
 without actually compressing it, an applicati on need only define a proxy
 texture image and query TEXTURE_COMPRESSED_AR B as above.

 (11) Without knowing of the compressed image fo rmat, there is no
 convenient way for the client-side GLX library or tracing tools to
 ascertain the size of a compressed texture imag e when sending a
 TexImage1D, TexImage2D, or TexImage3D packet or interpret pixel storage
 modes. To complicate matters further, it is po ssible to create both
 indirect (that might not understand an image fo rmat) and direct rendering
 contexts (that might understand an image format) on the same renderer.
 How should this be solved?

 RESOLVED: A separate set of CompressedTexIma ge and
 CompressedTexSubImage calls has been created that allows libraries to
 pass compressed images along to the renderer without needing to
 understand their specific image formats or ho w to interpret pixel
 storage modes.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 238

 (12) Are the CompressedTexImage[123]DARB entry points really needed?

 RESOLVED: Yes. To robustly support images o f unknown format, specific
 compressed entry points are required. While the extension does not
 support images in a completely unspecified fo rmat (early drafts did),
 having a separate call means that GLX and too ls such as GLS (stream
 encoder) do not need intimate knowledge of ev ery compressed image
 format. Having separate calls also cleanly s olves the problem where
 pixel storage and pixel transfer operations a pply if and only if the
 source image is uncompressed.

 (13) Is variable-ratio compression supported?

 RESOLVED: Yes. Fixed-ratio compression is c urrently the predominant
 texture compression format, but this spec sho uld not preclude the use of
 other compression schemes.

 (14) Should the <imageSize> parameter be valida ted on CompressedTexImage
 calls?

 RESOLVED: Yes. Enforcement overhead is gener ally trivial. Without
 enforcement, an application could specify inc orrect image sizes but
 notice them only when run on an indirect rend erer, causing portability
 problems. There is also a reliability issue with respect to the GLX
 environment -- if the compressed image size p rovided by the user is less
 than the required image size, the GLX server may run off the end of the
 image and access invalid memory. A size chec k may thus be desirable to
 prevent server crashes (even though that coul d be considered an
 "undefined" result).

 While enforcing correct <imageSize> parameter s is trivial for current
 compressed internal formats, it might not be reasonable on others
 (particular variable-ratio compression format s). For such formats, this
 restriction should be overridden in the spec defining the formats. The
 <imageSize> check was made mandatory only in the final draft approved at
 the March 2000 OpenGL ARB meeting.

 (15) Should TexImage calls fall back to uncompr essed image formats when
 <internalformat> is a specific compressed forma t but its use in
 combination with other parameter values passed is not supported by the
 renderer?

 RESOLVED: Yes. Advantages: Works in exactl y the same way as generic
 formats, meaning no extra code/error checking . Inherent limitations of
 TexImage on specific formats should be docume nted in their specs and
 observed by their users. One simple query ca n detect fallback cases.
 Disadvantages: Silent fallback to a format no t requested by the user.

 (16) Should the texture format invariance requi rements disallow scanning
 of the image data to select a compression metho d? What about for a base
 (uncompressed) internal format?

 RESOLVED: The primary issue is mipmap consis tency. The 1.2.1 spec
 defines a set of mipmaps as consistent if all are specified using the
 same internal format. However, it doesn't re quire that all mipmaps are
 allocated using the same format -- the render er is responsible for
 ensuring mipmap consistency if it selects dif ferent formats for

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 239

 different images. There is no reason to disa llow scanning for base
 internal formats; the renderer is responsible for doing the right thing.

 The selection of a specific compressed intern al format is different. It
 must be independent of the the image data bec ause the GL treats the
 texture image as though it were specified usi ng the specific compressed
 internal format chosen by the renderer.

 (17) Should functionality be provided to enumer ate the specific compressed
 formats supported by the renderer? If so, how and what will it accomplish?

 RESOLVED: Yes. A glGet* query is added to r eturn the number of
 compressed internal formats supported by the renderer and the
 <internalformat> tokens for each. These toke ns can subsequently be used
 as <internalformat> parameters for normal Tex Image calls and the new
 CompressedTexImage calls.

 Providing an internal format enumeration allo ws applications to weigh
 the suitability of the various compression me thods provided to it by the
 renderer without needing specific knowledge o f the formats.
 Applications can query the component sizes (s ee issue 6) to determine
 the base format and approximate precision. A pplications can directly
 evaluate image compression quality by having the renderer generate
 compressed texture images (using the returned <internalformat> values)
 and return them in uncompressed form using Ge tTexImage. Applications
 should also be aware that the use of the inte rnal formats returned by
 this query is subject to the restrictions imp osed by the specification
 defining them. The use of proxy textures all ows the application to
 determine if a specific set of TexImage param eters is supported for a
 given internal format.

 The renderer should enumerate all supported c ompression formats EXCEPT
 those that operate fundamentally differently from a normal uncompressed
 format. For example, the DirectX DXT1 compre ssion format is
 fundamentally an RGB format, but it has a "tr ansparent" encoding where
 the red, green, and blue component values are forced to zero, regardless
 of their original (uncompressed) values. Sin ce such formats may have
 caveats that must be understood before being used, they should not be
 enumerated by this query.

 This allows for forward compatibility -- an a pplication can exploit
 compression techniques provided by future ren derers.

 (18) Should the separate GetCompressedTexImageA RB function exist, or is
 GetTexImage with special <format> and/or < type> parameters
 sufficient?

 RESOLVED: Provide a separate GetCompressedTe xImageARB function. The
 primary rationale is for GLX indirect renderi ng. The client GetTexImage
 would require information to determine if an image is uncompressed (and
 should be decoded using pixel storage state) or compressed (pixel
 storage ignored). In addition, if the image is compressed, the actual
 image size would be required, but the only im age size that could be
 inferred from the GLX protocol is padded out to a multiple of four
 bytes. A separate call is the cleanest solut ion to both issues.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 240

New Procedures and Functions

 void CompressedTexImage3DARB(enum target, int l evel,
 enum internalforma t, sizei width,
 sizei height, size i depth,
 int border, sizei imageSize,
 const void *data);
 void CompressedTexImage2DARB(enum target, int l evel,
 enum internalforma t, sizei width,
 sizei height, int border,
 sizei imageSize, c onst void *data);
 void CompressedTexImage1DARB(enum target, int l evel,
 enum internalforma t, sizei width,
 int border, sizei imageSize,
 const void *data);
 void CompressedTexSubImage3DARB(enum target, in t level,
 int xoffset, in t yoffset,
 int zoffset, si zei width,
 sizei height, s izei depth,
 enum format, si zei imageSize,
 const void *dat a);
 void CompressedTexSubImage2DARB(enum target, in t level,
 int xoffset, in t yoffset,
 sizei width, si zei height,
 enum format, si zei imageSize,
 const void *dat a);
 void CompressedTexSubImage1DARB(enum target, in t level,
 int xoffset, si zei width,
 enum format, si zei imageSize,
 const void *dat a);
 void GetCompressedTexImageARB(enum target, int lod,
 void *img);

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D, TexImage2D,
 TexImage3D, CopyTexImage1D, and CopyTexImage2D:

 COMPRESSED_ALPHA_ARB 0x84E9
 COMPRESSED_LUMINANCE_ARB 0x84EA
 COMPRESSED_LUMINANCE_ALPHA_ARB 0x84EB
 COMPRESSED_INTENSITY_ARB 0x84EC
 COMPRESSED_RGB_ARB 0x84ED
 COMPRESSED_RGBA_ARB 0x84EE

 Accepted by the <target> parameter of Hint and the <value> parameter of
 GetIntegerv, GetBooleanv, GetFloatv, and GetDou blev:

 TEXTURE_COMPRESSION_HINT_ARB 0x84EF

 Accepted by the <value> parameter of GetTexLeve lParameter:

 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB 0x86A0
 TEXTURE_COMPRESSED_ARB 0x86A1

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 241

 Accepted by the <value> parameter of GetInteger v, GetBooleanv, GetFloatv,
 and GetDoublev:

 NUM_COMPRESSED_TEXTURE_FORMATS_ARB 0x86A2
 COMPRESSED_TEXTURE_FORMATS_ARB 0x86A3

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Section 3.8.1, Texture Image Specification (p.113)

 (p.113, modify 3rd paragraph) <internalformat> may be specified as one of
 the six base internal format symbolic constants listed in table 3.15, as
 one of the sized internal format symbolic const ants listed in table 3.16,
 as one of the specific compressed internal form at symbolic constants
 listed in table 3.16.1, or as one of the six ge neric compressed internal
 format symbolic constants listed in table 3.16. 2.

 (p.113, add after 3rd paragraph)

 The ARB_texture_compression specification provi des no specific compressed
 internal formats but does provide a mechanism t o obtain the enums for such
 formats provided by other specifications. If t he ARB_texture_compression
 extension is supported, the number of specific compressed internal format
 symbolic constants supported by the renderer ca n be obtained by querying
 the value of NUM_COMPRESSED_TEXTURE_FORMATS_ARB . The set of specific
 compressed internal format symbolic constants s upported by the renderer
 can be obtained by querying the value of COMPRE SSED_TEXTURE_FORMATS_ARB.
 The only symbolic constants returned by this qu ery are those suitable for
 general-purpose usage. The renderer will not e numerate formats with
 restrictions that need to be specifically under stood prior to use.

 Generic compressed internal formats are never u sed directly as the
 internal formats of texture images. If <intern alformat> is one of the six
 generic compressed internal formats, its value is replaced by the symbolic
 constant for a specific compressed internal for mat of the GL's choosing
 with the same base internal format. If no spec ific compressed format is
 available, <internalformat> is instead replaced by the corresponding base
 internal format. If <internalformat> is given as or mapped to a specific
 compressed internal format, but the GL can not support images compressed
 in the chosen internal format for any reason (e .g., the compression format
 might not support 3D textures or borders), <int ernalformat> is replaced by
 the corresponding base internal format and the texture image will not be
 compressed by the GL.

 (p.113, modify 4th paragraph) ... If a compress ed internal format is
 specified, the mapping of the R, G, B, and A va lues to texture components
 is equivalent to the mapping of the correspondi ng base internal format's
 components, as specified in table 3.15. The sp ecified image is compressed
 using a (possibly lossy) compression algorithm chosen by the GL.

 (p.113, 5th paragraph) A GL implementation may vary its allocation of
 internal component resolution or compressed int ernal format based on any
 TexImage3D, TexImage2D, or TexImage1D (see belo w) parameter (except

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 242

 <target>, but the allocation and chosen compres sed image format must not
 be a function of any other state and cannot be changed once they are
 established. In addition, the choice of a comp ressed image format may not
 be affected by the <data> parameter. Allocatio ns must be invariant; the
 same allocation and compressed image format mus t be chosen each time a
 texture image is specified with the same parame ter values. These
 allocation rules also apply to proxy textures, which are described in
 section 3.8.7.

 Add Table 3.16.1: Specific Compressed Internal Formats

 Compressed Internal Format Base Int ernal Format
 ========================== ======== ============
 none provided here -- defined by dependent extensions

 Add Table 3.16.2: Generic Compressed Internal Formats

 Generic Compressed Internal
 Format Base Int ernal Format
 ========================== ======== ============
 COMPRESSED_ALPHA_ARB ALPHA
 COMPRESSED_LUMINANCE_ARB LUMINANC E
 COMPRESSED_LUMINANCE_ALPHA_ARB LUMINANC E_ALPHA
 COMPRESSED_INTENSITY_ARB INTENSIT Y
 COMPRESSED_RGB_ARB RGB
 COMPRESSED_RGBA_ARB RGBA

 Modify Section 3.8.2, Alternate Image Specification

 (add to end of TexSubImage discussion, p.123)

 Texture images with compressed internal formats may be stored in such a
 way that it is not possible to edit an image wi th subimage commands
 without having to decompress and recompress the texture image being
 edited. Even if the image were edited in this manner, it may not be
 possible to preserve the contents of some of th e texels outside the region
 being modified. To avoid these complications, the GL does not support
 arbitrary edits to texture images with compress ed internal formats.
 Calling TexSubImage3D, CopyTexSubImage3D, TexSu bImage2D,
 CopyTexSubImage2D, TexSubImage1D, or CopyTexSub Image1D will result in an
 INVALID_OPERATION error if <xoffset>, <yoffset> , or <zoffset> is not equal
 to -b_s (border). In addition, the contents of any texel outside the
 region modified by such a call are undefined. These restrictions may be
 relaxed for specific compressed internal format s whose images are easily
 edited.

 (add new subsection at end of section, p.123)

 Compressed Texture Images

 Texture images may also be specified or modifie d using image data already
 stored in a known compressed image format. The ARB_texture_compression
 extension defines no such formats, but provides the mechanisms for other
 extensions that do.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 243

 The commands

 void CompressedTexImage1DARB(enum target, int level,
 enum internalfor mat, sizei width,
 int border, size i imageSize,
 const void *data);
 void CompressedTexImage2DARB(enum target, int level,
 enum internalfor mat, sizei width,
 sizei height, in t border,
 sizei imageSize, const void *data);
 void CompressedTexImage3DARB(enum target, int level,
 enum internalfor mat, sizei width,
 sizei height, si zei depth,
 int border, size i imageSize,
 const void *data);

 define one-, two-, and three-dimensional textur e images, respectively,
 with incoming data stored in a specific compres sed image format. The
 <target>, <level>, <internalformat>, <width>, < height>, <depth>, and
 <border> parameters have the same meaning as in TexImage1D, TexImage2D,
 and TexImage3D. <data> points to compressed im age data stored in the
 compressed image format corresponding to <inter nalformat>. Since this
 extension provides no specific image formats, u sing any of the six generic
 compressed internal formats as <internalformat> will result in an
 INVALID_ENUM error.

 For all other compressed internal formats, the compressed image will be
 decoded according to the specification defining the <internalformat>
 token. Compressed texture images are treated a s an array of <imageSize>
 ubytes beginning at address <data>. All pixel storage and pixel transfer
 modes are ignored when decoding a compressed te xture image. If the
 <imageSize> parameter is not consistent with th e format, dimensions, and
 contents of the compressed image, an INVALID_VA LUE error results. If the
 compressed image is not encoded according to th e defined image format, the
 results of the call are undefined.

 Specific compressed internal formats may impose format-specific
 restrictions on the use of the compressed image specification calls or
 parameters. For example, the compressed image format might be supported
 only for 2D textures or may not allow non-zero <border> values. Any such
 restrictions will be documented in the specific ation defining the
 compressed internal format; violating these res trictions will result in an
 INVALID_OPERATION error.

 Any restrictions imposed by specific compressed internal formats will be
 invariant, meaning that if the GL accepts and s tores a texture image in
 compressed form, providing the same image to Co mpressedTexImage1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B will not result in an
 INVALID_OPERATION error if the following restri ctions are satisfied:

 * <data> points to a compressed texture image returned by
 GetCompressedTexImageARB (Section 6.1.4).

 * <target>, <level>, and <internalformat> mat ch the <target>, <level>
 and <format> parameters provided to the Get CompressedTexImageARB call
 returning <data>.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 244

 * <width>, <height>, <depth>, <border>, <inte rnalformat>, and
 <imageSize> match the values of TEXTURE_WID TH, TEXTURE_HEIGHT,
 TEXTURE_DEPTH, TEXTURE_BORDER, TEXTURE_INTE RNAL_FORMAT, and
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB for image level <level> in effect at
 the time of the GetCompressedTexImageARB ca ll returning <data>.

 This guarantee applies not just to images retur ned by
 GetCompressedTexImageARB, but also to any other properly encoded
 compressed texture image of the same size and f ormat.

 The commands

 void CompressedTexSubImage1DARB(enum target, int level,
 int xoffset, sizei width,
 enum format, sizei imageSize,
 const void *d ata);
 void CompressedTexSubImage2DARB(enum target, int level,
 int xoffset, int yoffset,
 sizei width, sizei height,
 enum format, sizei imageSize,
 const void *d ata);
 void CompressedTexSubImage3DARB(enum target, int level,
 int xoffset, int yoffset,
 int zoffset, sizei width,
 sizei height, sizei depth,
 enum format, sizei imageSize,
 const void *d ata);

 respecify only a rectangular region of an exist ing texture array, with
 incoming data stored in a known compressed imag e format. The <target>,
 <level>, <xoffset>, <yoffset>, <zoffset>, <widt h>, <height>, and <depth>
 parameters have the same meaning as in TexSubIm age1D, TexSubImage2D, and
 TexSubImage3D. <data> points to compressed ima ge data stored in the
 compressed image format corresponding to <forma t>. Since this extension
 provides no specific image formats, using any o f these six generic
 compressed internal formats as <format> will re sult in an INVALID_ENUM
 error.

 The image pointed to by <data> and the <imageSi ze> parameter are
 interpreted as though they were provided to Com pressedTexImage1DARB,
 CompressedTexImage2DARB, and CompressedTexImage 3DARB. These commands do
 not provide for image format conversion, so an INVALID_OPERATION error
 results if <format> does not match the internal format of the texture
 image being modified. If the <imageSize> param eter is not consistent with
 the format, dimensions, and contents of the com pressed image (too little
 or too much data), an INVALID_VALUE error resul ts.

 As with CompressedTexImage calls, compressed in ternal formats may have
 additional restrictions on the use of the compr essed image specification
 calls or parameters. Any such restrictions wil l be documented in the
 specification defining the compressed internal format; violating these
 restrictions will result in an INVALID_OPERATIO N error.

 Any restrictions imposed by specific compressed internal formats will be
 invariant, meaning that if the GL accepts and s tores a texture image in

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 245

 compressed form, providing the same image to Co mpressedTexSubImage1DARB,
 CompressedTexSubImage2DARB, CompressedTexSubIma ge3DARB will not result in
 an INVALID_OPERATION error if the following res trictions are satisfied:

 * <data> points to a compressed texture image returned by
 GetCompressedTexImageARB (Section 6.1.4).

 * <target>, <level>, and <format> match the < target>, <level> and
 <format> parameters provided to the GetComp ressedTexImageARB call
 returning <data>.

 * <width>, <height>, <depth>, <format>, and < imageSize> match the values
 of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_D EPTH,
 TEXTURE_INTERNAL_FORMAT, and TEXTURE_COMPRE SSED_IMAGE_SIZE_ARB for
 image level <level> in effect at the time o f the
 GetCompressedTexImageARB call returning <da ta>.

 * <width>, <height>, <depth>, <format> match the values of
 TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPT H, and
 TEXTURE_INTERNAL_FORMAT currently in effect for image level <level>.

 * <xoffset>, <yoffset>, and <zoffset> are all "-", where is the
 value of TEXTURE_BORDER currently in effect for image level <level>.

 This guarantee applies not just to images retur ned by
 GetCompressedTexImageARB, but also to any other properly encoded
 compressed texture image of the same size.

 Calling CompressedTexSubImage3D, CompressedTexS ubImage2D, or
 CompressedTexSubImage1D will result in an INVAL ID_OPERATION error if
 <xoffset>, <yoffset>, or <zoffset> is not equal to -b_s (border), or if
 <width>, <height>, and <depth> do not match the values of TEXTURE_WIDTH,
 TEXTURE_HEIGHT, or TEXTURE_DEPTH, respectively. The contents of any texel
 outside the region modified by the call are und efined. These restrictions
 may be relaxed for specific compressed internal formats whose images are
 easily edited.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 Modify Section 5.6, Hints (p.180)

 (p.180, modify first paragraph)

 ...; FOG_HINT, indicating whether fog calculati ons are done per pixel or
 per vertex; and TEXTURE_COMPRESSION_HINT_ARB, i ndicating the desired
 quality and performance of compressing texture images.

 For the texture compression hint, a <hint> of F ASTEST indicates that
 texture images should be compressed as quickly as possible, while NICEST
 indicates that the texture images be compressed with as little image
 degradation as possible. FASTEST should be use d for one-time texture
 compression, and NICEST should be used if the c ompression results are to

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 246

 be retrieved by GetCompressedTexImageARB (Secti on 6.1.4) for reuse.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 Modify Section 6.1.3, Enumerated Queries (p.183)

 (p.183, modify next-to-last paragraph)

 For texture images with uncompressed internal f ormats, queries of
 TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_B LUE_SIZE,
 TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, and TEXTURE_INTENSITY_SIZE
 return the actual resolutions of the stored ima ge array components, not
 the resolutions specified when the image array was defined. For texture
 images with a compressed internal format, the r esolutions returned specify
 the component resolution of an uncompressed int ernal format that produces
 an image of roughly the same quality as the com pressed image in question.
 Since the quality of the implementation's compr ession algorithm is likely
 data-dependent, the returned component sizes sh ould be treated only as
 rough approximations. ...

 (p.183, add to end of next-to-last paragraph)

 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB returns the s ize (in ubytes) of the
 compressed texture image that would be returned by
 GetCompressedTexImageARB (Section 6.1.4). Quer ying
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB is not allowe d on texture images with an
 uncompressed internal format or on proxy target s and will result in an
 INVALID_OPERATION error if attempted.

 Modify Section 6.1.4, Texture Queries (p.184)

 (add immediately after the GetTexImage section and before the IsTexture
 section)

 The command

 void GetCompressedTexImageARB(enum target, in t lod,
 void *img);

 is used to obtain texture images stored in comp ressed form. The
 parameters <target>, <lod>, and are inter preted in the same manner
 as in GetTexImage. When called, GetCompressedT exImageARB writes
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB ubytes of com pressed image data to the
 memory pointed to by . The compressed ima ge data is formatted
 according to the specification defining INTERNA L_FORMAT. All pixel
 storage and pixel transfer modes are ignored wh en returning a compressed
 texture image.

 Calling GetCompressedTexImageARB with an <lod> value less than zero or
 greater than the maximum allowable causes an IN VALID_VALUE error. Calling
 GetCompressedTexImageARB with a texture image s tored with an uncompressed
 internal format causes an INVALID_OPERATION err or.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 247

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 (Add after GetTexImage to Section 2.2.2 of the GLX 1.3 encoding spec,
 p.74)

 GetCompressedTexImageARB

 1 CARD8 opcode (X assig ned)
 1 160 GLX opcode
 2 4 request length
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 INT32 level

 -->

 1 1 Reply
 1 1 unused
 2 CARD16 sequence number
 4 n reply length
 8 unused
 4 INT32 compressed imag e size (in bytes) --
 should be bet ween 4n-3 and 4n
 12 unused
 4*n LISTofBYTE teximage

 Note that n may be zero, indicating that a GL e rror occurred.

 Since pixel storage modes do not apply to compr essed texture images,
 teximage is simply an array of bytes. The clie nt library will ignore
 pixel storage modes and should copy only <compr essed image size> bytes,
 regardless of the value of <reply length>.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 248

 (Add to end of Section 2.3 of the GLX 1.3 encod ing spec, p.147)

 CompressedTexImage1DARB

 2 32+n+p rendering command l ength
 2 214 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 ENUM internalformat
 4 INT32 width
 4 unused
 4 INT32 border
 n LISTofBYTE image
 4 INT32 imageSize
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 36+n+p rendering command l ength
 4 214 rendering command o pcode

 CompressedTexImage2DARB

 2 32+n+p rendering command l ength
 2 215 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 ENUM internalformat
 4 INT32 width
 4 INT32 height
 4 INT32 border
 4 INT32 imageSize
 n LISTofBYTE image
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 36+n+p rendering command l ength
 4 215 rendering command o pcode

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 249

 CompressedTexImage3DARB

 2 36+n+p rendering command l ength
 2 216 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 INT32 internalformat
 4 INT32 width
 4 INT32 height
 4 INT32 depth
 4 INT32 border
 4 INT32 imageSize
 n LISTofBYTE image
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 36+n+p rendering command l ength
 4 216 rendering command o pcode

 CompressedTexSubImage1DARB

 2 36+n+p rendering command l ength
 2 217 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 INT32 xoffset
 4 unused
 4 INT32 width
 4 unused
 4 ENUM format
 4 INT32 imageSize
 n LISTofBYTE image
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 40+n+p rendering command l ength
 4 217 rendering command o pcode

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 250

 CompressedTexSubImage2DARB

 2 36+n+p rendering command l ength
 2 218 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 INT32 xoffset
 4 INT32 yoffset
 4 INT32 width
 4 INT32 height
 4 ENUM format
 4 INT32 imageSize
 n LISTofBYTE image
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 40+n+p rendering command l ength
 4 218 rendering command o pcode

 CompressedTexSubImage3DARB

 2 44+n+p rendering command l ength
 2 219 rendering command o pcode
 4 ENUM target
 4 INT32 level
 4 INT32 xoffset
 4 INT32 yoffset
 4 INT32 zoffset
 4 INT32 width
 4 INT32 height
 4 INT32 depth
 4 ENUM format
 4 INT32 imageSize
 n LISTofBYTE image
 p unused, p=pad(n)

 If the command is encoded in a glXRenderLarge r equest, the command
 opcode and command length fields are expanded t o 4 bytes each.

 4 48+n+p rendering command l ength
 4 219 rendering command o pcode

Errors

 Errors for compressed TexImage and TexSubImage calls specific to
 compression:

 INVALID_OPERATION is generated by TexSubImage1D , TexSubImage2D,
 TexSubImage3D, CopyTexSubImage1D, CopyTexSubIma ge2D, or CopyTexSubImage3D
 if the internal format of the texture image is compressed and <xoffset>,
 <yoffset>, or <zoffset> does not equal -b, wher e b is value of
 TEXTURE_BORDER.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 251

 INVALID_VALUE is generated by CompressedTexSubI mage1DARB,
 CompressedTexSubImage2DARB, or CompressedTexSub Image3DARB if the entire
 texture image is not being edited: if <xoffset >, <yoffset>, or <zoffset>
 is greater than -b, <xoffset> + <width> is less than w+b, <yoffset> +
 <height> is less than h+b, or <zoffset> + <dept h> is less than d+b, where
 b is the value of TEXTURE_BORDER, w is the valu e of TEXTURE_WIDTH, h is
 the value of TEXTURE_HEIGHT, and d is the value of TEXTURE_DEPTH.

 INVALID_ENUM is generated by CompressedTexImage 1DARB,
 CompressedTexImage2DARB, or CompressedTexImage3 DARB,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, or
 CompressedTexSubImage3DARB, if <internalformat> is any of the six generic
 compressed internal formats (e.g., COMPRESSED_R GBA_ARB)

 INVALID_OPERATION is generated by CompressedTex Image1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, or
 CompressedTexSubImage3DARB, if any parameter co mbinations are not
 supported by the specific compressed internal f ormat. Such invalid
 combinations are documented in the specificatio n defining the internal
 format.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, or CompressedTexImage3 DARB,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, or
 CompressedTexSubImage3DARB, if <imageSize> is n ot consistent with the
 format, dimensions, and contents of the specifi ed image. The appropriate
 value for the <imageSize> parameter is document ed in the specification
 defining the compressed internal format.

 Undefined results (including abnormal program t ermination) are generated
 by CompressedTexImage1DARB, CompressedTexImage2 DARB, or
 CompressedTexImage3DARB, CompressedTexSubImage1 DARB,
 CompressedTexSubImage2DARB, or CompressedTexSub Image3DARB, is not encoded
 in a manner consistent with the specification d efining the internal
 format.

 INVALID_OPERATION is generated by CompressedTex SubImage1DARB,
 CompressedTexSubImage2DARB, or CompressedTexSub Image3DARB if <format> does
 not match the internal format of the texture im age being modified.

 INVALID_OPERATION is generated by GetTexLevelPa rameter[if]v if <target> is
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, or PROXY_TE XTURE_3D and <value> is
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB.

 INVALID_OPERATION is generated by GetTexLevelPa rameter[if]v if the
 internal format of the queried texture image is not compressed and <value>
 is TEXTURE_COMPRESSED_IMAGE_SIZE_ARB.

 INVALID_OPERATION is generated by GetCompressed TexImageARB if the internal
 format of the queried texture image is not comp ressed.

 Errors for compressed TexImage and TexSubImage calls not specific to
 compression:

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 252

 INVALID_ENUM is generated by CompressedTexImage 3DARB or
 CompressedTexSubImage3DARB if <target> is not T EXTURE_3D.

 INVALID_ENUM is generated by CompressedTexImage 2DARB or
 CompressedTexSubImage2DARB if <target> is not T EXTURE_2D,
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CUB E_MAP_NEGATIVE_Z_ARB.

 INVALID_ENUM is generated by CompressedTexImage 1DARB or
 CompressedTexSubImage1DARB if <target> is not T EXTURE_1D.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge1DARB, or
 CompressedTexSubImage3DARB if <level> is negati ve.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, or
 CompressedTexSubImage3DARB, if <width>, <height >, or <depth> is negative.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, or CompressedTexImage3 DARB if <width>, <height>,
 or <depth> can not be represented as 2^k+2 for some integer value k.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, or CompressedTexImage3 DARB if <border> is not
 zero or one.

 INVALID_VALUE is generated by CompressedTexImag e1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge1DARB, or
 CompressedTexSubImage3DARB if the call is made between a call to Begin and
 the corresponding call to End.

 INVALID_VALUE is generated by CompressedTexSubI mage1DARB,
 CompressedTexSubImage2DARB, or CompressedTexSub Image3DARB if <xoffset>,
 <yoffset>, or <zoffset> is less than -b, <xoffs et> + <width> is greater
 than w+b, <yoffset> + <height> is greater than h+b, or <zoffset> + <depth>
 is greater than d+b, where b is the value of TE XTURE_BORDER, w is the
 value of TEXTURE_WIDTH, h is the value of TEXTU RE_HEIGHT, and d is the
 value of TEXTURE_DEPTH.

 INVALID_VALUE is generated by GetCompressedTexI mageARB if <lod> is
 negative or greater than the maximum allowable level.

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 253

New State

 (table 6.12, p.202)
 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ---- --- -------- ------- ----------- ---- ---------
 TEXTURE_COMPRESSED_IMAGE_SIZE_ARB n x Z+ Get TexLevel- 0 size (in 3.8 -
 Par ameter ubytes)
 of xD compressed
 texture image i.
 TEXTURE_COMPRESSED_ARB n x B Get TexLevel- FALSE True if xD 3.8 -
 Par ameter image i has
 a compressed
 internal format

 (table 6.23, p.213)
 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ---- --- -------- ------- ----------- ---- ---------
 TEXTURE_COMPRESSION_HINT_ARB Z_3 Get Integerv DONT_ Texture 5.6 hint
 CARE compression
 quality hint

 (table 6.25, p. 215)
 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ---- --- -------- ------- ----------- ---- ---------
 NUM_COMPRESSED_TEXTURE_FORMATS_ARB Z Get Integerv 0 Number of 3.8 -
 enumerated
 compressed
 texture
 formats

 COMPRESSED_TEXTURE_FORMATS_ARB 0* x Z Get Integerv - Enumerated 3.8 -
 compressed
 texture
 formats

Revision History

 1.03, 05/23/00 prbrown1: Removed stray "None." paragraph in modifications
 to Chapter 5.

 1.02, 05/08/00 prbrown1: Fixed prototype of Get CompressedTexImageARB (no
 "const" qualifiers) in "New Procedures and
 Functions" section. C hanged <internalformat>
 parameter of Compresse dTexImage functions to be
 an "enum" instead of a n "int". "int" was carried
 over only on TexImage calls as a 1.0 legacy --
 the newer CopyTexImage call takes an "enum".

 1.01, 04/11/00 prbrown1: Minor bug fixes to the first published version.
 Fixed prototypes to ma tch extension spec
 standards (no "GL" typ e prefixes). Fixed a
 couple erroneous funct ion names. Added "const"
 qualifier to prototype s involving image data not
 modified by the GL. A dded text to indicate that
 compressed formats app ly to texture maps
 supported by GL_ARB_te xture_cube_map.

ARB_texture_compression NVIDIA OpenGL Extension Specifications

 254

 1.0, 03/24/00 prbrown1: Applied changes approv ed as part of the extension
 at the March 2000 ARB meeting, as follows:

 * CompressedTexSubImag e: Only allowed if the
 entire image is repl aced. Document that this
 restriction can be r elaxed for specific
 compression extensio ns.
 * Renamed TEXTURE_IMAG E_SIZE_ARB to
 TEXTURE_COMPRESSED_I MAGE_SIZE_ARB.
 * Querying image size on uncompressed images is
 now an INVALID_OPERA TION error.
 * INVALID_VALUE error is generated if <imageSize>
 is inconsistent with the image data. This
 restriction may be o verridden by specific
 extensions only if r equiring an image size
 check is unreasonabl e.
 * Added documentaion o f undefined behavior for
 CompressedTexImage/S ubImage if the image data
 is encoded in a mann er inconsistent with the
 spec defining the co mpressed image format.
 * Fixed issue (16). T ext was truncated.
 * Modified invariance section. <data> can not
 affect the choice of compressed internal
 format, but can theo retically affect regular
 component resolution .
 * Add new function Get CompressedTexImage to deal
 with subtle GLX issu es.
 * GLX protocol for Com pressedTexImage/SubImage
 and GetCompressedTex Image holds both a padded
 image size (for GLX data transfer) and actual
 image size (for pack ing in user buffers).

 Minor wording clean-up s.

 Added enum and GLX opc ode values allocated from
 OpenGL Extensions and GLX registries.

 0.81, 03/07/00 prbrown1: Fixed error documentat ion for TexSubImage calls
 of arbitrary alignment (did not document that the
 internal format had to be compressed). Removed
 references to CopyTexI mage3D, which doesn't
 actually exist.

 Per Kurt Akeley sugges tions: (1) Renamed
 TexImageCompressed to CompressedTexImage to
 conform with naming co nventions, (2) clarified
 that the main feature distinguishing
 CompressedTex[Sub]Imag e calls from normal
 Tex[Sub]Image calls is compressed input data, (3)
 added query to explici tly determine whether the
 internal format of a t exture is compressed.

 0.8, 02/23/00 prbrown1: Marked previously unre solved issues as resolved
 per the ARB working gr oup. Added docs for errors
 not specific to compre ssion for the new
 CompressedTexImage and CompressedTexSubImage
 calls. Added queries to enumerate specific

NVIDIA OpenGL Extension Specifications ARB_texture_compression

 255

 compressed texture for mats.
 0.76, 02/16/00 prbrown1: Removed "gl" and "GL_" prefixes.
 0.75, 02/07/00 prbrown1: Incorporated feedback from 12/99 ARB meeting
 and a number of other revisions.
 0.7, 12/03/99 prbrown1: Incorporated comments from public review of 0.2
 document.
 0.2, 10/28/99 prbrown1: Renamed to ARB_texture _compression. Significant
 functional changes.
 0.11, 10/21/99 prbrown1: Edits suggested by 3df x.
 0.1, 10/19/99 prbrown1: Initial revision.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 256

Name

 ARB_texture_cube_map

Name Strings

 GL_ARB_texture_cube_map

Notice

 Copyright OpenGL Architectural Review Board, 19 99.

Status

 Complete. Approved by ARB on 12/8/1999

Version

 Last Modified Date: December 14, 1999

Number

 ARB Extension #7

Dependencies

 None.

 Written based on the wording of the OpenGL 1.2. 1 specification but
 not dependent on it.

Overview

 This extension provides a new texture generatio n scheme for cube
 map textures. Instead of the current texture p roviding a 1D, 2D,
 or 3D lookup into a 1D, 2D, or 3D texture image , the texture is a
 set of six 2D images representing the faces of a cube. The (s,t,r)
 texture coordinates are treated as a direction vector emanating from
 the center of a cube. At texture generation ti me, the interpolated
 per-fragment (s,t,r) selects one cube face 2D i mage based on the
 largest magnitude coordinate (the major axis). A new 2D (s,t) is
 calculated by dividing the two other coordinate s (the minor axes
 values) by the major axis value. Then the new (s,t) is used to
 lookup into the selected 2D texture image face of the cube map.

 Unlike a standard 1D, 2D, or 3D texture that ha ve just one target,
 a cube map texture has six targets, one for eac h of its six 2D texture
 image cube faces. All these targets must be co nsistent, complete,
 and have equal width and height (ie, square dim ensions).

 This extension also provides two new texture co ordinate generation modes
 for use in conjunction with cube map texturing. The reflection map
 mode generates texture coordinates (s,t,r) matc hing the vertex's
 eye-space reflection vector. The reflection ma p mode
 is useful for environment mapping without the s ingularity inherent
 in sphere mapping. The normal map mode generat es texture coordinates
 (s,t,r) matching the vertex's transformed eye-s pace

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 257

 normal. The normal map mode is useful for soph isticated cube
 map texturing-based diffuse lighting models.

 The intent of the new texgen functionality is t hat an application using
 cube map texturing can use the new texgen modes to automatically
 generate the reflection or normal vectors used to look up into the
 cube map texture.

 An application note: When using cube mapping w ith dynamic cube
 maps (meaning the cube map texture is re-render ed every frame),
 by keeping the cube map's orientation pointing at the eye position,
 the texgen-computed reflection or normal vector texture coordinates
 can be always properly oriented for the cube ma p. However if the
 cube map is static (meaning that when view chan ges, the cube map
 texture is not updated), the texture matrix mus t be used to rotate
 the texgen-computed reflection or normal vector texture coordinates
 to match the orientation of the cube map. The rotation can be
 computed based on two vectors: 1) the direction vector from the cube
 map center to the eye position (both in world c oordinates), and 2)
 the cube map orientation in world coordinates. The axis of rotation
 is the cross product of these two vectors; the angle of rotation is
 the arcsin of the dot product of these two vect ors.

Issues

 Should we place the normal/reflection vector in the (s,t,r) texture
 coordinates or (s,t,q) coordinates?

 RESOLUTION: (s,t,r). Even if hardware uses "q" for the third
 component, the API should claim to support ge neration of (s,t,r)
 and let the texture matrix (through a concate nation with the
 user-supplied texture matrix) move "r" into " q".

 Should the texture coordinate generation functi onality for cube
 mapping be specified as a distinct extension fr om the actual cube
 map texturing functionality?

 RESOLUTION: NO. Real applications and real implementations of
 cube mapping will tie the texgen and texture generation functionality
 together. Applications won't have to query t wo separate
 extensions then.

 While applications will almost always want to use the texgen
 functionality for automatically generating th e reflection or normal
 vector as texture coordinates (s,t,r), this e xtension does permit
 an application to manually supply the reflect ion or normal vector
 through glTexCoord3f explicitly.

 Note that the NV_texgen_reflection extension does "unbundle"
 the texgen functionality from cube maps.

 Should you be able to have some texture coordin ates computing
 REFLECTION_MAP_ARB and others not? Same questi on with NORMAL_MAP_ARB.

 RESOLUTION: YES. This is the way that SPHERE _MAP works. It is
 not clear that this would ever be useful thou gh.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 258

 Should something special be said about the hand ling of the q
 texture coordinate for this spec?

 RESOLUTION: NO. But the following paragraph is useful for
 implementors concerned about the handling of q.

 The REFLECTION_MAP_ARB and NORMAL_MAP_ARB mod es are intended to supply
 reflection and normal vectors for cube map te xturing hardware.
 When these modes are used for cube map textur ing, the generated
 texture coordinates can be thought of as an r eflection vector.
 The value of the q texture coordinate then si mply scales the
 vector but does not change its direction. Be cause only the vector
 direction (not the vector magnitude) matters for cube map texturing,
 implementations are free to leave q undefined when any of the s,
 t, or r texture coordinates are generated usi ng REFLECTION_MAP_ARB
 or NORMAL_MAP_ARB.

 How should the cube faces be labeled?

 RESOLUTION: Match the render man specificati on's names of "px"
 (positive X), "nx" (negative x), "py", "ny", "pz", and "nz".
 There does not actually need to be an "orderi ng for the faces"
 (Direct3D 7.0 does number their cube map face s.) For this
 extension, the symbolic target names (TEXTURE _CUBE_MAP_POSITIVE_X_ARB,
 etc) is sufficient without requiring any spec ific ordering.

 What coordinate system convention should be use d? LHS or RHS?

 RESOLUTION: The coordinate system is left-ha nded if you think
 of yourself within the cube. The coordinate system is
 right-handed if you think of yourself outside the cube.

 This matches the convention of the RenderMan interface. If
 you look at Figure 12.8 (page 265) in "The Re nderMan Companion",
 think of the cube being folded up with the ob server inside
 the cube. Then the coordinate system convent ion is
 left-handed.

 The spec just linearly interpolates the reflect ion vectors computed
 per-vertex across polygons. Is there a problem interpolating
 reflection vectors in this way?

 Probably. The better approach would be to in terpolate the eye
 vector and normal vector over the polygon and perform the reflection
 vector computation on a per-fragment basis. Not doing so is likely
 to lead to artifacts because angular changes in the normal vector
 result in twice as large a change in the refl ection vector as normal
 vector changes. The effect is likely to be r eflections that become
 glancing reflections too fast over the surfac e of the polygon.

 Note that this is an issue for REFLECTION_MAP _ARB, but not
 NORMAL_MAP_ARB.

 What happens if an (s,t,q) is passed to cube ma p generation that
 is close to (0,0,0), ie. a degenerate direction vector?

 RESOLUTION: Leave undefined what happens in this case (but

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 259

 may not lead to GL interruption or terminatio n).

 Note that a vector close to (0,0,0) may be ge nerated as a
 result of the per-fragment interpolation of (s,t,r) between
 vertices.

 Do we need a distinct proxy texture mechanism f or cube map
 textures?

 RESOLUTION: YES. Cube map textures take up six times the
 memory as a conventional 2D image texture so proxy 2D texture
 determinations won't be of value for a cube m ap texture.
 Cube maps need their own proxy target.

 Should we require the 2D texture image width an d height to
 be identical (ie, square only)?

 RESOLUTION: YES. This limitation is quite a reasonable limitation
 and DirectX 7 has the same limitation.

 This restriction is enforced by generating an INVALID_VALUE
 when calling TexImage2D or CopyTexImage2D wit h a non-equal
 width and height.

 Some consideration was given to enforcing the "squarness"
 constraint as a texture consistency constrain t. This is
 confusing however since the squareness is kno wn up-front
 at texture image specification time so it see ms confusing
 to silently report the usage error as a textu re consistency
 issue.

 Texture consistency still says that all the l evel 0 textures
 of all six faces must have the same square si ze.

 If some combination of 1D, 2D, 3D, and cube map texturing is
 enabled, which really operates?

 RESOLUTION: Cube map texturing. In OpenGL 1 .2, 3D takes
 priority over 2D takes priority over 1D. Cub e mapping should
 take priority over all conventional n-dimensi onal texturing
 schemes.

 Does anything need to be said about combining c ube mapping with
 multitexture?

 RESOLUTION: NO. Cube mapping should be avai lable on all texture
 units. The hardware should fully orthogonal in its handling of
 cube map textures.

 Does it make sense to support borders for cube map textures.

 Actually, it does. It would be nice if the t exture border pixels
 match the appropriate texels from the edges o f the other cube map
 faces that they junction with. For this reas on, we'll leave the
 texture border capability implicitly supporte d.

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 260

 How does mipmap level-of-detail selection work for cube map
 textures?

 The existing spec's language about LOD select ion is fine.

 Should the implementation dependent value for t he maximum
 texture size for a cube map be the same as MAX_ TEXTURE_SIZE?

 RESOLUTION: NO. OpenGL 1.2 has a different M AX_3D_TEXTURE_SIZE
 for 3D textures, and cube maps should take si x times more space
 than a 2D texture map of the same width & hei ght. The implementation
 dependent MAX_CUBE_MAP_TEXTURE_SIZE_ARB const ant should be used for
 cube maps then.

 Note that the proxy cube map texture provides a better way to
 find out the maximum cube map texture size su pported since the
 proxy mechanism can take into account the int ernal format, etc.

 In section 3.8.10 when the "largest magnitude c oordinate direction"
 is choosen, what happens if two or more of the coordinates (rx,ry,rz)
 have the identical magnitude?

 RESOLUTION: Implementations can define their own rule to choose
 the largest magnitude coordinate direction wh ne two or more of the
 coordinates have the identical magnitude. Th e only restriction is
 that the rule must be deterministic and depen d only on (rx,ry,rz).

 In practice, (s,t,r) is interpolated across p olygons so the cases
 where |s|==|t|, etc. are pretty arbitary (the equality depends on
 interpolation precision). This extension cou ld mandate a particular
 rule, but that seems heavy-handed and there i s no good reason that
 multiple vendors should be forced to implemen t the same rule.

 Should there be limits on the supported border modes for cube maps?

 RESOLUTION: NO. The specificiation is writte n so that cube map
 texturing proceeds just like conventional 2D texture mapping once
 the face determination is made.

 Therefore, all OpenGL texture wrap modes shou ld be supported though
 some modes are clearly inappropriate for cube maps. The WRAP mode
 is almost certainly incorrect for cube maps. Likewise, the CLAMP
 mode without a texture border is almost certa inly incorrect for cube
 maps. CLAMP when a texture border is present and CLAMP_TO_EDGE are
 both reasonably suited for cube maps. Ideall y, CLAMP with a texture
 border works best if the cube map edges can b e replicated in the
 approriate texture borders of adjacent cube m ap faces. In practice,
 CLAMP_TO_EDGE works reasonably well in most c ircumstances.

 Perhaps another extension could support a spe cial cube map wrap
 mode that automatically wraps individual texe l fetches to the
 appropriate adjacent cube map face. The bene fit from such a mode
 is small and the implementation complexity is involved so this wrap
 mode should not be required for a basic cube map texture extension.

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 261

 How is mipmap LOD selection handled for cube ma p textures?

 RESOLUTION: The specification is written so that cube map texturing
 proceeds just like conventional 2D texture ma pping once the face
 determination is made.

 Thereforce, the partial differentials in Sect ion 3.8.5 (page
 126) should be evaluated for the u and v para meters based on the
 post-face determination s and t.

 In Section 2.10.3 "Normal Transformation", ther e are several versions
 of the eye-space normal vector to choose from. Which one should
 the NORMAL_MAP_ARB texgen mode use?

 RESOLUTION: nf. The nf vector is the final normal, post-rescale
 normal and post-normalize. In practice, the rescale normal and
 normalize operations do not change the direc tion of the vector
 so the choice of which version of transforme d normal is used is
 not important for cube maps.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 NORMAL_MAP_ARB 0x8511
 REFLECTION_MAP_ARB 0x8512

 When the <pname> parameter of TexGendv, TexGenf v, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may a lso contain
 NORMAL_MAP_ARB or REFLECTION_MAP_ARB.

 Accepted by the <cap> parameter of Enable, Disa ble, IsEnabled, and
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f BindTexture,
 GetTexParameterfv, GetTexParameteriv, TexParame terf, TexParameteri,
 TexParameterfv, and TexParameteriv:

 TEXTURE_CUBE_MAP_ARB 0x8513

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 TEXTURE_BINDING_CUBE_MAP_ARB 0x8514

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 262

 Accepted by the <target> parameter of GetTexIma ge,
 GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
 CopyTexImage2D, TexSubImage2D, and CopySubTexIm age2D:

 TEXTURE_CUBE_MAP_POSITIVE_X_ARB 0x8515
 TEXTURE_CUBE_MAP_NEGATIVE_X_ARB 0x8516
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB 0x8517
 TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB 0x8518
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB 0x8519
 TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB 0x851A

 Accepted by the <target> parameter of GetTexLev elParameteriv,
 GetTexLevelParameterfv, GetTexParameteriv, and TexImage2D:

 PROXY_TEXTURE_CUBE_MAP_ARB 0x851B

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev,
 GetIntegerv, and GetFloatv:

 MAX_CUBE_MAP_TEXTURE_SIZE_ARB 0x851C

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates "

 Change the last sentence in the 1st paragraph (page 37) to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the s ymbolic constants
 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLEC TION_MAP_ARB, or
 NORMAL_MAP_ARB."

 Add these paragraphs after the 4th paragraph (page 38):

 "If TEXTURE_GEN_MODE indicates REFLECTION_MAP _ARB, compute the
 reflection vector r as described for the SPHE RE_MAP mode. Then the
 value assigned to an s coordinate (the first TexGen argument value
 is S) is s = rx; the value assigned to a t co ordinate is t = ry;
 and the value assigned to a r coordinate is r = rz. Calling TexGen
 with a <coord> of Q when <pname> indicates RE FLECTION_MAP_ARB
 generates the error INVALID_ENUM.

 If TEXTURE_GEN_MODE indicates NORMAL_MAP_ARB, compute the normal
 vector nf as described in section 2.10.3. Th en the value assigned
 to an s coordinate (the first TexGen argument value is S) is s =
 nfx; the value assigned to a t coordinate is t = nfy; and the
 value assigned to a r coordinate is r = nfz. (The values nfx, nfy,
 and nfz are the components of nf.) Calling T exGen with a <coord>
 of Q when <pname> indicates NORMAL_MAP_ARB ge nerates the error
 INVALID_ENUM.

 The last paragraph's first sentence (page 38) should be changed to:

 "The state required for texture coordinate ge neration comprises a
 five-valued integer for each coordinate indic ating coordinate
 generation mode, ..."

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 263

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.6.5 "Pixel Transfer Operations" unde r "Convolution"

 Change this paragraph (page 103) to say:

 ... "If CONVOLUTION_2D is enabled, the two-dim ensional convolution
 filter is applied only to the two-dimensional images passed to
 DrawPixels, CopyPixels, ReadPixels, TexImage2D , TexSubImage2D,
 CopyTexImage2D, CopyTexSubImage2D, and CopyTex SubImage3D, and
 returned by GetTexImage with one of the target s TEXTURE_2D,
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CU BE_MAP_NEGATIVE_Z_ARB."

 -- Section 3.8.1 "Texture Image Specification"

 Change the second and third to last sentences on page 116 to:

 "<target> must be one of TEXTURE_2D for a 2D t exture, or one of
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CU BE_MAP_NEGATIVE_Z_ARB
 for a cube map texture. Additionally, <target > can be either
 PROXY_TEXTURE_2D for a 2D proxy texture or PRO XY_TEXTURE_CUBE_MAP_ARB
 for a cube map proxy texture as discussed in s ection 3.8.7."

 Add the following paragraphs after the first p aragraph on page 117:

 "A 2D texture consists of a single 2D texture image. A cube
 map texture is a set of six 2D texture images. The six cube map
 texture targets form a single cube map texture though each target
 names a distinct face of the cube map. The TE XTURE_CUBE_MAP_*_ARB
 targets listed above update their appropriate cube map face 2D
 texture image. Note that the six cube map 2D image tokens such as
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB are used when specifying, updating,
 or querying one of a cube map's six 2D image, but when enabling
 cube map texturing or binding to a cube map te xture object (that is
 when the cube map is accessed as a whole as op posed to a particular
 2D image), the TEXTURE_CUBE_MAP_ARB target is specified.

 When the target parameter to TexImage2D is one of the six cube map
 2D image targets, the error INVALID_VALUE is g enerated if the width
 and height parameters are not equal.

 If cube map texturing is enabled at the time a primitive is
 rasterized and if the set of six targets are n ot "cube complete",
 then it is as if texture mapping were disabled . The targets of
 a cube map texture are "cube complete" if the array 0 of all six
 targets have identical, positive, and square d imensions, the array
 0 of all six targets were specified with the s ame internalformat,
 and the array 0 of all six targets have the sa me border width."

 After the 14th paragraph (page 116) add:

 "In a similiar fashion, the maximum allowable width and height
 (they must be the same) of a cube map texture must be at least

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 264

 2^(k-lod)+2bt for image arrays level 0 through k, where k is the
 log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE_ARB."

 -- Section 3.8.2 "Alternate Texture Image Specifi cation Commands"

 Update the second paragraph (page 120) to say:

 ... "Currently, <target> must be
 TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
 or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB." ...

 Add after the second paragraph (page 120), the following:

 "When the target parameter to CopyTexImage2D i s one of the six cube
 map 2D image targets, the error INVALID_VALUE is generated if the
 width and height parameters are not equal."

 Update the fourth paragraph (page 121) to say:

 ... "Currently the target arguments of TexSubI mage1D and
 CopyTexSubImage1D must be TEXTURE_1D, the <tar get> arguments of
 TexSubImage2D and CopyTexSubImage2D must be on e of TEXTURE_2D,
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CU BE_MAP_NEGATIVE_Z_ARB,
 and the <target> arguments of TexSubImage3D an d CopyTexSubImage3D
 must be TEXTURE_3D." ...

 -- Section 3.8.3 "Texture Parameters"

 Change paragraph one (page 124) to say:

 ... "<target> is the target, either TEXTURE_1D ,
 TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_AR B." ...

 Add a final paragraph saying:

 "Texture parameters for a cube map texture app ly to cube map
 as a whole; the six distinct 2D texture images use the
 texture parameters of the cube map itself.

 -- Section 3.8.5 "Texture Minification" under "Mi pmapping"

 Change the first full paragraph on page 130 to :

 ... "If texturing is enabled for one-, two-, o r three-dimensional
 texturing but not cube map texturing (and TEXT URE_MIN_FILTER
 is one that requires a mipmap) at the time a p rimitive is
 rasterized and if the set of arrays TEXTURE_BA SE_LEVEL through q =
 min{p,TEXTURE_MAX_LEVEL} is incomplete, based on the dimensions of
 array 0, then it is as if texture mapping were disabled."

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 265

 Follow the first full paragraph on page 130 wi th:

 "If cube map texturing is enabled and TEXTURE_ MIN_FILTER is one that
 requires mipmap levels at the time a primitive is rasterized and
 if the set of six targets are not "mipmap cube complete", then it
 is as if texture mapping were disabled. The t argets of a cube map
 texture are "mipmap cube complete" if the six cube map targets are
 "cube complete" and the set of arrays TEXTURE_ BASE_LEVEL through
 q are not incomplete (as described above)."

 -- Section 3.8.7 "Texture State and Proxy State"

 Change the first sentence of the first paragra ph (page 131) to say:

 "The state necessary for texture can be divide d into two categories.
 First, there are the nine sets of mipmap array s (one each for the
 one-, two-, and three-dimensional texture targ ets and six for the
 cube map texture targets) and their number." . ..

 Change the second paragraph (page 132) to say:

 "In addition to the one-, two-, three-dimensio nal, and the six cube
 map sets of image arrays, the partially instan tiated one-, two-,
 and three-dimensional and one cube map sets of proxy image arrays
 are maintained." ...

 After the third paragraph (page 132) add:

 "The cube map proxy arrays are operated on in the same manner
 when TexImage2D is executed with the <target> field specified as
 PROXY_TEXTURE_CUBE_MAP_ARB with the addition t hat determining that a
 given cube map texture is supported with PROXY _TEXTURE_CUBE_MAP_ARB
 indicates that all six of the cube map 2D imag es are supported.
 Likewise, if the specified PROXY_TEXTURE_CUBE_ MAP_ARB is not
 supported, none of the six cube map 2D images are supported."

 Change the second sentence of the fourth parag raph (page 132) to:

 "Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
 and PROXY_TEXTURE_CUBE_MAP_ARB cannot be used as textures, and their
 images must never be queried using GetTexImage ." ...

 -- Section 3.8.8 "Texture Objects"

 Change the first sentence of the first paragra ph (page 132) to say:

 "In addition to the default textures TEXTURE_1 D, TEXTURE_2D,
 TEXTURE_3D, and TEXTURE_CUBE_MAP_ARB, named on e-, two-,
 and three-dimensional texture objects and cube map texture objects
 can be created and operated on." ...

 Change the second paragraph (page 132) to say:

 "A texture object is created by binding an unu sed name to
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE _CUBE_MAP_ARB." ...
 "If the new texture object is bound to TEXTURE _1D, TEXTURE_2D,

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 266

 TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB, it remain s a one-, two-,
 three-dimensional, or cube map texture until i t is deleted."

 Change the third paragraph (page 133) to say:

 "BindTexture may also be used to bind an exist ing texture object to
 either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_ARB."

 Change paragraph five (page 133) to say:

 "In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 and TEXTURE_CUBE_MAP have one-dimensional, two -dimensional,
 three-dimensional, and cube map state vectors associated
 with them respectively." ... "The initial, o ne-dimensional,
 two-dimensional, three-dimensional, and cube m ap texture is therefore
 operated upon, queried, and applied as TEXTURE _1D, TEXTUER_2D,
 TEXTURE_3D, and TEXTURE_CUBE_MAP_ARB respectiv ely while 0 is bound
 to the corresponding targets."

 Change paragraph six (page 133) to say:

 ... "If a texture that is currently bound to o ne of the targets
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE _CUBE_MAP_ARB is
 deleted, it is as though BindTexture has been executed with the
 same <target> and <texture> zero." ...

 -- Section 3.8.10 "Texture Application"

 Replace the beginning sentences of the first p aragraph (page 138)
 with:

 "Texturing is enabled or disabled using the ge neric Enable
 and Disable commands, respectively, with the s ymbolic constants
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE _CUBE_MAP_ARB to enable
 the one-dimensional, two-dimensional, three-di mensional, or cube
 map texturing respectively. If both two- and one-dimensional
 textures are enabled, the two-dimensional text ure is used. If the
 three-dimensional and either of the two- or on e-dimensional textures
 is enabled, the three-dimensional texture is u sed. If the cube map
 texture and any of the three-, two-, or one-di mensional textures is
 enabled, then cube map texturing is used. If texturing is disabled,
 a rasterized fragment is passed on unaltered t o the next stage of the
 GL (although its texture coordinates may be di scarded). Otherwise,
 a texture value is found according to the para meter values of the
 currently bound texture image of the appropria te dimensionality.

 However, when cube map texturing is enabled, t he rules are
 more complicated. For cube map texturing, the (s,t,r) texture
 coordinates are treated as a direction vector (rx,ry,rz) emanating
 from the center of a cube. (The q coordinate can be ignored since
 it merely scales the vector without affecting the direction.) At
 texture application time, the interpolated per -fragment (s,t,r)
 selects one of the cube map face's 2D image ba sed on the largest
 magnitude coordinate direction (the major axis direction). If two
 or more coordinates have the identical magnitu de, the implementation
 may define the rule to disambiguate this situa tion. The rule must
 be deterministic and depend only on (rx,ry,rz) . The target column

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 267

 in the table below explains how the major axis direction maps to
 the 2D image of a particular cube map target.

 major axis
 direction target sc tc ma
 ---------- ------------------------------- --- --- ---
 +rx TEXTURE_CUBE_MAP_POSITIVE_X_ARB -rz -ry rx
 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_ARB +rz -ry rx
 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_ARB +rx +rz ry
 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB +rx -rz ry
 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_ARB +rx -ry rz
 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB -rx -ry rz

 Using the sc, tc, and ma determined by the maj or axis direction as
 specified in the table above, an updated (s,t) is calculated as
 follows

 s = (sc/|ma| + 1) / 2
 t = (tc/|ma| + 1) / 2

 This new (s,t) is used to find a texture value in the determined
 face's 2D texture image using the rules given in sections 3.8.5
 and 3.8.6." ...

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 -- Section 5.4 "Display Lists"

 In the first paragraph (page 179), add PROXY_T EXTURE_CUBE_MAP_ARB
 to the list of PROXY_* tokens.

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Change the fourth paragraph (page 183) to say:

 "The GetTexParameter parameter <target> may be one of TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_AR B, indicating the
 currently bound one-dimensional, two-dimension al, three-dimensional,
 or cube map texture object. For GetTexLevelPa rameter,
 <target> may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Z_ARB,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXT URE_3D, or
 PROXY_TEXTURE_CUBE_MAP_ARB, indicating the one -dimensional
 texture object, two-dimensional texture object , three-dimensional
 texture object, or one of the six distinct 2D images making up
 the cube map texture object or one-dimensional , two-dimensional,
 three-dimensional, or cube map proxy state vec tor. Note that
 TEXTURE_CUBE_MAP_ARB is not a valid <target> p arameter for

ARB_texture_cube_map NVIDIA OpenGL Extension Specifications

 268

 GetTexLevelParameter because it does not speci fy a particular cube
 map face."

 -- Section 6.1.4 "Texture Queries"

 Change the first paragraph (page 184) to read:

 ... "It is somewhat different from the other g et commands; <tex>
 is a symbolic value indicating which texture (or texture face in the
 case of a cube map texture target name) is to be obtained.
 TEXTURE_1D indicates a one-dimensional texture , TEXTURE_2D
 indicates a two-dimensional texture, TEXTURE_3 D indicates a
 three-dimensional texture, and TEXTURE_CUBE_MA P_POSITIVE_X_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
 and TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB indicate t he respective face of
 a cube map texture.

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is calle d with a <coord> of Q
 when <pname> indicates REFLECTION_MAP_ARB or N ORMAL_MAP_ARB.

 INVALID_VALUE is generated when the target par ameter to TexImage2D
 or CopyTexImage2D is one of the six cube map 2 D image targets and
 the width and height parameters are not equal.

New State

(table 6.12, p202) add the following entries:

Get Value Type Get Comman d Initial Value Description Sec At tribute
--------- ---- ---------- - ------------- ----------- ------ -- ------------
TEXTURE_CUBE_MAP_ARB B IsEnabled False True if cube map 3.8.10 te xture/enable
 texturing is enabled
TEXTURE_BINDING_CUBE_MAP_ARB Z+ GetInteger v 0 Texture object 3.8.8 te xture
 for TEXTURE_CUBE_MAP
TEXTURE_CUBE_MAP_POSITIVE_X_ARB nxI GetTexImag e see 3.8 positive x face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_X_ARB nxI GetTexImag e see 3.8 negative x face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_POSITIVE_Y_ARB nxI GetTexImag e see 3.8 positive y face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB nxI GetTexImag e see 3.8 negative y face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_POSITIVE_Z_ARB nxI GetTexImag e see 3.8 positive z face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB nxI GetTexImag e see 3.8 negative z face 3.8 -
 cube map texture
 image at lod i

NVIDIA OpenGL Extension Specifications ARB_texture_cube_map

 269

(table 6.14, p204) change the entry for TEXTURE_GEN _MODE to:

Get Value Type Get Command Initia l Value Description Sec Attribute
--------- ---- ----------- ------ ------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LI NEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Att ribute
--------- ---- ----------- ------------- ----------- ------ --- -----------
MAX_CUBE_MAP_TEXTURE_SIZE_ARB Z+ GetIntegerv 16 Maximum cube map 3.8.1 -
 texture image
 dimension

Backwards Compatibility

 This extension replaces EXT_texture_cube_map. The tokens and
 name strings now refer to ARB instead of EXT. Enumerant values
 are unchanged.

ARB_texture_env_add NVIDIA OpenGL Extension Specifications

 270

Name

 ARB_texture_env_add

Name Strings

 GL_ARB_texture_env_add

Notice

 Copyright OpenGL Architectural Review Board, 19 99.

Status

 Complete. Approved by ARB on 12/8/1999

Version

 Last Modified Date: June 22, 2000
 Author Revision: 0.3

 Based on: EXT_texture_env_add
 Date: 1999/03/22 Revision: 1.1

Number

 ARB Extension #6

Dependencies

 None

Overview

 New texture environment function ADD is support ed with the following
 equation:
 Cv = min(1, Cf + Ct)

 New function may be specified by calling TexEnv with ADD token.

 One possible application is to add a specular h ighlight texture to
 a Gouraud-shaded primitive to emulate Phong sha ding, in a single
 pass.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnvfi when the <pname> parameter value is GL _TEXTURE_ENV_MODE

 ADD

NVIDIA OpenGL Extension Specifications ARB_texture_env_add

 271

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 The description of TEXTURE_ENV_MODE in the firs t paragraph of
 section 3.8.9 should be modified as follows:

 TEXTURE_ENV_MODE may be set to one of REPLACE, MODULATE, DECAL,
 BLEND or ADD;

 Table 3.19 is augmented as follows:

 Base DECAL BLEND A DD
 Internal Format tex func tex func t ex func
 --------------- ----- ----- - --

 ALPHA Rv = Rf
 Gv = Gf
 Bv = Bf
 Av = AfAt

 LUMINANCE Rv = min(1, Rf+Lt)
 (or 1) Gv = min(1, Gf+Lt)
 Bv = min(1, Bf+Lt)
 Av = Af

 LUMINANCE_ALPHA Rv = min(1, Rf+Lt)
 (or 2) Gv = min(1, Gf+Lt)
 Bv = min(1, Bf+Lt)
 Av = AfAt

 INTENSITY Rv = min(1, Rf+It)
 Gv = min(1, Gf+It)
 Bv = min(1, Bf+It)
 Av = min(1, Af+It)

 RGB Rv = min(1, Rf+Rt)
 (or 3) Gv = min(1, Gf+Gt)
 Bv = min(1, Bf+Bt)
 Av = Af

 RGBA Rv = min(1, Rf+Rt)
 (or 4) Gv = min(1, Gf+Gt)
 Bv = min(1, Bf+Bt)
 Av = AfAt

 Table 3.19: Decal, blend and add texture fu nctions.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

ARB_texture_env_add NVIDIA OpenGL Extension Specifications

 272

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX / WGL / AGL Specifications

 None

GLX Protocol

 None

Errors

 None

New State

 The Type of TEXTURE_ENV_MODE in Table F.2 shoul d be changed to

 1 * xZ5

New Implementation Dependent State

 None

Revision History

 11/09/1999 0.1
 - First ARB draft based on the original EXT draft.

 1/13/2000 0.2
 - Added justification to the overview
 - Updated to describe modifications to 1.2. 1 specification
 - Added changes to description of TEXTURE_E NV_MODE parameter
 to TexEnv{if} and TexEnv{if}v
 - Added change to TEXTURE_ENV_MODE type (Z4 -> Z5)

 6/22/2000 0.3
 - The addition should saturate to 1.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 273

Name

 ARB_texture_env_combine

Name Strings

 GL_ARB_texture_env_combine

Version

 Last modified date: 2001/05/21

Number

 ARB Extension #17

Dependencies

 This extension is written against the OpenGL 1. 2.1 Specification.
 OpenGL 1.1 and ARB_multitexture are required fo r this extension.

Overview

 New texture environment function COMBINE_ARB al lows programmable
 texture combiner operations, including:

 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
 SUBTRACT_ARB Arg0 - Arg1
 INTERPOLATE_ARB Arg0 * (Arg2) + Arg 1 * (1-Arg2)

 where Arg0, Arg1 and Arg2 are derived from

 PRIMARY_COLOR_ARB primary color of in coming fragment
 TEXTURE texture color of co rresponding texture unit
 CONSTANT_ARB texture environment constant color
 PREVIOUS_ARB result of previous texture environment; on
 texture unit 0, thi s maps to PRIMARY_COLOR_ARB

 In addition, the result may be scaled by 1.0, 2 .0 or 4.0.

Issues

 1. Should the explicit bias be removed in favor of an implcit bias as
 part of a ADD_SIGNED_ARB function?

 - RESOLVED: Yes. This pre-scale bias is a speci al case and will
 be treated as such.

 2. Should the primary color of the incoming fragme nt be available to
 all texture environments? Currently it is only available to the
 texture environment of texture unit 0.

 - RESOLVED: Yes. PRIMARY_COLOR_ARB has been add ed as an input
 source.

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 274

 3. Should textures from other texture units be all owed as sources?

 - RESOLVED: NO. Even though this adds a lot of flexibility that
 folks can use today, there is not enough supp ort amonst the
 ARB participants to add it to the base spec.

 4. All of the 1.2 modes except BLEND can be expres sed in terms of
 this extension. Should texture color be allowed as a source for
 Arg2, so all of the 1.2 modes can be expressed? If so, should all
 color sources be allowed, to maintain orthogona lity?

 - RESOLVED: Yes. This seems to be a reasonable area to expand
 functionality and remain backwards compatible with the EXT
 version of the extension.

 5. If the texture environment for a given texture unit does not
 reference the texture object that is bound to t hat texture unit,
 does a valid texture object need to be bound th at unit?

 - RESOLVED: Yes. Each texture unit implicitly r eferences the
 texture object that is bound to that unit, re gardless of the
 texture environment function. This may requir e that
 applications bind a dummy texture to the text ure unit.

 6. Should we allow the secondary color to take par t in texture blending?

 - RESOLVED: Not in this extension. Secondary co lor was defined
 as a specular part of the lit color and does not have associated
 alpha. In order to do this right, the seconda ry color extension
 needs to be fixed first to allow a full featu red color and clearly
 state the interaction of how it interacts wit h the color sum stage.

 7. How exactly is this ARB extension different fro m the EXT version?

 - RESOLVED:

 1) This extension adds the GL_SUBTRACT_ARB m ode

 2) OPERAND2_RGB_ARB can use SRC_COLOR, ONE_M INUS_SRC_COLOR,
 SRC_ALPHA, and ONE_MINUS_SRC_ALPHA instea d of just SRC_ALPHA
 (NV_texture_env_combine4 already provides this).

 3) OPERAND2_ALPHA_ARB can use SRC_ALPHA and ONE_MINUS_SRC_ALPHA
 instead of just SRC_ALPHA (NV_texture_env _combine4 already
 provides this).

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s TEXTURE_ENV_MODE

 COMBINE_ARB 0x8570

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 275

 Accepted by the <pname> parameter of TexEnvf, T exEnvi, TexEnvfv,
 and TexEnviv when the <target> parameter value is TEXTURE_ENV

 COMBINE_RGB_ARB 0x8571
 COMBINE_ALPHA_ARB 0x8572
 SOURCE0_RGB_ARB 0x8580
 SOURCE1_RGB_ARB 0x8581
 SOURCE2_RGB_ARB 0x8582
 SOURCE0_ALPHA_ARB 0x8588
 SOURCE1_ALPHA_ARB 0x8589
 SOURCE2_ALPHA_ARB 0x858A
 OPERAND0_RGB_ARB 0x8590
 OPERAND1_RGB_ARB 0x8591
 OPERAND2_RGB_ARB 0x8592
 OPERAND0_ALPHA_ARB 0x8598
 OPERAND1_ALPHA_ARB 0x8599
 OPERAND2_ALPHA_ARB 0x859A
 RGB_SCALE_ARB 0x8573
 ALPHA_SCALE

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s COMBINE_RGB_ARB
 or COMBINE_ALPHA_ARB

 REPLACE
 MODULATE
 ADD
 ADD_SIGNED_ARB 0x8574
 INTERPOLATE_ARB 0x8575
 SUBTRACT_ARB 0x84E7

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s SOURCE0_RGB_ARB,
 SOURCE1_RGB_ARB, SOURCE2_RGB_ARB, SOURCE0_ALPHA_ARB,
 SOURCE1_ALPHA_ARB, or SOURCE2_ALPHA_ARB

 TEXTURE
 CONSTANT_ARB 0x8576
 PRIMARY_COLOR_ARB 0x8577
 PREVIOUS_ARB 0x8578

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s
 OPERAND0_RGB_ARB, OPERAND1_RGB_ARB, or OPERAND2_RGB_ARB

 SRC_COLOR
 ONE_MINUS_SRC_COLOR
 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s
 OPERAND0_ALPHA_ARB, OPERAND1_ALPHA_ARB, or OPER AND2_ALPHA_ARB

 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 276

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s RGB_SCALE_ARB or
 ALPHA_SCALE

 1.0
 2.0
 4.0

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 Added to subsection 3.8.9, before the paragraph describing the
 state requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE_ARB , the form of the
 texture function depends on the values of COMBI NE_RGB_ARB and
 COMBINE_ALPHA_ARB, according to table 3.20. The RGB and ALPHA
 results of the texture function are then multip lied by the values
 of RGB_SCALE_ARB and ALPHA_SCALE, respectively. The results are
 clamped to [0,1].

 COMBINE_RGB_ARB Texture Function
 ------------------ ----------------
 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
 INTERPOLATE_ARB Arg0 * (Arg2) + Arg 1 * (1-Arg2)
 SUBTRACT_ARB Arg0 - Arg1

 COMBINE_ALPHA_ARB Texture Function
 ------------------ ----------------
 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_ARB Arg0 + Arg1 - 0.5
 INTERPOLATE_ARB Arg0 * (Arg2) + Arg 1 * (1-Arg2)
 SUBTRACT_ARB Arg0 - Arg1

 Table 3.20: COMBINE_ARB texture functions

 The arguments Arg0, Arg1 and Arg2 are determine d by the values of
 SOURCE<n>_RGB_ARB, SOURCE<n>_ALPHA_ARB, OPERAND<n>_RGB_ARB and
 OPERAND<n>_ALPHA_ARB. In the following two tabl es, Ct and At are
 the filtered texture RGB and alpha values; Cc a nd Ac are the
 texture environment RGB and alpha values; Cf an d Af are the RGB
 and alpha of the primary color of the incoming fragment; and Cp
 and Ap are the RGB and alpha values resulting f rom the previous
 texture environment. On texture environment 0, Cp and Ap are
 identical to Cf and Af, respectively. The relat ionship is
 described in tables 3.21 and 3.22.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 277

 SOURCE<n>_RGB_ARB OPERAND<n>_RGB_ARB Argument
 ----------------- -------------- --------
 TEXTURE SRC_COLOR Ct
 ONE_MINUS_SRC_COLOR (1-Ct)
 SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_ARB SRC_COLOR Cc
 ONE_MINUS_SRC_COLOR (1-Cc)
 SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_ARB SRC_COLOR Cf
 ONE_MINUS_SRC_COLOR (1-Cf)
 SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_ARB SRC_COLOR Cp
 ONE_MINUS_SRC_COLOR (1-Cp)
 SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.21: Arguments for COMBINE_RGB_ARB f unctions

 SOURCE<n>_ALPHA_ARB OPERAND<n>_ALPHA_AR B Argument
 ----------------- -------------- --------
 TEXTURE SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_ARB SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_ARB SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_ARB SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.22: Arguments for COMBINE_ALPHA_ARB functions

 The mapping of texture components to source com ponents is
 summarized in Table 3.23. In the following tabl e, At, Lt, It, Rt,
 Gt and Bt are the filtered texel values.

 Base Internal Format RGB Values Alpha Value
 -------------------- ---------- -----------
 ALPHA 0, 0, 0 At
 LUMINANCE Lt, Lt, Lt 1
 LUMINANCE_ALPHA Lt, Lt, Lt At
 INTENSITY It, It, It It
 RGB Rt, Gt, Bt 1
 RGBA Rt, Gt, Bt At

 Table 3.23: Correspondence of texture compo nents to source
 components for COMBINE_RGB_ARB and COMBINE_ ALPHA_ARB arguments

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 278

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to Appendix F of the GL Specification (AR B Extensions)

 Inserted after the second paragraph of F.2.12:

 If the value of TEXTURE_ENV_MODE is COMBINE_ARB , the texture
 function associated with a given texture unit i s computed using
 the values specified by SOURCE<n>_RGB_ARB, SOUR CE<n>_ALPHA_ARB,
 OPERAND<n>_RGB_ARB and OPERAND<n>_ALPHA_ARB. If TEXTURE<n>_ARB is
 specified as SOURCE<n>_RGB_ARB or SOURCE<n>_ALP HA_ARB, the texture
 value from texture unit <n> will be used in com puting the texture
 function for this texture unit.

 Inserted after the third paragraph of F.2.12:

 If a texture environment for a given texture un it references a
 texture unit that is disabled or does not have a valid texture
 object bound to it, then it is as if texture is disabled for the
 given texture unit. Every texture unit implicit ly references the
 texture object that is bound to it, regardless of the texture
 function specified by COMBINE_RGB_ARB or COMBIN E_ALPHA_ARB.

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for COMBINE_RGB_ARB or
 COMBINE_ALPHA_ARB is not one of REPLACE, MODULA TE, ADD,
 ADD_SIGNED_ARB, INTERPOLATE_ARB, or SUBTRACT_AR B

 INVALID_ENUM is generated if <params> value for SOURCE0_RGB_ARB,
 SOURCE1_RGB_ARB, SOURCE2_RGB_ARB, SOURCE0_ALPHA_ARB,
 SOURCE1_ALPHA_ARB or SOURCE2_ALPHA_ARB is not o ne of TEXTURE,
 CONSTANT_ARB, PRIMARY_COLOR_ARB, or PREVIOUS_AR B.

 INVALID_ENUM is generated if <params> value for OPERAND0_RGB_ARB,
 OPERAND1_RGB_ARB, or OPERAND2_RGB_ARB is not on e of SRC_COLOR,
 ONE_MINUS_SRC_COLOR, SRC_ALPHA or ONE_MINUS_SRC _ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_ARB,
 OPERAND1_ALPHA_ARB, or OPERAND2_ALPHA_ARB is no t one of SRC_ALPHA
 or ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications ARB_texture_env_combine

 279

 INVALID_VALUE is generated if <params> value fo r RGB_SCALE_ARB or
 ALPHA_SCALE is not one of 1.0, 2.0, or 4.0.

New State

 Get Value Get Command Type Ini tial Value Attribute
 --------- ----------- ---- --- ---------- ---------
 COMBINE_RGB_ARB GetTexEnviv n x Z4 MOD ULATE texture
 COMBINE_ALPHA_ARB GetTexEnviv n x Z4 MOD ULATE texture
 SOURCE0_RGB_ARB GetTexEnviv n x Z3 TEX TURE texture
 SOURCE1_RGB_ARB GetTexEnviv n x Z3 PRE VIOUS_ARB texture
 SOURCE2_RGB_ARB GetTexEnviv n x Z3 CON STANT_ARB texture
 SOURCE0_ALPHA_ARB GetTexEnviv n x Z3 TEX TURE texture
 SOURCE1_ALPHA_ARB GetTexEnviv n x Z3 PRE VIOUS_ARB texture
 SOURCE2_ALPHA_ARB GetTexEnviv n x Z3 CON STANT_ARB texture
 OPERAND0_RGB_ARB GetTexEnviv n x Z6 SRC _COLOR texture
 OPERAND1_RGB_ARB GetTexEnviv n x Z6 SRC _COLOR texture
 OPERAND2_RGB_ARB GetTexEnviv n x Z1 SRC _ALPHA texture
 OPERAND0_ALPHA_ARB GetTexEnviv n x Z4 SRC _ALPHA texture
 OPERAND1_ALPHA_ARB GetTexEnviv n x Z4 SRC _ALPHA texture
 OPERAND2_ALPHA_ARB GetTexEnviv n x Z1 SRC _ALPHA texture
 RGB_SCALE_ARB GetTexEnvfv n x R3 1.0 texture
 ALPHA_SCALE GetTexEnvfv n x R3 1.0 texture

New Implementation Dependent State

 None

Revision History

 01/05/21 mjk Added ARB versus EXT differ ences issue

 01/00/02 bpoddar Added original EXT/ARB cont ributors to the contact
 list

 00/12/13 bpoddar Added enum value for SUBTRA CT_ARB

 00/12/06 bpoddar Moved references to Ct<n> a nd At<n> to
 ARB_texture_env_crossbar sp ec.

 00/12/01 bpoddar Removed TEXTURE<n>_ARB sinc e several companies
 had problems with this addi tion in the base spec.

 00/11/13 bpoddar Recreated 6/20 spec with la nguage for dealing
 with inconsistent textures moved to appendix F.

 00/06/20 rhammers Changed behavior when deali ng with references
 do disabled and inconsisten t textures.

 00/05/23 rhammers Cleaned up for first draft of ARB version.
 Added issue -- TEXTURE with TEXTURE<n>_ARB
 Added issue .. "upstream" t extures
 Listed get functions with d escription of
 enumerants.
 Added 1.1 and multitexture to dependencies

ARB_texture_env_combine NVIDIA OpenGL Extension Specifications

 280

 00/05/18 rhammers First rev of ARB version of the spec. Based on
 EXT_texture_env_combine.
 Relaxed restriction on Arg2 .
 Added support for TEXTURE<n >_ARB.
 Added SUBTRACT_ARB combiner function.
 do disabled and inconsisten t textures.

NVIDIA OpenGL Extension Specifications ARB_texture_env_crossbar

 281

Name

 ARB_texture_env_crossbar

Name Strings

 GL_ARB_texture_env_crossbar

Overview

 This extension adds the capability to use the t exture color from
 other texture units as sources to the COMBINE_A RB enviornment
 function. The ARB_texture_env_combine extension defined texture
 enviornment functions which could use the color from the
 current texture unit as a source. This extensio n adds
 the ability to use the color from any texture u nit as a source.

NVIDIA Note

 The NV_texture_env_combine4 extension provides nearly identical
 functionality to functionality that the ARB_tex ture_env_crossbar
 extension provides.

 Unfortunately, the ARB_texture_env_crossbar's s emantic for what
 happens when a texture environment stage refere nces a disabled
 texture does not match NVIDIA's NV_texture_env_ combine behavior.
 Due to the differing semantics and in order to maintain
 backward application compatibility and compatib ility with the
 NV_texture_env_combine4 specification, NVIDIA w ill never advertise
 the ARB_texture_env_crossbar extension.

 The ARB_texture_env_combine semantic is:

 Texture blending should be disabled on the texture unit that
 is referencing the invalid or disabled text ure.

 The NV_texture_env_combine4 semantic is:

 If the <n>th texture unit is disabled, the value of each component
 is 1.

 Fortunately, this semantic is not particularly relevant for most
 applications because applications typically avo id sourcing a disabled,
 inconsistent, or invalid texture unit.

 We recommend that if your application sources o ther texture units
 using the GL_COMBINE_ARB texture envionment mod e, you first determine
 that either ARB_texture_env_crossbar or NV_texture_env_combine4 are
 supported. Then do not assume a particular beh avior when sourcing
 other texture units with GL_COMBINE_ARB environ ment that are disabled
 or invalid.

 OpenGL 1.4 codifies this practice by integratin g the
 ARB_texture_env_crossbar functionality into the core OpenGL standard.
 The OpenGL 1.4 standard says: "If the texture environment
 for a given enabled texture unit references a d isabled texture unit,

ARB_texture_env_crossbar NVIDIA OpenGL Extension Specifications

 282

 or an invalid or incomplete texture that is bou nd to another unit,
 then the result of texture blending are undefin ed."

Web Reference

 http://oss.sgi.com/projects/ogl-sample/registry /ARB/texture_env_crossbar.txt

NVIDIA OpenGL Extension Specifications ARB_texture_env_dot3

 283

Name

 ARB_texture_env_dot3

Name Strings

 GL_ARB_texture_env_dot3

Status

 Complete. Approved by ARB on February 16, 2001.

Version

 Last modified date: 2001/05/16

Number

 ARB Extension #19

Dependencies

 This extension is written against the OpenGL 1. 2.1 Specification.
 OpenGL 1.1, ARB_multitexture and ARB_texture_en v_combine are required
 for this extension.

Overview

 Adds new operation to the texture combiner oper ations.

 DOT3_RGB_ARB Arg0 <dotpr od> Arg1
 DOT3_RGBA_ARB Arg0 <dotpr od> Arg1

 where Arg0, Arg1 are specified by <params> para meter of
 TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when t he <pname>
 parameter value is SOURCE0_RGB_ARB and SOURCE1_ RGB_ARB.

Issues

 1. This extension is an ARB version of EXT_texture _env_dot3 which bears
 a copyright by ATI Technologies. Is ATI willing to have the ARB
 go ahead and modify their original spec and use it for the
 ARB extension.

 - RESOLVED: ATI does not have a problem with th e copyright issue.

 2. The EXT version of the spec does not multiply t he output by
 RGB_SCALE_ARB and ALPHA_SCALE_ARB. There is no reason to impose this
 restriction since it makes the scale operations non-orthogonal.
 Should the enum values for the new tokens in th is extension should
 be the same as the original EXT version?

 - RESOLVED: No.

 3. How exactly is this ARB extension different fro m the EXT version?

 - RESOLVED: Scaling by 2.0 and 4.0 is supporte d by the ARB version,

ARB_texture_env_dot3 NVIDIA OpenGL Extension Specifications

 284

 but not the EXT version (as noted above). No te that when
 DOT3_RGBA_ARB is used, the alpha component re sult is scaled
 based on the RGB scale factor rather than the alpha scale factor
 (the COMBINE_ALPHA_ARB function and scale fac tor are ignored).
 The COMBINE_ALPHA_ARB mode is ignored in the EXT version and the
 previous alpha is passed through; however, th e ARB version abides
 by the COMBINE_ALPHA_ARB setting.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s COMBINE_RGB_ARB

 DOT3_RGB_ARB 0x86AE
 DOT3_RGBA_ARB 0x86AF

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 Added to table 3.20 of the ARB_texture_env_comb ine spec:

 COMBINE_RGB_ARB Texture Function
 --------------- ----------------
 DOT3_RGB_ARB 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
 (Arg0_g - 0.5)*(Arg1_g - 0.5) +
 (Arg0_b - 0.5)*(Arg1_b - 0.5))

 This value is place d into all three
 r,g,b components of the output.

 DOT3_RGBA_ARB 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
 (Arg0_g - 0.5)*(Arg1_g - 0.5) +
 (Arg0_b - 0.5)*(Arg1_b - 0.5))

 This value is place d into all four
 r,g,b,a components of the output. Note
 that the result gen erated from
 COMBINE_ALPHA_ARB f unction is ignored.

Additions to Chapter 4 of the OpenGL 1.2 Specificat ion (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

NVIDIA OpenGL Extension Specifications ARB_texture_env_dot3

 285

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for COMBINE_RGB_ARB
 is not one of REPLACE, MODULATE, ADD, ADD_SIGNE D_ARB,
 INTERPOLATE_ARB, SUBTRACT_ARB, DOT3_RGB_ARB or DOT3_RGBA_ARB.

New State

 None

New Implementation Dependent State

 None

Revision History
 01/05/16 mjk Dot3 combiner operations no t allowed for alpha portion
 01/02/02 bpoddar Added original EXT/ARB cont ributors to the contact
 list

 00/12/13 bpoddar Added enum values for DOT3_ RGB_ARB and DOT3_RGBA_ARB
 Added resolution to issue # 1.

 00/12/06 bpoddar Fixed typos - EXT -> ARB, R ED_SCALE -> RGB_SCALE

 00/12/01 bpoddar Created an ARB version of t he ARB_texture_env_dot3
 by breaking up the proposed ARB_texture_env_combine
 spec.

ARB_texture_float NVIDIA OpenGL Extension Specifications

 286

Name

 ARB_texture_float

Name Strings

 GL_ARB_texture_float

Contributors

 Pat Brown
 Jon Leech
 Rob Mace
 Brian Paul

Contact

 Dale Kirkland, NVIDIA (dkirkland 'at' nvidia.co m)

Status

 Complete. Appprove by the ARB on October 22, 20 04.

Version

 Based on the ATI_texture_float extension, verio n 4

 Last Modified Date: July 6, 2006
 Version: 6

Number

 ARB Extension #41

Dependencies

 This extension is written against the OpenGL 2. 0 Specification
 but will work with the OpenGL 1.5 Specification .

 OpenGL 1.1 or EXT_texture is required.

 This extension interacts with ARB_color_buffer_ float.

Overview

 This extension adds texture internal formats wi th 16- and 32-bit
 floating-point components. The 32-bit floating -point components
 are in the standard IEEE float format. The 16- bit floating-point
 components have 1 sign bit, 5 exponent bits, an d 10 mantissa bits.
 Floating-point components are clamped to the li mits of the range
 representable by their format.

IP Status

 SGI owns US Patent #6,650,327, issued November 18, 2003. SGI
 believes this patent contains necessary IP for graphics systems
 implementing floating point (FP) rasterization and FP framebuffer

NVIDIA OpenGL Extension Specifications ARB_texture_float

 287

 capabilities.

 SGI will not grant the ARB royalty-free use of this IP for use in
 OpenGL, but will discuss licensing on RAND term s, on an individual
 basis with companies wishing to use this IP in the context of
 conformant OpenGL implementations. SGI does not plan to make any
 special exemption for open source implementatio ns.

 Contact Doug Crisman at SGI Legal for the compl ete IP disclosure.

Issues

 1. How is this extension different from the ATI _texture_float
 extension?

 This extension expands on the definition of float16 values
 and adds a query to determine if the compone nts of a texture
 are stored as floats.

 2. Should the new names of the internal formats be changed to a
 different spelling?

 RESOLVED: Internal format names have been u pdated to the
 same convention as the EXT_framebuffer_objec t extension.

 3. Is it allowable for an implementation to fal l back to a non
 floating-point internal format if it does no t support the
 requested format?

 RESOLVED: No. An application that requests floating-point
 formats should expect to get them. Only the precision of the
 internal format can be changed. When this e xtension is
 promoted to the core, this issue may need to be readdressed.

 4. Do the new internal formats apply to any oth er commands?

 RESOLVED: Since color tables support the sa me <internalFormat>
 values as textures, they are also extended w ith this extension,
 except the individual component types cannot be queried.

 5. Are the floating-point values clamped before they are stored
 into the texture memory or color tables?

 RESOLVED: The values are clamped to the rep resentatable
 range of the storage format. Overflows coul d produce
 +/-INF and underflows could produce denorms or zero. This
 matches the behavior of the ATI extension.

 6. Should this extension modify the clamping of the texture border
 color components?

 RESOLVED: Yes. The border color components are unclamped.
 When used, the border color components are i nterpreted in a
 manner consistent with the texture's interna l format. For
 fixed-point textures, this means that the bo rder color is
 clamped to [0, 1] when used.

ARB_texture_float NVIDIA OpenGL Extension Specifications

 288

 7. Are floating-point values clamped for the fi xed-function GL?

 RESOLVED: This extension introduces texel v alues that can be
 outside [0, 1]. No clamping occurs to these values during
 texture filtering. For the fixed-function p ipeline, the
 filtered texel is now clamped before it is u sed for texture
 environment blending. The ARB_color_buffer_ float extension
 can be used to control this clamping. For t he programmable
 pipelines, no clamping occurs.

 8. Should the query for the border color return the unclamped
 values?

 RESOLVED: There is language in the ARB_colo r_buffer_float
 extension that handles this. Since there is no clamp control
 in this specification, it would be hard to d o anything other
 than return the clamped values.

New Procedures and Functions

 None

New Tokens

 Accepted by the <value> parameter of GetTexLeve lParameter:

 TEXTURE_RED_TYPE_ARB 0x8C10
 TEXTURE_GREEN_TYPE_ARB 0x8C11
 TEXTURE_BLUE_TYPE_ARB 0x8C12
 TEXTURE_ALPHA_TYPE_ARB 0x8C13
 TEXTURE_LUMINANCE_TYPE_ARB 0x8C14
 TEXTURE_INTENSITY_TYPE_ARB 0x8C15
 TEXTURE_DEPTH_TYPE_ARB 0x8C16

 Returned by the <params> parameter of GetTexLev elParameter:

 UNSIGNED_NORMALIZED_ARB 0x8C17

 Accepted by the <internalFormat> parameter of T exImage1D,
 TexImage2D, and TexImage3D:

 RGBA32F_ARB 0x8814
 RGB32F_ARB 0x8815
 ALPHA32F_ARB 0x8816
 INTENSITY32F_ARB 0x8817
 LUMINANCE32F_ARB 0x8818
 LUMINANCE_ALPHA32F_ARB 0x8819
 RGBA16F_ARB 0x881A
 RGB16F_ARB 0x881B
 ALPHA16F_ARB 0x881C
 INTENSITY16F_ARB 0x881D
 LUMINANCE16F_ARB 0x881E
 LUMINANCE_ALPHA16F_ARB 0x881F

NVIDIA OpenGL Extension Specifications ARB_texture_float

 289

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16-Bit Floating-Point Numbers

 A 16-bit floating-point number has a 1-bit sign (S), a 5-bit
 exponent (E), and a 10-bit mantissa (M). The v alue of a 16-bit
 floating-point number is determined by the foll owing:

 (-1)^S * 0.0, if E = = 0 and M == 0,
 (-1)^S * 2^-14 * (M / 2^10), if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E = = 31 and M == 0, or
 NaN, if E = = 31 and M != 0,

 where

 S = floor((N mod 65536) / 32768),
 E = floor((N mod 32768) / 1024), and
 M = N mod 1024.

 Implementations are also allowed to use any of the following
 alternative encodings:

 (-1)^S * 0.0, if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M == 0, or
 (-1)^S * 2^(E-15) * (1 + M/2^10), if E = = 31 and M != 0,

 Any representable 16-bit floating-point value i s legal as input
 to a GL command that accepts 16-bit floating-po int data. The
 result of providing a value that is not a float ing-point number
 (such as infinity or NaN) to such a command is unspecified, but
 must not lead to GL interruption or termination . Providing a
 denormalized number or negative zero to GL must yield predictable
 results.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.6.3 (Pixel Transfer Modes), p. 116

 (modify first paragraph, p. 118) The specified image is taken from
 memory and processed just as if DrawPixels were called, stopping
 after the final expansion to RGBA. The R, G, B, and A components of
 each pixel are then scaled by the four COLOR TA BLE SCALE parameters
 and biased by the four COLOR TABLE BIAS paramet ers. These
 parameters are set by calling ColorTableParamet erfv as described
 below. If fragment color clamping is enable or the
 <internalformat> is fixed-point, the components are clamped to
 [0, 1]. Otherwise, the components are not modif ied.

 Modify Section 3.8.1 (Texture Image Specificati on), p. 150

 (modify second paragraph, p. 151) The selected groups are processed
 exactly as for DrawPixels, stopping just before final conversion.
 For R, G, B, and A, if the <internalformat> of the texture is
 fixed-point, the components are clamped to [0, 1]. Otherwise, the

ARB_texture_float NVIDIA OpenGL Extension Specifications

 290

 components are not modified. The depth value s o generated is
 clamped to [0, 1].

 (modify the second paragraph, p. 152) The inter nal component resolution
 is the number of bits allocated to each value i n a texture image. If
 <internalformat> is specified as a base interna l format, the GL stores
 the resulting texture with internal component r esolutions of its own
 choosing. If a sized internal format is specif ied, the mapping of the
 R, G, B, A, and depth values to texture compone nts is equivalent to the
 mapping of the corresponding base internal form at’s components, as
 specified in table 3.15, the type (unsigned int , float, etc.) is
 assigned the same type specified by <internalFo rmat>, and the memory
 allocation per texture component is assigned by the GL to match the
 allocations listed in table 3.16 as closely as possible. (The definition
 of closely is left up to the implementation. I mplementations are not
 required to support more than one resolution of each type (unsigned int,
 float, etc.) for each base internal format.) If a compressed internal
 format is specified, the mapping of the R, G, B , A, and depth values to
 texture components is equivalent to the mapping of the corresponding
 base internal format’s components, as specified in table 3.15. The
 specified image is compressed using a (possibly lossy) compression
 algorithm chosen by the GL.

 (add the following to table 3.16, p. 154)

 Sized Base R G B A L I
 Internal Format Internal Format b its bits bits bits bits bits
 --------------------------- --------------- - --- ---- ---- ---- ---- ----
 RGBA32F_ARB RGBA f 32 f32 f32 f32
 RGB32F_ARB RGB f 32 f32 f32
 ALPHA32F_ARB ALPHA f32
 INTENSITY32F_ARB INTENSITY f32
 LUMINANCE32F_ARB LUMINANCE f32
 LUMINANCE_ALPHA32F_ARB LUMINANCE_ALPHA f32 f32
 RGBA16F_ARB RGBA f 16 f16 f16 f16
 RGB16F_ARB RGB f 16 f16 f16
 ALPHA16F_ARB ALPHA f16
 INTENSITY16F_ARB INTENSITY f16
 LUMINANCE16F_ARB LUMINANCE f16
 LUMINANCE_ALPHA16F_ARB LUMINANCE_ALPHA f16 f16

 Table 3.16: Correspondence of sized internal formats to base
 internal formats, and desired component resol utions for each
 sized internal format. The notation <f16> an d <f32> imply
 16- and 32-bit floating-point, respectively.

 Modify Section 3.8.4 (Texture Parameters), p. 1 66

 (remove TEXTURE_BORDER_COLOR from end of first paragraph, p. 166)

 ... If the values for TEXTURE_BORDER_COLOR or t he value for
 TEXTURE_PRIORITY are specified as integers, the conversion for signed
 integers from table 2.9 is applied to convert t his value to
 floating-point. Regardless of the original dat a type, the value for
 TEXTURE_PRIORITY is clamped to lie in [0, 1].

NVIDIA OpenGL Extension Specifications ARB_texture_float

 291

 ... If the value for TEXTURE_PRIORITY is specif ied as an integer,
 the conversion for signed integers from table 2 .9 is applied to
 convert this value to floating-point, followed by clamping the
 value to lie in [0, 1].

 Modify Section 3.8.8 (Texture Minification), p. 170

 (modify last paragraph, p. 174) ... If the text ure contains color
 components, the values of TEXTURE BORDER COLOR are interpreted as
 an RGBA color to match the texture's internal f ormat in a manner
 consistent with table 3.15. The border values for texture
 components stored as fixed-point values are cla mped to [0, 1]
 before they are used. If the texture contains depth ...

 Modify Section 3.8.11 (Texture State and Proxy State) p. 178

 (modify the first section, p. 178) ...Each arra y has associated with
 it a width, height (two- and three-dimensional and cubemap only), and
 depth (three-dimensional only), a border width, an integer describing
 the internal format of the image, six integer v alues describing the
 resolutions of each of the red, green, blue, al pha, luminance, and
 intensity components of the image, six values t hat describe the type
 (unsigned int, floats, etc.) of each of the red , green, blue, alpha,
 luminance, and intensity components of the imag e, a boolean describing
 whether the image is compressed or not, and an integer size of a
 compressed image. Each initial...

 (modify the first paragraph, p. 179) ...Each pr oxy array includes width,
 height (two- and three- dimensional arrays only), depth
 (three-dimensional arrays only), border width, and internal format state
 values, as well as state for the red, green, bl ue, alpha, luminance, and
 intensity component resolutions and types (unsi gned int, floats, etc.).
 Proxy arrays do not include image data, nor do they include texture
 properties. When TexImage3D is executed with ta rget specified as PROXY
 TEXTURE 3D, the three-dimensional proxy state v alues of the specified
 level-of-detail are recomputed and updated. If the image array would not
 be supported by TexImage3D called with target s et to TEXTURE 3D, no
 error is generated, but the proxy width, height , depth, border width,
 and component resolutions are set to zero, and the component types are
 set to NONE. If the image...

 Modify Section 3.8.13 (Texture Environments and Functions), p.182

 (replace the sixth paragraph of p. 183) All of these color values
 are clamped to the range [0, 1]. The texture f unctions are
 specified in tables 3.22, 3.23, and 3.24.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special
Functions)

 None

ARB_texture_float NVIDIA OpenGL Extension Specifications

 292

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.3 (Enumerated Queries), p. 2 46

 (modify second paragraph, p. 247) For texture i mages with uncompressed
 internal formats, queries of <value> of TEXTURE _RED_TYPE_ARB,
 TEXTURE_GREEN_TYPE_ARB, TEXTURE_BLUE_TYPE_ARB, TEXTURE_ALPHA_TYPE_ARB,
 TEXTURE_LUMINANCE_TYPE_ARB, TEXTURE_INTENSITY_T YPE_ARB, and
 TEXTURE_DEPTH_TYPE_ARB, return either NONE, UNS IGNED_NORMALIZED_ARB, or
 FLOAT indicating how the components are stored, and the queries of
 <value> of TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE , TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TEX TURE_DEPTH_SIZE, and
 TEXTURE_INTENSITY_SIZE return the actual resolu tions of the stored image
 array components, not the resolutions specified when the image array was
 defined.

Additions to the AGL/GLX/WGL Specifications

 None

Dependencies on ARB_color_buffer_float extension

 The ARB_color_buffer_float extension allows cla mping to be
 controlled in various parts of the GL. Specifi cally, clamping
 of filtered texel values used for texture envir onment blending
 can be disable.

Errors

 None

New State

 (Table 6.17, p. 278) add the following entries:

 Get Value Type Get Com mand Minimum Value Description Sect ion Attribute
 ------------------------------- ----- ------- ------------- ------------- --------------- ---- ---- ---------
 TEXTURE_RED_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_GREEN_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_BLUE_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_ALPHA_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_LUMINANCE_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_INTENSITY_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -
 TEXTURE_DEPTH_TYPE_ARB Z3 GetTexL evelParameter - storage type 6.1. 3 -

New Implementation Dependent State

 None

Revision History

 Rev. Date Author Changes
 ---- -------- --------- --------------------- -------------------
 1 2/26/04 kirkland Initial version based on the ATI
 extension.

NVIDIA OpenGL Extension Specifications ARB_texture_float

 293

 2 3/11/04 kirkland Updated language for float16 number
 handling.
 Added bit encodings f or half values.
 Added an issue for co lor tables.
 Added separate querie s for component
 types.
 Changed the internal format names to
 match the uber buffer extension.
 Added language to not allow textures to
 change the type of th e internal formats,
 only the precision.

 3 7/23/04 kirkland Added alternative enc odings options for
 float16 format.

 4 9/17/04 kirkland Updated to reference the OpenGL 2.0 spec.
 Added interaction wit h clamp control.
 Removed the clamping of color table data.

 5 10/1/04 Kirkland Updated IP section.
 Reviewed by the ARB a nd closed all
 UNRESOLVED issues.

 6 7/6/06 pbrown Fixed broken language for border color
 handling. TexParamet eriv border colors
 should still be conve rted to integer; we
 only intended to remo ve the [0,1] clamping.

ARB_texture_mirrored_repeat NVIDIA OpenGL Extension Specifications

 294

Name

 ARB_texture_mirrored_repeat

Name Strings

 GL_ARB_texture_mirrored_repeat

Status

 Complete. Approved by ARB on October 16, 2001.

Version

 Last modified date: 2001/09/20

Number

 ARB Extension #21

Dependencies

 This extension is written against the OpenGL 1. 3 Specification.
 However, this extension does not require OpenGL 1.3.

Overview

 ARB_texture_mirrored_repeat extends the set of texture wrap modes to
 include a mode (GL_MIRRORED_REPEAT_ARB) that ef fectively uses a texture
 map twice as large at the original image in whi ch the additional half,
 for each coordinate, of the new image is a mirr or image of the original
 image.

 This new mode relaxes the need to generate imag es whose opposite edges
 match by using the original image to generate a matching "mirror image".

Issues

 1. The spec clamps the final (u,v) coordinates to the range [0.5, 2^n-0.5].
 This will produce the same effect as trapping a sample of the border texel
 and using the corresponding edge texel. The ch oice of technique is purely
 an implementation detail.

 2. The IBM_texture_mirrored_repeat extension inadv ertantly used an HP
 enumerant value (0x8370) allocated by HP as an interleaved array format.
 Should the enumerant value be changed if this b ecomes an ARB extension?

 No, it is not worth the confusion created by ha ving two different
 enumerant value for the same token.

 3. Should additional mirroring functions be added to this extension and
 perhaps rename it to ARB_texture_mirror. For ex ample, include the two
 mirror modes (MIRROR_CLAMP_ATI and MIRROR_CLAMP _TO_EDGE_ATI) provided
 for in the GL_ATI_texture_mirror_once extension .

NVIDIA OpenGL Extension Specifications ARB_texture_mirrored_repeat

 295

 No, these extensions are not interdependent and inclusion of the
 mirror once will likely hinder the adoption of this extension.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXT URE_WRAP_T, or
 TEXTURE_WRAP_R:

 GL_MIRRORED_REPEAT_ARB 0x8 370

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None.

Additions to Chapter 3 of the GL Specification (Ras terization)

 Modify Table 3.19, editing only the following lin es:

 Name Type Legal Values
 ============== ======= =================== =
 TEXTURE_WRAP_S integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB , MIRRORED_REPEAT_ARB
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB , MIRRORED_REPEAT_ARB
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO_EDG E, REPEAT,
 CLAMP_TO_BORDER_ARB , MIRRORED_REPEAT_ARB

 Add to end of Section 3.8.5 (Subsection "Texture Wrap Modes")

 If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_W RAP_R is set to
 MIRRORED_REPEAT_ARB, the s (or t or r) coordina te is converted to:

 s - floor(s), if floor(s) is even , or
 1 - (s - floor(s)), if floor(s) is odd.

 The converted s (or t or r) coordinate is then clamped
 as described for CLAMP_TO_EDGE texture coordina te clamping.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

ARB_texture_mirrored_repeat NVIDIA OpenGL Extension Specifications

 296

Additions to Appendix F of the GL Specification (AR B Extensions)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None.

Errors

 None

New State

 Only the type information changes for these par ameters:

 Initial
Get Value Get Command Type Value Description Sec. Attrib
--------- ----------- ---- ------- ----------- ---- ------
TEXTURE_WRAP_S GetTexParameteriv n x Z5 REPEAT Texture Wrap Mode S 3.8 texture
TEXTURE_WRAP_T GetTexParameteriv n x Z5 REPEAT Texture Wrap Mode T 3.8 texture
TEXTURE_WRAP_R GetTexParameteriv n x Z5 REPEAT Texture Wrap Mode R 3.8 texture

New Implementation Dependent State

 None

Revision History
 01/09/20 bpoddar - Moved description for sec tion 3.8.5 to the end
 to avoid a forward refere nce
 - Changed to using the old enumerant
 - Minor typo/email address fixes

 01/09/11 bpoddar - Updated for OpenGL 1.3 sp ec.
 - Minor change to descripti on of clamping.

 01/03/22 brokensh Converted the IBM extension to a ARB extension
 written against the latest specification.

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 297

Name

 ARB_texture_non_power_of_two

Name Strings

 GL_ARB_texture_non_power_of_two

Notice

 Copyright to be assigned to the ARB.

Status

 Approved by the ARB on June 11, 2003.

Version

 Date: May 14, 2004
 Revision: 1.0

Number

 ARB Extension #34

Dependencies

 Written based on the OpenGL 1.4 specification.

 ARB_texture_mirrored_repeat (and IBM_texture_mi rrored_repeat)
 affects the definition of this extension.

 ARB_texture_border_clamp affects the definition of this extension.

 EXT_texture_compression_s3tc and NV_texture_com pression_vtc affect
 the definition of this extension.

Overview

 Conventional OpenGL texturing is limited to ima ges with
 power-of-two dimensions and an optional 1-texel border.
 ARB_texture_non_power_of_two extension relaxes the size restrictions
 for the 1D, 2D, cube map, and 3D texture target s.

 There is no additional procedural or enumerant api introduced by this
 extension except that an implementation which e xports the extension
 string will allow an application to pass in tex ture dimensions for
 the 1D, 2D, cube map, and 3D targets that may o r may not be a power
 of two.

 An implementation which supports relaxing tradi tional GL's
 power-of-two size restrictions across all textu re targets will export
 the extension string: "ARB_texture_non_power_of _two".

 When this extension is supported, mipmapping, a utomatic mipmap
 generation, and all the conventional wrap modes are supported for
 non-power-of-two textures

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 298

Issues

 1. What should this extension be called?

 STATUS: RESOLVED

 RESOLUTION: ARB_texture_non_power_of_two. C onventional OpenGL
 textures are restricted to size dimensions th at are powers of two.

 The phrases POT (power of two) and NPOT (non- power of two) textures
 are used in the Overview and Issues section o f this specification,
 but notice these terms are never required in the actual extension
 language to amend the core specification.

 2. Should any enable or other state change be r equired to relax
 the texture dimension restrictions?

 STATUS: RESOLVED

 RESOLUTION: No. The restrictions on texture dimensions in the
 core OpenGL specification are enforced by err ors. Extensions are
 free to make legal and defined the error beha vior of extensions.
 This extension is really no different in that respect.

 The argument for having an enable to "unlock" more generalized
 texture dimensions is that it avoids develope rs accidently releasing
 applications developed on an OpenGL implement ation supporting this
 extension and unintentionally using NPOT text ures. This situation
 exists in theory with other extensions that d o not require new
 entry points or enumerants to operate (think of NV_blend_square).
 The real responsibility falls on developers t o not use extensions
 unless the implementation advertises support for the extension
 and do proper testing to ensure this is reall y the case.

 An additional issue with not having an enable to "unlock" this
 feature concerns the cases where existing app s might actually be
 relying on the current error condition to tel l them what to do,
 but might not be able to handle the "new" suc cess this extension
 would create. However, this seems to be limi ted to apps that
 are explicitly checking for implementation co rrectness (like a
 conformance test) and this does not seem to b e a typical problem
 for "real-world" applications. The working g roup members agreed
 that it is acceptable to require those few ap ps which fall into
 this category to be updated in the context of this extension.

 3. Should this extension be limited to a subset of conventional
 texture targets?

 STATUS: RESOLVED

 SUGGESTION: No. This extension should apply to 1D, 2D, 3D, and
 cube map textures (all supported by OpenGL 1. 4) but this extension
 does NOT extend or otherwise affect the EXT_t exture_rectangle
 extension's TEXTURE_RECTANGLE_EXT target.

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 299

 One early point of debate was whether we shou ld have a single
 unified extension which lifted the power of t wo restrictions from
 all targets, or whether we should have indivi dual target specific
 extensions. For example, one could imagine separate extensions for
 ARB_texture_non_power_of_two_2d, ARB_texture_ non_power_of_two_3d,
 ARB_texture_non_power_of_two_cube_map.

 The advantages of the separate extension appr oach are to allow IHV's
 to choose which pieces of functionality to su pport independently.
 The advantages of the single extension approa ch is to have a
 simpler and more forward looking extension.

 4. Are cube map texture images still required t o be square when this
 extension is supported?

 STATUS: RESOLVED

 RESOLUTION: Yes. But while the width and he ight of each level
 must be equal, they can be NPOT.

 5. How is a conventional NPOT target different from the texture
 rectangle target?

 STATUS: RESOLVED

 RESOLUTION:
 The biggest practical difference is that cove ntional targets use
 normalized texture coordinates (ie, [0..1]) w hile the texture
 rectangle target uses unnormalized (ie, [0..w]x[0..h]) texture
 coordinates.

 Differences include:

 + In ARB_texture_non_power_of_two:
 * mipmapping is allowed, default filter rem ains unchanged.
 * all wrap modes are allowed, default wrap mode remains unchanged.
 * borders are supported.
 * paletted textures are not unsupported.
 * texture coordinates are addressed paramet rically [0..1],[0..1]
 + In EXT_texture_rectangle:
 * mipmapping is not allowed, default filter is changed to LINEAR.
 * only CLAMP* wrap modes are allowed, defau lt is CLAMP_TO_EDGE.
 * borders are not supported.
 * paletted textures are unsupported.
 * texture coordinates are addressed non-par ametrically [0..w],[0..h].

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 300

 6. What is the dimension reduction rule for eac h successively smaller
 mipmap level?

 STATUS: RESOLVED

 RESOLUTION: Each successively smaller mipmap level is half the size
 of the previous level, but if this half value is a fractional value,
 you should round down to the next largest int eger. Essentially:

 max(1, floor(w_b / 2^i)) x
 max(1, floor(h_b / 2^i)) x
 max(1, floor(d_b / 2^i))

 where i is the ith level beyond the 0th level (the base level).

 This is a "floor" convention. An alternative is a "ceiling"
 convention.

 The primary reason to favor the floor convent ion is that Direct3D
 uses the floor convention.

 Also, the "ceiling" convention potentially im plies one more mipmap
 level than the "floor" convention.

 Some regard the "ceiling" convention to have nicer properties with
 respect to making sure that each level sample s at at least 2x the
 frequency of the next level. This can reduce the chances of
 sampling artifacts. However, it's probably n ot worth diverging
 from the Direct3D convention just for this. A more sophisticated
 downsampling algorithm (using a larger kernel perhaps) during
 mipmap level generation can help reduce artif acts related to using
 the "floor" convention.

 The "floor" convention has a relatively strai ghtforward way to
 evaluate (with integer math) means to determi ne how many mipmap
 levels are required for a complete pyramid:

 numLevels = 1 + floor(log2(max(w, h, d)))

 The "floor" convention can be evaluated incre mentally with the
 following recursion:

 nextLODdim = max(1, currentLODdim >> 1)

 where currentLODdim is the dimension of a lev el N and nextLODdim
 is the dimension of level N+1. The recursion stops when level
 numLevels-1 is reached.

 Other compromise rules exist such as "round" (floor(x+0.5)).
 Such a hybrid approach make it more difficult to compute how many
 mipmap levels are required for a complete pyr amid.

 Note that this extension is compatible with s upporting other rules
 because it merely relaxes the error and compl eteness conditions
 for mipmaps. At the same time, it makes sens e to provide developers
 a single consistent rule since developers are unlikely to want to
 generate mipmaps for different rules unnecess arily. One reasonable

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 301

 rule is sufficient and preferable, and the "f loor" convention is
 the best choice.

 7. Should the LOD for filtering (rho) be comput ed differently for
 NPOT textures?

 STATUS: RESOLVED

 RESOLUTION: No (though, ideally, the answer would be "yes slightly
 somehow"). The core OpenGL specification alr eady allows that
 the ideal computation of rho (even for POT te xtures) is "often
 impractical to implement". The "ceiling" con vention adds one more
 mipmap level for NPOT textures so at extreme minification, the
 "ceiling" convention may be somewhat sharper than ideal (whereas
 "floor" would be blurrier).

 This excess bluriness should only be signific ant at the smallest
 (blurriest) mipmap levels where it should be quite difficult to
 notice for properly downsampled mipmap images .

 8. Should there be any restrictions on the wrap modes supported for
 NPOT textures?

 STATUS: RESOLVED

 RESOLUTION: No restrictions; all existing wr ap modes
 (GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CL AMP_TO_BORDER, and
 GL_MIRRORED_REPEAT) should "just work" with N POT textures.

 The difficult part of this requirement is to compute "mod w_i"
 (or h_i or d_i) rather than simply "mod 2^n" (or 2^m or 2^l) for
 the GL_REPEAT wrap mode (GL_MIRRORED_REPEAT m ay also be an issue,
 but as defined by OpenGL 1.4, no "mod" math i s required to implement
 the mirrored repeat wrap mode). REPEAT is to o commonly used (indeed
 it is the default wrap mode) to exclude it fo r NPOT textures.

 9. How does this extension interact with ARB_te xture_compression?

 STATUS: RESOLVED

 RESOLUTION: It does not. ARB_texture_compre ssion doesn't
 technically require that any compressed forma ts be supported.
 Implementations can choose to compress or not compress any
 particular texture.

 While implementations may choose an internal component resolution
 and compressed format, the OpenGL 1.4 require s that the choice be
 a function only of the TexImage parameters. If an implementation
 chose not to compress NPOT textures, it might get into a situation
 where a 7x7 image wasn't compressed but its 4 x4, 2x2, and 1x1
 mipmaps were compressed. The result would be an inconsistent mipmap
 chain since the internal format of each level would not the same.

 Therefore, an implementation must be able to handle the case where
 decisions it makes during image specification can be corrected
 appropriately at render time. This may mean that an implementation
 such as the one described above may need to t empoarily keep

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 302

 compressed and uncompressed images internally until the full
 mipmap stack can be examined or may need to d ecompress previously
 compressed images in order to recover.

 10. How does this extension interact with speci fic texture compression
 extensions such as EXT_texture_compression_s3tc ?

 STATUS: RESOLVED

 RESOLUTION: It does not. If both this exten sion and
 EXT_texture_compression_s3tc are supported, a pplications can safely
 load NPOT S3TC-compressed textures.

 Textures are still decomposed into an array o f 4x4 blocks.
 The compressed data for any texels outside th e specified image
 dimensions are irrelevant and are effectively ignored, just as they
 are for the 1x1 and 2x2 mipmaps of a POT S3TC -compressed texture.

 11. How is automatic mipmap generation affected by this extension?

 STATUS: RESOLVED

 RESOLUTION: It is not directly affected. I f an implementation
 supports automatic mipmap generation, then mi pmap generation must
 be supported even for NPOT textures.

 Note however, that the OpenGL 1.4 specificati on recommends a
 "2x2 box filter" for the default filter. Thi s is typo since
 a 2x2 box filter would be incorrect for 1D an d 3D textures.
 With support for NPOT textures, this "2x2 box filter" becomes
 even more inappropriate. The wording should be changed to simply
 recommend a box filter where the dimensionali ty and filter size is
 assumed appropriate for the texture image dim ensionality and size.

 12. Are any edits required for Section 3.8.10 " Texture Completeness"?

 STATUS: RESOLVED

 RESOLUTION: No. This section references Sec tion 3.8.8 for
 the allowed sequence of dimensions for comple teness (rather than
 stating the requirements explicition in Secti on 3.8.10). The only
 difference between NPOT and POT textures is t he allowable sequence
 of mipmap sizes, and in both cases, a smaller level is half the
 size of the larger (modulo rounding).

 As with POT textures, a mipmap chain is consi stent only if the
 correct sequence of sizes is found. As with POT textures, an
 attempt to load a mipmap that could never be part of a consistent
 mipmap chain should fail. For example, if an implementation
 supports textures with dimensions only up to 1024, an attempt to
 load level 2 with a 257x114 texture will fail because the smallest
 possible corresponding level 0 texture would have to be 1028x456.

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 303

 13. The WGL_ARB_render_texture extension allows creating a pbuffer
 with the WGL_PBUFFER_LARGEST_ARB attribute. If this extension is
 present, should this attribute potentially retu rn a NPOT pbuffer?

 STATUS: UNRESOLVED

 SUGGESTION: The WGL_ARB_render_texture speci fication appears
 to anticipate NPOT textures with this stateme nt: "e.g. Both the
 width and height will be a power of 2 if the implementation only
 supports power of 2 textures." so I think the right thing to do
 is allow NPOT textures (of the proper aspect ratio) to be returned.

 It is not entirely clear if this behavior is "safe" for preexisting
 applications that might not be aware of NPOT textures. The safe
 thing would be to add a WGL_PBUFFER_LARGEST_N POT_ARB enumerant
 that could return NPOT textures and require t hat the existing
 WGL_PBUFFER_LARGEST_ARB enumerant always retu rn POT textures.

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 -- Section 3.8.1 "Texture Image Specification"

 Replace the discussion of the border parameter with:

 "The border argument to TexImage3D is a border width. The
 significance of borders is described below. Th e border width affect
 the dimensions of the texture image; it must be the case that

 w_s = w_i + 2 b_s (3.13)

 h_s = h_i + 2 b_s (3.14)

 d_s = d_i + 2 b_s (3.15)

 where w_s, h_s, and d_s are the specified image width, height, and
 depth, and w_i, h_i, and d_i are the dimensions of the texture image
 internal to the border. If w_i, h_i, or d_i ar e less than zero,
 then the error INVALID_VALUE is generated.

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 304

 -- Section 3.8.8 "Texture Minification"

 In the subsection "Scale Factor and Level of De tail"...

 Replace the sentence defining the u, v, and w f unctions with:

 "Let u(x,y) = w_i * s(x,y), v(x,y) = h_i * t(x, y), and w(x,y) = d_i *
 r(x,y), where w_i, h_i, and d_i are as defined by equations 3.13,
 3.14, and 3.15 with w_s, w_s, and d_s equal to the width, height,
 and depth of the image array whose level is TEX TURE_BASE_LEVEL."

 Replace 2^n, 2^m, and 2^l with w_i, h_i, and d_ i in Equations 3.19,
 3.20, and 3.21.

 { floor(u), s < 1
 i = { (3.19)
 { w_i - 1, s = 1

 { floor(u), t < 1
 j = { (3.20)
 { h_i - 1, t = 1

 { floor(u), r < 1
 k = { (3.21)
 { d_i - 1, r = 1

 Replace 2^n, 2^m, and 2^l with w_i, h_i, and d_ i in the equations for
 computing i_0, j_0, k_0, i_1, j_1, and k_1 used for LINEAR filtering.

 { floor(u - 1/2) mod w_i, TEXTURE_WRA P_S is REPEAT
 i_0 = {
 { floor(u - 1/2), otherwise

 { floor(v - 1/2) mod h_i, TEXTURE_WRA P_T is REPEAT
 j_0 = {
 { floor(v - 1/2), otherwise

 { floor(w - 1/2) mod d_i, TEXTURE_WRA P_R is REPEAT
 k_0 = {
 { floor(w - 1/2), otherwise

 { (i_0 + 1) mod w_i, TEXTURE_WRA P_S is REPEAT
 i_1 = {
 { i_0 + 1, otherwise

 { (j_0 + 1) mod h_i, TEXTURE_WRA P_T is REPEAT
 j_1 = {
 { j_0 + 1, otherwise

 { (k_0 + 1) mod d_i, TEXTURE_WRA P_R is REPEAT
 k_1 = {
 { k_0 + 1, otherwise

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 305

 In the subsection "Mipmapping"...

 Replace the last sentence of the first paragrap h with:

 "If the image array of level level_base, exclud ing its border, has
 dimensions w_b x h_b x d_b, then there are floo r(log2(max(w_b, h_b,
 d_b))) + 1 image arrays in the mipmap. Numberi ng the levels such
 that level level_base is the 0th level, the ith array has dimensions

 max(1, floor(w_b / 2^i)) x
 max(1, floor(h_b / 2^i)) x
 max(1, floor(d_b / 2^i))

 until the last array is reached with dimension 1 x 1 x 1."

 Replace the second sentence of the second parag raph with:

 "Level-of-detail numbers proceed from level_bas e for the original
 texture array through p = floor(log2(max(w_b, h _b, d_b))) + level_base
 with each unit increase indicating an array of half the dimensions
 of the previous one (rounded down to the next i nteger if fractional)
 as already described."

 In the subsection "Automatic Mipmap Generation" ...

 Replace the second sentence of the third paragr aph with:

 "No particular filter algorithm is required, th ough a box filter is
 recommended as the default filter."

 -- Section 3.8.10 "Texture Completeness"

 In the subsection "Effects of Completeness on T exture Image
 Specification"...

 Replace the last sentence with:

 "A mipmap complete set of arrays is equivalent to a complete set
 of arrays where level_base = 0 and level_max = 1000, and where,
 excluding borders, the dimensions of the image array being created are
 understood to be half the corresponding dimensi ons of the next lower
 numbered array (rounded down to the next intege r if fractional)."

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to the GLX Specification

 None

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 306

Additions to the EXT_texture_compression_s3tc and
NV_texture_compression_vtc Specification

 Add this paragraph:

 "For a compressed texture where w_i != 2^m OR h _i != 2^n OR d_i != 2^l
 for some integer value of m, n, and l, the 4x4 tiles are assumed to be
 aligned to u=0, v=0, w=0 origin in texel space. For such compressed
 textures, this implies that texels in regions o f tiles beyond the
 edges u=w_i, v=h_i, and w=d_i will not be sampl ed explicitly."

GLX Protocol

 None

Errors

 Various errors are ELIMINATED when this extensi on is supported as
 noted.

 INVALID_VALUE is NO LONGER generated by TexImag e1D or glCopyTexImage1D
 if width is not zero or cannot be represented a s 2^n+2(border)
 for some integer value of n.

 INVALID_VALUE is NO LONGER generated by TexImag e2D or glCopyTexImage2D
 if width or height is not zero or cannot be rep resented as
 2^n+2(border) for some integer value of n.

 INVALID_VALUE is NO LONGER generated by TexImag e3D if width, height,
 or depth is not zero or cannot be represented a s 2^n+2(border)
 for some integer value of n.

New State

 None

New Implementation Dependent State

 None

Revision History

 Date 05/14/2004
 Revision: 1.0
 - Formated text for 72 column convention
 - Fixed date for last revision
 - fix "Image2d" typo

 Date: 03/23/2004
 Revision: 1.0
 - Formulas for computing the dimensions of mipmap sizes based
 on the base level size should involve 2^i (not i^2)

NVIDIA OpenGL Extension Specifications ARB_texture_non_power_of_two

 307

 Date: 09/11/2003
 Revision: 1.0
 - allow zero (instead of just positive valu es before) when
 specifying the width, height, and depth o f texture image
 dimensions; this is to avoid an inconsist ency with the
 sample implementation

 Date: 05/29/2003
 Revision: 0.10
 - removed "@" language for target specific behavior, the spec
 now treats all targets uniformly

 Date: 05/21/2003
 Revision: 0.9
 - fixed typo: ARB/IBM_mirrored_repeat shoul d have been
 ARB/IBM_texture_mirrored_repeat
 - fixed various other minor typos, duplicat ed words, etc.
 - added a line to issue #6 regarding sugges ting use of a
 larger kernel when downsampling using the floor convention
 - coalesced the equations that used 3 2-ter m max equations into
 single 3-term max equations for clarity
 - fixed two more typos where "ceil" should have been "floor"
 - refer to ARB_texture_rectangle as EXT_tex ture_rectangle
 (this may change back when/if back extens ion becomes ARB'ified)

 Date: 05/10/2003
 Revision: 0.8
 - additional additional names to contributo rs list
 - clarified language describing resolution of issues #9,10,11

 Date: 05/08/2003
 Revision: 0.7
 - very minor language update to overview se ction regarding
 exporting of ARB_texture_non_power_of_two string
 - fixed another two places where it said we should round up
 instead of down (in section 3.8.10 "Textu re Completeness",
 and in section 3.8.8 "Texture Minificatio n")
 - mark the regions of the spec affected by the decision to
 use separate strings per texture target w ith the "@" symbol.
 This is temporary until issue #3 is resol ved.
 - resolved issues 9,10,11,12

 Date: 05/08/2003
 Revision: 0.6
 - updated revision history and coalesced re vision notes from
 various specs
 - fixed typo in issue #5 ("2d" --> "non_pow er_of_two")
 - clarified the discussion in issue #3 as t he langage was a
 little confusing in parts.
 - explicitly refer to the cube map targets in section 3.8.1
 instead of using the "made up" target TEX TURE_CUBE_MAP.

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications

 308

 Date: 05/06/2003
 Revision: 0.5
 - changed name of extension from ARB_textur e_np2 to
 ARB_texture_non_power_of_two
 - added target specific extension strings
 - added more discussion to several issues b ased on feedback from
 the working group meetings
 - fixed several typos where INVALID_VALUE w as INVALID_VALID
 - addressed typo in issue #6, it said you s hould round up,
 but really we agreed to round down when d escribing the mipmap
 stack (floor vs ceil convention).
 - resolved issues 1 - 8.

 Date: 04/24/2003
 Revision: 0.4 (jsandmel)
 - numbered issues list
 - additional discussion of several issues
 - added more explicit comparison of texture _rectangle and this
 proposal

 Date: 04/10/2003
 Revision: 0.3 (mjk)
 - integrates input from the ARB_texture_2d_ np2 proposals.

 Date: 03/25/2003
 Revision: 0.1 (jsandmel)
 - draft proposal
 - deals with 2d targets only
 - named: ARB_texture_2d_np2

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 309

Name

 ARB_texture_rectangle

Name Strings

 GL_ARB_texture_rectangle

Contributors

 Pat Brown
 Daniel Ginsburg
 Michael Gold
 Mark J. Kilgard
 Jon Leech
 Bill Licea-Kane
 Barthold Lichtenbelt
 Benjamin Lipchak
 Brian Paul
 John Rosasco
 Jeremy Sandmel
 Geoff Stahl

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' nvidia.com)
 Geoff Stahl, Apple Computer (gstahl 'at' apple .com)

Notice

 Copyright 2005, OpenGL Architectural Review Bo ard.

Status

 Complete. Approved by the ARB on June 8, 2004.

 Amended language re-voted by the ARB on Novemb er 3, 2005.

 Functionally identical to EXT_texture_rectangl e and
 NV_texture_rectangle extensions currently ship ping, except for
 the additions to the OpenGL Shading Language.

Version

 Date: October 4, 2005
 Revision: 1.21

Number

 ARB Extension #38

Dependencies

 OpenGL 1.1 is required

 OpenGL 1.4 (or ARB_texture_mirrored_repeat) af fects the definition
 of this extension.

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 310

 ARB_texture_non_power_of_two trivially affects the definition of
 this extension.

 ATI_texture_mirror_once affects the definition of this extension.

 EXT_paletted_texture affects the definition of this extension.

 EXT_texture_compression_s3tc affects the defin ition of this
 extension.

 EXT_texture_mirror_clamp affects the definitio n of this extension.

 The OpenGL Shading Language specification (pro vided by OpenGL 2.0
 and/or ARB_shader_objects) interacts with this extension.

 This extension is written against the OpenGL 2 .0 specification.

Overview

 OpenGL texturing is limited to images with pow er-of-two dimensions
 and an optional 1-texel border. The ARB_textu re_rectangle extension
 adds a new texture target that supports 2D tex tures without requiring
 power-of-two dimensions.

 Non-power-of-two sized (NPOTS) textures are us eful for storing video
 images that do not have power-of-two sized (PO TS). Re-sampling
 artifacts are avoided and less texture memory may be required by
 using non-power-of-two sized textures. Non-po wer-of-two sized
 textures are also useful for shadow maps and w indow-space texturing.

 However, non-power-of-two sized textures have limitations that
 do not apply to power-of-two sized textures. NPOTS textures may
 not use mipmap filtering; POTS textures suppor t both mipmapped
 and non-mipmapped filtering. NPOTS textures s upport only the
 GL_CLAMP, GL_CLAMP_TO_EDGE, and GL_CLAMP_TO_BO RDER wrap modes;
 POTS textures support GL_CLAMP_TO_EDGE, GL_REP EAT, GL_CLAMP,
 GL_MIRRORED_REPEAT, and GL_CLAMP_TO_BORDER (an d GL_MIRROR_CLAMP_ATI
 and GL_MIRROR_CLAMP_TO_EDGE_ATI if ATI_texture _mirror_once is
 supported) . NPOTS textures do not support an optional 1-texel
 border; POTS textures do support an optional 1 -texel border.

 NPOTS textures are accessed by dimension-depen dent (aka
 non-normalized) texture coordinates. So inste ad of thinking of
 the texture image lying in a [0..1]x[0..1] ran ge, the NPOTS texture
 image lies in a [0..w]x[0..h] range.

 This extension adds a new texture target and r elated state (proxy,
 binding, max texture size).

Issues

 1) Should rectangular textures simply be an exten sion to the 2D texture
 target that allows non-power-of-two widths and heights?

 No. The rectangular texture is an entirely ne w texture target type
 called GL_TEXTURE_RECTANGLE_ARB. This is beca use while the texture

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 311

 rectangle target relaxes the power-of-two dime nsions requirements of
 the texture 2D target, it also has limitations such as the absence of
 both mipmapping and the GL_REPEAT and GL_MIRRO RED_REPEAT wrap modes.
 Additionally, rectangular textures do not use [0..1] normalized
 texture coordinates.

 The texture rectangle is an analogue to the pi xel rectangle primitive
 (see section 3.6 titled "Pixel Rectangles" in the core specification)
 and the framebuffer. Just as the pixel rectan gle primitive and
 the framebuffer are accessed by integer-ized d imension-dependent 2D
 coordinates, so is the texture rectangle. Jus t as pixel rectangles
 and the framebuffer do not have mipmaps, nor d o texture rectangles.

 2) Should 1D, 2D, 3D, or cube map textures be all owed to be NPOTS by
 this extension?

 No. The ARB_texture_non_power_of_two extensio n relaxes the
 power-of-two restrictions for these convention al texture targets to
 support NPOTS while maintaining the normalized texture coordinates.

 3) How is the image of a rectangular texture spec ified?

 Using the standard OpenGL API for specifying a 2D texture
 image: glTexImage2D, glSubTexImage2D, glCopyTe xImage2D,
 and glCopySubTexImage2D. The target for these commands is
 GL_TEXTURE_RECTANGLE_ARB though.

 This is similar to how the texture cube map fu nctionality uses the 2D
 texture image specification API though with it s own texture target.

 The texture target GL_TEXTURE_RECTANGLE_ARB sh ould also
 be used for glGetTexImage, glGetTexLevelParame teriv, and
 glGetTexLevelParameterfv.

 4) Should anything be said about performance?

 No, but developers should not be surprised if conventional POTS
 textures will render slightly faster than text ure rectangle textures.
 This is particularly likely to be true when te xture rectangle
 textures are minified leading to texture cache thrashing due to
 lack of support for mipmaps.

 5) Is mipmap filtering permitted?

 Mipmap filtering is not permitted. Since this is the case the
 default minification filter for GL_TEXTURE_REC TANGLE_ARB targets is
 GL_LINEAR.

 6) What texture wrap modes are allowed and what i s the default
 state?

 Only the GL_CLAMP, GL_CLAMP_TO_EDGE, and CLAMP _TO_BORDER
 wrap modes are allowed. CLAMP_TO_EDGE is the default state.
 GL_REPEAT and GL_MIRRORED_REPEAT are not suppo rted with the
 GL_TEXTURE_RECTANGLE_ARB texture target.

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 312

 7) Are texture borders supported?

 Borders are not supported.

 8) Are paletted textures supported?

 Paletted rectangular textures are not supporte d.

 9) Can compressed texture images be specified for a rectangular texture?

 The generic texture compression internal forma ts introduced by
 ARB_texture_compression are supported for rect angular textures
 because the image is not presented as compress ed data and the
 ARB_texture_compression extension always permi ts generic texture
 compression internal formats to be stored in u ncompressed form.
 Implementations are free to support generic co mpression internal
 formats for rectangular textures if supported but such support is
 not required.

 This extensions makes a blanket statement that specific compressed
 internal formats for use with glCompressedTexI mage<n>D are NOT
 supported for rectangular textures. This is b ecause several existing
 hardware implementations of texture compressio n formats such as S3TC
 are not designed for compressing rectangular t extures. This does
 not preclude future texture compression extens ions from supporting
 compressed internal formats that do work with rectangular extensions
 (by relaxing the current blanket error conditi on).

 10) How are rectangular textures enabled?

 Rectangular textures are enabled by enabling t he
 GL_TEXTURE_RECTANGLE_ARB texture target via gl Enable
 (GL_TEXTURE_RECTANGLE_ARB). This enable is pri oritized above
 GL_TEXTURE_2D and below GL_TEXTURE_3D.

 From lowest priority to highest priority: GL_T EXTURE_1D,
 GL_TEXTURE_2D, GL_TEXTURE_RECTANGLE_ARB, GL_TE XTURE_3D,
 GL_TEXTURE_CUBE_MAP.

 11) How are texture coordinates addressed for rect angular textures?

 Texture coordinates are addressed without bein g normalized from
 [0..1], instead [0..w] and [0..h] are used, wh ere w and h are width
 and height of the texture respectively.

 12) How should applications determine the availabl e maximum texture
 dimensions available?

 Implementation dependent rectangular texture s ize limitations are
 queried using the GL_MAX_RECTANGLE_TEXTURE_SIZ E_ARB parameter and
 may be different that standard texture size li mits.

 13) How does the handling of the R texture compone nt differ from
 the handling of S and T?

 The R texture coordinate for rectangular textu res is handled
 as it would be for standard two dimensional te xtures. Thus the

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 313

 coordinates range from [0..1] and the wrapping mode is unchanged
 from the default.

 14) Does this extension work with OpenGL 1.4's sha dow mapping?

 Yes. The one non-obvious allowance to support OpenGL 1.4's shadow
 mapping is that the R texture coordinate wrap mode remains UNCHANGED
 for rectangular textures. Clamping of the R t exture coordinate
 for rectangular textures uses the standard [0, 1] interval rather
 than the [0,w_s] or [0,h_s] intervals as in th e case of S and T.
 This is because R represents a depth value in the [0,1] range
 whether using a 2D or rectangular texture.

 15) How does this extension interact with GLSL bas ed on the "OpenGL
 Shading Language Extension Conventions"?

 Unfortunately, this extension was specified an d implemented
 contemporaneously with the GLSL Extension Conv entions and because
 of this timing does not follow its guidance fo r #extension and
 adornment of new GLSL names. Because this ext ension has both an
 API interaction (adding a new rectangle textur e target) and a GLSL
 interaction (functions and sampler types for a ccessing texture
 rectangles), you can't practically use the GLS L texture rectangle
 functionality without the API functionality. For this reason,
 detecting the GL_ARB_texture_rectangle string is sufficient for
 assuming the GLSL functionality is present.

 Conceptually, you can consider the declaration
 #extension GL_ARB_texture_rectangle : require, to allow support
 for texture rectangles, to be implicitly prepe nded to every
 GLSL shader when ARB_texture_rectangle is adve rtised.

 All future GLSL extensions should follow the " OpenGL Shading Language
 Extension Conventions" however.

 16) How can a GLSL shader tell if this extension i s supported?

 "GL_ARB_texture_rectangle" preprocessor macro is predefined to be 1.

 17) Should GL_SAMPLER_2D_RECT_ARB and GL_SAMPLER_2 D_RECT_SHADOW_ARB be
 returned by the "type" parameter of glGetActiv eUniformARB when
 returning the type of a sampler2DRect or sampl er2DRectShadow sampler
 uniform?

 Yes, there is already language in the ARB_shad er_objects extension
 saying this so there's no additional language added to this
 extension. The language is missing from OpenG L 2.0 so we add the
 ARB_shader_objects language as part of this sp ecification too.

 18) Can a shader still turn off support for this e xtension?

 Yes, a shader can still include all variations of
 #extension GL_ARB_texture_rectangle in its sou rce code. This
 includes #extension GL_ARB_texture_rectangle : disable, to
 disable support for it.

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 314

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble and IsEnabled;
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv
 and GetDoublev; and by the <target> parameter o f BindTexture,
 GetTexParameterfv, GetTexParameteriv, TexParame terf, TexParameteri,
 TexParameterfv and TexParameteriv:

 TEXTURE_RECTANGLE_ARB 0x84F5

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv and GetDoublev:

 TEXTURE_BINDING_RECTANGLE_ARB 0x84F6

 Accepted by the <target> parameter of GetTexLev elParameteriv,
 GetTexLevelParameterfv, GetTexParameteriv and T exImage2D:

 PROXY_TEXTURE_RECTANGLE_ARB 0x84F7

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev,
 GetIntegerv and GetFloatv:

 MAX_RECTANGLE_TEXTURE_SIZE_ARB 0x84F8

 Accepted by the <target> parameter of GetTexIma ge,
 GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
 CopyTexImage2D, TexSubImage2D and CopySubTexIma ge2D:

 TEXTURE_RECTANGLE_ARB

 Returned by <type> parameter of GetActiveUnifor m when the location
 <index> for program object <program> is of type sampler2DRect:

 SAMPLER_2D_RECT_ARB 0x8B63

 Returned by <type> parameter of GetActiveUnifor m when the location
 <index> for program object <program> is of type sampler2DRectShadow:

 SAMPLER_2D_RECT_SHADOW_ARB 0x8B64

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 - (2.15.3, pg. 80-81) "Uniform Variables" under " Shader Variables"

 Add SAMPLER_2D_RECT_ARB and SAMPLER_2D_RECT_SHA DOW_ARB to the list
 of returned types in the sentence starting "The type returned can
 be any of ..."

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 315

 - (2.15.4, pg. 86) "Texture Access" under "Shader Execution"

 Replace the three bullets with the following la nguage:

 "...the results of a texture lookup are und efined if:

 * The sampler used in a texture lookup func tion is of type
 sampler1D or sampler2D or sampler2DRect, an d the texture object's
 internal format is DEPTH_COMPONENT, and the TEXTURE_COMPARE_MODE
 is not NONE.

 * The sampler used in a texture lookup func tion is of type
 sampler1DShadow or sampler2DShadow or sampl er2DRectShadow,
 and the texture object's internal format is DEPTH_COMPONENT,
 and the TEXTURE_COMPARE_MODE is NONE.

 * The sampler used in a texture lookup func tion is of type
 sampler1DShadow or sampler2DShadow or sampl er2DRectShadow,
 and the texture object's internal format is not DEPTH_COMPONENT."

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 These changes describe use of the TEXTURE_RECTA NGLE_ARB texture
 target, supported formats, texture dimensions, and texture proxies:

 - (3.6.3, pg. 118) "Pixel Transfer Modes" under "Color Table
 Specification" or the ColorTableEXT description in the
 EXT_paletted_texture specification

 If EXT_paletted_texture is supported, add the f ollowing statement
 after paragraph 5 of the sub-section:

 "The error INVALID_ENUM is generated if the tar get to ColorTable (or
 ColorTableEXT or the various ColorTable and Col orTableEXT alternative
 commands) is TEXTURE_RECTANGLE_ARB or PROXY_TEX TURE_RECTANGLE_ARB."

 - (3.8.1, p. 151) "Texture Image Specification"

 Change the first sentence of the fourth paragra ph on this page to:

 Textures with a base internal format of DEPTH C OMPONENT are supported
 by texture image specification commands only if target is TEXTURE_1D,
 TEXTURE_2D, TEXTURE_RECTANGLE_ARB, PROXY_TEXTURE_1D, PROXY_TEXTURE_2D
 or PROXY_TEXTURE_RECTANGLE_ARB.

 - (3.8.1, pg. 156) "Texture Image Specification"

 Add a sentence to the middle of the 20th paragr aph of the
 section (first paragraph on the page), directly after "... for
 image arrays of level 0 through k, where k is t he log base 2 of
 MAX_TEXTURE_SIZE." reading:

 "The maximum allowable width of a rectangular t exture image,
 and the maximum allowable height of a rectangul ar texture
 image, must be at least the implementation-depe ndent value of
 MAX_RECTANGLE_TEXTURE_SIZE_ARB."

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 316

 - (3.8.1, pg. 156) "Texture Image Specification"

 In the 22th paragraph of this section (sixth pa ragraph on the page),
 change the sentence following "The command void TexImage2D ... a
 two-dimensional texture image." through the res t of the paragraph
 in the section describing two-dimensional textu ring to read:

 "<target> must be one of TEXTURE_2D for a two-d imensional texture,
 or one of TEXTURE_RECTANGLE_ARB for a rectangle texture, or one
 of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MA P_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z for a cube
 map texture. Additionally, <target> may be eith er PROXY_TEXTURE_2D
 for a two-dimensional proxy texture, PROXY_TEXT URE_RECTANGLE_ARB for
 a rectangle proxy texture or PROXY_TEXTURE_CUBE _MAP for a cube map
 proxy texture as discussed in section 3.8.10. T he other parameters
 match the corresponding parameters of TexImage3 D."

 Add this paragraph following the above two-dime nsional texturing
 introduction, reading:

 When the target is TEXTURE_RECTANGLE_ARB, the I NVALID_VALUE error is
 generated if border is any value other than zer o or the level is any
 value other than zero. In the case of a rectang ular texture, ws and
 hs equal the specified width and height respect ively of the
 rectangular texture image while ds is 1."

 If EXT_paletted_texture is supported, add this paragraph too:

 "Rectangular textures do not support paletted f ormats. The error
 INVALID_ENUM is generated if the target is TEXT URE_RECTANGLE_ARB or
 PROXY_TEXTURE_RECTANGLE_ARB and the format is C OLOR_INDEX or the
 internal format is COLOR_INDEX or one of the CO LOR_INDEX<n>_EXT
 internal formats."

 - (3.8.1, pg. 156) "Texture Image Specification"

 Amend the fourth paragraph on the page to read:

 "A two-dimensional texture consists of a single two-dimensional
 texture image. A rectangle texture consists of a single 2D texture
 image. A cube map texture is a set of six two-d imensional texture
 images. The six cube map texture targets form a single cube map
 texture though each target names a distinct fac e of the cube
 map. The TEXTURE_CUBE_MAP_* targets listed abov e update their
 appropriate cube map face 2D texture image. Th e six cube map
 two-dimensional image tokens such as TEXTURE_CU BE_MAP_POSITIVE_X
 are used when specifying, updating, or querying one of a cube map's
 six two-dimensional images, but when enabling c ube map texturing
 or binding to a cube map texture object (that i s when the cube map
 is accessed as a whole as opposed to a particul ar two-dimensional
 image), the TEXTURE_CUBE_MAP target is specifie d."

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 317

 - (3.8.1, pg. 157) "Texture Image Specification"

 Append to the end of the third to the last para graph in the section:

 "A rectangular texture array has depth ds=1, wi th height hs and
 width ws defined by the specified image height and width
 parameters."

 - (3.8.2, pg. 159) "Alternate Texture Image Speci fication Commands"

 Add TEXTURE_RECTANGLE_ARB to the target list of the second paragraph
 of the section to say:

 ... "Currently, <target> must be TEXTURE_2D, TE XTURE_RECTANGLE_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z." ...

 - (3.8.2, pg. 160) "Alternate Texture Image Speci fication Commands"

 Add TEXTURE_RECTANGLE_ARB to the target list in the fifth paragraph
 of the section to say:

 ... "Currently the target arguments of TexSubIm age1D and
 CopyTexSubImage1D must be TEXTURE_1D, the <targ et> arguments of
 TexSubImage2D and CopyTexSubImage2D must be one of TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_CUBE_MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z, and the <target> a rguments of
 TexSubImage3D and CopyTexSubImage3D must be TEX TURE_3D." ...

 Also append to the end of this paragraph:

 "If target is TEXTURE_RECTANGLE_ARB and level i s not zero, the error
 INVALID_VALUE is generated."

 - (3.8.3, pg. 164) "Compressed Texture Images"

 Add the following paragraph after the second pa ragraph in the
 section, which introduces the CompressedTexImag e<n>D commands:

 "The error INVALID_ENUM is generated if the tar get parameter to one
 of the CompressedTexImage<n>D commands is TEXTU RE_RECTANGLE_ARB or
 PROXY_TEXTURE_RECTANGLE_ARB."

 Add the following paragraph after introducing t he
 CompressedTexSubImage<n>D commands:

 "The error INVALID_ENUM is generated if the tar get parameter to one
 of the CompressedTexSubImage<n>D commands is TE XTURE_RECTANGLE_ARB
 or PROXY_TEXTURE_RECTANGLE_ARB."

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 318

 - (3.8.4, pg. 166) "Texture Parameters"

 Add TEXTURE_RECTANGLE_ARB to paragraph one to s ay:

 ... "<target> is the target, either TEXTURE_1D, TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or TEXTURE_C UBE_MAP." ...

 - (3.8.4, pg. 168) "Texture Parameters"

 Add the following paragraph to the end of the s ection:

 "Certain texture parameter values may not be sp ecified for
 textures with a target of TEXTURE_RECTANGLE_ARB . The error
 INVALID_ENUM is generated if the target is TEXT URE_RECTANGLE_ARB
 and the TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXT URE_WRAP_R
 parameter is set to REPEAT, MIRRORED_REPEAT,
 MIRROR_CLAMP_EXT (MIRROR_CLAMP_ATI), MIRROR_CLA MP_TO_EDGE_EXT
 (MIRROR_CLAMP_TO_EDGE_ATI) or MIRROR_CLAMP_TO_B ORDER_EXT. The error
 INVALID_ENUM is generated if the target is TEXT URE_RECTANGLE_ARB
 and the TEXTURE_MIN_FILTER is set to a value ot her than
 NEAREST or LINEAR (no mipmap filtering is permi tted). The error
 INVALID_ENUM is generated if the target is TEXT URE_RECTANGLE_ARB
 and TEXTURE_BASE_LEVEL is set to any value othe r than zero."

 - (3.8.7, pg. 170) "Texture Wrap Modes"

 Add this final additional paragraph:

 "Texture coordinates are clamped differently fo r rectangular
 textures. The r texture coordinate is wrapped a s described above.
 When the texture target is TEXTURE_RECTANGLE_AR B, the s and t
 coordinates are wrapped as follows: CLAMP cause s the s coordinate
 to be clamped to the range [0, wt]. CLAMP cause s the t coordinate
 to be clamped to the range [0, ht]. CLAMP_TO_ED GE causes the s
 coordinate to be clamped to the range [0.5, wt- 0.5]. CLAMP_TO_EDGE
 causes the t coordinate to be clamped to the ra nge [0.5, ht - 0.5].
 CLAMP_TO_BORDER causes the s coordinate to be c lamped to the range
 [-0.5, wt + 0.5]. CLAMP_TO_BORDER causes the t coordinate to be
 clamped to the range [-0.5, ht + 0.5]."

 - (3.8.8, pg. 171) "Texture Minification"

 Under the "Scale Factor and Level of Detail" su b-section, change the
 fourth paragraph in the subsection to read:

 "Let s(x,y) be the function that associates an s texture coordinate
 with each set of window coordinates (x,y) that lie within a primitive;
 define t(x,y) and r(x,y) analogously. For non- rectangular textures,
 let u(x,y) = wt * s(x,y), v(x,y) = ht * t(x,y), and w(x,y) = dt *
 r(x,y), where wt, ht, and dt are as defined by equations 3.15,
 3.16, and 3.17 with ws, hs, and ds equal to the width, height,
 and depth of the image array whose level is lev el_base. However,
 for rectangular textures let u(x, y) = s(x, y), v(x, y) = t(x, y),
 and w(x, y) = r(x, y)."

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 319

 - (3.8.8, pg. 173) "Texture Minification"

 Update the last sentence in the first partial p aragraph on the page
 to read:

 "Depending on whether the texture's target is r ectangular or
 non-rectangular, this means the texel at locati on (i,j,k) becomes
 the texture value, with i given by

 / floor (u), s < 1 and non-rectangul ar texture
 |
 i = | wt - 1, s == 1 and non-rectangul ar texture (3.19)
 |
 | floor(u) s < wt and rectangular texture
 |
 \ wt-1 s >= wt and rectangular texture

 (Recall that if TEXTURE_WRAP_S is REPEAT, then 0 <= s < 1.)
 Similarly, j is found as

 / floor(v), t < 1 and non-rectangul ar texture
 |
 j = | ht - 1, t == 1 and non-rectangul ar texture (3.20)
 |
 | floor(v) t < ht and rectangular texture
 |
 \ ht-1 t >= ht and rectangular texture

 and k is found as

 / floor (w), r < 1
 k = | (3.21)
 \ dt - 1, r == 1"

 - (3.8.8, pg. 171) "Texture Minification"

 Change the last sentence in the first partial p aragraph on the page,
 directly after equation 3.21 to read:

 "For a two-dimensional or rectangular texture, k is irrelevant; the
 texel at location (i,j) becomes the texture val ue."

 - (3.8.8, pg. 174) "Texture Minification"

 Change the sentence preceding equation 3.26:

 "For a two-dimensional or rectangular texture,"

 - (3.8.8, pg. 175) "Mipmapping"

 Follow the paragraph on the page which ends wit h "... must be
 defined, as discussed in section 3.8.10." with:

 "Rectangular textures do not support mipmapping (it is an error to
 specify a minification filter that requires mip mapping)."

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 320

 - (3.8.11, pg. 178) "Texture State and Proxy Stat e"

 Change the first sentence of the first paragrap h to say:

 "The state necessary for texture can be divided into two categories.
 First, there are the ten sets of mipmap arrays (one each for the
 one-, two-, and three-dimensional texture targe ts, one for the
 rectangular texture target (though the rectangu lar texture target
 has only one mipmap level), and six for the cub e map texture
 targets) and their number." ...

 - (3.8.11, pg. 179) "Texture State and Proxy Stat e"

 Change the sixth and fifth to last sentences of the first paragraph
 to say:

 "In the initial state, the value assigned to TE XTURE_MIN_FILTER is
 NEAREST_MIPMAP_LINEAR, except for rectangular t extures where the
 initial value is LINEAR, and the value for TEXT URE_MAG_FILTER is
 LINEAR. s, t, and r warp modes are all set to R EPEAT, except for
 rectangular textures where the initial value is CLAMP_TO_EDGE."

 - (3.8.11, pg. 179) "Texture State and Proxy Stat e"

 Change the second paragraph of the section to s ay:

 "In addition to the one-, two-, three-dimension al, rectangular, and
 the six cube map sets of image arrays, the part ially instantiated
 one-, two-, and three-dimensional, rectangular, and one cube map
 sets of proxy image arrays are maintained." ...

 - (3.8.11, pg. 179) "Texture State and Proxy Stat e"

 Change the third paragraph to:

 "One- and two-dimensional and rectangular proxy arrays are operated
 on in the same way when TexImage1D is executed with target specified
 as PROXY_TEXTURE_1D, or TexImage2D is executed with target specified
 as PROXY_TEXTURE_2D or PROXY_TEXTURE_RECTANGLE_ ARB."

 - (3.8.11, pg. 180) "Texture State and Proxy Stat e"

 Change the second sentence of the fifth paragra ph of the section to:

 "Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,
 PROXY_TEXTURE_RECTANGLE_ARB, PROXY_TEXTURE_3D, and
 PROXY_TEXTURE_CUBE_MAP cannot be used as textur es, and their images
 must never be queried using GetTexImage." ...

 - (3.8.12, pg. 156) "Texture Objects"

 Change the first sentence of the first paragrap h to say:

 "In addition to the default textures TEXTURE_1D , TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_3D, and TEXTURE_ CUBE_MAP, named
 one-dimensional, two-dimensional, rectangular, and three-dimensional

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 321

 texture objects and cube map texture objects ca n be created and
 operated on." ...

 - (3.8.12, pg. 180) "Texture Objects"

 Change the second paragraph in the section to s ay:

 "A texture object is created by binding an unus ed name to
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or
 TEXTURE_CUBE_MAP." ... "If the new texture obje ct is bound to
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or
 TEXTURE_CUBE_MAP, it remains a one-dimensional, two-dimensional,
 rectangular, three-dimensional, or cube map tex ture until it is
 deleted."

 - (3.8.12, pg. 180) "Texture Objects"

 Change the third paragraph to say:

 "BindTexture may also be used to bind an existi ng texture object to
 either TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGL E_ARB, TEXTURE_3D, or
 TEXTURE_CUBE_MAP."

 - (3.8.12, pg. 180) "Texture Objects"

 Change paragraph five of the section to say:

 "In the initial state, TEXTURE_1D, TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_3D, and TEXTURE_ CUBE_MAP have
 one-dimensional, two-dimensional, rectangular, three-dimensional,
 and cube map state vectors associated with them respectively." ...
 "The initial, one-dimensional, two-dimensional, rectangular,
 three-dimensional, and cube map texture is ther efore operated upon,
 queried, and applied as TEXTURE_1D, TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_3D, and TEXTURE_ CUBE_MAP respectively
 while 0 is bound to the corresponding targets."

 - (3.8.12, pg. 181) "Texture Objects"

 Change paragraph six of the section to say:

 ... "If a texture that is currently bound to on e of the targets
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or
 TEXTURE_CUBE_MAP is deleted, it is as though Bi ndTexture has been
 executed with the same <target> and <texture> z ero." ...

 - (3.8.15 pg. 189) "Texture Application"

 Replace the beginning sentences of the first pa ragraph with:

 "Texturing is enabled or disabled using the gen eric Enable and
 Disable commands, respectively, with the symbol ic constants
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or
 TEXTURE_CUBE_MAP to enable the one-dimensional, two-dimensional,
 rectangular, three-dimensional, or cube map tex turing respectively.
 If both two- and one-dimensional textures are e nabled, the
 two-dimensional texture is used. If the rectang ular and either of

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 322

 the two- or one-dimensional textures is enabled , the rectangular
 texture is used. If the three-dimensional and a ny of the
 rectangular, two-dimensional, or one-dimensiona l textures is
 enabled, the three-dimensional texture is used. If the cube map
 texture and any of the three-dimensional, recta ngular,
 two-dimensional, or one-dimensional textures is enabled, then cube
 map texturing is used.

 - (3.11.2, pg. 195) "Texture Access" under "Shade r Execution"

 Replace the three bullets with the following la nguage:

 "...the results of a texture lookup are und efined if:

 * The sampler used in a texture lookup func tion is of type
 sampler1D or sampler2D or sampler2DRect, an d the texture object's
 internal format is DEPTH_COMPONENT, and the TEXTURE_COMPARE_MODE
 is not NONE.

 * The sampler used in a texture lookup func tion is of type
 sampler1DShadow or sampler2DShadow or sampl er2DRectShadow,
 and the texture object's internal format is DEPTH_COMPONENT,
 and the TEXTURE_COMPARE_MODE is NONE.

 * The sampler used in a texture lookup func tion is of type
 sampler1DShadow or sampler2DShadow or sampl er2DRectShadow,
 and the texture object's internal format is not DEPTH_COMPONENT."

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special
Functions)

 - (5.4, pg. 242) "Display Lists"

 In the third to last paragraph of the section, add
 PROXY_TEXTURE_RECTANGLE_ARB to the list of PROX Y_* tokens.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 - (6.1.3, pg. 247) "Enumerated Queries"

 Change the fourth paragraph to say:

 "The GetTexParameter parameter <target> may be one of TEXTURE_1D,
 TEXTURE_2D, TEXTURE_RECTANGLE_ARB, TEXTURE_3D, or TEXTURE_CUBE_MAP,
 indicating the currently bound one-dimensional, two-dimensional,
 rectangular, three-dimensional, or cube map tex ture object. For
 GetTexLevelParameter, <target> may be one of TE XTURE_1D, TEXTURE_2D,
 TEXTURE_RECTANGLE_ARB, TEXTURE_3D, TEXTURE_CUBE_MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
 TEXTURE_CUBE_MAP_NEGATIVE_Z, PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 323

 PROXY_TEXTURE_RECTANGLE_ARB, PROXY_TEXTURE_3D, or
 PROXY_TEXTURE_CUBE_MAP, indicating the one-dime nsional texture
 object, two-dimensional texture object, rectang ular texture object,
 three-dimensional texture object, or one of the six distinct 2D
 images making up the cube map texture object or one-dimensional,
 two-dimensional, rectangular, three-dimensional , or cube map proxy
 state vector. Note that TEXTURE_CUBE_MAP is not a valid <target>
 parameter for GetTexLevelParameter because it d oes not specify a
 particular cube map face."

 - (6.1.4, pg. 248) "Texture Queries"

 Change the first paragraph to read:

 ... "It is somewhat different from the other ge t commands; <tex> is
 a symbolic value indicating which texture (or t exture face in the
 case of a cube map texture target name) is to b e obtained.
 TEXTURE_1D indicates a one-dimensional texture, TEXTURE_2D indicates
 a two-dimensional texture, TEXTURE_RECTANGLE_AR B indicates a
 rectangular texture, TEXTURE_3D indicates a thr ee-dimensional
 texture, and TEXTURE_CUBE_MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, and
 TEXTURE_CUBE_MAP_NEGATIVE_Z indicate the respec tive face of a cube
 map texture."

 - (6.1.4, pg. 249) "Texture Queries"

 Add a final sentence to the fourth paragraph of the section,
 immediately after ... "or DEPTH COMPONENT cause s the error INVALID
 ENUM.":

 "Calling GetTexImage with a lod not zero when t he tex is
 TEXTURE_RECTANGLE_ARB causes the error INVALID_ VALUE."

Additions to version 1.10.59 of the OpenGL Shading Language specification

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_ARB_texture_rectangle 1

 Change the second to last paragraph on page 12 (#extension directive):

 The initial state of the compiler is as if the directive

 #extension all : disable

 was issued, telling the compiler that all error and warning reporting
 must be done according to this specification, i gnoring any extensions.
 The only execption to this rule is the GL_ARB_t exture_rectangle
 extension. If the string "GL_ARB_texture_rectan gle" is present in the
 EXTENSIONS string, as queried with GetString(), then the compiler will
 behave as if

 #extension GL_ARB_texture_rectangle : requi re

 is present in the shader.

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 324

 Add the following (previously reserved) keyword s to the first part of
 section 3.6 on page 14:

 sampler2DRect
 sampler2DRectShadow

 Add to section 8.7 "Texture Lookup Functions"

 Syntax:

 vec4 texture2DRect(sampler2DRect sampler, v ec2 coord)
 vec4 texture2DRectProj(sampler2DRect sample r, vec3 coord)
 vec4 texture2DRectProj(sampler2DRect sample r, vec4 coord)

 Description:

 "Use the texture coordinate coord to do a t exture lookup in the
 rectangle texture currently bound to sample r. For the projective
 ("Proj") version, the texture coordinate (c oord.s, coord.t) is
 divided by the last component of coord. Th e third component of
 coord is ignored for the vec4 coord variant .

 No "bias" parameter or "Lod" suffixed funct ions for rectangle
 textures are supported because mipmaps are not allowed for
 rectangular textures."

 Syntax:

 vec4 shadow2DRect(sampler2DRectShadow sampl er, vec3 coord)
 vec4 shadow2DRectProj(sampler2DRectShadow s ampler, vec4 coord)

 Description

 "Use texture coordinate coord to do a depth comparison lookup on
 the rectangular depth texture bound to samp ler, as described in
 section 3.8.14 of version 2.0 of the OpenGL specification. The 3rd
 component of coord (coord.p) is used as the R value. The texture
 bound to sampler must be a depth texture, o r results are undefined.
 For the projective version ("Proj"), the te xture coordinate
 (coord.s, coord.t, coord.p) is divided by t he last component of
 coord, giving a R value of coord.p / coord. q.

 No "bias" parameter or "Lod" suffixed funct ions for rectangle
 textures are supported because mipmaps are not allowed for
 rectangle textures."

Additions to the GLX Specification

 None

GLX Protocol

 None

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 325

Dependencies on OpenGL 1.4 and ARB_texture_mirrored _repeat

 If OpenGL 1.4 (or ARB_mirrored_repeat) is not s upported, references
 to the MIRRORED_REPEAT (or MIRRORED_REPEAT_ARB) wrap mode in this
 document should be ignored.

Dependencies on ATI_texture_mirror_once

 If ATI_texture_mirror_once is not supported, re ferences to the
 MIRROR_CLAMP_ATI and MIRROR_CLAMP_TO_EDGE_ATI w rap modes in this
 document should be ignored.

Dependencies on EXT_paletted_texture

 If EXT_paletted_texture is not supported, refer ences to the
 COLOR_INDEX, COLOR_INDEX<n>_EXT, ColorTable, an d ColorTableEXT
 should be ignored.

Dependencies on EXT_texture_compression_s3tc

 If EXT_texture_compression_s3tc is not supporte d, references
 to CompressedTexImage2D and CompressedTexSubIma geARB and the
 COMPRESSED_*_S3TC_DXT*_EXT enumerants should be ignored.

Dependencies on EXT_texture_mirror_clamp

 If EXT_texture_mirror_clamp is not supported, r eferences to the
 MIRROR_CLAMP_EXT, MIRROR_CLAMP_TO_EDGE_EXT, and
 MIRROR_CLAMP_TO_BORDER_EXT wrap modes in this d ocument should be
 ignored.

Errors

 INVALID_ENUM is generated when ColorTable (or C olorTableEXT or the
 various ColorTable and ColorTableEXT alternativ e commands) is called
 and the target is TEXTURE_RECTANGLE_ARB or
 PROXY_TEXTURE_RECTANGLE_ARB.

 INVALID_ENUM is generated when TexImage2D is ca lled and the target
 is TEXTURE_RECTANGLE_ARB or PROXY_TEXTURE_RECTA NGLE_ARB and the
 format is COLOR_INDEX or the internalformat is COLOR_INDEX or one of
 the COLOR_INDEX<n>_EXT internal formats.

 INVALID_VALUE is generated when TexImage2D is c alled when the target
 is TEXTURE_RECTANGLE_ARB if border is any value other than zero or
 the level is any value other than zero.

 INVALID_VALUE is generated when TexImage2D is c alled when the target
 is TEXTURE_RECTANGLE_ARB if the width is less t han zero or the
 height is less than zero.

 INVALID_VALUE is generated when TexSubImage2D o r CopyTexSubImage2D
 is called when the target is TEXTURE_RECTANGLE_ ARB if the level is
 any value other than zero.

 INVALID_ENUM is generated when one of the Compr essedTexImage<n>D
 commands is called when the target parameter is

ARB_texture_rectangle NVIDIA OpenGL Extension Specifications

 326

 TEXTURE_RECTANGLE_ARB or PROXY_TEXTURE_RECTANGLE_ARB.

 INVALID_ENUM is generated when one of the Compr essedTexSubImage<n>D
 commands is called when the target parameter is TEXTURE_RECTANGLE_ARB
 or PROXY_TEXTURE_RECTANGLE_ARB.

 INVALID_ENUM is generated when TexParameter is called with a target
 of TEXTURE_RECTANGLE_ARB and the TEXTURE_WRAP_S , TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R parameter is set to REPEAT, M IRRORED_REPEAT,
 MIRROR_CLAMP_ATI, or MIRROR_CLAMP_TO_EDGE_ATI.

 INVALID_ENUM is generated when TexParameter is called with a target
 of TEXTURE_RECTANGLE_ARB and the TEXTURE_MIN_FI LTER is set to a
 value other than NEAREST or LINEAR.

 INVALID_VALUE is generated when TexParameter is called with a target
 of TEXTURE_RECTANGLE_ARB and the TEXTURE_BASE_L EVEL is set to any
 value other than zero.

 INVALID_VALUE is generated when GetTexImage is called with a lod not
 zero when the tex is TEXTURE_RECTANGLE_ARB.

New State

 - (Table 6.15, Texture Objects, pg. 241) amend/ad d the following entries:

 Get Value Type Get Co mmand Initial Value Description Sec Attribute
 ----------------------------- ------- ------ ----- ------------- --------------------- ----- - --------------
 TEXTURE_RECTANGLE_ARB 2* x B IsEnab led False True if rectangular 3.8.1 5 texture/enable
 texturing is enabled

 TEXTURE_BINDING_RECTANGLE_ARB 2* x Z+ GetInt egerv 0 Texture object 3.8.1 1 texture
 for texture rectangle

 TEXTURE_RECTANGLE_ARB n x I GetTex Image see 3.8 rectangular texture 3.8 -
 image for lod 0

 - (Table 6.16, Texture Objects (cont.), pg. 242) amend/add the following
entries:

 Get Value Type Get Command Initial Value Description Sec Att ribute
 ------------------ ----- -------------- -------------- ------------------- ----- --- ------
 TEXTURE_MIN_FILTER n x Z6 GetTexParameter See 3.8 except Texture minification 3.8.8 tex ture
 for rectangular function
 which is
 LINEAR

 TEXTURE_WRAP_S n x Z5 GetTexParameter REPEAT except Texture wrap mode S 3.8.7 tex ture
 for rectangular
 which is
 CLAMP_TO_EDGE

 TEXTURE_WRAP_T n x Z5 GetTexParameter REPEAT except Texture wrap mode T 3.8.7 tex ture
 for rectangular (2D, 3D, cubemap,
 which is rectangle textures
 CLAMP_TO_EDGE only)

 TEXTURE_WRAP_R n x Z5 GetTexParameter REPEAT except Texture wrap mode R 3.8.7 tex ture
 for rectangular (3D textures only)
 which is
 CLAMP_TO_EDGE

NVIDIA OpenGL Extension Specifications ARB_texture_rectangle

 327

New Implementation Dependent State

 - (Table 6.28, Implementation Dependent Values, p g. 254) add the following
entry:

 Get Value Type Get Com mand Minimum Value Description Sec Attribute
 -------- ---- ------- ---- ------------- ----------- ----- ----------
 MAX_RECTANGLE_TEXTURE_SIZE_ARB Z+ GetInte gerv 64 Maximum rectangular 3.8.1 -
 texture image
 dimension

Backwards Compatibility

 This extension is semantically equivalent to EX T_texture_rectangle
 and NV_texture_rectangle. The tokens, and name strings now refer
 to ARB instead of EXT or NV. Enumerant values are unchanged.

Revision History

 3/5/2004 - Updated page numbers and other numbe rs to reflect OpenGL
 1.5; removed bogus "Convolution" language sayin g how glGetTexImage
 applies convolution (language was in 1.2.1 but removed in 1.3).
 ARB_texture_non_power_of_two and EXT_texture_mi rror_clamp interactions
 added.

 2/23/2005 - Fix the GLSL interaction: 1) GLSL functions require
 a vector (not scalar) parameter for the texture coordinate set: 2)
 The actual reserved types are sampler2DRect and sampler2DRectShadow
 (not samplerRect and samplerRectShadow); and 3) the shadow functions
 were missing.

 7/8/2005 - Further fixes to GLSL interaction ba sed on ARB meeting
 discussion: 1) Add OpenGL 2.0 language interact ion for when
 shadow accesses are defined for rectangle textu res; 2) add an
 issue to document the discussion; 3) bumped rev ision to 1.1; 4)
 documented GLSL preprocessor define; 5) documen ted sampler enums;
 and generally update the specification page num bers to be written
 against OpenGL 2.0. Also added to the contribu tors list.

 7/15/2005 - This is revision 1.2.
 1) Allow loading of DEPTH_COMPENENT textures fo r rectangular
 texture targets. 2) Switched some of the paramt ers ws, hs, ds for wt, ht,
 dt, and vice-versa to be in line with the clean up already done in the
 OpenGL 2.0 specification. 3) Added issue 18. 4) Deleted the 'dependencies
 on ARB_texture_non_power_of_two' section since that is core OpenGL
 2.0 functionality. 5) Removed some redundant la nguage. 6) Added language
 describing changes to the GLSL spec explaining the #extension behavior.
 7) Added to the contributors list and sorted it by last name.

 10/4/2005 - Revision 1.21 - Whitespace cleanup

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 328

Name

 ARB_transpose_matrix

Name Strings

 GL_ARB_transpose_matrix

Status

 Complete. Approved by ARB on 12/8/1999

Version

 Last Modified Date: January 3, 2000
 Author Revision: 1.3

Number

 ARB Extension #3

Dependencies

 This extensions is written against the OpenGL 1 .2 Specification.
 May be implemented in any version of OpenGL.

Overview

 New functions and tokens are added allowing app lication matrices
 stored in row major order rather than column ma jor order to be
 transferred to the OpenGL implementation. This allows an application
 to use standard C-language 2-dimensional arrays (m[row][col]) and
 have the array indices match the expected matri x row and column indexes.
 These arrays are referred to as transpose matri ces since they are
 the transpose of the standard matrices passed t o OpenGL.

 This extension adds an interface for transferin g data to and from the
 OpenGL pipeline, it does not change any OpenGL processing or imply any
 changes in state representation.

IP Status

 No IP is believed to be involved.

Issues

 * Why do this?

 It's very useful for layered libraries that desire to use two
 dimensional C arrays as matrices. It avoid s having the layered
 library perform the transpose itself before calling OpenGL since
 most OpenGL implementations can efficiently perform the transpose
 while reading the matrix from client memory .

 * Why not add a mode?

 It's substantially more confusing and compl icated to add a mode.

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

 329

 Simply adding two new entry points saves co nsiderable confusion
 and avoids having layered libraries need to query the current mode
 in order to send a matrix with the correct memory layout.

 * Why not a utility routine in GLU

 It costs some performance. It is believed that most OpenGL
 implementations can perform the transpose i n place with negligble
 performance penalty.

 * Why use the name transpose?

 It's sure a lot less confusing than trying to ascribe unambiguous
 meaning to terms like row and column. It c ould be matrix_transpose
 rather than transpose_matrix though.

 * Short Transpose to Trans?

New Procedures and Functions

 void LoadTransposeMatrix{fd}ARB(T m[16]);
 void MultTransposeMatrix{fd}ARB(T m[16]);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev

 TRANSPOSE_MODELVIEW_MATRIX_ARB 0x84E3
 TRANSPOSE_PROJECTION_MATRIX_ARB 0x84E4
 TRANSPOSE_TEXTURE_MATRIX_ARB 0x84E5
 TRANSPOSE_COLOR_MATRIX_ARB 0x84E6

Additions to Chapter 2 of the 1.2 OpenGL Specificat ion (OpenGL Operation)

 Add to Section 2.10.2 Matrices <before LoadIde ntity>

 LoadTransposeMatrixARB takes a 4x4 matrix store d in row-major order as

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 330

 Let transpose(m,n) be defined as

 n[0] = m[0];
 n[1] = m[4];
 n[2] = m[8];
 n[3] = m[12];
 n[4] = m[1];
 n[5] = m[5];
 n[6] = m[9];
 n[7] = m[13];
 n[8] = m[2];
 n[9] = m[6];
 n[10] = m[10];
 n[11] = m[14];
 n[12] = m[3];
 n[13] = m[7];
 n[14] = m[11];
 n[15] = m[15];

 The effect of LoadTransposeMatrixARB(m) is then the same as the effect of
 the command sequence

 float n[16];
 transpose(m,n)
 LoadMatrix(n);

 The effect of MultTransposeMatrixARB(m) is then the same as the effect of
 the command sequence

 float n[16];
 transpose(m,n);
 MultMatrix(n);

Additions to Chapter 3 of the 1.2 OpenGL Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the 1.2 OpenGL Specificat ion (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.2 OpenGL Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the 1.2 OpenGL Specificat ion (State and State
Requests)

 Matrices are queried and returned in their tran sposed form by calling
 GetBooleanv, GetIntegerv, GetFloatv, and GetDou blev with <pname> set to
 TRANSPOSE_MODELVIEW_MATRIX_ARB, TRANSPOSE_PROJECTION_MATRIX_ARB,
 TRANSPOSE_TEXTURE_MATRIX_ARB, or TRANSPOSE_COLOR_MATRIX_ARB.
 The effect of GetFloatv(TRANSPOSE_MODELVIEW_MAT RIX_ARB,m) is then the same
 as the effect of the command sequence

NVIDIA OpenGL Extension Specifications ARB_transpose_matrix

 331

 float n[16];
 GetFloatv(MODELVIEW_MATRIX_ARB,n);
 transpose(n,m);

 Similar results occur for TRANSPOSE_PROJECTION_ MATRIX_ARB,
 TRANSPOSE_TEXTURE_MATRIX_ARB, and TRANSPOSE_COLOR_MATRIX_ARB.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None

Additions to the GLX Specification

 None

GLX Protocol

 LoadTransposeMatrix and MultTransposeMatrix are layered
 on top of LoadMatrix and MultMatrix protocol
 performing client-side translation. The Get co mmands
 are passed over the wire as part of the generic Get
 protocol with no translation required.

Errors

 No new errors, but error behavoir is inherited by the commands
 that the transpose commands are implemented on top of
 (LoadMatrix, MultMatrix, and Get*).

New State

 None

 TRANSPOSE_*_MATRIX_ARB refer to the same state as their non-transposed
 counterparts.

New Implementation Dependent State

 None

Revision History

 * Revision 1.1 - initial draft (18 Mar 1999)
 * Revision 1.2 - changed to use layered specifi cation and ARB affix
 (23 Nov 1999)
 * Revision 1.3 - Minor tweaks to GLX protocol a nd Errors. (7 Dec 1999)

Conformance Testing

 Load and Multiply the modelview matrix (initial ized to identity
 each time) using LoadTransposeMatrixfARB and Mu ltTransposeMatrixfARB
 with the matrix:

ARB_transpose_matrix NVIDIA OpenGL Extension Specifications

 332

 (1 2 3 4)
 (5 6 7 8)
 (9 10 11 12)
 (13 14 15 16)

 and get the modelview matrix using TRANSPOSE_MO DELVIEW_MATRIX_ARB and
 validate that the matrix is correct. Get the m atrix using
 MODELVIEW_MATRIX and verify that it is the tran spose of the above
 matrix. Load and Multiply the modelview matrix using LoadMatrixf
 and MultMatrixf with the above matrix and verif y that the correct
 matrix is on the modelview stack using gets of MODELVIEW_MATRIX
 and TRANSPOSE_MODELVIEW_MATRIX_ARB.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 333

Name

 ARB_vertex_buffer_object

Name Strings

 GL_ARB_vertex_buffer_object

IP Status

 None.

Status

 Complete. Approved by ARB on February 12, 2003.

Version

 Last Modified Date: January 21, 2003
 Revision: 0.91

Number

 ARB Extension #28

Dependencies

 Written based on the wording of the OpenGL 1.4 specification.

 GL_ARB_vertex_blend affects the definition of t his extension.

 GL_ARB_vertex_program affects the definition of this extension.

 GL_EXT_vertex_shader affects the definition of this extension.

Overview

 This extension defines an interface that allows various types of data
 (especially vertex array data) to be cached in high-performance
 graphics memory on the server, thereby increasi ng the rate of data
 transfers.

 Chunks of data are encapsulated within "buffer objects", which
 conceptually are nothing more than arrays of by tes, just like any
 chunk of memory. An API is provided whereby ap plications can read
 from or write to buffers, either via the GL its elf (glBufferData,
 glBufferSubData, glGetBufferSubData) or via a p ointer to the memory.

 The latter technique is known as "mapping" a bu ffer. When an
 application maps a buffer, it is given a pointe r to the memory. When
 the application finishes reading from or writin g to the memory, it is
 required to "unmap" the buffer before it is onc e again permitted to
 use that buffer as a GL data source or sink. M apping often allows
 applications to eliminate an extra data copy ot herwise required to
 access the buffer, thereby enhancing performanc e. In addition,
 requiring that applications unmap the buffer to use it as a data
 source or sink ensures that certain classes of latent synchronization

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 334

 bugs cannot occur.

 Although this extension only defines hooks for buffer objects to be
 used with OpenGL's vertex array APIs, the API d efined in this
 extension permits buffer objects to be used as either data sources or
 sinks for any GL command that takes a pointer a s an argument.
 Normally, in the absence of this extension, a p ointer passed into the
 GL is simply a pointer to the user's data. Thi s extension defines
 a mechanism whereby this pointer is used not as a pointer to the data
 itself, but as an offset into a currently bound buffer object. The
 buffer object ID zero is reserved, and when buf fer object zero is
 bound to a given target, the commands affected by that buffer binding
 behave normally. When a nonzero buffer ID is b ound, then the pointer
 represents an offset.

 In the case of vertex arrays, this extension de fines not merely one
 binding for all attributes, but a separate bind ing for each
 individual attribute. As a result, application s can source their
 attributes from multiple buffers. An applicati on might, for example,
 have a model with constant texture coordinates and variable geometry.
 The texture coordinates might be retrieved from a buffer object with
 the usage mode "STATIC_DRAW", indicating to the GL that the
 application does not expect to update the conte nts of the buffer
 frequently or even at all, while the vertices m ight be retrieved from
 a buffer object with the usage mode "STREAM_DRA W", indicating that
 the vertices will be updated on a regular basis .

 In addition, a binding is defined by which appl ications can source
 index data (as used by DrawElements, DrawRangeE lements, and
 MultiDrawElements) from a buffer object. On so me platforms, this
 enables very large models to be rendered with n o more than a few
 small commands to the graphics device.

 It is expected that a future extension will all ow sourcing pixel data
 from and writing pixel data to a buffer object.

Issues

 What should this extension be called?

 RESOLVED: By unanimous consent among the wo rking group members,
 the name was chosen to be "ARB_vertex_buffe r_object". A large
 number of other names were considered throu ghout the lifetime of
 the proposal, especially "vertex_array_obje ct" (originally),
 "buffer_object" (later on), and "memory_obj ect" (near the end),
 but the name "vertex_buffer_object" was ult imately chosen.

 In particular, this name emphasizes not onl y that we have created
 a new type of object that encapsulates arbi trary data (buffer
 objects), but also, in particular, that the se objects are used in
 this extension to source vertex data. The name also is
 intentionally similar to "vertex buffers", although it should be
 emphasized that there is no such thing as a "vertex buffer" in
 the terminology of this extension. The ter m "buffer object" is
 the correct noun.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 335

 How is this extension different from ATI_vertex _array_object plus
 ATI_map_object_buffer?

 The following summarizes the major differen ces.
 - VAOs renamed to "buffer objects", to sign ify that they can be
 used for more than just vertex data. Oth er renaming and API
 changes to try to better match OpenGL con ventions.
 - The standard GL pointer APIs have been ov erloaded to be able to
 refer to offsets within these buffers, ra ther than adding new
 entry points.
 - The usage modes permitted for buffers hav e been augmented
 significantly, to reflect a broader class of application
 behaviors.
 - A new entry point allows reading back the contents of a buffer
 object.

 How is this extension different from NV_vertex_ array_range?

 The following summarizes the major differen ces.
 - Applications are no longer responsible fo r memory management
 and synchronization.
 - Applications may still access high-perfor mance memory, but
 this is optional, and such access is more restricted.
 - Buffer changes (glBindBufferARB) are gene rally expected to
 be very lightweight, rather than extremel y heavyweight
 (glVertexArrayRangeNV).
 - A platform-specific allocator such as wgl /glXAllocateMemoryNV
 is no longer required.

 How does this extension relate to NV_pixel_data _range?

 A future extension could be created based o n the framework
 created here that would support analogous f unctionality to that
 provided by NV_pixel_data_range. Presumabl y, this extension
 would require little more than two new targ ets for BindBuffer,
 named (say) UNPACK_PIXELS and PACK_PIXELS. The lists of commands
 affected by these bindings could easily be taken verbatim out of
 the NV_pixel_data_range specification.

 Should this extension include support for allow ing vertex indices
 to be stored in buffer objects?

 RESOLVED: YES. It is easily and cleanly ad ded with just the
 addition of a binding point for the index b uffer object. Since
 our approach of overloading pointers works for any pointer in GL,
 no additional APIs need be defined, unlike in the various
 *_element_array extensions.

 Note that it is expected that implementatio ns may have different
 memory type requirements for efficient stor age of indices and
 vertices. For example, some systems may pr efer indices in AGP
 memory and vertices in video memory, or vic e versa; or, on
 systems where DMA of index data is not supp orted, index data must
 be stored in (cacheable) system memory for acceptable
 performance. As a result, applications are strongly urged to
 put their models' vertex and index data in separate buffers, to
 assist drivers in choosing the most efficie nt locations.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 336

 Should the layout of an array store be defined at array store
 creation time?

 RESOLVED: NO. This could provide better pe rformance if the
 client specifies a data type that the hardw are doesn't support,
 but this isn't a performance path anyways, and it adds a
 cumbersome interface on top of the extensio n.

 Should there be some sort of scheme for allowin g applications to
 stream vertex data efficiently?

 RESOLVED: YES. Applications that generate their data on the
 fly end up doing an extra data copy unless they are given a
 pointer into memory that the graphics hardw are can DMA from. The
 performance win from doing this can be sign ificant.

 Should the client be able to retrieve a pointer to a buffer object?

 RESOLVED: YES. This solves the previous pr oblem. Since GL
 vertex array formats are already user-visib le, this does not
 suffer from the sorts of formatting issues that would arise if
 the GL allowed applications to retrieve poi nters to texture
 objects or to the framebuffer. Synchroniza tion can be a concern,
 but proper usage of this extension will min imize its overhead.

 Should this extension sit on top of the existin g vertex array
 implementation, instead of introducing a new se t of API calls?

 RESOLVED: YES. This simplifies the API, an d separating out the
 buffer binding from the offset/stride withi n the buffer leads to
 an elegant "BindBufferARB" command that can be used for other
 parts of GL like the pixel path.

 Should buffer object state overlap with existin g vertex array pointer
 state, or should there be new drawing commands, e.g.,
 DrawArrayObject?

 RESOLVED: OVERLAP. The exponential growth in drawing commands
 is problematic. Even without this, there i s already
 ArrayElement, DrawArrays, DrawElements, Dra wRangeElements,
 MultiDrawArrays, and MultiDrawElements.

 Does the buffer binding state push/pop?

 RESOLVED: YES. It pushes/pops on the clien t with the rest of
 the vertex array state. Some revisions of the ATI VAO spec
 listed a push/pop attrib "objbuf", but no n ew bit was defined;
 all this has been moved into the standard " vertex-array" bit.

 Note that both the user-controlled binding ARRAY_BUFFER_ARB
 binding point and the per-array bindings pu sh and pop.

 Note that additional binding points, such a s ones for pixel or
 texture transfers, would not be part of the vertex array state,
 and thus would likely push and pop as part of the pixel store
 (client) state when they are defined.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 337

 How is the decision whether to use the array po inter as an offset or
 as a real pointer made?

 RESOLVED: When the default buffer object (o bject zero) is
 bound, all pointers behave as real pointers . When any other
 object is bound, all pointers are treated a s offsets.
 Conceptually, one can imagine that buffer o bject zero is a buffer
 object sitting at base NULL and with an ext ent large enough that
 it covers all of the system's virtual addre ss space.

 Note that this approach essentially require s that binding points
 be client (not server) state.

 Can buffer objects be shared between contexts i n the same way that
 display lists are?

 RESOLVED: YES. All potentially large OpenG L objects, such as
 display lists and textures, can be shared, and this is an
 important capability. Note, however, that sharing requires that
 buffer objects be server (not client) state , since it is not
 possible to share client state.

 Should buffer objects be client state or server state?

 RESOLVED: Server state. Arguments for clie nt state include:

 - Buffer data are stored in client-side f ormat, making server
 storage complex when client and server endianness differ.
 - Vertex arrays are client state.

 These arguments are outweighed by the signi ficant advantages
 of server state, including:

 - Server state can be shared between cont exts, and this is
 expected to be an important capability (sharing of texture
 objects is very common).
 - In the case of indirect rendering, perf ormance may be
 very significantly greater for data sto red on the server
 side of the wire.

 How is synchronization enforced when buffer obj ects are shared by
 multiple OpenGL contexts?

 RESOLVED: It is generally the clients' resp onsibility to
 synchronize modifications made to shared bu ffer objects. GL
 implementations will make some effort to av oid deletion of in-use
 buffer objects, but may not be able to ensu re this handling.

 What happens if a currently bound buffer object is deleted?

 RESOLVED: Orphan. To avoid chasing invalid pointers OpenGL
 implementations will attempt to defer the d eletion of any buffer
 object until that object is not bound by an y client in the share
 list. It should be possible to implement t his behavior
 efficiently in the direct rendering case, b ut the implementation
 may be difficult/impossible in the indirect rendering case.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 338

 Since synchronization during sharing is a c lient responsibility,
 this behavior is acceptable.

 Should there be a way to query the data in a bu ffer object?

 RESOLVED: YES. Almost all objects in OpenG L are fully
 queriable, and since these objects are simp ly byte arrays, there
 does not seem to be any reason to do things otherwise here. The
 primary exceptions to GL queriability are c ases where such
 functionality would be extremely burdensome to provide, as is the
 case with display lists.

 Do buffer objects survive screen resolution cha nges, etc.?

 RESOLVED: YES. This is not mentioned in th e spec, so by
 default they behave just like other OpenGL state, like texture
 objects -- the data is unmodified by extern al events like
 modeswitches, switching the system into sta ndby or hibernate
 mode, etc.

 What happens to a mapped buffer when a screen r esolution change or
 other such window-system-specific system event occurs?

 RESOLVED: The buffer's contents may become undefined. The
 application will then be notified at Unmap time that the buffer's
 contents have been destroyed. However, for the remaining
 duration of the map, the pointer returned f rom Map must continue
 to point to valid memory, in order to ensur e that the application
 cannot crash if it continues to read or wri te after the system
 event has been handled.

 What happens to the pointer returned by MapBuff erARB after a call to
 UnmapBufferARB?

 RESOLVED: The pointer becomes totally inval id. Note that
 drivers are free to move the underlying buf fer or even unmap the
 memory, leaving the virtual addresses in qu estion pointing at
 nothing. Such flexibility is necessary to enable efficient
 implementations on systems with no virtual memory; with limited
 control over virtual memory from graphics d rivers; or where
 virtual address space is at a premium.

 How does indirect rendering work?

 It is not currently specified, but the basi c planned outline is
 as follows.

 All of the object management commands -- Ge n, Is, Delete -- go
 to the server immediately with normal proto col. So does Bind.
 However, when someone does an implicit bind via one of the
 pointer commands (e.g. VertexPointer), the server may not
 necessarily be notified immediately of the new object bound to
 the (in this case) VERTEX_ARRAY_BUFFER_BIND ING.

 BufferData and BufferSubData are sent over the wire just as
 TexImage2D and TexSubImage2D, and GetBuffer SubData does a round
 trip, just like GetTexImage. MapBuffer goe s over the wire with

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 339

 a request to map; the server replies to tel l the client whether
 the map succeeded or failed, and the client returns a pointer to
 a system memory buffer in the event of succ ess. If the map is
 readable, the server passes back the conten ts of the buffer,
 while if the map is writeable, at Unmap tim e, the client passes
 back the new contents. Unmap would always return TRUE.

 Both GetBufferParameteriv and GetBufferPoin terv go to the server.

 Whenever the application sources data from a buffer object,
 several new protocols are defined to specif y where to obtain the
 data from. One new command might be called "BindArray", which
 would have arguments <array>, <buffer>, off set>, <type>, <size>,
 <stride>, and <normalized>. <array> might be VERTEX_ARRAY,
 NORMAL_ARRAY, etc. <buffer> would be the I D of the buffer
 object to be used as source, or zero if no buffer object.
 <offset> would be a 64-bit (?) integer. <t ype>, <size>,
 <stride>, and <normalized> would all be the same as the various
 arguments to the *Pointer commands. Anothe r new command might
 be "ArrayElementServer", which would derefe rence all arrays with
 a nonzero <buffer> on the server side, just as if immediate mode
 had been used. If only some arrays were co ming from buffer
 objects and some from user memory, the clie nt would dereference
 the ones in user memory and pass them in as immediate mode
 protocol.

 If all arrays came from the server, additio nal optimized APIs
 could be provided. A "DrawArraysServer" an d "DrawElementsServer"
 would be cheaper than a sequence of "ArrayE lementServer"
 commands. For indices coming from a buffer object, a
 "DrawElementArrayServer" might be added.

 At initialization time, the client and serv er would exchange a
 handshake to see if the server can understa nd the client's
 storage of the various GL data types. It i s expected that nearly
 all clients and servers would use just two data type
 representations, namely, "standard little e ndian with IEEE
 floats" and "standard big endian with IEEE floats".

 Are any of these commands allowed inside Begin/ End?

 RESOLVED: NO, with the possible exception o f BindBuffer, which
 should not be used inside a Begin/End but w ill have undefined
 error behavior, like most vertex array comm ands.

 What happens when an attempt is made to access data outside the
 bounds of the buffer object with a command that dereferences the
 arrays?

 RESOLVED: ALLOW PROGRAM TERMINATION. In th e event of a
 software fallback, bounds checking can beco me impractical. Since
 applications don't know the actual address of the buffer object
 and only provide an offset, they can't ever guarantee that
 out-of-bounds offsets will fall on valid me mory. So it's hard to
 do any better than this.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 340

 Of course, such an event should not be able to bring down the
 system, only terminate the program.

 What type should <offset> and <size> arguments use?

 RESOLVED: We define new types that will wor k well on 64-bit
 systems, analogous to C's "intptr_t". The new type "GLintptrARB"
 should be used in place of GLint whenever i t is expected that
 values might exceed 2 billion. The new typ e "GLsizeiptrARB"
 should be used in place of GLsizei whenever it is expected
 that counts might exceed 2 billion. Both t ypes are defined as
 signed integers large enough to contain any pointer value. As a
 result, they naturally scale to larger numb ers of bits on systems
 with 64-bit or even larger pointers.

 The offsets introduced in this extension ar e typed GLintptrARB,
 consistent with other GL parameters that mu st be non-negative,
 but are arithmetic in nature (not uint), an d are not sizes; for
 example, the xoffset argument to TexSubImag e*D is of type GLint.
 Buffer sizes are typed GLsizeiptrARB.

 The idea of making these types unsigned was considered, but was
 ultimately rejected on the grounds that sup porting buffers larger
 than 2 GB was not deemed important on 32-bi t systems.

 Should buffer maps be client or server state?

 RESOLVED: Server. If a buffer is being sha red by multiple
 clients, it will also be desirable to share the mappings of that
 buffer. In cases where the mapping cannot shared (for example,
 in the case of indirect rendering) queries of the map pointer by
 clients other than the one that created the map will return a
 null pointer.

 Should "Unmap" be treated as one word or two?

 RESOLVED: One word.

 Should "usage" be a parameter to BufferDataARB, or specified
 separately using a parameter specification comm and, e.g.,
 BufferParameteriARB?

 RESOLVED: Parameter to BufferDataARB. It i s desirable for the
 implementation to know the usage when the b uffer is initialized,
 so including it in the initialization comma nd makes sense. This
 avoids manpage notes such as "Please specif y the usage before you
 initialize the buffer".

 Should it be possible to change the usage of an initialized buffer?

 RESOLVED: NO. Unless it is shown that this flexibility is
 necessary, it will be easier for implementa tions to be efficient
 if usage cannot be changed. (Except by re- initializing the
 buffer completely.)

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 341

 Should we allow for the possibility of multiple simultaneous maps for
 a single buffer?

 RESOLVED: NO. If multiple maps are allowed , the mapping
 semantics become very difficult to understa nd and to specify.
 It is also unclear that there are any benef its to offering such
 functionality. Therefore, only one map per buffer is permitted.

 Note: the limit of one map per buffer elimi nates any need for
 "sub-region" mapping. The single map alway s maps the entire
 data store of the buffer.

 Should it be an error to render from a currentl y mapped buffer?

 RESOLVED: YES. Making this an error rather than undefined makes
 the API much more bulletproof.

 Should it be possible for the application to qu ery the "viability" of
 the data store of a buffer?

 RESOLVED: NO. UnmapBuffer can return FALSE to indicate this, but
 there is no additional query to check wheth er the data has been
 lost. In general, most/all GL state is que riable, unless there
 is a compelling reason otherwise. However, on examination, it
 appears that there are several compelling r easons otherwise in
 this case. In particular, the default for this state variable is
 non-obvious (is the data "valid" when no da ta has been specified
 yet?), and it's unclear when it should be r eset (BufferData only?
 BufferSubData? A successful UnmapBuffer?). After these issues
 came to light, the query was removed from t he spec.

 What should the error behavior of BufferDataARB and MapBufferARB be?

 RESOLVED: BufferDataARB returns no value an d sets OUT_OF_MEMORY
 if the buffer could not be created, whereas MapBufferARB returns
 NULL and also sets OUT_OF_MEMORY if the buf fer could not be
 mapped.

 Should UnmapBufferARB return a boolean indicati ng data integrity?

 RESOLVED: YES, since the Unmap is precisely the point at which
 the buffer can no longer be lost.

 How is unaligned data handled?

 RESOLVED: All client restrictions on data a lignment must be met,
 and in addition to that, all offsets must b e multiples of the
 size of the underlying data type. So, for example, float data in
 a buffer object must have an offset that is (typically) a
 multiple of 4. This should make the server implementation
 easier, since this additional rule will gua rantee that no
 alignment checking is required on most plat forms.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 342

 Should MapBufferARB return the pointer to the m ap, or should there be
 a separate call to ask for the pointer?

 RESOLVED: BOTH. For convenience, MapBuffer ARB returns a pointer
 or NULL in the event of failure; but since most/all GL state is
 queriable, you can also query the pointer a t a later point in
 time. If the buffer is not mapped, queryin g the pointer should
 return NULL.

 Should there be one binding point for all array s or several binding
 points, one for each array?

 RESOLVED: One binding point for all arrays. Index data uses a
 separate target.

 Should there be a PRESERVE/DISCARD option on Bu fferSubDataARB? On
 MapBufferARB?

 RESOLVED: NO, NO. ATI_vertex_array_object had this option for
 UpdateObjectBufferATI, which is the equival ent of
 BufferSubDataARB, but it's unclear whether this has any utility.
 There might be some utility for MapBufferAR B, but forcing the
 user to call BufferDataARB again with a NUL L data pointer has
 some advantages of its own, such as forcing the user to respecify
 the size.

 Should there be an option for MapBufferARB that guarantees
 nonvolatile memory?

 RESOLVED: NO. On systems where volatile me mory spaces are a
 concern, there is little or no way to suppl y nonvolatile memory
 without crippling performance badly. In so me cases, it might
 not even be possible to implement Map excep t by returning system
 memory. Systems that do not have problems with volatility are,
 of course, welcome to return TRUE from Unma pBufferARB all the
 time. If applications want the ease of use that results from not
 having to check for lost data, they can sti ll use BufferDataARB
 and BufferSubDataARB, so the burden is not too great.

 What new usages do we need to add?

 RESOLVED. We have defined a 3x3 matrix of usages. The
 pixel-related terms draw, read, and copy ar e used to distinguish
 between three basic data paths: application to GL (draw), GL to
 application (read), and GL to GL (copy). T he terms stream,
 static, and dynamic are used to identify th ree data access
 patterns: specify once and use once or perh aps only a few times
 (stream), specify once and use many times (static), and specify
 and use repeatedly (dynamic).

 Note that the "copy" and "read" usage token values will become
 meaningful only when pixel transfer capabil ity is added to
 buffer objects by a (presumed) subsequent e xtension.

 Note that the data paths "draw", "read", an d "copy" are analogous
 in both name and meaning to the GL commands DrawPixels,
 ReadPixels, and CopyPixels, respectively.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 343

 Is it legal C to use pointers as offsets?

 We haven't come to any definitive conclusio n about this. The
 proposal is to convert to pointer as:

 pointer = (char *)NULL + offset;

 And convert back to offset as:

 offset = (char *)pointer - (char *)NULL ;

 Varying opinions have been expressed as to whether this is legal,
 although no one could provide an example of a real system where
 any problems would occur.

 Should we add new Offset commands, e.g., Vertex Offset, if the pointer
 approach has some compatibility concerns?

 RESOLVED: NO. The working group voted that the existing pointer-
 as-offset approach is acceptable.

 Which commands are compiled into display lists?

 RESOLVED: None of the commands in this exte nsion are compiled
 into display lists. The reasoning is that the server may not
 have up-to-date buffer bindings, since Bind Buffer is a client
 command.

 Just as without this extension, vertex data is dereferenced
 when ArrayElement, etc. are compiled into a display list.

 Should there be a new command "DiscardAndMapBuf fer" that is
 equivalent to BufferDataARB with NULL pointer f ollowed by
 MapBufferARB?

 RESOLVED: NO, no one has come up with a cle arly superior proposal
 that everyone can agree on.

 Are any GL commands disallowed when at least o ne buffer object is
 mapped?

 RESOLVED: NO. In general, applications may use whatever GL
 commands they wish when a buffer is mapped. However, several
 other restrictions on the application do ap ply: the application
 must not attempt to source data out of, or sink data into, a
 currently mapped buffer. Furthermore, the application may not
 use the pointer returned by Map as an argum ent to a GL command.
 (Note that this last restriction is unlikel y to be enforced in
 practice, but it violates reasonable expect ations about how the
 extension should be used, and it doesn't se em to be a very
 interesting usage model anyhow. Maps are f or the user, not for
 the GL.)

 More restrictive rules were considered (for example, "after
 calling MapBuffer, all GL commands except f or UnmapBuffer produce
 errors"), but this was considered far too r estrictive. The

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 344

 expectation is that an application might ma p a buffer and start
 filling it in a different thread, but conti nue to render in its
 main thread (using a different buffer or no buffer at all). So
 no commands are disallowed simply because a buffer happens to be
 mapped.

 Should the usage and data arguments to BufferDa taARB be swapped?

 RESOLVED: NO. This would be more consisten t with other things in
 GL if they were swapped, but no one seems t o care. If we had
 caught this earlier, maybe, but it's just t oo late.

 How does MultiDrawElements work?

 The language gets a little confusing, but I believe it is quite
 clearly specified in the end. The argument <indices> to
 MultiDrawElements, which is of type "const void **", is an
 honest-to-goodness pointer to regular old s ystem memory, no
 matter whether a buffer is bound or not. T hat memory in turn
 consists of an array of <primcount> pointer s. If no buffer is
 bound, each of those <primcount> pointers i s a regular pointer.
 If a buffer is bound, each of those <primco unt> pointers is a
 fake pointer that represents an offset in t he buffer object.

 If you wanted to put the array of <primcoun t> offsets in a buffer
 object, you'd have to define a new extensio n with a new target.

 When is the binding between a buffer object and a specific vertex array
 (e.g., VERTEX_ARRAY_BUFFER_BINDING_ARB) establi shed?

 The array's buffer binding is set when the array pointer is specified.
 Using the vertex array as an example, this is when VertexPointer is
 called. At that time, the current array bu ffer binding is used for
 the vertex array. The current array buffer binding is set by calling
 BindBufferARB with a <target> of ARRAY_BUFF ER_ARB. Changing the
 current array buffer binding does not affec t the bindings used by
 already established arrays.

 BindBufferARB(ARRAY_BUFFER_ARB, 1);
 VertexPointer(...); // vertex array dat a points to buffer 1
 BindBufferARB(ARRAY_BUFFER_ARB, 2);
 // vertex array data still points to buff er 1

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 345

New Procedures and Functions

 void BindBufferARB(enum target, uint buffer);
 void DeleteBuffersARB(sizei n, const uint *buff ers);
 void GenBuffersARB(sizei n, uint *buffers);
 boolean IsBufferARB(uint buffer);

 void BufferDataARB(enum target, sizeiptrARB siz e, const void *data,
 enum usage);
 void BufferSubDataARB(enum target, intptrARB of fset, sizeiptrARB size,
 const void *data);
 void GetBufferSubDataARB(enum target, intptrARB offset,
 sizeiptrARB size, void *data);

 void *MapBufferARB(enum target, enum access);
 boolean UnmapBufferARB(enum target);

 void GetBufferParameterivARB(enum target, enum pname, int *params);
 void GetBufferPointervARB(enum target, enum pna me, void **params);

New Tokens

 Accepted by the <target> parameters of BindBuff erARB, BufferDataARB,
 BufferSubDataARB, MapBufferARB, UnmapBufferARB,
 GetBufferSubDataARB, GetBufferParameterivARB, a nd
 GetBufferPointervARB:

 ARRAY_BUFFER_ARB 0x8892
 ELEMENT_ARRAY_BUFFER_ARB 0x8893

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 ARRAY_BUFFER_BINDING_ARB 0x8894
 ELEMENT_ARRAY_BUFFER_BINDING_ARB 0x8895
 VERTEX_ARRAY_BUFFER_BINDING_ARB 0x8896
 NORMAL_ARRAY_BUFFER_BINDING_ARB 0x8897
 COLOR_ARRAY_BUFFER_BINDING_ARB 0x8898
 INDEX_ARRAY_BUFFER_BINDING_ARB 0x8899
 TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB 0x889A
 EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB 0x889B
 SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB 0x889C
 FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB 0x889D
 WEIGHT_ARRAY_BUFFER_BINDING_ARB 0x889E

 Accepted by the <pname> parameter of GetVertexA ttribivARB:

 VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB 0x889F

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 346

 Accepted by the <usage> parameter of BufferData ARB:

 STREAM_DRAW_ARB 0x88E0
 STREAM_READ_ARB 0x88E1
 STREAM_COPY_ARB 0x88E2
 STATIC_DRAW_ARB 0x88E4
 STATIC_READ_ARB 0x88E5
 STATIC_COPY_ARB 0x88E6
 DYNAMIC_DRAW_ARB 0x88E8
 DYNAMIC_READ_ARB 0x88E9
 DYNAMIC_COPY_ARB 0x88EA

 Accepted by the <access> parameter of MapBuffer ARB:

 READ_ONLY_ARB 0x88B8
 WRITE_ONLY_ARB 0x88B9
 READ_WRITE_ARB 0x88BA

 Accepted by the <pname> parameter of GetBufferP arameterivARB:

 BUFFER_SIZE_ARB 0x8764
 BUFFER_USAGE_ARB 0x8765
 BUFFER_ACCESS_ARB 0x88BB
 BUFFER_MAPPED_ARB 0x88BC

 Accepted by the <pname> parameter of GetBufferP ointervARB:

 BUFFER_MAP_POINTER_ARB 0x88BD

Additions to Chapter 2 of the 1.4 Specification (Op enGL Operation)

 Add to Table 2.2:

 "GL Type Minimum Description
 Bit Width
 --- ----------------------
 intptrARB <ptrbits> signed 2's com plement binary integer
 sizeiptrARB <ptrbits> Non-negative b inary integer size"

 Add to the paragraph under Table 2.2:

 "<ptrbits> is the number of bits required to re present a pointer
 type; in other words, types intptrARB and sizei ptrARB must be
 sufficiently large as to store any address."

 Add a new section "Buffer Objects" between sect ions 2.8 and 2.9:

 "2.8A Buffer Objects

 The vertex data arrays described in section 2.8 are stored in client
 memory. It is sometimes desirable to store fre quently used client
 data, such as vertex array data, in high-perfor mance server memory.
 GL buffer objects provide a mechanism that clie nts can use to
 allocate, initialize, and render from such memo ry.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 347

 The name space for buffer objects is the unsign ed integers, with zero
 reserved for the GL. A buffer object is create d by binding an unused
 name to ARRAY_BUFFER_ARB. The binding is effec ted by calling

 void BindBufferARB(enum target, uint buffer);

 with <target> set to ARRAY_BUFFER_ARB and <buff er> set to the unused
 name. The resulting buffer object is a new sta te vector, initialized
 with a zero-sized memory buffer, and comprising the state values
 listed in Table BufObj1.

 Name Type Initial Value Legal Values
 ---- ---- ------- ------ ------------
 BUFFER_SIZE_ARB integer 0 any non-negative
 integer
 BUFFER_USAGE_ARB enum STATIC_ DRAW_ARB STREAM_DRAW_ARB,
 STREAM_READ_ARB,
 STREAM_COPY_ARB,
 STATIC_DRAW_ARB,
 STATIC_READ_ARB,
 STATIC_COPY_ARB,
 DYNAMIC_DRAW_ARB,
 DYNAMIC_READ_ARB,
 DYNAMIC_COPY_ARB
 BUFFER_ACCESS_ARB enum READ_WR ITE_ARB READ_ONLY_ARB,
 WRITE_ONLY_ARB,
 READ_WRITE_ARB
 BUFFER_MAPPED_ARB boolean FALSE TRUE, FALSE
 BUFFER_MAP_POINTER_ARB void* NULL address

 Table BufObj1: Buffer object parameters and their values.

 BindBufferARB may also be used to bind an exist ing buffer object.
 If the bind is successful no change is made to the state of the
 newly bound buffer object, and any previous bin ding to <target> is
 broken.

 While a buffer object is bound, GL operations o n the target to which
 it is bound affect the bound buffer object, and queries of the target
 to which a buffer object is bound return state from the bound object.

 In the initial state the GL-reserved name zero is bound to
 ARRAY_BUFFER_ARB. There is no buffer object co rresponding to the
 name zero, so client attempts to modify or quer y buffer object state
 for the target ARRAY_BUFFER_ARB while zero is b ound will generate
 GL errors.

 Buffer objects are deleted by calling

 void DeleteBuffersARB(sizei n, const uint * buffers);

 <buffers> contains <n> names of buffer objects to be deleted. After
 a buffer object is deleted it has no contents, and its name is again
 unused. Unused names in <buffers> are silently ignored, as is the
 value zero.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 348

 The command

 void GenBuffersARB(sizei n, uint *buffers);

 returns <n> previously unused buffer object nam es in <buffers>.
 These names are marked as used, for the purpose s of GenBuffersARB
 only, but they acquire buffer state only when t hey are first bound,
 just as if they were unused.

 While a buffer object is bound, any GL operatio ns on that object
 affect any other bindings of that object. If a buffer object is
 deleted while it is bound, all bindings to that object in the current
 context (i.e. in the thread that called DeleteB uffers) are reset to
 bindings to buffer zero. Bindings to that buff er in other contexts
 and other threads are not affected, but attempt ing to use a deleted
 buffer in another thread produces undefined res ults, including but
 not limited to possible GL errors and rendering corruption. Using a
 deleted buffer in another context or thread may not, however, result
 in program termination.

 The data store of a buffer object is created an d initialized by
 calling

 void BufferDataARB(enum target, sizeiptrARB size,
 const void *data, enum u sage);

 with <target> set to ARRAY_BUFFER_ARB, <size> s et to the size of the
 data store in basic machine units, and <data> p ointing to the
 source data in client memory. If <data> is non -null, then the source
 data is copied to the buffer object's data stor e. If <data> is null,
 then the contents of the buffer object's data s tore are undefined.

 <usage> is specified as one of nine enumerated values, indicating
 the expected application usage pattern of the d ata store. The
 values are:

 STREAM_DRAW_ARB The data store contents will be specified once
 by the application, and used at most a few
 times as the source of a GL (drawing) command.
 STREAM_READ_ARB The data store contents will be specified once
 by reading data from the GL, and queried at
 most a few times by the application.
 STREAM_COPY_ARB The data store contents will be specified once
 by reading data from the GL, and used at most
 a few times as the sourc e of a GL (drawing)
 command.
 STATIC_DRAW_ARB The data store contents will be specified once
 by the application, and used many times as the
 source for GL (drawing) commands.
 STATIC_READ_ARB The data store contents will be specified once
 by reading data from the GL, and queried many
 times by the application .
 STATIC_COPY_ARB The data store contents will be specified once
 by reading data from the GL, and used many
 times as the source for GL (drawing) commands.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 349

 DYNAMIC_DRAW_ARB The data store contents will be respecified
 repeatedly by the applic ation, and used many
 times as the source for GL (drawing) commands.
 DYNAMIC_READ_ARB The data store contents will be respecified
 repeatedly by reading da ta from the GL, and
 queried many times by th e application.
 DYNAMIC_COPY_ARB The data store contents will be respecified
 repeatedly by reading da ta from the GL, and
 used many times as the s ource for GL (drawing)
 commands.

 <usage> is provided as a performance hint only. The specified usage
 value does not constrain the actual usage patte rn of the data store.

 BufferDataARB deletes any existing data store, and sets the values of
 the buffer object's state variables to:

 Name Value
 ---- -----
 BUFFER_SIZE_ARB <size>
 BUFFER_USAGE_ARB <usage>
 BUFFER_ACCESS_ARB READ_WRITE_ARB
 BUFFER_MAPPED_ARB FALSE
 BUFFER_MAP_POINTER_ARB NULL

 Clients must align data elements consistent wit h the requirements
 of the client platform, with an additional base -level requirement
 that an offset within a buffer to a datum compr ising N basic machine
 units be a multiple of N.

 If the GL is unable to create a data store of t he requested size,
 the error OUT_OF_MEMORY is generated.

 To modify some or all of the data contained in a buffer object's data
 store, the client may use the command

 void BufferSubDataARB(enum target, intptrAR B offset,
 sizeiptrARB size, con st void *data);

 with <target> set to ARRAY_BUFFER_ARB. <offset > and <size> indicate
 the range of data in the buffer object that is to be replaced, in
 terms of basic machine units. <data> specifies a region of client
 memory <size> basic machine units in length, co ntaining the data that
 replace the specified buffer range. An error i s generated if
 <offset> or <size> is less than zero, or if <of fset> + <size> is
 greater than the value of BUFFER_SIZE_ARB.

 The entire data store of a buffer object can be mapped into the
 client's address space by calling

 void *MapBufferARB(enum target, enum access);

 with <target> set to ARRAY_BUFFER_ARB. If the GL is able to map the
 buffer object's data store into the client's ad dress space,
 MapBufferARB returns the pointer value to the d ata store. Otherwise
 MapBufferARB returns NULL, and the error OUT_OF _MEMORY is generated.
 <access> is specified as one of READ_ONLY_ARB, WRITE_ONLY_ARB, or

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 350

 READ_WRITE_ARB, indicating the operations that the client may perform
 on the data store through the pointer while the data store is mapped.

 MapBufferARB sets the following buffer object s tate values:

 Name Value
 ---- -----
 BUFFER_ACCESS_ARB <access>
 BUFFER_MAPPED_ARB TRUE
 BUFFER_MAP_POINTER_ARB pointer to the data store

 It is an INVALID_OPERATION error to map a buffe r data store that is
 in the mapped state.

 Non-null pointers returned by MapBufferARB may be used by the client
 to modify and query buffer object data, consist ent with the access
 rules of the mapping, while the mapping remains valid. No GL error
 is generated if the pointer is used to attempt to modify a
 READ_ONLY_ARB data store, or to attempt to read from a WRITE_ONLY_ARB
 data store, but operation may be slow and syste m errors (possibly
 including program termination) may result. Poi nter values returned
 by MapBufferARB may not be passed as parameter values to GL commands.
 For example, they may not be used to specify ar ray pointers, or to
 specify or query pixel or texture image data; s uch actions produce
 undefined results, although implementations may not check for such
 behavior for performance reasons.

 It is an INVALID_OPERATION error to call Buffer SubDataARB to modify
 the data store of a mapped buffer.

 Mappings to the data stores of buffer objects m ay have nonstandard
 performance characteristics. For example, such mappings may be
 marked as uncacheable regions of memory, and in such cases reading
 from them may be very slow. To ensure optimal performance, the
 client should use the mapping in a fashion cons istent with the values
 of BUFFER_USAGE_ARB and BUFFER_ACCESS_ARB. Usi ng a mapping in a
 fashion inconsistent with these values is liabl e to be multiple
 orders of magnitude slower than using normal me mory.

 After the client has specified the contents of a mapped data store,
 and before the data in that store are dereferen ced by any GL commands,
 the mapping must be relinquished by calling

 boolean UnmapBufferARB(enum target);

 with <target> set to ARRAY_BUFFER_ARB. Unmappi ng a mapped buffer
 object invalidates the pointers to its data sto re and sets the
 object's BUFFER_MAPPED_ARB state to FALSE and i ts
 BUFFER_MAP_POINTER_ARB state to NULL.

 UnmapBufferARB returns TRUE unless data values in the buffer's data
 store have become corrupted during the period t hat the buffer was
 mapped. Such corruption can be the result of a screen resolution
 change or other window-system-dependent event t hat causes system
 heaps such as those for high-performance graphi cs memory to be
 discarded. GL implementations must guarantee t hat such corruption
 can occur only during the periods that a buffer 's data store is

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 351

 mapped. If such corruption has occurred, Unmap BufferARB returns
 FALSE, and the contents of the buffer's data st ore become undefined.

 It is an INVALID_OPERATION error to explicitly unmap a buffer data
 store that is in the unmapped state. Unmapping that occurs as a side
 effect of buffer deletion or reinitialization i s not an error,
 however."

 2.8A.1 Vertex Arrays in Buffer Objects

 Blocks of vertex array data may be stored in bu ffer objects with the
 same format and layout options supported for cl ient-side vertex
 arrays. However, it is expected that GL implem entations will (at
 minimum) be optimized for data with all compone nts represented as
 floats, as well as for color data with componen ts represented as
 either floats or unsigned bytes.

 A buffer object binding point is added to the c lient state associated
 with each vertex array type. The client does n ot directly specify
 the bindings to with these new binding points. Instead, the commands
 that specify the locations and organizations of vertex arrays
 copy the buffer object name that is bound to AR RAY_BUFFER_ARB to the
 binding point corresponding to the vertex array of the type being
 specified. For example, the NormalPointer comm and copies the value
 of ARRAY_BUFFER_BINDING_ARB (the queriable name of the buffer binding
 corresponding to the target ARRAY_BUFFER_ARB) t o the client state
 variable NORMAL_ARRAY_BUFFER_BINDING_ARB.

 If EXT_vertex_shader is defined, then the comma nd
 VariantArrayEXT(uint id, ...) copies the value of
 ARRAY_BUFFER_BINDING_ARB to the buffer object b inding point
 corresponding to variant array <id>.

 If ARB_vertex_program is defined, then the comm and
 VertexAttribPointerARB(int attrib, ...) copies the value of
 ARRAY_BUFFER_BINDING_ARB to the buffer object b inding point
 corresponding to vertex attrib array <attrib>.

 If ARB_vertex_blend is defined, then the comman d WeightPointerARB
 copies the value of ARRAY_BUFFER_BINDING_ARB to
 WEIGHT_ARRAY_BUFFER_BINDING_ARB.

 Rendering commands ArrayElement, DrawArrays, Dr awElements,
 DrawRangeElements, MultiDrawArrays, and MultiDr awElements operate as
 previously defined, except that data for enable d vertex, variant, and
 attrib arrays are sourced from buffers if the a rray's buffer binding
 is non-zero. When an array is sourced from a b uffer object, the
 pointer value of that array is used to compute an offset, in basic
 machine units, into the data store of the buffe r object. This offset
 is computed by subtracting a null pointer from the pointer value,
 where both pointers are treated as pointers to basic machine units.

 It is acceptable for vertex, variant, or attrib arrays to be sourced
 from any combination of client memory and vario us buffer objects
 during a single rendering operation.

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 352

 It is an INVALID_OPERATION error to source data from a buffer object
 that is currently mapped.

 2.8B.1 Array Indices in Buffer Objects
 --

 Blocks of array indices may be stored in buffer objects with the
 same format options that are supported for clie nt-side index arrays.
 Initially zero is bound to ELEMENT_ARRAY_BUFFER _ARB, indicating that
 DrawElements and DrawRangeElements are to sourc e their indices from
 arrays passed as their <indices> parameters, an d that
 MultiDrawElements is to source its indices from the array of pointers
 to arrays passed in as its <indices> parameter.

 A buffer object is bound to ELEMENT_ARRAY_BUFFE R_ARB by calling

 void BindBufferARB(enum target, uint buffer);

 with <target> set to ELEMENT_ARRAY_BUFFER_ARB, and <buffer> set to
 the name of the buffer object. If no correspon ding buffer object
 exists, one is initialized as defined in Sectio n 2.8A.

 The commands BufferDataARB, BufferSubDataARB, M apBufferARB, and
 UnmapBufferARB may all be used with <target> se t to
 ELEMENT_ARRAY_BUFFER_ARB. In such event, these commands operate in
 the same fashion as described in section 2.8A, but on the buffer
 currently bound to the ELEMENT_ARRAY_BUFFER_ARB target.

 While a non-zero buffer object name is bound to
 ELEMENT_ARRAY_BUFFER_ARB, DrawElements and Draw RangeElements source
 their indices from that buffer object, using th eir <indices>
 parameters as offsets into the buffer object in the same fashion as
 described in section 2.8A1. MultiDrawElements also sources its
 indices from that buffer object, using its <ind ices> parameter as a
 pointer to an array of pointers that represent offsets into the
 buffer object.

 Buffer objects created by binding an unused nam e to ARRAY_BUFFER_ARB
 and to ELEMENT_ARRAY_BUFFER_ARB are formally eq uivalent, but the GL
 may make different choices about storage implem entation based on
 the initial binding. In some cases performance will be optimized
 by storing indices and array data in separate b uffer objects, and by
 creating those buffer objects with the correspo nding binding points."

Additions to Chapter 3 of the 1.4 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.4 Specification (Pe r-Fragment
Operations and the Frame Buffer)

 None

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 353

Additions to Chapter 5 of the 1.4 Specification (Sp ecial Functions)

 Added to section 5.4, as part of the discussion of what commands
 are compiled into display lists:

 "Commands that are used to create, manage, and query buffer objects
 are not included in display lists, but are exec uted immediately.
 These commands are BindBufferARB, DeleteBuffers ARB, GenBuffersARB,
 IsBufferARB, BufferDataARB, BufferSubDataARB, M apBufferARB,
 UnmapBufferARB, GetBufferParameterivARB, GetBuf ferSubDataARB,
 and GetBufferPointervARB.

 GL commands that source data from buffer object s dereference the
 buffer object data in question at display list compile time, rather
 than encoding the buffer ID and buffer offset i nto the display list.
 Only GL commands that are executed immediately, rather than being
 compiled into a display list, are permitted to use a buffer object as
 a data sink."

Additions to Chapter 6 of the 1.4 Specification (St ate and State
Requests)

 Added to section 6.1 in a subsection titled Buf fer Object Queries:

 "The command

 boolean IsBufferARB(uint buffer);

 returns TRUE if <buffer> is the name of an buff er object. If
 <buffer> is zero, or if <buffer> is a non-zero value that is not
 the name of an buffer object, IsBufferARB retur n FALSE.

 The command

 void GetBufferSubDataARB(enum target, intpt rARB offset,
 sizeiptrARB size, void *data);

 queries the data contents of a buffer object. <target> is
 ARRAY_BUFFER_ARB. <offset> and <size> indicate the range of data
 in the buffer object that is to be queried, in terms of basic machine
 units. <data> specifies a region of client mem ory, <size> basic
 machine units in length, into which the data is to be retrieved.

 An error is generated if GetBufferSubDataARB is executed for a buffer
 object that is currently mapped.

 While the data store of a buffer object is mapp ed, the pointer to
 the data store can be queried by calling

 void GetBufferPointervARB(enum target, enum pname, void **params);

 with <target> set to ARRAY_BUFFER_ARB and <pnam e> set to
 BUFFER_MAP_POINTER_ARB. The single buffer map pointer is returned
 in <params>. GetBufferPointervARB returns the NULL pointer value if
 the buffer's data store is not currently mapped , or if the requesting
 client did not map the buffer object's data sto re, and the
 implementation is unable to support mappings on multiple clients."

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 354

 Added to the list of queries in section 6.1.3, Enumerated Queries:

 "void GetBufferParameterivARB(enum target, enum pname, int *params);"

Errors

 INVALID_ENUM is generated if the <target> param eter of BindBufferARB,
 BufferDataARB, BufferSubDataARB, MapBufferARB, UnmapBufferARB,
 GetBufferSubDataARB, GetBufferParameterivARB, o r GetBufferPointervARB
 is not ARRAY_BUFFER_ARB or ELEMENT_ARRAY_BUFFER _ARB.

 INVALID_VALUE is generated if the <n> parameter of DeleteBuffersARB or
 GenBuffersARB is negative.

 INVALID_VALUE is generated if the <size> parame ter of BufferDataARB,
 BufferSubDataARB, or GetBufferSubDataARB is neg ative.

 INVALID_OPERATION is generated if BufferDataARB , BufferSubDataARB,
 MapBufferARB, UnmapBufferARB, GetBufferSubDataA RB,
 GetBufferParameterivARB, or GetBufferPointervAR B is executed while
 zero is bound to the <target> parameter.

 OUT_OF_MEMORY may be generated if the data stor e of a buffer object
 cannot be allocated because the <size> argument of BufferDataARB is
 too large.

 OUT_OF_MEMORY may be generated when MapBufferAR B is called if the
 data store of the buffer object in question can not be mapped. This
 may occur for a variety of system-specific reas ons, such as the
 absence of sufficient remaining virtual memory.

 INVALID_ENUM is generated if the <usage> parame ter of BufferDataARB is
 not STREAM_DRAW_ARB, STREAM_READ_ARB, STREAM_COPY_ARB, STATIC_DRAW_ARB,
 STATIC_READ_ARB, STATIC_COPY_ARB, DYNAMIC_DRAW_ ARB, DYNAMIC_READ_ARB,
 or DYNAMIC_COPY_ARB.

 INVALID_VALUE is generated if the <offset> para meter to BufferSubDataARB
 or GetBufferSubDataARB is negative.

 INVALID_VALUE is generated if the <offset> and <size> parameters of
 BufferSubDataARB or GetBufferSubDataARB define a region of memory that
 extends beyond that allocated by BufferDataARB.

 INVALID_OPERATION is generated if MapBufferARB is executed for a
 buffer that is already mapped.

 INVALID_OPERATION is generated if UnmapBufferAR B is executed for a
 buffer that is not currently mapped.

 INVALID_ENUM is generated if the <access> param eter of MapBufferARB
 is not READ_ONLY_ARB, WRITE_ONLY_ARB, or READ_W RITE_ARB.

 INVALID_ENUM is generated if the <pname> parame ter of
 GetBufferParameterivARB is not BUFFER_SIZE_ARB, BUFFER_USAGE_ARB,
 BUFFER_ACCESS_ARB, or BUFFER_MAPPED_ARB.

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 355

 INVALID_ENUM is generated if the <pname> parame ter of
 GetBufferPointervARB is not BUFFER_MAP_POINTER_ ARB.

 INVALID_OPERATION may be generated if any of th e commands
 defined in this extension is executed between t he execution of Begin
 and the corresponding execution of End.

 INVALID_OPERATION is generated if a buffer obje ct that is currently
 mapped is used as a source of GL render data, o r as a destination of
 GL query data.

 INVALID_OPERATION is generated if BufferSubData ARB is used to modify
 the data store contents of a mapped buffer, or if GetBufferSubDataARB
 is used to query to data store contents of a ma pped buffer.

New State

(table 6.7, Vertex Array Data, p. 222)

 Get Value Type Get Command Initial Value Sec Attribute
 --------- ---- ----------- ------------- --- ---------
 ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 VERTEX_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 NORMAL_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 COLOR_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 INDEX_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 WEIGHT_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A vertex-array
 ELEMENT_ARRAY_BUFFER_BINDING_ARB Z+ GetIntegerv 0 2.8A. 2 vertex-array

 VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB 16+ x Z+ GetVertexAttribivARB 0 2.8A vertex-array

 XXX need to add buffer state for variant arrays

(new table for buffer objects)

 Get Value Type Get Command Initial Value Sec Attribute
 --------- ---- ----------- ------------- --- ---------
 (buffer data) BMU GetBufferSu bDataARB 2.8A none
 BUFFER_SIZE_ARB Z+ GetBufferPa rameterivARB 0 2.8A none
 BUFFER_USAGE_ARB Z9 GetBufferPa rameterivARB STATIC_DRAW_ARB 2.8A none
 BUFFER_ACCESS_ARB Z3 GetBufferPa rameterivARB READ_WRITE_ARB 2.8A none
 BUFFER_MAPPED_ARB B GetBufferPa rameterivARB FALSE 2.8A none
 BUFFER_MAP_POINTER_ARB Y GetBufferPo intervARB NULL 2.8A none

New Implementation Dependent State

 (none)

Usage Examples

 These examples illustrate various usages. In a ll cases a rendering
 loop is included, and array parameters are init ialized inside the
 loop as would be required if multiple array ren dering operations
 were performed in the loops. (Though only one operation is shown.)

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 356

 Convenient macro definition for specifying buff er offsets:

 #define BUFFER_OFFSET(i) ((char *)NULL + (i))

 Traditional vertex arrays:

 // Create system memory buffer
 data = malloc(320);

 // Fill system memory buffer
 ...

 // Frame rendering loop
 while (...) {

 // Define arrays
 VertexPointer(4, FLOAT, 0, data);
 ColorPointer(4, UNSIGNED_BYTE, 0, data+ 256);

 // Enable arrays
 EnableClientState(VERTEX_ARRAY);
 EnableClientState(COLOR_ARRAY);

 // Draw arrays
 DrawArrays(TRIANGLE_STRIP, 0, 16);

 // Disable arrays
 DisableClientState(VERTEX_ARRAY);
 DisableClientState(COLOR_ARRAY);

 // Other rendering commands
 ...

 }

 // Free system memory buffer
 free(data);

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 357

 Vertex arrays using a buffer object:

 // Create system memory buffer
 data = malloc(320);

 // Fill system memory buffer
 ...

 // Create buffer object
 BindBufferARB(ARRAY_BUFFER_ARB, 1);

 // Initialize data store of buffer object
 BufferDataARB(ARRAY_BUFFER_ARB, 320, data, STATIC_DRAW_ARB);

 // Free system memory buffer
 free(data);

 // Frame rendering loop
 while (...) {

 // Define arrays
 BindBufferARB(ARRAY_BUFFER_ARB, 1);
 VertexPointer(4, FLOAT, 0, BUFFER_OFFSE T(0));
 ColorPointer(4, UNSIGNED_BYTE, 0, BUFFE R_OFFSET(256));

 // Enable arrays
 EnableClientState(VERTEX_ARRAY);
 EnableClientState(COLOR_ARRAY);

 // Draw arrays
 DrawArrays(TRIANGLE_STRIP, 0, 16);

 // Disable arrays
 DisableClientState(VERTEX_ARRAY);
 DisableClientState(COLOR_ARRAY);

 // Other rendering commands
 ...

 }

 // Delete buffer object
 int buffer[1] = {1};
 DeleteBuffersARB(1, buffer);

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 358

 Code that works with and without buffer objects :

 // Create system memory buffer
 data = malloc(320);

 // Fill system memory buffer
 ...

 // Initialize buffer object, and null the d ata pointer
#ifdef USE_BUFFER_OBJECTS
 BindBufferARB(ARRAY_BUFFER_ARB, 1);
 BufferDataARB(ARRAY_BUFFER_ARB, 320, data, STATIC_DRAW_ARB);
 free(data);
 data = NULL;
#endif

 // Frame rendering loop
 while (...) {

 // Define arrays
#ifdef USE_BUFFER_OBJECTS
 BindBufferARB(ARRAY_BUFFER_ARB, 1);
#endif
 VertexPointer(4, FLOAT, 0, data);
 ColorPointer(4, UNSIGNED_BYTE, 0, data+ 256);

 // Enable arrays
 EnableClientState(VERTEX_ARRAY);
 EnableClientState(COLOR_ARRAY);

 // Draw arrays
 DrawArrays(TRIANGLE_STRIP, 0, 16);

 // Disable arrays
 DisableClientState(VERTEX_ARRAY);
 DisableClientState(COLOR_ARRAY);

 // Other rendering commands
 ...

 }

 // Delete buffer object
#ifdef USE_BUFFER_OBJECTS
 int buffer[1] = {1};
 DeleteBuffersARB(1, buffer);
#else
 // Free system memory buffer
 free(data);
#endif

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 359

 Vertex arrays using a mapped buffer object:

 // Frame rendering loop
 while (...) {

 // Define arrays (and create buffer obj ect in first pass)
 BindBufferARB(ARRAY_BUFFER_ARB, 1);
 VertexPointer(4, FLOAT, 0, BUFFER_OFFSE T(0));
 ColorPointer(4, UNSIGNED_BYTE, 0, BUFFE R_OFFSET(256));

 // Enable arrays
 EnableClientState(VERTEX_ARRAY);
 EnableClientState(COLOR_ARRAY);

 // Initialize data store of buffer obje ct
 BufferDataARB(ARRAY_BUFFER_ARB, 320, NU LL, STREAM_DRAW_ARB);

 // Map the buffer object
 float *p = MapBufferARB(ARRAY_BUFFER_AR B, WRITE_ONLY);

 // Compute and store data in mapped buf fer object
 ...

 // Unmap buffer object and draw arrays
 if (UnmapBufferARB(ARRAY_BUFFER_ARB)) {
 DrawArrays(TRIANGLE_STRIP, 0, 16);
 }

 // Disable arrays
 DisableClientState(VERTEX_ARRAY);
 DisableClientState(COLOR_ARRAY);

 // Other rendering commands
 ...

 }

 // Delete buffer object
 int buffer[1] = {1};
 DeleteBuffersARB(1, buffer);

ARB_vertex_buffer_object NVIDIA OpenGL Extension Specifications

 360

 Vertex arrays using a mapped buffer object for array data and an
 unmapped buffer object for indices:

 // Create system memory buffer for indices
 indexdata = malloc(400);

 // Fill system memory buffer with 100 indic es
 ...

 // Create index buffer object
 BindBufferARB(ELEMENT_ARRAY_BUFFER_ARB, 2);
 BufferDataARB(ELEMENT_ARRAY_BUFFER_ARB, 400 , indexdata,
 STATIC_DRAW_ARB);

 // Free system memory buffer
 free(indexdata);

 // Frame rendering loop
 while (...) {

 // Define arrays (and create buffer obj ect in first pass)
 BindBufferARB(ARRAY_BUFFER_ARB, 1);
 VertexPointer(4, FLOAT, 0, BUFFER_OFFSE T(0));
 ColorPointer(4, UNSIGNED_BYTE, 0, BUFFE R_OFFSET(256));
 BindBufferARB(ELEMENT_ARRAY_BUFFER_ARB, 2);

 // Enable arrays
 EnableClientState(VERTEX_ARRAY);
 EnableClientState(COLOR_ARRAY);

 // Initialize data store of buffer obje ct
 BufferDataARB(ARRAY_BUFFER_ARB, 320, NU LL, STREAM_DRAW_ARB);

 // Map the buffer object
 float *p = MapBufferARB(ARRAY_BUFFER_AR B, WRITE_ONLY);

 // Compute and store data in mapped buf fer object
 ...

 // Unmap buffer object and draw arrays
 if (UnmapBufferARB(ARRAY_BUFFER_ARB)) {
 DrawElements(TRIANGLE_STRIP, 100, U NSIGNED_INT,
 BUFFER_OFFSET(0));
 }

 // Disable arrays
 DisableClientState(VERTEX_ARRAY);
 DisableClientState(COLOR_ARRAY);

 // Other rendering commands
 ...

 }

 // Delete buffer objects
 int buffers[2] = {1, 2};
 DeleteBuffersARB(1, buffers);

NVIDIA OpenGL Extension Specifications ARB_vertex_buffer_object

 361

 Mapping multiple buffers simultaneously:

 // Map buffers
 BindBuffer(ARRAY_BUFFER_ARB, 1);
 float *a = MapBuffer(ARRAY_BUFFER_ARB, WRIT E_ONLY);
 BindBuffer(ARRAY_BUFFER_ARB, 2);
 float *b = MapBuffer(ARRAY_BUFFER_ARB, WRIT E_ONLY);

 // Fill buffers
 ...

 // Unmap buffers
 BindBuffer(ARRAY_BUFFER_ARB, 1);
 if (!UnmapBufferARB(ARRAY_BUFFER_ARB)) {
 // Handle error case
 }
 BindBuffer(ARRAY_BUFFER_ARB, 2);
 if (!UnmapBufferARB(ARRAY_BUFFER_ARB)) {
 // Handle error case
 }

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 362

Name

 ARB_vertex_program

Name Strings

 GL_ARB_vertex_program

Contributors

 Kurt Akeley
 Allen Akin
 Ben Ashbaugh
 Bob Beretta
 John Carmack
 Matt Craighead
 Ken Dyke
 Steve Glanville
 Michael Gold
 Evan Hart
 Mark Kilgard
 Bill Licea-Kane
 Barthold Lichtenbelt
 Erik Lindholm
 Benj Lipchak
 Bill Mark
 James McCombe
 Jeremy Morris
 Brian Paul
 Bimal Poddar
 Thomas Roell
 Jeremy Sandmel
 Jon Paul Schelter
 Geoff Stahl
 John Stauffer
 Nick Triantos

IP Status

 NVIDIA claims to own intellectual property rela ted to this extension, and
 has signed an ARB Contributor License agreement licensing this
 intellectual property.

 Microsoft claims to own intellectual property r elated to this extension.

Status

 Complete. Approved by ARB on June 18, 2002

Version

 Last Modified Date: 07/25/07
 Revision: 46

Number

 ARB Extension #26

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 363

Dependencies

 Written based on the wording of the OpenGL 1.3 specification and requires
 OpenGL 1.3.

 ARB_vertex_blend and EXT_vertex_weighting affec t the definition of this
 extension.

 ARB_matrix_palette affects the definition of th is extension.

 ARB_point_parameters and EXT_point_parameters a ffect the definition of
 this extension.

 EXT_secondary_color affects the definition of t his extension.

 EXT_fog_coord affects the definition of this ex tension.

 ARB_transpose_matrix affects the definition of this extension.

 NV_vertex_program interacts with this extension .

 EXT_vertex_shader interacts with this extension .

Overview

 Unextended OpenGL mandates a certain set of con figurable per-vertex
 computations defining vertex transformation, te xture coordinate generation
 and transformation, and lighting. Several exte nsions have added further
 per-vertex computations to OpenGL. For example , extensions have defined
 new texture coordinate generation modes (ARB_te xture_cube_map,
 NV_texgen_reflection, NV_texgen_emboss), new ve rtex transformation modes
 (ARB_vertex_blend, EXT_vertex_weighting), new l ighting modes (OpenGL 1.2's
 separate specular and rescale normal functional ity), several modes for fog
 distance generation (NV_fog_distance), and eye- distance point size
 attenuation (EXT/ARB_point_parameters).

 Each such extension adds a small set of relativ ely inflexible
 per-vertex computations.

 This inflexibility is in contrast to the typica l flexibility provided by
 the underlying programmable floating point engi nes (whether micro-coded
 vertex engines, DSPs, or CPUs) that are traditi onally used to implement
 OpenGL's per-vertex computations. The purpose of this extension is to
 expose to the OpenGL application writer a signi ficant degree of per-vertex
 programmability for computing vertex parameters .

 For the purposes of discussing this extension, a vertex program is a
 sequence of floating-point 4-component vector o perations that determines
 how a set of program parameters (defined outsid e of OpenGL's Begin/End
 pair) and an input set of per-vertex parameters are transformed to a set
 of per-vertex result parameters.

 The per-vertex computations for standard OpenGL given a particular set of
 lighting and texture coordinate generation mode s (along with any state for
 extensions defining per-vertex computations) is , in essence, a vertex
 program. However, the sequence of operations i s defined implicitly by the

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 364

 current OpenGL state settings rather than defin ed explicitly as a sequence
 of instructions.

 This extension provides an explicit mechanism f or defining vertex program
 instruction sequences for application-defined v ertex programs. In order
 to define such vertex programs, this extension defines a vertex
 programming model including a floating-point 4- component vector
 instruction set and a relatively large set of f loating-point 4-component
 registers.

 The extension's vertex programming model is des igned for efficient
 hardware implementation and to support a wide v ariety of vertex programs.
 By design, the entire set of existing vertex pr ograms defined by existing
 OpenGL per-vertex computation extensions can be implemented using the
 extension's vertex programming model.

Issues

 (1) What should this extension be called?

 RESOLVED: ARB_vertex_program. DirectX 8 ref ers to its similar
 functionality as "vertex shaders". This is a confusing term because
 shaders are usually assumed to operate at the fragment or pixel level,
 not the vertex level.

 Conceptually, what the extension defines is a n application-defined
 program (admittedly limited by its sequential execution model) for
 processing vertices so the "vertex program" t erm is more accurate.

 Some of the API machinery in this extension f or describing programs
 should be useful for extending other OpenGL o perations with programs
 (though other types of programs may look very different from vertex
 programs).

 (2) What terms are important to this specificat ion?

 vertex program mode - When vertex program mod e is enabled, vertices are
 transformed by an application-defined vertex program.

 conventional GL vertex transform mode - When vertex program mode is
 disabled (or the extension is not supported), vertices are transformed
 by GL's conventional texgen, lighting, and tr ansform state.

 vertex program - An application-defined progr am used to transform
 vertices when vertex program mode is enabled.

 program target - A type or class of program. This extension supports
 the VERTEX_PROGRAM_ARB target. Future extens ions may add other program
 targets.

 program object - An object maintained interna l to OpenGL that
 encapsulates a program and a set of associate d state. Operations
 performed on program objects include loading a program, binding,
 generating program object names, querying sta te, and deleting.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 365

 program name - Each program object has an ass ociated unsigned integer,
 called the program name. Applications refer to a program object using
 the program name.

 current program - Each program target may hav e a current program object.
 For vertex programs, the current program is e xecuted whenever a vertex
 is specified when vertex program mode is enab led.

 default program - Each program target has a d efault program object,
 referred to using a program name of zero. Th e current program for each
 program target is initially the default progr am for that target.

 program execution environment - A set of reso urces, instructions, and
 semantic rules used to execute a program. Ea ch program target may
 support one or more execution environment -- new execution environments
 may provide new instructions, resources, or e xecution rules. Program
 strings must specify the execution environmen t that should be used to
 execute the program.

 program options - An optional feature that mo difies the rules of the
 execution environment. Vertex programs speci fy the options that they
 require at the beginning of the program.

 vertex attribute - GL state associated with v ertices that can vary per
 vertex.

 conventional vertex attributes - Per-vertex a ttributes used in
 conventional GL vertex transform mode, includ ing colors, normals,
 texture coordinate sets.

 generic vertex attributes - An array of 16+ 4 -component vectors added by
 this extension. Generic vertex attributes ca n be used by vertex
 programs but are unused in conventional GL ve rtex transform mode.

 program parameter - A set of constants that a re available for vertex
 programs to use during their execution. Prog ram parameters include
 program environment parameters, program local parameters, conventional
 GL state, and program constants.

 program environment parameter - A set of 96+ 4-component vectors
 belonging to the GL context that can be used as constants during the
 execution of any vertex program.

 program local parameter - A set of 96+ 4-comp onent vectors belonging to
 a vertex program object that can be used as c onstants during the
 execution of the corresponding vertex program . Program local parameters
 can not be used by any other vertex programs.

 program constants - Constants declared in the text of a program may be
 used during the execution of that program.

 program temporaries - A set of 12+ 4-componen t vectors to hold temporary
 results that can be read or written during th e execution of a vertex
 program.

 program address registers - A set of 1+ 1-com ponent integer vectors that
 can be used to perform variable indirect acce sses to program parameter

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 366

 arrays during the execution of a vertex progr am. Address registers are
 specified as vectors to allow for future exte nsions supporting multiple
 address register components.

 program results - A set of 4-component vector s to hold the final results
 of a vertex program. The program results cor respond closely to the set
 of vertex attributes used during primitive as sembly and rasterization.

 program variables - Variable names used to id entify a specific vertex
 attribute, program parameter, temporary, addr ess register, or result.

 program binding - A program statement that de clares a variable and
 associates it with a specific vertex attribut e, program parameter, or
 program result.

 implicit binding - When an executable instruc tion refers to a specific
 vertex attribute, program parameter, program result, or constant by
 name, without using an explicit program bindi ng statement. When such
 values are encountered, an implicit binding t o an anonymous variable
 name is created.

 program invocation - The act of implicitly or explicitly kicking off
 program execution. Vertex programs are invok ed automatically when
 vertex program mode is enabled and vertices a re received. Vertex
 programs are also invoked automatically when the current raster position
 is specified.

 (3) What part of OpenGL do vertex programs spec ifically bypass?

 Vertex programs bypass the following OpenGL f unctionality:

 - The modelview and projection matrix verte x transformations.

 - Vertex weighting/blending (ARB_vertex_ble nd).

 - Normal transformation, rescaling, and nor malization.

 - Color material.

 - Per-vertex lighting.

 - Texture coordinate generation and texture matrix transformations.

 - Per-vertex point size computations in ARB /EXT_point_parameters

 - Per-vertex fog coordinate computations in EXT_fog_coord and
 NV_fog_distance.

 - Client-defined clip planes.

 - The normalization of AUTO_NORMAL evaluate d normals

 - All of the above, when computing the curr ent raster position.

 Operations not subsumed by vertex programs

 - Clipping to the view frustum.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 367

 - Perspective divide (division by w).

 - The viewport transformation.

 - The depth range transformation.

 - Front and back color selection (for two-s ided lighting and
 coloring).

 - Clamping the primary and secondary colors to [0,1].

 - Primitive assembly and subsequent operati ons.

 - Evaluators (except the AUTO_NORMAL normal ization).

 (5) This extension adds a set of generic vertex attributes to the existing
 conventional attributes. The sum of the number of generic and
 conventional attributes supported on a given pl atform may exceed the total
 number of per-vertex attributes supported in ha rdware. How should this
 situation be handled?

 RESOLVED: Implementations may alias conventi onal and generic vertex
 attributes, where pairs of conventional and g eneric vertex attributes
 share the same storage. Such aliasing will e ffectively reduce the
 number of vertex attributes a hardware platfo rms. While implementations
 may alias attributes, that behavior is not re quired. To accommodate both
 behaviors, changing a generic vertex attribut e leaves the corresponding
 conventional attribute undefined, and vice ve rsa.

 This undefined behavior is a compromise betwe en the existing
 EXT_vertex_shader extension (which does not p ermit aliasing) and the
 NV_vertex_program extension (which requires a liasing). The mapping
 between generic and conventional vertex attri butes is found in Table X.1
 below. This mapping is taken from the NV_ver tex_program specification
 and generalized to define behavior for >8 tex ture coordinate sets.

 Applications that mix conventional and generi c vertex attributes in a
 single rendering pass should be careful to av oid using attributes that
 may alias. To limit inadvertent use of such attributes, loading a
 vertex program that used a pair of attributes that may alias is
 guaranteed to fail. Applications requiring a small number of generic
 vertex attributes can always safely use gener ic attributes 6 and 7, and
 any supported attributes corresponding to unu sed or unsupported texture
 units. For example, if an implementation sup ports only four texture
 units, generic attributes 12 through 15 can a lways be used safely.

 (6) Should there be a "VertexAttribs" entry poi nt to specify multiple
 vertex attributes in one immediate mode call.

 RESOLVED: No. Not providing such functional ity serves to reduce the
 already large number of required immediate mo de entry points. A
 "VertexAttribs" command would improve the eff iciency of vertex attribute
 transfer, but vertex arrays or display lists should still be better.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 368

 (7) Should a full complement of data types (sig ned and unsigned bytes,
 shorts, and ints, as well as floats and doubles) be supported for vertex
 attributes? Should fixed-point data types be s upported in both normalized
 (map the range to [0,1] or [-1,1]) and unnormal ized form?

 RESOLVED: For vertex arrays, all data type c ombinations are supported.

 For immediate mode, a smaller subset is suppo rted, to limit the number
 of immediate-mode entry points added by this extension. In fully
 general form, 112 immediate-mode entry points (4 sizes x 2
 vector/non-vector x 14 data types) would be r equired.

 Immediate mode support is available for non-n ormalized shorts, floats,
 and doubles for all component counts. Additi onally, immediate mode
 support is available for 4-component vectors of all data types
 (normalized and unnormalized).

 Note also that in immediate mode, the "N" qua lifier in function names
 like VertexAttrib4Nub will be used to indicat e that fixed-point data
 should be normalized.

 (8) How should applications indicate that fixed -point generic vertex
 attribute array components should be converted to [-1,+1] or [0,1] ranges?

 RESOLVED: The function VertexAttribPointerAR B takes a boolean argument
 <normalized> that indicates whether fixed-poi nt array data should be
 normalized to [-1,+1] or [0,1].

 One alternate approach would have been to ext end to set of enumerants to
 include values such as NORMALIZED_UNSIGNED_BY TE_ARB. Adding such
 enumerants in some sense implies that UNSIGNE D_BYTE is not normalized,
 even though it usually is.

 (9) In unextended OpenGL, calling Vertex() spec ifies a vertex and causes
 vertex transformation operations to be performe d on the vertex. Should
 there be an equivalent method to specify a vert ex using generic vertex
 attributes? If so, how should this be accompli shed?

 RESOLVED: Setting generic vertex attribute z ero will always specify a
 vertex. Vertex*(...) and VertexAttrib*(0,...) are specified to be
 equivalent, whether or not vertex program mod e is enabled. Allowing
 generic vertex attribute zero to specify a ve rtex allows applications to
 write vertex programs that use only generic a ttributes; otherwise,
 applications would have had to use Vertex() t o provoke vertex
 processing.

 (10) How is this extension different from previ ous vertex program
 extensions, such as EXT_vertex_shader or NV_ver tex_program? What pitfalls
 are there in porting vertex programs to/from th is extension?

 RESOLVED: See "Interactions with NV_vertex_p rogram" and "Interactions
 with EXT_vertex_shader" sections near the end of this specification.

 (11) Should program parameter variables bound t o GL state be updated
 automatically after the bound state changes? I f so, when?

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 369

 RESOLVED: Yes. Such variables are updated a utomatically prior to the
 next vertex program invocation with no applic ation intervention
 required. A proposal to reduce the burden by requiring a manual "update
 state" step was considered and rejected.

 (12) How should this specification handle varia ble bindings to Material
 state? Material is allowed inside a Begin/End, so material properties are
 technically per-vertex state.

 RESOLVED: Materials can be bound only as pro gram parameters. Changes
 to material properties inside a Begin/End wil l leave the bindings
 undefined until the subsequent End command. At that point, all material
 property bindings are guaranteed to be update d, and any material
 property changes up to the next Begin command are guaranteed to take
 effect immediately.

 Supporting per-vertex material properties pla ces additional pressure on
 the number of per-vertex bindings an implemen tation can support, which
 was already a problem. See issue (5).

 In practice, material properties are usually not changed in this manner.
 Applications needing to change material prope rties inside a Begin/End in
 vertex program mode can work around this limi tation by storing the color
 in a conventional or generic vertex attribute and modifying the vertex
 program accordingly.

 (13) What semantic restrictions, if any, should be imposed on binding the
 same GL state to multiple variables? The gramm ar permits such bindings,
 but allowing this behavior means that single st ate updates must update
 multiple variables.

 RESOLVED: Cases where a single state update necessarily requires
 updating multiple variables are disallowed. The only restriction
 resulting from this decision is that a single state variable can not be
 bound more than once in the collection of arr ays that are accessed using
 relative addressing (at run time). The drive r can and will coalesce all
 other bindings accessed only at fixed offsets into a single binding.

 This restriction and a little driver work all ows the same state variable
 to be used multiple times without requiring t hat a single state change
 update multiple variables.

 (14) What semantic restrictions, if any, should be imposed on using
 multiple vertex attributes or program parameter s in the same instruction?

 RESOLVED: None. If the underlying hardware implementation does not
 support reads of multiple attributes or progr am parameters, the driver
 may need to transparently insert additional i nstructions and/or consume
 temporaries to perform the operation.

 (15) How and when should related state be combi ned into a single program
 parameter binding? Additionally, should any va lues derived from core GL
 state be exposed, too?

 RESOLVED: Related state should be combined w hen possible, as long as
 the binding name remains somewhat sensible. Additionally, certain
 pre-computed state items useful for performan ce reasons are also

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 370

 exposed. In particular, the following GL sta te combinations are
 supported:

 * Light attenuation constants and the spot light exponent are combined
 into a single vector called "state.light[n].attenuation" (spot
 lights can attenuate the lit result).

 * Spot light direction and cutoff angle cos ine are called
 "state.light[n].spot.direction" (cutoff i s directional information).
 Binding the cutoff angle itself is pretty useless, so the cosine is
 used.

 * A pre-computed half angle for lighting wi th infinite lights and an
 infinite viewer is provided and called "s tate.light[n].half".

 * Pre-computed products of ambient, diffuse , and specular light colors
 with the corresponding front or back mate rial colors are supported,
 and are called "state.lightprod[n].<face> .<property>".

 * Exponential fog density, linear fog start and end parameters, as
 well as the pre-computed reciprocal of (e nd-start) are combined into
 one vector called "state.fog.params".

 * The core point size, minimum and maximum size clamps
 (ARB_point_parameters), and multisample f ade size threshold
 (ARB_point_parameters) are combined into a single vector called
 "state.point.size".

 * Precomputed transpose, inverse, and inver se transpose matrices are
 supported for each base matrix type.

 (16) Should the initial values of temporaries a nd results be undefined?

 RESOLVED: Since the underlying hardware diff ers, it was decided to
 leave these values uninitalized. There are a few issues related to this
 behavior that programs should keep in mind:

 * Since any results not written by the prog ram are undefined, programs
 should write to all result registers that are needed during
 rasterization.

 * In particular, the initial vertex positio n result is undefined, and
 will remain undefined if not written by a program. To achieve
 proper results, vertex programs should be careful to write to all
 four components of the vertex position. Otherwise, primitives may
 be completely clipped or produce undefine d results during
 rasterization. There is no semantic requ irement that programs must
 write a transformed vertex position, so e rroneous programs will load
 succesfully, but will produce undefined (and probably useless)
 results. Such a semantic requirement may be impossible to enforce
 in future language versions that support run-time branching.

 * Since vertex programs may be executed whe n the raster position is
 set, any attributes not written by the pr ogram will result in
 undefined state in the current raster pos ition. Programs should
 write to all result registers that would be used when rasterizing
 pixel primitives using the current raster position.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 371

 * If conventional OpenGL texture mapping op erations are performed, a
 program should always write to the "w" co ordinate of any texture
 coordinates result registers it needs to use. Conventional OpenGL
 texture accesses always use projective te xture coordinates (e.g.,
 s/q, t/q, r/q), even though q is almost a lways 1.0. An undefined q
 coordinate (coming from the "w" component of the result register)
 may produce undefined coordinates on the texture lookup.

 (17) Should vertex programs be required to have a header token and an end
 token?

 RESOLVED: Yes. The header token for this ex tension is named
 "!!ARBvp1.0". The ARB may standardize future language versions which
 would be expected to have tokens like "!!ARBv p2.0". Vertex programs
 must end with the "END" token.

 The initial header token reminds the programm er what type of program
 they are writing. If vertex programs are eve r read from disk files, the
 header token can be used to specifically iden tify vertex programs. The
 initial header tokens will also make it easie r for programmers to
 distinguish between multiple types of vertex programs and between vertex
 programs and another future type of programs.

 We expect that programs may be generated by c oncatenation of program
 fragments. The "END" token will hopefully re duce bugs due to specifying
 an incorrectly concatenated program.

 (18) Should ProgramStringARB take a <program> s pecifier? Should
 ProgramLocalParameterARB and GetProgramLocalPar ameterARB take a <program>
 specifier? How about GetProgramivARB and GetPr ogramStringARB?

 RESOLVED: No to all. Instead, these calls a re specified to always
 query or modify the currently bound program o bject. Using bound objects
 allows GL implementations to avoid locking an d name lookup overhead on
 each such call.

 This behavior does imply that applications lo ading a sequence of program
 objects must bind each in turn.

 (19) Should relative addressing be performed us ing an address register
 (load up an integer register) or by taking a fl oating-point scalar?

 RESOLVED: Address register. It would not be a good idea to support
 both syntaxes simultaneously, since using a f loating-point scalar may
 consume the only available address register i n the process. The current
 address register syntax can be easily extende d to allow for multiple
 integer registers and/or enable other integer operations in a later
 extension.

 Using a floating-point index may require an e xtra instruction on some
 architectures, and would require optimization work to eliminate
 redundant loads. Using a floating-point inde x may consume one of a
 small number of temporary registers. On the other hand, for
 implementations without a dedicated address r egister, it may be
 necessary to dedicate a general-purpose regis ter (or register component)
 to hold the address register contents.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 372

 (20) How should user-defined clipping be suppor ted in this specification?

 RESOLVED: User-defined clipping is not suppo rted in standard vertex
 program mode. User-defined clipping support will be provided for
 programs that use the "position invariant" op tion, where all vertex
 transformation operations are performed by th e fixed-function pipeline.

 It is expected that future vertex program ext ensions or a future
 language standard may provide more powerful u ser clipping functionality.

 The options considered were:

 (1) Not at all. Does not work for applicatio ns requiring user clipping.
 User clipping could be supported through a language extension.

 (2) Support only through the "position_invari ant" option, where vertex
 transformation is performed by the fixed- function pipeline.

 (3) Support by using the fixed-function pipel ine to generate eye
 coordinates and perform user clipping as specified for conventional
 transformation. May not work properly if the vertex transformation
 doesn't match the standard "multiply by m odelview and projection
 matrices" model.

 (4) Project existing fixed-function clip plan es into clip coordinates
 and perform the clip test in clip space. The clip planes would be
 transformed by the inverse of the project ion matrix, which will not
 work if the projection matrix is singular .

 (5) Provide a 4-component "user clip coordina te" result that can be
 bound by a vertex program. User clipping is performed as in
 unextended OpenGL, using the "user clip c oordinate" in place of the
 non-existant eye coordinates. This appro ach allows an application
 to do user clipping in any coordinate sys tem. Clipping would not be
 independent of primitive tesselation as i n the conventional
 pipeline. Additionally, the implicit tra nsformation of specified
 clip planes by the modelview matrix may b e undesirable (e.g.,
 clipping in object coordinates).

 (6) Provide one or more "clip plane distance" results that can be bound
 by a vertex program. For conventional cl ipping applications, vertex
 programs would compute the dot products n ormally computed by
 fixed-function hardware. Additionally, t his method would enable
 additional unconventional clipping effect s. Primitives would be
 clipped to the portion whose interpolated clip distances are greater
 than or equal to zero. This approach has the same issues as (5).

 (21) How should future vertex program opcodes b e named?

 RESOLVED: Three-character names are recommen ded for brevity. Three
 character names are not a hard-and-fast requi rement; extra characters
 may be needed for clarity or to disambiguate instructions.

 (22) Should anything be said about the precisio n used for carrying out the
 instructions?

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 373

 RESOLVED: Not much; precision will vary acro ss platforms. The minimum
 precision requirements (1 part in 10^5 or rou ghly 17 bits) are spelled
 out in section 2.1.1. In practice, implement ations will generally
 provide precision comparable to that obtained using single precision
 floats. Documenting exact precision across i mplementations is
 difficult. Additionally, it is difficult to spell out precision
 requirements for "compound" operations such a s DP4.

 (23) Should this extension support evaluator ma ps for generic vertex
 attributes? If so, what attribute sizes should be supported? Note that
 such maps are not supported at all for texture units except zero.

 RESOLVED: No. Evaluator support has not bee n consistently extended in
 previous extensions. For example, neither AR B_multitexture nor OpenGL
 1.3 provide support for evaluators for textur e units other than unit
 zero. Adding evaluators for generic attribut es involves a large amount
 of new state and complexity, particularly if evaluators should be
 supported in general form (1, 2, 3, and 4 com ponents, all supported data
 type).

 (25) The number of generic vertex attributes is implementation-dependent
 and is at least 16. Each generic vertex attrib ute has a vertex array
 enable. Should two new entry points be provide d to accept an arbitrary
 attribute number, or should we reserve a range of enumerants that is
 "large enough"?

 RESOLVED: Yes. EnableVertexAttribArrayARB a nd
 DisableVertexAttribArrayARB. This allows the number of vertex
 attributes to be unbounded, instead of using a limited range.

 (26) What limits should be imposed on the const ants that can be added to
 or subtracted from the address register for rel ative addressing? Negative
 offsets are sometimes useful for shifting down in an array.

 RESOLVED: -64 to +63 should be sufficient fo r the time being. Offset
 sizes are limited to allow offsets to be bake d into device-dependent
 instruction encodings.

 (28) What level of precision should be guarante ed for the EXP and LOG
 instructions? And for the EX2 and LG2 instruct ions?

 RESOLVED: The low precision EXP and LOG inst ructions should give at
 least 10 bits (2^-11 maximum relative error). No specific treatment
 will be added for EX2/LG2, implying that the computations should at
 least meet the minimal floating-point precisi on required by the spec.

 (29) Should incremental program compilation be supported?

 RESOLVED: No. Applications can compile prog rams just as easily using
 string concatenation.

 (30) Should the execution environment be identi fied by the program itself
 or as an additional "language" parameter to Pro gramStringARB?

 RESOLVED: Programs should identify their exe cution environment in the
 header. The header (plus any specified optio ns) make it clear what kind
 of program is being defined.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 374

 (31) Should this extension provide support for character sets other than
 7-bit ASCII?

 RESOLVED: Provide a <format> argument to Pro gramStringARB to allow for
 future extensions. Only ASCII will be suppor ted by this extension;
 additional character sets or encodings could be supported using separate
 extensions.

 (32) Support for "program object" functionality may be applicable to
 future program targets. Should this functional ity be factored out into a
 separate extension?

 RESOLVED: No, such separation is not necessa ry. This extension was
 designed to allow to easily accommodate futur e program target types. It
 would be straightforward to put program objec t functionality into a
 separate extension, but the functionality pro vided by that extension
 would be of no value by itself.

 (33) Should program residency management be sup ported?

 RESOLVED: No. This functionality can be sup ported in a separate
 extension if desired. If may be desirable to address residency
 management in a more general form, where an a pplication may desire a
 diverse set of objects (textures, programs) t o be resident at once.

 (34) Should program object management APIs (Gen ProgramsARB,
 DeleteProgramsARB) work like texture objects or display lists?

 RESOLVED: Texture objects.

 Both approaches have their merits. Pluses fo r the display list model
 include: no need to keep around multiple ind ices if you want to
 allocate a group of object, contiguous indice s may fall out on
 implementations that share one block allocato r for textures and display
 lists. Pluses for the texture object model: non-contiguous indices may
 be more optimizable -- new objects can be map ped to empty blocks in a
 hash table to avoid collisions with existing objects, separate indices
 are more compatible with a future handle-base d object paradigm, and a
 larger base of extensions using this model. Note that display list
 allocations needed to be contiguous to suppor t CallLists, but no such
 requirement for texture or program objects ex ists for programs.

 (35) Should there be support for a program obje ct zero? With texture
 objects, texture object zero is "special" becau se it is the default
 texture object for each target type. Is there something like this for
 program objects?

 RESOLVED: Yes. Like texture objects, there should be a separate
 program object zero for each program type. T his allows applications to
 use vertex programs without needing to genera te and manage program
 objects.

 With texture objects, an object zero was need ed for backward
 compatibility with pre-OpenGL 1.1 application s. There is no such
 requirement here, but providing an object zer o nicely matches the
 familiar texture object model.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 375

 (36) How should this extension provide feedback on why a program failed to
 load?

 RESOLVED: Two queries are provided. Calling GetIntegerv() with
 PROGRAM_ERROR_POSITION_ARB provides the offse t of an offending
 instruction in the program string. An error position of -1 indicates
 that a program loaded successfully. Calling GetString() with
 PROGRAM_ERROR_STRING_ARB returns an implement ation-dependent error
 string explaining the reason for the failure. The error string can be
 queried even on successful program loads to c heck for warning messages.

 The error string may be kept in a static buff er managed by the GL
 implementation. Implementations may reuse th e same buffer on subsequent
 calls to ProgramStringARB, so returned error strings are guaranteed to
 be valid only until the next such call.

 (37) How does ARB_vertex_blend's WEIGHT_SUM_UNI TY_ARB mode interact with
 this extension? This mode allows an applicatio n to specify N-1 weights,
 and have the Nth weight computed by the GL.

 RESOLVED: The ARB_vertex_blend spec (as of M ay, 2002) specifies that
 the nth weight is automatically computed by t he GL and is effectively
 current state. In practice, ARB_vertex_blend implementations compute
 the nth weight on the fly in the fixed-functi on transformation pipeline,
 implying that the ARB_vertex_blend spec may r equire a fix. For the
 purposes of this extension, the WEIGHT_SUM_UN ITY_ARB enable is ignored
 in vertex program mode. Applications perform ing a vertex weighting
 operation in a vertex program are free to com pute the extra weight in
 the program.

 (38) Should program environment parameters be p ushed and popped?

 RESOLVED: No. There is no need to push and pop this large set of
 state, much like pixel maps. Adding a new at tribute bit would have
 complicated logistics (would the bit be inclu ded in ALL_ATTRIB_BITS?).
 Having program local parameters provides a me thod for making localized
 changes to certain state simply by switching programs.

 (39) How should this extension interact with co lor material?

 RESOLVED: When color material is enabled, an y bindings of material
 colors that track the current color should be updated when the current
 color is updated. In this specification, mat erial properties can be
 bound only as program parameters, and any cha nges to the material
 properties inside a Begin/End leave the bindi ngs undefined until the
 next End command. Similarly, any indirect ch anges to the material
 properties (through ColorMaterial) will have a similar effect.

 Several other options were considered here. One option was to support
 per-vertex material property bindings and hav e programs that reference
 tracked material properties should get the cu rrent color. This could be
 handled either by broadcasting the current co lor to multiple vertex
 attributes, or recompiling the vertex program so that references to a
 tracked material property are redirected to t he vertex color. Both such
 solutions are somewhat complex. A second opt ion would be to ignore the
 COLOR_MATERIAL enable and instead use an "old " material color. This

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 376

 breaks the standard color material model. Im plementations can and often
 do defer such updates (making an "old" color available), some conditions
 may cause an implementation to update of mate rial state at odd times.

 (41) What about when the execution environment involves support for other
 extensions? In particular, the execution envir onment subsumes some
 functionality from EXT/ARB_point_parameters, EX T_fog_coord,
 EXT_secondary_color, and ARB_multitexture.

 RESOLVED: This extension assumes support for functionality that
 includes a fog coordinate, secondary color, p er-vertex point sizes, and
 multiple texture coordinates (at least to the extent that it exposes >1
 texture coordinate). All of these extensions are supported fairly
 widely. On some platforms, some of this func tionality may require
 software fallbacks.

 (42) How does PointSize work with vertex progra ms?

 RESOLVED: If VERTEX_PROGRAM_POINT_SIZE_ARB i s disabled, the size of
 points is determined by the PointSize state a nd is not attenuated, even
 if EXT_point_parameters is supported. If ena bled, the point size is the
 point size result value, and is clamped to im plementation-dependent
 point size limits during point rasterization.

 (43) What do we say about the alpha component o f the secondary color?

 RESOLVED: The alpha component of the seconda ry color has generally been
 treated as zero. This extension specifies th at only the R, G, and B
 components are added in the color sum operati on, making the alpha
 component of the secondary color irrelevant. Other downstream
 extensions may allow applications to make use of this component.

 (44) How are edge flags handled?

 RESOLVED: Edge flags are passed through with out the ability to be
 modified by a vertex program. Applications a re free to send edge flags
 when vertex program mode is enabled.

 (45) Should programs be C-style null-terminated strings?

 RESOLVED: No. Programs should be specified as an array of GLubyte with
 an explicit length parameter. OpenGL has no precedent for passing
 null-terminated strings into the API (though GetString returns
 null-terminated strings). Null-terminated st rings may be problematic
 for some programming languages.

 (46) Should all existing OpenGL transform funct ionality and extensions be
 implementable as vertex programs?

 RESOLVED: Yes. Vertex programs should be a complete superset of what
 you can do with OpenGL 1.2 and existing verte x transform extensions. To
 implement EXT_point_parameters, the VERTEX_PR OGRAM_POINT_SIZE_ARB enable
 is introduced. To implement two-sided lighti ng, the
 VERTEX_PROGRAM_TWO_SIDE_ARB enable is introdu ced. To implement color
 material, applications should refer to the pe r-vertex color attribute in
 their vertex programs.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 377

 (47) Should there be a plural version of Progra mEnvParameter and
 ProgramLocalParameter, which would set multiple parameters in a single
 call?

 RESOLVED: No; not necessary.

 (48) Can the currently bound vertex program obj ect be deleted or reloaded?

 RESOLVED: Yes. When ProgramStringARB is cal led to reload a program
 object, subsequent program executions will us e the new program. When
 DeleteProgramsARB deletes a currently bound p rogram object, object zero
 becomes the new current program object.

 (49) What happens if you transform vertices in vertex program mode, but
 the current program object does not contain a v alid vertex program?

 RESOLVED: Begin will fail with an INVALID_OP ERATION error if the
 currently bound vertex program object does no t have a valid program.
 The same applies to RasterPos and any command (Rect, DrawArrays,
 DrawElements) that implies a Begin.

 Because Vertex is ignored outside of a Begin/ End pair (without
 generating an error) it is impossible to prov oke a vertex program if the
 current vertex program object is nonexistent or invalid. Other
 per-vertex parameters (for examples those set by Color, Normal, and
 VertexAttrib*ARB when the attribute number is not zero) are allowed
 since they are legal outside of a Begin/End.

 (50) Discussing matrices is confusing because o f row-major versus
 column-major issues. Can you give an example o f how a matrix is bound?

 RESOLVED: Assume program matrix zero were lo aded with the following
 code:

 // When loaded, the first row is "1, 2, 3, 4", because of column-major
 // (OpenGL spec) vs. row-major (C) differen ces.
 GLfloat matrix[16] = { 1, 5, 9, 13,
 2, 6, 10, 14,
 3, 7, 11, 15,
 4, 8, 12, 16 };
 glMatrixMode(GL_MATRIX0_ARB);
 glLoadMatrixf(matrix);

 Then in the program

 !!ARBvp1.0
 PARAM mat1[4] = { state.matrix.program[0] } ;
 PARAM mat2[4] = { state.matrix.program[0].t ranspose };

 mat1[0] would have (1,2,3,4), mat1[3] would h ave (13,14,15,16), mat2[0]
 would have (1,5,9,13), and mat2[3] would have (4,8,12,16).

 (51) Should the new vertex program-related enab les push/pop with
 ENABLE_BIT?

 RESOLVED: Yes. Pushing and popping enable b its is easy.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 378

 (52) Should all the vertex attribute state push /pop with CURRENT_BIT?

 RESOLVED: Yes.

 (53) Should all the vertex attrib vertex array state push/pop with
 CLIENT_VERTEX_ARRAY_BIT?

 RESOLVED: Yes.

 (55) Should we generate an INVALID_VALUE operat ion if updating a vertex
 attribute greater than MAX_VERTEX_ATTRIBS_ARB?

 RESOLVED: Yes. The other option would be to leave the behavior
 undefined, as with MultiTexCoord() functions. An implementation could
 mask or modulo the vertex attribute index wit h MAX_VERTEX_ATTRIB_ARB if
 it were a power of two. This error check wil l be a minor performance
 issue with VertexAttrib*ARB() and VertexAttri bArrayARB() calls. There
 will be no per-vertex overhead when using ver tex arrays or display
 lists.

 (56) Should writes to program environment or lo cal parameters during a
 vertex program be supported?

 RESOLVED. No. Writes to program parameter r egisters from within a
 vertex program would require the execution of vertex programs to be
 serialized with respect to each other. This would create a severe
 implementation penalty for pipelined or paral lel vertex program
 execution implementations.

 (58) Should program objects be shared among ren dering contexts in the same
 manner as display lists and texture objects?

 RESOLVED: Yes.

 (60) Should there be a MatrixMode or ActiveText ure-style selector for
 vertex attributes?

 RESOLVED: No. While this would reduce the n umber of enumerants used by
 this extensions, it would create programming a hassle in lots of cases.
 Consider having to change the vertex attribut e mode to enable a set of
 vertex arrays.

 (61) How should queries of vertex attribute arr ays work?

 RESOLVED: Add new get commands. Using the e xisting calls would require
 adding 6 sets of 16+ enumerants for current s tate and vertex attribute
 array state. That's too many new enumerants. Instead, add
 GetVertexAttribARB and GetVertexAttribPointer vARB. GetVertexAttribARB
 will be used to query vertex attribute array state and the current
 values of the generic vertex attributes. Get and GetPointerv will not
 return vertex attribute array state and point ers.

 (63) What should be said about rendering invari ances?

 RESOLVED: See the Appendix A additions below .

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 379

 The justification for the two rules cited is to support multi-pass
 rendering when using vertex programs. Differ ent rendering passes will
 likely use different programs so there must b e some means of
 guaranteeing that two different programs can generate particular
 identical vertex results between different pa sses.

 In practice, this does limit the type of vert ex program implementations
 that are possible.

 For example, consider a limited hardware impl ementation of vertex
 programs that uses a different floating-point implementation than the
 CPU's floating-point implementation. If the limited hardware
 implementation can only run small vertex prog rams (say the hardware
 provides on 4 temporary registers instead of the required 12), the
 implementation is incorrect and non-conforman t if programs that only
 require 4 temporary registers use the vertex program hardware, but
 programs that require more than 4 temporary r egisters are implemented by
 the CPU.

 This is a very important practical requiremen t. Consider a multi-pass
 rendering algorithm where one pass uses a ver tex program that uses only
 4 temporary registers, but a different pass u ses a vertex program that
 uses 5 temporary registers. If two programs have instruction sequences
 that given the same input state compute ident ical resulting vertex
 positions, the multi-pass algorithm should ge nerate identically
 positioned primitives for each pass. But giv en the non-conformant
 vertex program implementation described above , this could not be
 guaranteed.

 This does not mean that schemes for splitting vertex program
 implementations between dedicated hardware an d CPUs are impossible. If
 the CPU and dedicated vertex program hardware used IDENTICAL
 floating-point implementations and therefore generated exactly identical
 results, the above described could work.

 While these invariance rules are vital for ve rtex programs operating
 correctly for multi-pass algorithms, there is no requirement that
 conventional OpenGL vertex transform mode wil l be invariant with vertex
 program mode. A multi-pass algorithm should not assume that one pass
 using vertex program mode and another pass us ing conventional GL vertex
 transform mode will generate identically posi tioned primitives.

 Consider that while the conventional OpenGL v ertex program mode is
 repeatable with itself, the exact procedure u sed to transform vertices
 is not specified nor is the procedure's preci sion specified. The GL
 specification indicates that vertex coordinat es are transformed by the
 modelview matrix and then transformed by the projection matrix. Some
 implementations may perform this sequence of transformations exactly,
 but other implementations may transform verte x coordinates by the
 composite of the modelview and projection mat rices (one matrix transform
 instead of two matrix transforms in sequence) . Given this
 implementation flexibility, there is no way f or a vertex program author
 to exactly duplicate the precise computations used by the conventional
 OpenGL vertex transform mode.

 The guidance to OpenGL application programs i s clear. If you are going
 to implement multi-pass rendering algorithms that require certain

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 380

 invariances between the multiple passes, choo se either vertex program
 mode or the conventional OpenGL vertex transf orm mode for your rendering
 passes, but do not mix the two modes.

 (64) Should there be a way to guarantee positio n invariance with respect
 to conventional vertex transformation?

 RESOLVED: Yes. The "OPTION ARB_position_inv ariant" program option
 addresses this issue. This program option wi ll be available on all
 implementations of this extension.

 John Carmack advocated the need for this.

 (65) Why must RCP of 1.0 always be 1.0?

 RESOLVED: This is important for 3D graphics so that non-projective
 textures and orthogonal projections work as e xpected. Basically when q
 or w is 1.0, things should work as expected. Stronger requirements such
 as "RCP of -1.0 must always be -1.0" are enco uraged, but there is no
 compelling reason to state such requirements explicitly as is the case
 for "RCP of 1.0 must always be 1.0".

 (66) What happens when the source scalar value for the ARL instruction is
 an extremely large positive or negative floatin g-point value? Is there a
 problem mapping the value to a constrained inte ger range?

 RESOLVED: In this extension, address registe rs are only useful for
 relative addressing. The range of offsets th at can be added to an
 address register is limited (-64 to +63) and the set of valid array
 indices is also limited to MAX_PROGRAM_PARAME TERS_ARB. So, the set of
 floating-point values that needs to be handle d properly is
 well-constrained.

 (67) How do you perform a 3-component normalize in three instructions?

 RESOLVED: As follows.

 DP3 result.w, vector, vector; # result. w = nx^2+ny^2+nz^2
 RSQ result.w, result.w; # result. w = 1/sqrt(nx^2+ny^2+nz^2)
 MUL result.xyz, result.w, vector;

 (69) How do you compute the determinant of a 3x 3 matrix in three
 instructions?

 RESOLVED: As follows.

 #
 # Determinant of | vec0.x vec0.y vec0.z | into result.
 # | vec1.x vec1.y vec1.z |
 # | vec2.x vec2.y vec2.z |
 #
 MUL result, vec1.zxyw, vec2.yzxw;
 MAD result, vec1.yzxw, vec2.zxyw, -result;
 DP3 result, vec0, result;

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 381

 (70) How do you transform a vertex position by a 4x4 matrix and then
 perform a homogeneous divide?

 RESOLVED: As follows.

 ATTRIB pos = vertex.position;
 TEMP result, temp;
 PARAM mat[4] = { state.matrix.modelview } ;

 DP4 result.w, pos, mat[3];
 DP4 result.x, pos, mat[0];
 DP4 result.y, pos, mat[1];
 DP4 result.z, pos, mat[2];
 RCP temp.w, result.w;
 MUL result, result, temp.w;

 (71) How do you perform a vector weighting of t wo vectors using a single
 weight?

 RESOLVED: As follows.

 # result = a * vec0 + (1-a) * vec1
 # = vec1 + a * (vec0 - vec1)
 SUB result, vec0, vec1;
 MAD result, a, result, vec1;

 (72) How do you reduce a value to some fundamen tal period such as 2*PI?

 RESOLVED: As follows.

 # result = 2*PI * fraction(in/(2*PI))
 # piVec = (1/(2*PI), 2*PI, 0, 0)
 PARAM piVec = { 0.159154943, 6.283185307, 0 , 0 };

 MUL result, in, piVec.x;
 EXP result, result.x;
 MUL result, result.y, piVec.y;

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 382

 (73) How do you implement a simple ambient, spe cular, and diffuse infinite
 lighting computation with a single light and an eye-space normal?

 RESOLVED: As follows.

 !!ARBvp1.0
 ATTRIB iPos = vertex.position;
 ATTRIB iNormal = vertex.normal;
 PARAM mvinv[4] = { state.matrix.modelv iew.invtrans };
 PARAM mvp[4] = { state.matrix.mvp };
 PARAM lightDir = state.light[0].positi on;
 PARAM halfDir = state.light[0].half;
 PARAM specExp = state.material.shinin ess;
 PARAM ambientCol = state.lightprod[0].am bient;
 PARAM diffuseCol = state.lightprod[0].di ffuse;
 PARAM specularCol = state.lightprod[0].sp ecular;
 TEMP xfNormal, temp, dots;
 OUTPUT oPos = result.position;
 OUTPUT oColor = result.color;

 # Transform the vertex to clip coordinates.
 DP4 oPos.x, mvp[0], iPos;
 DP4 oPos.y, mvp[1], iPos;
 DP4 oPos.z, mvp[2], iPos;
 DP4 oPos.w, mvp[3], iPos;

 # Transform the normal to eye coordinates.
 DP3 xfNormal.x, mvinv[0], iNormal;
 DP3 xfNormal.y, mvinv[1], iNormal;
 DP3 xfNormal.z, mvinv[2], iNormal;

 # Compute diffuse and specular dot products and use LIT to compute
 # lighting coefficients.
 DP3 dots.x, xfNormal, lightDir;
 DP3 dots.y, xfNormal, halfDir;
 MOV dots.w, specExp.x;
 LIT dots, dots;

 # Accumulate color contributions.
 MAD temp, dots.y, diffuseCol, ambientCol;
 MAD oColor.xyz, dots.z, specularCol, temp ;
 MOV oColor.w, diffuseCol.w;
 END

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 383

 (75) Can you perturb transformed vertex positio ns with a vertex program?

 RESOLVED: Yes. Here is an example that perf orms an object-space
 diffuse lighting computations and perturbs t he vertex position based on
 this lighting result. Do not take this exam ple too seriously.

 !!ARBvp1.0
 #
 # Program environment parameters:
 # c[0].xyz = normalized light direction in object-space
 #
 # outputs diffuse illumination for color a nd perturbed position
 #
 ATTRIB iPos = vertex.position;
 ATTRIB iNormal = vertex.normal;
 PARAM mvp[4] = { state.matrix.mvp } ;
 PARAM lightDir = program.env[0];
 PARAM diffuseCol = { 1, 1, 0, 1 };
 TEMP temp;
 OUTPUT oPos = result.position;
 OUTPUT oColor = result.color;

 DP3 temp, lightDir, iNormal;
 MUL oColor.xyz, temp, diffuseCol;
 MAX temp, temp, 0; # clamp do t product to zero
 MUL temp, temp, iNormal; # align in direction of normal
 MUL temp, temp, 0.125; # scale di splacement by 1/8
 SUB temp, temp, iPos; # perturb
 DP4 oPos.x, mvp[0], temp; # xform us ing perturbed position
 DP4 oPos.y, mvp[1], temp;
 DP4 oPos.z, mvp[2], temp;
 DP4 oPos.w, mvp[3], temp;
 END

 (76) Should this extension provide any method f or updating program
 parameters in a program itself?

 RESOLVED: No. NV_vertex_program provided a special mechanism to do
 this using a "vertex state program" manually executed by calling
 ExecuteProgramNV. This capability has not pr oven itself particularly
 useful to date.

 (78) Should there be a different ProgramStringA RB call for every distinct
 program target? Arguably, 1D, 2D, and 3D textu res each have their own
 TexImage command for specifying their image dat a.

 RESOLVED: No. All program objects can/shoul d be loaded with
 ProgramStringARB. We expect the string to be a sufficient to express
 any kind of programmability.

 Moreover, the 1D, 2D, and 3D TexImage command s describe the image being
 specified as opposed to the texture target be ing updated. With cube map
 textures, there are six face texture targets that use the TexImage2D
 command but not with the TEXTURE_2D target.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 384

 (79) This extension introduces a collection of new matrices for use by
 vertex programs (and possibly other programs as well). What should these
 matrices be called?

 RESOLVED: Program matrices. These matrices are referred to as
 "tracking matrices" in NV_vertex_program, but the functionality is
 equivalent.

 (80) With ARB_vertex_blend and EXT_vertex_weigh ting, there are multiple
 modelview matrices. This extension provides a single "MVP" matrix,
 defined to be the product of modelview matrix 0 and the projection
 matrices. Should this extension instead provid e one MVP matrix per
 modelview matrix?

 RESOLVED: No. Providing multiple MVP matric es allows applications to
 do N transformations into clip space and then one weighting operation,
 instead of N transformations into eye space, a weighting operation, and
 then a single transformation into clip space. This would potentially
 save instructions, but this optimization woul d be of no value if the
 program did any other operations that require d eye coordinates.

 Note also that the MVP transformations are li kely general 4x4 matrix
 multiplies (4 DP4 instructions per transform) . On the other hand,
 object and eye coordinates are often 3D coord inates with a constant W of
 1.0. So each transformation to eye coordinat es may require only 3 DP4
 instructions, in which case the comparison ma y be 4N instructions (clip
 weighting) vs. 3N+4 (eye weighting).

 (81) Should variable declarations be allowed to be anywhere within the
 program body, or should they instead be require d to be done at the
 beginning of the program? Should the possibili ty of branching in a future
 standard affect this resolution?

 RESOLVED: Declarations will be allowed anywh ere in the program text;
 the only ordering requirement is that the dec laration of a variable must
 precede its use in the program text. Requiri ng up-front variable
 declarations may require multiple passes for applications that build
 programs on the fly.

 While declarations can appear anywhere in the program body, they are not
 executable statements. Any corresponding bin dings (including constant
 initializations) are resolved before the prog ram executes. The bindings
 will be resolved even if a program were to "b ranch around" a
 declaration.

 (82) Should address register variables be treat ed as vectors? If so,
 should a variable number of components (up to f our) be supported by this
 extension?

 RESOLVED: In the future, four-component addr ess vectors may be
 supported, and vector notation is used for fo rward compatibility. Using
 this notation makes address registers consist ent with all the other
 vector data types in this extension. However , support for more than one
 usable component will be left for future exte nsions, but could be added
 via a program option or in a new language rev ision (e.g., !!ARBvp2.0).

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 385

 (83) Should program local parameters be logical ly connected to the program
 string or the program object?

 RESOLVED: Program local parameters are prope rties of a program object.
 Their values persist even after a new program is loaded into the object.
 This model does allow applications to recompi le the program in a given
 object based on certain rendering settings wi thout having to
 re-initialize any state stored in the object.

 (84) Should this extension provide a method to specify "anonymous" program
 local parameters and query an index into the pr ogram parameter array.

 RESOLVED: No. It would be nice to declare a variable in a program such
 as

 PARAM foo = program.local; # note no index in the array

 after which an application could query the lo cation of "foo" in the
 program local parameter array. However, give n that local parameters
 persist even across program loads, it would b e difficult to specify what
 program local parameter "foo" would be assign ed to.

 (85) EXT_vertex_weighting provides a single ver tex blend weight.
 ARB_vertex_blend generalizes this concept to a weight vector. Both pieces
 of state are specified separately, and could be thought of as distinct.
 Should distinct bindings be provided in this ex tension?

 RESOLVED: No. No current implementation sup ports both extensions, but
 the vendors involved in this standardization process agree that the
 state should not be considered distinct. If an implementation supported
 both extensions, the APIs would modify the sa me state.

 (86) Should this extension provide functionalit y for variable aliasing?
 If so, how should it be specified and what type s of variables can be
 aliasesed?

 RESOLVED: Yes, for all variable types. The syntax is a simple text
 replacement:

 ALIAS a = b;

 This functionality allows applications to "sh are" variables, and thereby
 exceed implementation-dependent limits on the number of variable
 declarations. This may be particularly signi ficant for temporaries,
 where the limit on the number of variables ma y be fairly low.

 (87) How do you determine whether a given progr am option is supported by
 the GL implementation?

 RESOLVED: Program options may be introduced in OpenGL extensions and
 may be added to future OpenGL specifications. An option will be
 supported if and only if (1) the correspondin g OpenGL extension appears
 in the implementation-dependent EXTENSIONS st ring or (2) the option is
 documented in the OpenGL specification versio n corresponding to the
 implementation's VERSION string.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 386

 The ARB_position_invariant option is provided by this extension, and
 will always be available (provided this exten sion is supported).

 (88) What's the deal with binding the alpha com ponent of light colors, fog
 colors, and material colors (other than diffuse)? They don't do anything,
 right?

 RESOLVED: The GL state for these different c olors includes alpha
 components, which will be returned by queries . However, in the
 conventional OpenGL pipeline, most of these a lpha components are
 effectively ignored. However, since they are present in the GL state,
 they will be exposed in bindings. What is do ne with these alpha values
 in program mode is completely up to the verte x program.

 Vertex programs need to be careful to ensure that the alpha component is
 computed correctly when evaluating lighting e quations. When
 accumulating light contributions, it may be n ecessary to use write masks
 to disable writes to the alpha component.

 (89) The LOG instruction takes the logarithm of the absolute value of its
 operand while the LG2 instruction takes the log arithm of the operand
 itself. In LG2, the logarithm of negative numb ers is undefined.

 RESOLVED: The LOG instruction is present for (1) compatibility with
 NV_vertex_program and DirectX 8 languages and (2) because it may
 outperform LG2 on some platforms. For compat ibility, it is defined to
 behave identically to existing languages.

 (90) With vertex programs, fog coordinates and point sizes can be computed
 on a per-vertex basis. How are the fog coordin ates and point sizes
 associated with vertices introduced by clipping computed?

 RESOLVED: Fog coordinates and point sizes fo r clipped vertices are
 computed by interpolating the computed values at the original vertices
 in exactly the same manner as colors and text ure coordinates are
 interpolated in section 2.13.8 of the OpenGL 1.3 specification.

 (91) Vertex programs support only RGBA colors, but do not support color
 index inputs or results. What happens if an ap plication uses vertex
 programs in color index mode.

 RESOLVED: The results of vertex program exec ution are undefined if the
 GL is in color index mode.

 (92) Should automatic normalization of evaluate d normals (AUTO_NORMAL) be
 supported when the GL is in vertex program mode ?

 RESOLVED: Automatic normalization of normals will be disabled in vertex
 program mode. The current vertex program can easily normalize the
 normal if required. This can lead to greater efficiency if the vertex
 program transforms the normal to another coor dinate system such as
 eye-space with a transform that preserves vec tor length. Then a single
 normalize after transform is more efficient t han normalizing after
 evaluation and normalizing again after transf orm. Conceptually, the
 normalize mandated for AUTO_NORMAL in section 5.1 is just one of the
 many transformation operations subsumed by ve rtex programs.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 387

 (93) This extension allows applications to name their own variables. What
 keywords should be reserved?

 RESOLVED: Instruction names and declaration keywords (e.g., PARAM) will
 be reserved. Additionally, since attribute, parameter, and result
 bindings are allowed in the program text, the binding prefix keywords
 "vertex", "state", "program", and "result" ar e reserved to simplify
 parsing. This prevents the need to distingui sh between
 "vertex.position" ("vertex" as a binding) and "vertex.xyzw" ("vertex" as
 a variable).

 (94) When counting the number of program parame ter bindings, multiple
 constant vectors with the same components are c ounted only once. How is
 this determined?

 RESOLVED: The implementation does a numerica l comparison after the
 specified constants are converted to an inter nal floating-point
 representation. Due to floating-point repres entation limits, such
 conversions are not always precise. Constant s specified with different
 text that are "equivalent" (e.g., "12" and "1 .2E+01") are not guaranteed
 to resolve to the same value. Additionally, constants that are not
 "equivalent" but have only small relative dif ferences (e.g., "200000000"
 and "200000001") may end up resolving to the same value. Constants
 specified with the same text should always be identical.

 (95) What characters are allowed in identifier names?

 RESOLVED: Letters ("A"-"Z", "a"-"z"), number s ("0"-"9"), underscores
 ("_"), and dollar signs ("$").

 (96) How should future programmability extensio ns interact with this one?

 RESOLVED: Future programmability extensions are expected to fall in one
 of two classes: (1) extensions that bring pr ogrammability to new
 sections and (2) extensions the extend existi ng programmability models.
 The former class should introduce a new progr am target; the latter class
 would extend the functionality of an existing target.

 Recommendations for extensions introducing ne w program targets include:

 * Re-use and reference the functionality sp ecified in this extension
 (or in a future OpenGL specification inco rporating this extension)
 as much as possible, to maintain a consis tent model.

 * Provide a program header allowing for eas y identification and
 versioning of programs for the new target .

 Recommendations for extensions modifying exis ting program targets
 include:

 * The option mechanism (section 2.14.4.5) s hould be used to provide
 minor modifications to the program langua ge.

 * The program header/version string (sectio n 2.14.2) should be used to
 provide major modifications to the langua ge, or potentially to
 provide a commonly used collection of opt ions. Program header

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 388

 string changes should be multi-vendor ext ensions as much as
 possible.

 * For portability, programs should not be a llowed to use extended
 language features without specifying the corresponding program
 options or program header.

New Procedures and Functions

 void VertexAttrib1sARB(uint index, short x);
 void VertexAttrib1fARB(uint index, float x);
 void VertexAttrib1dARB(uint index, double x);
 void VertexAttrib2sARB(uint index, short x, sho rt y);
 void VertexAttrib2fARB(uint index, float x, flo at y);
 void VertexAttrib2dARB(uint index, double x, do uble y);
 void VertexAttrib3sARB(uint index, short x, sho rt y, short z);
 void VertexAttrib3fARB(uint index, float x, flo at y, float z);
 void VertexAttrib3dARB(uint index, double x, do uble y, double z);
 void VertexAttrib4sARB(uint index, short x, sho rt y, short z, short w);
 void VertexAttrib4fARB(uint index, float x, flo at y, float z, float w);
 void VertexAttrib4dARB(uint index, double x, do uble y, double z, double w);
 void VertexAttrib4NubARB(uint index, ubyte x, u byte y, ubyte z, ubyte w);

 void VertexAttrib1svARB(uint index, const short *v);
 void VertexAttrib1fvARB(uint index, const float *v);
 void VertexAttrib1dvARB(uint index, const doubl e *v);
 void VertexAttrib2svARB(uint index, const short *v);
 void VertexAttrib2fvARB(uint index, const float *v);
 void VertexAttrib2dvARB(uint index, const doubl e *v);
 void VertexAttrib3svARB(uint index, const short *v);
 void VertexAttrib3fvARB(uint index, const float *v);
 void VertexAttrib3dvARB(uint index, const doubl e *v);
 void VertexAttrib4bvARB(uint index, const byte *v);
 void VertexAttrib4svARB(uint index, const short *v);
 void VertexAttrib4ivARB(uint index, const int * v);
 void VertexAttrib4ubvARB(uint index, const ubyt e *v);
 void VertexAttrib4usvARB(uint index, const usho rt *v);
 void VertexAttrib4uivARB(uint index, const uint *v);
 void VertexAttrib4fvARB(uint index, const float *v);
 void VertexAttrib4dvARB(uint index, const doubl e *v);
 void VertexAttrib4NbvARB(uint index, const byte *v);
 void VertexAttrib4NsvARB(uint index, const shor t *v);
 void VertexAttrib4NivARB(uint index, const int *v);
 void VertexAttrib4NubvARB(uint index, const uby te *v);
 void VertexAttrib4NusvARB(uint index, const ush ort *v);
 void VertexAttrib4NuivARB(uint index, const uin t *v);

 void VertexAttribPointerARB(uint index, int siz e, enum type,
 boolean normalized, sizei stride,
 const void *pointer);

 void EnableVertexAttribArrayARB(uint index);
 void DisableVertexAttribArrayARB(uint index);

 void ProgramStringARB(enum target, enum format, sizei len,
 const void *string);

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 389

 void BindProgramARB(enum target, uint program);

 void DeleteProgramsARB(sizei n, const uint *pro grams);

 void GenProgramsARB(sizei n, uint *programs);

 void ProgramEnvParameter4dARB(enum target, uint index,
 double x, double y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, uin t index,
 const double *pa rams);
 void ProgramEnvParameter4fARB(enum target, uint index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, uin t index,
 const float *par ams);

 void ProgramLocalParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramLocalParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, u int index,
 const float *p arams);

 void GetProgramEnvParameterdvARB(enum target, u int index,
 double *params);
 void GetProgramEnvParameterfvARB(enum target, u int index,
 float *params) ;

 void GetProgramLocalParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramLocalParameterfvARB(enum target, uint index,
 float *param s);

 void GetProgramivARB(enum target, enum pname, i nt *params);

 void GetProgramStringARB(enum target, enum pnam e, void *string);

 void GetVertexAttribdvARB(uint index, enum pnam e, double *params);
 void GetVertexAttribfvARB(uint index, enum pnam e, float *params);
 void GetVertexAttribivARB(uint index, enum pnam e, int *params);

 void GetVertexAttribPointervARB(uint index, enu m pname, void **pointer);

 boolean IsProgramARB(uint program);

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, by the
 <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev,
 and by the <target> parameter of ProgramStringA RB, BindProgramARB,
 ProgramEnvParameter4[df][v]ARB, ProgramLocalPar ameter4[df][v]ARB,
 GetProgramEnvParameter[df]vARB, GetProgramLocal Parameter[df]vARB,
 GetProgramivARB, and GetProgramStringARB.

 VERTEX_PROGRAM_ARB 0x8620

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 390

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 VERTEX_PROGRAM_POINT_SIZE_ARB 0x8642
 VERTEX_PROGRAM_TWO_SIDE_ARB 0x8643
 COLOR_SUM_ARB 0x8458

 Accepted by the <format> parameter of ProgramSt ringARB:

 PROGRAM_FORMAT_ASCII_ARB 0x8875

 Accepted by the <pname> parameter of GetVertexA ttrib[dfi]vARB:

 VERTEX_ATTRIB_ARRAY_ENABLED_ARB 0x8622
 VERTEX_ATTRIB_ARRAY_SIZE_ARB 0x8623
 VERTEX_ATTRIB_ARRAY_STRIDE_ARB 0x8624
 VERTEX_ATTRIB_ARRAY_TYPE_ARB 0x8625
 VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB 0x886A
 CURRENT_VERTEX_ATTRIB_ARB 0x8626

 Accepted by the <pname> parameter of GetVertexA ttribPointervARB:

 VERTEX_ATTRIB_ARRAY_POINTER_ARB 0x8645

 Accepted by the <pname> parameter of GetProgram ivARB:

 PROGRAM_LENGTH_ARB 0x8627
 PROGRAM_FORMAT_ARB 0x8876
 PROGRAM_BINDING_ARB 0x8677
 PROGRAM_INSTRUCTIONS_ARB 0x88A0
 MAX_PROGRAM_INSTRUCTIONS_ARB 0x88A1
 PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A2
 MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A3
 PROGRAM_TEMPORARIES_ARB 0x88A4
 MAX_PROGRAM_TEMPORARIES_ARB 0x88A5
 PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A6
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A7
 PROGRAM_PARAMETERS_ARB 0x88A8
 MAX_PROGRAM_PARAMETERS_ARB 0x88A9
 PROGRAM_NATIVE_PARAMETERS_ARB 0x88AA
 MAX_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AB
 PROGRAM_ATTRIBS_ARB 0x88AC
 MAX_PROGRAM_ATTRIBS_ARB 0x88AD
 PROGRAM_NATIVE_ATTRIBS_ARB 0x88AE
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AF
 PROGRAM_ADDRESS_REGISTERS_ARB 0x88B0
 MAX_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B1
 PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B2
 MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B3
 MAX_PROGRAM_LOCAL_PARAMETERS_ARB 0x88B4
 MAX_PROGRAM_ENV_PARAMETERS_ARB 0x88B5
 PROGRAM_UNDER_NATIVE_LIMITS_ARB 0x88B6

 Accepted by the <pname> parameter of GetProgram StringARB:

 PROGRAM_STRING_ARB 0x8628

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 391

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PROGRAM_ERROR_POSITION_ARB 0x864B
 CURRENT_MATRIX_ARB 0x8641
 TRANSPOSE_CURRENT_MATRIX_ARB 0x88B7
 CURRENT_MATRIX_STACK_DEPTH_ARB 0x8640
 MAX_VERTEX_ATTRIBS_ARB 0x8869
 MAX_PROGRAM_MATRICES_ARB 0x862F
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB 0x862E

 Accepted by the <name> parameter of GetString:

 PROGRAM_ERROR_STRING_ARB 0x8874

 Accepted by the <mode> parameter of MatrixMode:

 MATRIX0_ARB 0x88C0
 MATRIX1_ARB 0x88C1
 MATRIX2_ARB 0x88C2
 MATRIX3_ARB 0x88C3
 MATRIX4_ARB 0x88C4
 MATRIX5_ARB 0x88C5
 MATRIX6_ARB 0x88C6
 MATRIX7_ARB 0x88C7
 MATRIX8_ARB 0x88C8
 MATRIX9_ARB 0x88C9
 MATRIX10_ARB 0x88CA
 MATRIX11_ARB 0x88CB
 MATRIX12_ARB 0x88CC
 MATRIX13_ARB 0x88CD
 MATRIX14_ARB 0x88CE
 MATRIX15_ARB 0x88CF
 MATRIX16_ARB 0x88D0
 MATRIX17_ARB 0x88D1
 MATRIX18_ARB 0x88D2
 MATRIX19_ARB 0x88D3
 MATRIX20_ARB 0x88D4
 MATRIX21_ARB 0x88D5
 MATRIX22_ARB 0x88D6
 MATRIX23_ARB 0x88D7
 MATRIX24_ARB 0x88D8
 MATRIX25_ARB 0x88D9
 MATRIX26_ARB 0x88DA
 MATRIX27_ARB 0x88DB
 MATRIX28_ARB 0x88DC
 MATRIX29_ARB 0x88DD
 MATRIX30_ARB 0x88DE
 MATRIX31_ARB 0x88DF

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Modify Section 2.6, Begin/End Paradigm (p. 12)

 (modify last paragraph, p. 12) ... In addition, a current normal, a
 current color, multiple current texture coordin ate sets, and multiple

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 392

 generic vertex attributes may be used in proces sing each vertex. Normals
 are used by the GL in lighting calculations; th e current normal is a
 three-dimensional vector that may be set by sen ding three coordinates that
 specify it. Texture coordinates determine how a texture image is mapped
 onto a primitive. Multiple sets of texture coo rdinates may be used to
 specify how multiple texture images are mapped onto a primitive. Generic
 vertex attributes do not have any specific func tion but can be used in
 vertex program mode (section 2.14) to compute f inal values for any data
 associated with a vertex.

 Modify Section 2.6.3, GL Commands within Begin/ End (p. 19)

 (modify first paragraph of section, p. 19) The only GL commands that are
 allowed within any Begin/End pairs are the comm ands for specifying vertex
 coordinates, vertex color, normal coordinates, texture coordinates, and
 generic vertex attributes (Vertex, Color, Index , Normal, TexCoord,
 VertexAttrib*ARB), ...

 Modify Section 2.7, Vertex Specification (p. 19)

 (remove the "Finally" from the next-to-last par agraph, p. 20) There are
 several ways to set the current color. The GL s tores both a current
 single-valued color index, and a current four-v alued RGBA color. One

 (add new paragraph before last paragraph of sec tion, p. 21) Vertex
 programs (section 2.14) can access an array of four-component generic
 current vertex attributes. The first entry of this array is numbered
 zero, and the number of entries in the array is given by the
 implementation-dependent constant MAX_VERTEX_AT TRIBS_ARB. The commands

 void VertexAttrib{1234}{sfd}ARB(uint index, T coords);
 void VertexAttrib{123}{sfd}vARB(uint index, T coords);
 void VertexAttrib4{bsifd ubusui}vARB(uint ind ex, T coords);

 specify the current vertex attribute numbered < index>, whose components
 are named <x>, <y>, <z>, and <w>. The VertexAt trib1ARB family of commands
 sets the <x> coordinate to the provided single argument while setting <y>
 and <z> to 0 and <w> to 1. Similarly, VertexAt trib2ARB commands set <x>
 and <y> to the specified values, <z> to 0 and < w> to 1; VertexAttrib3ARB
 commands set <x>, <y>, and <z>, with <w> set to 1, and VertexAttrib4ARB
 commands set all four coordinates. The error I NVALID_VALUE is generated
 if <index> is greater than or equal to MAX_VERT EX_ATTRIBS_ARB.

 The commands

 void VertexAttrib4NubARB(uint index, T coords);
 void VertexAttrib4N{bsi ubusui}vARB(uint inde x, T coords);

 also specify vertex attributes with fixed-point coordinates that are
 scaled to the range [0,1] or [-1,1], according to Table 2.6.

 Setting generic vertex attribute zero specifies a vertex; the four vertex
 coordinates are taken from the values of attrib ute zero. A Vertex2,
 Vertex3, or Vertex4 command is completely equiv alent to the corresponding
 VertexAttrib command with an index of zero. Se tting any other generic
 vertex attribute updates the current values of the attribute. There are
 no current values for vertex attribute zero.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 393

 Implementations may, but do not necessarily, us e the same storage for the
 current values of generic and certain conventio nal vertex attributes.
 When any generic vertex attribute other than ze ro is specified, the
 current values for the corresponding convention al attribute in Table X.1
 become undefined. Additionally, when a convent ional vertex attribute is
 specified, the current values for the correspon ding generic vertex
 attribute in Table X.1 become undefined. For e xample, setting the current
 normal will leave generic vertex attribute 2 un defined, and vice versa.

 Generic
 Attribute Conventional Attribute Conven tional Attribute Command
 --------- ------------------------ ------ ------------------------
 0 vertex position Vertex
 1 vertex weights 0-3 Weight ARB, VertexWeightEXT
 2 normal Normal
 3 primary color Color
 4 secondary color Second aryColorEXT
 5 fog coordinate FogCoo rdEXT
 6 - -
 7 - -
 8 texture coordinate set 0 MultiT exCoord(TEXTURE0, ...)
 9 texture coordinate set 1 MultiT exCoord(TEXTURE1, ...)
 10 texture coordinate set 2 MultiT exCoord(TEXTURE2, ...)
 11 texture coordinate set 3 MultiT exCoord(TEXTURE3, ...)
 12 texture coordinate set 4 MultiT exCoord(TEXTURE4, ...)
 13 texture coordinate set 5 MultiT exCoord(TEXTURE5, ...)
 14 texture coordinate set 6 MultiT exCoord(TEXTURE6, ...)
 15 texture coordinate set 7 MultiT exCoord(TEXTURE7, ...)
 8+n texture coordinate set n MultiT exCoord(TEXTURE0+n, ...)

 Table X.1, Generic and Conventional Vertex Attr ibute Mappings. For each
 row, the current value of the conventional attr ibute becomes undefined
 when the corresponding generic attribute is set , and vice versa.
 Attribute zero corresponds to the vertex positi on and has no current
 state.

 Setting any conventional vertex attribute not l isted in Table X.1
 (including vertex weights 4 and above, if suppo rted) will not cause any
 generic vertex attribute to become undefined, a nd such attributes will not
 become undefined when any generic vertex attrib ute is set.

 (modify the last paragraph in the section, p.21) The state required to
 support vertex specification consists of four f loating-point numbers per
 texture unit to store the current texture coord inates s, t, r, and q,
 three floating-point numbers to store the three coordinates of the current
 normal, four floating-point values to store the current RGBA color, one
 floating-point value to store the current color index, and
 MAX_VERTEX_ATTRIBS_ARB-1 four-component floatin g-point vectors for generic
 vertex attributes. There is no notion of a cur rent vertex, so no state is
 devoted to vertex coordinates or vertex attribu te zero. The initial
 texture coordinates are (S,T,R,Q) = (0,0,0,1) f or each texture unit. The
 initial current normal has coordinates (0,0,1). The initial RGBA color is
 (R,G,B,A) = (1,1,1,1). The initial color index is 1. The initial values
 for all generic vertex attributes are undefined .

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 394

 Modify Section 2.8, Vertex Arrays (p. 21)

 (modify first paragraph of section, p.21) The v ertex specification
 commands described in section 2.7 accept data i n almost any format, but
 their use requires many command executions to s pecify even simple
 geometry. Vertex data may also be placed into a rrays that are stored in
 the client's address space. Blocks of data in t hese arrays may then be
 used to specify multiple geometric primitives t hrough the execution of a
 single GL command. The client may specify up to 5 plus the values of
 MAX_TEXTURE_UNITS and MAX_VERTEX_ATTRIBS_ARB ar rays: one each to store
 vertex coordinates, edge flags, colors, color i ndices, normals, one or
 more texture coordinate sets, and one or more g eneric vertex attributes.
 The commands

 ...

 void VertexAttribPointerARB(uint index, int s ize, enum type,
 boolean normalize d, sizei stride,
 const void *point er);

 describe the locations and organizations...

 (add after the first paragraph, p.22) The <inde x> parameter in the
 VertexAttribPointer command identifies the gene ric vertex attribute array
 being described. The error INVALID_VALUE is ge nerated if <index> is
 greater than or equal to MAX_VERTEX_ATTRIBS_ARB . The <normalized>
 parameter in the VertexAttribPointer command id entifies whether
 fixed-point types should be normalized when con verted to floating-point.
 If <normalized> is TRUE, fixed-point data are c onverted as specified in
 Table 2.6; otherwise, the fixed-point values ar e converted directly.

 (add after first paragraph, p.23) An individual generic vertex attribute
 array is enabled or disabled by calling one of

 void EnableVertexAttribArrayARB(uint index);
 void DisableVertexAttribArrayARB(uint index);

 where <index> identifies the generic vertex att ribute array to enable or
 disable. The error INVALID_VALUE is generated if <index> is greater than
 or equal to MAX_VERTEX_ATTRIBS_ARB.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 395

 (modify Table 2.4, p.23)

 Normal
 Command Sizes ized? Type s
 ---------------------- ------- ------ ---- ----------------------------
 VertexPointer 2,3,4 no shor t, int, float, double
 NormalPointer 3 yes byte , short, int, float, double
 ColorPointer 3,4 yes byte , ubyte, short, ushort,
 int, uint, float, double
 IndexPointer 1 no ubyt e, short, int, float, double
 TexCoordPointer 1,2,3,4 no shor t, int, float, double
 EdgeFlagPointer 1 no bool ean
 VertexAttribPointerARB 1,2,3,4 flag byte , ubyte, short, ushort,
 int, uint, float, double
 WeightPointerARB >=1 yes byte , ubyte, short, ushort,
 int, uint, float, double
 VertexWeightPointerEXT 1 n/a floa t
 SecondaryColor- 3 yes byte , ubyte, short, ushort,
 PointerEXT int, uint, float, double
 FogCoordPointerEXT 1 n/a floa t, double
 MatrixIndexPointerARB >=1 no ubyt e, ushort, uint

 Table 2.4: Vertex array sizes (values per ver tex) and data types. The
 "normalized" column indicates whether fixed-p oint types are accepted
 directly or normalized to [0,1] (for unsigned types) or [-1,1] (for
 singed types). For generic vertex attributes, fixed-point data are
 normalized if and only if the <normalized> fl ag is set.

 (modify last paragraph, p.23) The command

 void ArrayElement(int i);

 transfers the ith element of every enabled arra y to the GL. The effect of
 ArrayElement(i) is the same as the effect of th e command sequence

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 396

 if (ARB_vertex _blend vertex weight array enabled) {
 Weight[type]vARB(vertex weight array size,
 vertex weight array element i);
 }
 if (EXT_vertex_weighting vertex weight array enabled) {
 VertexWeight[type]vARB(vertex weight array element i);
 }
 if (normal array enabled) {
 Normal3[type]v(normal array element i);
 }
 if (color array enabled) {
 Color[size][type]v(color array element i);
 }
 if (secondary color array enabled) {
 SecondaryColor3[type]vEXT(secondary color array element i);
 }
 if (fog coordinate array enabled) {
 FogCoord[type]vEXT(fog coordinate array element i);
 }
 if (matrix index array enabled) {
 MatrixIndex[type]vARB(matrix index array size,
 matrix index array element i);
 }
 for (j = 0; j < textureUnits; j++) {
 if (texture coordinate set j array enabled) {
 MultiTexCoord[size][type]v(TEXTURE0 + j,
 texture coordinate set j
 array element i);
 }
 if (color index array enabled) {
 Index[type]v(color index array element i);
 }
 if (edge flag array enabled) {
 EdgeFlagv(edge flag array element i);
 }
 for (j = 1; j < genericAttributes; j++) {
 if (generic vertex attribute j array enabled) {
 if (generic vertex attribute j array normalization flag
 is set, and type is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]vARB(j, generic vertex attribute j
 array element i);
 } else {
 VertexAttrib[size][type]vARB(j, generic vertex attribute j
 array element i);
 }
 }
 }
 if (generic attribute array 0 enabled) {
 if (generic vertex attribute j array normalization flag
 is set, and type is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]vARB(0, generic vertex attribute 0
 array element i);
 } else {
 VertexAttrib[size][type]vARB(0, generic vertex attribute 0
 array element i);
 }
 } else if (vertex array enabled) {
 Vertex[size][type]vARB(vertex array element i);
 }

 where <textureUnits> and <genericAttributes> gi ve the number of texture
 units and generic vertex attributes supported b y the implementation,
 respectively. "[size]" and "[type]" correspond to the size and type of

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 397

 the corresponding array. For generic vertex at tributes, it is assumed
 that a complete set of vertex attribute command s exists, even though not
 all such functions are provided by the GL. Bot h generic attribute array
 zero and the vertex array can specify a vertex if enabled, but only one
 such array is used. As described in section 2. 7, setting a generic vertex
 attributes listed in Table X.1 will leave the c orresponding conventional
 vertex attribute undefined, and vice versa.

 (modify last paragraph of section, p.28) If the number of supported
 texture units (the value of MAX TEXTURE UNITS) is m and the number of
 supported generic vertex attributes (MAX_VERTEX _ATTRIBS_ARB) is n, then
 the client state required to implement vertex a rrays consists of 5+m+n
 boolean enables, 5+m+n memory pointers, 5+m+n i nteger stride values, 4+m+n
 symbolic constants representing array types, 2+ m+n integers representing
 values per element, and n boolean normalization flags. In the initial
 state, the enable values are each disabled, the memory pointers are each
 null, the strides are each zero, the array type s are each FLOAT, the
 integers representing values per element are ea ch four, and the
 normalization flags are disabled.

 Modify Section 2.10, Coordinate Transformations (p. 29)

 (add new paragraphs) Vertex attributes are tran sformed before the vertex
 is used to generate primitives for rasterizatio n, establish a raster
 position, or generate vertices for selection or feedback. The attributes
 of each vertex are transformed using one of two vertex transformation
 modes. The first mode, described in this and s ubsequent sections, is GL's
 conventional vertex transformation model. The second mode, known as
 vertex program mode and described in section 2. 14, transforms vertex
 attributes as specified in an application-suppl ied vertex program.

 Vertex program mode is enabled and disabled, re spectively, by

 void Enable(enum target);

 and

 void Disable(enum target);

 with <target> equal to VERTEX_PROGRAM_ARB. Whe n vertex program mode is
 enabled, vertices are transformed by the curren tly bound vertex program as
 discussed in section 2.14.

 When vertex program mode is disabled, vertices, normals, and texture
 coordinates are transformed before their coordi nates are used to produce
 an image in the framebuffer. We begin with a d escription of how vertex
 coordinates are transformed and how the transfo rmation is controlled in
 this case. The discussion that continues throu gh section 2.13 applies
 when vertex program mode is disabled.

 Modify Section 2.10.2, Matrices (p. 31)

 (modify 1st paragraph) The projection matrix an d model-view matrix are set
 and modified with a variety of commands. The a ffected matrix is
 determined by the current matrix mode. The cur rent matrix mode is set
 with

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 398

 void MatrixMode(enum mode);

 which takes one of the pre-defined constants TE XTURE, MODELVIEW, COLOR,
 PROJECTION, or MATRIX<i>_ARB as the argument. In the case of
 MATRIX<i>_ARB, <i> is an integer between 0 and <n>-1 indicating one of <n>
 program matrices where <n> is the value of the implementation defined
 constant MAX_PROGRAM_MATRICES_ARB. Such progra m matrices are described in
 section 2.14.6. TEXTURE is described later in section 2.10.2, and COLOR
 is described in section 3.6.3. If the current matrix mode is MODELVIEW,
 then matrix operations apply to the model-view matrix; if PROJECTION, then
 they apply to the projection matrix.

 (modify last paragraph of section) The state re quired to implement
 transformations consists of a <n>-value integer indicating the current
 matrix mode (where <n> is 4 + the number of sup ported texture and program
 matrices), a stack of at least two 4x4 matrices for each of COLOR,
 PROJECTION, and TEXTURE with associated stack p ointers, <n> stacks (where
 <n> is at least 8) of at least one 4x4 matrix f or each MATRIX<i>_ARB with
 associated stack pointers, and a stack of at le ast 32 4x4 matrices with an
 associated stack pointer for MODELVIEW. Initia lly, there is only one
 matrix on each stack, and all matrices are set to the identity. The
 initial matrix mode is MODELVIEW. The initial value of ACTIVE_TEXTURE is
 TEXTURE0.

 Modify Section 2.11, Clipping (p. 39)

 (add to end of next-to-last paragraph, p. 40) . .. User clipping is not
 supported in vertex program mode if the current program is not
 position-invariant (section 2.14.4.5.1). In th is case, client-defined
 clip planes are always treated as disabled.

 Modify Section 2.12, Current Raster Position (p . 42)

 (modify fourth paragraph, p.42) The coordinates are treated as if they
 were specified in a Vertex command. If vertex program mode is enabled,
 the currently bound vertex program is executed, using the x, y, z, and w
 coordinates as the object coordinates of the ve rtex. Otherwise, the x, y,
 z, and w coordinates are transformed by the cur rent model-view and
 projection matrices. These coordinates, along w ith current values, are
 used to generate a color and texture coordinate s just as is done for a
 vertex. The color and texture coordinates produ ced using either method
 replace the color and texture coordinates store d in the current raster
 position's associated data. When in vertex pro gram mode, the "x"
 component of the fog coordinate result replaces the current raster
 distance; otherwise, the distance from the orig in of the eye coordinate
 system to the vertex as transformed by only the current model-view matrix
 replaces the current raster distance. The latt er distance can be
 approximated (see section 3.10).

 Rename and Modify Section 2.13.8, Color and Ver tex Data Clipping (p.56)

 (modify second paragraph, p.57) Texture coordin ates, as well as fog
 coordinates and point sizes computed on a per-v ertex basis, must also be
 clipped when a primitive is clipped. The metho d is exactly analogous to
 that used for color clipping.

 Add New Section 2.14 and subsections (p. 57).

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 399

 Section 2.14, Vertex Programs

 The conventional GL vertex transformation model described in sections 2.10
 through 2.13 is a configurable but essentially hard-wired sequence of
 per-vertex computations based on a canonical se t of per-vertex parameters
 and vertex transformation related state such as transformation matrices,
 lighting parameters, and texture coordinate gen eration parameters. The
 general success and utility of the conventional GL vertex transformation
 model reflects its basic correspondence to the typical vertex
 transformation requirements of 3D applications.

 However when the conventional GL vertex transfo rmation model is not
 sufficient, the vertex program mode provides a substantially more flexible
 model for vertex transformation. The vertex pr ogram mode permits
 applications to define their own vertex program s.

 A vertex program is a character string that spe cifies a sequence of
 operations to perform. Vertex program instruct ions are typically
 4-component vector operations that operate on p er-vertex attributes and
 program parameters. Vertex programs execute on a per-vertex basis and
 operate on each vertex completely independently from any other vertices.
 Vertex programs execute a finite fixed sequence of instructions with no
 branching or looping. Vertex programs execute without data hazards so
 results computed in one instruction can be used immediately afterwards.
 The result of a vertex program is a set of vert ex result registers that
 becomes the set of transformed vertex attribute s used during clipping and
 primitive assembly.

 Vertex programs are defined to operate only in RGBA mode. The results of
 vertex program execution are undefined if the G L is in color index mode.

 Section 2.14.1, Program Objects

 The GL provides one or more program targets, ea ch identifying a portion of
 the GL that can be controlled through applicati on-specified programs. The
 program target for vertex programs is VERTEX_PR OGRAM_ARB. Each program
 target has an associated program object, called the current program
 object. Each program target also has a default program object, which is
 initially the current program object.

 Each program object has an associated program s tring. The command

 ProgramStringARB(enum target, enum format, si zei len,
 const void *string);

 updates the program string for the current prog ram object for <target>.
 <format> describes the format of the program st ring, which must currently
 be PROGRAM_FORMAT_ASCII_ARB. <string> is a poi nter to the array of bytes
 representing the program string being loaded, w hich need not be
 null-terminated. The length of the array is gi ven by <len>. If <string>
 is null-terminated, <len> should not include th e terminator.

 When a program string is loaded, it is interpre ted according to syntactic
 and semantic rules corresponding to the program target specified by
 <target>. If a program violates the syntactic or semantic restrictions of
 the program target, ProgramStringARB generates the error

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 400

 INVALID_OPERATION.

 Additionally, ProgramString will update the pro gram error position
 (PROGRAM_ERROR_POSITION_ARB) and error string (PROGRAM_ERROR_STRING_ARB).
 If a program fails to load, the value of the pr ogram error position is set
 to the ubyte offset into the specified program string indicating where the
 first program error was detected. If the progr am fails to load because of
 a semantic restriction that is not detected unt il the program is fully
 scanned, the error position is set to the value of <len>. If a program
 loads successfully, the error position is set t o the value negative one.
 The implementation-dependent program error stri ng contains one or more
 error or warning messages. If a program loads succesfully, the error
 string may either contain warning messages or b e empty.

 Each program object has an associated array of program local parameters.
 The number and type of program local parameters is target- and
 implementation-dependent. For vertex programs, program local parameters
 are four-component floating-point vectors. The number of vectors is given
 by the implementation-dependent constant MAX_PR OGRAM_LOCAL_PARAMETERS_ARB,
 which must be at least 96. The commands

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 update the values of the program local paramete r numbered <index>
 belonging to the program object currently bound to <target>. For
 ProgramLocalParameter4fARB and ProgramLocalPara meter4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>, <z>,
 and <w>, respectively. For ProgramLocalParamet er4fvARB and
 ProgramLocalParameter4dvARB, the four component s of the parameter are
 updated with the array of four values pointed t o by <params>. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 number of program local parameters supported by <target>.

 Additionally, each program target has an associ ated array of program
 environment parameters. Unlike program local p arameters, program
 environment parameters are shared by all progra m objects of a given
 target. The number and type of program environ ment parameters is target-
 and implementation-dependent. For vertex progr ams, program environment
 parameters are four-component floating-point ve ctors. The number of
 vectors is given by the implementation-dependen t constant
 MAX_PROGRAM_ENV_PARAMETERS_ARB, which must be a t least 96. The commands

 void ProgramEnvParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, u int index,
 const float *p arams);
 void ProgramEnvParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, u int index,
 const double * params);

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 401

 update the values of the program environment pa rameter numbered <index>
 for the given program target <target>. For Pro gramEnvParameter4fARB and
 ProgramEnvParameter4dARB, the four components o f the parameter are updated
 with the values of <x>, <y>, <z>, and <w>, resp ectively. For
 ProgramEnvParameter4fvARB and ProgramEnvParamet er4dvARB, the four
 components of the parameter are updated with th e array of four values
 pointed to by <params>. The error INVALID_VALU E is generated if <index>
 is greater than or equal to the number of progr am environment parameters
 supported by <target>.

 Each program target has a default program objec t. Additionally, named
 program objects can be created and operated upo n. The name space for
 program objects is the positive integers and is shared by programs of all
 targets. The name zero is reserved by the GL.

 A named program object is created by binding an unused program object name
 to a valid program target. The binding is effe cted by calling

 BindProgramARB(enum target, uint program);

 with <target> set to the desired program target and <program> set to the
 unused program name. The resulting program obj ect has a program target
 given by <target> and is assigned target-specif ic default values (see
 section 2.14.7 for vertex programs). BindProgr amARB may also be used to
 bind an existing program object to a program ta rget. If <program> is
 zero, the default program object for <target> i s bound. If <program> is
 the name of an existing program object whose as sociated program target is
 <target>, the named program object is bound. T he error INVALID_OPERATION
 is generated if <program> names an existing pro gram object whose
 associated program target is anything other tha n <target>.

 Programs objects are deleted by calling

 void DeleteProgramsARB(sizei n, const uint *p rograms);

 <programs> contains <n> names of programs to be deleted. After a program
 object is deleted, its name is again unused. I f a program object that is
 bound to any target is deleted, it is as though BindProgramARB is first
 executed with same target and a <program> of ze ro. Unused names in
 <programs> are silently ignored, as is the valu e zero.

 The command

 void GenProgramsARB(sizei n, uint *programs);

 returns <n> currently unused program names in < programs>. These names are
 marked as used, for the purposes of GenPrograms ARB only, but objects are
 created only when they are first bound using Bi ndProgramARB.

 Section 2.14.2, Vertex Program Grammar and Sem antic Restrictions

 Vertex program strings are specified as an arra y of ASCII characters
 containing the program text. When a vertex pro gram is loaded by a call to
 ProgramStringARB, the program string is parsed into a set of tokens
 possibly separated by whitespace. Spaces, tabs , newlines, carriage
 returns, and comments are considered whitespace . Comments begin with the

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 402

 character "#" and are terminated by a newline, a carriage return, or the
 end of the program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for vertex programs. The set of vali d tokens can be inferred
 from the grammar. The token "" represents an e mpty string and is used to
 indicate optional rules. A program is invalid if it contains any
 undefined tokens or characters.

 A vertex program is required to begin with the header string "!!ARBvp1.0",
 without any preceding whitespace. This string identifies the subsequent
 program text as a vertex program (version 1.0) that should be parsed
 according to the following grammar and semantic rules. Program string
 parsing begins with the character immediately f ollowing the header string.

 <program> ::= <optionSequence> <st atementSequence> "END"

 <optionSequence> ::= <optionSequence> <op tion>
 | ""

 <option> ::= "OPTION" <identifier > ";"

 <statementSequence> ::= <statementSequence> <statement>
 | ""

 <statement> ::= <instruction> ";"
 | <namingStatement> "; "

 <instruction> ::= <ARL_instruction>
 | <VECTORop_instructio n>
 | <SCALARop_instructio n>
 | <BINSCop_instruction >
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZ_instruction>

 <ARL_instruction> ::= "ARL" <maskedAddrReg > "," <scalarSrcReg>

 <VECTORop_instruction> ::= <VECTORop> <maskedDs tReg> "," <swizzleSrcReg>

 <VECTORop> ::= "ABS"
 | "FLR"
 | "FRC"
 | "LIT"
 | "MOV"

 <SCALARop_instruction> ::= <SCALARop> <maskedDs tReg> "," <scalarSrcReg>

 <SCALARop> ::= "EX2"
 | "EXP"
 | "LG2"
 | "LOG"
 | "RCP"
 | "RSQ"

 <BINSCop_instruction> ::= <BINSCop> <maskedDst Reg> "," <scalarSrcReg> ","
 <scalarSrcReg>

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 403

 <BINSCop> ::= "POW"

 <BINop_instruction> ::= <BINop> <maskedDstRe g> ","
 <swizzleSrcReg> "," <swizzleSrcReg>

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | "SUB"
 | "XPD"

 <TRIop_instruction> ::= <TRIop> <maskedDstRe g> ","
 <swizzleSrcReg> "," <swizzleSrcReg> ","
 <swizzleSrcReg>

 <TRIop> ::= "MAD"

 <SWZ_instruction> ::= "SWZ" <maskedDstReg> "," <srcReg> ","
 <extendedSwizzle>

 <scalarSrcReg> ::= <optionalSign> <srcR eg> <scalarSuffix>

 <swizzleSrcReg> ::= <optionalSign> <srcR eg> <swizzleSuffix>

 <maskedDstReg> ::= <dstReg> <optionalMa sk>

 <maskedAddrReg> ::= <addrReg> <addrWrite Mask>

 <extendedSwizzle> ::= <extSwizComp> "," <e xtSwizComp> ","
 <extSwizComp> "," <extSwizComp>

 <extSwizComp> ::= <optionalSign> <extS wizSel>

 <extSwizSel> ::= "0"
 | "1"
 | <component>

 <srcReg> ::= <vertexAttribReg>
 | <temporaryReg>
 | <progParamReg>

 <dstReg> ::= <temporaryReg>
 | <vertexResultReg>

 <vertexAttribReg> ::= <establishedName>
 | <vtxAttribBinding>

 <temporaryReg> ::= <establishedName>

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 404

 <progParamReg> ::= <progParamSingle>
 | <progParamArray> "[" <progParamArrayMem> "]"
 | <paramSingleItemUse>

 <progParamSingle> ::= <establishedName>

 <progParamArray> ::= <establishedName>

 <progParamArrayMem> ::= <progParamArrayAbs>
 | <progParamArrayRel>

 <progParamArrayAbs> ::= <integer>

 <progParamArrayRel> ::= <addrReg> <addrCompo nent> <addrRegRelOffset>

 <addrRegRelOffset> ::= ""
 | "+" <addrRegPosOffse t>
 | "-" <addrRegNegOffse t>

 <addrRegPosOffset> ::= <integer> from 0 to 63

 <addrRegNegOffset> ::= <integer> from 0 to 64

 <vertexResultReg> ::= <establishedName>
 | <resultBinding>

 <addrReg> ::= <establishedName>

 <addrComponent> ::= "." "x"

 <addrWriteMask> ::= "." "x"

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 405

 <optionalMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <ADDRESS_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establishN ame> "="
 <vtxAttribBinding>

 <vtxAttribBinding> ::= "vertex" "." <vtxAtt ribItem>

 <vtxAttribItem> ::= "position"
 | "weight" <vtxOptWeig htNum>
 | "normal"
 | "color" <optColorTyp e>
 | "fogcoord"
 | "texcoord" <optTexCo ordNum>
 | "matrixindex" "[" <v txWeightNum> "]"
 | "attrib" "[" <vtxAtt ribNum> "]"

 <vtxAttribNum> ::= <integer> from 0 to MAX_VERTEX_ATTRIBS_ARB-1

 <vtxOptWeightNum> ::= ""
 | "[" <vtxWeightNum> "]"

 <vtxWeightNum> ::= <integer> from 0 to MAX_VERTEX_UNITS_ARB-1,
 must be divisible by four

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt>

 <PARAM_singleStmt> ::= "PARAM" <establishNa me> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishNa me> "[" <optArraySize> "]"
 <paramMultipleIn it>

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 406

 <optArraySize> ::= ""
 | <integer> from 1 to MAX_PROGRAM_PARAMETERS_ARB
 (maximum number of allowed program
 parameter binding s)

 <paramSingleInit> ::= "=" <paramSingleItem Decl>

 <paramMultipleInit> ::= "=" "{" <paramMultIn itList> "}"

 <paramMultInitList> ::= <paramMultipleItem>
 | <paramMultipleItem> "," <paramMultiInitList>

 <paramSingleItemDecl> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstDecl>

 <paramSingleItemUse> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstUse>

 <paramMultipleItem> ::= <stateMultipleItem>
 | <programMultipleItem >
 | <paramConstDecl>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateMa trixRows>

 <stateSingleItem> ::= "state" "." <stateMa terialItem>
 | "state" "." <stateLi ghtItem>
 | "state" "." <stateLi ghtModelItem>
 | "state" "." <stateLi ghtProdItem>
 | "state" "." <stateTe xGenItem>
 | "state" "." <stateFo gItem>
 | "state" "." <stateCl ipPlaneItem>
 | "state" "." <statePo intItem>
 | "state" "." <stateMa trixRow>

 <stateMaterialItem> ::= "material" <optFaceT ype> "." <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" "[" <stateLi ghtNumber> "]" "."
 <stateLightPropert y>

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSpo tProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 407

 <stateLightModelItem> ::= "lightmodel" <stateL ModProperty>

 <stateLModProperty> ::= "." "ambient"
 | <optFaceType> "." "s cenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <sta teLightNumber> "]"
 <optFaceType> "." <stateLProdProperty>

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> from 0 to MAX_LIGHTS-1

 <stateTexGenItem> ::= "texgen" <optTexCoor dNum> "."
 <stateTexGenType> "." <stateTexGenCoord>

 <stateTexGenType> ::= "eye"
 | "object"

 <stateTexGenCoord> ::= "s"
 | "t"
 | "r"
 | "q"

 <stateFogItem> ::= "fog" "." <stateFogP roperty>

 <stateFogProperty> ::= "color"
 | "params"

 <stateClipPlaneItem> ::= "clip" "[" <stateCli pPlaneNum> "]" "." "plane"

 <stateClipPlaneNum> ::= <integer> from 0 to MAX_CLIP_PLANES-1

 <statePointItem> ::= "point" "." <statePo intProperty>

 <statePointProperty> ::= "size"
 | "attenuation"

 <stateMatrixRow> ::= <stateMatrixItem> ". " "row" "["
 <stateMatrixRowNu m> "]"

 <stateMatrixRows> ::= <stateMatrixItem> <o ptMatrixRows>

 <optMatrixRows> ::= ""
 | "." "row" "[" <state MatrixRowNum> ".."
 <stateMatrixRowNu m> "]"

 <stateMatrixRow> ::= <stateMatrixItem> ". " "row" "["
 <stateMatrixRowNu m> "]"

 <stateOptMatModifier> ::= ""
 | "." <stateMatModifie r>

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 408

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixRowNum> ::= <integer> from 0 to 3

 <stateMatrixName> ::= "modelview" <stateOp tModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCoo rdNum>
 | "palette" "[" <state PaletteMatNum> "]"
 | "program" "[" <state ProgramMatNum> "]"

 <stateOptModMatNum> ::= ""
 | "[" <stateModMatNum> "]"

 <stateModMatNum> ::= <integer> from 0 to MAX_VERTEX_UNITS_ARB-1

 <statePaletteMatNum> ::= <integer> from 0 to MAX_PALETTE_MATRICES_ARB-1

 <stateProgramMatNum> ::= <integer> from 0 to MAX_PROGRAM_MATRICES_ARB-1

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env"
 "[" <progEnvParamN ums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> ". ." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env"
 "[" <progEnvParamN um> "]"

 <progLocalParams> ::= "program" "." "local "
 "[" <progLocalPara mNums> "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "local "
 "[" <progLocalPara mNum> "]"

 <progEnvParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_ENV_PARA METERS_ARB - 1

 <progLocalParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_LOCAL_PA RAMETERS_ARB - 1

 <paramConstDecl> ::= <paramConstScalarDec l>
 | <paramConstVector>

 <paramConstUse> ::= <paramConstScalarUse >
 | <paramConstVector>

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 409

 <paramConstScalarDecl> ::= <signedFloatConstant >

 <paramConstScalarUse> ::= <floatConstant>

 <paramConstVector> ::= "{" <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"

 <signedFloatConstant> ::= <optionalSign> <floa tConstant>

 <floatConstant> ::= see text

 <optionalSign> ::= ""
 | "-"
 | "+"

 <TEMP_statement> ::= "TEMP" <varNameList>

 <ADDRESS_statement> ::= "ADDRESS" <varNameLi st>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <OUTPUT_statement> ::= "OUTPUT" <establishN ame> "="
 <resultBinding>

 <resultBinding> ::= "result" "." "positi on"
 | "result" "." <result ColBinding>
 | "result" "." "fogcoo rd"
 | "result" "." "points ize"
 | "result" "." "texcoo rd" <optTexCoordNum>

 <resultColBinding> ::= "color" <optFaceType > <optColorType>

 <optFaceType> ::= ""
 | "." "front"
 | "." "back"

 <optColorType> ::= ""
 | "." "primary"
 | "." "secondary"

 <optTexCoordNum> ::= ""
 | "[" <texCoordNum> "] "

 <texCoordNum> ::= <integer> from 0 to MAX_TEXTURE_UNITS-1

 <ALIAS_statement> ::= "ALIAS" <establishNa me> "="
 <establishedName>

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 410

 <establishName> ::= <identifier>

 <establishedName> ::= <identifier>

 <identifier> ::= see text

 The <integer> rule matches an integer constant. The integer consists
 of a sequence of one or more digits ("0" throug h "9").

 The <floatConstant> rule matches a floating-poi nt constant consisting
 of an integer part, a decimal point, a fraction part, an "e" or
 "E", and an optionally signed integer exponent. The integer and
 fraction parts both consist of a sequence of on e or more digits ("0"
 through "9"). Either the integer part or the f raction parts (not
 both) may be missing; either the decimal point or the "e" (or "E")
 and the exponent (not both) may be missing.

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z"), digits ("0" thro ugh "9), underscores ("_"),
 or dollar signs ("$"); the first character must not be a number. Upper
 and lower case letters are considered different (names are
 case-sensitive). The following strings are res erved keywords and may not
 be used as identifiers:

 ABS, ADD, ADDRESS, ALIAS, ARL, ATTRIB, DP3, DP4, DPH, DST, END, EX2,
 EXP, FLR, FRC, LG2, LIT, LOG, MAD, MAX, MIN , MOV, MUL, OPTION, OUTPUT,
 PARAM, POW, RCP, RSQ, SGE, SLT, SUB, SWZ, T EMP, XPD, program, result,
 state, and vertex.

 The error INVALID_OPERATION is generated if a v ertex program fails to load
 because it is not syntactically correct or for one of the semantic
 restrictions described in the following section s.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified b y its tokenized name. The
 operation of these instructions when executed i s defined in section
 2.14.5. A successfully loaded program string r eplaces the program string
 previously loaded into the specified program ob ject. If the OUT_OF_MEMORY
 error is generated by ProgramStringARB, no chan ge is made to the previous
 contents of the current program object.

 Section 2.14.3, Vertex Program Variables

 Vertex programs may access a number of differen t variables during their
 execution. The following sections define the v ariables that can be
 declared and used by a vertex program.

 Explicit variable declarations allow a vertex p rogram to establish a
 variable name that can be used to refer to a sp ecified resource in
 subsequent instructions. A vertex program will fail to load if it
 declares the same variable name more than once or if it refers to a
 variable name that has not been previously decl ared in the program string.

 Implicit variable declarations allow a vertex p rogram to use the name of
 certain available resources by name.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 411

 Section 2.14.3.1, Vertex Attributes

 Vertex program attribute variables are a set of four-component
 floating-point vectors holding the attributes o f the vertex being
 processed. Vertex attribute variables are read -only during vertex program
 execution.

 Vertex attribute variables can be declared expl icitly using the
 <ATTRIB_statement> grammar rule, or implicitly using the
 <vtxAttribBinding> grammar rule in an executabl e instruction.

 Each vertex attribute variable is bound to a si ngle item of vertex state
 according to the <vtxAttrBinding> grammar rule. The set of GL state that
 can be bound to a vertex attribute variable is given in Table X.2. Vertex
 attribute variables are initialized at each ver tex program invocation with
 the current values of the bound state.

 Vertex Attribute Binding Components Underly ing State
 ------------------------ ---------- ------- -----------------------
 vertex.position (x,y,z,w) object coordinates
 vertex.weight (w,w,w,w) vertex weights 0-3
 vertex.weight[n] (w,w,w,w) vertex weights n-n+3
 vertex.normal (x,y,z,1) normal
 vertex.color (r,g,b,a) primary color
 vertex.color.primary (r,g,b,a) primary color
 vertex.color.secondary (r,g,b,a) seconda ry color
 vertex.fogcoord (f,0,0,1) fog coo rdinate
 vertex.texcoord (s,t,r,q) texture coordinate, unit 0
 vertex.texcoord[n] (s,t,r,q) texture coordinate, unit n
 vertex.matrixindex (i,i,i,i) vertex matrix indices 0-3
 vertex.matrixindex[n] (i,i,i,i) vertex matrix indices n-n+3
 vertex.attrib[n] (x,y,z,w) generic vertex attribute n

 Table X.2: Vertex Attribute Bindings. The " Components" column
 indicates the mapping of the state in the "Un derlying State" column.
 Values of "0" or "1" in the "Components" colu mn indicate the constants
 0.0 and 1.0, respectively. Bindings containi ng "[n]" require an integer
 value of <n> to select an individual item.

 If a vertex attribute binding matches "vertex.p osition", the "x", "y", "z"
 and "w" components of the vertex attribute vari able are filled with the
 "x", "y", "z", and "w" components, respectively , of the vertex position.

 If a vertex attribute binding matches "vertex.n ormal", the "x", "y", and
 "z" components of the vertex attribute variable are filled with the "x",
 "y", and "z" components, respectively, of the v ertex normal. The "w"
 component is filled with 1.

 If a vertex attribute binding matches "vertex.c olor" or
 "vertex.color.primary", the "x", "y", "z", and "w" components of the
 vertex attribute variable are filled with the " r", "g", "b", and "a"
 components, respectively, of the vertex color.

 If a vertex attribute binding matches "vertex.c olor.secondary", the "x",
 "y", "z", and "w" components of the vertex attr ibute variable are filled
 with the "r", "g", "b", and "a" components, res pectively, of the vertex
 secondary color.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 412

 If a vertex attribute binding matches "vertex.f ogcoord", the "x" component
 of the vertex attribute variable is filled with the vertex fog coordinate.
 The "y", "z", and "w" coordinates are filled wi th 0, 0, and 1,
 respectively.

 If a vertex attribute binding matches "vertex.t excoord" or
 "vertex.texcoord[n]", the "x", "y", "z", and "w " components of the vertex
 attribute variable are filled with the "s", "t" , "r", and "q" components,
 respectively, of the vertex texture coordinates for texture unit <n>. If
 "[n]" is omitted, texture unit zero is used.

 If a vertex attribute binding matches "vertex.w eight" or
 "vertex.weight[n]", the "x", "y", "z", and "w" components of the vertex
 attribute variable are filled with vertex weigh ts <n> through <n>+3,
 respectively. If "[n]" is omitted, weights zer o through three are used.
 For the purposes of this binding, all weights s upported by the
 implementation but not set by the application a re set to zero, including
 the extra derived weight corresponding to the f ixed-function
 WEIGHT_SUM_UNITY_ARB enable. For components wh ose corresponding weight is
 not supported by the implementation (i.e., numb ered MAX_VERTEX_UNITS_ARB
 or larger), "y" and "z" components are set to 0 .0 and "w" components are
 set to 1.0. A vertex program will fail to load if a vertex attribute
 binding specifies a weight number <n> that is g reater than or equal to
 MAX_VERTEX_UNITS_ARB or is not divisible by fou r.

 If a vertex attribute binding matches "vertex.m atrixindex" or
 "vertex.matrixindex[n]", the "x", "y", "z", and "w" components of the
 vertex attribute variable are filled with matri x indices <n> through <n>+3
 of the vertex, respectively. If "[n]" is omitt ed, matrix indices zero
 through three are used. For components whose c orresponding matrix index
 is not supported by the implementation (i.e., n umbered
 MAX_VERTEX_UNITS_ARB or larger), "y", and "z" c omponents are set to 0.0
 and "w" components are set to 1.0. A vertex pr ogram will fail to load if
 an attribute binding specifies a matrix index n umber <n> that is greater
 than or equal MAX_VERTEX_UNITS_ARB or is not di visible by four.

 If a vertex attribute binding matches "vertex.a ttrib[n]", the "x", "y",
 "z" and "w" components of the vertex attribute variable are filled with
 the "x", "y", "z", and "w" components, respecti vely, of generic vertex
 attribute <n>. Note that "vertex.attrib[0]" an d "vertex.position" are
 equivalent.

 As described in section 2.7, setting a generic vertex attribute may leave
 a corresponding conventional vertex attribute u ndefined, and vice versa.
 To prevent inadvertent use of attribute pairs w ith undefined attributes, a
 vertex program will fail to load if it binds bo th a conventional vertex
 attribute and a generic vertex attribute listed in the same row of Table
 X.2.1.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 413

 Conventional Attribute Binding Generic A ttribute Binding
 ------------------------------ --------- ----------------
 vertex.position vertex.at trib[0]
 vertex.weight vertex.at trib[1]
 vertex.weight[0] vertex.at trib[1]
 vertex.normal vertex.at trib[2]
 vertex.color vertex.at trib[3]
 vertex.color.primary vertex.at trib[3]
 vertex.color.secondary vertex.at trib[4]
 vertex.fogcoord vertex.at trib[5]
 vertex.texcoord vertex.at trib[8]
 vertex.texcoord[0] vertex.at trib[8]
 vertex.texcoord[1] vertex.at trib[9]
 vertex.texcoord[2] vertex.at trib[10]
 vertex.texcoord[3] vertex.at trib[11]
 vertex.texcoord[4] vertex.at trib[12]
 vertex.texcoord[5] vertex.at trib[13]
 vertex.texcoord[6] vertex.at trib[14]
 vertex.texcoord[7] vertex.at trib[15]
 vertex.texcoord[n] vertex.at trib[8+n]

 Table X.2.1: Invalid Vertex Attribute Bindin g Pairs. Vertex programs
 may not bind both attributes listed in any ro w. The <n> in the last row
 matches the number of any valid texture unit.

 Section 2.14.3.2, Vertex Program Parameters

 Vertex program parameter variables are a set of four-component
 floating-point vectors used as constants during vertex program execution.
 Vertex program parameters retain their values a cross vertex program
 invocations, although their values can change b etween invocations due to
 GL state changes.

 Single program parameter variables and arrays o f program parameter
 variables can be declared explicitly using the <PARAM_statement> grammar
 rule. Single program parameter variables can a lso be declared implicitly
 using the <paramSingleItemUse> grammar rule in an executable instruction.

 Each single program parameter variable is bound to a constant vector or to
 a GL state vector according to the <paramSingle Init> grammar rule.
 Individual items of a program parameter array a re bound to constant
 vectors or GL state vectors according to the <p rogramMultipleInit> grammar
 rule. The set of GL state that can be bound to program parameter
 variables are given in Tables X.3.1 through X.3 .8.

 Constant Bindings

 A program parameter variable can be bound to a scalar or vector constant
 using the <paramConstDecl> grammar rule (explic it declarations) or the
 <paramConstUse> grammar rule (implicit declarat ions).

 If a program parameter binding matches the <par amConstScalarDecl> or
 <paramConstScalarUse> grammar rules, the corres ponding program parameter
 variable is bound to the vector (X,X,X,X), wher e X is the value of the
 specified constant. Note that the <paramConstS calarUse> grammar rule,
 used only in implicit declarations, allows only non-negative constants.
 This disambiguates cases like "-2", which could conceivably be taken to

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 414

 mean either the vector "(2,2,2,2)" with all com ponents negated or
 "(-2,-2,-2,-2)" without negation. Only the for mer interpretation is
 allowed by the grammar.

 If a program parameter binding matches <paramCo nstVector>, the
 corresponding program parameter variable is bou nd to the vector (X,Y,Z,W),
 where X, Y, Z, and W are the values correspondi ng to the first, second,
 third, and fourth match of <signedFloatConstant >. If fewer than four
 constants are specified, Y, Z, and W assume the values 0.0, 0.0, and 1.0,
 if their respective constants are not specified .

 Program parameter variables initialized to cons tant values can never be
 modified.

 Program Environment/Local Parameter Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 program.env[a] (x,y,z,w) pr ogram environment
 pa rameter a
 program.local[a] (x,y,z,w) pr ogram local parameter a
 program.env[a..b] (x,y,z,w) pr ogram environment
 pa rameters a through b
 program.local[a..b] (x,y,z,w) pr ogram local parameters
 a through b

 Table X.3.1: Program Environment/Local Param eter Bindings. <a> and
 indicate parameter numbers, where <a> must be less than or equal to .

 If a program parameter binding matches "program .env[a]" or
 "program.local[a]", the four components of the program parameter variable
 are filled with the four components of program environment parameter <a>
 or program local parameter <a>, respectively.

 Additionally, for program parameter array bindi ngs, "program.env[a..b]"
 and "program.local[a..b]" are equivalent to spe cifying program environment
 parameters <a> through in order or program local parameters <a>
 through in order, respectively. In either case, a program will fail
 to load if <a> is greater than .

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 415

 Material Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.material.ambient (r,g,b,a) fr ont ambient material color
 state.material.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.specular (r,g,b,a) fr ont specular material color
 state.material.emission (r,g,b,a) fr ont emissive material color
 state.material.shininess (s,0,0,1) fr ont material shininess
 state.material.front.ambient (r,g,b,a) fr ont ambient material color
 state.material.front.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.front.specular (r,g,b,a) fr ont specular material color
 state.material.front.emission (r,g,b,a) fr ont emissive material color
 state.material.front.shininess (s,0,0,1) fr ont material shininess
 state.material.back.ambient (r,g,b,a) ba ck ambient material color
 state.material.back.diffuse (r,g,b,a) ba ck diffuse material color
 state.material.back.specular (r,g,b,a) ba ck specular material color
 state.material.back.emission (r,g,b,a) ba ck emissive material color
 state.material.back.shininess (s,0,0,1) ba ck material shininess

 Table X.3.2: Material Property Bindings. If a material face is not
 specified in the binding, the front property is used.

 If a program parameter binding matches any of t he material properties
 listed in Table X.3.2, the program parameter va riable is filled according
 to the table. For ambient, diffuse, specular, or emissive colors, the
 "x", "y", "z", and "w" components are filled wi th the "r", "g", "b", and
 "a" components, respectively, of the correspond ing material color. For
 material shininess, the "x" component is filled with the material's
 specular exponent, and the "y", "z", and "w" co mponents are filled with 0,
 0, and 1, respectively. Bindings containing ". back" refer to the back
 material; all other bindings refer to the front material.

 Material properties can be changed inside a Beg in/End pair, either
 directly by calling Material, or indirectly thr ough color material.
 However, such property changes are not guarante ed to update program
 parameter bindings until the following End comm and. Program parameter
 variables bound to material properties changed inside a Begin/End pair are
 undefined until the following End command.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 416

 Light Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.light[n].ambient (r,g,b,a) li ght n ambient color
 state.light[n].diffuse (r,g,b,a) li ght n diffuse color
 state.light[n].specular (r,g,b,a) li ght n specular color
 state.light[n].position (x,y,z,w) li ght n position
 state.light[n].attenuation (a,b,c,e) li ght n attenuation constants
 an d spot light exponent
 state.light[n].spot.direction (x,y,z,c) li ght n spot direction and
 cu toff angle cosine
 state.light[n].half (x,y,z,1) li ght n infinite half-angle
 state.lightmodel.ambient (r,g,b,a) li ght model ambient color
 state.lightmodel.scenecolor (r,g,b,a) li ght model front scene color
 state.lightmodel . (r,g,b,a) li ght model front scene color
 front.scenecolor
 state.lightmodel . (r,g,b,a) li ght model back scene color
 back.scenecolor
 state.lightprod[n].ambient (r,g,b,a) li ght n / front material
 am bient color product
 state.lightprod[n].diffuse (r,g,b,a) li ght n / front material
 di ffuse color product
 state.lightprod[n].specular (r,g,b,a) li ght n / front material
 sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.specular sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.specular sp ecular color product

 Table X.3.3: Light Property Bindings. <n> in dicates a light number.

 If a program parameter binding matches "state.l ight[n].ambient",
 "state.light[n].diffuse", or "state.light[n].sp ecular", the "x", "y", "z",
 and "w" components of the program parameter var iable are filled with the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 light color.

 If a program parameter binding matches "state.l ight[n].position", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of the light
 position.

 If a program parameter binding matches "state.l ight[n].attenuation", the
 "x", "y", and "z" components of the program par ameter variable are filled
 with the constant, linear, and quadratic attenu ation parameters of the
 specified light, respectively (section 2.13.1). The "w" component of the
 program parameter variable is filled with the s pot light exponent of the
 specified light.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 417

 If a program parameter binding matches "state.l ight[n].spot.direction",
 the "x", "y", and "z" components of the program parameter variable are
 filled with the "x", "y", and "z" components of the spot light direction
 of the specified light, respectively (section 2 .13.1). The "w" component
 of the program parameter variable is filled wit h the cosine of the spot
 light cutoff angle of the specified light.

 If a program parameter binding matches "state.l ight[n].half", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the x, y, and z components, respectively, of th e normalized infinite
 half-angle vector

 h_inf = || P + (0, 0, 1) ||.

 The "w" component is filled with 1. In the com putation of h_inf, P
 consists of the x, y, and z coordinates of the normalized vector from the
 eye position P_e to the eye-space light positio n P_pli (section 2.13.1).
 h_inf is defined to correspond to the normalize d half-angle vector when
 using an infinite light (w coordinate of the po sition is zero) and an
 infinite viewer (v_bs is FALSE). For local lig hts or a local viewer,
 h_inf is well-defined but does not match the no rmalized half-angle vector,
 which will vary depending on the vertex positio n.

 If a program parameter binding matches "state.l ightmodel.ambient", the
 "x", "y", "z", and "w" components of the progra m parameter variable are
 filled with the "r", "g", "b", and "a" componen ts of the light model
 ambient color, respectively.

 If a program parameter binding matches "state.l ightmodel.scenecolor" or
 "state.lightmodel.front.scenecolor", the "x", " y", and "z" components of
 the program parameter variable are filled with the "r", "g", and "b"
 components respectively of the "front scene col or"

 c_scene = a_cs * a_cm + e_cm,

 where a_cs is the light model ambient color, a_ cm is the front ambient
 material color, and e_cm is the front emissive material color. The "w"
 component of the program parameter variable is filled with the alpha
 component of the front diffuse material color. If a program parameter
 binding matches "state.lightmodel.back.scenecol or", a similar back scene
 color, computed using back-facing material prop erties, is used. The front
 and back scene colors match the values that wou ld be assigned to vertices
 using conventional lighting if all lights were disabled.

 If a program parameter binding matches anything beginning with
 "state.lightprod[n]", the "x", "y", and "z" com ponents of the program
 parameter variable are filled with the "r", "g" , and "b" components,
 respectively, of the corresponding light produc t. The three light product
 components are the products of the correspondin g color components of the
 specified material property and the light color of the specified light
 (see Table X.3.3). The "w" component of the pr ogram parameter variable is
 filled with the alpha component of the specifie d material property.

 Light products depend on material properties, w hich can be changed inside
 a Begin/End pair. Such property changes are no t guaranteed to take effect
 until the following End command. Program param eter variables bound to

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 418

 light products whose corresponding material pro perty changes inside a
 Begin/End pair are undefined until the followin g End command.

 Texture Coordinate Generation Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texgen[n].eye.s (a,b,c,d) TexGen eye linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].eye.t (a,b,c,d) TexGen eye linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].eye.r (a,b,c,d) TexGen eye linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].eye.q (a,b,c,d) TexGen eye linear plane
 coeffi cients, q coord, unit n
 state.texgen[n].object.s (a,b,c,d) TexGen object linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].object.t (a,b,c,d) TexGen object linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].object.r (a,b,c,d) TexGen object linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].object.q (a,b,c,d) TexGen object linear plane
 coeffi cients, q coord, unit n

 Table X.3.4: Texture Coordinate Generation P roperty Bindings. "[n]" is
 optional -- texture unit <n> is used if speci fied; texture unit 0 is
 used otherwise.

 If a program parameter binding matches a set of TexGen plane coefficients,
 the "x", "y", "z", and "w" components of the pr ogram parameter variable
 are filled with the coefficients p1, p2, p3, an d p4, respectively, for
 object linear coefficients, and the coefficents p1', p2', p3', and p4',
 respectively, for eye linear coefficients (sect ion 2.10.4).

 Fog Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.fog.color (r,g,b,a) RG B fog color (section 3.10)
 state.fog.params (d,s,e,r) fo g density, linear start
 an d end, and 1/(end-start)
 (s ection 3.10)

 Table X.3.5: Fog Property Bindings

 If a program parameter binding matches "state.f og.color", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the "r", "g", "b", and "a" components, respecti vely, of the fog color
 (section 3.10).

 If a program parameter binding matches "state.f og.params", the "x", "y",
 and "z" components of the program parameter var iable are filled with the
 fog density, linear fog start, and linear fog e nd parameters (section
 3.10), respectively. The "w" component is fill ed with 1/(end-start),
 where end and start are the linear fog end and start parameters,
 respectively.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 419

 Clip Plane Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.clip[n].plane (a,b,c,d) cl ip plane n coefficients

 Table X.3.6: Clip Plane Property Bindings. <n> specifies the clip
 plane number, and is required.

 If a program parameter binding matches "state.c lip[n].plane", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the coefficients p1', p2', p3', and p4', r espectively, of clip plane
 <n> (section 2.11).

 Point Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.point.size (s,n,x,f) po int size, min and max size
 cl amps, and fade threshold
 (s ection 3.3)
 state.point.attenuation (a,b,c,1) po int size attenuation consts

 Table X.3.7: Point Property Bindings

 If a program parameter binding matches "state.p oint.size", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the point size, minimum point size, maximum poi nt size, and fade
 threshold, respectively (section 3.3).

 If a program parameter binding matches "state.p oint.attenuation", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the constant, linear, and quadratic point size attenuation parameters (a,
 b, and c), respectively (section 3.3). The "w" component is filled with
 1.

 Matrix Property Bindings

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 * state.matrix.modelview[n] modelvi ew matrix n
 state.matrix.projection project ion matrix
 state.matrix.mvp modelvi ew-projection matrix
 * state.matrix.texture[n] texture matrix n
 state.matrix.palette[n] modelvi ew palette matrix n
 state.matrix.program[n] program matrix n

 Table X.3.8: Base Matrix Property Bindings. The "[n]" syntax indicates
 a specific matrix number. For modelview and texture matrices, a matrix
 number is optional, and matrix zero will be u sed if the matrix number is
 omitted. These base bindings may further be modified by a
 inverse/transpose selector and a row selector .

 If the beginning of a program parameter binding matches any of the matrix
 binding names listed in Table X.3.8, the bindin g corresponds to a 4x4
 matrix. If the parameter binding is followed b y ".inverse", ".transpose",
 or ".invtrans" (<stateMatModifier> grammar rule), the inverse, transpose,

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 420

 or transpose of the inverse, respectively, of t he matrix specified in
 Table X.3.8 is selected. Otherwise, the matrix specified in Table X.3.8
 is selected. If the specified matrix is poorly -conditioned (singular or
 nearly so), its inverse matrix is undefined. T he binding name
 "state.matrix.mvp" refers to the product of mod elview matrix zero and the
 projection matrix, defined as

 MVP = P * M0,

 where P is the projection matrix and M0 is mode lview matrix zero.

 If the selected matrix is followed by ".row[<a>]" (matching the
 <stateMatrixRow> grammar rule), the "x", "y", " z", and "w" components of
 the program parameter variable are filled with the four entries of row <a>
 of the selected matrix. In the example,

 PARAM m0 = state.matrix.modelview[1].row[0];
 PARAM m1 = state.matrix.projection.transpose. row[3];

 the variable "m0" is set to the first row (row 0) of modelview matrix 1
 and "m1" is set to the last row (row 3) of the transpose of the projection
 matrix.

 For program parameter array bindings, multiple rows of the selected matrix
 can be bound via the <stateMatrixRows> grammar rule. If the selected
 matrix binding is followed by ".row[<a>..]", the result is equivalent
 to specifying matrix rows <a> through , in o rder. A program will fail
 to load if <a> is greater than . If no row selection is specified
 (<optMatrixRows> matches ""), matrix rows 0 thr ough 3 are bound in order.
 In the example,

 PARAM m2[] = { state.matrix.program[0].row[1. .2] };
 PARAM m3[] = { state.matrix.program[0].transp ose };

 the array "m2" has two entries, containing rows 1 and 2 of program matrix
 zero, and "m3" has four entries, containing all four rows of the transpose
 of program matrix zero.

 Program Parameter Arrays

 A program parameter array variable can be decla red explicitly by matching
 the <PARAM_multipleStmt> grammar rule. Program s can optionally specify
 the number of individual program parameters in the array, using the
 <optArraySize> grammar rule. Program parameter arrays may not be declared
 implicity.

 Individual parameter variables in a program par ameter array are bound to
 GL state vectors or constant vectors as specifi ed by the grammar rule
 <paramMultInitList>. Each individual parameter in the array is bound in
 turn as described above.

 The total number of entries in the array is equ al to the number of
 parameters bound in the initializer list. A ve rtex program that specifies
 an array size (<optArraySize> matches <integer>) that does not match the
 number of parameter bindings in the initializat ion list will fail to load.

 Program parameter array variables may be access ed using absolute

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 421

 addressing by matching the <progParamArrayAbs> grammar rule, or relative
 addressing by matching the <progParamArrayRel> grammar rule.

 Array accesses using absolute addressing are ch ecked against the limits of
 the array. If any vertex program instruction a ccesses a program parameter
 array using absolute addressing with an out-of- range index (greater than
 or equal to the size of the array), the vertex program will fail to load.

 Individual state vectors can have no more than one unique binding in any
 given program. The GL will automatically combi ne multiple bindings of the
 same state vector into a single unique binding, except for the case where
 a state vector is bound multiple times in progr am parameter arrays
 accessed using relative addressing. A vertex p rogram will fail to load if
 any GL state vector is bound multiple times in a single array accessed
 using relative addressing or bound once in two or more arrays accessed
 using relative addressing.

 Section 2.14.3.3, Vertex Program Temporaries

 Vertex program temporary variables are a set of four-component
 floating-point vectors used to hold temporary r esults during vertex
 program execution. Temporaries do not persist between program
 invocations, and are undefined at the beginning of each vertex program
 invocation.

 Vertex program temporary variables can be decla red explicitly using the
 <TEMP_statement> grammar rule. Each such state ment can declare one or
 more temporaries. Vertex program temporary var iables can not be declared
 implicitly.

 Section 2.14.3.4, Vertex Program Results

 Vertex program result variables are a set of fo ur-component floating-point
 vectors used to hold the final results of a ver tex program. Vertex
 program result variables are write-only during vertex program execution.

 Vertex program result variables can be declared explicitly using the
 <OUTPUT_statement> grammar rule, or implicitly using the <resultBinding>
 grammar rule in an executable instruction. Eac h vertex program result
 variable is bound to a transformed vertex attri bute used during primitive
 assembly and rasterization. The set of vertex program result variable
 bindings is given in Table X.4.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 422

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.position (x,y,z,w) po sition in clip coordinates
 result.color (r,g,b,a) fr ont-facing primary color
 result.color.primary (r,g,b,a) fr ont-facing primary color
 result.color.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.front (r,g,b,a) fr ont-facing primary color
 result.color.front.primary (r,g,b,a) fr ont-facing primary color
 result.color.front.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.back (r,g,b,a) ba ck-facing primary color
 result.color.back.primary (r,g,b,a) ba ck-facing primary color
 result.color.back.secondary (r,g,b,a) ba ck-facing secondary color
 result.fogcoord (f,*,*,*) fo g coordinate
 result.pointsize (s,*,*,*) po int size
 result.texcoord (s,t,r,q) te xture coordinate, unit 0
 result.texcoord[n] (s,t,r,q) te xture coordinate, unit n

 Table X.4: Vertex Result Variable Bindings. Components labeled "*" are
 unused.

 If a result variable binding matches "result.po sition", updates to the
 "x", "y", "z", and "w" components of the result variable modify the "x",
 "y", "z", and "w" components, respectively, of the transformed vertex's
 clip coordinates. Final window coordinates wil l be generated for the
 vertex as described in section 2.14.4.4.

 If a result variable binding match begins with "result.color", updates to
 the "x", "y", "z", and "w" components of the re sult variable modify the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 vertex color attribute in Table X.4. Color bin dings that do not specify
 "front" or "back" are consided to refer to fron t-facing colors. Color
 bindings that do not specify "primary" or "seco ndary" are considered to
 refer to primary colors.

 If a result variable binding matches "result.fo gcoord", updates to the "x"
 component of the result variable set the transf ormed vertex's fog
 coordinate. Updates to the "y", "z", and "w" c omponents of the result
 variable have no effect.

 If a result variable binding matches "result.po intsize", updates to the
 "x" component of the result variable set the tr ansformed vertex's point
 size. Updates to the "y", "z", and "w" compone nts of the result variable
 have no effect.

 If a result variable binding matches "result.te xcoord" or
 "result.texcoord[n]", updates to the "x", "y", "z", and "w" components of
 the result variable set the "s", "t", "r" and " q" components,
 respectively, of the transformed vertex's textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is selected.

 When in vertex program mode, all attributes of a transformed vertex are
 undefined at each vertex program invocation. A ny results, or even
 individual components of results, that are not written to during vertex
 program execution remain undefined.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 423

 Section 2.14.3.5, Vertex Program Address Regis ters

 Vertex program address register variables are a set of four-component
 signed integer vectors where only the "x" compo nent of the address
 registers is currently accessible. Address reg isters are used as indices
 when performing relative addressing in program parameter arrays (section
 2.14.4.2).

 Vertex program address registers can be declare d explicitly using the
 <ADDRESS_statement> grammar rule. Each such st atement can declare one or
 more address registers. Vertex program address registers can not be
 declared implicitly.

 Vertex program address register variables are u ndefined at each vertex
 program invocation. Address registers can be w ritten by the ARL
 instruction (section 2.14.5.3), and will be rea d when a program uses
 relative addressing in program parameter arrays .

 Section 2.14.3.6, Vertex Program Aliases

 Vertex programs can create aliases by matching the <ALIAS_statement>
 grammar rule. Aliases allow programs to use mu ltiple variable names to
 refer to a single underlying variable. For exa mple, the statement

 ALIAS var1 = var0

 establishes a variable name named "var1". Subs equent references to "var1"
 in the program text are treated as references t o "var0". The left hand
 side of an ALIAS statement must be a new variab le name, and the right hand
 side must be an established variable name.

 Aliases are not considered variable declaration s, so do not count against
 the limits on the number of variable declaratio ns allowed in the program
 text.

 Section 2.14.3.7, Vertex Program Resource Limit s

 The vertex program execution environment provid es implementation-dependent
 resource limits on the number of instructions, temporary variable
 declarations, vertex attribute bindings, addres s register declarations,
 and program parameter bindings. A program that exceeds any of these
 resource limits will fail to load. The resourc e limits for vertex
 programs can be queried by calling GetProgramiv (section 6.1.12) with a
 target of VERTEX_PROGRAM_ARB.

 The limit on vertex program instructions can be queried with a <pname> of
 MAX_PROGRAM_INSTRUCTIONS_ARB, and must be at le ast 128. Each instruction
 in the program (matching the <instruction> gram mar rule) counts against
 this limit.

 The limit on vertex program temporary variable declarations can be queried
 with a <pname> of MAX_PROGRAM_TEMPORARIES_ARB, and must be at least 12.
 Each temporary declared in the program, using t he <TEMP_statement> grammar
 rule, counts against this limit. Aliases of de clared temporaries do not.

 The limit on vertex program attribute bindings can be queried with a
 <pname> of MAX_PROGRAM_ATTRIBS_ARB and must be at least 16. Each distinct

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 424

 vertex attribute bound explicitly or implicitly in the program counts
 against this limit; vertex attributes bound mul tiple times count only
 once.

 The limit on vertex program address register de clarations can be queried
 with a <pname> of MAX_PROGRAM_ADDRESS_REGISTERS _ARB, and must be at least
 1. Each address register declared in the progr am, using the
 <ADDRESS_statement> grammar rule, counts agains t this limit.

 The limit on vertex program parameter bindings can be queried with a
 <pname> of MAX_PROGRAM_PARAMETERS_ARB, and must be at least 96. Each
 distinct GL state vector bound explicitly or im plicitly in the program
 counts against this limit; GL state vectors bou nd multiple times count
 only once. Each constant vector bound to an ar ray accessed using relative
 addressing counts against this limit, even if t he same constant vector is
 bound multiple times or in multiple arrays. Ev ery other constant vector
 bound in the program is counted if and only if an identical constant
 vector has not already been counted. Two const ant vectors are considered
 identical if the four component values are nume rically equivalent. Recall
 that scalar constants bound in a program are tr eated as vector constants
 with the scalar value replicated. In the follo wing code

 PARAM arr1[4] = { {1,2,3,4}, {1,2,3,4}, {4,4,4,4}, {5,6,7,8} };
 PARAM arr2[3] = { {1,2,3,4}, {5,6,7,8}, {0,1,2,3} };
 PARAM x = {4,3,2,1};
 PARAM y = {1,2,3,4};
 PARAM z = 4;
 PARAM r = {4,3,2,1};

 assume that arr1 is accessed using relative add ressing but arr2 is not.
 The four constants in arr1 all count against th e limit. Only two other
 constants, {0,1,2,3} in arr2, and {4,3,2,1} in x, are counted; the other
 constants are identical to constants that had b een previously counted.

 In addition to the limits described above, the GL provides a similar set
 of implementation-dependent native resource lim its. These limits,
 specified in section 6.1.12, provide guidance a s to whether the program is
 small enough to use a "native" mode where verte x programs may be executed
 with higher performance. The native resource l imits and usage counts are
 implementation-dependent and may not exactly co rrespond to limits and
 counts described above. In particular, native resource consumption may be
 reduced by program optimizations performed by t he GL, or increased due to
 emulation of non-native instructions. Programs that satisfy the program
 resource limits described above, but whose nati ve resource usage exceeds
 one or more native resource limits, are guarant eed to load but may execute
 suboptimally.

 To assist in resource counting, the GL addition ally provides GetProgram
 queries to determine the resource usage and nat ive resource usage of the
 currently bound program, and to determine wheth er the bound program
 exceeds any native resource limit.

 Section 2.14.4, Vertex Program Execution Envir onment

 If vertex program mode is enabled, the currentl y bound vertex program is
 executed when a vertex is specified directly th rough the Vertex command,
 indirectly through vertex arrays or evaluators (section 5.1), or when the

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 425

 current raster position is updated.

 If vertex program mode is enabled and the curre ntly bound program object
 does not contain a valid vertex program, the er ror INVALID_OPERATION will
 be generated by Begin, RasterPos, and any comma nd that implicitly calls
 Begin (e.g., DrawArrays).

 Vertex programs execute a sequence of instructi ons without
 branching. Vertex programs begin by executing the first instruction in
 the program, and execute instructions in the or der specified in the
 program until the last instruction is completed .

 There are twenty-seven vertex program instructi ons. The instructions and
 their respective input and output parameters ar e summarized in Table X.5.

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS v v absolute valu e
 ADD v,v v add
 ARL s a address regis ter load
 DP3 v,v ssss 3-component d ot product
 DP4 v,v ssss 4-component d ot product
 DPH v,v ssss homogeneous d ot product
 DST v,v v distance vect or
 EX2 s ssss exponential b ase 2
 EXP s v exponential b ase 2 (approximate)
 FLR v v floor
 FRC v v fraction
 LG2 s ssss logarithm bas e 2
 LIT v v compute light coefficients
 LOG s v logarithm bas e 2 (approximate)
 MAD v,v,v v multiply and add
 MAX v,v v maximum
 MIN v,v v minimum
 MOV v v move
 MUL v,v v multiply
 POW s,s ssss exponentiate
 RCP s ssss reciprocal
 RSQ s ssss reciprocal sq uare root
 SGE v,v v set on greate r than or equal
 SLT v,v v set on less t han
 SUB v,v v subtract
 SWZ v v extended swiz zle
 XPD v,v v cross product

 Table X.5: Summary of vertex program instruc tions. "v" indicates a
 floating-point vector input or output, "s" in dicates a floating-point
 scalar input, "ssss" indicates a scalar outpu t replicated across a
 4-component result vector, and "a" indicates a single address register
 component.

 Section 2.14.4.1, Vertex Program Operands

 Most vertex program instructions operate on flo ating-point vectors or
 scalars, as indicated by the grammar rules <swi zzleSrcReg> and
 <scalarSrcReg>, respectively.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 426

 Vector and scalar operands can be obtained from vertex attribute, program
 parameter, or temporary registers, as indicated by the <srcReg> rule. For
 scalar operands, a single vector component is s elected by the
 <scalarSuffix> rule, where the characters "x", "y", "z", and "w" select
 the x, y, z, and w components, respectively, of the vector.

 Vector operands can be swizzled according to th e <swizzleSuffix> rule. In
 its most general form, the <swizzleSuffix> rule matches the pattern
 ".????" where each question mark is replaced wi th one of "x", "y", "z", or
 "w". For such patterns, the x, y, z, and w com ponents of the operand are
 taken from the vector components named by the f irst, second, third, and
 fourth character of the pattern, respectively. For example, if the
 swizzle suffix is ".yzzx" and the specified sou rce contains {2,8,9,0}, the
 swizzled operand used by the instruction is {8, 9,9,2}.

 If the <swizzleSuffix> rule matches "", it is t reated as though it were
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace) ".x",
 ".y", ".z", or ".w", these are treated the same as ".xxxx", ".yyyy",
 ".zzzz", and ".wwww" respectively.

 Floating-point scalar or vector operands can op tionally be negated
 according to the <optionalSign> rule in <scalar SrcReg> and
 <swizzleSrcReg>. If the <optionalSign> matches "-", each operand or
 operand component is negated.

 The following pseudo-code spells out the operan d generation process. In
 the example, "float" is a floating-point scalar type, while "floatVec" is
 a four-component vector. "source" refers to th e register used for the
 operand, matching the <srcReg> rule. "negate" is TRUE if the
 <optionalSign> rule in <scalarSrcReg> or <swizz leSrcReg> matches "-" and
 FALSE otherwise. The ".c***", ".*c**", ".**c*" , ".***c" modifiers refer
 to the x, y, z, and w components obtained by th e swizzle operation; the
 ".c" modifier refers to the single component se lected for a scalar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 427

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 Section 2.14.4.2, Vertex Program Parameter Arr ays

 A vertex program can load a single element of a program parameter array
 using either absolute or relative addressing. Program parameter arrays
 are accessed when the <progParamArray> rule is matched.

 Absolute addressing is used when the <progParam ArrayMem> grammar rule
 matches <progParamArrayAbs>. When using absolu te addressing, the offset
 of the selected entry in the array is given by the number matching
 <progParamRegNum>.

 Relative addressing is used when the <progParam ArrayMem> grammar rule
 matches <progParamArrayRel>. When using relati ve addressing, the offset
 of the selected entry in the array is computed by adding the address
 register component specified by the <addrReg> a nd <addrComponent> rules to
 the positive or negative offset specified by th e <addrRegRelOffset> rule.
 If <addrRegRelOffset> matches "", no fixed offs et is added to the address
 register component. If the computed offset is negative or exceeds the
 size of the array, the results of the access ar e undefined, but may not
 lead to program or GL termination.

 The following pseudo-code spells out the proces s of loading a program
 parameter from an array. "addrReg" refers to t he address register
 component used for relative addressing, "absolu te" is TRUE if the operand
 uses absolute addressing and FALSE otherwise. "paramNumber" is the
 program parameter number for absolute addressin g; "paramOffset" is the
 constant program parameter offset for relative addressing. "paramArray"
 is the parameter array that matches the <progPa ramArray> rule.

 floatVec ProgramParameterLoad(int addrReg)
 {
 int index;

 if (absolute) {
 index = paramNumber;
 } else {
 index = addrReg + paramOffset
 }

 return paramArray[index];
 }

 Relative addressing can only be used for access ing program parameter
 arrays.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 428

 Section 2.14.4.3, Vertex Program Destination R egister Update

 Most vertex program instructions write a 4-comp onent result vector to a
 single temporary or vertex result register. Wr ites to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.

 The component write mask is specified by the <o ptionalMask> rule found in
 the <maskedDstReg> rule. If the optional mask is "", all components are
 enabled. Otherwise, the optional mask names th e individual components to
 enable. The characters "x", "y", "z", and "w" match the x, y, z, and w
 components respectively. For example, an optio nal mask of ".xzw"
 indicates that the x, z, and w components shoul d be enabled for writing
 but the y component should not. The grammar re quires that the destination
 register mask components must be listed in "xyz w" order.

 Each component of the destination register is u pdated with the result of
 the vertex program instruction if and only if t he component is enabled for
 writes by the component write mask. Otherwise, the component of the
 destination register remains unchanged.

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask" refers
 to the component write mask given by the <optio nalMask> rule. "result"
 and "destination" refer to the result vector an d the register selected by
 <dstReg>, respectively.

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;

 // Merge the converted result into the de stination register, under
 // control of the compile-time write mask .
 merged = destination;
 if (instrMask.x) {
 merged.x = result.x;
 }
 if (instrMask.y) {
 merged.y = result.y;
 }
 if (instrMask.z) {
 merged.z = result.z;
 }
 if (instrMask.w) {
 merged.w = result.w;
 }

 // Write out the new destination register .
 destination = merged;
 }

 The "ARL" instruction updates the single addres s register component
 similarly; the grammar is designed so that it w rites to only the "x"
 component of an address register variable.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 429

 Section 2.14.4.4, Vertex Program Result Proces sing

 As a vertex program executes, it will write to one or more result
 registers that are mapped to transformed vertex attributes. When a vertex
 program completes, the transformed vertex attri butes are used to generate
 primitives.

 The clip coordinates written to "result.positio n" are used to generate
 normalized device coordinates and window coordi nates for the vertex in the
 manner described section 2.10.

 Transformed vertices are then assembled into pr imitives and clipped as
 described in section 2.11.

 The selection between front-facing and back-fac ing color attributes
 depends on the primitive to which the vertex be longs. If the primitive is
 a point or a line segment, or if vertex program two-sided color mode is
 disabled, the front-facing colors are always se lected. If it is a polygon
 and two-sided color mode is enabled, then the s election is performed in
 exactly the same way as in two-sided lighting m ode (section 2.13.1).
 Vertex program two-sided color mode is enabled and disabled by calling
 Enable or Disable with the symbolic value VERTE X_PROGRAM_TWO_SIDE_ARB.

 Finally, as primitives are assembled, color cla mping (section 2.13.6),
 flatshading (section 2.13.7), color, attribute clipping (section 2.13.8),
 and final color processing (section 2.13.9) ope rations are applied to the
 transformed vertices.

 Section 2.14.4.5, Vertex Program Options

 The <optionSequence> grammar rule provides a me chanism for programs to
 indicate that one or more extended language fea tures are used by the
 program. All program options used by the progr am must be declared at the
 beginning of the program string. Each program option specified in a
 program string will modify the syntactic or sem antic rules used to
 interpet the program and the execution environm ent used to execute the
 program. Program options not present in the pr ogram string are ignored,
 even if they are supported by the GL.

 The <identifier> token in the <option> rule mus t match the name of a
 program option supported by the implementation. To avoid option name
 conflicts, option identifiers are required to b egin with a vendor prefix.
 A program will fail to load if it specifies a p rogram option not supported
 by the GL.

 Vertex program options should confine their sem antic changes to the domain
 of vertex programs. Support for a vertex progr am option should not change
 the specification and behavior of vertex progra ms not requesting use of
 that option.

 2.14.4.5.1, Position-Invariant Vertex Program Option

 If a vertex program specifies the "ARB_position _invariant" option, the
 program is used to generate all transformed ver tex attributes except for
 position. Instead, clip coordinates are comput ed as specified in section
 2.10. Additionally, user clipping is performed as described in section
 2.11. Use of position-invariant vertex program s should generally

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 430

 guarantee that the transformed position of a ve rtex should be the same
 whether vertex program mode is enabled or disab led, allowing for correct
 mixed multi-pass rendering semantics.

 When the position-invariant option is specified in a vertex program,
 vertex programs can no longer produced a transf ormed position. The
 <resultBinding> rule is modified to remove "res ult.position" from the list
 of token sequences matching the rule. A semant ic restriction is added to
 indicate that a vertex program will fail to loa d if the number of
 instructions it contains exceeds the implementa tion-dependent limit minus
 four.

 Section 2.14.5, Vertex Program Instruction Set

 The following sections describe the set of supp orted vertex program
 instructions. Each section contains pseudocode describing the
 instruction. Instructions will have up to thre e operands, referred to as
 "op0", "op1", and "op2". The operands are load ed using the mechanisms
 specified in section 2.14.4.1. The variables " tmp", "tmp0", "tmp1", and
 "tmp2" describe scalars or vectors used to hold intermediate results in
 the instruction. Most instructions will genera te a result vector called
 "result". The result vector is then written to the destination register
 specified in the instruction as described in se ction 2.14.4.3.

 Section 2.14.5.1, ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value operation on
 the single operand to yield a result vector.

 tmp = VectorLoad(op0);
 result.x = fabs(tmp.x);
 result.y = fabs(tmp.y);
 result.z = fabs(tmp.z);
 result.w = fabs(tmp.w);

 Section 2.14.5.2, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following rules apply to addition:

 1. <x> + <y> == <y> + <x>, for all <x> and <y >.
 2. <x> + 0.0 == <x>, for all <x>.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 431

 Section 2.14.5.3, ARL: Address Register Load

 The ARL instruction loads a single scalar opera nd and performs a floor
 operation to generate a signed integer scalar r esult:

 result = floor(ScalarLoad(op0));

 The floor operation returns the largest integer less than or equal to the
 operand. For example floor(-1.7) = -2.0, floor (+1.0) = +1.0, and
 floor(+3.7) = +3.0.

 Section 2.14.5.4, DP3: Three-Component Dot Pr oduct

 The DP3 instruction computes a three-component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 Section 2.14.5.5, DP4: Four-Component Dot Pro duct

 The DP4 instruction computes a four-component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1.w);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 Section 2.14.5.6, DPH: Homogeneous Dot Produc t

 The DPH instruction computes a three-component dot product of the two
 operands (using the x, y, and z components), ad ds the w component of the
 second operand, and replicates the sum to all f our components of the
 result vector. This is equivalent to a four-co mponent dot product where
 the w component of the first operand is forced to 1.0.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 432

 Section 2.14.5.7, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-vertex l ight attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 Section 2.14.5.8, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates the approximation to all four components of the
 result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 433

 Section 2.14.5.9, EXP: Exponential Base 2 (ap proximate)

 The EXP instruction computes a rough approximat ion of 2 raised to the
 power of the scalar operand. The approximation is returned in the "z"
 component of the result vector. A vertex progr am can also use the "x" and
 "y" components of the result vector to generate a more accurate
 approximation by evaluating

 result.x * f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [0.0, 1.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = ScalarLoad(op0);
 result.x = 2^floor(tmp);
 result.y = tmp - floor(tmp);
 result.z = RoughApprox2ToX(tmp);
 result.w = 1.0;

 The approximation function is accurate to at le ast 10 bits:

 | RoughApprox2ToX(x) - 2^x | < 1.0 / 2^11, if 0.0 <= x < 1.0,

 and, in general,

 | RoughApprox2ToX(x) - 2^x | < (1.0 / 2^11) * (2^floor(x)).

 Section 2.14.5.10, FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is defined as
 the largest integer less than or equal to the v alue. The floor of 2.3 is
 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 434

 Section 2.14.5.11, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.0, 1.0).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = fraction(tmp.x);
 result.y = fraction(tmp.y);
 result.z = fraction(tmp.z);
 result.w = fraction(tmp.w);

 Section 2.14.5.12, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 If the scalar operand is zero or negative, the result is undefined.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 435

 Section 2.14.5.13, LIT: Light Coefficients

 The LIT instruction accelerates per-vertex ligh ting by computing lighting
 coefficients for ambient, diffuse, and specular light contributions. The
 "x" component of the single operand is assumed to hold a diffuse dot
 product (n dot VP_pli, as in the vertex lightin g equations in Section
 2.13.1). The "y" component of the operand is a ssumed to hold a specular
 dot product (n dot h_i). The "w" component of the operand is assumed to
 hold the specular exponent of the material (s_r m), and is clamped to the
 range (-128, +128) exclusive.

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

 tmp = VectorLoad(op0);
 if (tmp.x < 0) tmp.x = 0;
 if (tmp.y < 0) tmp.y = 0;
 if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0 -epsilon);
 else if (tmp.w > 128-epsilon) tmp.w = 128-eps ilon;
 result.x = 1.0;
 result.y = tmp.x;
 result.z = (tmp.x > 0) ? RoughApproxPower(tmp .y, tmp.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation function may b e defined in terms of the
 base 2 exponentiation and logarithm approximati on operations in the EXP
 and LOG instructions, where

 RoughApproxPower(a,b) = RoughApproxExp2(b * R oughApproxLog2(a)).

 In particular, the approximation may not be any more accurate than the
 underlying EXP and LOG operations.

 Also, since 0^0 is defined to be 1, RoughApprox Power(0.0, 0.0) will
 produce 1.0.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 436

 Section 2.14.5.14, LOG: Logarithm Base 2 (app roximate)

 The LOG instruction computes a rough approximat ion of the base 2 logarithm
 of the absolute value of the scalar operand. T he approximation is
 returned in the "z" component of the result vec tor. A vertex program can
 also use the "x" and "y" components of the resu lt vector to generate a
 more accurate approximation by evaluating

 result.x + f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [1.0, 2.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = fabs(ScalarLoad(op0));
 result.x = floor(log2(tmp));
 result.y = tmp / 2^(floor(log2(tmp)));
 result.z = RoughApproxLog2(tmp);
 result.w = 1.0;

 Here, "floor(log2(tmp))" refers to the floor of the exact logarithm, which
 can be easily computed for standard floating-po int representations. The
 approximation function is accurate to at least 10 bits:

 | RoughApproxLog2(x) - log_2(x) | < 1.0 / 2^1 1.

 Section 2.14.5.15, MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 The multiplication and addition operations in t his instruction are subject
 to the same rules as described for the MUL and ADD instructions.

 Section 2.14.5.16, MAX: Maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1. x;
 result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1. y;
 result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1. z;
 result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1. w;

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 437

 Section 2.14.5.17, MIN: Minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0. x;
 result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0. y;
 result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0. z;
 result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0. w;

 Section 2.14.5.18, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

 Section 2.14.5.19, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following rules apply to multiplication:

 1. <x> * <y> == <y> * <x>, for all <x> and <y >.
 2. +/-0.0 * <x> = +/-0.0, at least for all <x > that correspond to
 representable numbers (IEEE "not a number" and "infinity" encodings
 may be exceptions).
 3. +1.0 * <x> = <x>, for all <x>.

 Multiplication by zero and one should be invari ant, as it may be used to
 evaluate conditional expressions without branch ing.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 438

 Section 2.14.5.20, POW: Exponentiate

 The POW instruction approximates the value of t he first scalar operand
 raised to the power of the second scalar operan d and replicates it to all
 four components of the result vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function may b e implemented using the
 base 2 exponentiation and logarithm approximati on operations in the EX2
 and LG2 instructions. In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 Note that a logarithm may be involved even for cases where the exponent is
 an integer. This means that it may not be poss ible to exponentiate
 correctly with a negative base. In constrast, it is possible in a
 "normal" mathematical formulation to raise nega tive numbers to integral
 powers (e.g., (-3)^2== 9, and (-0.5)^-2==4).

 Section 2.14.5.21, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The following rule applies to reciprocation:

 1. ApproxReciprocal(+1.0) = +1.0.

 Section 2.14.5.22, RSQ: Reciprocal Square Roo t

 The RSQ instruction approximates the reciprocal of the square root of the
 absolute value of the scalar operand and replic ates it to all four
 components of the result vector.

 tmp = fabs(ScalarLoad(op0));
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 439

 Section 2.14.5.23, SGE: Set On Greater or Equ al Than

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than or equal that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.24, SLT: Set On Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than tha t of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.25, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 Section 2.14.5.26, SWZ: Extended Swizzle

 The SWZ instruction loads the single vector ope rand, and performs a
 swizzle operation more powerful than that provi ded for loading normal
 vector operands to yield an instruction vector.

 After the operand is loaded, the "x", "y", "z", and "w" components of the
 result vector are selected by the first, second , third, and fourth matches
 of the <extSwizComp> pattern in the <extendedSw izzle> rule.

 A result component can be selected from any of the four components of the
 operand or the constants 0.0 and 1.0. The resu lt component can also be
 optionally negated. The following pseudocode d escribes the component
 selection method. "operand" refers to the vect or operand, "select" is an
 enumerant where the values ZERO, ONE, X, Y, Z, and W correspond to the
 <extSwizSel> rule matching "0", "1", "x", "y", "z", and "w", respectively.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 440

 "negate" is TRUE if and only if the <optionalSi gn> rule in <extSwizComp>
 matches "-".

 float ExtSwizComponent(floatVec operand, enum select, boolean negate)
 {
 float result;
 switch (select) {
 case ZERO: result = 0.0; break;
 case ONE: result = 1.0; break;
 case X: result = operand.x; break;
 case Y: result = operand.y; break;
 case Z: result = operand.z; break;
 case W: result = operand.w; break;
 }
 if (negate) {
 result = -result;
 }
 return result;
 }

 The entire extended swizzle operation is then d efined using the following
 pseudocode:

 tmp = VectorLoad(op0);
 result.x = ExtSwizComponent(tmp, xSelect, xNe gate);
 result.y = ExtSwizComponent(tmp, ySelect, yNe gate);
 result.z = ExtSwizComponent(tmp, zSelect, zNe gate);
 result.w = ExtSwizComponent(tmp, wSelect, wNe gate);

 "xSelect", "xNegate", "ySelect", "yNegate", "zS elect", "zNegate",
 "wSelect", and "wNegate" correspond to the "sel ect" and "negate" values
 above for the four <extSwizComp> matches.

 Since this instruction allows for component sel ection and negation for
 each individual component, the grammar does not allow the use of the
 normal swizzle and negation operations allowed for vector operands in
 other instructions.

 Section 2.14.5.27, XPD: Cross Product

 The XPD instruction computes the cross product using the first three
 components of its two vector operands to genera te the x, y, and z
 components of the result vector. The w compone nt of the result vector is
 undefined.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
 result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
 result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

 Section 2.14.6, Program Matrices

 In addition to GL's conventional matrices, seve ral additional program
 matrices are available for use as program param eters. These matrices have
 names of the form MATRIX<i>_ARB where <i> is be tween zero and <n>-1 where
 <n> is the value of the implementation-dependen t constant

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 441

 MAX_PROGRAM_MATRICES_ARB. The MATRIX<i>_ARB co nstants obey MATRIX<i>_ARB
 = MATRIX0_ARB + <i>. The value of MAX_PROGRAM_ MATRICES_ARB must be at
 least eight. The maximum stack depth for progr am matrices is defined by
 the MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB and must be at least 1.

 Section 2.14.7 Required Vertex Program State

 The state required to support program objects o f all targets consists of:

 an integer for the program error position, in itially -1;

 an array of ubytes for the program error stri ng, initially empty;

 and the state that must be maintained to indi cate which integers are
 currently in use as program object names.

 The state required to support the vertex progra m target consists of:

 a bit indicating whether or not program mode is enabled, initially
 disabled;

 a bit indicating whether or not vertex progra m two-sided color mode is
 enabled, initially disabled;

 a bit indicating whether or not vertex progra m point size mode is
 enabled, initially disabled;

 a set of MAX_PROGRAM_ENV_PARAMETERS_ARB four- component floating-point
 program environment parameters, initially set to (0,0,0,0);

 and an unsigned integer naming the currently bound vertex program,
 initially zero.

 The state required for each vertex program objec t consists of:

 an unsigned integer indicating the program ob ject name;

 an array of type ubyte containing the program string, initially empty;

 an unsigned integer holding the length of the program string, initially
 zero;

 an enum indicating the program string format, initially
 PROGRAM_FORMAT_ASCII_ARB;

 five unsigned integers holding the number of instruction, temporary
 variable, vertex attribute binding, address r egister, and program
 parameter binding resources used by the progr am, initially all zero;

 five unsigned integers holding the number of native instruction,
 temporary variable, vertex attribute binding, address register, and
 program parameter binding resources used by t he program, initially all
 zero;

 and a set of MAX_PROGRAM_LOCAL_PARAMETERS_ARB four-component
 floating-point program local parameters, init ially set to (0,0,0,0).

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 442

 Initially, no vertex program objects exist.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.3, Points (p. 63)

 (replace the first paragraph) When vertex progr am mode and vertex progam
 point size mode are both enabled, the point siz e used for point
 rasterization is taken from the transformed ver tex's point size attribute.
 Otherwise, it is controlled with

 void PointSize(float size);

 size specifies the width or diameter of a point . The initial point size
 value is 1.0. A value less than or equal to ze ro results in the error
 INVALID_VALUE.

 Vertex program point size mode is enabled and d isabled by calling Enable
 or Disable with the symbolic value VERTEX_PROGR AM_POINT_SIZE_ARB.

 Modify Section 3.9, Color Sum (p. 154)

 After texturing, a fragment has two RGBA colors : a primary color c_pri
 (which texturing, if enabled, may have modified) and a secondary color
 c_sec. If color sum is enabled, the R, G, and B components of these two
 colors are summed, and with the A component of the primary color produce a
 single post-texturing RGBA color c. The compone nts of c are then clamped
 to the range [0,1]. If color sum is disabled, then c_pri is assigned to
 the post-texturing color.

 Color sum is enabled or disabled using the gene ric Enable and Disable
 commands, respectively, with the symbolic const ant COLOR_SUM_ARB. If
 vertex program mode is disabled and lighting is enabled, the color sum
 stage is always applied, ignoring the value of COLOR_SUM_ARB.

 The state required is a single bit indicating w hether color sum is enabled
 or disabled. In the initial state, color sum is disabled.

 Modify Section 3.10, Fog (p. 154)

 (modify second paragraph) This factor f may be computed according to one
 of three equations:

 f = exp(-d*c), (3.24)
 f = exp(-(d*c)^2), or (3.25)
 f = (e-c)/(e-s) (3.26)

 If vertex program mode is enabled or if the fog source (as defined below)
 is FOG_COORDINATE_EXT, then c is the fragment's fog coordinate.
 Otherwise, the c is the eye-coordinate distance from the eye, (0,0,0,1) in
 eye-coordinates, to the fragment center. ...

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 None

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 443

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 Modify Section 5.1, Evaluators (p. 181)

 (modify next-to-last paragraph, p. 184) For MAP VERTEX 3, let q = p. For
 MAP VERTEX 4, let q=(x/w,y/w,z/w), where (x; y; z;w) = p. Then let

 dq dq
 m = -- x --.
 du dv

 The the generated analytic normal, n, is given by n=m if vertex program
 mode is enabled or by n=m/|m| if vertex program mode is disabled.

 Modify Section 5.4, Display Lists (p. 191)

 (modify third paragraph, p. 195) ... These are IsList, GenLists, ...,
 IsProgramARB, GenProgramsARB, DeleteProgramsARB , and
 VertexAttribPointerARB, EnableVertexAttribArray ARB,
 DisableVertexAttribArrayARB, as well as IsEnabl ed and all the Get commands
 (chapter 6).

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and State
Requests)

 Modify Section 6.1.2, Data Conversions (p. 198)

 (add before last paragraph, p. 198) The matrix selected by the current
 matrix mode can be queried by calling GetBoolea nv, GetIntegerv, GetFloatv,
 and GetDoublev with <pname> set to CURRENT_MATR IX_ARB; the matrix will be
 returned in transposed form with <pname> set to
 TRANSPOSE_CURRENT_MATRIX_ARB. The depth of the selected matrix stack can
 be queried with <pname> set to CURRENT_MATRIX_S TACK_DEPTH_ARB. Querying
 CURRENT_MATRIX_ARB and CURRENT_MATRIX_STACK_DEPTH_ARB is the only means
 for querying the matrix and matrix stack depth of the program matrices
 described in section 2.14.6.

 Modify Section 6.1.11, Pointer and String Queri es (p. 206)

 (modify last paragraph, p. 206) ... The possibl e values for <name> are
 VENDOR, RENDERER, VERSION, EXTENSIONS, and PROG RAM_ERROR_STRING_ARB.

 (add after last paragraph of section, p. 207) Q ueries of
 PROGRAM_ERROR_STRING_ARB return a pointer to an implementation-dependent
 program load error string. If the last call to ProgramStringARB failed to
 load a program, the returned string describes a t least one reason why the
 program failed to load. If the last call to Pr ogramStringARB successfully
 loaded a program, the returned string may be em pty (containing only a zero
 terminator) or may contain one or more implemen tation-dependent warning
 messages. The contents of the error string are guaranteed to remain
 constant only until the next ProgramStringARB c ommand, which may overwrite
 the error string.

 Insert a new Section 6.1.12, Program Queries (p . 207), between existing
 sections 6.1.11 and 6.1.12.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 444

 Section 6.1.12, Program Queries

 The commands

 void GetProgramEnvParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramEnvParameterfvARB(enum target, uint index,
 float *param s);

 obtain the current value for the program enviro nment parameter numbered
 <index> for the given program target <target>, and places the information
 in the array <params>. The error INVALID_ENUM is generated if <target>
 specifies a nonexistent program target or a pro gram target that does not
 support program environment parameters. The er ror INVALID_VALUE is
 generated if <index> is greater than or equal t o the
 implementation-dependent number of supported pr ogram environment
 parameters for the program target.

 When <target> is VERTEX_PROGRAM_ARB, each progr am parameter returned is an
 array of four values.

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);

 obtain the current value for the program local parameter numbered <index>
 belonging to the program object currently bound to <target>, and places
 the information in the array <params>. The err or INVALID_ENUM is
 generated if <target> specifies a nonexistent p rogram target or a program
 target that does not support program local para meters. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 implementation-dependent number of supported pr ogram local parameters for
 the program target.

 When the program target type is VERTEX_PROGRAM_ ARB, each program
 local parameter returned is an array of four va lues.

 The command

 void GetProgramivARB(enum target, enum pname, int *params);

 obtains program state for the program target <t arget>, writing the state
 into the array given by <params>. GetProgramiv ARB can be used to
 determine the properties of the currently bound program object or
 implementation limits for <target>.

 If <pname> is PROGRAM_LENGTH_ARB, PROGRAM_FORMA T_ARB, or
 PROGRAM_BINDING_ARB, GetProgramivARB returns on e integer holding the
 program string length (in bytes), program strin g format, and program name,
 respectively, for the program object currently bound to <target>.

 If <pname> is MAX_PROGRAM_LOCAL_PARAMETERS_ARB or
 MAX_PROGRAM_ENV_PARAMETERS_ARB, GetProgramivARB returns one integer
 holding the maximum number of program local par ameters or program

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 445

 environment parameters, respectively, supported for the program target
 <target>.

 If <pname> is MAX_PROGRAM_INSTRUCTIONS_ARB, MAX _PROGRAM_TEMPORARIES_ARB,
 MAX_PROGRAM_PARAMETERS_ARB, MAX_PROGRAM_ATTRIBS_ARB, or
 MAX_PROGRAM_ADDRESS_REGISTERS_ARB, GetProgramiv ARB returns a single
 integer giving the maximum number of instructio ns, temporaries,
 parameters, attributes, and address registers t hat can be used by a
 program of type <target>. If <pname> is PROGRA M_INSTRUCTIONS_ARB,
 PROGRAM_TEMPORARIES_ARB, PROGRAM_PARAMETERS_ARB, PROGRAM_ATTRIBS_ARB, or
 PROGRAM_ADDRESS_REGISTERS_ARB, GetProgramivARB returns a single integer
 giving the number of instructions, temporaries, parameters, attributes,
 and address registers used by the current progr am for <target>.

 If <pname> is MAX_PROGRAM_NATIVE_INSTRUCTIONS_A RB,
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB, MAX_PROGRAM_NATIVE_PARAMETERS_ARB,
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB, or
 MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB, GetProgramivARB returns a single
 integer giving the maximum number of native ins truction, temporary,
 parameter, attribute, and address register reso urces available to a
 program of type <target>. If <pname> is PROGRA M_NATIVE_INSTRUCTIONS_ARB,
 PROGRAM_NATIVE_TEMPORARIES_ARB, PROGRAM_NATIVE_PARAMETERS_ARB,
 PROGRAM_NATIVE_ATTRIBS_ARB, or PROGRAM_NATIVE_A DDRESS_REGISTERS_ARB,
 GetProgramivARB returns a single integer giving the number of native
 instruction, temporary, parameter, attribute, a nd address register
 resources consumed by the program currently bou nd to <target>. Native
 resource counts will reflect the results of imp lementation-dependent
 scheduling and optimization algorithms applied by the GL, as well as
 emulation of non-native features. If <pname> i s
 PROGRAM_UNDER_NATIVE_LIMITS_ARB, GetProgramivAR B returns 0 if the native
 resource consumption of the program currently b ound to <target> exceeds
 the number of available resources for any resou rce type, and 1 otherwise.

 The command

 void GetProgramStringARB(enum target, enum pn ame, void *string);

 obtains the program string for the program obje ct bound to <target> and
 places the information in the array <string>. <pname> must be
 PROGRAM_STRING_ARB. <n> ubytes are returned in to the array program where
 <n> is the length of the program in ubytes, as returned by GetProgramivARB
 when <pname> is PROGRAM_LENGTH_ARB. The progra m string is always returned
 using the format given when the program string was specified.

 The commands

 void GetVertexAttribdvARB(uint index, enum pn ame, double *params);
 void GetVertexAttribfvARB(uint index, enum pn ame, float *params);
 void GetVertexAttribivARB(uint index, enum pn ame, int *params);

 obtain the vertex attribute state named by <pna me> for the vertex
 attribute numbered <index> and places the infor mation in the array
 <params>. <pname> must be one of VERTEX_ATTRIB _ARRAY_ENABLED_ARB,
 VERTEX_ATTRIB_ARRAY_SIZE_ARB, VERTEX_ATTRIB_ARR AY_STRIDE_ARB,
 VERTEX_ATTRIB_ARRAY_TYPE_ARB, VERTEX_ATTRIB_ARR AY_NORMALIZED_ARB, or
 CURRENT_VERTEX_ATTRIB_ARB. Note that all the q ueries except
 CURRENT_VERTEX_ATTRIB_ARB return client state. The error INVALID_VALUE is

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 446

 generated if <index> is greater than or equal t o MAX_VERTEX_ATTRIBS_ARB.
 The error INVALID_OPERATION is generated if <in dex> is zero and <pname> is
 CURRENT_VERTEX_ATTRIB_ARB, as there is no curre nt value for vertex
 attribute zero.

 The command

 void GetVertexAttribPointervARB(uint index, e num pname, void **pointer);

 obtains the pointer named <pname> for vertex at tribute numbered <index>
 and places the information in the array <pointe r>. <pname> must be
 VERTEX_ATTRIB_ARRAY_POINTER_ARB. The INVALID_V ALUE error is generated if
 <index> is greater than or equal to MAX_VERTEX_ ATTRIBS_ARB.

 The command

 boolean IsProgramARB(uint program);

 returns TRUE if <program> is the name of a prog ram object. If <program>
 is zero or is a non-zero value that is not the name of a program object,
 or if an error condition occurs, IsProgramARB r eturns FALSE. A name
 returned by GenProgramsARB, but not yet bound, is not the name of a
 program object.

 Concerning Section 6.1.12, Saving and Restoring State (p. 207):

 (no actual modifications to the spec) Only the enables, current vertex
 attributes, and vertex array state introduced b y this extension can be
 pushed and popped. See the attribute column in Table X.6 for determining
 what vertex program state can be pushed and pop ped with PushAttrib,
 PopAttrib, PushClientAttrib, and PopClientAttri b.

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 Add to end of Section A.3 (p. 242):

 Rule 4. Vertex program instructions not rele vant to the calculation of
 any result must have no effect on that result .

 Rule 5. Vertex program instructions relevant to the calculation of any
 result must always produce the identical resu lt.

 Instructions relevant to the calculation of a r esult are any instructions
 in a sequence of instructions that eventually d etermine the source values
 for the calculation under consideration.

 There is no guaranteed invariance between verti ces transformed by
 conventional GL vertex transform mode and verti ces transformed by vertex
 program mode. Multi-pass rendering algorithms that require rendering
 invariances to operate correctly should not mix conventional GL vertex
 transform mode with vertex program mode for dif ferent rendering passes,
 except by using the position invariance option (section 2.14.4.5.1) in all
 vertex program mode passes. However, such algo rithms will operate
 correctly if the algorithms limit themselves to a single mode of vertex
 transformation.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 447

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

 Changes to program objects shared between multi ple rendering contexts will
 be serialized (i.e., the changes will occur in a specific order).

 Changes to a program object made by one renderi ng context are not
 guaranteed to take effect in another rendering context until the other
 calls BindProgram to bind the program object.

 When a program object is deleted by one renderi ng context, the object
 itself is not destroyed until it is no longer t he current program object
 in any context. However, the name of the delet ed object is removed from
 the program object name space, so the next atte mpt to bind a program using
 the same name will create a new program object. Recall that destroying a
 program object bound in the current rendering c ontext effectively unbinds
 the object being destroyed.

Dependencies on EXT_vertex_weighting and ARB_vertex _blend

 If EXT_vertex_weighting and ARB_vertex_blend ar e both not supported, all
 discussions of vertex weights should be removed .

 In particular, references to vertex weights sho uld be removed from Table
 X.1, and the description of ArrayElement in sec tion 2.8. The line

 "weight" <vtxOptWeightNum>

 should be removed from the <vtxAttribItem> gram mar rule, and the grammar
 rules <vtxOptWeightNum> and <vtxWeightNum> shou ld be deleted.
 "vertex.weight" and "vertex.weight[n]" should b e removed from Table X.2.
 The discussion of vertex weights in section 2.1 4.3.1 should be removed.

 Additionally, the first line of Table X.3.8 sho uld be modified to read:

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 state.matrix.modelview modelvi ew matrix

Dependencies on ARB_matrix_palette:

 If ARB_matrix_palette is not supported, all dis cussions of per-vertex
 matrix indices and the matrix palette should be removed.

 In particular, the reference to matrix indices should be removed from the
 description of ArrayElement in section 2.8. Th e line

 "matrixindex" "[" <vtxWeightNum> "]"

 should be removed from the <vtxAttribItem> gram mar rule. The line

 "palette" "[" <statePaletteMatNum> "]"

 should be removed from the <stateMatrixName> gr ammar rule, and the

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 448

 <statePaletteMatNum> grammar rule should be rem oved entirely.
 "vertex.matrixindex[n]" should be removed from Table X.2, and
 "state.matrix.palette[n]" should be removed fro m Table X.3.8. The
 discussion of vertex matrix indices in section 2.14.3.1 should be removed.

Dependencies on EXT_point_parameters and ARB_point_ parameters

 The discussion of point size determination in E XT/ARB_point_parameters
 should qualified to indicate that this function ality only applies when
 vertex program mode is disabled.

 If EXT/ARB_point_parameters is not supported, r eferences to point
 parameter state should be eliminated. In parti cular,

 "attenuation"

 should be eliminated from the <statePointProper ty> grammar rule, and the
 corresponding entries in Table X.3.7 should be eliminated.

 Additionally, references to the minimum and max imum point sizes and the
 fade threshold should be removed from Table X.3 .7 and the explanatory text
 immediately thereafter. The components column of the "state.point.size"
 binding in Table X.3.7 should read (s,0,0,1).

 Even if EXT/ARB_point_parameters is not support ed, the point size result
 (result.pointsize) still operates as specified.

Dependencies on EXT_fog_coord

 If EXT_fog_coord is not supported, references t o fog coordinates should be
 removed from Table X.1, and the description of ArrayElement in section
 2.8. The line "fogcoord" should be removed fro m the <vtxAttribItem>
 grammar rule, and "vertex.fogcoord" should be r emoved from Table X.2.
 Also, the use of FOG_COORDINATE_SOURCE_EXT in s ection 3.10 should be
 removed.

 Even if EXT_fog_coord is not supported, the fog coordinate output
 (result.fogcoord) still operates as specified. When in vertex program
 mode, there are no well-defined eye coordinates that could be used for
 fog. This means that the functionality of EXT_ fog_coord is required to
 implement ARB_vertex_program even if the EXT_fo g_coord extension itself is
 not supported.

Dependencies on EXT_secondary_color

 If EXT_secondary_color is not supported, refere nces to secondary color
 should be removed from Table X.1, and the descr iption of ArrayElement in
 section 2.8. The line "secondary" should be re moved from the
 <vtxOptColorType> grammar rule, and "vertex.col or.secondary" should be
 removed from Table X.2.

 Even if EXT_secondary_color is not supported, t he secondary color results
 (result.color.secondary, result.color.front.sec ondary,
 result.color.back.secondary) still operate as s pecified in program mode,
 and when in program mode, the color sum enable behaves exactly as
 specified in EXT_secondary_color. These vertex result registers are

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 449

 required to implement OpenGL 1.2's separate spe cular mode within a vertex
 program.

 The color sum enable enumerant from EXT_seconda ry_color has been brought
 over and renamed to COLOR_SUM_ARB. The enumera nt value itself is
 unchanged from EXT_secondary_color.

Dependencies on ARB_transpose_matrix

 If ARB_transpose_matrix is not supported, the d iscussion of
 TRANSPOSE_CURRENT_MATRIX_ARB in the edits to se ction 6.1.2 should be
 removed.

Interactions with NV_vertex_program

 The existing NV_vertex_program extension, if su pported, also provides a
 similar vertex programming model. This extensi on is incompatible with
 NV_vertex_program in a number of different ways . Mixing the two models in
 a single application is possible but not recomm ended. The interactions
 between the extensions are defined below.

 Functions, enumerants, and programs defined in NV_vertex_program are
 called "NV functions", "NV enumerants", and "NV programs" respectively.
 Functions, enumerants, and programs defined in ARB_vertex_program are
 called "ARB functions", "ARB enumerants", and " ARB programs" respectively.

 The following enumerants are identical in the t wo extensions:

 ARB_vertex_program NV_vertex _program
 ------------------------------ --------- ---------------------
 VERTEX_PROGRAM_ARB VERTEX_PR OGRAM_NV
 VERTEX_PROGRAM_POINT_SIZE_ARB VERTEX_PR OGRAM_POINT_SIZE_NV
 VERTEX_PROGRAM_TWO_SIDE_ARB VERTEX_PR OGRAM_TWO_SIDE_NV
 VERTEX_ATTRIB_ARRAY_SIZE_ARB ATTRIB_AR RAY_SIZE_NV
 VERTEX_ATTRIB_ARRAY_STRIDE_ARB ATTRIB_AR RAY_STRIDE_NV
 VERTEX_ATTRIB_ARRAY_TYPE_ARB ATTRIB_AR RAY_TYPE_NV
 CURRENT_VERTEX_ATTRIB_ARB CURRENT_A TTRIB_NV
 VERTEX_ATTRIB_ARRAY_POINTER_ARB ATTRIB_AR RAY_POINTER_NV
 PROGRAM_LENGTH_ARB PROGRAM_L ENGTH_NV
 PROGRAM_STRING_ARB PROGRAM_S TRING_NV
 PROGRAM_ERROR_POSITION_ARB PROGRAM_E RROR_POSITION_NV
 CURRENT_MATRIX_ARB CURRENT_M ATRIX_NV
 CURRENT_MATRIX_STACK_DEPTH_ARB CURRENT_M ATRIX_STACK_DEPTH_NV
 MAX_PROGRAM_MATRICES_ARB MAX_TRACK _MATRICES_NV
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB MAX_TRACK_MATRIX_STACK_DEPTH_NV

 The following GL state is identical in the two extensions and can be set
 or queried using either NV functions or ARB fun ctions.

 - Vertex program mode enable.

 - Vertex program point size mode enable.

 - Vertex program two sided mode enable.

 - Program error position.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 450

 - NV_vertex_program "program parameters" and ARB_vertex_program "program
 environment parameters".

 - Current values of generic vertex attributes . Conventional and generic
 vertex attributes will alias according to t he NV_vertex_program spec,
 which is permissible but optional under ARB _vertex_program.

 - NV_vertex_program "tracking matrices" and A RB_vertex_program "program
 matrices". The NV and ARB enumerants passe d to MatrixMode are
 different, however.

 - Vertex attribute array sizes, types, stride s, and pointers.

 - Vertex program object names, targets, forma ts, program string, program
 string lengths, and residency information. The ARB and NV query
 functions operate differently. The ARB que ry function does not allow
 queries of target (passed in to the query) and residency information.
 The NV query function does not allow querie s of program name (passed
 in to the query) or format. The format of NV programs is always
 PROGRAM_FORMAT_ASCII_ARB.

 - Current matrix and current matrix stack dep th.

 - Implementation-dependent limits on number o f tracking/program matrices
 and tracking/program matrix stack depth.

 - Program object name space. Program objects are created differently in
 the NV and ARB specs. Under the NV spec, p rogram objects are created
 by calling LoadProgramNV. Under the ARB sp ec, program objects are
 created by calling BindProgramARB with an u nused program name.

 The following state is provided only by ARB_ver tex_program:

 - Program error string. Querying the error s tring after calling
 LoadProgramNV produces undefined results.

 - Vertex attribute array normalization enable s. Setting up vertex
 attribute arrays through NV functions will set the normalization
 enable appropriately based on the NV spec.

 - Vertex program object resource counts and n ative resource counts.
 These values are undefined for NV programs.

 - Vertex program local parameters. They can not be used by NV programs.

 - Implementation-dependent limits on the numb er of program environment
 parameters, program local parameters, resou rce counts, and native
 resource counts. These limits are baked in to the NV spec, except for
 native counts, which don't exist.

 The following state is provided only by NV_vert ex_program:

 - TrackMatrix enables and transforms.

 - Generic vertex attribute evaluator maps. T he NV evaluator
 functionality will be supported even for AR B programs.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 451

 The following are additional functional differe nces between
 ARB_vertex_program and NV_vertex_program:

 - ARB program temporaries, address registers, and result registers are
 initially undefined. The corresponding val ues in NV programs are
 initialized to (0,0,0,0), 0, and (0,0,0,1), respectively. ARB
 programs running on NV_vertex_program platf orms can not rely on
 NV_vertex_program initialization behavior f or temporaries or address
 registers, but result registers will be ini tialized to (0,0,0,1). In
 any event, ARB programs that rely on NV_ver tex_program initialization
 may not behave properly on other platforms that support
 ARB_vertex_program but not NV_vertex_progra m.

 - NV programs use a set of fixed variable and register names, with no
 support for user-defined variables. ARB pr ograms provide no support
 for fixed variable names; all variables mus t be declared, explicitly
 or implicitly, in the program.

 - ARB programs support parameter variables th at can be bound to selected
 GL state variables, and are updated automat ically when the underlying
 state changes. NV programs provide no such support; applications must
 set program parameters themselves.

 - ARB programs allow program constants to be declared in the program
 text; NV programs require that constants be loaded into the program
 parameter array.

 - ARB programs support program local paramete rs; NV programs do not.
 Applications using multiple NV programs mus t manage the shared program
 parameter array appropriately.

 - ARB_vertex_program vertex array support pro vides a normalized flag to
 optionally normalize fixed-point array data to the [0,1] or [-1,1]
 range. ARB_vertex_program also provides se veral immediate-mode entry
 points with the same support. NV_vertex_pr ogram supports normalized
 data only for unsigned byte data types, and does not support
 non-normalized unsigned bytes. VertexAttri b4ub{v}NV was renamed to
 VertexAttrib4Nub{v}ARB to indicate that the 4ub call normalizes its
 parameters to a [0,1] range.

 - ARB_vertex_blend and ARB_matrix_palette sup port are documented by the
 ARB spec, but not by the NV spec.

 - ARB_vertex_program contains an OPTION mecha nism for future
 extensibility, and a position invariant pro gram option. Both features
 are found in NV_vertex_program1_1, but not in NV_vertex_program.

 - NV_vertex_program supports a vertex state p rogram target that allows
 programs to write to program parameters (VE RTEX_STATE_PROGRAM_NV). No
 such support exists in ARB_vertex_program. Running a NV state program
 will update the program parameter/program e nvironment parameter array,
 and such updates can be visible through ARB programs.

 - LoadProgramNV entry point was changed to Pr ogramStringARB to match
 OpenGL convention that a verb should not be included in a command name
 that merely sets state.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 452

 - The formal parameter name for program objec ts was "id" in
 NV_vertex_program; in ARB_vertex_program, t his formal name is now
 "program" to match how texture object routi nes name their formal
 texture object names "texture".

 - NV_vertex_program has language that makes i t sound that LoadProgramNV
 (ProgramStringARB) only accepts the VERTEX_ PROGRAM_NV target and the
 start token must be "!!VP1.0". This extens ion clarifies the language
 so that it is clear that other targets and start token types are
 permitted.

 - NV_vertex_program numeric requirements are not present in the ARB
 spec. The ARB spec requires nothing more t han the numeric
 requirements spelled out in section 2.1.1 (Floating-Point
 Computations) in the core specification.

 - ARB programs allow single instructions to s ource multiple distinct
 vertex attributes or program parameters. N V programs do not. On
 current NV_vertex_program hardware, such in structions may require
 additional instructions and temporaries to execute.

 - ARB programs support the folowing instructi ons not supported by NV
 "VP1.0" programs:

 * ABS: absolute value. Supported on V P1.1 NV programs, but not
 on VP1.0 programs. Equivalent to "MA X dst, src, -src".

 * EX2: exponential base 2. On VP1.0 a nd VP1.1 hardware, this
 instruction will be emulated using EX P and a number of
 additional instructions.

 * FLR: floor. On VP1.0 and VP1.1 hard ware, this instruction will
 be emulated using an EXP and an ADD i nstruction.

 * FRC: fraction. On VP1.0 and VP1.1 h ardware, this instruction
 will be emulated using an EXP instruc tion, and possibly a MOV
 instruction to replicate the scalar r esult.

 * LG2: logarithm base 2. On VP1.0 and VP1.1 hardware, this
 instruction will be emulated using LO G and a number of
 additional instructions.

 * POW: exponentiation. On VP1.0 and V P1.1 hardware, this
 instruction will be emulated using LO G, MUL, and EXP
 instructions, and possibly additional instructions to generate a
 high-precision result.

 * SUB: subtraction. Supported on VP1. 1 NV programs, but not on
 VP1.0 programs. Equivalent to "ADD d st, src1, -src2".

 * SWZ: extended swizzle. On VP1.0 and VP1.1 hardware, this
 instruction will be emulated using a single MAD instruction and
 a program parameter constant.

 * XPD: cross product. On VP1.0 and VP 1.1 hardware, this
 instruction will be emulated using a MUL and a MAD instruction.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 453

 - The COLOR_SUM_EXT enable is ignored when NV programs are executed
 (default secondary color outputs are zero) but not when ARB programs
 are executed (default secondary color outpu ts are undefined). The
 driver will take care of the color sum oper ation based on which type
 of program is currently bound.

 - NV programs are required to write a vertex position; ARB programs are
 not.

 - There is both an ARB and an NV boolean enab le for each generic
 array (two booleans per generic array). Ea ch generic array's NV
 enable is enabled with EnableClientState(VE RTEX_ATTRIB_ARRAYn_NV)
 or disabled with DisableClientState(VERTEX_ ATTRIB_ARRAYn_NV)
 while each generic array's ARB enable is en abled
 with EnableVertexAttribArrayARB(n) and disa bled with
 DisableVertexAttribArrayARB(n).

 Enabling (or disabling) an ARB generic arra y enables (or disables)
 BOTH the NV and ARB generic array booleans.

 However enabling (or disabling) the NV gene ric array enable
 changes only the NV generic array enable (t he ARB enable is
 UNchanged).

 When an enabled valid current vertex progra m (whether specified
 as an ARB or NV vertex program) is bound, t he NV generic array
 enables are considered (and the ARB enables are ignored). If a
 given NV generic array enable is true, the corresponding generic
 array state is applied. However if there i s an enabled valid
 vertex program and a particular NV generic array is disabled, then
 the corresponding conventional aliased arra y state is applied.

 When the current vertex program is disabled or not valid (so
 conventional vertex processing is performed), the ARB generic
 array enables are considered (and the NV en ables are ignored).
 If a given ARB generic array enable is true , the corresponding
 generic array state is applied. However if the current vertex
 program is disabled or NOT valid and a part icular ARB generic
 array is disabled, then the corresponding c onventional aliased
 array state is applied.

 This behavior means generic vertex arrays c an be applied to
 conventional vertex processing when the ARB generic vertex array
 enable boolean is true. For example, you c an send normalized
 UNSIGNED_SHORT texture coordinate set array s as aliased generic
 vertex arrays where conventionally UNSIGNED _SHORT texture
 coordinate set arrays are unnormalized.

 NV_vertex_program interaction Issues:

 - Should matrix tracking support extend to AR B program environment
 parameters?

Interactions with EXT_vertex_shader

 The existing EXT_vertex_shader extension, if su pported, also provides a
 similar vertex programming model. This extensio n is incompatible with

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 454

 ARB_vertex_program in a number of different way s. Mixing the two models
 in a single application is possible but not rec ommended. The interactions
 between the extensions are defined below.

 First, it should be trivially noted that an EXT _vertex_shader "shader"
 serves the same purpose as an ARB_vertex_progra m "program". The two terms
 will be used interchangeably throughout this di scussion.

 The most obvious difference between the two ext ensions is that the
 definition of the vertex program is accomplishe d in EXT_vertex_shader
 through the use of instruction-specifying proce dure calls and is
 accomplished in ARB_vertex_program by providing a textual string
 describing the program. This is mostly a distin ction of interface rather
 than functionality.

 Each extension provides its own distinct set of GL state, entry points,
 and enumerants. However, there are several area s of overlap both in
 conceptual framework and in programming model t hat are worth noting for
 those familiar with both API's.

 1. Resource terminology and types

 Both ARB_vertex_program and EXT_vertex_shade r offer access to similar
 types of resources for use by vertex program s.

 The following terms describe roughly equival ent resources in their
 respective extensions:

 EXT_vertex_shader ARB_vertex_program Note
 ----------------- ------------------ ----
 instructions instructions
 variants attributes
 locals temporaries
 local constants parameters bound to inli ne constants (a)
 invariants parameters bound to GL s tate and (b)
 program environment para meters

 a. ARB_vertex_program has no intrinsic sto rage type that corresponds
 to EXT_vertex_shader's LOCAL_CONSTANT s torage type, but rather
 supports program parameters bound to in line constant vectors
 specified within the program text. This essentially makes
 LOCAL_CONSTANT a special case of an ARB _vertex_program program
 parameter. The values of these inline c onstant parameters can not
 be changed without redefining the progr am itself, just like the
 values of EXT_vertex_shader LOCAL_CONST ANTs.

 b. ARB_vertex_program has no intrinsic sto rage type that corresponds
 to EXT_vertex_shader's INVARIANT storag e type, but rather supports
 program parameters bound to GL state va riables, program
 environment parameters, and program loc al parameters. This
 essentially makes INVARIANT a special c ase of an
 ARB_vertex_program program parameter. T he values of these bound
 program parameters can be changed witho ut redefining the program
 itself, but remain constant from vertex to vertex during vertex
 program execution, just like the values of EXT_vertex_shader
 INVARIANTs.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 455

 ARB_vertex_program also adds the concept of a program local parameter,
 which has no direct analogue in EXT_vertex_s hader, as it represents a
 parameter that is stored locally with the pr ogram object, but the
 values of these parameters can be changed wi thout redefining the
 program itself.

 2. Resource usage queries

 Both ARB_vertex_program and EXT_vertex_shade r provide queries to assist
 in determining the resource usage of a given shader and whether the
 shader would "fit" within the limits imposed by the underlying hardware
 implementation. The application can investig ate the maximum numbers of
 shader resources supported by an implementat ion, shader resources
 available in hardware, and resources consume d by a given shader after
 being compiled into the implementation's nat ive representation.

 In EXT_vertex_shader (see the end of section 2.14 of the
 EXT_vertex_shader specification), the querie s are handled by glGet.

 In ARB_vertex_programs (see section 2.14.3.7 of this specification),
 similar queries are handled by GetProgramivA RB, with a target of
 VERTEX_PROGRAM_ARB.

 The following queries exist in both extensio ns and serve roughly
 equivalent purposes in each:

 EXT_vertex_shader ARB_vertex_program
 ----------------- ------------------
 MAX_VERTEX_SHADER_INSTRUCTIONS_EXT MAX_PROGRAM_INSTRUCTIONS_ARB
 MAX_VERTEX_SHADER_VARIANTS_EXT MAX_PROGRAM_ATTRIBS_ARB
 MAX_VERTEX_SHADER_LOCALS_EXT MAX_PROGRAM_TEMPORARIES_ARB

 MAX_OPTIMIZED_VERTEX_SHADER_INSTRUCTIONS_EXT MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB
 MAX_OPTIMIZED_VERTEX_SHADER_VARIANTS_EXT MAX_PROGRAM_NATIVE_ATTRIBS_ARB
 MAX_OPTIMIZED_VERTEX_SHADER_LOCALS_EXT MAX_PROGRAM_NATIVE_TEMPORARIES_ARB

 VERTEX_SHADER_INSTRUCTIONS_EXT PROGRAM_NATIVE_INSTRUCTIONS_ARB
 VERTEX_SHADER_VARIANTS_EXT PROGRAM_NATIVE_ATTRIBS_ARB
 VERTEX_SHADER_LOCALS_EXT PROGRAM_NATIVE_TEMPORARIES_ARB

 VERTEX_SHADER_OPTIMIZED_EXT PROGRAM_UNDER_NATIVE_LIMITS_ARB

 ARB_vertex_program offers additional queries to account for differences
 in some of the resource definitions (program environment parameters and
 program local parameters, address registers, etc.) as well as the
 ability to separately query a compiled progr am's resource usage
 according to the specification versus a poss ibly more efficient
 resource usage obtained by passing the progr am through by a "smart"
 compiler.

 The following queries do not exist in ARB_ve rtex_program due to the
 slightly different resource models:

 EXT_vertex_shader ARB_vertex_program
 ----------------- ------------------
 {MAX_}{OPTIMIZED_}VERTEX_SHADER_INVARIANTS_E XT (a)
 {MAX_}{OPTIMIZED_}VERTEX_SHADER_LOCAL_CONSTA NTS_EXT (a)

 a. ARB_vertex_program coalesces all of the different program
 parameters (environment, local, inline constant, and those bound

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 456

 to GL state) into a single queryable re source for
 PROGRAM_PARAMETERS. EXT_vertex_shader provides separate queries
 even though these parameters may consum e the same resource on some
 implementations.

 The following queries do not exist in EXT_ve rtex_shader due to the
 slightly different resource models:

 EXT_vertex_shader ARB_vertex_program
 ----------------- ------------------
 (b) PROGRAM_*_ARB

 (c) {MAX_}{NATIVE_}PROGRAM_ PARAMETERS_ARB

 (d) {MAX_}{NATIVE_}PROGRAM_ ADDRESS_REGISTERS_ARB

 b. These queries are used to find out how many resources a given
 program used according to the specifica tion, *before* running the
 program through an optimizing compiler. This distinction is not
 made in EXT_vertex_shader.

 c. These queries are used to find out how many parameters were used
 by a program or are allowed by an imple mentation, in total without
 distinguishing between environment para meters, program local
 parameters, inline constant parameters, or parameters bound to GL
 state. EXT_vertex_shader does not prov ide this information.

 d. EXT_vertex_shader does not provide have any address register
 resources since all dynamic array refer ences are handled with the
 atomic OP_INDEX instruction.

 3. Symbols and variable names

 In EXT_vertex_shader resources that represen t storage locations
 (i.e. INVARIANTS, VARIANTS, LOCALS, LOCAL_CO NSTANTS) are abstractly
 referenced through a GL-allocated symbol id obtained from
 GenSymbolsEXT. This level of abstraction is provided to allow the
 implementation to make hardware-dependent de cisions about the best way
 to arrange, allocate, and re-use hardware re sources.

 Though ARB_vertex_program does not use symbo l id's to refer to similar
 types of resources, it does provide similar functionality by allowing a
 vertex program to declare arbitrarily named variables for each resource
 in use. These names are assigned using the d eclaration syntax
 associated with the "PARAM", "ATTRIB", "TEMP ", and "OUTPUT", and
 "ADDRESS" keywords.

 4. Program management

 With the exception of the actual program spe cification itself,
 EXT_vertex_shader and ARB_vertex_program hav e very similar program
 management API's.

 The following procedures serve roughly equiv alent functions in their
 respective extensions.

 EXT_vertex_shader ARB_vertex_prog ram

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 457

 ----------------- --------------- ---
 BindVertexShaderEXT BindProgramARB
 GenVertexShadersEXT GenProgramsARB
 DeleteVertexShaderEXT DeleteProgramsA RB

 The following procedures are used in EXT_ver tex_shader to define the
 program instruction sequence, and are not pr esent in ARB_vertex_program
 since the string provided to ProgramStringAR B fully defines the program
 contents.

 ShaderOp1EXT
 ShaderOp2EXT
 ShaderOp3EXT
 SwizzleEXT
 WriteMaskEXT
 InsertComponentEXT
 ExtractComponentEXT

 5. Data specification routines

 With the exception of the discrepancies in d ata types and resource
 names described above, EXT_vertex_shader and ARB_vertex_program provide
 similar program data specification and "curr ent data query" API's.

 The following procedures serve roughly equiv alent functions in their
 respective extensions:

 EXT_vertex_shader ARB_vertex_prog ram Note
 ----------------- --------------- --- -----
 SetInvariantEXT ProgramEnvParam eter4*ARB (a)
 GetInvariant*vEXT GetProgramEnvPa rameter*vARB (a)
 Variant*vEXT VertexAttrib*AR B
 VariantPointerEXT VertexAttribPoi nterARB
 GetVariant*vEXT GetVertexAttrib *vARB
 GetVariantPointervEXT GetVertexAttrib PointervARB
 EnableVariantClientStateEXT EnableVertexAtt ribArrayARB
 DisableVariantClientStateEXT DisableVertexAt tribArrayARB
 IsVariantEnabledEXT GetVertexAttrib *vARB (b)

 a. See item #1 and #2 for more information on the relationship
 between EXT_vertex_shader invariants an d ARB_vertex_program
 program parameters.

 b. The enabled state of an attribute array in ARB_vertex_program can
 be queried with GetVertexAttrib*v and a parameter of
 VERTEX_ATTRIB_ARRAY_ENABLED_ARB. In EXT _vertex_shader there is a
 dedicated enabled query procedure.

 However, there are some data specification r outines in
 EXT_vertex_shader that have no procedure cal l analogue in
 ARB_vertex_program as their functions are su bsumed by the string
 representation of the program itself.

 The following procedures in EXT_vertex_shade r have functionality
 roughly covered by the following strings wit hin the program text in
 ARB_vertex_shader:

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 458

 EXT_vertex_shader ARB_vertex_prog ram Note
 ----------------- --------------- --- -----
 SetLocalConstantEXT PARAM C = {<x>, <y>,<z>,<w>}; (c)

 BindLightParameterEXT state.light[n]. *
 BindMaterialParameterEXT state.material. * (d)
 BindTexGenParameterEXT state.texgen[n] .*

 BindTextureUnitParameterEXT
 CURRENT_TEXTURE_COORDS vertex.texcoord [n]
 TEXTURE_MATRIX state.matrix.te xture[n]

 BindParameterEXT
 CURRENT_VERTEX_EXT vertex.position
 CURRENT_NORMAL vertex.normal
 CURRENT_COLOR vertex.color.*
 MODELVIEW_MATRIX state.matrix.mo delview[n]
 PROJECTION_MATRIX state.matrix.pr ojection
 MVP_MATRIX_EXT state.matrix.mv p
 COLOR_MATRIX <unavailable> (e)
 CLIP_PLANE state.clip[n].p lane
 FOG_COLOR state.fog.color
 FOG_DENSITY state.fog.param s.x
 FOG_START state.fog.param s.y
 FOG_END state.fog.param s.z
 LIGHT_MODEL_AMBIENT state.lightmode l.ambient

 c. Note that while EXT_vertex_shader style local constants can be
 specified using inline constants in the program text, there is no
 functionality in ARB_vertex_program tha t corresponds to the
 GetLocalConstant*vEXT call. That is, pr ogram parameters bound to
 inline constant vectors can be set in t he text, but not queried
 from the application.

 d. Note that while EXT_vertex_shader suppo rts binding material
 properties to variants, ARB_vertex_shad er only supports binding
 them to program parameters (invariants) . See item #11 below for
 more information.

 e. Note that while EXT_vertex_shader suppo rts binding color matrix if
 the ARB_imaging subset is supported, AR B_vertex_shader does not
 allow for such a binding. See item #11 below for more information.

 6. Data types

 EXT_vertex_shader supports data types of SCA LAR, VECTOR, and MATRIX.

 ARB_vertex_program intrinsically supports on ly vectors, though it
 allows for the definition of a matrix as a c ontiguous allocation of
 four row vectors. Some operations that, in E XT_vertex_shader require
 scalar inputs or scalar outputs, will, in AR B_vertex_program, use the
 selected component of the source vector as i nput and/or replicate their
 output to all components .

 Further, EXT_vertex_shader supports a pair o f InsertComponents and
 ExtractComponents functions that are not ava ilable (nor required) in
 ARB_vertex_program, as they essentially prov ide for conversion between

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 459

 the SCALAR, VECTOR, and MATRIX data types.

 7. Input swizzles and output write-masks

 In EXT_vertex_shader, write masks are specif ied as a type of
 "instruction", using WriteMaskEXT, while in ARB_vertex_program, write
 masks are specified as modifiers to the dest ination resource with
 writemask modifiers, such as ".xyz" or ".w".

 In EXT_vertex_shader, source operand swizzle s (component re- ordering,
 negation, and hard-coding to the value 0 and +/- 1.0) are also
 specified as a type of "instruction", using SwizzleEXT.

 In ARB_vertex_program, swizzles can either b e handled as instruction
 ("SWZ") or as part of a modifier of the sour ce argument to an
 instruction. The only differences between th e two methods is that the
 source modifiers in ARB_vertex_program do no t provide the ability to
 use 0.0 and +/- 1.0, or negate individual co mponents, while the "SWZ"
 instruction does.

 8. Support for clipping and user clip planes

 Both extensions provide similar support for t raditional clipping to the
 view frustum, namely that frustum clipping is not subsumed by vertex
 shader, or vertex program execution.

 Additionally, EXT_vertex_shader supports user clip planes by
 transforming the user clip planes from eye-sp ace into clip space and
 clipping in the clip space coordinate system. This is supported as long
 as the projection matrix is non-singular.

 ARB_vertex_program provides similar functiona lity but only for programs
 specified using the "position invariant" opti on. For more information on
 user clip-plane support, see issue #20 and se ction 2.14.4.5.1 of this
 specification.

 9. Support for glRasterPos

 EXT_vertex_shader does not support transformi ng the current raster
 position vertex by the current vertex shader, while ARB_vertex_program
 does.

 10. Relative addressing.

 The string based syntax of ARB_vertex_program supports a relative
 addressing model where a given declared array can be dynamically
 dereferenced by first loading a declared ADDR ESS register, using the
 "ARL" instruction with a value obtained at pr ogram execution then using
 that named ADDRESS register as the index to d ereference a declared array
 of parameters later on. See section 2.14.3.5 of this specification for
 details.

 For example, in ARB_vertex_program you can sp ecify the following
 piece of a program.

 PARAM arr[5] = { program.env[0..4] };
 ADDRESS addr;

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 460

 ATTRIB v1 = vertex.attrib[1];
 ARL addr, v1;
 MOV result, arr[addr.x + 1];

 EXT_vertex_shader supports relative addressin g as as a single atomic
 operation through the use of the instruction OP_INDEX_EXT, as in

 ShaderOp2EXT(OP_INDEX_EXT, <res>, <arg1>, <arg2>).

 OP_INDEX_EXT supports relative addressing by taking the value stored in
 the register referred to by <arg1> and adding that value to the register
 number referred to by <arg2>, and loading <re s> with the value stored in
 the register at the resulting offset. EXT_ve rtex_shader has the
 requirement that the register referred to by <arg2> is allocated as one
 of a contiguous range of symbols obtained fro m a single call to
 GenSymbolsEXT.

 To achieve the same functionality as the abov e ARB_vertex_program, using
 EXT_vertex_shader, one could allocate a LOCAL symbol to hold a "fake"
 address register, and do a similar type of dy namic dereference
 operation, placing the output in a temporary LOCAL before giving it as
 an source argument to the "real" instruction.

 arr_contiguousArraySymbol =
 GenSymbolsEXT(GL_VECTOR_EXT, GL_LOCAL_E XT, GL_FULL_RANGE_EXT, 5);

 addr_fakeAddressRegSymbol =
 GenSymbolsEXT(GL_VECTOR_EXT, GL_LOCAL_E XT, GL_FULL_RANGE_EXT, 1);

 v1_srcSymbolForARLOp =
 GenSymbolsEXT(GL_VECTOR_EXT, GL_VARIANT _EXT, GL_FULL_RANGE_EXT, 1);

 temp =
 GenSymbolsEXT(GL_VECTOR_EXT, GL_LOCAL_E XT, GL_FULL_RANGE_EXT, 1);

 result_ForMovOpSymbol =
 GenSymbolsEXT(GL_VECTOR_EXT, GL_LOCAL_E XT, GL_FULL_RANGE_EXT, 1);

 // load fake ADDRESS register
 ExtractComponentEXT(
 addr_fakeAddressRegSymbol,
 v1_srcSymbolForARLOp,
 0);

 // do dynamic dereference into a temp
 ShaderOp2EXT(
 GL_OP_INDEX_EXT,
 temp,
 addr_fakeAddressRegSymbol,
 contiguousArraySymbol);

 // do operation we really wanted (MOV) usin g looked up src value
 ShaderOp1EXT(
 GL_OP_MOV_EXT,
 result_ForMovOpSymbol,
 temp,
 (arr_contiguousArraySymbol + 1));

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 461

 11. Available GL state bindings

 Both EXT_vertex_shader and ARB_vertex_progra m offer the ability to bind
 program resources to pieces of OpenGL state so that the values of
 OpenGL state parameters are available to the program without the
 application having to copy the state values manually into program
 parameters.

 The two extensions differ in exactly which p ieces of state are
 available to a vertex program, with the main difference being that
 ARB_vertex_program offers a more comprehensi ve set of state bindings.

 First, EXT_vertex_shader can bind pieces of GL state considered to be
 "scalar" values to a single SCALAR symbol, w hereas ARB_vertex_program,
 which handles only vectors, packs up to 4 sc alar bindings into a single
 vector parameter.

 Similarly, EXT_vertex_shader can bind pieces of GL state considered to
 be "matrix" values to a single MATRIX symbol , whereas
 ARB_vertex_program supports bindings to matr ix data by using up to four
 vectors to store the rows of the matrix.

 Other differences between the state bindings available in both API's
 are listed below:

 a. In EXT_vertex_shader, the light attenua tion factors (CONSTANT,
 LINEAR, QUADRATIC, and SPOT_EXPONENT), are available as separate
 SCALAR bindings.

 In ARB_vertex_program, the light attenu ation factors are all
 packed into a single vector called stat e.light[n].attenuation with
 the CONSTANT, LINEAR, QUADRATIC, and SP OT_EXPONENT factors in the
 x,y,z, and w parameters respectively.

 b. In EXT_vertex_shader the spotlight dire ction (SPOT_DIRECTION) and
 spot light cutoff angle (SPOT_CUTOFF), are available as separate
 bindings.

 In ARB_vertex_program, these parameters are all packed into a
 single vector called state.light[n].spo t.direction with the with
 the x,y,z parameters of the spotlight d irection and the the
 cosine of the cutoff angle in the x,y ,z, and w parameters
 respectively.

 c. In EXT_vertex_shader, the fog equation factors (FOG_DENSITY,
 FOG_START, FOG_END), are avaiable as se parate SCALAR bindings.

 In ARB_vertex_program, the fog equation factors are all packed
 into a single vector called state.fog.p arams with the fog density,
 linear start, linear end, and pre-compu ted 1.0/ (end-start)
 factors in the x,y,z, and w parameters respectively.

 d. In EXT_vertex_shader, material properti es can be bound to a
 variant (i.e. "attribute" in ARB_vertex _program terminology) and
 can change per vertex, and the changes take effect immediately.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 462

 In ARB_vertex_program, material propert ies can only be bound to
 program parameters, and any changes to material properties between
 a Begin/End pair are not guaranteed to take effect until the
 following End command.

 e. In EXT_vertex_shader, the material shin iness property is bound to
 a SCALAR variable.

 In ARB_vertex_program, the material shi niness property is bound to
 a vector with elements { s, 0.0, 0.0, 1 .0 } where "s" is the
 material shininess property.

 f. In EXT_vertex_shader, a program can bin d to the current modelview,
 projection, composite modelview-project ion, color, and texture
 matrices only in their entirety.

 In ARB_vertex_program, a program can bi nd to individual rows of
 any matrix, with the exception of the c olor matrix, which is not
 available in ARB_vertex_program.

 Additionally, ARB_vertex_program adds t he ability to bind to
 multiple modelview matrices, multiple p alette matrices, and a set
 of matrices dedicated for use with vert ex programs called "program
 matrices". Further, ARB_vertex_program offers the ability to bind
 to the inverse, transpose, and inverse_ transpose of any of the
 matrices available for binding.

 If an application desires the functiona lity of binding to the
 color matrix in ARB_vertex_program, tha t application can use one
 of the other matrices, for instance pro gram matrices, to store the
 current color matrix.

 12. Instruction set differences.

 In general, ARB_vertex_program's instruction set is a super-set of the
 EXT_vertex_shader instructions that take VEC TOR inputs and produce
 VECTOR outputs. The versions of the EXT_vert ex_shader instructions that
 take non-vector (i.e. SCALAR or MATRIX) oper ands are almost all
 available in vector form as well.

 The instructions from each set correspond as follows:

 EXT_vertex_shader ARB_vertex_program Note
 ----------------- ------------------ -----
 OP_INDEX_EXT <unavailable> (a)
 OP_NEGATE_EXT <unavailable> (b)
 OP_DOT3_EXT "DP3" (c)
 OP_DOT4_EXT "DP4"
 OP_MUL_EXT "MUL"
 OP_ADD_EXT "ADD"
 OP_MADD_EXT "MAD"
 OP_FRAC_EXT "FRC"
 OP_MAX_EXT "MAX"
 OP_MIN_EXT "MIN"
 OP_SET_GE_EXT "SGE"
 OP_SET_LT_EXT "SLT"
 OP_CLAMP_EXT <unavailable> (d)

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 463

 OP_FLOOR_EXT "FLR"
 OP_ROUND_EXT <unavailable> (e)
 OP_EXP_BASE_2_EXT "EX2" (f)
 OP_LOG_BASE_2_EXT "LG2" (g)
 OP_POWER_EXT "POW" (h)
 OP_RECIP_EXT "RCP" (i)
 OP_RECIP_SQRT_EXT "RSQ" (j)
 OP_SUB_EXT "SUB"
 OP_CROSS_PRODUCT_EXT "XPD" (k)
 OP_MULTIPLY_MATRIX_EXT <unavailable> (l)
 OP_MOV_EXT "MOV"
 <unavailable> "ARL" (a)
 <unavailable> "ABS"
 <unavailable> "LIT"
 <unavailable> "EXP" (f)
 <unavailable> "LOG" (g)
 <unavailable> "DPH"
 <unavailable> "DST"

 There are a few minor differences, however.

 a. EXT_vertex_shader's OP_INDEX_EXT is not a vailable in
 ARB_vertex_program which uses the "ARL" i nstruction and array syntax
 to handle dynamically dereferencing sourc e data. See item #10 above
 and the discussion of "ARL" in section 2. 14.3.5.

 b. EXT_vertex_shader's OP_NEGATE_EXT is not available in
 ARB_vertex_program. ARB_vertex_program ca n support a "NEGATE"
 operation through the use of swizzle modi fiers on source operands or
 the "SWZ" instruction.

 MOV tempA, -tempB;

 or

 SWZ tempA, -tempB, x,y,z,w;

 c. The "w" component of EXT_vertex_shader's OP_DOT3_EXT instruction is
 left unchanged.

 However, in ARB_vertex_program, the "w" c omponent gets the same
 result as the "x", "y", and "z" component s.

 d. EXT_vertex_shader's OP_CLAMP_EXT is not a vailable in
 ARB_vertex_program. ARB_vertex_program ca n support a "CLAMP"
 operation by using a pair of "MAX" and "M IN" instructions as in:

 # CLAMP arg1 to be within [arg2, arg3]
 MAX temp, arg1, arg2;
 MIN result, temp, arg3;

 e. EXT_vertex_shader's OP_ROUND_EXT is not a vailable in
 ARB_vertex_program. ARB_vertex_program ca n support a "ROUND"
 operation by using a pair of "ADD" and "F LOOR" instructions as in:

 ADD temp, arg1, 0.5;
 FLOOR result, temp;

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 464

 f. EXT_vertex_shader's OP_EXP_BASE_2_EXT is designed to support high
 precision calculations of base-2 exponent iation.

 ARB_vertex_program's "EX2" is the equival ent function, however
 ARB_vertex_program also offers an "EXP" f unction that is designed to
 support a lower precision approximation o f base-2 exponentiation
 that can be further refined through an it erative process.

 On some implementations, both "EX2" and " EXP" may be carried out
 with the same high precision at no cost r elative to each other. As
 such, if a vertex program is using "EXP" with the intent of
 iteratively refining the approximation by using several successive
 instructions it may be more efficient to use a single call to "EX2"
 and get the high precision with a single instruction.

 If on the other hand, a single approximat ion is good enough, there
 is no additional cost to using "EXP" on s uch implementations.

 Further note that in EXT_vertex_shader, O P_EXP_BASE_2_EXT is
 specified to take a scalar operand, where as ARB_vertex_program's
 "EXP" and "EX2" instruction each take a v ector operand, use the "x"
 component, and then write (partial) resul ts to all components of a
 destination vector.

 g. EXT_vertex_shader's OP_LOG_BASE_2_EXT is designed to support high
 precision calculations of base-2 logarith ms.

 ARB_vertex_program's "LG2" is the equival ent function, however
 ARB_vertex_program also offers an "LOG" f unction that is designed to
 support a lower precision approximation o f base-2 logarithms that
 can be further refined through an iterati ve process.

 On some implementations, both "LG2" and " LOG" may be carried out
 with the same high precision at no cost r elative to each other. As
 such, if a vertex program is using "LOG" with the intent of
 iteratively refining the approximation by using several successive
 instructions it may be more efficient to use a single call to "LG2"
 and get the high precision with a single instruction.

 If on the other hand, a single approximat ion is good enough, there
 is no additional cost to using "LOG" on s uch implementations.

 Further note that in EXT_vertex_shader, O P_LOG_BASE_2_EXT is
 specified to take a scalar operand, where as ARB_vertex_program's
 "LOG" and "LOG2" instruction each take a vector operand, use the "x"
 component, and then write (partial) resul ts to all components of a
 destination vector.

 h. EXT_vertex_shader's OP_POWER_EXT is desig ned to support high
 precision calculations of the power funct ion.

 ARB_vertex_program's "POW" is the equival ent function.

 Further note that in EXT_vertex_shader, O P_POWER_EXT is specified to
 take a scalar operand, whereas ARB_vertex _program's "POW"
 instruction takes a vector operand, uses the "x" component, and

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 465

 replicates the same result to all compone nts of a destination
 vector.

 i. EXT_vertex_shader's OP_RECIP_EXT is speci fied to take a scalar
 operand, whereas ARB_vertex_program's "RC P" instruction takes a
 single component of a vector and replicat es the same result to all
 components of the destination vector.

 j. EXT_vertex_shader's OP_RECIP_SQRT_EXT is specified to take a scalar
 operand, whereas ARB_vertex_program's "RS Q" instruction takes a
 single component of a vector and replicat es the same result to all
 components of the destination vector.

 k. The "w" component of EXT_vertex_shader's OP_CROSS_PRODUCT_EXT
 instruction is forced to 1.0;

 However, in ARB_vertex_program, the "w" c omponent is left undefined
 and "writes to the w component of the des tination are treated as
 disabled, regardless of the write mask sp ecified in the XPD
 instruction".

 l. EXT_vertex_shader's OP_MULTIPLY_MATRIX is not available in
 ARB_vertex_program. ARB_vertex_program ca n support a "MATRIX
 MULTIPLY" operation by using a series of "DP4" instructions as in:

 PARAM mat[4] = { state.matrix.modelview };
 DP4 result.x, vec, mat[0];
 DP4 result.y, vec, mat[1];
 DP4 result.z, vec, mat[2];
 DP4 result.w, vec, mat[3];

 13. Vertex provoking behavior

 EXT_vertex_shader does not provoke vertex sh ader execution when variant
 0 is specified (either using Variant*EXT, or variant
 arrays). Applications are required to use th e conventional Vertex* or
 vertex arrays to provoke a vertex in both ve rtex shader mode and
 conventional mode. Variant 0 is considered current state and is
 queryable.

 Conversely, ARB_vertex_program does provoke vertex program execution
 when attribute 0 is specified (either using VertexAttrib*vARB, or
 attribute arrays) in both vertex program mod e and conventional mode.
 Attribute 0 is not considered current state and is not queryable.

 For implementations that support both extens ions, this means that if
 ARB_vertex_program is disabled, and EXT_vert ex_shader is enabled, then
 specifying ARB_vertex_program's attribute 0 will still provoke
 execution of the currently bound EXT_vertex_ shader defined shader.

 14. Enabled state

 On implementations that support both EXT_ver tex_shader, and
 ARB_vertex_program, priority is given to ARB _vertex_program. That is to
 say, if both are enabled, the implementation uses the program defined
 by ARB_vertex_program and does not execute t he currently bound
 EXT_vertex_shader shader unless or until ARB _vertex_program is

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 466

 subsequently disabled. Needless to say, it i s not expected that a given
 application will actually attempt to use bot h vertex program API's at
 once.

GLX Protocol

 The following rendering commands are sent to t he server as part of a
 glXRender request:

 VertexAttrib1svARB
 2 12 rendering c ommand length
 2 4189 rendering c ommand opcode
 4 CARD32 index
 2 INT16 v[0]
 2 unused

 VertexAttrib1fvARB
 2 12 rendering c ommand length
 2 4193 rendering c ommand opcode
 4 CARD32 index
 4 FLOAT32 v[0]

 VertexAttrib1dvARB
 2 16 rendering c ommand length
 2 4197 rendering c ommand opcode
 4 CARD32 index
 8 FLOAT64 v[0]

 VertexAttrib2svARB
 2 12 rendering c ommand length
 2 4190 rendering c ommand opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]

 VertexAttrib2fvARB
 2 16 rendering c ommand length
 2 4194 rendering c ommand opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]

 VertexAttrib2dvARB
 2 24 rendering c ommand length
 2 4198 rendering c ommand opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]

 VertexAttrib3svARB
 2 16 rendering c ommand length
 2 4191 rendering c ommand opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 467

 VertexAttrib3fvARB
 2 20 rendering c ommand length
 2 4195 rendering c ommand opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

 VertexAttrib3dvARB
 2 32 rendering c ommand length
 2 4199 rendering c ommand opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 VertexAttrib4bvARB
 2 12 rendering c ommand length
 2 4230 rendering c ommand opcode
 4 CARD32 index
 1 INT8 v[0]
 1 INT8 v[1]
 1 INT8 v[2]
 1 INT8 v[3]

 VertexAttrib4svARB
 2 16 rendering c ommand length
 2 4192 rendering c ommand opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 INT16 v[3]

 VertexAttrib4ivARB
 2 24 rendering c ommand length
 2 4231 rendering c ommand opcode
 4 CARD32 index
 4 INT32 v[0]
 4 INT32 v[1]
 4 INT32 v[2]
 4 INT32 v[3]

 VertexAttrib4ubvARB
 2 12 rendering c ommand length
 2 4232 rendering c ommand opcode
 4 CARD32 index
 1 CARD8 v[0]
 1 CARD8 v[1]
 1 CARD8 v[2]
 1 CARD8 v[3]

 VertexAttrib4usvARB
 2 16 rendering c ommand length
 2 4233 rendering c ommand opcode
 4 CARD32 index

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 468

 2 CARD16 v[0]
 2 CARD16 v[1]
 2 CARD16 v[2]
 2 CARD16 v[3]

 VertexAttrib4uivARB
 2 24 rendering c ommand length
 2 4234 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 v[0]
 4 CARD32 v[1]
 4 CARD32 v[2]
 4 CARD32 v[3]

 VertexAttrib4fvARB
 2 24 rendering c ommand length
 2 4196 rendering c ommand opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]
 4 FLOAT32 v[3]

 VertexAttrib4dvARB
 2 40 rendering c ommand length
 2 4200 rendering c ommand opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]
 8 FLOAT64 v[3]

 VertexAttrib4NbvARB
 2 12 rendering c ommand length
 2 4235 rendering c ommand opcode
 4 CARD32 index
 1 INT8 v[0]
 1 INT8 v[1]
 1 INT8 v[2]
 1 INT8 v[3]

 VertexAttrib4NsvARB
 2 16 rendering c ommand length
 2 4236 rendering c ommand opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 INT16 v[3]

 VertexAttrib4NivARB
 2 24 rendering c ommand length
 2 4237 rendering c ommand opcode
 4 CARD32 index
 4 INT32 v[0]
 4 INT32 v[1]
 4 INT32 v[2]

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 469

 4 INT32 v[3]

 VertexAttrib4NubvARB
 2 12 rendering c ommand length
 2 4201 rendering c ommand opcode
 4 CARD32 index
 1 CARD8 v[0]
 1 CARD8 v[1]
 1 CARD8 v[2]
 1 CARD8 v[3]

 VertexAttrib4NusvARB
 2 16 rendering c ommand length
 2 4238 rendering c ommand opcode
 4 CARD32 index
 2 CARD16 v[0]
 2 CARD16 v[1]
 2 CARD16 v[2]
 2 CARD16 v[3]

 VertexAttrib4NuivARB
 2 24 rendering c ommand length
 2 4239 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 v[0]
 4 CARD32 v[1]
 4 CARD32 v[2]
 4 CARD32 v[3]

 BindProgramARB
 2 12 rendering c ommand length
 2 4180 rendering c ommand opcode
 4 ENUM target
 4 CARD32 program

 ProgramEnvParameter4fvARB
 2 32 rendering c ommand length
 2 4184 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramEnvParameter4dvARB
 2 44 rendering c ommand length
 2 4185 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 ProgramLocalParameter4fvARB
 2 32 rendering c ommand length

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 470

 2 4215 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramLocalParameter4dvARB
 2 44 rendering c ommand length
 2 4216 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 The ProgramStringARB is potentially large, and hence can be sent in a
 glXRender or glXRenderLarge request.

 ProgramStringARB
 2 16+len+p rendering c ommand length
 2 4217 rendering c ommand opcode
 4 ENUM target
 4 ENUM format
 4 sizei len
 len LISTofBYTE program
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 16+len+p rendering c ommand length
 4 4217 rendering c ommand opcode

 VertexAttribPointerARB, EnableVertexAttribArray ARB, and
 DisableVertexAttribArrayARB are entirely client -side commands.

 The remaining commands are non-rendering comman ds. These commands are
 sent separately (i.e., not as part of a glXRend er or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 DeleteProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 1294 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 471

 GenProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1295 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 programs

 GetProgramEnvParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1296 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 unused
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 472

 GetProgramEnvParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1297 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 unused
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetProgramLocalParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1305 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 473

 GetProgramLocalParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1306 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

 GetProgramivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1307 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 474

 GetProgramStringARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1308 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 (n+p)/4 reply lengt h
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=p ad(n)

 GetVertexAttribdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1301 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 475

 GetVertexAttribfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1302 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetVertexAttribivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1303 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 476

 IsProgramARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1304 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused

 When transferring vertex attribute array eleme nts, there may not be a
 protocol encoding that exactly matches the com bination of combination of
 size, normalization enable, and data type in t he array. If no match
 protocol encoding exists, the encoding for the corresponding 4-component
 attribute is used. v[1] and v[2] are set to z ero if not specified in the
 vertex array. If v[3] is not specified in the vertex array, it is set to
 0x7F, 0x7FFF, 0x7FFFFFFF, 0xFF, 0xFFFF, or 0xF FFFFFFF for the
 VertexAttrib4NbvARB, VertexAttrib4NsvARB, Vert exAttrib4NivARB,
 VertexAttrib4NubvARB, VertexAttrib4NusvARB, an d VertexAttrib4NuivARB
 protocol encodings, respectively. v[3] is set to one if it is not
 specified in the vertex array for the the Vert exAttrib4bvARB,
 VertexAttrib4svARB, VertexAttrib4ivARB, Vertex Attrib4ubvARB,
 VertexAttrib4usvARB, and VertexAttrib4uivARB p rotocol encodings.

Errors

 The error INVALID_VALUE is generated by any Ver texAttrib*ARB or
 GetVertexAttrib*ARB command if <index> is great er than or equal to
 MAX_VERTEX_ATTRIBS_ARB.

 The error INVALID_VALUE is generated by VertexA ttribPointerARB or
 GetVertexAttribPointervARB if <index> is greate r than or equal to
 MAX_VERTEX_ATTRIBS_ARB.

 The error INVALID_VALUE is generated by VertexA ttribPointerARB if <size>
 is not one of 1, 2, 3, or 4.

 The error INVALID_VALUE is generated by VertexA ttribPointerARB if <stride>
 is negative.

 The error INVALID_VALUE is generated by EnableV ertexAttribArrayARB or
 DisableVertexAttribArrayARB if <index> is great er than or equal to
 MAX_VERTEX_ATTRIBS_ARB.

 The error INVALID_OPERATION is generated by Pro gramStringARB if the
 program string <string> is syntactically incorr ect or violates any
 semantic restriction of the execution environme nt of the specified program
 target <target>.

 The error INVALID_OPERATION is generated by Bin dProgramARB if <program> is
 the name of a program whose target does not mat ch <target>.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 477

 The error INVALID_VALUE is generated by any Pro gramEnvParameter*ARB or
 GetProgramEnvParameter*ARB command if <index> i s greater than or equal to
 the value of MAX_PROGRAM_ENV_PARAMETERS_ARB cor responding to the program
 target <target>.

 The error INVALID_VALUE is generated by any Pro gramLocalParameter*ARB or
 GetProgramLocalParameter*ARB command if <index> is greater than or equal
 to the value of MAX_PROGRAM_LOCAL_PARAMETERS_AR B corresponding to the
 program target <target>.

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or any
 command that performs an explicit Begin is call ed when vertex program mode
 is enabled and the currently bound vertex progr am object does not contain
 a valid vertex program.

 The error INVALID_OPERATION is generated by Get VertexAttrib*ARB if <index>
 is zero and <pname> is CURRENT_VERTEX_ATTRIB_AR B.

New State

Get Value Type Get Command Initial Value Description Section Attribute
----------------------------- ------ ------------ - ------------- ------------------ ------------ ------------
VERTEX_PROGRAM_ARB B IsEnabled False vertex program 2.10 enable
 enable
VERTEX_PROGRAM_POINT_SIZE_ARB B IsEnabled False program-specified 2.14.3.7 enable
 point size mode
VERTEX_PROGRAM_TWO_SIDE_ARB B IsEnabled False two-sided color 2.14.3.7 enable
 mode
- 96+xR4 GetProgramEn v- (0,0,0,0) program environment 2.14.1 -
 ParameterARB parameters
CURRENT_VERTEX_ATTRIB_ARB 16+xR4 GetVertex- undefined generic vertex 2.7 current
 AttribARB attributes
PROGRAM_ERROR_POSITION_ARB Z GetIntegerv -1 last program error 2.14.1 -
 position
PROGRAM_ERROR_STRING_ARB 0+xub GetString "" last program error 2.14.1 -
 string

Table X.6. New Accessible State Introduced by ARB_ vertex_program.

Get Value Type Get Comman d Initial Value Description Section Att ribute
------------------------------- ------ ---------- --- ------------- ------------------ ------- --- ---------
VERTEX_ATTRIB_ARRAY_ENABLED_ARB 16+xB GetVertex- False vertex attrib 2.8 ver tex-array
 AttribARB array enable
VERTEX_ATTRIB_ARRAY_SIZE_ARB 16+xZ GetVertex- 4 vertex attrib 2.8 ver tex-array
 AttribARB array size
VERTEX_ATTRIB_ARRAY_STRIDE_ARB 16+xZ+ GetVertex- 0 vertex attrib 2.8 ver tex-array
 AttribARB array stride
VERTEX_ATTRIB_ARRAY_TYPE_ARB 16+xZ4 GetVertex- FLOAT vertex attrib 2.8 ver tex-array
 AttribARB array type
VERTEX_ATTRIB_ARRAY_ 16+xB GetVertex- False vertex attrib 2.8 ver tex-array
 NORMALIZED_ARB AttribARB array normalized
VERTEX_ATTRIB_ARRAY_POINTER_ARB 16+xP GetVertex- NULL vertex attrib 2.8 ver tex-array
 AttribPoin terARB array pointer

Table X.7. New Accessible Client State Introduced by ARB_vertex_program.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 478

Get Value Type Get Command Initial Value Description Sec Attrib
-------------------- ----- ----------- -------- --------------- ---------------------- -------- ------
PROGRAM_BINDING_ARB Z+ GetProgrami vARB object-specific bound program name 6.1.12 -
PROGRAM_LENGTH_ARB Z+ GetProgrami vARB 0 bound program length 6.1.12 -
PROGRAM_FORMAT_ARB Z1 GetProgrami vARB PROGRAM_FORMAT_ bound program format 6.1.12 -
 ASCII_ARB
PROGRAM_STRING_ARB ubxn GetProgramS tringARB (empty) bound program string 6.1.12 -
PROGRAM_INSTRUCTIONS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 instructions
PROGRAM_TEMPORARIES_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 temporaries
PROGRAM_PARAMETERS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 parameter bindings
PROGRAM_ATTRIBS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 attribute bindings
PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 address registers
PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 instructions
PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 temporaries
PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 parameter bindings
PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 attribute bindings
PROGRAM_NATIVE_ADDRESS_ Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 REGISTERS_ARB address registers
PROGRAM_UNDER_NATIVE_LIMITS_ARB B GetProgrami vARB 0 bound program under 6.1.12 -
 native resource limits
- 96+xR4 GetProgramL ocal- (0,0,0,0) bound program local 2.14.1 -
 ParameterAR B parameter value

Table X.8. Program Object State. Program object q ueries return attributes of
the program object currently bound to the program t arget <target>.

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12+xR4 - undefined t emporary registers 2.14.3.6 -
- 8+xR4 - undefined v ertex result registers 2.14.3.7 -
 1+xZ1 - undefined v ertex program 2.14.3.8 -
 a ddress registers

Table X.9. Vertex Program Per-vertex Execution Sta te. All per-vertex
execution state registers are uninitialized at the beginning of program
execution.

Get Value Type Get Co mmand Initial Value Description Sec Attribute
------------------------------ -------- ------ -------- ------------- ------------------- ---- --- ---------
CURRENT_MATRIX_ARB m*n*xM 4̂ GetFlo atv Identity current matrix 6.1. 2 -
CURRENT_MATRIX_STACK_DEPTH_ARB m*Z+ GetInt egerv 1 current stack depth 6.1. 2 -

Table X.10. Current matrix state where m is the to tal number of matrices
including texture matrices and program matrices and n is the number of
matrices on each particular matrix stack. Note tha t this state is aliased
with existing matrix state.

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 479

New Implementation Dependent State
 Minimum
Get Value Type Get Co mmand Value Description Sec Attrib
----------------------------------- ---- ------ --------- ---------- -------------------- ---- -------- ------
MAX_PROGRAM_ENV_PARAMETERS_ARB Z+ GetPro gramivARB 96 maximum program 2.14 .1 -
 env parameters
MAX_PROGRAM_LOCAL_PARAMETERS_ARB Z+ GetPro gramivARB 96 maximum program 2.14 .1 -
 local parameters
MAX_PROGRAM_MATRICES_ARB Z+ GetInt egerv 8 (not to maximum number of 2.14 .6 -
 exceed 32) program matrices
MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB Z+ GetInt egerv 1 maximum program 2.14 .6 -
 matrix stack depth
MAX_PROGRAM_INSTRUCTIONS_ARB Z+ GetPro gramivARB 128 maximum program 6.1. 12 -
 instructions
MAX_PROGRAM_TEMPORARIES_ARB Z+ GetPro gramivARB 12 maximum program 6.1. 12 -
 temporaries
MAX_PROGRAM_PARAMETERS_ARB Z+ GetPro gramivARB 96 maximum program 6.1. 12 -
 parameter bindings
MAX_PROGRAM_ATTRIBS_ARB Z+ GetPro gramivARB 16 maximum program 6.1. 12 -
 attribute bindings
MAX_PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetPro gramivARB 1 maximum program 6.1. 12 -
 address registers
MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetPro gramivARB - maximum program native 6.1. 12 -
 instructions
MAX_PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetPro gramivARB - maximum program native 6.1. 12 -
 temporaries
MAX_PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetPro gramivARB - maximum program native 6.1. 12 -
 parameter bindings
MAX_PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetPro gramivARB - maximum program native 6.1. 12 -
 attribute bindings
MAX_PROGRAM_NATIVE_ADDRESS_ Z+ GetPro gramivARB - maximum program native 6.1. 12 -
 REGISTERS_ARB address registers

Table X.11. New Implementation-Dependent Values In troduced by
ARB_vertex_program. Values queried by GetProgramiv ARB require a <pname> of
VERTEX_PROGRAM_ARB.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 46 07/25/07 mjk Document how the ARB and NV generic arrays
 interact. This docum ents NVIDIA's
 long-standing impleme nted behavior.

 45 09/27/04 pbrown Fixed GLX protocol, r emoving the unused <pname>
 parameters for GetPro gram{Env,Local}Parameter
 [df]vARB, leaving an unused CARD32 in its place.
 This was an error whe n propogating
 NV_vertex_program pro tocol, which did have a
 <pname> parameter.

 44 09/12/03 pbrown Fixed opcode table en try for "ARL" -- it takes a
 scalar operand as spe cified in the grammar.

 43 08/17/03 pbrown Fixed a couple minor typos (missing quotes)
 in the grammar.

 42 05/01/03 pbrown Clarified the handlin g of color sum; old text
 suggested that COLOR_ SUM controlled the
 operation even when d oing separate specular
 lighting.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 480

 41 04/18/03 pbrown Add a couple overlook ed contributors.

 40 03/03/03 pbrown Fixed list of immedia te-mode VertexAttrib
 functions in Section 2.7 -- there are no
 normalized float func tions (e.g.,
 VertexAttrib4Nfv). C larified issue (42)
 describing how point size is handled in vertex
 program mode.

 39 01/31/03 pbrown Fixed minor bug in th e description of vertex
 array state kept by t he GL -- normalization
 flags were omitted fr om the text (but were in
 the state tables).

 38 01/08/03 pbrown Fixed bug where "stat e.matrix.mvp" was specified
 incorrectly -- it sho uld be P*M0 rather than
 M0*P.

 37 12/23/02 pbrown Fixed minor typos. F ixed state table bug where
 CURRENT_VERTEX_ATTRIB _ARB was incorrectly called
 CURRENT_ATTRIB_ARB.

 36 09/09/02 pbrown Fixed incorrect examp le of matrix row bindings
 (and transposition). Small wording/typo fixes.

 35 08/27/02 pbrown Fixed several minor t ypos. Documented that a
 program string should not include a null
 terminator in its fir st <len> characters. Fixed
 dangling reference in <paramMultipleItem>
 grammar rule. Fix in correct wording in
 computation of state. light.half vector.
 Documented that the i nverse of a singular matrix
 is undefined. Clarif ied that native
 instructions can incl ude additions due to
 emulation of features not supported natively.
 Documented that LG2 p roduces undefined results
 with zero or negative inputs. Clarified that
 POW may be a LOG/MUL/ EXP sequence, but isn't
 necessarily so. Disa llowed multiple modelview
 matrix syntax if ARB_ vertex_blend or
 EXT_vertex_weighting is unsupported. Fixed
 state table query fun ction for attribute array
 enables. Added missi ng state table entry for
 PROGRAM_UNDER_NATIVE_ LIMITS_ARB.

 34 07/19/02 pbrown Fixed typo in ArrayEl ement pseudo-code.

 33 07/17/02 pbrown Fixed bug in the <sta teLModProperty> grammar
 rule. Fixed document ation to indicate that
 Enable/DisableVertexA ttribArray are not display
 listable.

 31 07/15/02 pbrown Fixed <SWZ_instructio n> grammar rule to match
 the spec language -- base operand negation
 doesn't apply, since you can independently
 negate components. M odified "XPD" instruction

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 481

 to eliminate the impl icit masking of the "w"
 component; slight eff iciency gain for some SW
 implementations. Mod ified "scenecolor" binding
 to pass the diffuse a lpha instead of the ambient
 alpha; the former is more useful.

 30 07/02/02 pbrown Minor wording fixes.

 29 06/21/02 pbrown Mostly minor bug fixe s from reviewer feedback;
 also added one new it em approved at ARB meeting.

 Additions: Added a " lightmodel.*.scenecolor"
 holding lit color con taining the composite
 lighting result ignor ing individual lights --
 i.e., from only emiss ive materials and the light
 model. Added GLX pro tocol.

 Minor changes: Numer ous minor typo and wording
 fixes. Added missing vertex array types to
 vertex array size/typ e/normalized table. Added
 missing description o f ambient light model color
 binding. Removed sev eral references to language
 features long since d eleted. Documented that
 POW is not necessaril y implemented as
 LOG/MUL/EXP. Fixed a couple minor errata in the
 EXT_vertex_shader int eraction section. Added a
 list of reserved keyw ords.

 28 06/16/02 pbrown Minor updates based o n feedback given on
 versions 26 and 27.

 Additions: Added sec tion on EXT_vertex_shader
 interaction, provided by ATI.

 Minor changes: Minor grammar and readability
 fixes. Fixed several incomplete definitions.
 Removed "GL" and "gl" prefixes from several
 enumerants and functi on names to match spec
 conventions. Clarifi ed the precision issue on
 EX2/LG2. Added missi ng functions that take
 VERTEX_PROGRAM_ARB. Clarified component
 normalization on vert ex arrays. Clarified
 clipping section to n ote that user clipping is
 done with position in variant programs.
 Clarified the handlin g of program zero in
 BindProgramARB. Fixe d a couple incorrect
 grammar rules. Fixed incorrect grammar
 references in descrip tion of vertex program
 parameter array acces ses. Documented that the
 SWZ instruction doesn 't take "normal" swizzle
 and negation modifier s, since it already has
 some. Clarified some NV_vertex_program
 interactions.

 27 06/07/02 pbrown Minor update based on ARB_vertex_program sample
 implementation work.

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 482

 Changes: Changed fog coordinate attribute and
 result binding name t o "fogcoord" (was "fog").
 Rearranged grammar ba sed on sample
 implementation verifi cation. There might be a
 minor fix or two stuc k in there.

 26 06/04/02 pbrown Spec checkpoint publi shed on the working group
 web site. Resolves m ost of the remaining open
 issues.

 Deletions: Removed t he ability to bind the
 color matrix (from AR B_imaging).

 Changes: Resolved th e handling of vertex
 attribute zero (it al ways specifies a vertex, in
 program mode or not). Resolved the handling of
 generic and conventio nal vertex attribute arrays
 (they are always sent , although they also have
 "undefined aliasing" behavior). Default values
 of generic attributes are undefined, to
 accommodate aliasing and non-aliasing
 implementations. Add ed pseudocode to document
 the processing of Arr ayElement. Moved program
 object language into the vertex program section.
 Renamed the fog coord inate attribute and result
 binding to "fogcoord" . Added missing
 documentation of the agreed-upon semantic
 restriction that prog rams can't bind
 conventional / generi c attribute pairs that may
 alias. Added documen tation of what happens when
 multiple contexts sha re program objects
 Disallowed queries of generic attribute zero.

 Fixes: Fixed prototy pe for VertexAttrib4Nub.

 Minor Changes: Minor typo and language
 fixes. Added guidelin es for future
 programmability exten sions. Added several
 missing grammar rules .

 25 05/30/02 pbrown Spec checkpoint publi shed on the working group
 web site.

 Additions: Add "DPH" (dot product homogeneous)
 instruction. Added t he ability to query the
 current matrix in tra nsposed form. Assigned
 enumerant values for program matrices. Added
 the ability bind sele cted rows of a matrix.
 Added ability to bind matrix palette matrices.

 Changes: Renamed PRO GRAM_NAME_ARB to
 PROGRAM_BINDING_ARB. Specifying the number of
 elements in parameter arrays is now optional,
 but compilation will fail if the specified count
 does not match. Prog rams performing
 out-of-bounds array a ccesses using absolute
 addressing will now f ail to load. Allow "$" in

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 483

 token names.

 Minor changes: Compl eted scrub of the issues
 and error list. Adde d new issues about reserved
 keywords, identifier characters, and parsing of
 floating-point consta nts in programs.
 Miscellaneous typo fi xes. Updated the grammar
 to include light prod ucts and half angles, moved
 material properties f rom per-vertex to parameter
 bindings, and a few o ther miscellaneous fixes.
 Simplified the matrix binding table. Modified
 the color sum portion of the spec to explicitly
 add R,G,B only. Remo ved several incorrect
 errors. Fixed progra m object state table.

 24 05/21/02 pbrown Spec checkpoint publi shed on the working group
 web site.

 Deletions: Removed t he semantic requirement
 that vertex programs write a vertex position,
 per working group res olution.

 Minor changes: Clean ed up cruft in a number of
 issues; many more to go. Added several issues.
 Documented that Verte xAttrib functions are
 allowed inside Begin/ End pairs. Changed default
 initialization values of generic attributes to
 accommodate attribute aliasing. Documented that
 point sizes and fog c oordinates computed by
 vertex programs are c lipped during primitive
 clipping. Documented that vertex program
 behavior is undefined in color index mode.

 23 05/21/02 pbrown Spec checkpoint. Mor e changes from working
 group deliberations.

 Additions: Added ver tex materials as allowed
 program parameter bin dings. Allow programs to
 use vertex attribute binding names, program
 parameter binding nam es, result variable binding
 names, and constants in executable statements,
 resulting in implicit bindings. Added support
 for binding a single row of a matrix. Added
 support for binding p recomputed light/material
 products. Added rest riction that a single GL
 state vector can't be bound multiple times in
 two separate arrays a ccessed with relative
 addressing. Added ne w section documenting the
 various resource limi ts, and introducting the
 idea of "native" reso urce limits and counts.

 Deletions: Removed v ertex materials as allowed
 vertex attribute bind ings.

 Minor changes: Added more names to the
 contributors list. U pdated issues concerning
 undefined aliasing. Moved NV_vertex_program

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 484

 related issues to the NV_vertex_program
 interaction sections. Updated NV_vertex_program
 interactions. Update d lighting example using
 new derived state bin dings. Clarified that
 "!!ARBvp1.0" is not a token in the grammar and
 that programs are par sed beginning immediately
 after the header stri ng. Added text to explain
 all attribute, progra m parameter, and result
 bindings instead of d epending on binding table
 interpretations. Bro ke the large program
 parameter binding tab le into several smaller
 tables, organized by function. Documented that
 the queryable program error string may contain
 warnings when a progr am loads successfully, and
 that a queried progra m error string is
 guaranteed to remain constant only until the
 next program load att empt. Added PROGRAM_NAME
 query to the appropri ate state table.

 22 05/20/02 pbrown Spec checkpoint. Mor e changes from working
 group deliberations.

 Added functionality: Assigned enumerant values.
 Added "undefined (ver tex attribute) aliasing"
 language, where setti ng a generic attribute
 leaves a conventional one undefined, and vice
 versa. Added support for matrix indices from
 ARB_matrix_palette. Added default program
 object zero. Added s upport for simple named
 variable aliasing. A dded queries of API-level
 and "native" resource s used by a program and
 their corresponding l imits. Added general query
 to determine if a pro gram fits in native limits.

 Removed functionality : Removed extension string
 entry for position-in variant programs (now
 mandatory).

 Modified functionalit y: GetProgram and
 GetProgramString now take a target instead of a
 program name. Defaul t values for 3 generic
 attributes are change d for consistent aliasing.
 Added 1/(end-start) b inding for fog parameters.
 Added precomputed inf inite light/viewer half
 angle binding. Progr amString takes a "void *"
 instead of a "ubyte * ".

 Minor Changes: Clari fied key terms for the
 extension. Documente d that user clipping is not
 supported in the base extension. Added warnings
 on a couple pitfalls from uninitalized result
 registers. Document that EXT_vertex_weighting
 and ARB_vertex_blend use the same weight.
 Cleaned up bindings f or 4-component colors for
 cases where only thre e components are used.
 Documented the implic it absolute value operation
 on the LOG instructio n. Renamed query token for

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 485

 querying generic vert ex attribute array enables.
 Renamed and relocated vertex program binding
 query. Added languag e to Section 2.6. Changed
 syntax to bind a rang e of the environment or
 local paramater array to use double dots ("..").
 Clarified what happen s on a weight binding using
 more weights than an implementation supports.
 Clarified the compone nt selection pseudocode for
 scalar operand loads. Clarified what happens to
 vertex program result s during primitive
 assembly. Fixed a nu mber of errors in the state
 tables.

 21 04/29/02 pbrown More changes from wor king group deliberations.

 Added functionality: Added "FLR", "FRC", "POW",
 and "XPD" (cross prod uct) instructions. Added
 functions to enable/d isable generic attribute
 arrays. Added query of a program error string.
 Added "format" enum a rgument to ProgramStringARB
 to provide for possib le programs not using ASCII
 text. Added new enum s to permit different
 limits for overall nu mbers of program
 environment and local parameters and the number
 of parameters that ca n be bound by a program.

 Removed functionality : Removed support for
 evaluators for generi c attributes. Removed
 support for program r esidency management.
 Removed support for u ser clipping in standard
 vertex programs. Rem oved functionality to set
 more than one program environment parameter at
 once.

 Issues/Changes: Reso lved set of immediate mode
 VertexAttrib function s. Combined parameter
 bindings for several groups of related GL state.
 Resolved user clippin g issue by disallowing
 except for position i nvariant programs.
 Resolved limits for a rray relative offsets.
 GenProgramsARB and De leteProgramsARB will use
 texture object model. Program environment
 parameters will not b e pushed/popped.

 Bug fixes: Fixed ver tex attribute index
 prototypes (should be uint instead of int).
 Fixed tokens used to query generic attribute
 state (should have VE RTEX prefixes). Fixed
 documentation of the alpha component of material
 colors. Fixed docume ntation of initial state
 for vertex program ob jects.

 Temporarily removed d ated GLX protocol language
 (will restore in one pass after resolving
 remaining issues).

 20 04/17/02 pbrown Clarify the meaning o f individual components of

ARB_vertex_program NVIDIA OpenGL Extension Specifications

 486

 program parameters wh ere the component mapping
 is not obvious from t he mapping table.

 18 04/15/02 pbrown Update spec to reflec t issues resolved by the
 working group on 4/11 .

 Started using "progra m matrix" terminology --
 was "tracking matrix" .

 Address register vari ables must now be declared.
 The number of address registers can be queried.
 Only 1-component addr ess registers are currently
 supported.

 VertexAttribPointer t akes a separate argument to
 indicate normalized d ata, now called
 "normalized" (was "no rmalize").

 ProgramString and fun ctions to set and query
 local parameters all take a <target> and refer
 to the currently boun d program (previously took
 a program number). H ave not touched other
 somewhat related issu es (e.g., is there a
 program object zero?) .

 Added COLOR_SUM enabl e (taken directly from
 EXT_secondary_color) for completeness and a
 few updates to EXT_se condary_color
 interactions.

 Fixed cut-and-paste e rror in specification of
 the clip-space user c lip dot product.

 Documented special-ca se arithmetic for ADD, MAD,
 and MUL.

 Eliminated some wordi ness in DP3 and DP4
 instruction pseudo-co de.

 Minor changes not fro m working group: More
 verbose documentation on the user clipping
 issue. More detail o n other opcode candidates.
 Removed redundant col or material issue. Minor
 fixes to error roundu p (not complete) and to
 state tables to refle ct that most program
 execution variables a re initially undefined.

 17 04/08/02 pbrown Issues: Enumerated o ther candidates for
 consideration in the instruction set -- there
 may be more that I mi ssed. Added a description
 of some of the consid erations on how color
 material should be tr eated. Added issues on the
 name of the program m atrices, the number of MVP
 matrices, and where v ariable declarations
 can be done. Added n umbers to all spec issues.
 Fixed lighting exampl e (issue 74) so it
 compiles, and so that the half vector is

NVIDIA OpenGL Extension Specifications ARB_vertex_program

 487

 properly normalized.

 Grammar: Eliminated stale hardwired temporary,
 parameter array, and result register names
 (R<n>, c[<n>], and o[...]). Should have been
 deleted going from re vision 5 to revision 12.
 Added missing program matrix bindings to the
 grammar. Eliminated state material-as-parameter
 bindings. Fixed texg en paramete bindings, which
 should have had both "eye" and "object" planes.
 Added separate addres s register write masks and
 selectors to reflect the current single-
 component address reg ister restriction. Added
 an array[A0.x] rule - - before, you erroneously
 had to add or subtrac t a constant. Modified SWZ
 so that the register being swizzled can't take a
 conventional swizzle suffix, too.

 Also reorganized gram mar to closely mirror the
 sample implementation , consolidating a number of
 redundant rules. Als o fixed several bugs
 found by the implemen tation.

 Documentation changes to "LIT" to use the right
 variable name and als o indicate that 0^0=1.
 Fixed the computation of result.y in the "LOG"
 instruction.

 Other: Added depende ncy on ARB_imaging. Added
 notation of Microsoft 's IP claims. Fixed name
 of MAX_VERTEX_PROGRAM _TEMPORARIES_ARB.

 A few minor typo fixe s.

 12 03/11/02 pbrown Modified spec to refl ect decisions made at
 the March 2002 ARB me eting. Distributed
 to the OpenGL partici pants list.

 5 03/03/02 pbrown Distributed to the AR B prior to March 2002
 ARB meeting.

ARB_window_pos NVIDIA OpenGL Extension Specifications

 488

Name

 ARB_window_pos

Name Strings

 GL_ARB_window_pos

Status

 Complete. Approved by ARB on February 14, 2002.

Version

 Last Modified Date: June 11, 2002

Number

 ARB Extension #25

Dependencies

 OpenGL 1.0 is required.
 The extension is written against the OpenGL 1.3 Specification
 GL_EXT_fog_coordinate effects the definition of this extension.
 GL_EXT_secondary_color effects the definition o f this extension.

Overview

 In order to set the current raster position to a specific window
 coordinate with the RasterPos command, the mode lview matrix, projection
 matrix and viewport must be set very carefully. Furthermore, if the
 desired window coordinate is outside of the win dow's bounds one must rely
 on a subtle side-effect of the Bitmap command i n order to avoid frustum
 clipping.

 This extension provides a set of functions to d irectly set the current
 raster position in window coordinates, bypassin g the modelview matrix, the
 projection matrix and the viewport-to-window ma pping. Furthermore, clip
 testing is not performed, so that the current r aster position is always
 valid.

 This greatly simplifies the process of setting the current raster position
 to a specific window coordinate prior to callin g DrawPixels, CopyPixels or
 Bitmap. Many matrix operations can be avoided when mixing 2D and 3D
 rendering.

IP Status

 No IP issues.

NVIDIA OpenGL Extension Specifications ARB_window_pos

 489

Issues

 (1) Should we offer all 24 entrypoints, just li ke glRasterPos?

 RESOLVED. No. Don't implement the 4-coordin ate functions as
 they're really useless. However, we will imp lement the short
 and double-type functions for completeness.

 For example, it's conceivable that an applica tion may have
 data structures encoding window coordinates a s a 2- or 3-vector
 of shorts and will want to use WindowPos3svAR B(). Chris Hecker
 lobbied for this on the grounds of orthogonal ity.

 (2) Should we have unique GLX protocol requests for every entrypoint
 or just a 3-float version?

 RESOLVED. Just a 3-float version will suffic e since all reasonable
 window coordinate values can be perfectly rep resented with
 single-precision floating point.

 (4) For WindowPos2*ARB(), is zero the correct v alue for z? Afterall,
 z is a window coordinate, not an object coord inate.

 RESOLVED. Yes, zero is correct. Zero corres ponds to the front
 of the depth range. That's where one would u sually want Bitmap,
 DrawPixels and CopyPixels to be positioned in z when rendering 2D
 primitives over a 3D scene.

 (5) What about glDepthRange?

 RESOLVED. Map the WindowPos z value into the range specified by
 DepthRange. There's a popular optimization u sed to avoid depth
 buffer clears for scenes that completely fill the window in which
 the depth buffer is effectively halfed and re versed in alternate
 frames by calling DepthRange. The WindowPos z value should be
 subjected to depth range mapping so that it w ill work with this
 optimization, and in other scenarios.

 (6) Should we mention EXT_fog_coord and EXT_sec ondary_color in this
 extension?

 RESOLVED. Yes, otherwise implementors may no t know what to do
 with them. It's been suggested that we inste ad go back and
 update the EXT_fog_coordinate and EXT_seconda ry_color specifications
 with respect to ARB_window_pos instead. Howe ver, that seems
 unlikely to happen and seems error-prone/obsc ure for implementors.

 (7) What about the raster fog coordinate?

 RESOLVED. If EXT_fog_coord is not supported, CURRENT_RASTER_DISTANCE
 is set to zero.

 If EXT_fog_coord is supported, the behavior i s dependent on
 the current state of FOG_COORDINATE_SOURCE_EX T. If the fog
 coordinate source is FRAGMENT_DEPTH_EXT, CURR ENT_RASTER_DISTANCE
 is set to zero. If the fog coordinate source is FOG_COORDINATE_EXT,
 CURRENT_RASTER_DISTANCE is set to the current fog coordinate.

ARB_window_pos NVIDIA OpenGL Extension Specifications

 490

 The value chosen for CURRENT_RASTER_DISTANCE state matches the value
 that would be chosen for normal vertices, exc ept that WindowPos
 does not allow the GL to compute eye coordina tes that would be
 used to generate a fog distance value. Inste ad, a value of zero is
 always used as a fog distance.

 With the current EXT_fog_coord specification, there are two pieces
 of RasterPos state that drive fog (CURRENT_RA STER_DISTANCE and
 the current raster fog coordinate). The sett ing of the fog
 coordinate source selects which piece of stat e is used at
 rasterization (Bitmap, DrawPixels) time. Inst ead, this extension
 moves the selection of fog state to RasterPos state computation instead
 of rasterization and combines the two pieces of state into a
 single CURRENT_RASTER_DISTANCE.

 Current implementations of EXT_fog_coord that support two pieces of
 state can either change the implementations t o merge the two pieces
 into a single state or contiue to maintain tw o pieces of state.
 If the implementations continue to maintain t wo pieces of state,
 both the CURRENT_RASTER_DISTANCE and current raster fog coordinate
 are set to the same value.

 (8) What about the secondary raster color?

 RESOLVED. If EXT_secondary_color is supporte d, the (unnamed) current
 raster secondary color is set by taking the c urrent secondary color and
 clamping the components to the range [0,1].

 If EXT_secondary_color is not supported, the current raster secondary
 color is set to (0,0,0).

 (9) How is this extension specification differe nt from the
 MESA_window_pos extension?

 (a) Clarified that lighting and texgen aren't used when updating
 the current raster state.

 (b) Explicitly state the effect on CURRENT_RA STER_DISTANCE and
 CURRENT_RASTER_POSITION_VALID.

 (c) Explain how the raster position's seconda ry color and fog
 coordinate are handled.

 (d) Z is mapped according to the DEPTH_RANGE values.

 (e) Removed the functions which take 4 coordi nates.

New Procedures and Functions

 void WindowPos2dARB(double x, double y)
 void WindowPos2fARB(float x, float y)
 void WindowPos2iARB(int x, int y)
 void WindowPos2sARB(short x, short y)

NVIDIA OpenGL Extension Specifications ARB_window_pos

 491

 void WindowPos2dvARB(const double *p)
 void WindowPos2fvARB(const float *p)
 void WindowPos2ivARB(const int *p)
 void WindowPos2svARB(const short *p)

 void WindowPos3dARB(double x, double y, double z)
 void WindowPos3fARB(float x, float y, float z)
 void WindowPos3iARB(int x, int y, int z)
 void WindowPos3sARB(short x, short y, short z)

 void WindowPos3dvARB(const double *p)
 void WindowPos3fvARB(const float *p)
 void WindowPos3ivARB(const int *p)
 void WindowPos3svARB(const short *p)

New Tokens

 none

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 In section 2.12 (Current Raster Position) , p. 42, insert after
 fifth paragraph:

 Alternately, the current raster position ma y be set by one of the
 WindowPosARB commands:

 void WindowPos{23}{ifds}ARB(T coords);
 void WindowPos{23}{ifds}vARB(const T co ords);

 WindosPos3ARB takes three values indicating x, y and z while
 WindowPos2ARB takes two values indicating x and y with z implicitly
 set to 0.

 The CURRENT_RASTER_POSITION, (RPx, RPy, RPz , RPw), is updated as
 follows:

 RPx = x

 RPy = y

 { n, if z <= 0
 RPz = { f, if z >= 1
 { n + z * (f - n), otherwise

 RPw = 1

 where <n> is the DEPTH_RANGE's near value, and <f> is the
 DEPTH_RANGE's far value.

 In RGBA mode, CURRENT_RASTER_COLOR is updat ed from CURRENT_COLOR
 with each color component clamped to the ra nge [0,1].

 In color index mode, CURRENT_RASTER_INDEX i s updated from
 CURRENT_INDEX.

ARB_window_pos NVIDIA OpenGL Extension Specifications

 492

 All sets of CURRENT_RASTER_TEXTURE_COORDS a re updated from
 the corresponding CURRENT_TEXTURE_COORDS se ts.

 CURRENT_RASTER_POSITION_VALID is set to TRU E.

 If EXT_fog_coord is not supported.

 CURRENT_RASTER_DISTANCE is set to zero.

 If EXT_fog_coord is supported:

 CURRENT_RASTER_DISTANCE is set to

 { CURRENT_FOG_COORDINATE, if FOG_COORDI NATE_SOURCE_EXT is set
 { to FOG_COOR DINATE_EXT, or
 { 0, if FOG_COORDI NATE_SOURCE_EXT is set
 { to FRAGMENT _DEPTH_EXT.

 If EXT_secondary_color is supported:

 The current raster secondary color is set by clamping the components
 of CURRENT_SECONDARY_COLOR_EXT to [0,1], if in RGBA mode.

 If EXT_secondary_color is not supported:

 The current raster secondary color (the se condary color used for all
 pixel and bitmap rasterization) is set to (0,0,0), if in RGBA mode.

 Note that lighting, texture coordinate gene ration, and clipping are
 not performed by the WindowPos*ARB function s.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 In section 5.2 (Selection) , p. 188, modify the fourth paragraph to read:

 In selection mode, if a point, line, polygo n, or the valid
 coordinates produced by a RasterPos command intersects the clip
 volume (section 2.11) then this primitive (or RasterPos command)
 causes a selection hit. WindowPos commands always generate a
 selection hit since the resulting raster po sition is always
 valid. In the case of polygons (...)

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 One new GL rendering command is added. The foll owing command is
 sent to the server as part of a glXRender reque st:

 WindowPosARB
 2 16 rendering c ommand length
 2 230 rendering c ommand opcode
 4 FLOAT32 x
 4 FLOAT32 y
 4 FLOAT32 z

NVIDIA OpenGL Extension Specifications ARB_window_pos

 493

Errors

 INVALID_OPERATION is generated if WindowPosARB is called betweeen
 Begin and End.

New State

 None.

New Implementation Dependent State

 None.

Revision History

 May 17, 2001
 - Initial version based on GL_MESA_window_p os extension
 May 22, 2001
 - Explicitly state that x, y, z are window coordinates and w is
 a clip space coordinate. (Dan Brokenshir e)
 May 23, 2001
 - Resolved issues 1 and 2.
 - Added issues 4 and 5.
 May 24, 2001
 - Rewrote body of specification to more cle arly indicate how all
 raster position state is updated by Windo wPos.
 - Updated the issues section.
 Jun 13, 2001
 - Added back the double and short versions of WindowPos()
 - Added fog coord issue and discusstion.
 - Reordered/renumbered the issues section.
 Jun 22, 2001
 - Set raster secondary color to current sec ondary color, not black
 Jun 25, 2001
 - Another change to secondary color, think I got it now!
 Nov 16, 2001
 - updated email address
 - List options "A" and "B" to determine beh aviour of current raster
 fog coordinate.
 Nov 17, 2001
 - minor clean-ups
 Dec 12, 2001
 - rewrite against the OpenGL 1.3 spec
 - fixed a few typos
 Jan 10, 2002
 - update the interaction with EXT_fog_coord and EXT_secondary_color
 based on the proposed resolution from the December 2001 ARB
 meeting. (Pat Brown)
 Jan 18, 2002
 - Merges two pieces of fog state into a sin gle state. (Bimal Poddar)
 Mar 12, 2002
 - Added GLX protocol. (Jon Leech)
 June 11, 2002
 - Clarifications: RGBA/index color updates apply only in
 RGBA/index mode respectively. Hits are ge nerated in selection mode.

ATI_draw_buffers NVIDIA OpenGL Extension Specifications

 494

Name

 ATI_draw_buffers

Name Strings

 GL_ATI_draw_buffers

Status

 Complete.

Version

 Last Modified Date: December 30, 2002
 Revision: 8

Number

 277

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 OpenGL 1.3 is required.

 ARB_fragment_program affects the definition of this extension.

Overview

 This extension extends ARB_fragment_program to allow multiple output
 colors, and provides a mechanism for directing those outputs to
 multiple color buffers.

Issues

 (1) How many GL_DRAW_BUFFER#_ATI enums should b e reserved?

 RESOLVED: We only need 4 currently, but for f uture expandability
 it would be nice to keep the enums in sequenc e. We'll specify
 16 for now, which will be more than enough fo r a long time.

New Procedures and Functions

 void DrawBuffersATI(sizei n, const enum *bufs);

NVIDIA OpenGL Extension Specifications ATI_draw_buffers

 495

New Tokens

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv,
 and GetDoublev:

 MAX_DRAW_BUFFERS_ATI 0x8 824
 DRAW_BUFFER0_ATI 0x8 825
 DRAW_BUFFER1_ATI 0x8 826
 DRAW_BUFFER2_ATI 0x8 827
 DRAW_BUFFER3_ATI 0x8 828
 DRAW_BUFFER4_ATI 0x8 829
 DRAW_BUFFER5_ATI 0x8 82A
 DRAW_BUFFER6_ATI 0x8 82B
 DRAW_BUFFER7_ATI 0x8 82C
 DRAW_BUFFER8_ATI 0x8 82D
 DRAW_BUFFER9_ATI 0x8 82E
 DRAW_BUFFER10_ATI 0x8 82F
 DRAW_BUFFER11_ATI 0x8 830
 DRAW_BUFFER12_ATI 0x8 831
 DRAW_BUFFER13_ATI 0x8 832
 DRAW_BUFFER14_ATI 0x8 833
 DRAW_BUFFER15_ATI 0x8 834

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL
Operation)

 None

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.11.2, Fragment Program Grammar and Semantic
 Restrictions

 (replace <resultBinding> grammar rule with thes e rules)

 <resultBinding> ::= "result" "." "color" <optOutputColorNum>
 | "result" "." "depth"

 <optOutputColorNum> ::= ""
 | "[" <outputColorNum> "]"

 <outputColorNum> ::= <integer> from 0 to MAX_DRAW_BUFFERS_ATI-1

 Modify Section 3.11.3.4, Fragment Program Resul ts

 (modify Table X.3)

 Binding Components Description
 ----------------------------- ---------- ----------------------------
 result.color[n] (r,g,b,a) color n
 result.depth (*,*,*,d) depth coordinate

 Table X.3: Fragment Result Variable Bindin gs. Components labeled
 "*" are unused. "[n]" is optional -- color <n> is used if
 specified; color 0 is used otherwise.

ATI_draw_buffers NVIDIA OpenGL Extension Specifications

 496

 (modify third paragraph) If a result variable binding matches
 "result.color[n]", updates to the "x", "y", "z" , and "w" components
 of the result variable modify the "r", "g", "b" , and "a" components,
 respectively, of the fragment's corresponding o utput color. If
 "result.color[n]" is not both bound by the frag ment program and
 written by some instruction of the program, the output color <n> of
 the fragment program is undefined.

 Add a new Section 3.11.4.5.3

 3.11.4.5.3 Draw Buffers Program Option

 If a fragment program specifies the "ATI_draw_b uffers" option,
 it will generate multiple output colors, and th e result binding
 "result.color[n]" is allowed, as described in s ection 3.11.3.4,
 and with modified grammar rules as set forth in section 3.11.2.
 If this option is not specified, a fragment pro gram that attempts
 to bind "result.color[n]" will fail to load, an d only "result.color"
 will be allowed.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.2.1, Selecting a Buffer for Wr iting (p. 168)

 (modify the title and first paragraph, p. 168)

 4.2.1 Selecting Color Buffers for Writing

 The first such operation is controlling the col or buffers into
 which each of the output colors are written. T his is accomplished
 with either DrawBuffer or DrawBuffersATI. Draw Buffer defines the
 set of color buffers to which output color 0 is written.

 (insert paragraph between first and second para graph, p. 168)

 DrawBuffer will set the draw buffer for output colors other than 0
 to NONE. DrawBuffersATI defines the draw buffe rs to which all
 output colors are written.

 void DrawBuffersATI(sizei n, const enum *bufs);

 <n> specifies the number of buffers in <bufs>. <bufs> is a pointer
 to an array of symbolic constants specifying th e buffer to which
 each output color is written. The constants ma y be NONE,
 FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, and AUX0 through
 AUXn, where n + 1 is the number of available au xiliary buffers. The
 draw buffers being defined correspond in order to the respective
 output colors. The draw buffer for output colo rs beyond <n> is set
 to NONE.

 If the "ATI_draw_buffers" fragment program opti on, is not being used
 then DrawBuffersATI specifies a set of draw buf fers into which output
 color 0 is written.

NVIDIA OpenGL Extension Specifications ATI_draw_buffers

 497

 The maximum number of draw buffers is implement ation dependent and
 must be at least 1. The number of draw buffers supported can
 be queried with the state MAX_DRAW_BUFFERS_ATI.

 The constants FRONT, BACK, LEFT, RIGHT, and FRO NT_AND_BACK that
 refer to multiple buffers are not valid for use in DrawBuffersATI
 and will result in the error INVALID_OPERATION.

 If DrawBuffersATI is supplied with a constant (other than NONE)
 that does not indicate any of the color buffers allocated to
 the GL context, the error INVALID_OPERATION wil l be generated. If
 <n> is greater than MAX_DRAW_BUFFERS_ATI, the e rror
 INVALID_OPERATION will be generated.

 (replace last paragraph, p. 169)

 The state required to handle color
 buffer selection is an integer for each support ed output color. In
 the initial state, draw buffer for output color 0 is FRONT if there
 are no back buffers; otherwise it is BACK. The initial state of
 draw buffers for output colors other then 0 is NONE.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None

Dependencies on ARB_fragment_program

 If ARB_fragment_program is not supported then a ll changes to
 section 3.11 are removed.

Interactions with possible future extensions

 If there is some other future extension that de fines multiple
 color outputs then this extension and glDrawBuf fersATI could be
 used to define the destinations for those outpu ts. This extension
 need not be used only with ARB_fragment_program .

Errors

 The error INVALID_OPERATION is generated by Dra wBuffersATI if a
 color buffer not currently allocated to the GL context is specified.

 The error INVALID_OPERATION is generated by Dra wBuffersATI if <n>
 is greater than the state MAX_DRAW_BUFFERS_ATI.

 The error INVALID_OPERATION is generated by Dra wBuffersATI if value in
 <bufs> does not correspond to one of the allowe d buffers.

ATI_draw_buffers NVIDIA OpenGL Extension Specifications

 498

New State

 (table 6.19, p227) add the following entry:

Get Value Type Get Command Initial Value Description Section Attribute
---------------- ---- ----------- ------------- -------------------- --------- ------------
DRAW_BUFFERi_ATI Z10* GetIntegerv see 4.2.1 Draw buffer selected 4.2.1 color-buffer
 for output color i

New Implementation Dependent State

Get Value Type Get Command Minimum Va lue Description Sec. Attribute
--------- ---- ----------- ---------- --- ------------------- ----- ---------
MAX_DRAW_BUFFERS_ATI Z+ GetIntegerv 1 Maximum number of 4.2.1 -
 active draw buffers

Revision History

 Date: 12/30/2002
 Revision: 8
 - Clarified that DrawBuffersATI will set the set of draw buffers to
 write color output 0 to when the "ATI_draw_ buffer" fragments
 program option is not in use.

 Date: 9/27/2002
 Revision: 7
 - Fixed confusion between meaning of color bu ffer and draw buffer
 in last revision.
 - Fixed mistake in when an error is generated based on the <n>
 argument of DrawBuffersATI.

 Date: 9/26/2002
 Revision: 6
 - Cleaned up and put in sync with latest ARB_ fragment_program
 revision (#22). Some meaningless changes m ade just in the name
 of consistency.

 Date: 9/11/2002
 Revision: 5
 - Added section 3.11.4.5.3.
 - Added enum numbers to New Tokens.

 Date: 9/9/2002
 Revision: 4
 - Changed error from MAX_OUTPUT_COLORS to MAX _DRAW_BUFFERS_ATI.
 - Changed 3.10 section numbers to 3.11 to mat ch change to
 ARB_fragment_program spec.
 - Changed ARB_fragment_program from required to affects, and
 added section on interactions with it and f uture extensions
 that define multiple color outputs.

 Date: 9/6/2002
 Revision: 3
 - Changed error to INVALID OPERATION.
 - Cleaned up typos.

NVIDIA OpenGL Extension Specifications ATI_draw_buffers

 499

 Date: 8/19/2002
 Revision: 2
 - Added a paragraph that specifically points out that the
 constants that refer to multiple buffers ar e not allowed with
 DrawBuffersATI.
 - Changed bufs to <bufs> in a couple of place s.

 Date: 8/16/2002
 Revision: 1
 - First draft for circulation.

ATI_texture_float NVIDIA OpenGL Extension Specifications

 500

Name

 ATI_texture_float

Name Strings

 GL_ATI_texture_float

Status

 Complete.

Version

 Last Modified Date: December 4, 2002
 Revision: 4

Number

 280

Dependencies

 OpenGL 1.1 or EXT_texture is required.

 The extension is written against the OpenGL 1.3 Specification.

Overview

 This extension adds texture internal formats wi th 32 and 16 bit
 floating-point components. The 32 bit floating -point components
 are in the standard IEEE float format. The 16 bit floating-point
 components have 1 sign bit, 5 exponent bits, an d 10 mantissa bits.
 Floating-point components are clamped to the li mits of the range
 representable by their format.

Issues

 1. Should we expose a GL_FLOAT16_ATI pixel type so that the 16 bit
 float textures can be directly loaded?

 RESOLUTION: This will be exposed in a separ ate extension.

New Procedures and Functions

 None

NVIDIA OpenGL Extension Specifications ATI_texture_float

 501

New Tokens

 Accepted by the <internalFormat> parameter of T exImage1D,
 TexImage2D, and TexImage3D:

 RGBA_FLOAT32_ATI 0x8814
 RGB_FLOAT32_ATI 0x8815
 ALPHA_FLOAT32_ATI 0x8816
 INTENSITY_FLOAT32_ATI 0x8817
 LUMINANCE_FLOAT32_ATI 0x8818
 LUMINANCE_ALPHA_FLOAT32_ATI 0x8819
 RGBA_FLOAT16_ATI 0x881A
 RGB_FLOAT16_ATI 0x881B
 ALPHA_FLOAT16_ATI 0x881C
 INTENSITY_FLOAT16_ATI 0x881D
 LUMINANCE_FLOAT16_ATI 0x881E
 LUMINANCE_ALPHA_FLOAT16_ATI 0x881F

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL
Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16 Bit Floating-Point

 A 16 bit floating-point number has 1 sign bit (s), 5 exponent
 bits (e), and 10 mantissa bits (m). The valu e (v) of a 16 bit
 floating-point number is determined by the fo llowing pseudo code:

 if (e != 0)
 v = (-1)^s * 2^(e-15) * 1.m # normaliz ed
 else if (f == 0)
 v = (-1)^s * 0 # zero
 else
 v = (-1)^s * 2^(e-14) * 0.m # denormal ized

 It is acceptable for an implementation to tre at denormalized 16 bit
 floating-point numbers as zero.

 There are no NAN or infinity values for 16 bi t floating-point.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Section 3.8.1, (p. 116), change the last senten ce on the page to:

 Each R, G, B, and A value so generated is cla mped based on the
 component type in the <internalFormat>. Fixe d-point components
 are clamped to [0, 1]. Floating-point compon ents are clamped
 to the limits of the range representable by t heir format. 32
 bit floating- point components are in the sta ndard IEEE float
 format. 16 bit floating-point components hav e 1 sign bit, 5
 exponent bits, and 10 mantissa bits.

ATI_texture_float NVIDIA OpenGL Extension Specifications

 502

 Section 3.8.1, (p. 119), add the following to t able 3.16:

 Sized Base R G B A L I
 Internal Format Internal Format b its bits bits bits bits bits
 --------------------------- --------------- - --- ---- ---- ---- ---- ----
 RGBA_FLOAT32_ATI RGBA f 32 f32 f32 f32
 RGB_FLOAT32_ATI RGB f 32 f32 f32
 ALPHA_FLOAT32_ATI ALPHA f32
 INTENSITY_FLOAT32_ATI INTENSITY f32
 LUMINANCE_FLOAT32_ATI LUMINANCE f32
 LUMINANCE_ALPHA_FLOAT32_ATI LUMINANCE_ALPHA f32 f32
 RGBA_FLOAT16_ATI RGBA f 16 f16 f16 f16
 RGB_FLOAT16_ATI RGB f 16 f16 f16
 ALPHA_FLOAT16_ATI ALPHA f16
 INTENSITY_FLOAT16_ATI INTENSITY f16
 LUMINANCE_FLOAT16_ATI LUMINANCE f16
 LUMINANCE_ALPHA_FLOAT16_ATI LUMINANCE_ALPHA f16 f16

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None

Errors

 None

New State

 None

New Implementation Dependent State

 None

Revision History

 Date: 12/4/2002
 Revision: 4
 - Added Section 2.1.2 16 Bit Floating-Point.

 Date: 9/11/2002
 Revision: 3
 - Changed description of float clamping to be consistent with
 WGL_ATI_pixel_format_float.

NVIDIA OpenGL Extension Specifications ATI_texture_float

 503

 Date: 9/6/2002
 Revision: 2
 - Changed unsigned integer components to fixe d-point components.
 - Resolved GL_FLOAT16_ATI issue.
 - Cleaned up typos.

 Date: 8/18/2002
 Revision: 1
 - First draft for circulation.

ATI_texture_mirror_once NVIDIA OpenGL Extension Specifications

 504

Name

 ATI_texture_mirror_once

Name Strings

 GL_ATI_texture_mirror_once

Version

 Last Modified Date: 11/14/2000 Revision: 0.30

Number

 221

Dependencies

 EXT_texture3D

Overview

 ATI_texture_mirror_once extends the set of text ure wrap modes to
 include two modes (GL_MIRROR_CLAMP_ATI, GL_MIRR OR_CLAMP_TO_EDGE_ATI)
 that effectively use a texture map twice as lar ge as the original image
 in which the additional half of the new image i s a mirror image of the
 original image.

 This new mode relaxes the need to generate imag es whose opposite edges
 match by using the original image to generate a matching "mirror image".
 This mode allows the texture to be mirrored onl y once in the negative
 s, t, and r directions.

Issues

 None known

New Procedure and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXT URE_WRAP_T, or
 TEXTURE_WRAP_R_EXT:

 MIRROR_CLAMP_ATI 0x8742
 MIRROR_CLAMP_TO_EDGE_ATI 0x8743

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (Operation)

 None

NVIDIA OpenGL Extension Specifications ATI_texture_mirror_once

 505

Additions to Chapter 3 if the OpenGL 1.2.1 Specific ation (Rasterization):

 - (3.8.3, p. 124) Change first three entries in t able:

 "TEXTURE_WRAP_S integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI"

 - (3.8.4, p. 125) Added after second paragraph:

 "If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_ WRAP_R_EXT is set to
 MIRROR_CLAMP_ATI or MIRROR_CLAMP_TO_EDGE_ATI, the s (or t or r)
 coordinate is clamped to [-1, 1] and then conv erted to:

 s 0 <= s <= 1
 -s -1 <= s < 0

 Like the CLAMP wrap mode, with MIRROR_CLAMP_AT I the texels from
 the border can be used by the texture filter. MIRROR_CLAMP_TO_EDGE_ATI
 clamps texture coordinates at all mipmap level s such that the texture
 filter never samples a border texel."

 - (3.8.5, p.127) Change last paragraph to:

 "When TEXTURE_MIN_FILTER is LINEAR, a 2 x 2 x 2 cube of texels in the
 image array of level TEXTURE_BASE_LEVEL is sel ected. This cube is
 obtained by first clamping texture coordinates as described above
 under Texture Wrap Modes (if the wrap mode for a coordinate is CLAMP,
 CLAMP_TO_EDGE, MIRROR_CLAMP_ATI, or MIRROR_CLA MP_TO_EDGE_ATI) and
 computing..."

Additions to Chapter 4:

 None

Additions to Chapter 5:

 None

Additions to Chapter 6:

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 None

ATI_texture_mirror_once NVIDIA OpenGL Extension Specifications

 506

Dependencies on EXT_texture3D

 If EXT_texture3D is not implemented, then the r eferences to clamping of 3D
 textures in this file are invalid, and referenc es to TEXTURE_WRAP_R_EXT
 should be ignored.

New State

 Only the type information changes for these par ameters:

 Get Value Get Command Typ e Initial Value Attrib
 --------- ----------- --- - ------------- ------
 TEXTURE_WRAP_S GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_T GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z5 REPEAT texture

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_abgr

 507

Name

 EXT_abgr

Name Strings

 GL_EXT_abgr

Version

 $Date: 1995/03/31 04:40:18 $ $Revision: 1.10 $

Number

 1

Dependencies

 None

Overview

 EXT_abgr extends the list of host-memory color formats. Specifically,
 it provides a reverse-order alternative to imag e format RGBA. The ABGR
 component order matches the cpack Iris GL forma t on big-endian machines.

New Procedures and Functions

 None

New Tokens

 Accepted by the <format> parameter of DrawPixel s, GetTexImage,
 ReadPixels, TexImage1D, and TexImage2D:

 ABGR_EXT 0x8000

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

EXT_abgr NVIDIA OpenGL Extension Specifications

 508

Additions to Chapter 3 of the GL Specification (Ras terization)

 One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
 The new table is:

 Target
 Name Type Elements Buffer
 ---- ---- -------- ------
 COLOR_INDEX Index Color Index Color
 STENCIL_INDEX Index Stencil value Stencil
 DEPTH_COMPONENT Component Depth value Depth
 RED Component R Color
 GREEN Component G Color
 BLUE Component B Color
 ALPHA Component A Color
 RGB Component R, G, B Color
 RGBA Component R, G, B, A Color
 LUMINANCE Component Luminance value Color
 LUMINANCE_ALPHA Component Luminance value, A Color
 ABGR_EXT Component A, B, G, R Color

 Table 3.5: DrawPixels and ReadPixels formats. The third column
 gives a description of and the number and order of elements in a
 group.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 The new format is added to the discussion of Ob taining Pixels from the
 Framebuffer. It should read " If the <format> is one of RED, GREEN,
 BLUE, ALPHA, RGB, RGBA, ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, and
 the GL is in color index mode, then the color i ndex is obtained."

 The new format is added to the discussion of In dex Lookup. It should
 read "If <format> is one of RED, GREEN, BLUE, A LPHA, RGB, RGBA,
 ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, then t he index is used to
 reference 4 tables of color components: PIXEL_M AP_I_TO_R,
 PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_M AP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 One entry is added to tables 1 and 5 in the GLX Protocol Specification:

 format encoding
 ------ --------
 GL_ABGR_EXT 0x8000

NVIDIA OpenGL Extension Specifications EXT_abgr

 509

 Table A.2 is also extended:

 format nelements
 ------ --------
 GL_ABGR_EXT 4

Errors

 None

New State

 None

New Implementation Dependent State

 None

EXT_bgra NVIDIA OpenGL Extension Specifications

 510

Name

 EXT_bgra

Name Strings

 GL_EXT_bgra

Version

 Microsoft revision 1.0, May 19, 1997 (drewb)
 $Date: 1997/09/22 23:03:13 $ $Revision: 1.1 $

Number

 129

Dependencies

 None

Overview

 EXT_bgra extends the list of host-memory color formats.
 Specifically, it provides formats which match t he memory layout of
 Windows DIBs so that applications can use the s ame data in both
 Windows API calls and OpenGL pixel API calls.

New Procedures and Functions

 None

New Tokens

 Accepted by the <format> parameter of DrawPixel s, GetTexImage,
 ReadPixels, TexImage1D, and TexImage2D:

 BGR_EXT 0x80E0
 BGRA_EXT 0x80E1

Additions to Chapter 2 of the 1.1 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.1 Specification (Ra sterization)

 One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
 The new table is:

 Name Type Elements Target Buffer
 ---- ---- -------- ------
 COLOR_INDEX Index Color Index Color
 STENCIL_INDEX Index Stencil value Stencil
 DEPTH_COMPONENT Component Depth value Depth
 RED Component R Color
 GREEN Component G Color
 BLUE Component B Color
 ALPHA Component A Color

NVIDIA OpenGL Extension Specifications EXT_bgra

 511

 RGB Component R, G, B Color
 RGBA Component R, G, B, A Color
 LUMINANCE Component Luminance value Color
 LUMINANCE_ALPHA Component Luminance value, A Color
 BGR_EXT Component B, G, R Color
 BGRA_EXT Component B, G, R, A Color

 Table 3.5: DrawPixels and ReadPixels format s. The third column
 gives a description of and the number and o rder of elements in a
 group.

Additions to Chapter 4 of the 1.1 Specification (Pe r-Fragment Operations
and the Framebuffer)

 The new format is added to the discussion of Ob taining Pixels from
 the Framebuffer. It should read " If the <forma t> is one of RED,
 GREEN, BLUE, ALPHA, RGB, RGBA, BGR_EXT, BGRA_EX T, LUMINANCE, or
 LUMINANCE_ALPHA, and the GL is in color index m ode, then the color
 index is obtained."

 The new format is added to the discussion of In dex Lookup. It should
 read "If <format> is one of RED, GREEN, BLUE, A LPHA, RGB, RGBA,
 BGR_EXT, BGRA_EXT, LUMINANCE, or LUMINANCE_ALPH A, then the index is
 used to reference 4 tables of color components: PIXEL_MAP_I_TO_R,
 PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_M AP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Revision History

 Original draft, revision 0.9, October 13, 1995 (drewb)
 Created
 Minor revision, revision 1.0, May 19, 1997 (dre wb)
 Removed Microsoft Confidential.

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 512

Name

 EXT_bindable_uniform

Name String

 GL_EXT_bindable_uniform

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 12/13/2007
 Author revision: 13

Number

 342

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension interacts with GL_EXT_geometry_s hader4.

Overview

 This extension introduces the concept of bindab le uniforms to the OpenGL
 Shading Language. A uniform variable can be de clared bindable, which
 means that the storage for the uniform is not a llocated by the
 compiler/linker anymore, but is backed by a buf fer object. This buffer
 object is bound to the bindable uniform through the new command
 UniformBufferEXT(). Binding needs to happen af ter linking a program
 object.

 Binding different buffer objects to a bindable uniform allows an
 application to easily use different "uniform da ta sets", without having to
 re-specify the data every time.

 A buffer object can be bound to bindable unifor ms in different program
 objects. If those bindable uniforms are all of the same type, accessing a
 bindable uniform in program object A will resul t in the same data if the
 same access is made in program object B. This provides a mechanism for
 'environment uniforms', uniform values that can be shared among multiple
 program objects.

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 513

New Procedures and Functions

 void UniformBufferEXT(uint program, int locatio n, uint buffer);
 int GetUniformBufferSizeEXT(uint program, int l ocation);
 intptr GetUniformOffsetEXT(uint program, int lo cation);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_VERTEX_BINDABLE_UNIFORMS_EXT 0x8DE2
 MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT 0x8DE3
 MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT 0x8DE4
 MAX_BINDABLE_UNIFORM_SIZE_EXT 0x8DED
 UNIFORM_BUFFER_BINDING_EXT 0x8DEF

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData, and
 GetBufferPointerv:

 UNIFORM_BUFFER_EXT 0x8DEE

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify section 2.15.3 "Shader Variables", page 75.

 Add the following paragraph between the second and third paragraph on page
 79, "Uniform Variables"

 Uniform variables can be further characterized into bindable
 uniforms. Storage for bindable uniforms does no t come out of the,
 potentially limited, uniform variable storage d iscussed in the previous
 paragraph. Instead, storage for a bindable unif orm is provided by a buffer
 object that is bound to the uniform variable. Binding different buffer
 objects to a bindable uniform allows an applica tion to easily use
 different "uniform data sets", without having t o re-specify the data every
 time. A buffer object can be bound to bindable uniforms in different
 program objects. If those bindable uniforms are all of the same type,
 accessing a bindable uniform in program object A will result in the same
 data if the same access is made in program obje ct B. This provides a
 mechanism for 'environment', uniform values tha t can be shared among
 multiple program objects.

 Change the first sentence of the third paragrap h, p. 79, as follows:

 When a program object is successfully linked, a ll non-bindable active
 uniforms belonging to the program object are in itialized to zero (FALSE
 for Booleans). All active bindable uniforms hav e their buffer object
 bindings reset to an invalid state. A successfu l link will also generate a
 location for each active uniform, including act ive bindable uniforms. The
 values of active uniforms can be changed using this location and the
 appropriate Uniform* command (see below). For b indable uniforms, a buffer
 object has to be first bound to the uniform bef ore changing its
 value. These locations are invalidated.

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 514

 Change the second to last paragraph, p. 79, as follows:

 A valid name for a non-bindable uniform cannot be a structure, an array of
 structures, or any portion of a single vector o r a matrix. A valid name
 for a bindable uniform cannot be any portion of a single vector or
 matrix. In order to identify a valid name, ...

 Change the fifth paragraph, p. 81, as follows:

 The given values are loaded into the uniform va riable location identified
 by <location>. The parameter <location> cannot identify a bindable uniform
 structure or a bindable uniform array of struct ures. When loading data for
 a bindable uniform, the data will be stored in the appropriate location of
 the buffer object bound to the bindable uniform (see UniformBufferEXT
 below).

 Add the following bullets to the list of errors on p. 82:

 - If <location> refers to a bindable uniform structure or a bindable
 uniform array of structures.

 - If <location> refers to a bindable uniform that has no buffer object
 bound to the uniform.

 - If <location> refers to a bindable uniform and the bound buffer object
 is not of sufficient size. This means that the buffer object is
 smaller than the size that would be returne d by
 GetUniformBufferSizeEXT for the bindable un iform.

 - If <location> refers to a bindable uniform and the buffer object is
 bound to multiple bindable uniforms in the currently active program
 object.

 Add a sub-section called "Bindable Uniforms" ab ove the section "Samplers",
 p. 82:

 The number of active bindable uniform variables that can be supported by a
 vertex shader is limited and specified by the i mplementation dependent
 constant MAX_VERTEX_BINDABLE_UNIFORMS_EXT. The minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables.

 To query the minimum size needed for a buffer o bject to back a given
 bindable uniform, use the command:

 int GetUniformBufferSizeEXT(uint program, int location);

 This command returns the size in basic machine units of the smallest
 buffer object that can be used for the bindable uniform given by
 <location>. The size returned is intended to be passed as the <size>
 parameter to the BufferData() command. The erro r INVALID_OPERATION will be
 generated if <location> does not correspond to an active bindable uniform
 in <program>. The parameter <location> has to be location corresponding
 to the name of the bindable uniform itself, oth erwise the error
 INVALID_OPERATION is generated. If the bindabl e uniform is a structure,
 <location> can not refer to a structure member. If it is an array,
 <location> can not refer to any array member ot her than the first one. If

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 515

 <program> has not been successfully linked, the error INVALID_OPERATION is
 generated.

 There is an implementation-dependent limit on t he size of bindable uniform
 variables. LinkProgram will fail if the storag e required for the uniform
 (in basic machine units) exceeds MAX_BINDABLE_U NIFORM_SIZE_EXT.

 To bind a buffer object to a bindable uniform, use the command:

 void UniformBufferEXT(uint program, int locat ion, uint buffer)

 This command binds the buffer object <buffer> t o the bindable uniform
 <location> in the program object <program>. Any previous binding to the
 bindable uniform <location> is broken. Before c alling UniformBufferEXT the
 buffer object has to be created, but it does no t have to be initialized
 with data nor its size set. Passing the value zero in <buffer> will
 unbind the currently bound buffer object. The e rror INVALID_OPERATION is
 generated if <location> does not correspond to an active bindable uniform
 in <program>. The parameter <location> has to correspond to the name of
 the uniform variable itself, as described for G etUniformBufferSizeEXT,
 otherwise the error INVALID_OPERATION is genera ted. If <program> has not
 been successfully linked, or if <buffer> is not the name of an existing
 buffer object, the error INVALID_OPERATION is g enerated.

 A buffer object cannot be bound to more than on e uniform variable in any
 single program object. However, a buffer object can be bound to bindable
 uniform variables in multiple program objects. Furthermore, if those
 bindable uniforms are all of the same type, acc essing a scalar, vector, a
 member of a structure, or an element of an arra y in program object A will
 result in the same data if the same scalar, vec tor, structure member, or
 array element is accessed in program object B. Additionally the structures
 in both program objects have to have the same m embers, specified in the
 same order, declared with the same data types a nd have the same name. If
 the buffer object bound to the uniform variable is smaller than the
 minimum size required to store the uniform vari able, as reported by
 GetUniformbufferSizeEXT, the results of reading the variable (or any
 portion thereof) are undefined.

 If LinkProgram is called on a program object th at has already been linked,
 any buffer objects bound to the bindable unifor ms in the program are
 unbound prior to linking, as though UniformBuff erEXT were called for each
 bindable uniform with a <buffer> value of zero.

 Buffer objects used to store uniform variables may be created and
 manipulated by buffer object functions (e.g., B ufferData, BufferSubData,
 MapBuffer) by calling BindBuffer with a <target > of UNIFORM_BUFFER_EXT.
 It is not necessary to bind a buffer object to UNIFORM_BUFFER_EXT in order
 to use it with an active program object.

 The size and layout of a bindable uniform varia ble in buffer object
 storage is not defined. However, the values of signed integer, unsigned
 integer, or floating-point uniforms may be upda ted by modifying the
 underying buffer object storage using either Ma pBuffer or BufferSubData.
 The command

 intptr GetUniformOffsetEXT(uint program, int location);

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 516

 returns the offset (in bytes) of the uniform in <program> whose location
 returned by GetUniformLocation is <location>. The error INVALID_VALUE is
 generated if the object named by <program> does not exist. The error
 INVALID_OPERATION is generated if <program> is not a program object, if
 <program> was not linked successfully, or if <l ocation> refers to a
 uniform that was not declared as bindable. The memory layout of matrix,
 boolean, or boolean vector uniforms is not defi ned, and the error
 INVALID_OPERATION will be generated if <locatio n> refers to a boolean,
 boolean vector, or matrix uniform. The value - 1 is returned by
 GetUniformOffsetEXT if an error is generated.

 The values of such uniforms may be changing by writing signed integer,
 unsigned integer, or floating-point values into the buffer object at the
 byte offset returned by GetUniformOffsetEXT. F or vectors, two to four
 integers or floating-point values should be wri tten to consecutive
 locations in the buffer object storage. For ar rays of scalar or vector
 variables, the number of bytes between individu al array members is
 guaranteed to be constant, but array members ar e not guaranteed to be
 stored in adjacent locations. For example, som e implementations may pad
 scalars, or two- or three-component vectors out to a four-component
 vector.

 Change the first paragraph below the sub-headin g 'Samplers', p. 82, as
 follows:

 Samplers are special uniforms used in the OpenG L Shading Language to
 identify the texture object used for each textu re lookup. Samplers cannot
 be declared as bindable in a shader. The value of a sampler indicates the
 texture image unit being accessed. Setting a sa mpler's value.

 Add the following bullets to the list of error conditions for Begin on
 p. 87:

 - There is one, or more, bindable uniform(s) i n the currently
 active program object that does not have a b uffer object
 bound to it.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that have a buffer object bou nd to it of insufficient
 size. This means that the buffer object is s maller than the size that
 would be returned by GetUniformBufferSizeEXT for the bindable uniform.

 - A buffer object is bound to multiple bindabl e uniforms in the currently
 active program object.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.11.1 "Shader Variables", p. 19 3

 Add a paragraph between the first and second pa ragraph, p. 194

 The number of active bindable uniform variables that can be supported by a
 fragment shader is limited and specified by the implementation dependent
 constant MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT. Th e minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables.

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 517

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Change section 5.4 Display Lists, p. 237

 Add the command UniformBufferEXT to the list of commands that are not
 compiled into a display list, but executed imme diately, under "Program and
 Shader Objects", p. 241.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Interactions with GL_EXT_geometry_shader4

 If GL_EXT_geometry_shader4 is supported, a geom etry shader will also
 support bindable uniforms. The following paragr aph needs to be added to
 the section that discusses geometry shaders:

 "The number of active bindable uniform variable s that can be supported by
 a geometry shader is limited and specified by t he implementation dependent
 constant MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT. Th e minimum supported number
 of bindable uniforms is eight. A link error wil l be generated if the
 program object contains more active bindable un iform variables."

 The implementation dependent value MAX_GEOMETRY _BINDABLE_UNIFORMS_EXT will
 need to be added to the state tables and assign ed an enum value.

Errors

 The error INVALID_VALUE is generated by Uniform BufferEXT,
 GetUniformBufferSize, or GetUniformOffsetEXT if <program> is not the name
 of a program or shader object.

 The error INVALID_OPERATION is generated by Uni formBufferEXT,
 GetUniformBufferSize, or GetUniformOffsetEXT if <program> is the name of a
 shader object.

 The error INVALID_OPERATION is generated by the Uniform* commands if
 <location> refers to a bindable uniform structu re or an array of such
 structures.

 The error INVALID_OPERATION is generated by the Uniform* commands if

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 518

 <location> refers to a bindable uniform that ha s no buffer object bound.

 The error INVALID_OPERATION is generated by the Uniform* commands if
 <location> refers to a bindable uniform and the bound buffer object is not
 of sufficient size to store data into <location >.

 The error INVALID_OPERATION is generated by the GetUniformBufferSizeEXT
 and UniformBufferEXT commands if <program> has not been successfully
 linked.

 The error INVALID_OPERATION is generated by the GetUniformBufferSizeEXT
 and UniformBufferEXT commands if <location> is not the location
 corresponding to the name of the bindable unifo rm itself or if <location>
 does not correspond to an active bindable unifo rm in <program>.

 The error INVALID_OPERATION is generated by Get UniformOffsetEXT if
 <program> was not linked successfully, if <loca tion> refers to a uniform
 that was not declared as bindable, or if <locat ion> refers to a boolean,
 boolean vector, or matrix uniform.

 The error INVALID_OPERATION is generated by the UniformBufferEXT command if
 <buffer> is not the name of a buffer object.

 The error INVALID_OPERATION is generated by Beg in, Rasterpos or any
 command that performs an implicit Begin if:

 - A buffer object is bound to multiple bindabl e uniforms in the currently
 active program object.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that does not have a buffer o bject bound to it.

 - There is one, or more, bindable uniform(s) i n the currently active
 program object that have a buffer object bou nd to it of insufficient
 size. This means that the buffer object is s maller than the size that
 would be returned by GetUniformBufferSizeEXT for the bindable uniform.

New State

 Minimum
 Get Value Type Get Command Value Description Section Attrib
 ---------------------- ---- ----------- ----- --------------------- ------- ------
 MAX_BINDABLE_VERTEX_ Z+ GetIntegerv 8 Number of bindable 2.15 -
 UNIFORMS_EXT uniforms per vertex
 shader
 MAX_BINDABLE_FRAGMENT_ Z+ GetIntegerv 8 Number of bindable 3.11.1 -
 UNIFORMS_EXT uniforms per fragment
 shader
 MAX_BINDABLE_GEOMETRY_ Z+ GetIntegerv 8 Number of bindable X.X.X -
 UNIFORMS_EXT uniforms per geometry
 shader
 MAX_BINDABLE_UNIFORM_ Z+ GetIntegerv 16384 Maximum size (in bytes) 2.15 -
 SIZE_EXT for bindable uniform
 storage.

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 519

New Implementation Dependent State

 In itial
 Get Value Type Get Command V alue Description Sec Attribute
 -------------------------- ---- ----------- - ---- ------------------------- ----- ---------
 UNIFORM_BUFFER_BINDING_EXT Z+ GetIntegerv 0 Uniform buffer bound to 2.15 -
 the context for buffer
 object manipulation.

Modifications to The OpenGL Shading Language Specif ication, Version
1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_bindable_uniform: <behavio r>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_bindable_uniform 1

 Add to section 3.6 "Keywords"

 Add the following keyword:

 bindable

 Change section 4.3 "Type Qualifiers"

 In the qualifier table, add the following sub-q ualifiers under the uniform
 qualifier:

 bindable uniform

 Change section 4.3.5 "Uniform"

 Add the following paragraphs between the last a nd the second to last
 paragraphs:

 Uniform variables, except for samplers, can opt ionally be further
 qualified with "bindable". If "bindable" is pre sent, the storage for the
 uniform comes from a buffer object, which is bo und to the uniform through
 the GL API, as described in section 2.15.3 of t he OpenGL 2.0
 specification. In this case, the memory used do es not count against the
 storage limit described in the previous paragra ph. When using the
 "bindable" keyword, it must immediately precede the "uniform" keyword.

 An example bindable uniform declaration is:

 bindable uniform float foo;

 Only a limited number of uniforms can be bindab le for each type of
 shader. If this limit is exceeded, it will caus e a compile-time or
 link-time error. Bindable uniforms that are dec lared but not used do not
 count against this limit.

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 520

 Add to section 9 "Shading Language Grammar"

 type_qualifer:
 CONST
 ATTRIBUTE // Vertex only
 uniform-modifieropt UNIFORM

 uniform-modifier:
 BINDABLE

Issues

 1. Is binding a buffer object to a uniform done before or after linking a
 program object?

 DISCUSSION: There is no need to re-link when changing the buffer object
 that backs a uniform. Re-binding can therefor e be relatively quickly.
 Binding is be done using the location of the uniform retrieved by
 GetUniformLocation, to make it even faster (i nstead of binding by name
 of the uniform).

 Reasons to do this before linking: The linker might want to know what
 buffer object backs the uniform. Binding of a buffer object to a
 bindable uniform, in this case, will have to be done using the name of
 the uniform (no location is available until a fter linking). Changing the
 binding of a buffer object to a bindable unif orm means the program
 object will have to be re-linked, which would substantially increase the
 overhead of using multiple different "constan t sets" in a single
 program.

 RESOLUTION: Binding a buffer object to a bind able uniform needs to be
 done after the program object is linked. One of the purposes of this
 extension is to be able to switch among multi ple sets of uniform values
 efficiently.

 2. Is the memory layout of a bindable uniform av ailable to an application?

 DISCUSSION: Buffer objects are arrays of byt es. The application can map
 a buffer object and retrieve a pointer to it, and read or write into it
 directly. Or, the application can use the Buf ferSubData() command to
 store data in a buffer object. They can also be filled using ReadPixels
 (with ARB_pixel_buffer_object), or filled usi ng extensions such as the
 new transform feedback extension.

 If the layout of a uniform in buffer object m emory is known, these
 different ways of filling a buffer object cou ld be leveraged. On the
 other hand, different compiler implementation s may want a different
 packing schemes that may or may not match an end-user's expectations
 (e.g., all individual uniforms might be store d as vec4's). If only the
 Uniform*() API were allowed to modify buffer objects, we could
 completely hide the layout of bindable unifor ms. Unfortuantely, that
 would limit how the buffer object can be link ed to other sources of
 data.

 RESOLUTION: RESOLVED. The memory layout of a bindable uniform variable
 will not be specified. However, a query func tion will be added that

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 521

 allows applications to determine the layout a nd load their buffer object
 via API's other than Uniform*() accordingly i f they choose.
 Unfortunately, the layout may not be consiste nt across implementations
 of this extension.

 Providing a better standard set of packing ru les is highly desirable,
 and we hope to design and add such functional ity in an extension in the
 near future.

 3. How is synchronization handled between a prog ram object using a buffer
 object and updates to the buffer object?

 DISCUSSION: For example, what happens when a ReadPixels into a buffer
 object is outstanding, that is bound to a bin dable uniform while the
 program object, containing the bindable unifo rm, is in use?

 RESOLUTION: UNRESOLVED. It is probably the GL implementation's
 responsibility to properly synchronize such u sages. This issue needs
 solving for GL_EXT_texture_buffer_object also , and should be consistent.

 4. A limited number of bindable uniforms can exi st in one program
 object. Should this limit be queriable?

 DISCUSSION: The link operation will fail if t oo many bindable uniforms
 are declared and active. Should the limit on the number of active
 bindable uniforms be queriable by the applica tion?

 RESOLUTION: Yes, this limit is queriable.

 5. Is the limit discussed in the previous issue per shader type?

 DISCUSSION: Is there a different limit for ve rtex shader and fragment
 shaders? Hardware might support different lim its. The storage for
 uniform variables is a limit queriable per sh ader type, thus it would be
 nice to be consistent with the existing model .

 RESOLUTION: YES.

 6. Can an application find out programmatically that a uniform is declared
 as a bindable uniform?

 DISCUSSION: Using GetActiveUniform() the appl ication can
 programmatically find out which uniforms are active, what their type and
 size etc it. Do we need to add a mechanism fo r an application to find
 out if an active uniform is a bindable unifor m?

 RESOLUTION: UNRESOLVED. To be consistent, the answer should be
 yes. However, extending GetActiveUniform() is not possible, which means
 we need a new API command. If we define a new API command, it probably
 is better to define something like: GetNewAc tiveUniform(int program,
 uint index, enum property, void *data); Or al ternatively, define new API
 to query the properties of a uniform per unif orm location:
 GetActiveUniformProperty(int program, int loc ation, enum property, void
 *data)

 7. What to do when the buffer object bound to a bindable uniform is not big
 enough to back the uniform or if no buffer ob ject is bound at all?

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 522

 DISCUSSION: The size of a buffer object can b e changed, after it is
 bound, by calling BufferData. It is possible that the buffer object
 isn't sufficiently big enough to back the bin dable uniform. This is an
 issue when loading values for uniforms and wh en actually rendering. In
 the case of loading uniforms, should the Unif orm* API generate an error?
 In the case of rendering, should this be a Be gin error?

 RESOLUTION: RESOLVED. It is a Begin error if a buffer object is too
 small or no buffer object is bound at all. Th e Uniform* commands will
 generate an error in these cases as well.

 8. What restrictions are there on binding a buff er object to more than one
 bindable uniform?

 DISCUSSION: Can a buffer object be bound to m ore than one uniform within
 a program object? No, this does not seem to b e a good idea. Can a
 buffer object be bound to more than one unifo rm in different program
 objects? Yes, this is useful functionality to have. If each uniform is
 also of the same type, then data access in pr ogram object A then the
 same access in program object B results in th e same data. In the latter
 case, if the uniform variables are arrays, mu st the arrays have the same
 length declared? No, that is too big of a res triction. The application
 is responsible for making sure the buffer obj ect is sufficiently sized
 to provide storage for the largest bindable u niform array.

 RESOLUTION: RESOLVED.

 9. It is not allowed to bind a buffer object to more than one bindable
 uniform in a program object. There are severa l operations that could be
 affected by this rule: UseProgram(), the unif orm loading commands
 Uniform*, Begin, RasterPos and any related re ndering command. Should
 each operation generate an error if the rule is violated?

 DISCUSSION: See also issue 7. The UseProgram command could generate an
 error if the rule is violated. However, it is possible to change the
 binding of a buffer object to a bindable unif orm even after UseProgram
 has been issued. Thus should the Uniform* com mands also check for this?
 If so, is that going to be a performance burd en on uniform loading? Or
 should it be undefined? Finally, at renderin g time violation of this
 rule will have to be checked. If violated, it seems to make sense to
 generate an error.

 RESOLUTION: RESOLVED. Make violation of the r ule a Begin error and a
 Uniform* error.

 10. How to provide the ability to use bindable un iform arrays (or bindable
 uniform arrays of structures) where the amoun t of data can differ based
 on the buffer object bound to it?

 DISCUSSION: In other words, the size of the b indable uniform is no
 longer declared in the shader, but determined by the buffer object
 backing it. This can be achieved through a va riety of ways:

 bindable uniform vec3 foo[1];

 Where we would allow indexing 'off the end' o f the array 'foo', because

NVIDIA OpenGL Extension Specifications EXT_bindable_uniform

 523

 it is backed by a buffer object. The actual s ize of the array will be
 implicitly inferred from the buffer object bo und to it. It'll be the
 shader's responsibility to not index outside the size of the buffer
 object. That in turn means that the layout in buffer object memory of a
 bindable uniform needs to be exposed to the a pplication.

 Or we could support something like:

 bindable uniform vec3 foo[100000]; // Some re ally big number

 and make all accesses inside the buffer objec t bound to "foo" legal.

 Or we could support something like:

 bindable uniform float foo[];

 foo[3] = 1.0;
 foo[i] = .

 Where 'i' could be a run-time index.

 RESOLUTION: For now, we will not support this functionality.

 11. Do we want to have bindable namespaces instea d of the uniform qualifier
 "bindable"?

 DISCUSSION: Something like this:

 bindable {
 vec3 blarg;
 int booyah;
 };

 where "blarg" and "booyah" can be referred to directly, but are both
 bindable to the same buffer. You can achieve this with bindable uniforms
 stored in structures:

 bindable uniform struct {
 vec3 blarg;
 int booyah;
 } foo;

 but then have to use "foo.blarg" and "foo.boo yah".

 RESOLUTION: Not in this extension. This might be nice programming sugar,
 but not essential. Such a feature may be add ed in a future extension
 building on this one.

 12. How can an application load data into a binda ble uniform?

 RESOLUTION: See also issue 2. Uniform variabl es declared as bindable can
 be loaded using the existing Uniform* command s, or data can be loaded in
 the buffer object bound to the uniform using any of the existing
 mechanisms.

EXT_bindable_uniform NVIDIA OpenGL Extension Specifications

 524

 13. Should it be allowed to load data, using the Uniform* commands, into a
 buffer object that is bound to more than one bindable uniform variable
 in a program object?

 DISCUSSION: It is a Begin error to attempt to render in this situation.

 RESOLUTION: Yes, to be consistent with the Be gin error, it is also an
 error to load a value in this case.

 14. Should a buffer object binding point be provi ded for bindable uniforms?

 DISCUSSION: All current OpenGL buffer object manipulation functions take
 a <target> to which a buffer object must be b ound. In this extension,
 buffer objects are bound to uniforms stored i n a program, and are not
 bound directly to the context. So these bind ings may not be used to
 manipulate the

 RESOLUTION: Yes, a new <target> called UNIFO RM_BUFFER_EXT is provided.

 The following is a simple example of creating , binding, and populating a
 buffer object for a bindable uniform named "s tuff", which is an array of
 vec4 values:

 GLuint program, buffer;
 GLint location, size;
 GLfloat values;

 // ... compile shaders and link <program>
 location = glGetUniformLocation(program, "stuff");
 size = GetUniformBufferSize(program, loca tion);
 glGenBuffers(1, &buffer);
 glBindBuffer(GL_UNIFORM_BUFFER_EXT, buffe r);
 glBufferData(GL_UNIFORM_BUFFER_EXT, size, NULL, STATIC_READ);
 glUniformBufferEXT(program, location, buf fer);
 ...
 glUseProgram(program);
 glUniform4fv(location, count, values);

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 13 12/13/07 pbrown Minor clarification o n what values can be passed
 to GetUniformBufferSi zeEXT and UniformBufferEXT.

 12 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 11 -- Pre-release revisions .

NVIDIA OpenGL Extension Specifications EXT_blend_color

 525

Name

 EXT_blend_color

Name Strings

 GL_EXT_blend_color

Version

 $Date: 1995/03/31 04:40:19 $ $Revision: 1.7 $

Number

 2

Dependencies

 None

Overview

 Blending capability is extended by defining a c onstant color that can
 be included in blending equations. A typical u sage is blending two
 RGB images. Without the constant blend factor, one image must have
 an alpha channel with each pixel set to the des ired blend factor.

New Procedures and Functions

 void BlendColorEXT(clampf red,
 clampf green,
 clampf blue,
 clampf alpha);

New Tokens

 Accepted by the <sfactor> and <dfactor> paramet ers of BlendFunc:

 CONSTANT_COLOR_EXT 0x8001
 ONE_MINUS_CONSTANT_COLOR_EXT 0x8002
 CONSTANT_ALPHA_EXT 0x8003
 ONE_MINUS_CONSTANT_ALPHA_EXT 0x8004

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_COLOR_EXT 0x8005

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

EXT_blend_color NVIDIA OpenGL Extension Specifications

 526

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 The commands that control blending are now Blen dFunc and BlendColorEXT.
 A constant color to be used in the blending equ ation is specified by
 BlendColorEXT. The four parameters are clamped to the range [0,1]
 before being stored. The default value for the constant blending color
 is (0,0,0,0).

 The constant color can be used in both the sour ce and destination
 blending factors. Four lines are added to tabl e 4.1 and table 4.2:

 Value Blend Facto rs
 ----- ----------- --
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 DST_COLOR (Rd/Kr, Gd/ Kg, Bd/Kb, Ad/Ka)
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd/Kr,Gd/Kg,Bd/Kb,Ad/Ka)
 SRC_ALPHA (As, As, As , As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad , Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc , Ac) NEW
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac , Ac) NEW
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW
 SRC_ALPHA_SATURATE (f, f, f, 1)

 Table 4.1: Values controlling the source blending function and the
 source blending values they compute. Ka = 2**m - 1, where m is the
 number of bits in the A color component. Kr, Kg, and Kb are similarly
 determined by the number of bits in the R, G, and B color components.
 f = min(As, 1-Ad) / Ka.

 Value Blend Facto rs
 ----- ----------- --
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs/Kr, Gs/ Kg, Bs/Kb, As/Ka)
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs/Kr,Gs/Kg,Bs/Kb,As/Ka)
 SRC_ALPHA (As, As, As , As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad , Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc , Ac) NEW
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac , Ac) NEW
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW

 Table 4.2: Values controlling the destination blending function and
 the destination blending values they compute. Ka = 2**m - 1, where
 m is the number of bits in the A color component. Kr, Kg, and Kb
 are similarly determined by the number of bits in the R, G, and B
 color components.

 Rc, Gc, Bc, and Ac are the four components of t he constant blending
 color. These blend factors are not scaled by K r, Kg, Kb, and Ka,
 because they are already in the range [0,1].

NVIDIA OpenGL Extension Specifications EXT_blend_color

 527

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

 BlendColorEXT
 2 20 rendering c ommand length
 2 4096 rendering c ommand opcode
 4 FLOAT32 red
 4 FLOAT32 green
 4 FLOAT32 blue
 4 FLOAT32 alpha

Errors

 INVALID_OPERATION is generated if BlendColorEXT is called between
 execution of Begin and the corresponding call t o End.

New State

 Ini tial
 Get Value Get Command Type Val ue Attrib
 --------- ----------- ---- --- ---- ------
 BLEND_COLOR_EXT GetFloatv C (0, 0,0,0) color-buffer

New Implementation Dependent State

 None

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications

 528

Name

 EXT_blend_equation_separate

Name Strings

 GL_EXT_blend_equation_separate

Notice

 Copyright NVIDIA Corporation, 2003.

Version

 Date: 12/23/2003 Version 1.0

Status

 Shipping as of May 2004 for GeForce6.

Number

 299

Dependencies

 Written based on the wording of the OpenGL 1.5 specification.

 OpenGL 1.4 (or ARB_imaging, or EXT_blend_minmax and/or
 EXT_blend_subtract) is required for blend equat ion support.

 EXT_blend_func_separate is presumed but not req uired.

 EXT_blend_logic_op interacts with this extensio n.

Overview

 EXT_blend_func_separate introduced separate RGB and alpha blend
 factors. EXT_blend_minmax introduced a distinc t blend equation for
 combining source and destination blend terms. (EXT_blend_subtract &
 EXT_blend_logic_op added other blend equation m odes.) OpenGL 1.4
 integrated both functionalities into the core s tandard.

 While there are separate blend functions for th e RGB and alpha blend
 factors, OpenGL 1.4 provides a single blend equ ation that applies
 to both RGB and alpha portions of blending.

 This extension provides a separate blend equati on for RGB and alpha
 to match the generality available for blend fac tors.

IP Status

 No known IP issues.

NVIDIA OpenGL Extension Specifications EXT_blend_equation_separate

 529

Issues

 Why not use ATI_blend_equation_separate?

 Apple supports this extension in OS X 10.2 but the extension
 lacks a specification and, as explained in subsequent issues,
 the token naming is inconsistent with OpenG L conventions.

 What should the token names be?

 RESOLVED: Follow the precedent of EXT_blen d_equation_separate.
 For example, GL_BLEND_DST becomes GL_BLEND_ DST_RGB
 and GL_BLEND_DST_ALPHA. So GL_BLEND_EQUATI ON becomes
 GL_BLEND_EQUATION_RGB (same value as GL_BLE ND_EQUATION) and
 GL_BLEND_EQUATION_ALPHA.

 This is different from the ATI_blend_equati on_separate approach
 which introduces the single name GL_ALPHA_B LEND_EQUATION_ATI
 (no RGB name is introduced). The existing OpenGL convention
 (example: ARB_texture_env_combine) is to us e _RGB and _ALPHA as
 a suffix for enumerants, not a prefix.

 How should get token values be assigned?

 RESOLVED: GL_BLEND_EQUATION_RGB_EXT has th e same value as
 GL_BLEND_EQUATION. See "Compatibility" sec tion.

 For compatibility with ATI_blend_equation_s eparate,
 GL_BLEND_EQUATION_ALPHA_EXT shares the same value (0x883D)
 with the ATI_blend_equation_separate's GL_A LPHA_BLEND_EQUATION_ATI
 token. The GL_BLEND_EQUATION_ALPHA_EXT nam e uses the suffixing
 convention (rather than prefixing) for addi ng _ALPHA addition
 as done by ARB_texture_env_combine and EXT_ blend_func_separate.

New Procedures and Functions

 void BlendEquationSeparateEXT(enum modeRGB,
 enum modeAlpha);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_EQUATION_RGB_EXT 0x8009 (same as BLEND_EQUATION)
 BLEND_EQUATION_ALPHA_EXT 0x883D

Additions to Chapter 2 of the 1.5 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.5 GL Specification (Rasterization)

 None

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications

 530

Additions to Chapter 4 of the 1.5 GL Specification (Per-Fragment Operations
and the Framebuffer)

 Replace the "Blend Equation" discussion in sect ion 4.1.7 (Blending)
 with the following:

 "The equations used to control blending are det ermined by the blend
 equations. Blend equations are specified with the commands:

 void BlendEquation(enum mode);
 void BlendEquationSeparateEXT(enum modeRGB, e num modeAlpha);

 BlendEquationSeparateEXT arguments modeRGB dete rmines the RGB blend
 function while modeAlpha determines the alpha b lend equation.
 BlendEquation argument mode determines both the RGB and alpha blend
 equations. modeRGB and modeAlpha must each be one of FUNC_ADD,
 FUNC_SUBTRACT, FUNC_REVERSE_SUBTRACT, MIN, or M AX.

 Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.13.9
 (Final Color Processing), as are source (fragme nt) components.
 Constant color components are taken to be float ing point values.
 [ed: paragraph unchanged except that floating-p oint is hyphenated.]

 Prior to blending, each fixed-point color compo nent undergoes an
 implied conversion to floating-point. This con version must leave
 the values 0 and 1 invariant. Blending compone nts are treated as
 if carried out in floating-point. [ed: paragra ph unchanged except
 that floating-point is hyphenated.]

 Table 4.blendeq provides the corresponding per- component blend
 equations for each mode, whether acting on RGB components for modeRGB
 or the alpha component for modeAlpha.

 In the table, the "s" subscript on a color comp onent abbreviation
 (R, G, B, or A) refers to the source color comp onent for an incoming
 fragment, the "d" subscript on a color componen t abbreviation refers
 to the destination color component at the corre sponding framebuffer
 location, and the "c" subscript on a color com ponent abbreviation
 refers to the constant blend color component. A color component
 abbreviation without a subscript refers to the new color component
 resulting from blending. Additionally, Sr, Sg, Sb, and Sa are
 the red, green, blue, and alpha components of t he source weighting
 factors determined by the source blend function , and Dr, Dg, Db, and
 Da are the red, green, blue, and alpha componen ts of the destination
 weighting factors determined by the destination blend function.
 Blend functions are described below.

NVIDIA OpenGL Extension Specifications EXT_blend_equation_separate

 531

 Mode RGB components Alpha component
 --------------------- ---------------------- ----------------------
 FUNC_ADD Rc = Rs * Sr + Rd * Dr Ac = As * Sa + Ad * Da
 Gc = Gs * Sg + Gd * Dg
 Bc = Bs * Sb + Bd * Db
 --------------------- ---------------------- ----------------------
 FUNC_SUBTRACT Rc = Rs * Sr - Rd * Dr Ac = As * Sa - Ad * Da
 Gc = Gs * Sg - Gd * Dg
 Bc = Bs * Sb - Bd * Db
 --------------------- ---------------------- ----------------------
 FUNC_REVERSE_SUBTRACT Rc = Rd * Sr - Rs * Dr Ac = Ad * Sa - As * Da
 Gc = Gd * Sg - Gs * Dg
 Bc = Bd * Sb - Bs * Db
 --------------------- ---------------------- ----------------------
 MIN Rc = min(Rs, Rd) Ac = min(As, Ad)
 Gc = min(Gs, Gd)
 Bc = min(Bs, Bd)
 --------------------- ---------------------- ----------------------
 MAX Rc = max(Rs, Rd) Ac = max(As, Ad)
 Gc = max(Gs, Gd)
 Bc = max(Bs, Bd)
 --------------------- ---------------------- ----------------------

 Table 4.blendeq: RGB and alpha blend equations are their
 per-component equations controlling the color c omponents resulting
 from blending for each mode."

 In the "Blending State" paragraph, replace the initial lines with...

 "The state required for blending is two integer s for the RGB and alpha
 blend equations, four integer indicating the so urce and destination
 RGB and alpha blending functions, four floating -point values to store
 the RGBA constant blend color, and a bit indica ting whether blending
 is enabled or disabled. The initial blending e quations for RGB and
 alpha are FUNC_ADD. ..."

Additions to Chapter 5 of the 1.5 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.5 GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications

 532

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent
 to the server as part of a glXRender request:

 BlendEquationSeparateEXT
 2 12 rendering c ommand length
 2 4228 rendering c ommand opcode
 4 ENUM modeRGB
 4 ENUM modeAlpha

Dependencies on EXT_blend_logic_op

 If EXT_blend_logic_op and EXT_blend_equation_se parate are both
 supported, the logic op blend equation should b e supported separately
 for RGB and alpha as with the other blend equat ion modes.

 And add to the table 4.blendeq this line:

 Mode RGB components Alpha component
 --------------------- ---------------------- ----------------------
 LOGIC_OP Rc = Rs OP Rd Ac = As OP Ad
 Gc = Gs OP Gd
 Bc = Bs OP Bd
 --------------------- ---------------------- ----------------------

 where OP denotes the logical operation controll ed by LogicOp (see
 table 4.2).

 Note: there is no support for a distinct RGB lo gical operation
 and alpha logical operation (that could be prov ided by another
 extension).

Errors

 INVALID_ENUM is generated if either the modeRGB or modeAlpha
 parameter of BlendEquationSeparateEXT is not on e of FUNC_ADD,
 FUNC_SUBTRACT, FUNC_REVERSE_SUBTRACT, MAX, or M IN.

 INVALID_OPERATION is generated if BlendEquation SeparateEXT
 is executed between the execution of Begin and the corresponding
 execution of End.

New State

 In itial
 Get Value Get Command Type Va lue Attribute
 ------------------------ ----------- ---- -- ------ ------------
 BLEND_EQUATION_RGB_EXT GetIntegerv Z FU NC_ADD color-buffer
 BLEND_EQUATION_ALPHA_EXT GetIntegerv Z FU NC_ADD color-buffer

 [remove BLEND_EQUATION from the table, add a no te "v1.5 BLEND_EQUATON"
 beside BLEND_EQUATION_RGB_EXT to note the legac y name.]

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_blend_equation_separate

 533

Compatibility

 The BLEND_EQUATION_RGB_EXT query token has the same value as the
 legacy BLEND_EQUATION query token. This means querying the legacy
 BLEND_EQUATION state is identical to querying t he RGB blend equation
 state.

 This is a different approach than taken by the EXT_blend_func_separate
 extension, but matches the approach taken by ot her "split" OpenGL
 state such as the SMOOTH_POINT_SIZE_RANGE and A LIASED_POINT_SIZE_RANGE
 values split from POINT_SIZE_RANGE.

 In the EXT_blend_func_separate case, four new t oken names
 (BLEND_DST_RGB, BLEND_SRC_RGB, BLEND_DST_ALPHA, and BLEND_DST_RGB)
 with four new token values (0x80C8, 0x80C9, 0x8 0CA, and 0x80CB
 respectively) were added. Querying the legacy BLEND_DST (0x0BE0) and
 BLEND_RGB (0x0BE1) returns the same value as qu erying BLEND_SRC_RGB
 and BLEND_DST_RGB respectively but this was nev er explicitly
 documented.

 In the case of the point size ranges, SMOOTH_PO INT_SIZE_RANGE was
 given the same value as POINT_SIZE_RANGE (0x0B1 2) and a single new
 token ALIASED_POINT_SIZE_RANGE (0x846D).

 The point size ranges approach is preferable be cause it minimizes
 the confusion about how the legacy name should be treated by
 implementations because the legacy name shares its value with
 the new name. This is less prone to confusion by developers and
 implementers and less effort to implement.

 For token value compatibility with ATI_blend_eq uation_separate,
 GL_BLEND_EQUATION_ALPHA_EXT shares the same val ue (0x883D) with the
 ATI_blend_equation_separate's GL_ALPHA_BLEND_EQ UATION_ATI token.

EXT_blend_func_separate NVIDIA OpenGL Extension Specifications

 534

Name

 EXT_blend_func_separate

Name Strings

 GL_EXT_blend_func_separate

Version

 Date: 04/06/1999 Version 1.3

Number

 173

Dependencies

 None

Overview

 Blending capability is extended by defining a f unction that allows
 independent setting of the RGB and alpha blend factors for blend
 operations that require source and destination blend factors. It
 is not always desired that the blending used fo r RGB is also applied
 to alpha.

New Procedures and Functions

 void BlendFuncSeparateEXT(enum sfactorRGB,
 enum dfactorRGB,
 enum sfactorAlpha,
 enum dfactorAlpha);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_DST_RGB_EXT 0x80C8
 BLEND_SRC_RGB_EXT 0x80C9
 BLEND_DST_ALPHA_EXT 0x80CA
 BLEND_SRC_ALPHA_EXT 0x80CB

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

 None

NVIDIA OpenGL Extension Specifications EXT_blend_func_separate

 535

Additions to Chapter 4 of the 1.2 GL Specification (Per-Fragment Operations
and the Framebuffer)

 The RGB and alpha blend factors are separate. The function
 BlendFuncSeparateEXT allows the specification o f the four factors.
 Table 4.1 and Table 4.2 are modified as follows :

 Value RGB Factors Alpha Factors
 ------------------ -------------------- -------- -------------
 ZERO (0, 0, 0) 0
 ONE (1, 1, 1) 1
 DST_COLOR (Rd/Kr, Gd/Kg, Bd/Kb) Ad/Ka
 ONE_MINUS_DST_COLOR (1-Rd/Kr, 1-Gd/Kg, 1 -Bd/Kb) 1-Ad/Ka
 SRC_ALPHA (As/Ka, As/Ka, As/Ka) As/Ka
 ONE_MINUS_SRC_ALPHA (1-As/Ka, 1-As/Ka, 1 -As/Ka) 1-As/Ka
 DST_ALPHA (Ad/Ka, Ad/Ka, Ad/Ka) Ad/Ka
 ONE_MINUS_DST_ALPHA (1-Ad/Ka, 1-Ad/Ka, 1 -Ad/Ka) 1-Ad/Ka
 CONSTANT_COLOR (Rc, Gc, Bc) Ac
 ONE_MINUS_CONSTANT_COLOR (1-Rc, 1-Gc, 1-Bc) 1-Ac
 CONSTANT_ALPHA (Ac, Ac, Ac) Ac
 ONE_MINUS_CONSTANT_ALPHA (1-Ac, 1-Ac, 1-Ac) 1-Ac
 SRC_ALPHA_SATURATE (f, f, f) 1

 Value RGB Factors Alpha Factors
 ------------------ -------------------- -------- -------------
 ZERO (0, 0, 0) 0
 ONE (1, 1, 1) 1
 SRC_COLOR (Rs/Kr, Gs/Kg, Bs/Kb) As/Ka
 ONE_MINUS_SRC_COLOR (1-Rs/Kr, 1-Gs/Kg, 1 -Bs/Kb) 1-As/Ka
 SRC_ALPHA (As/Ka, As/Ka, As/Ka) As/Ka
 ONE_MINUS_SRC_ALPHA (1-As/Ka, 1-As/Ka, 1 -As/Ka) 1-As/Ka
 DST_ALPHA (Ad/Ka, Ad/Ka, Ad/Ka) Ad/Ka
 ONE_MINUS_DST_ALPHA (1-Ad/Ka, 1-Ad/Ka, 1 -Ad/Ka) 1-Ad/Ka
 CONSTANT_COLOR (Rc, Gc, Bc) Ac
 ONE_MINUS_CONSTANT_COLOR (1-Rc, 1-Gc, 1-Bc) 1-Ac
 CONSTANT_ALPHA (Ac, Ac, Ac) Ac
 ONE_MINUS_CONSTANT_ALPHA (1-Ac, 1-Ac, 1-Ac) 1-Ac
 SRC_ALPHA_SATURATE (f, f, f) 1

 The commands that control blending are

 void BlendFunc(enum src, enum dst)
 void BlendFuncSeparateEXT(enum sfactorRGB, enum dfactorRGB,
 enum sfactorAlpha , enum dfactorAlpha);

 The BlendFunc command sets both source factors (RGB and alpha) and
 destination factors (RGB and alpha) while Blend FuncSeparateEXT sets
 the RGB factors independently from the alpha fa ctors.

Additions to Chapter 5 of the 1.2 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

 The state required is four integers indicating the source and
 destination blending functions for RGB and alph a. The initial state

EXT_blend_func_separate NVIDIA OpenGL Extension Specifications

 536

 for both source functions is ONE. The initial state for both
 destination functions is ZERO.

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent
 to the server as part of a glXRender request:

 BlendFuncSeparateEXT
 2 20 rendering c ommand length
 2 4134 rendering c ommand opcode
 4 ENUM sfactorRGB
 4 ENUM dfactorRGB
 4 ENUM sfactorAlph a
 4 ENUM dfactorAlph a

Errors

 GL_INVALID_ENUM is generated if either sfactorR GB, dfactorRGB,
 sfactorAlpha, or dfactorAlpha is not an accepte d value.

 GL_INVALID_OPERATION is generated if glBlendFun c is executed between
 the execution of glBegin and the corresponding execution of glEnd.

New State

 The get values BLEND_SRC and BLEND_DST return t he RGB source and
 destination factor, respectively.

 Initi al
 Get Value Get Command Type Value Attribute
 --------- ----------- ---- ----- -- ------------
 BLEND_SRC_RGB_EXT GetFloatv Z ONE color-buffer
 BLEND_DST_RGB_EXT GetFloatv Z ZERO color-buffer
 BLEND_SRC_ALPHA_EXT GetFloatv Z ONE color-buffer
 BLEND_DST_ALPHA_EXT GetFloatv Z ZERO color-buffer

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 537

Name

 EXT_blend_minmax

Name Strings

 GL_EXT_blend_minmax

Version

 $Date: 1995/03/31 04:40:34 $ $Revision: 1.3 $

Number

 37

Dependencies

 None

Overview

 Blending capability is extended by respecifying the entire blend
 equation. While this document defines only two new equations, the
 BlendEquationEXT procedure that it defines will be used by subsequent
 extensions to define additional blending equati ons.

 The two new equations defined by this extension produce the minimum
 (or maximum) color components of the source and destination colors.
 Taking the maximum is useful for applications s uch as maximum projection
 in medical imaging.

Issues

 * I've prefixed the ADD token with FUNC, to i ndicate that the blend
 equation includes the parameters specified by BlendFunc. (The min
 and max equations don't.) Is this necessar y? Is it too ugly?
 Is there a better way to accomplish the sam e thing?

New Procedures and Functions

 void BlendEquationEXT(enum mode);

New Tokens

 Accepted by the <mode> parameter of BlendEquati onEXT:

 FUNC_ADD_EXT 0x8006
 MIN_EXT 0x8007
 MAX_EXT 0x8008

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_EQUATION_EXT 0x8009

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

 538

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 The GL Specification defines a single blending equation. This
 extension introduces a blend equation mode that is specified by calling
 BlendEquationEXT with one of three enumerated v alues. The default
 value FUNC_ADD_EXT specifies that the blending equation defined in
 the GL Specification be used. This equation is

 C' = (Cs * S) + (Cd * D)

 / 1.0 C' > 1.0
 C = (
 \ C' C' <= 1.0

 where Cs and Cd are the source and destination colors, and S and D are
 as specified by BlendFunc.

 If BlendEquationEXT is called with <mode> set t o MIN_EXT, the
 blending equation becomes

 C = min (Cs, Cd)

 Finally, if BlendEquationEXT is called with <mo de> set to MAX_EXT, the
 blending equation becomes

 C = max (Cs, Cd)

 In all cases the blending equation is evaluated separately for each
 color component.

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 539

 BlendEquationEXT
 2 8 rendering c ommand length
 2 4097 rendering c ommand opcode
 4 ENUM mode

Errors

 INVALID_ENUM is generated by BlendEquationEXT i f its single parameter
 is not FUNC_ADD_EXT, MIN_EXT, or MAX_EXT.

 INVALID_OPERATION is generated if BlendEquation EXT is executed between
 the execution of Begin and the corresponding ex ecution to End.

New State

 Get Value Get Command Type Ini tial Value Attribute
 --------- ----------- ---- --- ---------- ---------
 BLEND_EQUATION_EXT GetIntegerv Z3 FUN C_ADD_EXT color-buffer

New Implementation Dependent State

 None

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 540

Name

 EXT_blend_subtract

Name Strings

 GL_EXT_blend_subtract

Version

 $Date: 1995/03/31 04:40:39 $ $Revision: 1.4 $

Number

 38

Dependencies

 EXT_blend_minmax affects the definition of this extension

Overview

 Two additional blending equations are specified using the interface
 defined by EXT_blend_minmax. These equations a re similar to the
 default blending equation, but produce the diff erence of its left
 and right hand sides, rather than the sum. Ima ge differences are
 useful in many image processing applications.

New Procedures and Functions

 None

New Tokens

 Accepted by the <mode> parameter of BlendEquati onEXT:

 FUNC_SUBTRACT_EXT 0x800A
 FUNC_REVERSE_SUBTRACT_EXT 0x800B

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

 541

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 Two additional blending equations are defined. If BlendEquationEXT is
 called with <mode> set to FUNC_SUBTRACT_EXT, th e blending equation
 becomes

 C' = (Cs * S) - (Cd * D)

 / 0.0 C' < 0.0
 C = (
 \ C' C' >= 0.0

 where Cs and Cd are the source and destination colors, and S and D are
 as specified by BlendFunc.

 If BlendEquationEXT is called with <mode> set t o
 FUNC_REVERSE_SUBTRACT_EXT, the blending equatio n becomes

 C' = (Cd * D) - (Cs * S)

 / 0.0 C' < 0.0
 C = (
 \ C' C' >= 0.0

 In all cases the blending equation is evaluated separately for each
 color component.

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Dependencies on EXT_blend_minmax

 If this extension is supported, but EXT_blend_m inmax is not, then
 this extension effectively defines the procedur e BlendEquationEXT, its
 parameter FUNC_ADD_EXT, and the query target BL END_EQUATION_EXT, as
 described in EXT_blend_minmax. It is therefore as though
 EXT_blend_minmax were also supported, except th at equations MIN_EXT
 and MAX_EXT are not supported.

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 542

Errors

 INVALID_ENUM is generated by BlendEquationEXT i f its single parameter
 is not FUNC_ADD_EXT, MIN_EXT, MAX_EXT, FUNC_SUB TRACT_EXT, or
 FUNC_REVERSE_SUBTRACT_EXT.

 INVALID_OPERATION is generated if BlendEquation EXT is executed between
 the execution of Begin and the corresponding ex ecution to End.

New State

 Get Value Get Command Type Ini tial Value Attribute
 --------- ----------- ---- --- ---------- ---------
 BLEND_EQUATION_EXT GetIntegerv Z5 FUN C_ADD_EXT color-buffer

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_clip_volume_hint

 543

Name

 EXT_clip_volume_hint

Name Strings

 GL_EXT_clip_volume_hint

Version

 Microsoft revision 1.00, April 17, 1996 (hockl)

Number

 79

Dependencies

 None.

Overview

 EXT_clip_volume_hint provides a mechanism for a pplications to
 indicate that they do not require clip volume c lipping for
 primitives. It allows applications to maximize performance in
 situations where they know that clipping is unn ecessary.
 EXT_clip_volume_hint is only an indication, tho ugh, and
 implementations are free to ignore it.

New Procedures and Functions

 None.

New Tokens

 Accepted by the target parameter of Hint and th e pname parameter of
 GetBooleanv, GetDoublev, GetFloatv and GetInteg erv:
 CLIP_VOLUME_CLIPPING_HINT_EXT 0x80F0

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 Before the last paragraph of Section 2.11, 'Cli pping,' the following
 text is added:

 The EXT_clip_volume_hint extension can be u sed to indicate that
 a primitive falls inside the current clip v olume. In this case,
 an implementation might not clip the primit ive to the clip
 volume, and the behavior of the GL is undef ined if the primitive
 extends beyond the clip volume.

 In the fourth (clipping) paragraph of Section 2 .12, 'Current Raster
 Position,' the following text is added before t he last sentence
 "Figure 2.7 summarizes..."

 Raster position clipping is not affected by the
 CLIP_VOLUME_CLIPPING_HINT_EXT hint in the E XT_clip_volume_hint
 extension.

EXT_clip_volume_hint NVIDIA OpenGL Extension Specifications

 544

Additions to Chapter 3 of the GL Specification (Ras terization)

 None.

Additions to Chapter 4 of the GL Specification (Per -Fragment
Operations and the Framebuffer)

 None.

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 Section 5.6, 'Hints,' should be changed to add the following
 hint description:

 CLIP_VOLUME_CLIPPING_HINT_EXT, indicating w hether clipping to
 the clip volume is necessary.

Additions to Chapter 6 of the GL Specification (Sta te and State
Requests)

 In table 6.18, 'Hints,' the following entry is added:

 CLIP_VOLUME_CLIPPING_HINT_EXT|Z3|GetInteger v|DONT_CARE|
 Clip volume clipping hint|5.6|hint

Revision History

 Original draft, revision 0.9, March 1, 1996 (dr ewb)
 Created.
 Minor revision, revision 0.91, March 8, 1996 (d rewb)
 Hint revision, revision 0.95, April 12, 1996 (d rewb)
 Changed from Enable-based to Hint-based. C larified
 behavior of RasterPos.
 More revision, revision 0.96, April 16, 1996 (h ockl)
 Changed extension and enumerant names. Add ed robustness.
 Changed it to have no effect on RasterPos.
 More revision, revision 1.00, April 17, 1996 (h ockl)
 Removed robustness requirement.

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 545

 XXX - Not complete yet!!!

Name

 EXT_compiled_vertex_array

Name Strings

 GL_EXT_compiled_vertex_array

Version

 $Date: 1996/11/21 00:52:19 $ $Revision: 1.3 $

Number

 97

Dependencies

 None

Overview

 This extension defines an interface which allow s static vertex array
 data to be cached or pre-compiled for more effi cient rendering. This
 is useful for implementations which can cache t he transformed results
 of array data for reuse by several DrawArrays, ArrayElement, or
 DrawElements commands. It is also useful for i mplementations which
 can transfer array data to fast memory for more efficient processing.

 For example, rendering an M by N mesh of quadri laterals can be
 accomplished by setting up vertex arrays contai ning all of the
 vertexes in the mesh and issuing M DrawElements commands each of
 which operate on 2 * N vertexes. Each DrawElem ents command after
 the first will share N vertexes with the preced ing DrawElements
 command. If the vertex array data is locked wh ile the DrawElements
 commands are executed, then OpenGL may be able to transform each
 of these shared vertexes just once.

Issues

 * Is compiled_vertex_array the right name for t his extension?

 * Should there be an implementation defined max imum number of array
 elements which can be locked at a time (i.e. MAX_LOCKED_ARRAY_SIZE)?

 Probably not, the lock request can always be ignored with no resulting
 change in functionality if there are insuffic ent resources, and allowing
 the GL to define this limit can make things d ifficult for applications.

 * Should there be any restrictions on what stat e can be changed while
 the vertex array data is locked?

 Probably not. The GL can check for state cha nges and invalidate
 any cached vertex state that may be affected. This is likely to
 cause a performance hit, so the preferred use will be to not change

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

 546

 state while the vertex array data is locked.

New Procedures and Functions

 void LockArraysEXT (int first, sizei count)
 void UnlockArraysEXT (void)

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 ARRAY_ELEMENT_LOCK_FIRST_EXT 0x81A8
 ARRAY_ELEMENT_LOCK_COUNT_EXT 0x81A9

Additions to Chapter 2 of the 1.1 Specification (Op enGL Operation)

 After the discussion of InterleavedArrays, add a description of
 array compiling/locking.

 The currently enabled vertex arrays can be locke d with the command
 LockArraysEXT. When the vertex arrays are locke d, the GL
 can compile the array data or the transformed re sults of array
 data associated with the currently enabled verte x arrays. The
 vertex arrays are unlocked by the command Unlock ArraysEXT.

 Between LockArraysEXT and UnlockArraysEXT the ap plication
 should ensure that none of the array data in the range of
 elements specified by <first> and <count> are ch anged.
 Changes to the array data between the execution of LockArraysEXT
 and UnlockArraysEXT commands may affect calls ma y affect DrawArrays,
 ArrayElement, or DrawElements commands in non-se quential ways.

 While using a compiled vertex array, references to array elements
 by the commands DrawArrays, ArrayElement, or Dra wElements which are
 outside of the range specified by <first> and <c ount> are undefined.

Additions to Chapter 3 of the 1.1 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.1 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.1 Specification (Sp ecial Functions)

 LockArraysEXT and UnlockArraysEXT are not compl ied into display lists
 but are executed immediately.

Additions to Chapter 6 of the 1.1 Specification (St ate and State Requests)

 None

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 547

Additions to the GLX Specification

 XXX - Not complete yet!!!

GLX Protocol

 XXX - Not complete yet!!!

Errors

 INVALID_VALUE is generated if LockArrarysEXT pa rameter <first> is less
 than zero.

 INVALID_VALUE is generated if LockArraysEXT par ameter <count> is less than
 or equal to zero.

 INVALID_OPERATION is generated if LockArraysEXT is called between execution
 of LockArraysEXT and corresponding execution of UnlockArraysEXT.

 INVALID_OPERATION is generated if UnlockArraysE XT is called without a
 corresponding previous execution of LockArraysE XT.

 INVALID_OPERATION is generated if LockArraysEXT or UnlockArraysEXT is called
 between execution of Begin and the correspondin g execution of End.

New State
 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------

 ARRAY_ELEMENT_LOCK_FIRST_EXT GetIntegerv Z+ 0 client-vertex-array
 ARRAY_ELEMENT_LOCK_COUNT_EXT GetIntegerv Z+ 0 client-vertex-array

New Implementation Dependent State

 None

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 548

Name

 EXT_depth_bounds_test

Name Strings

 GL_EXT_depth_bounds_test

Notice

 Copyright NVIDIA Corporation, 2002, 2003.

Status

 Implemented in GeForce FX 5900 (NV35) drivers a s of June 2003.

 Also supported by GeForce FX 5700 (NV36) and Ge Force6 (NV4x).

Version

 Last Modified Date: $Date: 2004/05/17 $
 NVIDIA Revision: $Revision: #5 $

Number

 297

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

Overview

 This extension adds a new per-fragment test tha t is, logically,
 after the scissor test and before the alpha tes t. The depth bounds
 test compares the depth value stored at the loc ation given by the
 incoming fragment's (xw,yw) coordinates to a us er-defined minimum
 and maximum depth value. If the stored depth v alue is outside the
 user-defined range (exclusive), the incoming fr agment is discarded.

 Unlike the depth test, the depth bounds test ha s NO dependency on
 the fragment's window-space depth value.

 This functionality is useful in the context of attenuated stenciled
 shadow volume rendering. To motivate the funct ionality's utility
 in this context, we first describe how conventi onal scissor testing
 can be used to optimize shadow volume rendering .

 If an attenuated light source's illumination ca n be bounded to a
 rectangle in XY window-space, the conventional scissor test can be
 used to discard shadow volume fragments that ar e guaranteed to be
 outside the light source's window-space XY rect angle. The stencil
 increments and decrements that would otherwise be generated by these
 scissored fragments are inconsequential because the light source's
 illumination can pre-determined to be fully att enuated outside the
 scissored region. In other words, the scissor test can be used to
 discard shadow volume fragments rendered outsid e the scissor, thereby

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 549

 improving performance, without affecting the ul timate illumination
 of these pixels with respect to the attenuated light source.

 This scissoring optimization can be used both w hen rendering
 the stenciled shadow volumes to update stencil (incrementing and
 decrementing the stencil buffer) AND when addin g the illumination
 contribution of attenuated light source's.

 In a similar fashion, we can compute the attenu ated light source's
 window-space Z bounds (zmin,zmax) of consequent ial illumination.
 Unless a depth value (in the depth buffer) at a pixel is within
 the range [zmin,zmax], the light source's illum ination can be
 pre-determined to be inconsequential for the pi xel. Said another
 way, the pixel being illuminated is either far enough in front of
 or behind the attenuated light source so that t he light source's
 illumination for the pixel is fully attenuated. The depth bounds
 test can perform this test.

Issues

 Where should the depth bounds test take place i n the OpenGL
 fragment processing pipeline?

 RESOLUTION: After scissor test, before alpha test. In practice,
 this is a logical placement of the test. An implementation is
 free to perform the test in a manner that is consistent with the
 specified ordering.

 Importantly, the depth bounds test occurs bef ore any fragment
 operation that has a side-effect such as sten cil and/or depth buffer
 writes (ie, the stencil or depth test). This makes it possible
 to discard incoming fragment's without concer n for preserving such
 side-effects.

 Is the depth bounds test consistent with early depth rejection?

 Yes. If an OpenGL implementation supports so me conservative bounds
 on depth values in subregions of the depth bu ffer (hierarchical
 depth buffers, etc), the depth bounds test ca n reject fragments
 based on these conservative bounds.

 How are the depth bounds specified?

 RESOLUTION: Normalized window-space depth va lues. This means
 the depth values are specified in the range [0.0, 1.0] similar
 to glDepthRange.

 Can the zmin bound be greater than the zmax bou nd?

 RESOLUTION: zmin must be less than or equal to zmax or an
 INVALID_VALUE error is generated.

 Another way to interpret this situation is to have zmin>zmax reject
 all fragments where the corresponding pixel's depth value is between
 zmin and zmax. But this does not seem useful enough to specify.

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 550

 What should the glDepthBoundsEXT routine mimic?

 RESOLUTION: glDepthBoundsEXT should mimic gl DepthRange in parameter
 types and clamping, excepting that zmin must be less than zmax.

 Do the depth bounds have anything to do with th e depth range?

 RESOLUTION: No. These are totally independe nt pieces of state.
 To reinforce the point, having a depth range and depth bounds with
 no overlap is perfectly well-defined (even if a little odd).

 What push/pop attrib bits should affect the dep th bounds test enable?

 RESOLUTION: GL_ENABLE_BIT and GL_DEPTH_BUFFE R_BIT.

 How does depth bounds testing interact with pol ygon offset
 or depth replace operations (say from ARB_fragm ent_program,
 NV_texture_shader, or NV_fragment_program)?

 RESOLUTION: There are NO interactions. The depth bounds test has
 NO dependency on the incoming fragment's dept h value so it doesn't
 matter if there is a polygon offset or depth replace operation.

 Does depth bounds testing affect bitmap/draw/co py pixels operations
 involving depth component pixels?

 RESOLUTION: Yes, depth bounds testing affect s all rasterized
 primitives (just like all other fragment oper ations).

 How does depth bounds test interact with multis ampling?

 RESOLUTION: The depth bounds test is perform ed per-sample when
 multisampling is active, just like the depth test.

 At what precision is the depth bounds test carr ied out?

 RESOLUTION: For the purposes of the test, th e bounds are converted to
 fixed-point as though they were to be written to the depth buffer, and
 the comparison uses those quantized bounds.

 Can you have the depth test disabled and still have the depth bounds
 test enabled?

 RESOLUTION: Yes. The two tests operate inde pendently.

 How does the depth bounds test operate if there is no depth buffer?

 RESOLUTION: It is as if the depth bounds tes t always passes
 (analogous to the depth test).

New Procedures and Functions

 void DepthBoundsEXT(clampd zmin, clampd zmax);

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 551

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BOUNDS_TEST_EXT 0x8890

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BOUNDS_EXT 0x8891

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment Operations
and the Framebuffer)

 -- Figure 4.1 Per-fragment operations

 Add a block for the "depth bounds test" after t he scissor and before
 the alpha test.

 -- Section 4.1.X Depth Bounds Test (following Sec tion 4.1.2 Scissor Test)

 "The depth bounds test determines whether the d epth value (Zpixel)
 stored at the location given by the incoming fr agment's (xw,yw)
 location lies within the depth bounds range def ined by two values.
 These values are set with

 void DepthBoundsEXT(clampd zmin, clampd zma x);

 Each of zmin and zmax are clamped to lie within [0,1] (being of
 type clampd). If zmin <= Zpixel <= zmax, then the depth bounds test
 passes. Otherwise, the test fails and the frag ment is discarded.
 The test is enabled or disabled using Enable or Disable using the
 constant DEPTH_BOUNDS_TEST_EXT. When disabled, it is as if the depth
 bounds test always passes. If zmin is greater than zmax, then the
 error INVALID_VALUE is generated. The state re quired consists of
 two floating-point values and a bit indicating whether the test is
 enabled or disabled. In the initial state, zmi n and zmax are set
 to 0.0 and 1.0 respectively; and the depth boun ds test is disabled.

 If there is no depth buffer, it is as if the de pth bounds test always
 passes."

 -- Section 4.10 Additional Multisample Fragment O perations

 Add depth bounds test to the list of operations affected by
 multisampling. Amend the 1st and 2nd sentences in the 2nd paragraph
 to read:

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 552

 "If MULTISAMPLE is enabled, and the value of SA MPLE_BUFFERS is one,
 the depth bounds test, alpha test, depth test, blending, and dithering
 operations are performed for each pixel sample, rather than just once
 for each fragment. Failure of the depth bounds , alpha, stencil, or
 depth test results in termination of the proces sing of the sample,
 rather than discarding of the fragment."

 Amend the 1st sentence in the 3nd paragraph to read:

 "Depth bounds, stencil, depth, blending, and di thering operations
 are performed for a pixel sample only if that s ample's fragment
 coverage bit is a value of 1."

 Amend the 3rd sentence in the 4th paragraph to read:

 "An implementation may choose to identify a cen termost sample, and
 to perform depth bounds, alpha, stencil, and de pth tests on only
 that sample."

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and State
Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

 DepthBoundsEXT
 2 12 rendering c ommand length
 2 4229 rendering c ommand opcode
 4 FLOAT32 zmin
 4 FLOAT32 zmax

Errors

 If zmin is greater than zmax, then the error IN VALID_VALUE is
 generated.

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 553

New State

(table 6.15 "Pixel Operation)

Get Value Type Get Command Initial V alue Description Sec Attribute
--------------------- ---- ----------- --------- ---- ------------ ----- -------------------
DEPTH_BOUNDS_TEST_EXT B IsEnabled False Depth bounds 4.1.X depth-buffer/enable
 test enable
DEPTH_BOUNDS_EXT 2xR+ GetFloatv 0,1 Depth bounds 4.1.X depth-buffer
 zmin & zmax

New Implementation Dependent State

 None

Revision History

 NVIDIA exposed a functionally and enumerant ide ntical version of
 this extension under the name NV_depth_bounds_t est. NVIDIA drivers
 after May 2003 support the EXT_depth_bounds_tes t name only.

 Mesa and NVIDIA agreed to make this an EXT exte nsion in April 2003.

 8/27/2003 - GLX protocol specification added.

EXT_draw_buffers2 NVIDIA OpenGL Extension Specifications

 554

Name

 EXT_draw_buffers2

Name Strings

 GL_EXT_draw_buffers2

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 9

Number

 340

Dependencies

 The extension is written against the OpenGL 2.0 Specification.

 OpenGL 2.0 is required.

Overview

 This extension builds upon the ARB_draw_buffers extension and provides
 separate blend enables and color write masks fo r each color output. In
 ARB_draw_buffers (part of OpenGL 2.0), separate values can be written to
 each color buffer, but the blend enable and col or write mask are global
 and apply to all color outputs.

 While this extension does provide separate blen d enables, it does not
 provide separate blend functions or blend equat ions per color output.

New Procedures and Functions

 void ColorMaskIndexedEXT(uint buf, boolean r, b oolean g,
 boolean b, boolean a);

 void GetBooleanIndexedvEXT(enum value, uint ind ex, boolean *data);

 void GetIntegerIndexedvEXT(enum value, uint ind ex, int *data);

 void EnableIndexedEXT(enum target, uint index);

 void DisableIndexedEXT(enum target, uint index) ;

 boolean IsEnabledIndexedEXT(enum target, uint i ndex);

NVIDIA OpenGL Extension Specifications EXT_draw_buffers2

 555

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify the thrid paragraph of section 4.1.8 (Bl ending) , p206, to
 read as follows:

 Blending is dependent on the incoming fragment' s alpha value and
 that of the corresponding currently stored pixe l. Blending applies
 only in RGBA mode; in color index mode it is by passed. Blending
 is enabled or disabled for an individual draw b uffer using

 void EnableIndexedEXT(GLenum target, GLuint index);
 void DisableIndexedEXT(GLenum target, GLuin t index);

 <target> is the symbolic constant BLEND and <in dex> is an integer
 i specifying the draw buffer associated with th e symbolic constant
 DRAW_BUFFERi. If the color buffer associated w ith DRAW_BUFFERi is
 one of FRONT, BACK, LEFT, RIGHT, or FRONT_AND_B ACK (specifying
 multiple color buffers), then the state enabled or disabled is
 applicable for all of the buffers. Blending ca n be enabled or
 disabled for all draw buffers using Enable or D isable with the
 symbolic constant BLEND. If blending is disabl ed for a particular
 draw buffer, or if logical operation on color v alues is enabled
 (section 4.1.10), proceed to the next operation .

 Modify the first paragraph of section 4.1.8 (Bl ending - Blending
 State), p209, to read as follows:

 The state required for blending is two integers for the RGB and
 alpha blend equations, four integers indicating the source and
 destination RGB and alpha blending functions, f our floating-point
 values to store the RGBA constant blend color, and n bits
 indicating whether blending is enabled or disab led for each of the
 n draw buffers. The initial blend equations fo r RGB and alpha are
 both FUNC_ADD. The initial blending functions are ONE for the
 source RGB and alpha functions, and ZERO for th e destination RGB
 and alpha functions. The initial constant blen d color is
 (R, G, B, A) = (0, 0, 0, 0). Initially, blendi ng is disabled for
 all draw buffers.

EXT_draw_buffers2 NVIDIA OpenGL Extension Specifications

 556

 Modify the first paragraph of section 4.2.2 (Fi ne Control of Buffer
 Updates) to read as followS:

 Three commands are used to mask the writing of bits to each of the
 logical draw buffers after all per-fragment ope rations have been
 performed.

 The commands

 void IndexMask(uint mask);
 void ColorMask(boolean r, boolean g, boolea n b, boolean a);
 void ColorMaskIndexedEXT(uint buf, boolean r, boolean g,
 boolean b, boolean a);

 control writes to the active draw buffers.

 The least significant n bits of <mask>, where n is the number of
 bits in a color index buffer, specify a mask. Where a 1 appears in
 this mask, the corresponding bit in the color i ndex buffer (or
 buffers) is written; where a 0 appears, the bit is not written.
 This mask applies only in color index mode.

 In RGBA mode, ColorMask and ColorMaskIndexedEXT are used to mask
 the writing of R, G, B and A values to the draw buffer or buffers.
 ColorMaskIndexedEXT sets the mask for a particu lar draw buffer.
 The mask for DRAW_BUFFERi is modified by passin g i as the parameter
 <buf>. <r>, <g>, , and <a> indicate whether R, G, B, or A
 values, respectively, are written or not (a val ue of TRUE means
 that the corresponding value is written). The mask specified by
 <r>, <g>, , and <a> is applied to the color buffer associated
 with DRAW_BUFFERi. If DRAW_BUFFERi is one of F RONT, BACK, LEFT,
 RIGHT, or FRONT_AND_BACK (specifying multiple c olor buffers) then
 the mask is applied to all of the buffers. Col orMask sets the mask
 for all draw buffers to the same values as spec ified by <r>, <g>,
 , and <a>.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries)
 p244 to read as follows:

 ...<data> is a pointer to a scalar or array of the indicated
 type in which to place the returned data.

 void GetBooleanIndexedvEXT(enum target, uin t index, boolean *data);
 void GetIntegerIndexedvEXT(enum target, uin t index, int *data);

 are used to query indexed state. <target> is t he name of
 the indexed state and <index> is the index of t he particular
 element being queried. <data> is a pointer to a scalar or array

NVIDIA OpenGL Extension Specifications EXT_draw_buffers2

 557

 of the indicated type in which to place the ret urned data. In
 addition

 boolean IsEnabled(enum value);

 can be used to determine if <value> is currentl y enabled (as with
 Enable) or disabled.

 boolean IsEnabledIndexedEXT(enum target, ui nt index);

 can be used to determine if the index state cor responding to
 <target> and <index> is enabled or disabled.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Errors

 The error INVALID_ENUM is generated by EnableIn dexedEXT and
 DisableIndexedEXT if the <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by Ena bleIndexedEXT and
 DisableIndexeEXT if the <target> parameter is B LEND and the <index>
 parameter is outside the range [0, MAX_DRAW_BUF FERS-1].

 The error INVALID_ENUM is generated by IsEnable dIndexedEXT if the
 <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by IsE nabledIndexedEXT if
 the <target> parameter is BLEND and the <index> parameter is
 outside the range [0, MAX_DRAW_BUFFERS-1].

 The error INVALID_OPERATION is generated by Dra wBufferColorMaskEXT
 if the <buf> parameter is outside the range
 [0, MAX_DRAW_BUFFERS-1].

 The error INVALID_ENUM is generated by GetBoole anIndexedvEXT if the
 <target> parameter is not BLEND.

 The error INVALID_OPERATION is generated by Get BooleanIndexedvEXT
 if the <target> parameter is BLEND and the <ind ex> parameter is
 outside the range [0, MAX_DRAW_BUFFERS-1].

EXT_draw_buffers2 NVIDIA OpenGL Extension Specifications

 558

New State

 Modify (table 6.20, p281), modifying the entry for BLEND and adding
 a new one.

 Get Target Type Get Command Value Desc ription Section Attrib ute
 ---------- ---- ------------------- ----- ---- ------------------------------ ------- ------------ -------
 BLEND B IsEnabled False Blen ding enabled for draw buffer 0 4.1.8 color-buffer /enable
 BLEND B IsEnabledIndexedEXT False Blen ding enabled for draw buffer i 4.1.8 color-buffer /enable
 where i is specified as <index>

 Modify (table 6.21, p282), modifying the entry for COLOR_WRITEMASK
 and adding a new one.

 Get Value Type Get Command Valu e Description Section Attrib ute
 --------------- ---- --------------------- ---- - ---------------------------------- ------- ------ ------
 COLOR_WRITEMASK 4xB GetBooleanv True Color write mask for draw buffer 0 4.2.2 color- buffer
 COLOR_WRITEMASK 4xB GetBooleanIndexedvEXT True Color write mask for draw buffer i 4.2.2 color- buffer
 where i is specified as <index>

Issues

 1. Should the extension provide support for pe r draw buffer index
 masks as well as per draw buffer color masks?

 RESOLVED: No. Color index rendering is no t interesting
 enough to warrant extending the API in this direction.

 2. Should the API for specifying separate colo r write masks be
 based on DrawBuffers() (specifying an array of write masks at
 once)?

 RESOLVED: No. There are two ways to mimic the DrawBuffers()
 API. A function, ColorMasks(), could take an an element count
 and an array of four element boolean arrays as parameters.
 Each four element boolean array contains a set of red, green,
 blue, and alpha write masks for a specific color buffer. An
 alternative is a ColorMasks() function that takes an element
 count and four parallel boolean arrays with one array per color
 channel. Neither approach is particularly clean. A cleaner
 approach, taken by ColorMaskIndexedEXT(), i s to specify a
 color mask for a single draw buffer where t he draw buffer is
 specified as a parameter to the function.

 3. How should ColorMask() affect the per color buffer write masks?

 RESOLVED: ColorMask() should set all color buffer write masks
 to the same values. This is backwards comp atible with the way
 ColorMask() behaves in the absence of this extension.

 4. What should GetBooleanv return when COLOR_W RITEMASK is queried?

 RESOLVED: COLOR_WRITEMASK should return
 DRAW_BUFFER0_COLOR_WRITEMASK_EXT. This is backwards compatible
 with the way the query works without this e xtension. To query
 the writemask associated with a particular draw buffer, an
 application can use GetBooleanIndexedvEXT.

NVIDIA OpenGL Extension Specifications EXT_draw_buffers2

 559

 5. How are separate blend enables controlled? Should a new
 function be introduced, or do Enable() and Disa ble() provide
 sufficient functionality?

 RESOLVED: This extension introduces new fu nctions
 EnableIndexedEXT and DisableIndexedEXT that can be used to
 enable/disable individual states of a state array. These
 functions are introduced because there is a trend towards
 introducing arrays of state. Rather than c reating enums for
 each index in the array, it is better to gi ve applications
 a mechanism for accessing a particular elem ent of the state
 array given the name of the state and an in dex into the array.

 6. What effect does enabling or disabling blen ding using BLEND
 have on per draw buffer blend enables?

 RESOLVED: BLEND, used with Enable() and Di sable(), should
 enable or disable all per draw buffer blend enables. This is
 similar to the way that ColorMask() affects the per draw
 buffer write masks.

Revision History

 None

EXT_draw_instanced NVIDIA OpenGL Extension Specifications

 560

Name

 EXT_draw_instanced

Name Strings

 GL_EXT_draw_instanced

Contact

 Michael Gold, NVIDIA Corporation (gold 'at' nvi dia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: November 6, 2006
 Author Revision: 1.4

Number

 327

Dependencies

 OpenGL 2.0 is required.

 EXT_gpu_shader4 or NV_vertex_shader4 is require d.

Overview

 This extension provides the means to render mul tiple instances of
 an object with a single draw call, and an "inst ance ID" variable
 which can be used by the vertex program to comp ute per-instance
 values, typically an object's transform.

New Tokens

 None

New Procedures and Functions

 void DrawArraysInstancedEXT(enum mode, int firs t, sizei count,
 sizei primcount);
 void DrawElementsInstancedEXT(enum mode, sizei count, enum type,
 const void *indices, sizei primcount);

NVIDIA OpenGL Extension Specifications EXT_draw_instanced

 561

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion
(OpenGL Operation)

 Modify section 2.8 (Vertex Arrays), p. 23

 (insert before the final paragraph, p. 30)

 The internal counter <instanceID> is a 32-bit i nteger value which
 may be read by a vertex program as <vertex.inst ance>, as described
 in section 2.X.3.2, or vertex shader as <gl_Ins tanceID>, as
 described in section 2.15.4.2. The value of th is counter is
 always zero, except as noted below.

 The command

 void DrawArraysInstancedEXT(enum mode, int first, sizei count,
 sizei primcount);

 behaves identically to DrawArrays except that < primcount>
 instances of the range of elements are executed and the value of
 <instanceID> advances for each iteration. It h as the same effect
 as:

 if (mode or count is invalid)
 generate appropriate error
 else {
 for (i = 0; i < primcount; i++) {
 instanceID = i;
 DrawArrays(mode, first, count, i);
 }
 instanceID = 0;
 }

 The command

 void DrawElementsInstancedEXT(enum mode, si zei count, enum type,
 const void *indices, sizei primcoun t);

 behaves identically to DrawElements except that <primcount>
 instances of the set of elements are executed, and the value of
 <instanceID> advances for each iteration. It h as the same effect
 as:

 if (mode, count, or type is invalid)
 generate appropriate error
 else {
 for (int i = 0; i < primcount; i++) {
 instanceID = i;
 DrawElements(mode, count, type, ind ices, i);
 }
 instanceID = 0;
 }

EXT_draw_instanced NVIDIA OpenGL Extension Specifications

 562

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion
(Special Functions)

 The error INVALID_OPERATION is generated if Dra wArraysInstancedEXT
 or DrawElementsInstancedEXT is called during di splay list
 compilation.

Dependencies on NV_vertex_program4

 If NV_vertex_program4 is not supported, all ref erences to
 vertex.instance are deleted.

Dependencies on EXT_gpu_shader4

 If EXT_gpu_shader4 is not supported, all refere nces to
 gl_InstanceID are deleted.

Errors

 INVALID_ENUM is generated by DrawElementsInstan cedEXT if <type> is
 not one of UNSIGNED_BYTE, UNSIGNED_SHORT or UNS IGNED_INT.

 INVALID_VALUE is generated by DrawArraysInstanc edEXT if <first> is
 less than zero.

Issues

 (1) Should instanceID be provided by this extensi on, or should it be
 provided by EXT_gpu_shader4, thus creating a dependence on that
 spec?

 Resolved: While this extension could stand alone, its utility
 would be limited without the additional fun ctionality provided
 by EXT_gpu_shader4; also, the spec language is cleaner if
 EXT_gpu_shader4 assumes instanceID is alway s available, even
 if its value is always zero without this ex tension.

 (2) Should MultiDrawArrays and MultiDrawElements affect the value of
 instanceID?

 Resolved: No, this may cause implementation difficulties and
 is considered unlikely to provide any real benefit.

 (3) Should DrawArraysInstanced and DrawElementsIn stanced be compiled
 into display lists?

 Resolved: No, calling these during display list compilation
 generate INVALID_OPERATION.

Revision History

 None

NVIDIA OpenGL Extension Specifications EXT_draw_range_elements

 563

Name

 EXT_draw_range_elements

Name Strings

 GL_EXT_draw_range_elements

Version

 $Date: 1997/5/19

Number

 112

Status

 Superceded by OpenGL 1.2 functionaltity.
 See section 2.8 (page 25) of the OpenGL 1.2.1 s pecification.

Proposal

Add a new vertex array rendering command:

void glDrawRangeElementsEXT(
 GLenum mode,
 GLuint start,
 GLuint end,
 GLsizei count,
 GLenum type,
 const GLvoid *indices
);

Add two implementation-dependent limits for describ ing data size
recommendations for glDrawRangeElementsEXT:

GL_MAX_ELEMENTS_VERTICES_EXT 0x80E8
GL_MAX_ELEMENTS_INDICES_EXT 0x80E9

glDrawRangeElementsEXT is a restricted form of glDr awElements. All
vertices referenced by indices must lie between sta rt and end inclusive.
Not all vertices between start and end must be refe renced, however
unreferenced vertices may be sent through some of t he vertex pipeline
before being discarded, reducing performance from w hat could be achieved
by an optimal index set. Index values which lie ou tside the range will
cause implementation-dependent results.

glDrawRangeElementsEXT may also be further constrai ned to only operate
at maximum performance for limited amounts of data. Implementations may
advertise recommended maximum amounts of vertex and index data using the
GL_MAX_ELEMENTS_VERTICES_EXT and GL_MAX_ELEMENTS_INDICES_EXT enumerants.
If a particular call to glDrawRangeElementsEXT has (end-start+1) greater
than GL_MAX_ELEMENTS_VERTICES_EXT or if count is gr eater than
GL_MAX_ELEMENTS_INDICES_EXT then the implementation may be forced to
process the data less efficiently than it could hav e with less data. An
implementation which has no effective limits can ad vertise the maximum

EXT_draw_range_elements NVIDIA OpenGL Extension Specifications

 564

integer value for the two enumerants. An implement ation must always
process a glDrawRangeElementsEXT call with valid pa rameters regardless
of the amount of data passed in the call.

GL_INVALID_VALUE will be returned if end is less th an start. Other
errors are as for glDrawElements.

Motivation:
Rendering primitives from indexed vertex lists is a fairly common
graphics operation, particularly in modeling applic ations such as VRML
viewers. OpenGL 1.1 added support for the glDrawEl ements API to allow
rendering of primitives by indexing vertex array da ta.

The specification of glDrawElements does not allow optimal performance
for some OpenGL implementations, however. In parti cular, it has no
restrictions on the number of indices given, the nu mber of unique
vertices referenced nor a direct indication of the set of unique
vertices referenced by the given indices. This for ces some OpenGL
implementations to walk the index data given, build ing up a separate
list of unique vertex references for later use in t he pipeline.
Additionally, since some OpenGL implementations hav e internal
limitations on how many vertices they can deal with simultaneously the
unbounded nature of glDrawElements requires the imp lementation to be
prepared to segment the input data and do multiple passes. These
preprocessing steps can consume a significant amoun t of time.

Such preprocessing can be done once and stored when building display
lists but this only works for objects whose geometr y does not change.
Applications using morphing objects or other object s that are changing
dynamically cannot take advantage of display lists and so must pay the
preprocessing penalty on every redraw.

glDrawRangeElementsEXT is designed to avoid the pre processing steps
which may be necessary for glDrawElements. As such it does not have the
flexibility of glDrawElements but it is sufficientl y functional for a
large class of applications to benefit from its use .
glDrawRangeElementsEXT enhances glDrawElements in t wo ways:
1. The set of unique vertices referenced by the in dices is explicitly
indicated via the start and end parameters, removin g the necessity to
determine this through examination of the index dat a. The
implementation is given a contiguous chunk of verte x data that it can
immediately begin streaming through the vertex pipe line.
2. Recommended limits on the amount of data to be processed can be
indicated by the implementation through GL_MAX_ELEM ENTS_VERTICES_EXT and
GL_MAX_ELEMENTS_INDICES_EXT. If an application res pects these limits it
removes the need to split the incoming data into mu ltiple chunks since
the maximums can be set to the optimal values for t he implementation to
handle in one pass.

The first restriction isn't particularly onerous fo r applications since
they can always call glDrawElements in the case whe re they cannot or do
not know whether they can call glDrawRangeElementsE XT. Performance
should be at least as good as it was calling glDraw Elements alone. The
second point isn't really a restriction as glDrawRa ngeElementsEXT
doesn't fail if the data size limits are exceeded.

OpenGL implementation effort is also minimal. For implementations where

NVIDIA OpenGL Extension Specifications EXT_draw_range_elements

 565

glDrawElements performance is not affected by prepr ocessing
glDrawRangeElementsEXT can be implemented simply as a call to
glDrawElements and the maximums set to the maximum integer value. For
the case where glDrawElements is doing non-trivial preprocessing there
is probably already an underlying routine that take s consecutive, nicely
sectioned index and vertex chunks that glDrawRangeE lementsEXT can plug
directly in to.

Design Decisions

The idea of providing a set of vertex indices along with a set of
element indices was considered but dropped as it st ill may require some
preprocessing, although there is some reduction in overhead from
glDrawElements. The implementation may require int ernal vertex data to
be contiguous, in which case a gather operation wou ld have to be
performed with the vertex index list before vertex data could be
processed. It is expected that most apps will keep vertex data for
particular elements packed consecutively anyway so the added flexibility
of a vertex index list would potentially impose ove rhead with little
expected benefit. In the case where a vertex index list really is
necessary to avoid performance penalties due to spa rse vertex usage
glDrawElements should provide performance similar t o what such an API
would have.

The restriction on maximum data size cannot easily be lifted without
potential performance implications. For implementa tions which have an
internal maximum vertex buffer size it would be nec essary to break up
large data sets into multiple chunks. Splitting in dexed data requires
walking the indices and gathering those that fall w ithin particular
chunks into sets for processing, a time-consuming o peration. Splitting
the indices themselves is easier but still requires some processing to
handle connected primitives that cross a split.

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 566

Name

 EXT_framebuffer_blit

Name Strings

 GL_EXT_framebuffer_blit

Contributors

 Michael Gold
 Evan Hart
 Jeff Juliano
 Jon Leech
 Bill Licea-Kane
 Barthold Lichtenbelt
 Brian Paul
 Ian Romanick
 John Rosasco
 Jeremy Sandmel
 Eskil Steenberg

Contact

 Michael Gold, NVIDIA Corporation (gold 'at' nvi dia.com)

Status

 Complete. Approved by the ARB "superbuffers" w orking group on
 November 8, 2005.

Version

 Last Modified Date: September 29, 2006
 Author Revision: 14

Number

 316

Dependencies

 OpenGL 1.1 is required.

 EXT_framebuffer_object is required.

 The extension is written against the OpenGL 1.5 specification.

 ARB_color_buffer_float affects the definition o f this extension.

Overview

 This extension modifies EXT_framebuffer_object by splitting the
 framebuffer object binding point into separate DRAW and READ
 bindings. This allows copying directly from on e framebuffer to
 another. In addition, a new high performance b lit function is

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 567

 added to facilitate these blits and perform som e data conversion
 where allowed.

IP Status

 No known IP claims.

New Procedures and Functions

 void BlitFramebufferEXT(int srcX0, int srcY0, i nt srcX1, int srcY1,
 int dstX0, int dstY0, i nt dstX1, int dstY1,
 bitfield mask, enum fil ter);

New Tokens

 Accepted by the <target> parameter of BindFrame bufferEXT,
 CheckFramebufferStatusEXT, FramebufferTexture{1 D|2D|3D}EXT,
 FramebufferRenderbufferEXT, and
 GetFramebufferAttachmentParameterivEXT:

 READ_FRAMEBUFFER_EXT 0x8CA8
 DRAW_FRAMEBUFFER_EXT 0x8CA9

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv, and
 GetDoublev:

 DRAW_FRAMEBUFFER_BINDING_EXT 0x8CA6 // a lias FRAMEBUFFER_BINDING_EXT
 READ_FRAMEBUFFER_BINDING_EXT 0x8CAA

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL Operation)

 Append the following to section 2.6.1:

 "Calling Begin will result in an INVALID_FRAMEB UFFER_OPERATION_EXT
 error if the object bound to DRAW_FRAMEBUFFER_B INDING_EXT is not
 "framebuffer complete" (section 4.4.4.2)."

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Add to section 3.6.3, at the end of the subsect ion titled
 "Alternate Color Table Specification Commands":

 "Calling CopyColorTable or CopyColorSubTable wi ll result in an
 INVALID_FRAMEBUFFER_OPERATION_EXT error if the object bound to
 READ_FRAMEBUFFER_BINDING_EXT is not "framebuffe r complete"
 (section 4.4.4.2)."

 Add to section 3.6.3, at the end of the subsect ion titled
 "Alternate Convolution Filter Specification Com mands":

 "Calling CopyConvolutionFilter1D or CopyConvolu tionFilter2D will
 result in an INVALID_FRAMEBUFFER_OPERATION_EXT error if the object
 bound to READ_FRAMEBUFFER_BINDING_EXT is not "f ramebuffer
 complete" (section 4.4.4.2)."

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 568

 In section 3.6.4, modify the final paragraph of the definition of
 DrawPixels as follows:

 "Calling DrawPixels will result in an
 INVALID_FRAMEBUFFER_OPERATION_EXT error if the object bound to
 DRAW_FRAMEBUFFER_BINDING_EXT is not "framebuffe r complete"
 (section 4.4.4.2)."

 Add the following to section 3.7, following the description of
 Bitmap:

 "Calling Bitmap will result in an
 INVALID_FRAMEBUFFER_OPERATION_EXT error if the object bound to
 DRAW_FRAMEBUFFER_BINDING_EXT is not "framebuffe r complete"
 (section 4.4.4.2)."

 Append the following to section 3.8.2:

 "Calling CopyTexImage3D, CopyTexSubImage3D, Cop yTexImage2D,
 CopyTexSubImage2D, CopyTexImage1D or CopyTexSub Image1D will result
 in an INVALID_FRAMEBUFFER_OPERATION_EXT error i f the object bound
 to READ_FRAMEBUFFER_BINDING_EXT is not "framebu ffer complete"
 (section 4.4.4.2)."

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Change the first word of Chapter 4 from "The" t o "A".

 Append to the introduction of Chapter 4:

 "Conceptually, the GL has two active framebuffe rs; the draw
 framebuffer is the destination for rendering op erations, and the
 read framebuffer is the source for readback ope rations. The same
 framebuffer may be used for both drawing and re ading. Section
 4.4.1 describes the mechanism for controlling f ramebuffer usage."

 Modify the last paragraph of section 4.1.1 as f ollows:

 "While an application-created framebuffer objec t is bound to
 DRAW_FRAMEBUFFER_EXT, the pixel ownership test always passes."

 Modify the last sentence of the second to last paragraph of
 section 4.2.4 as follows:

 "If there is no accumulation buffer, or if the DRAW_FRAMEBUFFER_EXT
 and READ_FRAMEBUFFER_EXT bindings (section 4.4. 4.2) do not refer to
 the same object, or if the GL is in color index mode, Accum
 generates the error INVALID_OPERATION."

 Add to 4.3.2 (Reading Pixels), right before the subsection titled
 "Obtaining Pixels from the Framebuffer":

 "Calling ReadPixels generates INVALID_FRAMEBUFF ER_OPERATION_EXT if
 the object bound to READ_FRAMEBUFFER_BINDING_EX T is not "framebuffer
 complete" (section 4.4.4.2)."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 569

 In section 4.3.2, modify the definition of Read Buffer as follows:

 "The command

 void ReadBuffer(enum src);

 takes a symbolic constant as argument. <src> m ust be one of the
 values from tables 4.4 or 10.nnn. Otherwise, I NVALID_ENUM is
 generated. Further, the acceptable values for <src> depend on
 whether the GL is using the default window-syst em-provided
 framebuffer (i.e., READ_FRAMEBUFFER_BINDING_EXT is zero), or an
 application-created framebuffer object (i.e.,
 READ_FRAMEBUFFER_BINDING_EXT is non-zero). For more information
 about application-created framebuffer objects, see section 4.4.

 When READ_FRAMEBUFFER_BINDING_EXT is zero, i.e. the default
 window-system-provided framebuffer, <src> must be one of the
 values listed in table 4.4. FRONT and LEFT refe r to the front left
 buffer, BACK refers to the back left buffer, an d RIGHT refers to
 the front right buffer. The other constants co rrespond directly
 to the buffers that they name. If the requested buffer is missing,
 then the error INVALID_OPERATION is generated. For the default
 window-system-provided framebuffer, the initial setting for
 ReadBuffer is FRONT if there is no back buffer and BACK
 otherwise.

 ReadBuffer will set the read buffer for input c olors other than 0
 to NONE.

 Modify the first sentence of section 4.3.3 as f ollows:

 "CopyPixels transfers a rectangle of pixel valu es from one region
 of the read framebuffer to another in the draw framebuffer."

 Add the following text to section 4.3.3, page 1 94, inside the
 definition of CopyPixels:

 "Finally, the behavior of several GL operations is specified "as if
 the arguments were passed to CopyPixels." Thes e operations include:
 CopyTex{Sub}Image*, CopyColor{Sub}Table, and Co pyConvolutionFilter*.
 INVALID_FRAMEBUFFER_OPERATION_EXT will be gener ated if an attempt is
 made to execute one of these operations, or Cop yPixels, while the
 object bound to READ_FRAMEBUFFER_BINDING_EXT is not "framebuffer
 complete" (as defined in section 4.4.4.2). Fur thermore, an attempt
 to execute CopyPixels will generate
 INVALID_FRAMEBUFFER_OPERATION_EXT while the obj ect bound to
 DRAW_FRAMEBUFFER_BINDING_EXT is not "framebuffe r complete"."

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 570

 Append to section 4.3.3:

 "BlitFramebufferEXT transfers a rectangle of pi xel values from one
 region of the read framebuffer to another in th e draw framebuffer.
 There are some important distinctions from Copy Pixels, as
 described below.

 BlitFramebufferEXT(int srcX0, int srcY0, int sr cX1, int srcY1,
 int dstX0, int dstY0, int ds tX1, int dstY1,
 bitfield mask, enum filter);

 <mask> is the bitwise OR of a number of values indicating which
 buffers are to be copied. The values are COLOR_ BUFFER_BIT,
 DEPTH_BUFFER_BIT, and STENCIL_BUFFER_BIT, which are described in
 section 4.2.3. The pixels corresponding to the se buffers are
 copied from the source rectangle, bound by the locations (srcX0,
 srcY0) and (srcX1, srcY1), to the destination r ectangle, bound by
 the locations (dstX0, dstY0) and (dstX1, dstY1) . The lower bounds
 of the rectangle are inclusive, while the upper bounds are
 exclusive.

 If the source and destination rectangle dimensi ons do not match,
 the source image is stretched to fit the destin ation
 rectangle. <filter> must be LINEAR or NEAREST a nd specifies the
 method of interpolation to be applied if the im age is
 stretched. LINEAR filtering is allowed only for the color buffer;
 if <mask> includes DEPTH_BUFFER_BIT or STENCIL_ BUFFER_BIT, and
 filter is not NEAREST, no copy is performed and an
 INVALID_OPERATION error is generated. If the s ource and
 destination dimensions are identical, no filter ing is applied. If
 either the source or destination rectangle spec ifies a negative
 dimension, the image is reversed in the corresp onding direction.
 If both the source and destination rectangles s pecify a negative
 dimension for the same direction, no reversal i s performed.

 If the source and destination buffers are ident ical, and the
 source and destination rectangles overlap, the result of the blit
 operation is undefined.

 The pixel copy bypasses the fragment pipeline. The only fragment
 operations which affect the blit are the pixel ownership test and
 the scissor test.

 If a buffer is specified in <mask> and does not exist in both the
 read and draw framebuffers, the corresponding b it is silently
 ignored.

 If the color formats of the read and draw frame buffers do not
 match, and <mask> includes COLOR_BUFFER_BIT, th e pixel groups are
 converted to match the destination format as in CopyPixels, except
 that no pixel transfer operations apply and cla mping behaves as if
 CLAMP_FRAGMENT_COLOR_ARB is set to FIXED_ONLY_A RB.

 Calling CopyPixels or BlitFramebufferEXT will r esult in an
 INVALID_FRAMEBUFFER_OPERATION_EXT error if the objects bound to
 DRAW_FRAMEBUFFER_BINDING_EXT and READ_FRAMEBUFFER_BINDING_EXT are
 not "framebuffer complete" (section 4.4.4.2)."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 571

 Calling BlitFramebufferEXT will result in an IN VALID_OPERATION
 error if <mask> includes DEPTH_BUFFER_BIT or ST ENCIL_BUFFER_BIT
 and the source and destination depth and stenci l buffer formats do
 not match.

 Modify the beginning of section 4.4.1 as follow s:

 "The default framebuffer for rendering and read back operations is
 provided by the windowing system. In addition, named framebuffer
 objects can be created and operated upon. The namespace for
 framebuffer objects is the unsigned integers, w ith zero reserved
 by the GL for the default framebuffer.

 A framebuffer object is created by binding an u nused name to
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT. The binding is
 effected by calling

 void BindFramebufferEXT(enum target, uint f ramebuffer);

 with <target> set to the desired framebuffer ta rget and
 <framebuffer> set to the unused name. The resu lting framebuffer
 object is a new state vector, comprising all th e state values
 listed in table 4.nnn, as well as one set of th e state values
 listed in table 5.nnn for each attachment point of the
 framebuffer, set to the same initial values. T here are
 MAX_COLOR_ATTACHMENTS_EXT color attachment poin ts, plus one each
 for the depth and stencil attachment points.

 BindFramebufferEXT may also be used to bind an existing
 framebuffer object to DRAW_FRAMEBUFFER_EXT or
 READ_FRAMEBUFFER_EXT. If the bind is successfu l no change is made
 to the state of the bound framebuffer object, a nd any previous
 binding to <target> is broken.

 If a framebuffer object is bound to DRAW_FRAMEB UFFER_EXT or
 READ_FRAMEBUFFER_EXT, it becomes the target for rendering or
 readback operations, respectively, until it is deleted or another
 framebuffer is bound to the corresponding bind point. Calling
 BindFramebufferEXT with <target> set to FRAMEBU FFER_EXT binds the
 framebuffer to both DRAW_FRAMEBUFFER_EXT and RE AD_FRAMEBUFFER_EXT.

 While a framebuffer object is bound, GL operati ons on the target
 to which it is bound affect the images attached to the bound
 framebuffer object, and queries of the target t o which it is bound
 return state from the bound object. Queries of the values
 specified in table 6.31 (Implementation Depende nt Pixel Depths)
 and table 8.nnn (Framebuffer-Dependent State Va riables) are
 derived from the framebuffer object bound to DR AW_FRAMEBUFFER_EXT.

 The initial state of DRAW_FRAMEBUFFER_EXT and R EAD_FRAMEBUFFER_EXT
 refers to the default framebuffer provided by t he windowing
 system. In order that access to the default fr amebuffer is not
 lost, it is treated as a framebuffer object wit h the name of 0.
 The default framebuffer is therefore rendered t o and read from
 while 0 is bound to the corresponding targets. On some
 implementations, the properties of the default framebuffer can

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 572

 change over time (e.g., in response to windowin g system events
 such as attaching the context to a new windowin g system drawable.)"

 Change the description of DeleteFramebuffersEXT as follows:

 "<framebuffers> contains <n> names of framebuff er objects to be
 deleted. After a framebuffer object is deleted , it has no
 attachments, and its name is again unused. If a framebuffer that
 is currently bound to one or more of the target s
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT is deleted, it is as
 though BindFramebufferEXT had been executed wit h the corresponding
 <target> and <framebuffer> zero. Unused names in <framebuffers>
 are silently ignored, as is the value zero."

 In section 4.4.2.2, modify the first two senten ces of the
 description of FramebufferRenderbufferEXT as fo llows:

 "<target> must be DRAW_FRAMEBUFFER_EXT, READ_FR AMEBUFFER_EXT, or
 FRAMEBUFFER_EXT. If <target> is FRAMEBUFFER_EX T, it behaves as
 though DRAW_FRAMEBUFFER_EXT was specified. INV ALID_OPERATION is
 generated if the value of the corresponding bin ding is zero."

 In section 4.4.2.3, modify the first two senten ces of the
 description of FramebufferTexturexDEXT as follo ws:

 "In all three routines, <target> must be DRAW_F RAMEBUFFER_EXT,
 READ_FRAMEBUFFER_EXT, or FRAMEBUFFER_EXT. If < target> is
 FRAMEBUFFER_EXT, it behaves as though DRAW_FRAM EBUFFER_EXT was
 specified. INVALID_OPERATION is generated if t he value of the
 corresponding binding is zero."

 In section 4.4.4.2, modify the first sentence o f the description
 of CheckFramebufferStatusEXT as follows:

 "If <target> is not DRAW_FRAMEBUFFER_EXT, READ_ FRAMEBUFFER_EXT or
 FRAMEBUFFER_EXT, INVALID_ENUM is generated. If <target> is
 FRAMEBUFFER_EXT, it behaves as though DRAW_FRAM EBUFFER_EXT was
 specified."

 Modify section 4.4.4.3 as follows:

 "Attempting to render to or read from a framebu ffer which is not
 framebuffer complete will generate an
 INVALID_FRAMEBUFFER_OPERATION_EXT error."

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and State
Requests)

 In section 6.1.3, modify the first sentence of the description of
 GetFramebufferAttachmentParameterivEXT as follo ws:

 "<target> must be DRAW_FRAMEBUFFER_EXT, READ_FR AMEBUFFER_EXT or
 FRAMEBUFFER_EXT. If <target> is FRAMEBUFFER_EX T, it behaves as
 though DRAW_FRAMEBUFFER_EXT was specified."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 573

GLX Protocol

 BlitFramebufferEXT
 2 44 rendering command length
 2 4330 rendering command opcode
 4 CARD32 source X0
 4 CARD32 source Y0
 4 CARD32 source X1
 4 CARD32 source Y1
 4 CARD32 destination X0
 4 CARD32 destination Y0
 4 CARD32 destination X1
 4 CARD32 destination Y1
 4 CARD32 mask
 4 ENUM filter

Dependencies on ARB_color_buffer_float

 The reference to CLAMP_FRAGMENT_COLOR_ARB in se ction 4.3.3 applies
 only if ARB_color_buffer_float is supported.

Errors

 The error INVALID_FRAMEBUFFER_OPERATION_EXT is generated if
 BlitFramebufferEXT, DrawPixels, or CopyPixels i s called while the
 draw framebuffer is not framebuffer complete.

 The error INVALID_FRAMEBUFFER_OPERATION_EXT is generated if
 BlitFramebufferEXT, ReadPixels, CopyPixels, Cop yTex{Sub}Image*,
 CopyColor{Sub}Table, or CopyConvolutionFilter* is called while the
 read framebuffer is not framebuffer complete.

 The error INVALID_VALUE is generated by BlitFra mebufferEXT if
 <mask> has any bits set other than those named by
 COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT or STENCIL_B UFFER_BIT.

 The error INVALID_OPERATION is generated if Bli tFramebufferEXT is
 called and <mask> includes DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT
 and <filter> is not NEAREST.

 The error INVALID_OPERATION is generated if Bli tFramebufferEXT is
 called and <mask> includes DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT
 and the source and destination depth or stencil buffer formats do
 not match.

 The error INVALID_ENUM is generated by BlitFram ebufferEXT if
 <filter> is not LINEAR or NEAREST.

 The error INVALID_OPERATION is generated if Bli tFramebufferEXT
 is called within a Begin/End pair.

 The error INVALID_ENUM is generated if BindFram ebufferEXT,
 CheckFramebufferStatusEXT, FramebufferTexture{1 D|2D|3D}EXT,
 FramebufferRenderbufferEXT, or
 GetFramebufferAttachmentParameterivEXT is calle d and <target> is
 not DRAW_FRAMEBUFFER_EXT, READ_FRAMEBUFFER_EXT or FRAMEBUFFER_EXT.

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 574

New State

 (modify table 3.nnn, "Framebuffer (state per fr amebuffer target binding
point)")

 Initial
 Get Value Type Get Comman d Ialue Description Section Attribute
 ---------------------------- ---- ---------- - ------- ------------------- ----------- - ---------
 DRAW_FRAMEBUFFER_BINDING_EXT Z+ GetInteger v 0 framebuffer object bound 4.4.1 -
 to DRAW_FRAMEBUFFER_EXT
 READ_FRAMEBUFFER_BINDING_EXT Z+ GetInteger v 0 framebuffer object 4.4.1 -
 to READ_FRAMEBUFFER_EXT

 Remove reference to FRAMEBUFFER_BINDING_EXT.

Sample Code

 /* Render to framebuffer object 2 */
 BindFramebufferEXT(DRAW_FRAMEBUFFER_EXT, 2);
 RenderScene();

 /* Blit contents of color buffer, depth buffer and stencil buffer
 * from framebuffer object 2 to framebuffer obj ect 1.
 */
 BindFramebufferEXT(READ_FRAMEBUFFER_EXT, 2);
 BindFramebufferEXT(DRAW_FRAMEBUFFER_EXT, 1);
 BlitFramebufferEXT(0, 0, 640, 480,
 0, 0, 640, 480,
 GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT |
 GL_STENCIL_BUFFER_BIT,
 GL_NEAREST);

 /* Blit contents of color buffer from framebuff er object 1 to
 * framebuffer object 2, inverting the image in the X direction.
 */
 BindFramebufferEXT(READ_FRAMEBUFFER_EXT, 1);
 BindFramebufferEXT(DRAW_FRAMEBUFFER_EXT, 2);
 BlitFramebufferEXT(0, 0, 640, 480,
 640, 0, 0, 480,
 GL_COLOR_BUFFER_BIT,
 GL_NEAREST);

 /* Blit color buffer from framebuffer object 1 to framebuffer
 * object 3 with a 2X zoom and linear filtering .
 */
 BindFramebufferEXT(READ_FRAMEBUFFER_EXT, 1);
 BindFramebufferEXT(DRAW_FRAMEBUFFER_EXT, 3);
 BlitFramebufferEXT(0, 0, 640, 480,
 0, 0, 1280, 960,
 GL_COLOR_BUFFER_BIT, GL_LINE AR);

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 575

Issues

 1) Should we pass in explicit source/dest rects instead of using
 the rasterpos/pixelzoom?

 Resolved: use explicit rects, so we don't n eed to perform
 multiple state changes.

 2) Should rects be (start,size) or (start,end)?

 Resolved: use (start,end). This is a break from the past
 (scissor, viewport) but is more intuitive t han allowing a
 negative size where mirrored zooms are desi reable.

 3) What should we call the blit function?

 Resolved: BlitFramebufferEXT

 4) Should filtering apply to depth or stencil v alues?

 Resolved: No

 5) What happens if LINEAR is specified and DEPT H or STENCIL is in
 the mask?

 Resolved: Generate ERROR_INVALID_OPERATION

 6) What happens if READ_FRAMEBUFFER is NONE and a read is
 attempted?

 Resolved: Generate ERROR_INVALID_OPERATION

 7) Should we generalize binding point assignmen t with a single
 entry point and a parameter specifying read/ write/whatever?

 Resolved: concensus leans toward separate R ead/Draw entry
 points.

 8) Should we define READ_FRAMEBUFFER and DRAW_F RAMEBUFFER targets
 for BindFramebuffer instead of introducing a new level of
 indirection?

 Resolved: Yes. Binding to the legacy targe t FRAMEBUFFER sets
 both DRAW_FRAMEBUFFER and READ_FRAMEBUFFER. Querying
 FRAMEBUFFER_BINDING return the DRAW_FRAMEBU FFER_BINDING.

 9) What happens when a user queries framebuffer attributes,
 e.g. Get(RED_BITS)? Is the result returned from
 READ_FRAMEBUFFER or DRAW_FRAMEBUFFER? Do we need a new query?
 e.g.

 GetFramebufferParameteriv(int target, enum p name, int* value)

 Resolved: always return the value associate d with the
 DRAW_FRAMEBUFFER. Do not add a new query.

EXT_framebuffer_blit NVIDIA OpenGL Extension Specifications

 576

 10) How does Accum behave in the presence of se parate READ/DRAW
 framebuffers?

 Resolved: Accum returns INVALID_OPERATION i f the
 READ_FRAMEBUFFER and DRAW_FRAMEBUFFER bindi ngs are not
 identical.

 11) Should blits be allowed between buffers of different bit sizes?

 Resolved: Yes, for color buffers only. Att empting to blit
 between depth or stencil buffers of differe nt size generates
 INVALID_OPERATION.

 12) Should we add support for multiple ReadBuff ers, so that
 multiple color buffers may be copied with a single call to
 BlitFramebuffer?

 Resolved: No, we considered this but the be havior is awkward
 to define and the functionality is of limit ed use.

 13) How should BlitFramebuffer color space conv ersion be
 specified? Do we allow context clamp state to affect the
 blit?

 Resolved: Blitting to a fixed point buffer always clamps,
 blitting to a floating point buffer never c lamps. The context
 state is ignored.

 14) Should overlapped blits be allowed? Should they be guaranteed
 to work?

 Resolved: Overlapping blits are allowed but are undefined.

Revision History

 Revision 14, 2006/09/29
 - Changed the resolution of issue 12 to refle ct the working
 group decision to abandon ReadBuffers.
 - Eliminated issues 15, 16 and 17 as they are no longer relevent.
 - Changed the resolution of issue 14 and the corresponding spec
 language to indicate that the result of an overlapping blit is
 undefined.
 - Changed the spec language to clarify that t he lower bound of a
 blit rectangle is inclusive while the upper bound is
 exclusive.
 - Added a sample showing an inverted blit, to clarify the pixel
 addressing rules.
 - Clarified spec language and error behavior to indicate that
 blitting DEPTH and STENCIL buffers with LIN EAR filtering is
 always disallowed, whether or not the blit is scaling.
 Revision 13, 2006/06/01 (Jeff Juliano)
 - Clarify errors generated when read and draw framebuffers are
 incomplete.
 Revision 12, 2005/12/22 (Jon Leech)
 - Assigned enumerant values. Add return type to BlitFramebufferEXT.
 Note INVALID_ENUM error if filter is not LI NEAR or NEAREST.
 Revision 11, 2005/12/14

NVIDIA OpenGL Extension Specifications EXT_framebuffer_blit

 577

 - Added several missing conditions to the Err ors section.
 - Changed status to "Complete".
 Revision 10, 2005/11/6
 - Removed all ReadBuffers discussion, as this functionality will
 be deferred. Issues 15-17 are hereafter ir relevent.
 Revision 9, 2005/10/31
 - Resolved issue 16 and updated language to r eflect this decision.
 - Minor language changes per feedback.
 - Added issue 17 and resolution, although lan guage does not reflect this.
 Revision 8, 2005/10/20
 - Added ReadBuffersEXT language
 - Removed some redundant language in ReadBuff er
 - Re-opened issue 15 for further consideratio n
 - Added issue 16
 Revision 7, 2005/10/7
 - Added issues 13 and 14, and resolution for 11, 13, and 14.
 - Added dependency on ARB_color_buffer_float.
 - Removed multisample language, now covered i n
 EXT_framebuffer_multisample.
 - Added framebuffer incomplete error language to spec proper.
 - Alias DRAW_FRAMEBUFFER_BINDING_EXT to FRAME BUFFER_BINDING_EXT.
 - Updated Overview text to reflect the resolu tion to issue 8.
 Revision 6, 2005/9/26
 - Moved issues to the end, per new convention s.
 - Added new language referring to DRAW_FRAMEB UFFER and
 READ_FRAMEBUFFER bind points to sections 4. 1.1, 4.4.1,
 4.4.2.2, 4.4.2.3, 4.4.4.2, 6.1.3 and Errors , and updated the
 example code, per resolution of issue 8.
 - Added language in section 4.4.1 specifying Get behavior, per
 resolution of issue 9.
 - Added language to section 4.2.4 describing new error behavior
 for Accum, per resolution of issue 10.
 - Added language to section 4.3.3 describing color format
 conversion, per resolution of issue 11.
 Revision 5, 2005/9/6
 - Added issues 8 - 11
 - Minor edits from reviewer feedback
 Revision 4, 2005/9/5
 - Added chapter 4 intro section
 - Added errors and state table information
 - Added sample code
 - fixed typos
 Revision 3, 2005/8/29
 - Converted to spec template
 Revision 2, 2005/7/18
 - Lots of new issues added and resolved
 Revision 1, 2005/7/5
 - Initial draft

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 578

Name

 EXT_framebuffer_multisample

Name Strings

 GL_EXT_framebuffer_multisample

Contributors

 Pat Brown
 Michael Gold
 Evan Hart
 Jeff Juliano
 Jon Leech
 Bill Licea-Kane
 Barthold Lichtenbelt
 Kent Lin
 Ian Romanick
 John Rosasco
 Jeremy Sandmel

Contacts

 Jeff Juliano, NVIDIA Corporation (jjuliano 'at' nvidia.com)
 Jeremy Sandmel, Apple Computer (jsandmel 'at' a pple.com)

Status

 Complete
 Approved by the ARB "superbuffers" Working Grou p on November 8, 2005

Version

 Last Modified Date: November 6, 2006
 Revision: #6c

Number

 317

Dependencies

 Requires GL_EXT_framebuffer_object.

 Requires GL_EXT_framebuffer_blit.

 Written based on the wording of the OpenGL 1.5 specification.

Overview

 This extension extends the EXT_framebuffer_obje ct framework to
 enable multisample rendering.

 The new operation RenderbufferStorageMultisampl eEXT() allocates
 storage for a renderbuffer object that can be u sed as a multisample
 buffer. A multisample render buffer image diff ers from a

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 579

 single-sample render buffer image in that a mul tisample image has a
 number of SAMPLES that is greater than zero. N o method is provided
 for creating multisample texture images.

 All of the framebuffer-attachable images attach ed to a framebuffer
 object must have the same number of SAMPLES or else the framebuffer
 object is not "framebuffer complete". If a fra mebuffer object with
 multisample attachments is "framebuffer complet e", then the
 framebuffer object behaves as if SAMPLE_BUFFERS is one.

 In traditional multisample rendering, where
 DRAW_FRAMEBUFFER_BINDING_EXT is zero and SAMPLE _BUFFERS is one, the
 GL spec states that "the color sample values ar e resolved to a
 single, displayable color each time a pixel is updated." There are,
 however, several modern hardware implementation s that do not
 actually resolve for each sample update, but in stead postpones the
 resolve operation to a later time and resolve a batch of sample
 updates at a time. This is OK as long as the i mplementation behaves
 "as if" it had resolved a sample-at-a-time. Unf ortunately, however,
 honoring the "as if" rule can sometimes degrade performance.

 In contrast, when DRAW_FRAMEBUFFER_BINDING_EXT is an
 application-created framebuffer object, MULTISA MPLE is enabled, and
 SAMPLE_BUFFERS is one, there is no implicit per -sample-update
 resolve. Instead, the application explicitly c ontrols when the
 resolve operation is performed. The resolve op eration is affected
 by calling BlitFramebufferEXT (provided by the EXT_framebuffer_blit
 extension) where the source is a multisample ap plication-created
 framebuffer object and the destination is a sin gle-sample
 framebuffer object (either application-created or window-system
 provided).

 This design for multisample resolve more closel y matches current
 hardware, but still permits implementations whi ch choose to resolve
 a single sample at a time. If hardware that im plementes the
 multisample resololution "one sample at a time" exposes
 EXT_framebuffer_multisample, it could perform t he implicit resolve
 to a driver-managed hidden surface, then read f rom that surface when
 the application calls BlitFramebufferEXT.

 Another motivation for granting the application explicit control
 over the multisample resolve operation has to d o with the
 flexibility afforded by EXT_framebuffer_object. Previously, a
 drawable (window or pbuffer) had exclusive acce ss to all of its
 buffers. There was no mechanism for sharing a buffer across
 multiple drawables. Under EXT_framebuffer_obje ct, however, a
 mechanism exists for sharing a framebuffer-atta chable image across
 several framebuffer objects, as well as sharing an image between a
 framebuffer object and a texture. If we had re tained the "implicit"
 resolve from traditional multisampled rendering , and allowed the
 creation of "multisample" format renderbuffers, then this type of
 sharing would have lead to two problematic situ ations:

 * Two contexts, which shared renderbuffers, m ight perform
 competing resolve operations into the same single-sample buffer
 with ambiguous results.

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 580

 * It would have introduced the unfortunate ab ility to use the
 single-sample buffer as a texture while MUL TISAMPLE is ENABLED.

 By using the BlitFramebufferEXT from EXT_frameb uffer_blit as an
 explicit resolve to serialize access to the mul tisampeld contents
 and eliminate the implicit per-sample resolve o peration, we avoid
 both of these problems.

Issues

 Breaking from past convention, the issues secti on has been moved to
 the end of the document. It can be found after Examples, before
 Revision History.

New Procedures and Functions

 void RenderbufferStorageMultisampleEXT(
 enum target, sizei samples,
 enum internalformat,
 sizei width, sizei height);

New Types

 None.

New Tokens

 Accepted by the <pname> parameter of GetRenderb ufferParameterivEXT:

 RENDERBUFFER_SAMPLES_EXT 0x8CAB

 Returned by CheckFramebufferStatusEXT:

 FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT 0x8 D56

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_SAMPLES_EXT 0x8D57

Additions to Chapter 2 of the 1.5 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 Add to 4.3.2 (Reading Pixels), right before the subsection titled
 "Obtaining Pixels form the Framebuffer":

 "ReadPixels generates INVALID_OPERATION if READ _FRAMEBUFFER_BINDING
 (section 4.4) is non-zero, the read framebuffer is framebuffer

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 581

 complete, and the value of SAMPLE_BUFFERS for t he read framebuffer
 is greater than zero."

 Modify the following text to section 4.3.3, pag e 194, that was added to
 the definition of CopyPixels by EXT_framebuffer _blit:

 "Finally, the behavior of several GL operations is specified "as if
 the arguments were passed to CopyPixels." Thes e operations include:
 CopyTex{Sub}Image*, CopyColor{Sub}Table, and Co pyConvolutionFilter*.
 INVALID_FRAMEBUFFER_OPERATION_EXT will be gener ated if an attempt is
 made to execute one of these operations, or Cop yPixels, while the
 object bound to READ_FRAMEBUFFER_BINDING_EXT (s ection 4.4) is not
 "framebuffer complete" (as defined in section 4 .4.4.2).
 INVALID_OPERATION will be generated if the obje ct bound to
 READ_FRAMEBUFFER_BINDING_EXT is "framebuffer co mplete" and the value
 of SAMPLE_BUFFERS is greater than zero.

 Furthermore, an attempt to execute CopyPixels w ill generate
 INVALID_FRAMEBUFFER_OPERATION_EXT while the obj ect bound to
 DRAW_FRAMEBUFFER_BINDING_EXT (section 4.4) is n ot "framebuffer
 complete".

 In 4.3.3 (Copying Pixels), add to the section d escribing BlitFramebuffer
 that was added by EXT_framebuffer_blit.

 "If SAMPLE_BUFFERS for the read framebuffer is greater than zero and
 SAMPLE_BUFFERS for the draw framebuffer is zero , the samples
 corresponding to each pixel location in the sou rce are converted to
 a single sample before being written to the des tination.

 If SAMPLE_BUFFERS for the read framebuffer is z ero and
 SAMPLE_BUFFERS for the draw framebuffer is grea ter than zero, the
 value of the source sample is replicated in eac h of the destination
 samples.

 If SAMPLE_BUFFERS for both the read and draw fr amebuffers are
 greater than zero, and the value of SAMPLES for the read framebuffer
 matches the value of SAMPLES for the draw frame buffer, the samples
 are copied without modification from the read f ramebuffer to the
 draw framebuffer. Otherwise, no copy is perfor med and an
 INVALID_OPERATION error is generated.

 Furthermore, if SAMPLE_BUFFERS for either the r ead framebuffer or
 draw framebuffer is greater than zero and the d imensions of the
 source and destination rectangles provided to B litFramebuffer are
 not identical, no copy is performed and an INVA LID_OPERATION error
 is generated."

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 582

 Modification to 4.4.2.1 (Renderbuffer Objects)

 Add, just above the definition of RenderbufferS torageEXT:

 "The command

 void RenderbufferStorageMultisampleEXT(
 enum target, sizei samples,
 enum internalformat,
 sizei width, sizei height);

 establishes the data storage, format, dimension s, and number of
 samples of a renderbuffer object's image. <tar get> must be
 RENDERBUFFER_EXT. <internalformat> must be RGB , RGBA,
 DEPTH_COMPONENT, STENCIL_INDEX, or one of the i nternal formats from
 table 3.16 or table 2.nnn that has a base inter nal format of RGB,
 RGBA, DEPTH_COMPONENT, or STENCIL_INDEX. <widt h> and <height> are
 the dimensions in pixels of the renderbuffer. If either <width> or
 <height> is greater than MAX_RENDERBUFFER_SIZE_ EXT, or if <samples>
 is greater than MAX_SAMPLES_EXT, then the error INVALID_VALUE is
 generated. If the GL is unable to create a data store of the
 requested size, the error OUT_OF_MEMORY is gene rated.

 Upon success, RenderbufferStorageMultisampleEXT deletes any existing
 data store for the renderbuffer image and the c ontents of the data
 store after calling RenderbufferStorageMultisam pleEXT are undefined.
 RENDERBUFFER_WIDTH_EXT is set to <width>, RENDE RBUFFER_HEIGHT_EXT is
 set to <height>, and RENDERBUFFER_INTERNAL_FORM AT_EXT is set to
 <internalformat>.

 If <samples> is zero, then RENDERBUFFER_SAMPLES _EXT is set to zero.
 Otherwise <samples> represents a request for a desired minimum
 number of samples. Since different implementati ons may support
 different sample counts for multisampled render ing, the actual
 number of samples allocated for the renderbuffe r image is
 implementation dependent. However, the resulti ng value for
 RENDERBUFFER_SAMPLES_EXT is guaranteed to be gr eater than or equal
 to <samples> and no more than the next larger s ample count supported
 by the implementation.

 Sized Base S
 Internal Format Internal format Bits
 --------------- --------------- ----
 STENCIL_INDEX1_EXT STENCIL_INDEX 1
 STENCIL_INDEX4_EXT STENCIL_INDEX 4
 STENCIL_INDEX8_EXT STENCIL_INDEX 8
 STENCIL_INDEX16_EXT STENCIL_INDEX 16
 --- -------------------
 Table 2.nnn Desired component resolution for each sized intern al
 format that can be used only with renderbuffers .

 A GL implementation may vary its allocation of internal component
 resolution based on any RenderbufferStorage par ameter (except
 target), but the allocation and chosen internal format must not be a
 function of any other state and cannot be chang ed once they are
 established."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 583

 Modify the definiton of RenderbufferStorageEXT as follows:

 "The command

 void RenderbufferStorageEXT(enum target, en um internalformat,
 sizei width, si zei height);

 is equivalent to calling RenderbufferStorageMu ltisampleEXT with
 <samples> equal to zero."

Modification to 4.4.4.2 (Framebuffer Completeness)

 Add an entry to the bullet list:

 * The value of RENDERBUFFER_SAMPLES_EXT is the same for all attached
 images.
 { FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT }

 Also add a paragraph to the end of the section:

 "The values of SAMPLE_BUFFERS and SAMPLES are d erived from the
 attachments of the currently bound framebuffer object. If the
 current DRAW_FRAMEBUFFER_BINDING_EXT is not "fr amebuffer complete",
 then both SAMPLE_BUFFERS and SAMPLES are undefi ned. Otherwise,
 SAMPLES is equal to the value of RENDERBUFFER_S AMPLES_EXT for the
 attached images (which all must have the same v alue for
 RENDERBUFFER_SAMPLES_EXT). Further, SAMPLE_BUF FERS is one if
 SAMPLES is non-zero. Otherwise, SAMPLE_BUFFERS is zero.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 Added to section 5.4, as part of the discussion of which commands
 are not compiled into display lists:

 "Certain commands, when called while compiling a display list, are
 not compiled into the display list but are exec uted immediately.
 These are: ..., RenderbufferStorageMultisampleE XT..."

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and State
Requests)

 Modification to 6.1.3 (Enumerated Queries):

 In the list of state query functions, modify th e definition of
 GetRenderbufferParameterivEXT as follows:

 "void GetRenderbufferParameterivEXT(enum target , enum pname,
 int* params) ;

 <target> must be RENDERBUFFER_EXT. <pname> must be one of the
 symbolic values in table 8.nnn.

 If the renderbuffer currently bound to <tar get> is zero, then
 INVALID_OPERATION is generated.

 Upon successful return from GetRenderbuffer ParameterivEXT, if
 <pname> is RENDERBUFFER_WIDTH_EXT, RENDERBU FFER_HEIGHT_EXT,

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 584

 RENDERBUFFER_INTERNAL_FORMAT_EXT, or RENDER BUFFER_SAMPLES_EXT,
 then <params> will contain the width in pix els, height in
 pixels, internal format, or number of sampl es, respectively, of
 the renderbuffer currently bound to <target >.

 Otherwise, INVALID_ENUM is generated."

GLX Protocol

 RenderbufferStorageMultisampleEXT

 2 24 rendering command l ength
 2 4331 rendering command o pcode
 4 ENUM target
 4 CARD32 samples
 4 ENUM internalformat
 4 CARD32 width
 4 CARD32 height

Dependencies on EXT_framebuffer_object

 EXT_framebuffer_object is required.

Dependencies on EXT_framebuffer_blit

 EXT_framebuffer_blit is required. Technically, EXT_framebuffer_blit
 would not be required to support multisampled r endering, except for
 the fact that it provides the only method of do ing a multisample
 resovle from a multisample renderbuffer.

Errors

 The error INVALID_OPERATION_EXT is generated if ReadPixels,
 CopyPixels, CopyTex{Sub}Image*, CopyColor{Sub}T able, or
 CopyConvolutionFilter* is called while READ_FRA MEBUFFER_BINDING_EXT
 is non-zero, the read framebuffer is framebuffe r complete, and the
 value of SAMPLE_BUFFERS for the read framebuffe r is greater than
 zero.

 The error OUT_OF_MEMORY is generated when
 RenderbufferStorageMultisampleEXT cannot storag e of the specified
 size.

 If both the draw and read framebuffers are fram ebuffer complete and
 both have a value of SAMPLE_BUFFERS that is gre ater than zero, then
 the error INVALID_OPERATION is generated if Bli tFramebufferEXT is
 called and the values of SAMPLES for the draw a nd read framebuffers
 do not match.

 If either the draw or read framebuffer is frame buffer complete and
 has a value of SAMPLE_BUFFERS that is greater t han zero, then the
 error INVALID_OPERATION is generated if BlitFra mebufferEXT is called
 and the specified source and destination dimens ions are not
 identical.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 585

 If RenderbufferStorageMultisampleEXT is called with a value of
 <samples> that is greater than MAX_SAMPLES_EXT, then the error
 INVALID_VALUE is generated.

New State

 (add to table 8.nnn, "Renderbuffers (state per renderbuffer object)")

 Initial
Get Value Type Get Comm and Value Description Section Attribute
------------------------------- ------ -------- ----- ----- -------------------- -------- ---------
RENDERBUFFER_SAMPLES_EXT Z+ GetRende rbufferParameterivEXT 0 number of samples 4.4.2.1 -

To the table added by EXT_framebuffer_object called "Framebuffer
Dependent Values", table 9.nnn, add the following n ew framebuffer
dependent state.

 Get Value Type Get Command Minimum Value Description Section Attribute
 --------- ---- ----------- -------- ----- ------------------- ------- ---------
 MAX_SAMPLES_EXT Z+ GetIntegerv 1 Maximum number of 4.4.2.1 -
 samples supported
 for multisampling

Usage Examples

 XXX add examples XXX

Issues

 (1) Should this be a separate extension or sho uld it be included in
 a revision of EXT_framebuffer_object?

 RESOLVED, separate extension

 Resolved by consensus, May 9, 2005

 This extension requires EXT_framebuffer_ob ject but the reverse
 is not true. In addition, the cross frame buffer copy operation
 that will be used to handle the multisampl e resolution
 operation may be generally useful for non- multisampled
 rendering, but is pretty much required for multisampled
 rendering to be useful. Since we don't wa nt
 EXT_framebuffer_object to require that fun ctionality either, we
 split EXT_framebuffer_multisample into its own extension.
 EXT_framebuffer_multisample might include the "cross
 framebuffer copy" operation or might simpl y require the
 presence of that third extension. See iss ue (8).

 (2) What happens when <samples> is zero or one ?

 RESOLVED, 0 = single sample, 1 = minimum m ultisample

 Resolved by consensus, May 9, 2005

 Zero means single sample, as if Renderbuff erStorageEXT had been
 called instead of RenderbufferStorageMulti sampleEXT. One means
 minimum number of samples supported by imp lementation.

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 586

 There was a question if one should mean th e same thing as
 single-sample (one sample), or if it shoul d mean the minimum
 supported number of samples for multisampl e rendering. The
 rules for rasterizing in "multisample" mod e are different than
 "non-multisample" mode. In the end, we de cided that some
 implementations may wish to support a "one -sample" multisample
 buffer to allow for multipass multisamplin g where the sample
 location can be varied either by the imple mentation or perhaps
 explicitly by a "multisample location" ext ension.

 (3) Is ReadPixels (or CopyPixels or CopyTexIma ge) permitted when
 bound to a multisample framebuffer object?

 RESOLVED, no

 Resolved by consensus, prior to May 9, 2005

 No, those operations will produce INVALID_ OPERATION. To read
 the contents of a multisample framebuffer, it must first be
 "downsampled" into a non-multisample desti nation, then read
 from there. For downsample, see EXT_frame buffer_blit.

 The concern is fallback due to out of memo ry conditions. Even
 if no memory is available to allocate a te mporary buffer at the
 time ReadPixels is called, an implementati on should be able to
 make this work by pre-allocating a small t ile and doing the
 downsample in tiles, or by falling back to software to copy a
 pixel at a time.

 (4) Does the resolution from <samples> to REND ERBUFFER_SAMPLES_EXT
 depend on any other parameters to
 RenderbufferStorageMultisampleEXT, or must a given value of
 <samples> always resolve to the same numbe r of actual samples?

 RESOLVED, no, further, user must get at le ast what they asked
 for, or Storage call fails:

 Resolved by consensus, May 23, 2005

 Given the routine,

 void RenderbufferStorageMultisampleEXT(
 enum target, uint samples,
 enum internalformat,
 uint width, uint height);

 If an implementation supports several samp le counts (say, 2x,
 4x, 8x multisample), and the user requests a sample count of
 <samples>, the implementation must do one of the following:

 - succeed in giving the user exactly <s amples>, or

 - succeed in giving the user a number o f samples greater
 than <samples> but no more than the n ext highest number of
 samples supported by the implementati on, or

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 587

 - fail the request to RenderbufferStora geMultisampleEXT with
 an OUT_OF_MEMORY error

 (5) Is an implementation allowed to create sin gle-sample storage
 when RenderbufferStorageMultisampleEXT is called with <samples>
 larger than one?

 RESOLVED, no

 Resolved by consensus, May 23, 2005

 No, by resolution of issue (4) above, t he user must get at
 least what they asked for or higher, wh ich precludes getting
 a single sampled format if they asked f or a multisampled
 format.

 (6) Should OUT_OF_MEMORY be generated when
 RenderbufferStorageMultisampleEXT cannot c reate storage of the
 requested size?

 RESOLVED, yes

 Resolved by consensus, May 23, 2005

 Yes. Success or failure is determined by <width>, <height>,
 <internalformat>, and <samples>, and the i mplementation can
 always return OUT_OF_MEMORY. Note that whi le an implementation
 may give a different internal format with either higher or
 lower resolution per component than the in ternal requested, by
 issue of resolution (4), it must give at l east the number of
 samples requested or it must fail the
 RenderbufferStorageMultisampleEXT call.

 Update from June 2006 ARB meeting:

 The appropriate error for the case whe re the number of
 samples is larger than the maximum sup ported by the
 implementation is INVALID_VALUE. To a llow an application
 to know the maximum legal value, we ad d a GetInteger query
 MAX_SAMPLES.

 (7) Is there a query for the maximum size of < samples>?

 RESOLVED, no

 Resolved by consensus, May 23, 2005

 There was some discussion about whether it was useful to return
 a maximum sample count supported by the im plementation as a
 convenenience to the developer so that the developer doesn't
 need to try increasingly smaller counts un til it finds one that
 succeeds. However, in the end we decided that this was
 essentially the same problem already faced by the pixel format
 selection code in the glX/wgl/agl layer an d so we decided not
 to add any special solution to this proble m for multisampling
 with the framebuffer object API.

EXT_framebuffer_multisample NVIDIA OpenGL Extension Specifications

 588

 (8) Does this extension require our new frameb uffer-to-framebuffer
 copy extension, EXT_framebuffer_blit, or i s it merely affected
 by the presence of that extension.

 RESOLVED, EXT_framebuffer_blit is required .

 EXT_framebuffer_multisample by itself enab le the user to
 perform multisampled rendering. However, you can't copy or
 read from a multisampled renderbuffer usin g {Read|Copy}Pixels
 or CopyTex{Sub}Image - as per issue (3). Consequently, there
 is no way to actually use the results of m ultisampled rendering
 without EXT_framebuffer_blit. That makes the
 EXT_framebuffer_multisample extension argu ably kind of useless
 without the EXT_framebuffer_blit.

 However, the reverse is not true. The EXT _framebuffer_blit is
 useful on its own, which is why it is a se parate extension from
 this one.

 So we decided to state that EXT_framebuffe r_multisample
 requires EXT_framebuffer_blit instead of m erely stating that
 that extension affects this one.

 (9) Is DrawPixels allowed when the draw frameb uffer is multisample?

 RESOLVED, yes

 This is no different than DrawPixels to a multisample window
 (framebuffer zero). Note that ReadPixels and CopyPixels are
 disallowed when the read framebuffer is mu ltisample.

Revision History

 #6c, November 6, 2006: jjuliano
 - changes from June #6 merged back in

 #6b, October 13, 2006: Jon Leech
 - added token values for MAX_SAMPLES_EXT an d
 FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT.

 #6a, September 6, 2006: jsandmel
 - added language describing MAX_SAMPLES que ry
 - clarified that RenderbufferStorageMultisa mpleEXT can fail
 with INVALID_VALUE if <samples> is greate r than MAX_SAMPLES

 #6, June 1, 2006: jjuliano
 - add missing errors to Errors section
 - clarify the modifications to 4.3.2 and 4. 3.3.
 - add issue 9 to document that multisample DrawPixels is allowed

 #5, December 22, 2005: Jon Leech
 - added GLX protocol, assigned enumerant va lues

NVIDIA OpenGL Extension Specifications EXT_framebuffer_multisample

 589

 #4, September 28, 2005: jsandmel, jjuliano
 - moved the multisample languge from GL_EXT _framebuffer_blit to
 this spec.
 - added description of using BlitFramebuffe rEXT for resolving
 multisample buffer
 - added language referring to DRAW_/READ_FR AMEBUFFER_BINDING
 instead of just FRAMEBUFFER_BINDING.
 - minor updates to reflect new EXT_framebuf fer_blit spec
 that provides the multisample resolve fun ction
 - resolve issue (8)
 - rename framebuffer_object_multisample to
 framebuffer_multisample

 #3, May 26, 2005: jsandmel
 - added recent workgroup resolutions
 - resolved issues (4), (5), (6), (7) based on decisions from the
 work group on May 9 and 23, 2005
 - added issue (8), does this extension requ ire our new
 cross-framebuffer copy extension?
 - removed MAX_RENDERBUFFER_SAMPLES_EXT enum as per work group
 decision - issue (7)
 - changed prototype for RenderbufferStorage MultisampleEXT to use
 sizei for sample count

 #2, May 16, 2005: jsandmel
 - revised to account for recent work group meeting decisions
 - removed erroneous inclusion of GenerateMi pmaps as a new
 function
 - resolved issue (1), this will be a separa te extension
 - resolved issue (2), zero means non-multis ample, one means
 minimum number of samples

 #1, May 9, 2005: jjuliano
 - first revision

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 590

Name

 EXT_framebuffer_object

Name Strings

 GL_EXT_framebuffer_object

Contributors

 Kurt Akeley
 Jason Allen
 Bob Beretta
 Pat Brown
 Matt Craighead
 Alex Eddy
 Cass Everitt
 Mark Galvan
 Michael Gold
 Evan Hart
 Jeff Juliano
 Mark Kilgard
 Dale Kirkland
 Jon Leech
 Bill Licea-Kane
 Barthold Lichtenbelt
 Kent Lin
 Rob Mace
 Teri Morrison
 Chris Niederauer
 Brian Paul
 Paul Puey
 Ian Romanick
 John Rosasco
 R. Jason Sams
 Jeremy Sandmel
 Mark Segal
 Avinash Seetharamaiah
 Folker Schamel
 Daniel Vogel
 Eric Werness
 Cliff Woolley

Contacts

 Jeff Juliano, NVIDIA Corporation (jjuliano 'at' nvidia.com)
 Jeremy Sandmel, Apple Computer (jsandmel 'at' a pple.com)

Status

 Complete.
 Approved by the ARB "superbuffers" Working Grou p on January 31, 2005.
 Despite being controlled by the ARB WG, this is not an officially
 approved ARB extension at this time, thus the " EXT" tag.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 591

Version

 Last Modified Date: April 5, 2006
 Revision: #118

Number

 310

Dependencies

 OpenGL 1.1 is required.

 WGL_ARB_make_current_read affects the definitio n of this extension.

 GLX 1.3 / GLX_SGI_make_current_read affects the definition of this
 extension.

 ATI_draw_buffers affects the definition of this extension.

 ARB_draw_buffers affects the definition of this extension.

 ARB_fragment_program affects the definition of this extension.

 ARB_fragment_shader affects the definition of t his extension.

 ARB_texture_rectangle affects the definition of this extension.

 ARB_vertex_shader affects the definition of thi s extension.

 EXT_packed_depth_stencil affects the definition of this extension.

 NV_float_buffer affects the definition of this extension.

 NV_texture_shader affects the definition of thi s extension.

 Written based on the wording of the OpenGL 1.5 specification.

Overview

 This extension defines a simple interface for d rawing to rendering
 destinations other than the buffers provided to the GL by the
 window-system.

 In this extension, these newly defined renderin g destinations are
 known collectively as "framebuffer-attachable i mages". This
 extension provides a mechanism for attaching fr amebuffer-attachable
 images to the GL framebuffer as one of the stan dard GL logical
 buffers: color, depth, and stencil. (Attaching a
 framebuffer-attachable image to the accum logic al buffer is left for
 a future extension to define). When a framebuf fer-attachable image
 is attached to the framebuffer, it is used as t he source and
 destination of fragment operations as described in Chapter 4.

 By allowing the use of a framebuffer-attachable image as a rendering
 destination, this extension enables a form of " offscreen" rendering.
 Furthermore, "render to texture" is supported b y allowing the images

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 592

 of a texture to be used as framebuffer-attachab le images. A
 particular image of a texture object is selecte d for use as a
 framebuffer-attachable image by specifying the mipmap level, cube
 map face (for a cube map texture), and z-offset (for a 3D texture)
 that identifies the image. The "render to text ure" semantics of
 this extension are similar to performing tradit ional rendering to
 the framebuffer, followed immediately by a call to CopyTexSubImage.
 However, by using this extension instead, an ap plication can achieve
 the same effect, but with the advantage that th e GL can usually
 eliminate the data copy that would have been in curred by calling
 CopyTexSubImage.

 This extension also defines a new GL object typ e, called a
 "renderbuffer", which encapsulates a single 2D pixel image. The
 image of renderbuffer can be used as a framebuf fer-attachable image
 for generalized offscreen rendering and it also provides a means to
 support rendering to GL logical buffer types wh ich have no
 corresponding texture format (stencil, accum, e tc). A renderbuffer
 is similar to a texture in that both renderbuff ers and textures can
 be independently allocated and shared among mul tiple contexts. The
 framework defined by this extension is general enough that support
 for attaching images from GL objects other than textures and
 renderbuffers could be added by layered extensi ons.

 To facilitate efficient switching between colle ctions of
 framebuffer-attachable images, this extension i ntroduces another new
 GL object, called a framebuffer object. A fram ebuffer object
 contains the state that defines the traditional GL framebuffer,
 including its set of images. Prior to this ext ension, it was the
 window-system which defined and managed this co llection of images,
 traditionally by grouping them into a "drawable ". The window-system
 API's would also provide a function (i.e., wglM akeCurrent,
 glXMakeCurrent, aglSetDrawable, etc.) to bind a drawable with a GL
 context (as is done in the WGL_ARB_pbuffer exte nsion). In this
 extension however, this functionality is subsum ed by the GL and the
 GL provides the function BindFramebufferEXT to bind a framebuffer
 object to the current context. Later, the cont ext can bind back to
 the window-system-provided framebuffer in order to display rendered
 content.

 Previous extensions that enabled rendering to a texture have been
 much more complicated. One example is the comb ination of
 ARB_pbuffer and ARB_render_texture, both of whi ch are window-system
 extensions. This combination requires calling MakeCurrent, an
 operation that may be expensive, to switch betw een the window and
 the pbuffer drawables. An application must cre ate one pbuffer per
 renderable texture in order to portably use ARB _render_texture. An
 application must maintain at least one GL conte xt per texture
 format, because each context can only operate o n a single
 pixelformat or FBConfig. All of these characte ristics make
 ARB_render_texture both inefficient and cumbers ome to use.

 EXT_framebuffer_object, on the other hand, is b oth simpler to use
 and more efficient than ARB_render_texture. Th e
 EXT_framebuffer_object API is contained wholly within the GL API and
 has no (non-portable) window-system components. Under
 EXT_framebuffer_object, it is not necessary to create a second GL

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 593

 context when rendering to a texture image whose format differs from
 that of the window. Finally, unlike the pbuffe rs of
 ARB_render_texture, a single framebuffer object can facilitate
 rendering to an unlimited number of texture obj ects.

Glossary of Helpful Terms

 logical buffer:
 One of the color, depth, or stencil buf fers of the
 framebuffer.

 framebuffer:
 The collection of logical buffers and a ssociated state
 defining where the output of GL renderi ng is directed.

 texture:
 an object which consists of one or more 2D arrays of pixel
 images and associated state that can be used as a source of
 data during the texture-mapping process described in section
 3.8.

 texture image:
 one of the 2D arrays of pixels that are part of a texture
 object as defined in section 3.8. Text ure images contain
 and define the texels of the texture ob ject.

 renderbuffer:
 A new type of storage object which cont ains a single 2D
 array of pixels and associated state th at can be used as a
 destination for pixel data written duri ng the rendering
 process described in Chapter 4.

 renderbuffer image:
 The 2D array of pixels that is part of a renderbuffer
 object. A renderbuffer image contains and defines the
 pixels of the renderbuffer object.

 framebuffer-attachable image:
 A 2D pixel image that can be attached t o one of the logical
 buffer attachment points of a framebuff er object. Texture
 images and renderbuffer images are two examples of
 framebuffer-attachable images.

 attachment point:
 The set of state which references a spe cific
 framebuffer-attachable image, and allow s that
 framebuffer-attachable image to be used to store the
 contents of a logical buffer of a frame buffer object. There
 is an attachment point state vector for each color, depth,
 and stencil buffer of a framebuffer.

 attach:
 The act of connecting one object to ano ther object.

 An "attach" operation is similar to a " bind" operation in
 that both represent a reference to the attached or bound
 object for the purpose of managing obje ct lifetimes and both

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 594

 enable manipulation of the state of the attached or bound
 object.

 However, an "attach" is also different from a "bind" in that
 "binding" an unused object creates a ne w object, while
 "attaching" does not. Additionally, "b ind" establishes a
 connection between a context and an obj ect, while "attach"
 establishes a connection between two ob jects.

 Finally, if object "A" is attached to o bject "B" and object
 "B" is bound to context "C", then in mo st respects, we treat
 "A" as if it is <implicitly> bound to " C".

 framebuffer attachment completeness:
 Similar to texture "mipmap" or "cube" c ompleteness from
 section 3.8.10, defines a minimum set o f criteria for
 framebuffer attachment points. (for co mplete definition,
 see section 4.4.4.1)

 framebuffer completeness:
 Similar to texture "mipmap cube complet eness", defines a
 composite set of "completeness" require ments and
 relationships among the attached frameb uffer-attachable
 images. (for complete definition, see section 4.4.4.2)

Issues

 Breaking from past convention, the very large i ssues section has
 been moved to the end of the document. It can be found after
 Examples, before Revision History.

New Procedures and Functions

 boolean IsRenderbufferEXT(uint renderbuffer);
 void BindRenderbufferEXT(enum target, uint rend erbuffer);
 void DeleteRenderbuffersEXT(sizei n, const uint *renderbuffers);
 void GenRenderbuffersEXT(sizei n, uint *renderb uffers);

 void RenderbufferStorageEXT(enum target, enum i nternalformat,
 sizei width, sizei height);

 void GetRenderbufferParameterivEXT(enum target, enum pname, int *params);

 boolean IsFramebufferEXT(uint framebuffer);
 void BindFramebufferEXT(enum target, uint frame buffer);
 void DeleteFramebuffersEXT(sizei n, const uint *framebuffers);
 void GenFramebuffersEXT(sizei n, uint *framebuf fers);

 enum CheckFramebufferStatusEXT(enum target);

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 595

 void FramebufferTexture1DEXT(enum target, enum attachment,
 enum textarget, ui nt texture,
 int level);
 void FramebufferTexture2DEXT(enum target, enum attachment,
 enum textarget, ui nt texture,
 int level);
 void FramebufferTexture3DEXT(enum target, enum attachment,
 enum textarget, ui nt texture,
 int level, int zof fset);

 void FramebufferRenderbufferEXT(enum target, en um attachment,
 enum renderbuff ertarget, uint renderbuffer);

 void GetFramebufferAttachmentParameterivEXT(enu m target, enum attachment,
 enu m pname, int *params);

 void GenerateMipmapEXT(enum target);

New Types

 None.

New Tokens

 Accepted by the <target> parameter of BindFrame bufferEXT,
 CheckFramebufferStatusEXT, FramebufferTexture{1 D|2D|3D}EXT,
 FramebufferRenderbufferEXT, and
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_EXT 0x8D40

 Accepted by the <target> parameter of BindRende rbufferEXT,
 RenderbufferStorageEXT, and GetRenderbufferPara meterivEXT, and
 returned by GetFramebufferAttachmentParameteriv EXT:

 RENDERBUFFER_EXT 0x8D41

 Accepted by the <internalformat> parameter of
 RenderbufferStorageEXT:

 STENCIL_INDEX1_EXT 0x8D46
 STENCIL_INDEX4_EXT 0x8D47
 STENCIL_INDEX8_EXT 0x8D48
 STENCIL_INDEX16_EXT 0x8D49

 Accepted by the <pname> parameter of GetRenderb ufferParameterivEXT:

 RENDERBUFFER_WIDTH_EXT 0x8D42
 RENDERBUFFER_HEIGHT_EXT 0x8D43
 RENDERBUFFER_INTERNAL_FORMAT_EXT 0x8D44
 RENDERBUFFER_RED_SIZE_EXT 0x8D50
 RENDERBUFFER_GREEN_SIZE_EXT 0x8D51
 RENDERBUFFER_BLUE_SIZE_EXT 0x8D52
 RENDERBUFFER_ALPHA_SIZE_EXT 0x8D53
 RENDERBUFFER_DEPTH_SIZE_EXT 0x8D54
 RENDERBUFFER_STENCIL_SIZE_EXT 0x8D55

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 596

 Accepted by the <pname> parameter of
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT 0x8CD0
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT 0x8CD1
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT 0x8CD2
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE_EXT 0x8CD3
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT 0x8CD4

 Accepted by the <attachment> parameter of
 FramebufferTexture{1D|2D|3D}EXT, FramebufferRen derbufferEXT, and
 GetFramebufferAttachmentParameterivEXT

 COLOR_ATTACHMENT0_EXT 0x8CE0
 COLOR_ATTACHMENT1_EXT 0x8CE1
 COLOR_ATTACHMENT2_EXT 0x8CE2
 COLOR_ATTACHMENT3_EXT 0x8CE3
 COLOR_ATTACHMENT4_EXT 0x8CE4
 COLOR_ATTACHMENT5_EXT 0x8CE5
 COLOR_ATTACHMENT6_EXT 0x8CE6
 COLOR_ATTACHMENT7_EXT 0x8CE7
 COLOR_ATTACHMENT8_EXT 0x8CE8
 COLOR_ATTACHMENT9_EXT 0x8CE9
 COLOR_ATTACHMENT10_EXT 0x8CEA
 COLOR_ATTACHMENT11_EXT 0x8CEB
 COLOR_ATTACHMENT12_EXT 0x8CEC
 COLOR_ATTACHMENT13_EXT 0x8CED
 COLOR_ATTACHMENT14_EXT 0x8CEE
 COLOR_ATTACHMENT15_EXT 0x8CEF
 DEPTH_ATTACHMENT_EXT 0x8D00
 STENCIL_ATTACHMENT_EXT 0x8D20

 Returned by CheckFramebufferStatusEXT():

 FRAMEBUFFER_COMPLETE_EXT 0x8CD5
 FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT 0x8CD6
 FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_E XT 0x8CD7
 FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT 0x8CD9
 FRAMEBUFFER_INCOMPLETE_FORMATS_EXT 0x8CDA
 FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT 0x8CDB
 FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT 0x8CDC
 FRAMEBUFFER_UNSUPPORTED_EXT 0x8CDD

 Accepted by GetIntegerv():

 FRAMEBUFFER_BINDING_EXT 0x8CA6
 RENDERBUFFER_BINDING_EXT 0x8CA7
 MAX_COLOR_ATTACHMENTS_EXT 0x8CDF
 MAX_RENDERBUFFER_SIZE_EXT 0x84E8

 Returned by GetError():

 INVALID_FRAMEBUFFER_OPERATION_EXT 0x0506

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 597

Additions to Chapter 2 of the 1.5 Specification (Op enGL Operation)

 "The GL interacts with two classes of framebuff ers:
 window-system-provided framebuffers and applica tion-created
 framebuffers. There is always one window-syste m-provided
 framebuffer, while application-created framebuf fers can be created
 as desired. These two types of framebuffer are distinguished
 primarily by the interface for configuring and managing their state.

 The effects of GL commands on the window-system -provided framebuffer
 are ultimately controlled by the window-system that allocates
 framebuffer resources. It is the window-system that determines
 which portions of this framebuffer the GL may a ccess at any given
 time and that communicates to the GL how those portions are
 structured. Therefore, there are no GL command s to configure the
 window-system-provided framebuffer. Similarly, display of
 framebuffer contents on a CRT monitor (includin g the transformation
 of individual framebuffer values by such techni ques as gamma
 correction) is not addressed by the GL. Frameb uffer configuration
 occurs outside of the GL in conjunction with th e window-system.

 The initialization of a GL context itself occur s when the
 window-system allocates a window for GL renderi ng and is influenced
 by the state of the window-system-provided fram ebuffer."

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 In section 3.6.4, page 102, add the following t ext to the definiton
 of DrawPixels:

 "If the object bound to FRAMEBUFFER_BINDING_EXT is not "framebuffer
 complete" (as defined in section 4.4.4.2), then an attempt to call
 DrawPixels will generate the error
 INVALID_FRAMEBUFFER_OPERATION_EXT."

 In section 3.8.8, add the following text immedi ately before the
 subsection "Mipmapping" on page 151:

 "If all of the following conditions are satisfi ed, then the value of
 the selected Tau(ijk), Tau(ij), or Tau(i) in th e above equations is
 undefined instead of referring to the value of the texel at location
 (i), (i,j), or (i,j,k). See Chapter 4 for disc ussion of framebuffer
 objects and their attachments.

 * The current FRAMEBUFFER_BINDING_EXT names a n application-created
 framebuffer object <F>.

 * The texture is attached to one of the attac hment points, <A>, of
 framebuffer object <F>.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 598

 * TEXTURE_MIN_FILTER is NEAREST or LINEAR, an d the value of
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT fo r attachment point
 <A> is equal to the value of TEXTURE_BASE_L EVEL

 -or-

 TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEARES T,
 NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEARES T, or
 LINEAR_MIPMAP_LINEAR, and the value of
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT fo r attachment point
 <A> is within the the inclusive range from TEXTURE_BASE_LEVEL to
 q."

 In subsection "Automatic Mipmap Generation" to section 3.8.8,
 replace the first paragraph with the following text:

 "If the value of texture parameter GENERATE MIP MAP is TRUE and a
 change is made to the interior or border texels of the level[base]
 array of a mipmap by one of the texture image s pecification
 operations defined in sections 3.8.1 through 3. 8.3, then a complete
 set of mipmap arrays (as defined in section 3.8 .10) will be
 computed. Array levels level[base] + 1 through p are replaced with
 arrays derived from the modified level[base], r egardless of their
 previous contents. All other mipmap arrays, in cluding the
 level[base] array, are left unchanged by this c omputation."

 Add a new subsection "Manual Mipmap Generation" to section 3.8.8,
 after "Automatic Mipmap Generation":

 "Manual Mipmap Generation

 Mipmaps can be generated manually with the comm and

 void GenerateMipmapEXT(enum target);

 where <target> is one of TEXTURE_1D, TEXTURE_2D , TEXTURE_CUBE_MAP,
 or TEXTURE_3D. Mipmap generation affects the t exture image attached
 to <target>. For cube map textures, INVALID_OP ERATION is generated
 if the texture bound to <target> is not cube co mplete, as defined in
 section 3.8.10.

 Mipmap generation replaces texture array levels level[base] + 1
 through q with arrays derived from the level[ba se] array, as
 described above under Automatic Mipmap Generati on. All other mipmap
 arrays, including the level[base] array, are le ft unchanged by this
 computation. For arrays in the range level[bas e] through q,
 inclusive, automatic and manual mipmap generati on generate the same
 derived arrays, given identical level[base] arr ays."

 Modify the third paragraph of section 3.8.12, p age 157, to read:

 "Texture objects are deleted by calling

 void DeleteTextures(sizei n, uint *texture s);

 textures contains n names of texture objects to be deleted. After a
 texture object is deleted, it has no contents o r dimensionality, and

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 599

 its name is again unused. If a texture that is currently bound to
 one of the targets TEXTURE 1D, TEXTURE 2D, TEXT URE 3D, or TEXTURE
 CUBE MAP is deleted, it is as though BindTextur e had been executed
 with the same target and texture zero. Additio nally, special care
 must be taken when deleting a texture if any of the images of the
 texture are attached to a framebuffer object. See section 4.4.2.3
 for details.

 Unused names in textures are silently ignored, as is the value
 zero."

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 On page 170, in the introduction to chapter 4, modify the first
 three paragraphs to read as follows:

 "The framebuffer consists of a set of pixels ar ranged as a
 two-dimensional array. The height and width of this array may vary
 from one GL implementation to another. For pur poses of this
 discussion, each pixel in the framebuffer is si mply a set of some
 number of bits. The number of bits per pixel m ay also vary
 depending on the particular GL implementation o r context.

 Further there are two classes of framebuffers: the default
 framebuffer supplied by the window-system-provi ded and
 application-created framebuffer objects. Every GL context has a
 single default window-system-provided framebuff er. Applications can
 optionally create additional non-displayable fr amebuffer objects.
 (For more information on application-created fr amebuffer objects see
 section 4.4)

 Corresponding bits from each pixel in the frame buffer are grouped
 together into a bitplane; each bitplane contain s a single bit from
 each pixel. These bitplanes are grouped into s everal logical
 buffers. These are the color, depth, stencil, and accumulation
 buffers. The color buffer actually consists of a number of buffers,
 and these color buffers serve related but sligh tly different
 purposes depending on whether the GL is bound t o the default
 window-system-provided framebuffer or to an app lication-created
 framebuffer object.

 For the default window-system-provided framebuf fer, the color
 buffers are: the front left buffer, the front r ight buffer, the back
 left buffer, the back right buffer, and some nu mber of auxiliary
 buffers. Typically, the contents of the front buffers are displayed
 on a color monitor while the contents of the ba ck buffers are
 invisible. (Monoscopic contexts display only t he front left buffer;
 stereoscopic contexts display both the front le ft and the front
 right buffers.) The contents of the auxiliary buffers are never
 visible. All color buffers must have the same number of bitplanes,
 although an implementation or context may choos e not to provide
 right buffers, back buffers, or auxiliary buffe rs at all. Further,
 an implementation or context may not provide de pth, stencil, or
 accumulation buffers.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 600

 For application-created framebuffer objects, th e color buffers are
 not visible, and consequently the names of the color buffers are not
 related to a display device. The names of the color buffers of an
 application-created framebuffer object are: COL OR_ATTACHMENT0_EXT
 through COLOR_ATTACHMENTn_EXT. The names of th e depth and stencil
 buffers are DEPTH_ATTACHMENT_EXT and STENCIL_AT TACHMENT_EXT. For
 more information about the buffers of an applic ation-created
 framebuffer object, see section 4.4.2. To be c onsidered framebuffer
 complete (see section 4.4.4), all color buffers attached to an
 application-created framebuffer object must hav e the same number of
 bitplanes. Depth and stencil buffers may optio nally be attached to
 application-created framebuffers as well.

 Color buffers consist of either unsigned intege r color indices or R,
 G, B, and, optionally, A unsigned integer value s. The number of
 bitplanes in each of the color buffers, the dep th buffer, the
 stencil buffer, and the accumulation buffer is dependent on the
 currently bound framebuffer. For the default f ramebuffer, the
 number of bitplanes is fixed. For application- created framebuffer
 objects, however, the number of bitplanes in a given logical buffer
 may change if the state of the corresponding fr amebuffer attachment
 or attached image changes (see sections 4.4.2 a nd 4.4.5). If an
 accumulation buffer is provided, it must have a t least as many
 bitplanes per R, G, and B color component as do the color buffers."

 Add a new paragraph to the end of section 4.1.1 , page 171:

 "While an application-created framebuffer objec t is bound to
 FRAMEBUFFER_EXT, the pixel ownership test alway s passes. The pixels
 of application-created frambuffer objects are a lways owned by the
 GL, not the window system. Only while the wind ow-system-provided
 framebuffer named zero is bound to FRAMEBUFFER_ EXT does the window
 system control pixel ownership."

 Change section 4.1.5, page 174, third paragraph , first two sentences
 to read as follows:

 "<ref> is an integer reference value that is us ed in the unsigned
 stencil comparison. Stencil comparison operati ons and queries of
 <ref> use the value of <ref> clamped to the ran ge [0, (2^s) - 1],
 where s is the current number of bits in the st encil buffer."

 Replace the first three sentences of 4.1.10 "Lo gical Operation":

 "Finally, a logical operation is applied betwee n the incoming
 fragment's color or index values and the color or index values
 stored at the corresponding location in the fra mebuffer. The result
 replaces the values in the framebuffer at the f ragment's (x[w],
 y[w]) coordinates. However, if the DRAW_BUFFER S state selects a
 single framebuffer-attachable image more than o nce, then an
 undefined value is written to those color buffe rs at the fragment's
 (x[w], y[x]) coordinates."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 601

 Change section 4.2.1, to read as follows:

 "The first such operation is controlling the bu ffer into which color
 values are written. This is accomplished with

 void DrawBuffer(enum buf);

 <buf> defines a buffer or set of buffers for wr iting. <buf> must be
 one of the values from tables 4.4 or 10.nnn. O therwise,
 INVALID_ENUM is generated. In addition, accept able values for <buf>
 depend on whether the GL is using the default w indow-system-provided
 framebuffer (i.e., FRAMEBUFFER_BINDING_EXT is z ero), or an
 application-created framebuffer object (i.e.,
 FRAMEBUFFER_BINDING_EXT is non-zero). In the i nitial state, the GL
 is bound to the the window-system-provided fram ebuffer. For more
 information about application-created framebuff er objects, see
 section 4.4.

 If the GL is bound to the window-system-provide d framebuffer, then
 <buf> must be one the values listed in table 4. 4, which summarizes
 the constants and the buffers they indicate. I n this case, <buf> is
 a symbolic constant specifying zero, one, two, or four buffers for
 writing. These constants refer to the four pote ntially visible
 buffers front left, front right, back left, and back right, and to
 the auxiliary buffers. Arguments other than AU Xi that omit
 reference to LEFT or RIGHT refer to both left a nd right buffers.
 Arguments other than AUXi that omit reference t o FRONT or BACK refer
 to both front and back buffers. AUXi enables d rawing only to
 auxiliary buffer i. Each AUXi adheres to AUXi = AUX0 + i.

 If the GL is bound to an application-created fr amebuffer object,
 <buf> must be one of the values listed in table 10.nnn, which
 summarizes the constants and the buffers they i ndicate. In this
 case, <buf> is a symbolic constant specifying a single color buffer
 for writing. Specifying COLOR_ATTACHMENTi_EXT enables drawing only
 to the image attached to the framebuffer at COL OR_ATTACHMENTi_EXT.
 Each COLOR_ATTACHMENTi_EXT adheres to COLOR_ATT ACHMENTi_EXT =
 COLOR_ATTACHMENT0_EXT + i. The intial value of DRAW_BUFFER for
 application-created framebuffer objects is COLO R_ATTACHMENT0_EXT.

 Symbolic Constant Meaning
 ----------------- -------
 NONE no buffer
 COLOR_ATTACHMENT0 output fragment color to image attached
 at color attachment point 0
 COLOR_ATTACHMENT1 output fragment color to image attached
 at color attachment point 1

 COLOR_ATTACHMENTn output fragment color to image attached
 at color attachment point n, where
 n is MAX_COLOR_ATTACHMENT S - 1
 --- --------------------
 Table 10.nnn: Arguments to DrawBuffer(s) and ReadBuffer when th e
 context is bound to an application-created fram ebuffer object, and
 the buffers they indicate

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 602

 If the GL is bound to the window-system-provide d framebuffer and
 DrawBuffer is supplied with a constant (other t han NONE) that does
 not indicate any of the color buffers allocated to the GL context by
 the window-system (including those listed in ta ble 10.nnn), then the
 error INVALID_OPERATION results.

 If the GL is bound to the application-created f ramebuffer and
 DrawBuffer is supplied with a constant from tab le 4.4, or
 COLOR_ATTACHMENTm where m is greater than or eq ual to
 MAX_COLOR_ATTACHMENTS, then the error INVALID_O PERATION results.

 If DrawBuffer is supplied with a constant that is neither legal for
 the window-system provided framebuffer nor lega l for an
 application-created framebuffer object, then th e error INVALID_ENUM
 results.

 The command

 void DrawBuffers(sizei n, const enum *bufs);

 defines the draw buffers to which all fragment colors are written.
 <n> specifies the number of buffers in <bufs>. <bufs> is a pointer
 to an array of symbolic constants specifying th e buffer to which
 each fragment color is written.

 Each enumerant listed in <bufs> must be one of the values from
 tables 10.nnn or 11.nnn. Otherwise, INVALID_EN UM is generated.
 Further, acceptable values for the constants in <bufs> depend on
 whether the GL is using the default window-syst em-provided
 framebuffer (i.e., FRAMEBUFFER_BINDING_EXT is z ero), or an
 application-created framebuffer object (i.e.,
 FRAMEBUFFER_BINDING_EXT is non-zero). For more information about
 application-created framebuffer objects, see se ction 4.4.

 symbolic front front back back a ux
 constant left right left right i
 -------- ----- ----- ---- ----- - --
 NONE
 FRONT LEFT X
 FRONT RIGHT X
 BACK LEFT X
 BACK RIGHT X
 AUXi X
 --- -----
 Table 11.nnn: Arguments to DrawBuffers, when the context is boun d
 to the window-system-provided framebuffer, an d the buffers that
 they indicate.

 If the GL is bound to the default window-system -provided
 framebuffer, then the each of the constants mus t be one of the
 values listed in table 11.nnn

 If the GL is bound to an application-created fr amebuffer object,
 then each of the constants must be one of the v alues listed in table
 10.nnn.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 603

 In both cases, the draw buffers being defined c orrespond in order to
 the respective fragment colors. The draw buffe r for fragment colors
 beyond <n> is set to NONE.

 The maximum number of draw buffers is implement ation dependent and
 must be at least 1. The number of draw buffers supported can be
 queried by calling GetIntegerv with the symboli c constant
 MAX_DRAW_BUFFERS. INVALID_VALUE is generated i f <n> is greater
 than MAX_DRAW_BUFFERS.

 Except for NONE, a buffer may not appear more t hen once in the array
 pointed to by <bufs>. Specifying a buffer more then once will
 result in the error INVALID_OPERATION.

 If fixed-function fragment shading is being per formed, DrawBuffers
 specifies a set of draw buffers into which the fragment color is
 written.

 If a fragment shader writes to "gl_FragColor", DrawBuffers specifies
 a set of draw buffers into which the single fra gment color defined
 by "gl_FragColor" is written. If a fragment sh ader writes to gl
 FragData, DrawBuffers specifies a set of draw b uffers into which
 each of the multiple fragment colors defined by "gl_FragData" are
 separately written. If a fragment shader write s to neither gl
 FragColor nor "gl_FragData", the values of the fragment colors
 following shader execution are undefined, and m ay differ for each
 fragment color.

 For both window-system-provided and application -created
 framebuffers, the constants FRONT, BACK, LEFT, RIGHT, and
 FRONT_AND_BACK are not valid in the <bufs> arra y passed to
 DrawBuffers, and will result in the error INVAL ID_OPERATION. This
 restriction is because these constants may them selves refer to
 multiple buffers, as shown in table 4.4.

 If the GL is bound to the window-system-provide d framebuffer and
 DrawBuffers is supplied with a constant (other than NONE) that does
 not indicate any of the color buffers allocated to the GL context by
 the window-system, then the error INVALID_OPERA TION results.

 If the GL is bound to the application-created f ramebuffer and
 DrawBuffers is supplied with a constant from ta ble 11.nnn, or
 COLOR_ATTACHMENTm where m is greater than or eq ual to
 MAX_COLOR_ATTACHMENTS, then the error INVALID_O PERATION results.

 If DrawBuffers is supplied with a constant that is neither legal for
 the window-system provided framebuffer nor lega l for an
 application-created framebuffer object, then th e error INVALID_ENUM
 results.

 Indicating a buffer or buffers using DrawBuffer or DrawBuffers
 causes subsequent pixel color value writes to a ffect the indicated
 buffers.

 Specifying NONE as the draw buffer for a fragme nt color will inhibit
 that fragment color from being written to any b uffer.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 604

 Monoscopic contexts include only left buffers, while stereoscopic
 contexts include both left and right buffers. Likewise, single
 buffered contexts include only front buffers, w hile double buffered
 contexts include both front and back buffers. The type of context
 is selected at GL initialization.

 The state required to handle color buffer selec tion is an integer
 for each supported fragment color. For the def ault
 window-system-provided framebuffer, in the init ial state, the draw
 buffer for fragment color zero is FRONT if ther e are no back
 buffers; otherwise it is BACK. For application -created framebuffer
 objects, the initial value of draw buffer for f ragment color zero is
 COLOR_ATTACHMENT0_EXT. For both the window-sys tem-provided
 framebuffer and application-created framebuffer s, the initial state
 of draw buffers for fragment colors other then zero is NONE."

 Modify section 4.2.2, page 185, third paragraph to read as follows:

 "The command

 void StencilMask(uint mask);

 controls the writing of particular bits into th e stencil planes. The
 least significant s bits of mask comprise an in teger mask (s is the
 number of bits in the stencil buffer), just as for IndexMask. The
 initial state is for the stencil plane mask to be 32 ones."

 In section 4.3.2, page 190, modify the first tw o paragraphs of the
 definition of ReadBuffer to read as follows:

 "The command

 void ReadBuffer(enum src);

 takes a symbolic constant as argument. <src> m ust be one of the
 values from tables 4.4 or 10.nnn. Otherwise, I NVALID_ENUM is
 generated. Further, the acceptable values for <src> depend on
 whether the GL is using the default window-syst em-provided
 framebuffer (i.e., FRAMEBUFFER_BINDING_EXT is z ero), or an
 application-created framebuffer object (i.e.,
 FRAMEBUFFER_BINDING_EXT is non-zero). For more information about
 application-created framebuffer objects, see se ction 4.4.

 If the object bound to FRAMEBUFFER_BINDING_EXT is not "framebuffer
 complete" (as defined in section 4.4.4.2), then ReadPixels generates
 the error INVALID_FRAMEBUFFER_OPERATION_EXT. I f ReadBuffer is
 supplied with a constant that is neither legal for the window-system
 provided framebuffer, nor legal for an applicat ion-created
 framebuffer object, then the error INVALID_ENUM results.

 When FRAMEBUFFER_BINDING_EXT is zero, i.e. the default
 window-system-provided framebuffer, <src> must be one of the values
 listed in table 4.4. FRONT and LEFT refer to th e front left buffer,
 BACK refers to the back left buffer, and RIGHT refers to the front
 right buffer. The other constants correspond d irectly to the
 buffers that they name. If the requested buffer is missing, then the
 error INVALID_OPERATION is generated. For the default

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 605

 window-system-provided framebuffer, the initial setting for
 ReadBuffer is FRONT if there is no back buffer and BACK otherwise.

 When the GL is using an application-created fra mebuffer object,
 <src> must be one of the values listed in table 10.nnn, including
 NONE. In a manner analogous to how the DRAW_BU FFERs state is
 handled, specifying COLOR_ATTACHMENTi_EXT enabl es reading from the
 image attached to the framebuffer at COLOR_ATTA CHMENTi_EXT.
 ReadPixels generates INVALID_OPERATION if it at tempts to select a
 color buffer while READ_BUFFER is NONE. For ap plication-created
 framebuffer objects, the initial setting for Re adBuffer is
 COLOR_ATTACHMENT0_EXT.

 ReadPixels obtains values from the selected buf fer from each pixel
 with lower left hand corner at (x+i, y+j) for (0 <= i < width) and
 (0 <= j < height); this pixel is said to be the ith pixel in the jth
 row. If any of these pixels lies outside of th e window allocated to
 the current GL context, or outside of the image attached to the
 currently bound framebuffer object, then the va lues obtained for
 those pixels are undefined. When FRAMEBUFFER_B INDING_EXT is zero,
 results are also undefined for individual pixel s that are not owned
 by the current context. Otherwise, ReadPixels obtains values from
 the selected buffer, regardless of how those va lues were placed
 there."

 In section 4.3.2, "Reading Pixels", add a parag raph before
 "Conversion of RGBA values" on page 191:

 "When FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
 alpha values are obtained by first reading the internal component
 values of the corresponding value in the image attached to the
 selected logical buffer. The internal componen t values are
 converted to red, green, blue, and alpha values as specified in the
 row of table 12.nnn corresponding to the intern al format of the
 image attached to READ_BUFFER."

 Add the following text to section 4.3.3, page 1 94, inside the
 definiton of CopyPixels:

 "Furthermore, the behavior of several GL operat ions is specified "as
 if the arguments were passed to CopyPixels." T hese operations
 include: CopyTex{Sub}Image*, CopyColor{Sub}Tabl e, and
 CopyConvolutionFilter*. INVALID_FRAMEBUFFER_OP ERATION_EXT will be
 generated if an attempt is made to execute one of these operations,
 or CopyPixels, while the object bound to FRAMEB UFFER_BINDING_EXT is
 not "framebuffer complete" (as defined in secti on 4.4.4.2)."

 Add a new section "Framebuffer Objects" after s ection 4.3:

 "4.4 Framebuffer Objects

 As described in chapters 1 and 2, GL renders in to (and reads values
 from) a framebuffer. GL defines two classes of framebuffers:
 window-system-provided framebuffers and applica tion-created
 framebuffers. For each GL context, there is a single framebuffer
 provided by the window-system, and there may al so be one or more
 framebuffer objects created and managed by the application.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 606

 By default, the GL uses the window-system-provi ded framebuffer. The
 storage, dimensions, allocation, and format of the images attached
 to this framebuffer are managed entirely by the window-system.
 Consequently, the state of the window-system-pr ovided framebuffer,
 including its images, can not be changed by the GL, nor can the
 window-system-provided framebuffer itself, or i ts images, be deleted
 by the GL.

 The routines described in the following section s, however, can be
 used to create, destroy, and modify the state a nd attachments of
 application-created framebuffer objects.

 Application-created framebuffer objects encapsu late the state of a
 framebuffer in a similar manner to the way text ure objects
 encapsulate the state of a texture. In particu lar, a framebuffer
 object encapsulates state necessary to describe a collection of
 color, depth, stencil, accum, and aux logical b uffers. For each
 logical buffer, a framebuffer-attachable image can be attached to
 the framebuffer to store the rendered output fo r that logical
 buffer. Examples of framebuffer-attachable ima ges include texture
 images and renderbuffer images. Renderbuffers are described further
 in section 4.4.2.1

 By allowing the images of a renderbuffer to be attached to a
 framebuffer, the GL provides a mechanism to sup port "off-screen"
 rendering. Further, by allowing the images of a texture to be
 attached to a framebuffer, the GL provides a me chanism to support
 "render to texture".

 4.4.1 Binding and Managing Framebuffer Objects

 The operations described in chapter 4 affect th e images attached to
 the framebuffer object bound to the target FRAM EBUFFER_EXT. By
 default, framebuffer bound to the target FRAMEB UFFER_EXT is zero,
 specifying the default implementation dependent framebuffer provided
 by the windowing system. When the framebuffer bound to target
 FRAMEBUFFER_EXT is not zero, but instead names an
 application-created framebuffer object, then th e operations
 described in chapter 4 affect the application-c reated framebuffer
 object rather than the default framebuffer.

 The namespace for framebuffer objects is the un signed integers, with
 zero reserved by the GL to refer to the default framebuffer. A
 framebuffer object is created by binding an unu sed name to the
 target FRAMEBUFFER_EXT. The binding is effecte d by calling

 void BindFramebufferEXT(enum target, uint f ramebuffer);

 with <target> set to FRAMEBUFFER_EXT and <frame buffer> set to the
 unused name. The resulting framebuffer object is a new state
 vector, comprising all the state values listed in table 4.nnn, as
 well as one set of the state values listed in t able 5.nnn for each
 attachment point of the framebuffer. There are
 MAX_COLOR_ATTACHMENTS_EXT color attachment poin ts, plus one each for
 the depth and stencil attachment points.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 607

 BindFramebufferEXT may also be used to bind an existing framebuffer
 object to <target>. If the bind is successful no change is made to
 the state of the bound framebuffer object and a ny previous binding
 to <target> is broken. The current FRAMEBUFFER _EXT binding can be
 queried using GetIntegerv(FRAMEBUFFER_BINDING_E XT).

 While a framebuffer object is bound to the targ et FRAMEBUFFER_EXT,
 GL operations on the target to which it is boun d affect the images
 attached to the bound framebuffer object, and q ueries of the target
 to which it is bound return state from the boun d object. In
 particular, queries of the values specified in table 6.31
 (Implementation Dependent Pixel Depths) and tab le 8.nnn
 (Framebuffer-Dependent State Variables) are der ived from the
 currently bound framebuffer object. The frameb uffer object bound to
 the target FRAMEBUFFER_EXT is used as the desti nation of fragment
 operations and as the source of pixel reads suc h as ReadPixels, as
 described in chapter 4.

 In the initial state, the reserved name zero is bound to the target
 FRAMEBUFFER_EXT. There is no application-creat ed framebuffer object
 corresponding to the name zero. Instead, the n ame zero refers to
 the window-system-provided framebuffer. All qu eries and operations
 on the framebuffer while the name zero is bound to the target
 FRAMEBUFFER_EXT operate on this default framebu ffer. On some
 implementations, the properties of the default
 window-system-provided framebuffer can change o ver time (e.g., in
 response to window-system events such as attach ing the context to a
 new window-system drawable.)

 Application-created framebuffer objects (i.e., those with a non-zero
 name) differ from the default window-system-pro vided framebuffer in
 a few important ways. First and foremost, unli ke the
 window-system-provided framebuffer, application -created-framebuffers
 have modifiable attachment points for each logi cal buffer in the
 framebuffer. Framebuffer-attachable images can be attached to and
 detached from these attachment points, which ar e described further
 in section 4.4.2. Also, the size and format of the images attached
 to application-created framebuffers are control led entirely within
 the GL interface, and are not affected by windo w-system events, such
 as pixel format selection, window resizes, and display mode changes.

 Additionally, when rendering to or reading from an application
 created-framebuffer object,

 - The pixel ownership test always succeed s. In other words,
 application-created framebuffer objects own all of their
 pixels.

 - There are no visible color buffer bitpl anes. This means
 there is no color buffer corresponding to the back, front,
 left, or right color bitplanes.

 - The only color buffer bitplanes are the ones defined by the
 framebuffer attachment points named COL OR_ATTACHMENT0_EXT
 through COLOR_ATTACHMENTn_EXT.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 608

 - The only depth buffer bitplanes are the ones defined by the
 framebuffer attachment point DEPTH_ATTA CHMENT_EXT.

 - The only stencil buffer bitplanes are t he ones defined by
 the framebuffer attachment point STENCI L_ATTACHMENT_EXT.

 - There is no multisample buffer so the v alue of the
 implementation-dependent state variable s SAMPLES and
 SAMPLE_BUFFERS are both 0

 - There are no accum buffer bitplanes, so the value of the
 implementation-dependent state variable s ACCUM_RED_BITS,
 ACCUM_GREEN_BITS, ACCUM_BLUE_BITS, and ACCUM_ALPHA_BITS, are
 all zero.

 - There are no AUX buffer bitplanes, so t he value of the
 implementation-dependent state variable AUX_BUFFERS is zero.

 Framebuffer objects are deleted by calling

 void DeleteFramebuffersEXT(sizei n, uint *fra mebuffers);

 <framebuffers> contains <n> names of framebuffe r objects to be
 deleted. After a framebuffer object is deleted , it has no
 attachments, and its name is again unused. If a framebuffer that is
 currently bound to the target FRAMEBUFFER_EXT i s deleted, it is as
 though BindFramebufferEXT had been executed wit h the <target> of
 FRAMEBUFFER_EXT and <framebuffer> of zero. Unu sed names in
 <framebuffers> are silently ignored, as is the value zero.

 The command

 void GenFramebuffersEXT(sizei n, uint *ids);

 returns <n> previously unused framebuffer objec t names in <ids>.
 These names are marked as used, for the purpose s of
 GenFramebuffersEXT only, but they acquire state and type only when
 they are first bound, just as if they were unus ed.

 4.4.2 Attaching Images to Framebuffer Objects

 Framebuffer-attachable images may be attached t o, and detached from,
 application-created framebuffer objects. In co ntrast, the image
 attachments of the window-system-provided frame buffer may not be
 changed by the GL.

 A single framebuffer-attachable image may be at tached to multiple
 application-created framebuffer objects, potent ially avoiding some
 data copies, and possibly decreasing memory con sumption.

 For each logical buffer, the framebuffer object stores a set of
 state which defines the logical buffer's "attac hment point". The
 "attachment point" state contains enough inform ation to identify the
 single image attached to the attachment point, or to indicate that
 no image is attached. The per-logical buffer " attachment point"
 state is listed in table 5.nnn

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 609

 There are two types of framebuffer-attachable i mages: the image of a
 renderbuffer object, and an image of a texture object.

 4.4.2.1 Renderbuffer Objects

 A renderbuffer is a data storage object contain ing a single image of
 a renderable internal format. GL provides the methods described
 below to allocate and delete a renderbuffer's i mage, and to attach a
 renderbuffer's image to a framebuffer object.

 The name space for renderbuffer objects is the unsigned integers,
 with zero reserved for the GL. A renderbuffer object is created by
 binding an unused name to RENDERBUFFER_EXT. Th e binding is effected
 by calling

 void BindRenderbufferEXT(enum target, uint renderbuffer);

 with <target> set to RENDERBUFFER_EXT and <rend erbuffer> set to the
 unused name. If <renderbuffer> is not zero, th en the resulting
 renderbuffer object is a new state vector, init ialized with a
 zero-sized memory buffer, and comprising the st ate values listed in
 Table 8.nnn. Any previous binding to <target> is broken.

 BindRenderbufferEXT may also be used to bind an existing
 renderbuffer object. If the bind is successful , no change is made
 to the state of the newly bound renderbuffer ob ject, and any
 previous binding to <target> is broken.

 While a renderbuffer object is bound, GL operat ions on the target to
 which it is bound affect the bound renderbuffer object, and queries
 of the target to which a renderbuffer object is bound return state
 from the bound object.

 The name zero is reserved. A renderbuffer obje ct cannot be created
 with the name zero. If <renderbuffer> is zero, then any previous
 binding to <target> is broken and the <target> binding is restored
 to the initial state.

 In the initial state, the reserved name zero is bound to
 RENDERBUFFER_EXT. There is no renderbuffer obj ect corresponding to
 the name zero, so client attempts to modify or query renderbuffer
 state for the target RENDERBUFFER_EXT while zer o is bound will
 generate GL errors, as described in section 6.1 .3.

 Using GetIntegerv, the current RENDERBUFFER_EXT binding can be
 queried as RENDERBUFFER_BINDING_EXT.

 Renderbuffer objects are deleted by calling

 void DeleteRenderbuffersEXT(sizei n, const uint *renderbuffers);

 where <renderbuffers> contains n names of rende rbuffer objects to be
 deleted. After a renderbuffer object is delete d, it has no
 contents, and its name is again unused. If a r enderbuffer that is
 currently bound to RENDERBUFFER_EXT is deleted, it is as though
 BindRenderbufferEXT had been executed with the <target>
 RENDERBUFFER_EXT and <name> of zero. Additiona lly, special care

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 610

 must be taken when deleting a renderbuffer if t he image of the
 renderbuffer is attached to a framebuffer objec t. (See section
 4.4.2.2 for details). Unused names in <renderb uffers> are silently
 ignored, as is the value zero.

 The command

 void GenRenderbuffersEXT(sizei n, uint *re nderbuffers);

 returns <n> previously unused renderbuffer obje ct names in
 <renderbuffers>. These names are marked as use d, for the purposes
 of GenRenderbuffersEXT only, but they acquire r enderbuffer state
 only when they are first bound, just as if they were unused.

 The command

 void RenderbufferStorageEXT(enum target, en um internalformat,
 sizei width, si zei height);

 establishes the data storage, format, and dimen sions of a
 renderbuffer object's image. <target> must be RENDERBUFFER_EXT.
 <internalformat> must be color-renderable, dept h-renderable, or
 stencil-renderable (as defined in section 4.4.4). <width> and
 <height> are the dimensions in pixels of the re nderbuffer. If
 either <width> or <height> is greater than
 MAX_RENDERBUFFER_SIZE_EXT, the the error INVALI D_VALUE is generated.
 If the GL is unable to create a data store of t he requested size,
 the error OUT_OF_MEMORY is generated. Renderbuf ferStorageEXT deletes
 any existing data store for the renderbuffer an d the contents of the
 data store after calling RenderbufferStorageEXT are undefined.

 Sized Base S
 Internal Format Internal format Bits
 --------------- --------------- ----
 STENCIL_INDEX1_EXT STENCIL_INDEX 1
 STENCIL_INDEX4_EXT STENCIL_INDEX 4
 STENCIL_INDEX8_EXT STENCIL_INDEX 8
 STENCIL_INDEX16_EXT STENCIL_INDEX 16
 --- -------------------
 Table 2.nnn Desired component resolution for each sized intern al
 format that can be used only with renderbuffers .

 A GL implementation may vary its allocation of internal component
 resolution based on any RenderbufferStorage par ameter (except
 target), but the allocation and chosen internal format must not be a
 function of any other state and cannot be chang ed once they are
 established. The actual resolution in bits of each component of the
 allocated image can be queried with GetRenderbu fferParameteriv as
 described in section 6.1.3.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 611

 4.4.2.2 Attaching Renderbuffer Images to a Fram ebuffer

 A renderbuffer can be attached as one of the lo gical buffers of the
 currently bound framebuffer object by calling

 void FramebufferRenderbufferEXT(enum target ,
 enum attach ment,
 enum render buffertarget,
 uint render buffer);

 <target> must be FRAMEBUFFER_EXT. INVALID_OPER ATION is generated if
 the current value of FRAMEBUFFER_BINDING_EXT is zero when
 FramebufferRenderbufferEXT is called. <attachm ent> should be set to
 one of the attachment points of the framebuffer listed in table
 1.nnn. <renderbuffertarget> must be RENDERBUFF ER_EXT and
 <renderbuffer> should be set to the name of the renderbuffer object
 to be attached to the framebuffer. <renderbuff er> must be either
 zero or the name of an existing renderbuffer ob ject of type
 <renderbuffertarget>, otherwise INVALID_OPERATI ON is generated. If
 <renderbuffer> is zero, then the value of <rend erbuffertarget> is
 ignored.

 If <renderbuffer> is not zero and if Framebuffe rRenderbufferEXT is
 successful, then the renderbuffer named <render buffer> will be used
 as the logical buffer identified by <attachment > of the framebuffer
 currently bound to <target>. The value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT for the specified attachment
 point is set to RENDERBUFFER_EXT and the value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <renderbuffer>. All
 other state values of the attachment point spec ified by <attachment>
 are set to their default values listed in table 5.nnn. No change is
 made to the state of the renderbuffer object an d any previous
 attachment to the <attachment> logical buffer o f the framebuffer
 object bound to framebuffer <target> is broken. If, on the other
 hand, the attachment is not successful, then no change is made to
 the state of either the renderbuffer object or the framebuffer
 object.

 Calling FramebufferRenderbufferEXT with the <re nderbuffer> name zero
 will detach the image, if any, identified by <a ttachment>, in the
 framebuffer currently bound to <target>. All s tate values of the
 attachment point specified by <attachment> in t he object bound to
 <target> are set to their default values listed in table 5.nnn.

 If a renderbuffer object is deleted while its i mage is attached to
 one or more attachment points in the currently bound framebuffer,
 then it is as if FramebufferRenderbufferEXT() h ad been called, with
 a <renderbuffer> of 0, for each attachment poin t to which this image
 was attached in the currently bound framebuffer . In other words,
 this renderbuffer image is first detached from all attachment points
 in the currently bound framebuffer. Note that the renderbuffer
 image is specifically *not* detached from any n on-bound
 framebuffers. Detaching the image from any non -bound framebuffers
 is the responsibility of the application.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 612

 Name of attachment
 --- ---
 COLOR_ATTACHMENT0_EXT ... COLOR_ATTACHMENTn _EXT (where n is from 0 to MAX_COLOR_ATTACHMENTS_EX T-1)
 DEPTH_ATTACHMENT_EXT
 STENCIL_ATTACHMENT_EXT
 --- ---
 Table 1.nnn: "List of framebuffer attachment points"

 4.4.2.3 Attaching Texture Images to a Framebuff er

 GL supports copying the rendered contents of th e framebuffer into
 the images of a texture object through the use of the routines
 CopyTexImage{1D|2D}, and CopyTexSubImage{1D|2D| 3D}. Additionally,
 GL supports rendering directly into the images of a texture object.

 To render directly into a texture image, a spec ified image from a
 texture object can be attached as one of the lo gical buffers of the
 currently bound framebuffer object by calling o ne of the following
 routines, depending on the type of the texture:

 void FramebufferTexture1DEXT(enum target, e num attachment,
 enum textarget , uint texture,
 int level);
 void FramebufferTexture2DEXT(enum target, e num attachment,
 enum textarget , uint texture,
 int level);
 void FramebufferTexture3DEXT(enum target, e num attachment,
 enum textarget , uint texture,
 int level, int zoffset);

 In all three routines, <target> must be FRAMEBU FFER_EXT.
 INVALID_OPERATION is generated if the current v alue of
 FRAMEBUFFER_BINDING_EXT is zero when Framebuffe rTexture{1D|2D|3D}EXT
 is called. <attachment> must be one of the att achment points of the
 framebuffer listed in table 1.nnn.

 In all three routines, if <texture> is zero, th en <textarget>,
 <level>, and <zoffset> are ignored. If <textur e> is not zero, then
 <texture> must either name an existing texture object with an target
 of <textarget>, or <texture> must name an exist ing cube map texture
 and <textarget> must be one of: TEXTURE_CUBE_MA P_POSITIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z. Otherwise, GL_INV ALID_OPERATION is
 generated.

 <level> specifies the mipmap level of the textu re image to be
 attached to the framebuffer.

 If <textarget> is TEXTURE_RECTANGLE_ARB, then < level> must be zero.
 If <textarget> is TEXTURE_3D, then <level> must be greater than or
 equal to zero and less than or equal to log bas e 2 of
 MAX_3D_TEXTURE_SIZE. If <textarget> is one of
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, or TEXTURE_CUBE_MA P_NEGATIVE_Z, then
 <level> must be greater than or equal to zero a nd less than or equal

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 613

 to log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of
 <textarget>, <level> must be greater than or eq ual to zero and no
 larger than log base 2 of MAX_TEXTURE_SIZE. Ot herwise,
 INVALID_VALUE is generated.

 <zoffset> specifies the z-offset of a 2-dimensi onal image within a
 3-dimensional texture. INVALID_VALUE is genera ted if <zoffset> is
 larger than MAX_3D_TEXTURE_SIZE-1.

 For FramebufferTexture1DEXT, if <texture> is no t zero, then
 <textarget> must be TEXTURE_1D.

 For FramebufferTexture2DEXT, if <texture> is no t zero, then
 <textarget> must be one of: TEXTURE_2D, TEXTURE _RECTANGLE_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, or TEXTURE_CUBE_MA P_NEGATIVE_Z.

 For FramebufferTexture3DEXT, if <texture> is no t zero, then
 <textarget> must be TEXTURE_3D.

 If <texture> is not zero, and if FramebufferTex ture{1D|2D|3D}EXT is
 successful, then the specified texture image wi ll be used as the
 logical buffer identified by <attachment> of th e framebuffer
 currently bound to <target>. The value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT for the specified attachment
 point is set to TEXTURE and the value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <texture>.
 Additionally, the value of FRAMEBUFFER_ATTACHME NT_TEXTURE_LEVEL for
 the named attachment point is set to <level>. If <texture> is a
 cubemap texture then, the value of
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE the named attachment
 point is set to <textarget>. If <texture> is a 3D texture, then the
 value of FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFF SET for the named
 attachment point is set to <zoffset>. All othe r state values of the
 attachment point specified by <attachment> are set to their default
 values listed in table 5.nnn. No change is mad e to the state of the
 texture object, and any previous attachment to the <attachment>
 logical buffer of the framebuffer object bound to framebuffer
 <target> is broken. If, on the other hand, the attachment is not
 successful, then no change is made to the state of either the
 texture object or the framebuffer object.

 Calling FramebufferTexture{1D|2D|3D}EXT with <t exture> name zero
 will detach the image identified by <attachment >, if any, in the
 framebuffer currently bound to <target>. All s tate values of the
 attachment point specified by <attachment> are set to their default
 values listed in table 5.nnn.

 If a texture object is deleted while its image is attached to one or
 more attachment points in the currently bound f ramebuffer, then it
 is as if FramebufferTexture{1D|2D|3D}EXT() had been called, with a
 <texture> of 0, for each attachment point to wh ich this image was
 attached in the currently bound framebuffer. I n other words, this
 texture image is first detached from all attach ment points in the
 currently bound framebuffer. Note that the tex ture image is
 specifically *not* detached from any other fram ebuffer objects.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 614

 Detaching the texture image from any other fram ebuffer objects is
 the responsibility of the application.

 4.4.3 Rendering When an Image of a Bound Textu re Object is Also
 Attached to the Framebuffer

 Special precautions need to be taken to avoid a ttaching a texture
 image to the currently bound framebuffer while the texture object is
 currently bound and enabled for texturing. Doi ng so could lead to
 the creation of a "feedback loop" between the w riting of pixels by
 the GL's rendering operations and the simultane ous reading of those
 same pixels when used as texels in the currentl y bound texture. In
 this scenario, the framebuffer will be consider ed framebuffer
 complete (see section 4.4.4), but the values of fragments rendered
 while in this state will be undefined. The val ues of texture
 samples may be undefined as well, as described in section 3.8.8.

 Specifically, the values of rendered fragments are undefined if all
 of the following conditions are true:

 - an image from texture object <T> is attac hed to the currently
 bound framebuffer at attachment point <A> , and

 - the texture object <T> is currently bound to a texture unit
 <U>, and

 - the current fixed-function texture state or programmable
 vertex and/or fragment processing state m akes it possible(*)
 to sample from the texture object <T> bou nd to texture unit
 <U>

 while either of the following conditions are tr ue:

 - the value of TEXTURE MIN FILTER for textu re object <T> is
 NEAREST or LINEAR, and the value of
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT for attachment point
 <A> is equal to the value of TEXTURE_BASE _LEVEL for the
 texture object <T>, or

 - the value of TEXTURE_MIN_FILTER for textu re object <T> is one
 of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP LINEAR, LINEAR
 MIPMAP_NEAREST, or LINEAR_MIPMAP_LINEAR, and the value of
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT for attachment point
 <A> is within the the range specified by the current values of
 TEXTURE_BASE_LEVEL to q, inclusive, for t he texture object
 <T>. (q is defined in the Mipmapping dis cussion of section
 3.8.8),

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 615

 (*) For the purpose of this discussion, we cons ider it "possible"
 to sample from the texture object <T> boun d to texture unit <U>"
 if any of the following are true:

 - programmable vertex and fragment processi ng is disabled
 and the target of texture object <T> is e nabled according
 to the texture target precedence rules of section 3.8.15,
 or
 - if FRAGMENT_PROGRAM_ARB is enabled and th e currently bound
 fragment program contains any instruction s that
 sample from the texture object <T> bound to <U>,
 or
 - if the active fragment or vertex shader c ontains
 any instructions that might sample from t he texture object <T> bound
 to <U> if even those instructions might o nly be executed
 conditionally.

 Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX _LEVEL exclude any
 levels containing image(s) attached to the curr ently bound
 framebuffer, then the above conditions will not be met, (i.e., the
 above rule will not cause the values of rendere d fragments to be
 undefined.)

 4.4.4 Framebuffer Completeness

 A framebuffer object is said to be "framebuffer complete" if all of
 its attached images, and all framebuffer parame ters required to
 utilize the framebuffer for rendering and readi ng, are consistently
 defined and meet the requirements defined below . The rules of
 framebuffer completeness are dependent on the p roperties of the
 attached images, and on certain implementation dependent
 restrictions. A framebuffer must be complete t o effectively be used
 as the destination for GL framebuffer rendering operations and the
 source for GL framebuffer read operations.

 The internal formats of the attached images can affect the
 completeness of the framebuffer, so it is usefu l to first define the
 relationship between the internal format of an image and the
 attachment points to which it can be attached.

 * The following base internal formats from table 3.15 are
 "color-renderable": RGB, RGBA, FLOAT_R_NV , FLOAT_RG_NV,
 FLOAT_RGB_NV, and FLOAT_RGBA_NV. The siz ed internal formats
 from table 3.16 that have a color-rendera ble base internal
 format are also color-renderable. No oth er formats, including
 compressed internal formats, are color-re nderable.

 * An internal format is "depth-renderable" if it is
 DEPTH_COMPONENT, or if it is one of the s ized internal formats
 from table 3.16 that has a depth-renderab le base internal
 format. No other formats are depth-rende rable.

 * An internal format is "stencil-renderable " if it is
 STENCIL_INDEX, or if it is one of the siz ed internal formats
 from table 2.nnn that has a stencil-rende rable base internal
 format. No other formats are stencil-ren derable.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 616

 4.4.4.1 Framebuffer Attachment Completeness

 If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_T YPE_EXT for the
 framebuffer attachment point <attachment> is no t NONE, then it is
 said that a framebuffer-attachable image, named <image>, is attached
 to the framebuffer at the attachment point. <i mage> is identified
 by the state in <attachment> as described in se ction 4.4.2.

 The framebuffer attachment point <attachment> i s said to be
 "framebuffer attachment complete" if the value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT for <att achment> is NONE
 (i.e., no image is attached), or if all of the following conditions
 are true:

 * <image> is a component of an existing objec t with the name
 specified by FRAMEBUFFER_ATTACHMENT_OBJECT_ NAME_EXT, and of the
 type specified by FRAMEBUFFER_ATTACHMENT_OB JECT_TYPE_EXT.

 * The width and height of <image> must be non -zero.

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a 3-dimensional
 texture, then FRAMEBUFFER_ATTACHMENT_TEXTUR E_ZOFFSET_EXT must be
 smaller than the depth of the texture.

 * If <attachment> is one of COLOR_ATTACHMENT0 _EXT through
 COLOR_ATTACHMENTn_EXT, then <image> must ha ve a color-renderable
 internal format.

 * If <attachment> is DEPTH_ATTACHMENT_EXT, th en <image> must have
 a depth-renderable internal format.

 * If <attachment> is STENCIL_ATTACHMENT_EXT, then <image> must
 have a stencil-renderable internal format.

 4.4.4.2 Framebuffer Completeness

 In this subsection, each rule is followed by an error enum enclosed
 in { brackets }. Sections 4.4.4.2 and 4.4.4.3 explains the
 relevance of the error enums.

 The framebuffer object <target> is said to be " framebuffer complete"
 if it is the window-system-provided framebuffer , or if all the
 following conditons are true:

 * All framebuffer attachment points are "fram ebuffer attachment
 complete".
 { FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT }

 * There is at least one image attached to the framebuffer.
 { FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT _EXT }

 * All attached images have the same width and height.
 { FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT }

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 617

 * All images attached to the attachment point s
 COLOR_ATTACHMENT0_EXT through COLOR_ATTACHM ENTn_EXT must have
 the same internal format.
 { FRAMEBUFFER_INCOMPLETE_FORMATS_EXT }

 * The value of FRAMEBUFFER_ATTACHMENT_OBJECT_ TYPE_EXT must not be
 NONE for any color attachment point(s) name d by DRAW_BUFFERi.
 { FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT }

 * If READ_BUFFER is not NONE, then the value of
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT must not be NONE for the
 color attachment point named by READ_BUFFER .
 { FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT }

 * The combination of internal formats of the attached
 images does not violate an implementation-d ependent set of
 restrictions.
 { FRAMEBUFFER_UNSUPPORTED_EXT }

 The enum in { brackets } after each clause of t he framebuffer
 completeness rules specifies the return value o f
 CheckFramebufferStatusEXT (see below) that is g enerated when that
 clause is violated. If more than one clause is violated, it is
 implementation-dependent exactly which enum wil l be returned by
 CheckFramebufferStatusEXT.

 Performing any of the following actions may cha nge whether the
 framebuffer is considered complete or incomplet e.

 - Binding to a different framebuffer with Bin dFramebufferEXT.

 - Attaching an image to the framebuffer with
 FramebufferTexture{1D|2D|3D}EXT or Framebuf ferRenderbufferEXT.

 - Detaching an image from the framebuffer wit h
 FramebufferTexture{1D|2D|3D}EXT or Framebuf ferRenderbufferEXT.

 - Changing the width, height, or internal for mat of a texture
 image that is attached to the framebuffer b y calling
 {Copy|Compressed}TexImage{1D|2D|3D}.

 - Changing the width, height, or internal for mat of a renderbuffer
 that is attached to the framebuffer by call ing
 RenderbufferStorageEXT.

 - Deleting, with DeleteTextures or DeleteRend erbuffers, an object
 containing an image that is attached to a f ramebuffer object
 that is bound to the framebuffer.

 - Changing READ_BUFFER or one of the DRAW_BUF FERS.

 Although GL defines a wide variety of internal formats for
 framebuffer-attachable images, such as texture images and
 renderbuffer images, some implementations may n ot support rendering
 to particular combinations of internal formats. If the combination
 of formats of the images attached to a framebuf fer object are not
 supported by the implementation, then the frame buffer is not

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 618

 complete under the clause labeled FRAMEBUFFER_U NSUPPORTED_EXT. There
 must exist, however, at least one combination o f internal formats
 for which the framebuffer cannot be FRAMEBUFFER _UNSUPPORTED_EXT.

 Because of the "implementation-dependent" claus e of the framebuffer
 completeness test in particular, and because fr amebuffer
 completeness can change when the set of attache d images is modified,
 it is strongly advised, though is not required, that an application
 check to see if the framebuffer is complete pri or to rendering. The
 status of the framebuffer object currently boun d to <target> can be
 queried by calling

 enum CheckFramebufferStatusEXT(enum target) ;

 If <target> is not FRAMEBUFFER_EXT, INVALID_ENU M is generated. If
 CheckFramebufferStatusEXT is called within a Be gin/End pair,
 INVALID_OPERATION is generated. If CheckFrameb ufferStatusEXT
 generates an error, 0 is returned.

 Otherwise, an enum is returned that identifies whether
 or not the framebuffer bound to <target> is com plete, and if not
 complete the enum identifies one of the rules o f framebuffer
 completeness that is violated. If the framebuf fer is complete, then
 FRAMEBUFFER_COMPLETE_EXT is returned.

 4.4.4.3 Effects of Framebuffer Completeness on Framebuffer Operations

 If the currently bound framebuffer is not frame buffer complete, then
 it is an error to attempt to use the framebuffe r for writing or
 reading. This means that rendering commands su ch as Begin,
 RasterPos, any command that performs an implici t Begin, as well as
 commands that read the framebuffer such as Read Pixels and
 CopyTex{Sub}Image will generate the error
 INVALID_FRAMEBUFFER_OPERATION_EXT if called whi le the framebuffer is
 not framebuffer complete.

 4.4.5 Effects of Framebuffer State on Framebuff er Dependent Values

 The values of the state variables listed in tab le 9.nnn (Framebuffer
 Dependent Values) may change when a change is m ade to
 FRAMEBUFFER_BINDING_EXT, to the state of the cu rrently bound
 framebuffer object, or to an image attached to the currently bound
 framebuffer object.

 When FRAMEBUFFER_BINDING_EXT is zero, the value s of the state
 variables listed in table 9.nnn are implementat ion defined.

 When FRAMEBUFFER_BINDING_EXT is non-zero, if th e currently bound
 framebuffer object is not framebuffer complete, then the values of
 the state variables listed in table 9.nnn are u ndefined.

 When FRAMEBUFFER_BINDING_EXT is non-zero and th e currently bound
 framebuffer object is framebuffer complete, the n the values of the
 state variables listed in table 9.nnn are compl etely determined by
 FRAMEBUFFER_BINDING_EXT, the state of the curre ntly bound
 framebuffer object, and the state of the images attached to the
 currently bound framebuffer object.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 619

XXX [from jon leech] describe derivation of red gre en and blue size

 4.4.6 Mapping between Pixel and Element in Atta ched Image

 When FRAMEBUFFER_BINDING_EXT is non-zero, an op eration that writes
 to the framebuffer modifies the image attached to the selected
 logical buffer, and an operation that reads fro m the framebuffer
 reads from the image attached to the selected l ogical buffer.

 If the attached image is a renderbuffer image, then the window
 coordinates (x[w], y[w]) corresponds to the val ue in the
 renderbuffer image at the same coordinates.

 If the attached image is a texture image, then the window
 coordinates (x[w], y[w]) correspond to the texe l (i, j, k), from
 figure 3.10, as follows:

 i = (x[w] - b)

 j = (y[w] - b)

 k = (zoffset - b)

 where b is the texture image's border width, an d zoffset is the
 value of FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFF SET for the selected
 logical buffer. For a two-dimensional texture, k and zoffset are
 irrelevant; for a one-dimensional texture, j, k , and zoffset are
 both irrelevant.

 (x[w], y[w]) corresponds to a border texel if x [w] or y[w] or
 zoffset is less than the border size, or if x[w] or y[w] or zoffset
 is greater than the border size plus the width or height or depth,
 resp., of the texture image.

 Conversion to Framebuffer-Attachable Image Comp onents

 When an enabled color value is written to the f ramebuffer while
 FRAMEBUFFER_BINDING is non-zero, for each draw buffer the R, G, B,
 and A values are converted to internal componen ts as described in
 table 3.15, according to the table row correspo nding to the internal
 format of the framebuffer-attachable image atta ched to the selected
 logical buffer, and the resulting internal comp onents are written to
 the image attached to logical buffer. The mask ing operations
 described in section 4.2.2 are also effective.

 Conversion to RGBA Values

 When a color value is read or is used as the so urce of a logical
 operation or blending, while FRAMEBUFFER_BINDIN G is non-zero, the
 components of the framebuffer-attachable image that is attached to
 the logical buffer selected by READ_BUFFER are first converted to R,
 G, B, and A values according to table 3.21 and the internal format
 of the attached image."

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 620

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 Added to section 5.4, as part of the discussion of which commands
 are not compiled into display lists:

 "Certain commands, when called while compiling a display list, are
 not compiled into the display list but are exec uted immediately.
 These are: ..., GenFramebuffersEXT, BindFramebu fferEXT,
 DeleteFramebuffersEXT, CheckFramebufferStatusEX T,
 GenRenderbuffersEXT, BindRenderbufferEXT, Delet eRenderbuffersEXT,
 RenderbufferStorageEXT, FramebufferTexture1DEXT ,
 FramebufferTexture2DEXT, FramebufferTexture3DEX T,
 FramebufferRenderbufferEXT, GenerateMipmapEXT.. ."

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and State
Requests)

 Add to section 6.1.3, Enumerated Queries:

 In the list of state query functions, add:

 "void GetFramebufferAttachmentParameterivEX T(enum target,
 enum attachment,
 enum pname,
 int *params);

 <target> must be FRAMEBUFFER_EXT. <att achment> must be one
 of the attachment points of the framebu ffer listed in table
 1.nnn. <pname> must be one of the foll owing:
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT,
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT,
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EX T,
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP _FACE_EXT,
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFS ET_EXT.

 If the framebuffer currently bound to < target> is zero, then
 INVALID_OPERATION is generated.

 Upon successful return from
 GetFramebufferAttachmentParameterivEXT, if <pname> is
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT, then param will
 contain one of NONE, TEXTURE, or RENDER BUFFER_EXT,
 identifying the type of object which co ntains the attached
 image.

 If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE_EXT is
 RENDERBUFFER_EXT, then

 If <pname> is FRAMEBUFFER_ATTACHMEN T_OBJECT_NAME_EXT,
 <params> will contain the name of t he renderbuffer
 object which contains the attached image.

 Otherwise, INVALID_ENUM is generate d.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 621

 If the value of FRAMEBUFFER_ATTACHMENT_ OBJECT_TYPE_EXT is
 TEXTURE, then

 If <pname> is FRAMEBUFFER_ATTACHMEN T_OBJECT_NAME_EXT,
 then <params> will contain the name of the texture
 object which contains the attached image.

 If <pname> is FRAMEBUFFER_ATTACHMEN T_TEXTURE_LEVEL_EXT,
 then <params> will contain the mipm ap level of the
 texture object which contains the a ttached image.

 If <pname> is
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE _MAP_FACE_EXT and the
 texture object named
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_ EXT is a cube map
 texture, then <params> will contain the cube map face of
 the cubemap texture object which co ntains the attached
 image. Otherwise <params> will con tain the value zero.

 If <pname> is
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_Z OFFSET_EXT and the
 texture object named
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_ EXT is a
 3-dimensional texture, then <params > will contain the
 zoffset of the 2D image of the 3D t exture object which
 contains the attached image. Other wise <params> will
 contain the value zero.

 Otherwise, INVALID_ENUM is generate d.

 void GetRenderbufferParameterivEXT(enum tar get, enum pname,
 int* par ams);

 <target> must be RENDERBUFFER_EXT. <pn ame> must be one of
 the symbolic values in table 8.nnn.

 If the renderbuffer currently bound to <target> is zero,
 then INVALID_OPERATION is generated.

 Upon successful return from GetRenderbu fferParameterivEXT,
 if <pname> is RENDERBUFFER_WIDTH_EXT,
 RENDERBUFFER_HEIGHT_EXT, or
 RENDERBUFFER_INTERNAL_FORMAT_EXT, then <params> will contain
 the width in pixels, height in pixels, or internal format,
 respectively, of the image of the rende rbuffer currently
 bound to <target>.

 Upon successful return from GetRenderbu fferParameterivEXT,
 if <pname> is RENDERBUFFER_RED_SIZE_EXT ,
 RENDERBUFFER_GREEN_SIZE_EXT, RENDERBUFF ER_BLUE_SIZE_EXT,
 RENDERBUFFER_ALPHA_SIZE_EXT, RENDERBUFF ER_DEPTH_SIZE_EXT, or
 RENDERBUFFER_STENCIL_SIZE_EXT, then <pa rams> will contain
 the actual resolutions, (not the resolu tions specified when
 the image array was defined), for the r ed, green, blue,
 alpha depth, or stencil components, res pectively, of the
 image of the renderbuffer currently bou nd to <target>.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 622

 Otherwise, INVALID_ENUM is generated."

 After section 6.1.13 and before section 6.1.14 (which should be
 renumbered 6.1.16), add two new sections:

 6.1.14 Framebuffer Object Queries

 The command

 boolean IsFramebufferEXT(uint framebuf fer);

 returns TRUE if <framebuffer> is the name o f an framebuffer
 object. If <framebuffer> is zero, or if <f ramebuffer> is a
 non-zero value that is not the name of an f ramebuffer object,
 IsFramebufferEXT return FALSE.

 6.1.15 Renderbuffer Object Queries

 The command

 boolean IsRenderbufferEXT(uint renderb uffer);

 returns TRUE if <renderbuffer> is the name of a renderbuffer
 object. If <renderbuffer> is zero, or if < renderbuffer> is a
 non-zero value that is not the name of a re nderbuffer object,
 IsRenderbufferEXT return FALSE.

Errors

 The error INVALID_OPERATION is generated if FRA MEBUFFER_BINDING_EXT
 is zero and DrawBuffer or DrawBuffers is called with a <buf>
 constant (other than NONE) that does not corres pond to a buffer
 allocated to the GL by the window-system, inclu ding the constants
 COLOR_ATTACHMENT0_EXT through COLOR_ATTACHMENTn_EXT, where n is
 MAX_COLOR_ATTACHMENTS_EXT - 1.

 The error INVALID_OPERATION is generated if FRA MEBUFFER_BINDING_EXT
 is non-zero and DrawBuffer, DrawBuffers, or Rea dBuffer is called
 with a <buf> constant (other than NONE) that is not in the range
 COLOR_ATTACHMENT0_EXT through COLOR_ATTACHMENTn_EXT, where n is
 MAX_COLOR_ATTACHMENTS_EXT - 1.

 The error INVALID_ENUM is generated if DrawBuff er or ReadBuffer is
 called with a <buf> constant that is not listed in table 4.4 or
 10.nnn.

 The error INVALID_ENUM is generated if DrawBuff ers is called with a
 <buf> constant that is not listed in table 10.n nn or 11.nnn.

 The error INVALID_FRAMEBUFFER_OPERATION_EXT is generated if the
 value of FRAMEBUFFER_STATUS_EXT is not FRAMEBUF FER_COMPLETE_EXT when
 any attempts to render to or read from the fram ebuffer are made.

 The error INVALID_OPERATION is generated if
 GetFramebufferAttachmentParameterivEXT is calle d while the value of
 FRAMEBUFFER_BINDING_EXT is zero.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 623

 The error INVALID_OPERATION is generated if
 FramebufferRenderbufferEXT or FramebufferTextur e{1D|2D|3D}EXT is
 called while the value of FRAMEBUFFER_BINDING_ EXT is zero.

 The error INVALID_OPERATION is generated if Ren derbufferStorageEXT
 or GetRenderbufferParameterivEXT is called whil e the value of
 RENDERBUFFER_BINDING_EXT is zero.

 The error INVALID_ENUM is generated if
 GetFramebufferAttachmentParameterivEXT is calle d with an
 <attachment> other than COLOR_ATTACHMENT0_EXT t hrough
 COLOR_ATTACHMENTn_EXT, where n is MAX_COLOR_ATT ACHMENTS_EXT - 1.

 The error INVALID_ENUM is generated if
 GetFramebufferAttachmentParameterivEXT is calle d with a <pname>
 other than FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_E XT when the type of
 the attached object at the named attachment poi nt is
 RENDERBUFFER_EXT.

 The error INVALID_ENUM is generated if
 GetFramebufferAttachmentParameterivEXT is calle d with a <pname>
 other than FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_E XT,
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT,
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE_EXT, or
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT when the type of the
 attached object at the named attachment point i s TEXTURE.

 The error INVALID_ENUM is generated if GetRende rbufferParameterivEXT
 is called with a <pname> other than RENDERBUFFE R_WIDTH_EXT,
 RENDERBUFFER_HEIGHT_EXT, or RENDERBUFFER_INTERN AL_FORMAT_EXT,
 GL_RENDERBUFFER_RED_SIZE, GL_RENDERBUFFER_GREEN_SIZE,
 GL_RENDERBUFFER_BLUE_SIZE, GL_RENDERBUFFER_ALPHA_SIZE,
 GL_RENDERBUFFER_DEPTH_SIZE, or GL_RENDERBUFFER_ STENCIL_SIZE.

 The error INVALID_VALUE is generated if Renderb ufferStorageEXT is
 called with a <width> or <height> that is great er than
 MAX_RENDERBUFFER_SIZE_EXT.

 The error INVALID_ENUM is generated if Renderbu fferStorageEXT is
 called with an <internalformat> that is not RGB , RGBA,
 DEPTH_COMPONENT, STENCIL_INDEX, or one of the i nternal formats from
 table 3.16 or table 2.nnn that has a base inter nal format of RGB,
 RGBA, DEPTH_COMPONENT, or STENCIL_INDEX.

 The error INVALID_OPERATION is generated if
 FramebufferRenderbufferEXT is called and <rende rbuffer> is not the
 name of a renderbuffer object.

 The error INVALID_OPERATION is generated if
 FramebufferTexture{1D|2D|3D}EXT is called and < texture> is not the
 name of a texture object.

 The error INVALID_VALUE is generated if
 FramebufferTexture{1D|2D|3D}EXT is called with a <level> that is
 less than zero.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 624

 The error INVALID_VALUE is generated if Framebu fferTexture2DEXT is
 called with a <level> that is not zero and <tex target> is
 TEXTURE_RECTANGLE_ARB.

 The error INVALID_VALUE is generated if Framebu fferTexture{1D|2D}EXT
 is called with a <level> that is greater than t he log base 2 of
 MAX_TEXTURE_SIZE and <texture> is a 1D or 2D te xture.

 The error INVALID_VALUE is generated if Framebu fferTexture2DEXT
 is called with a <level> that is greater than t he log base 2 of
 MAX_CUBE_MAP_TEXTURE_SIZE and <texture> is a cu bemap texture.

 The error INVALID_VALUE is generated if Framebu fferTexture3DEXT is
 called with a <level> greater than the log base 2 of the
 MAX_3D_TEXTURE_SIZE.

 The error INVALID_VALUE is generated if Framebu fferTexture3DEXT is
 called with a <zoffset> that is larger than MAX _3D_TEXTURE_SIZE-1.

 The error INVALID_ENUM is generated if CheckFra mebufferStatusEXT is
 called and <target> is not FRAMEBUFFER_EXT.

 The error INVALID_OPERATION is generated if
 CheckFramebufferStatusEXT is called within a Be gin/End pair.

 The error OUT_OF_MEMORY is generated if the GL is unable to create a
 data store of the required size when calling Re nderbufferStorageEXT.

 The error INVALID_OPERATION is generated if Gen erateMipmapEXT is
 called with a <target> of TEXTURE_CUBE_MAP and the texture object
 currently bound to TEXTURE_CUBE_MAP is not "cub e complete" as
 defined in section 3.8.10

New State

 (add new table 3.nnn, "Framebuffer (state per f ramebuffer target binding
 point)")

 Get Value Type Get Command Initial Value Desc ription Section Attribute
 ------------------------------- ------ ---- --------- -------------- ---- ---------------- ------------ ---------
 FRAMEBUFFER_BINDING_EXT Z GetI ntegerv 0 name of framebuffer 4.4.1 -
 obje ct bound to
 FRAM EBUFFER_EXT
 targ et

 (insert new table 4.nnn, "Framebuffer (state pe r framebuffer object)")

 Get Value Type Get Command Initial Value Description Sectio n Attribute
 ---------------- ------ ------------- ------------- -------------------- ------ ------ ---------
 DRAW_BUFFERi [1] 1 + xZ(10*) GetIntegerv see 4.2.1 draw buffer selected 4.2.1 color-buffer
 for color output i
 READ_BUFFER [2] Z(3) GetIntegerv see 4.3.2 read source 4.3.2 pixel

 [1] prior to this extension, the DRAW_BUFFE Ri state was described in
 table 6.21 "Framebuffer Control" (of Op enGL 2.0 spec)
 [2] prior to this extension, the READ_BUFFE R state was described in
 table 6.26 "Pixel" (of OpenGL 2.0 spec)

 (insert new table 5.nnn, "Framebuffer (state pe r framebuffer object
attachment point)")

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 625

 Get Value Type Get Command Initial Value Description Section Attribute
 ------------------------------- ------ ------------- ------------- -------------------- ---------- -- --------
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT Z GetFramebufferAttachmentParameterivEXT NONE type of 4.4.2.2 an d -
 image attached to 4.4.2.3
 framebuffer attachment
 point

 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT Z GetFramebufferAttachmentParameterivEXT 0 name of object 4.4.2.2 an d -
 attached to 4.4.2.3
 framebuffer attachment
 point

 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL_EXT Z GetFramebufferAttachmentParameterivEXT 0 mipmap level of 4.4.2.2 an d -
 texture image 4.4.2.3
 attached, if object
 attached is texture.

 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE_EXT Z+ GetFramebufferAttachmentParameterivEXT TEXTURE_ cubemap face of 4.4.2.2 an d -
 CUBE_MAP_ texture image 4.4.2.3
 POSITIVE_X attached, if object
 attached is cubemap
 texture.

 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT Z GetFramebufferAttachmentParameterivEXT 0 zoffset of 4.4.2.2 an d -
 texture image 4.4.2.3
 attached, if object
 attached is 3D
 texture.

 (insert new table 7.nnn, "Renderbuffers (state per renderbuffer target and
binding point)")

 Get Value Type Get Command Initial Value Description Section Attribute
 ------------------------------- ------ ---- --------- ------------- -------------------- ------------ ---------
 RENDERBUFFER_BINDING_EXT Z GetI ntegerv 0 renderbuffer object 4.4.2.1 -
 bound to
 RENDERBUFFER_EXT

 (insert new table 8.nnn, "Renderbuffers (state per renderbuffer object)")

 Get Value Type Get Command Initial Value Descripti on Section Attribute
 ------------------------------- ------ ---- --------- ------------- --------- ----------- ------------ ---------
 RENDERBUFFER_WIDTH_EXT Z GetR enderbufferParameterivEXT 0 width of renderbuffer 4.4.2.1 -

 RENDERBUFFER_HEIGHT_EXT Z GetR enderbufferParameterivEXT 0 height of renderbuffer 4.4.2.1 -

 RENDERBUFFER_INTERNAL_FORMAT_EXT Z+ GetR enderbufferParameterivEXT RGBA internal format 4.4.2.1 -
 of render buffer

 RENDERBUFFER_RED_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 red compo nent

 RENDERBUFFER_GREEN_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 green com ponent

 RENDERBUFFER_BLUE_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 blue comp onent

 RENDERBUFFER_ALPHA_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 alpha com ponent

 RENDERBUFFER_DEPTH_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 depth com ponent

 RENDERBUFFER_STENCIL_SIZE_EXT Z GetR enderbufferParameterivEXT 0 size in b its of 4.4.2.1 -
 renderbuf fer image's
 stencil c omponent

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 626

Move the following existing state from "Implementat ion Dependent
Values", tables 6.31-6.36 to into a new table calle d "Framebuffer
Dependent Values", table 9.nnn.

 Get Value

 AUX_BUFFERS
 MAX_DRAW_BUFFERS
 RGBA_MODE
 INDEX_MODE
 DOUBLEBUFFER
 STEREO
 SAMPLE_BUFFERS
 SAMPLES
 RED_BITS
 GREEN_BITS
 BLUE_BITS
 ALPHA_BITS
 DEPTH_BITS
 STENCIL_BITS
 ACCUM_RED_BITS
 ACCUM_GREEN_BITS
 ACCUM_BLUE_BITS
 ACCUM_ALPHA_BITS
 STENCIL_REF

To the same table called "Framebuffer Dependent Val ues", table 9.nnn
add the following new framebuffer dependent state.

 Get Value Type Get Command Minimum Value Description Section Attribute
 --------- ---- ----------- ------------- ------------------- ------- ---------
 MAX_COLOR_ATTACHMENTS_EXT Z+ GetIntegerv 1 Maximum number of 4.4.2.2 -
 attachment points
 for color buffers
 when using framebuffer
 objects

New Implementation Dependent State

 Get Value Type Get Command Minimum Value Description Section Attribute
 --------- ---- ----------- ------------- ------------------- ------- ---------
 MAX_RENDERBUFFER_SIZE_EXT Z+ GetIntegerv 1 Maximum width and 4.4.2.1 -
 height of
 renderbuffers
 supported by
 the implementation

Additions to the AGL/GLX/WGL Specifications and dep endencies on
WGL_ARB_make_current_read, GLX_SGI_make_current_rea d, and GLX 1.3

 The color, depth, stencil, aux, and accum logic al buffers defined by
 the <draw> and <read> drawables passed to glXMa keContextCurrent,
 glXMakeCurrent, and glXMakeCurrentRead are igno red while the value
 of FRAMEBUFFER_BINDING_EXT is non-zero.

Dependencies on ATI_draw_buffers and ARB_draw_buffe rs

 If neither ATI_draw_buffers nor ARB_draw_buffer s are supported, then
 all discussions of DrawBuffers should be ignore d.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 627

 In addition, the language describing DrawBuffer s are derived from a
 combination of the ARB_draw_buffers specificati on and section 4.2.1
 of the OpenGL 2.0 specification.

Dependencies on ARB_fragment_program, ARB_fragment_ shader, and
ARB_vertex_shader

 If ARB_fragment_program, ARB_fragment_shader, a nd ARB_vertex_shader
 are all not supported, then all references to t he currently bound
 program or shader should be ignored.

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, then all references to
 TEXTURE_RECTANGLE_ARB should be ignored.

Dependencies on EXT_packed_depth_stencil

 If EXT_packed_depth_stencil is not supported, t hen all references to
 DEPTH_STENCIL internal formats should be ignore d.

Dependencies on NV_float_buffer

 If NV_float_buffer is not supported, then all r eferences to the
 following internal formats should be ignored: F LOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, and FLOAT_RGBA_NV.

Dependencies on NV_texture_shader

 The following base internal formats are not col or-renderable,
 depth-renderable, or stencil-renderable: HILO_N V, DSDT_NV,
 DSDT_MAG_NV, and DSDT_MAG_INTENSITY_NV.

GLX Protocol

 Seventeen new GL commands are added.

 The following ten rendering commands are se nt to the sever as part
 of a glXRender request:

 BindRenderbufferEXT
 2 12 rendering comm and length
 2 4316 rendering comm and opcode
 4 ENUM target
 4 CARD32 renderbuffer

 DeleteRenderbufferEXT
 2 8+n*4 rendering comm and length
 2 4317 rendering comm and opcode
 4 CARD32 n
 n*4 LISTofCARD32 renderbuffers

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 628

 RenderbufferStorageEXT
 2 20 rendering comm and length
 2 4318 rendering comm and opcode
 4 ENUM target
 4 ENUM internalFormat
 4 CARD32 width
 4 CARD32 height

 BindFramebufferEXT
 2 12 rendering comm and length
 2 4319 rendering comm and opcode
 4 ENUM target
 4 CARD32 framebuffer

 DeleteFramebufferEXT
 2 8+n*4 rendering comm and length
 2 4320 rendering comm and opcode
 4 CARD32 n
 n*4 LISTofCARD32 framebuffers

 FramebufferTexture1DEXT
 2 24 rendering comm and length
 2 4321 rendering comm and opcode
 4 ENUM target
 4 ENUM attachement
 4 ENUM textarget
 4 CARD32 texture
 4 CARD32 level

 FramebufferTexture2DEXT
 2 24 rendering comm and length
 2 4322 rendering comm and opcode
 4 ENUM target
 4 ENUM attachement
 4 ENUM textarget
 4 CARD32 texture
 4 CARD32 level

 FramebufferTexture3DEXT
 2 28 rendering comm and length
 2 4323 rendering comm and opcode
 4 ENUM target
 4 ENUM attachement
 4 ENUM textarget
 4 CARD32 texture
 4 CARD32 level
 4 CARD32 zoffset

 FramebufferRenderbufferEXT
 2 20 rendering comm and length
 2 4324 rendering comm and opcode
 4 ENUM target
 4 ENUM attachment
 4 ENUM renderbufferta rget
 4 CARD32 renderbuffer

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 629

 GenerateMipmapEXT
 2 8 rendering comm and length
 2 4325 rendering comm and opcode
 4 ENUM target

 The remaining seven commands are non-render ing commands. These
 commands are sent separately (i.e., not as part of a glXRender or
 glXRenderLarge request), using the glXVendo rPrivateWithReply
 request:

 IsRenderbufferEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 4 request length
 4 1422 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 renderbuffer
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 0 reply length
 4 BOOL32 return value
 20 unused

 GenRenderbuffersEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 4 request length
 4 1423 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 m reply length
 4 unused
 4 CARD32 n
 16 unused
 n*4 LISTofCARD32 renderbuffers

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 630

 GetRenderbufferParameterivEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 5 request length
 4 1424 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 m reply length, m = (n == 1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n = 1) this follows:

 4 CARD32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofCARD32 params

 IsFramebufferEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 4 request length
 4 1425 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 framebuffer
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 0 reply length
 4 BOOL32 return value
 20 unused

 GenFramebuffersEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 4 request length
 4 1426 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 n reply length
 4 unused
 4 CARD32 n
 16 unused
 n*4 LISTofCARD32 framebuffers

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 631

 CheckFramebufferStatusEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 4 request length
 4 1427 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 0 reply length
 4 ENUM return value
 20 unused

 GetFramebufferAttachementParameterivEXT
 1 CARD8 opcode (X assi gned)
 1 17 GLX opcode (X_ GLXVendorPrivateWithReply)
 2 6 request length
 4 1428 vendor specifi c opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM attachment
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence numbe r
 4 m reply length, m = (n == 1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n = 1) this follows:

 4 CARD32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofCARD32 params

Usage Examples

 The following examples use a helper macro for
 CHECK_FRAMEBUFFER_STATUS, defined below.

 Example (6) gives a (very slightly) more robust example of handling
 the possible return values for glCheckFramebuff erStatusEXT.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 632

 #define CHECK_FRAMEBUFFER_STATUS() \
 { \
 GLenum status; \
 status = glCheckFramebufferStatusEXT(GL_FRA MEBUFFER_EXT); \
 switch(status) { \
 case GL_FRAMEBUFFER_COMPLETE_EXT: \
 break; \
 case GL_FRAMEBUFFER_UNSUPPORTED_EXT: \
 /* choose different formats */ \
 break; \
 default: \
 /* programming error; will fail on all hardware */ \
 assert(0); \
 }
 }

 (1) Render to 2D texture with a depth buffer

 // Given: color_tex - TEXTURE_2D color tex ture object
 // depth_rb - GL_DEPTH renderbuffe r object
 // fb - framebuffer object

 // Enable render-to-texture
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 // Set up color_tex and depth_rb for render -to-texture
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_COLOR_ATTACHME NT0_EXT,
 GL_TEXTURE_2D, co lor_tex, 0);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER _EXT,
 GL_DEPTH_ATTAC HMENT_EXT,
 GL_RENDERBUFFE R_EXT, depth_rb);

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

 <draw to the texture and renderbuffer>

 // Re-enable rendering to the window
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0) ;

 glBindTexture(GL_TEXTURE_2D, color_tex);
 <draw to the window, reading from the color _tex>

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 633

 (2) Application that supports both RBBCTT (rend er back buffer, copy to
 texture) and RTT (render to texture). The migr ation path from RBBCTT
 to RTT is easy.

 if (useFramebuffer) {
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , fb);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFE R_EXT,
 GL_COLOR_ATTA CHMENT0_EXT,
 GL_TEXTURE_2D , color_tex, 0);
 CHECK_FRAMEBUFFER_STATUS();
 }

 draw_to_texture();

 glBindTexture (GL_TEXTURE_2D, color_tex);
 if (useFramebuffer) {
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , 0);
 } else { // copy tex path
 glCopyTexSubImage(...);
 }

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 634

 (3) Simple render-to-texture loop with initiali zation. Create an
 RGB8 texture, a 24-bit depth renderbuffer, and a stencil
 renderbuffer. In a loop, alternate between ren dering to, and
 texturing out of, the color texture.

 glGenFramebuffersEXT(1, &fb);
 glGenTextures(1, &color_tex);
 glGenRenderbuffersEXT(1, &depth_rb);
 glGenRenderbuffersEXT(1, &stencil_rb);

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 // initialize color texture
 glBindTexture(GL_TEXTURE_2D, color_tex);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_M IN_FILTER, GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512 , 512, 0,
 GL_RGB, GL_INT, NULL);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_COLOR_ATTACHME NT0_EXT,
 GL_TEXTURE_2D, co lor_tex, 0);

 // initialize depth renderbuffer
 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EX T,
 GL_DEPTH_COMPONENT 24, 512, 512);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER _EXT,
 GL_DEPTH_ATTAC HMENT_EXT,
 GL_RENDERBUFFE R_EXT, depth_rb);

 // initialize stencil renderbuffer
 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, stencil_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EX T,
 GL_STENCIL_INDEX, 512, 512);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER _EXT,
 GL_STENCIL_ATT ACHMENT_EXT,
 GL_RENDERBUFFE R_EXT, stencil_rb);

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

 loop {
 glBindTexture(GL_TEXTURE_2D, 0);
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , fb);

 <draw to the texture>

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , 0);
 glBindTexture(GL_TEXTURE_2D, color_tex) ;

 <draw to the window, reading from the c olor texture>
 }

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 635

 (4) Render-to-texture loop with automatic mipma p generation. There
 are N framebuffers, N mipmap color textures, an d a single shared
 depth renderbuffer. The depth renderbuffer is not a mipmap.

 GLuint fb_array[N];
 GLuint color_tex_array[N];
 GLuint depth_rb;

 glGenFramebuffersEXT(N, fb_array);
 glGenTextures(N, color_tex_array);
 glGenRenderbuffersEXT(1, &depth_rb);

 // initialize color textures
 for (int i=0; i<N; i++) {
 glBindTexture(GL_TEXTURE_2D, color_tex_ar ray[N]);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 5 12, 512, 0,
 GL_RGB, GL_INT, NULL);

 // establish a mipmap chain for the textu re
 glGenerateMipmapEXT(GL_TEXTURE_2D);
 }

 // initialize depth renderbuffer
 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EX T,
 GL_DEPTH_COMPONENT 24, 512, 512);

 // setup framebuffers, sharing depth
 for (int i=0; i<N; i++) {
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb_array[i]);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_ EXT,
 GL_COLOR_ATTACH MENT0_EXT,
 GL_TEXTURE_2D, color_tex_array[i], 0);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFF ER_EXT,
 GL_DEPTH_ATT ACHMENT_EXT,
 GL_RENDERBUF FER_EXT, depth_rb);
 }

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 636

 loop {
 glBindTexture(GL_TEXTURE_2D, 0);

 for (int i=0; i<N; i++) {
 glBindFramebufferEXT(GL_FRAMEBUFFER_E XT, fb_array[i]);
 <draw to texture i>
 }

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , 0);

 // automatically generate mipmaps
 for (int i=0; i<N; i++) {
 glBindTexture(GL_TEXTURE_2D, color_te x_array[i]);
 glGenerateMipmapEXT(GL_TEXTURE_2D);
 }

 <draw to the window, reading from the c olor textures>
 }

 (5) Render-to-texture loop with custom mipmap g eneration.
 The depth renderbuffer is not a mipmap.

 glGenFramebuffersEXT(1, &fb);
 glGenTextures(1, &color_tex);
 glGenRenderbuffersEXT(1, &depth_rb);

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 // initialize color texture and establish m ipmap chain
 glBindTexture(GL_TEXTURE_2D, color_tex);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512 , 512, 0,
 GL_RGB, GL_INT, NULL);
 glGenerateMipmapEXT(GL_TEXTURE_2D);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_COLOR_ATTACHME NT0_EXT,
 GL_TEXTURE_2D, co lor_tex, 0);

 // initialize depth renderbuffer
 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EX T,
 GL_DEPTH_COMPONENT 24, 512, 512);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER _EXT,
 GL_DEPTH_ATTAC HMENT_EXT,
 GL_RENDERBUFFE R_EXT, depth_rb);

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 637

 loop {
 glBindTexture(GL_TEXTURE_2D, 0);

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , fb);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFE R_EXT,
 GL_COLOR_ATTA CHMENT0_EXT,
 GL_TEXTURE_2D , color_tex, 0);
 glFramebufferRenderbufferEXT(GL_FRAMEBU FFER_EXT,
 GL_DEPTH_A TTACHMENT_EXT,
 GL_RENDERB UFFER_EXT, depth_rb);

 <draw to the base level of the color te xture>

 // custom-generate successive mipmap le vels
 glFramebufferRenderbufferEXT(GL_FRAMEBU FFER_EXT,
 GL_DEPTH_A TTACHMENT_EXT,
 GL_RENDERB UFFER_EXT, 0);
 glBindTexture(GL_TEXTURE_2D, color_tex) ;
 foreach (level > 0, in order of increas ing values of level) {
 glFramebufferTexture2DEXT(GL_FRAMEB UFFER_EXT,
 GL_COLOR_ ATTACHMENT0_EXT,
 GL_TEXTUR E_2D, color_tex, level);
 glTexParameteri(TEXTURE_2D, TEXTURE _BASE_LEVEL, level-1);
 glTexParameteri(TEXTURE_2D, TEXTURE _MAX_LEVEL, level-1);

 <draw to level>
 }
 glTexParameteri(TEXTURE_2D, TEXTURE_BAS E_LEVEL, 0);
 glTexParameteri(TEXTURE_2D, TEXTURE_MAX _LEVEL, max);

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT , 0);
 <draw to the window, reading from the c olor texture>
 }

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 638

 (6) Pseudo-code example of one method of respon ding to
 FRAMEBUFFER_UNSUPPORTED_EXT

 bool done = false;
 bool success = false;
 int configurationNumber = 0;
 GLenum status;

 while (!done)
 {
 for (each framebuffer-attachable image)
 {

ChooseInternalFormatForFramebufferAttachableImage(c onfigurationNumber);

 CreateFramebufferAttachableImage();

 AttachFramebufferAttachableImageToF ramebuffer();
 }

 status = glCheckFramebufferStatusEXT(GL _FRAMEBUFFER_EXT);
 switch(status)
 {
 case GL_FRAMEBUFFER_COMPLETE_EXT:
 success = true;
 done = true;
 break;

 case GL_FRAMEBUFFER_UNSUPPORTED_EXT :
 if (configCount < MAX_NUM_CONFI GS_I_WANT_TO_TRY)
 {
 printf("current config not supported, trying again);
 configurationNumber++;
 }
 else
 {
 printf("couldn't find a sup ported config\n");
 success = false;
 done = true;
 }
 break;

 default:
 // programming error; will fail on all hardware
 FatalError();
 exit(1);
 }
 }

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 639

 if (!success)
 {
 printf("couldn't find a supported confi g\n");
 FatalError();
 exit(1);
 }

 // Current framebuffer is supported and com plete!!
 Draw();

 (7) Render to depth texture with no color attac hments

 // Given: depth_tex - TEXTURE_2D depth tex ture object
 // fb - framebuffer object

 // Enable render-to-texture
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 // Set up depth_tex for render-to-texture
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_DEPTH_ATTACHME NT_EXT,
 GL_TEXTURE_2D, de pth_tex, 0);

 // No color buffer to draw to or read from
 glDrawBuffer(GL_NONE);
 glReadBuffer(GL_NONE);

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

 <draw something>

 // Re-enable rendering to the window
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0) ;

 glBindTexture(GL_TEXTURE_2D, depth_tex);
 <draw to the window, reading from the depth _tex>

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 640

 (8) FBO and ARB_draw_buffers

 // Given: color_texA - TEXTURE_2D color tex ture object
 // Given: color_texB - TEXTURE_2D color tex ture object
 // depth_rb - GL_DEPTH renderbuffe r object
 // fb - framebuffer object

 // Set up the framebuffer object
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_COLOR_ATTACHME NT0_EXT,
 GL_TEXTURE_2D, co lor_texA, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EX T,
 GL_COLOR_ATTACHME NT1_EXT,
 GL_TEXTURE_2D, co lor_texB, 0);
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER _EXT,
 GL_DEPTH_ATTAC HMENT_EXT,
 GL_RENDERBUFFE R_EXT, depth_rb);

 // Enable both attachments as draw buffers
 GLenum drawbuffers = {GL_COLOR_ATTACHMENT0_ EXT,
 GL_COLOR_ATTACHMENT1_ EXT};
 glDrawBuffers(2, drawbuffers);

 // Check framebuffer completeness at the en d of initialization.
 CHECK_FRAMEBUFFER_STATUS();

 // Enable fragment program that writes to b oth gl_FragData[0]
 // and gl_FragData[1]

 <draw something>

 // Disable fragment program

 // Re-enable rendering to the window
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0) ;

 // Bind both textures, each to a different texture unit
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, color_texA);
 glActiveTexture(GL_TEXTURE1);
 glBindTexture(GL_TEXTURE_2D, color_texB);

 <draw to the window>

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 641

Issues

 (1) We obviously won't call this "ARB_compromi se_buffers", so
 what name should we use?

 RESOLUTION: resolved, EXT_framebuffer_o bject

 Possibilities considered include:
 EXT_framebuffer
 EXT_framebuffer_object
 EXT_renderable_buffers
 EXT_renderbuffer
 EXT_superbuffers (hah!)
 EXT_renderable_image
 EXT_render_image

 The lead candidates were EXT_renderable _image and
 EXT_framebuffer_object Since this exten sion introduced both
 new concepts into OpenGL, this was a bi t of a toss up.
 EXT_framebuffer_object was chosen based on a weak precedent
 given by EXT_texture_object and ARB_ver tex_buffer_object

 (2) Many developers complain about the OpenGL/ glX/WGL/agl pbuffer
 API, which they use both to do "render to texture" and to do
 general offscreen (non-windowed) accelerat ed rendering. This
 extension is intended to subsume, some and perhaps all of, the
 functionality currently handled by pbuffer s. Should this
 extension (initially?) support only render -to-texture or should
 it try to provide an OpenGL API to fully r eplace the pbuffer
 API?

 RESOLUTION: This extension should full y replace the pbuffer API.

 The implication of this decision is tha t this API should provide
 a way to support rendering to offscreen buffers that are not
 textures.

 (3) As a consequence of issue (2), this extens ion adds the concept of
 share-able, non-texturable renderable enti tites that can be
 used as color buffers, depth buffers, sten cil buffers, etc.
 The OpenGL spec refers to these entities a s "logical buffers".
 What should this spec call them?

 RESOLUTION: "renderbuffer", (one word)

 We could just call them "logical buffer s", but is there a
 better name?

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 642

 The group considered:
 logical buffer - possible, kind of gen eral
 render buffer - clear, (one word or t wo?)
 renderable - clear, but may confli ct with glx "drawable"
 drawable - confusing: glx "drawa ble" == gl "framebuffer"
 render surface - possible
 render target - possible
 image buffer - may get confused with Tex"Image"
 image - may get confused with Tex"Image"
 surface buffer - too verbose?
 surface - too general
 others???

 The group felt "render buffer " (or pos sibly "renderbuffer")
 provides for the clearest expression of the purpose for
 these buffers.

 We finally decided on "renderbuffer" be cause we didn't want
 to use "render" as an adjective to desc ribe a generic
 buffer, but rather decided to coin a ne w compound word to
 describe this concept.

 (4) How should the specification refer to the group of
 various types of objects that can be attac hed to the framebuffer
 attachment points?

 RESOLUTION: The specification will use the phrase
 "framebuffer-attachable images" to mean the 2D array of
 pixels (image) of a "renderbuffer", a " texture", or any
 other items that could be attached to a framebuffer.

 Options considered include:
 "render target"
 "renderable image"
 "framebuffer-attachable

 Initially, we chose the phrase "render target" for this but
 felt it didn't accurately capture the c oncept of a 2D array
 of pixels that was simultaneously useab le as the storage of
 a texture object and the destination of rendering.

 We then tried to borrow the "image" lan guage of OpenGL which
 describes texture's pixel arrays as "im ages" and we chose
 the term "renderable image".

 However, in the end, we felt that the s alient characteristic
 of these images was that we could attac h them to a
 framebuffer and settled on the term "fr amebuffer-attachable
 image".

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 643

 (5) How should the specification refer to the places in a framebuffer
 that can hold a framebuffer-attachable ima ge?

 RESOLUTION: This state is called an "at tachment point" of
 the framebuffer.

 "attachment points" will be be used to describe the
 framebuffer state that holds a connecti on to a given
 framebuffer-attachable image (a renderb uffer image or a
 texture image). The framebuffer attachm ent points include
 the framebuffer's color buffers, stenci l buffer, depth
 buffer, and aux buffer.

 The word "attach" is being used to refe r to connecting one
 object to another. "bind" refers to co nnecting an object to
 the context state. A texture image can be attached to a
 framebuffer object, but a framebuffer o bject is bound into
 the context state vector.

 (6) This extension adds the concept of collect ions of "logical
 buffers", to replace the window-system pro vided collection
 (drawable, or window) of logical buffers. What should we call
 these?

 RESOLUTION: "framebuffer"

 For the "collection of logical buffers" object, the group
 considered the names: "framebuffer", "r enderTarget",
 "drawable". We chose "framebuffer" sin ce this is consistent
 with how the OpenGL specification alrea dy uses the word
 framebuffer.

 (7) This extension introduces two new object t ypes into the OpenGL:
 renderbuffer objects and framebuffer objec ts. For handling
 these objects, there are two main object m anipulation
 methodology precedents to choose from:

 1) "texture/program/vbo" object model:
 app-supplied int handles,
 Gen/is/Bind/Delete functions

 2) "GLSL" object model:
 driver-supplied GLhandle handl es,
 Create/Delete/Attach, etc

 Which methodology should this extension us e for each new object?

 RESOLUTION: Use Option (1), "texture" object methodology,
 for both "renderbuffer" objects and fr amebuffer objects.

 This is consistent with the June, 2004 ARB meeting vote to
 use the "texture" object methodlogy as the default object
 methodology.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 644

 (8) Do we need separate framebuffer objects?

 RESOLUTION: yes.

 The framebuffer object is an object to encapsulate the state
 of the framebuffer and the collection o f
 framebuffer-attachable images attached to the logical buffer
 attachment points. A question was rais ed early on about
 whether we should have separate, sharea ble framebuffer
 objects or we should fold a single fram ebuffer "object"
 state vector into the context.

 We decided to leave framebuffer objects in the API, with the
 understanding that we could easily remo ve them from the API
 and the spec later if a convincing case was argued for
 removing it.

 There are several reasons why framebuff er objects were
 introduced:

 FB1. It can be "expensive" (for some definition of
 expensive) to validate the frame buffer and all its
 attached objects. There is a de sire to be able to
 easily recognize that a particul ar state. combination
 has been seen and validated prev iously.

 FB2. There is some subset of GL conte xt state which only
 makes sense in its relationship to the current
 framebuffer and attached images (red bits, green
 bits, blue bits, etc, presence o r absence of aux
 buffers or depth buffers, curren t value of draw
 buffer(s), read buffer, etc. etc). It would be nice
 if this state "tracked" changes to the current
 framebuffer configuration by bei ng part of the
 framebuffer object state.

 FB3. For a while, we considered addin g "intrinsic" or
 "implicit" buffer storage to the framebuffer. This
 would be used for buffers that w ere either hidden
 from the user, like the multisam ple buffer, or
 perhaps needed to be explicitly formatted by the
 driver. If we did have this kin d of "intrinsic"
 storage, then framebuffers would be a lot like
 textures and would have the same kinds of pressures
 to minimize vram, sharing storag e across objects and
 contexts as textures did. In fa ct, they would be
 similar to cube map texture obje cts which had 6
 attached face images, or mipmape d textures which had
 a set of mipmap level images. I n the end we decided
 not to use intrinsic buffers, - see issue (13) - but
 we might decide to add them back in the future. For
 instance, one option for support ing multisampling is
 to use an implicit multisample b uffer.

 FB4. We realized that most of the "ha rd" issues introduced
 by this extension were completel y orthogonal to the
 presence or absence of framebuff er objects. All of

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 645

 the same issues apply regardless of whether there is
 a single non-default framebuffer as part of the
 context or multiple framebuffer objects. These
 issues about attaching, (binding) objects,
 reformatting attached (or bound) images via
 TexImage/RenderbufferStorage, pi xel format
 combinations, framebuffer comple teness, and the
 relationship between a non-"defa ult" framebuffer and
 the legacy window sytem framebuf fer and pixel format
 all come in to play either way. So there is actually
 little implementation or concept ual cost incurred by
 the introduction of these frameb uffer objects.

 There were also a few reasons why we co nsidered *not* adding
 framebuffer objects:

 NoFB1. In the absence of "intrinsic" buffers, framebuffer
 objects only really consist of the attachment
 state. It is convenient to en capsulate this state
 into an object, but one could ask if it's any more
 convenient than say a "blend s tate" object or a
 "texture unit attachment state " object, which to
 date, we have chosen not to ad d into OpenGL.

 NoFB2. As a "state-only" object, ther e's a question about
 how much state should be inclu ded - at least the
 attachment state should be inc luded, but what about
 draw buffers state, what about the viewport state,
 what about other state? Since drawing the line is
 hard, we questioned whether we needed these
 objects.

 NoFB3. Some amount of the functionali ty of the framebuffer
 objects could be implemented b y the application
 with the appropriate use of di splay lists.

 In weighing (FB1), expense of validatin g framebuffer state,
 versus (NoFB1), not wanting to introduc e "state only"
 objects, we realized that framebuffer v alidation is more
 expensive than the blend state (for whi ch there is no object
 in GL) and less expensive than a fragme nt program (for which
 there is an object in GL). While it's not exactly clear
 precisely where on the spectrum of "exp ense" the framebuffer
 validation lies, we decided that it may be expensive enough
 to justify creating a new object type. So we retained
 framebuffer objects in the API now, wit h the understanding
 that if we change our minds it's easier to rip them out
 later than it is to add them back in la ter.

 (9) Should the routine which allocates a rende rbuffer accept an
 image to initialize the buffer, analogous to how TexImage
 works?

 RESOLUTION: no, it should allocate unin itialized storage

 We could have allowed a renderbuffer "i mage" specification
 routine, but this would essentially ser ve the same purpose

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 646

 as a combined "allocate renderbuffer fo llowed by DrawPixels"
 routine so we decided it was extraneous . The primary
 purpose of these buffers is to store re ndered output anyway,
 so there was not sufficient demand to s upport an optimized
 path for data initialization. See relat ed issue (10).

 (10) What should we call the routine that alloc ates storage for the
 renderbuffer? This routine would be the m oral equivalent of
 glTexImage.

 RESOLUTION: RenderbufferStorage()

 Options included:
 RenderbufferStorage()
 RenderbufferImage()
 others???

 This is really a function of how we res olve issue (9).

 RenderbufferImage would be appropriate if the allocation
 routine could take an image to initiali ze the renderbuffer.

 RenderbufferStorage would be more appro priate if the
 allocation routine does not take an ima ge.

 Since the group decided supporting an " initialization" image
 for a "renderbuffer" was too much overl apping functionality
 with DrawPixels, RenderbufferStorage wa s chosen.

 (11) The routine(s) which attach a texture to a framebuffer
 attachment point need to describe which im age in the texture
 they are using, i.e., which cube map face, mipmap level, or 3D
 texture z-slice/depthoffset/image. Should we have one routine
 that handles all of these with some argume nts ignored for
 specific texture types/targets? Or should we have a parallel
 set of routines for 1D/2D/3D, like TexImag e does?

 RESOLUTION: Option (b) 3 routines for texture, 1 for
 renderbuffer

 Originally, we chose option (b) for reasons of
 similarity to glTexImage1D/2D/3D. For TexImage2D and
 FramebufferTexture2D, the texture t arget was used to
 select a face on a cube map texture object. Since
 glTexImage1D/3D used TEXTURE_1D/TEX TURE_3D texture
 targets, we did the same for Frameb ufferTexture1D/3D. We
 also included the texture target in case it was needed
 for future expandability.

 However, some felt uncomfortable wi th this resolution
 since it adds 3 framebuffer attachm ent calls for
 textures, so we reopened the issue.

 Originally we just considered optio ns (a) and (b). We
 then reconsidered a few additional flavors: (c), (d),
 and (e)

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 647

 Options include:

 a) one routine with arguments that are sometimes "ignored"

 For instance <image> is ignored for non-3D textures
 and <face> is ignored for non-cube maps, etc.

 This gives us:

 void FramebufferTexture(enum target , enum attachment,
 uint textur e,
 uint level, enum face, uint image);

 b) routines for 1D/2D/3D, use Framebuf ferTexture2D for 2D,
 Cube, Rectangle

 Requires use of a texture target to distinguish cube map
 faces on FramebufferTexture2D

 Includes "redundant" texture target for 1D/3D variants
 for consistency and precedent with TexImage1D/3D.

 This gives us:

 void FramebufferTexture1D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint leve l);
 void FramebufferTexture2D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint leve l);
 void FramebufferTexture3D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint leve l, uint image);

 c) same as (b) but add a dedicated rout ine for Cubemaps

 Question: since we added a Cubemap v ersion, do we need a
 Rectangle variant as well?

 This gives us:

 void FramebufferTexture1D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint leve l);
 void FramebufferTexture2D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint leve l);
 void FramebufferTextureCubemap(enum target, enum attachment,
 enum text arget, uint texture,
 uint leve l);
 void FramebufferTexture3D(enum targ et, enum attachment,
 enum text arget, uint texture,
 uint lev el, uint image);

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 648

 d) same as (c) but with no texture targ et parameter

 Question: since we added a Cubemap v ersion, do we need a
 Rectangle variant as well?

 This gives us:

 void FramebufferTexture1D(enum targ et, enum attachment,
 uint text ure, uint level);
 void FramebufferTexture2D(enum targ et, enum attachment,
 uint text ure, uint level);
 void FramebufferTextureCubemap(enum target, enum attachment,
 uint texture, enum face,
 uint level);
 void FramebufferTexture3D(enum targ et, enum attachment,
 uint text ure, uint level, uint image);

 e) one FramebufferTexture routine with additional arguments
 passed in via another routine.

 There are no "ignored" arguments in this routine.

 The arguments which would be "ignor ed" by this function
 are passed in as selector state by a separate function.
 These could be specified as a Frame bufferParameter
 (implying that they are stored as f ramebuffer state), or
 as a piece of context state that is copied into the
 framebuffer attachment point at Fra mebufferTexture time.
 Of the two, context state is much m ore desirable since
 ARB_render_texture made the mistake of putting the
 selection state in the pbuffer, and this has real
 usability issues for multicontext a pplications.

 This gives us (two routines)

 void FramebufferTexture(enum target , enum attachment,
 uint textur e, uint level);
 and

 void FramebufferParameter(enum targ et, enum pname, uint param);
 where pname can be one of
 GL_{attachment}_TEXTURE_CUB EMAP_FACE
 GL_{attachment}_TEXTURE_3D_ IMAGE
 and param represents the cube m ap face or z-slice image.

 Also, option (e) raises 2 questions :

 1. Since the rest of the selection state would come in
 through another function, we hav e to ask when can
 these selector state variables b e changed?

 We had previously decided that w e want to pass
 selection state in atomically wi th the attachment
 request. To be consistent with this earlier
 decision, this would imply that these variables could
 not be changed dynamically but w ould be "snapshotted"

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 649

 into the framebuffer attachment point at at
 FramebufferTexture time. This s napshot could be
 thought of as similar to the way ActiveTexture works.
 This is also similar to the snap shot of the
 transformed raster pos vertex th at occurs at
 glRasterPos time. It is a copy of one piece of state
 into another piece of state, not just a "switch" than
 can be updated later that indica tes where other state
 should be stored.

 2. Is the rationale to consolidate FramebufferTexture
 from 3 routines to 1 also a reas on to consolidate
 FramebufferTexture and Framebuff erRenderbuffer into a
 single attachment routine? I.e. , should there just
 be one routine called Framebuffe rAttachableImage()?

 If we did this, then we could al so move <level> out
 of the argument list and rename the function to,
 perhaps, FramebufferAttach.

 void FramebufferAttach(enum target, enum attachment,
 enum objectType, uint name);
 and we'd need to create another enum for
 FramebufferParameter
 GL_{attachment}_TEXTURE_LEVEL

 or, avoiding the use of verbs in the function
 name, perhaps:

 void FramebufferAttachableImage(enum target, enum attachment,
 enum objectType, uint name);

 Rationale:

 (a) was discarded because it was not ve ry extensible in the
 event we need to add additional texture selection state in
 the future (for instance, what if we ad d TEXTURE_4D
 targets?)

 (c) and (d) were discarded because the introduction of a
 special cubemap routine was undesirable since we were
 considering issue in an attempt to *red uce* the number of
 entry points. Additionally, (d) was di scarded because it
 was felt the texture targets were still required.

 (e) was discarded because the intent wa s that attachment
 (and the consequent framebuffer validat ion) was a
 "heavy-weight" operation. By using a s eparate routine to
 set part of the attachment state, devel opers may be
 incorrectly encouraged to assume some a ttachment state could
 be changed more easily than others. It was felt it wasn't
 worth this possible misunderstanding ju st to save some
 function entry points.

 In the end, it was determined that (b) was the lesser of two
 (five?) evils. (b) also has precedent in the specification
 of texture images via gl{Copy}TexImage. Finally, (b) is

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 650

 pretty clearly extensible to new attach ment routines for
 future object types.

 (12) Do we need a "format group" or "format res triction" API?

 RESOLUTION: Yes, but put it in a separa te extension for
 reasons of schedule.

 This extension introduces the ability t o construct a
 collection of logical buffers using ima ges of various
 formats into a framebuffer in a very fl exible manner. It is
 by design more flexible than used to be possible to do by
 querying for available pixel formats in the window-system
 glX/WGL/agl API's. As a result, it is possible to construct
 a framebuffer that is actually not supp ortable by the
 implementation and the reasons for the configuration being
 unsupportable are entirely implementati on dependent.

 This is why we originally added the Che ckFramebufferStatus
 API. So that the application at least has the ability to
 determine that a particular, otherwise legal, configuration
 of framebuffer attachments actually wil l not work on this
 implementation.

 However, this extension does not provid e any very helpful
 mechanism to find out why things are no t supported or what
 to do to reconfigure the attachments in to a supported
 configuration.

 This is a very difficult problem to sol ve. glX/WGL/agl
 solved this problem by allowing the app lication to specify a
 request for a configuration and letting implementation
 provide a "best match". Additionally, glX and WGL also
 allow for the enumeration of all possib le supported
 configurations.

 Various schemes like these were conside red but they were all
 quite complicated (possibly as complica ted as the windowing
 system API's we are trying to replace). Consequently, we
 decided to investigate some additional approaches.

 One of these approaches is to specify " allocation and usage"
 hints prior to the routines which alloc ate buffers
 (TexImage/RenderbufferStorage) that wil l somehow indicate an
 intended configuration and then let the implementation use
 this additional information when select ing internal formats
 for textures and renderbuffers. The GL already has the
 freedom to pick any internal format it wants for textures
 and renderbuffers (subject to invarianc e requirements), and
 so we would like to leverage this freed om and influence the
 choice with an additional channel of in formation.

 One example, though not the only one, i s some API to let the
 application specify it would like to be able to use a color
 buffer, depth, and stencil buffer. The implementation would
 take advantage of this information when allocating textures
 and renderbuffers and only choose inter nal formats for

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 651

 color, depth, and stencil textures and renderbuffers that
 could be guaranteed to be used together . For instance, the
 user could call:

 FormatRestriction(GL_COLOR | GL_DEP TH | STENCIL);

 or perhaps

 FormatRestriction(GL_32_BITS_COLOR_ DEPTH_STENCIL);

 and then when the user called TexImage with a color buffer,
 the GL would only pick color formats th at could definitely
 be used with depth and stencil buffers. The effect of this
 API would be to "restrict" the avaible choices to the GL to
 the subset of compatible formats. In t his way, the
 possibility of encountering an implemen tation-dependent
 reason for failing "framebuffer complet eness" would be
 greatly reduced or perhaps entirely eli minated.

 In any event, specifying this "FormatRe striction" API was
 going to take additional time and we wi shed to get this base
 EXT_framebuffer_object specification do ne and shipping as
 soon as possible. So we agreed to defe r this "format
 restriction" API specification to a lat er extension, with
 the intent to develop this API or some other solution to
 this problem as soon as possible.

 (13) Do we need intrinsic buffers in addition t o renderbuffers?

 RESOLUTION: no

 When intrinsic buffers were initially p roposed, the format
 and dimensions of an intrinsic buffer c ould mutate in order
 to provide compatibility with the other images attached to a
 framebuffer object. After much debate and a series of
 votes, intrinsic buffers had lost both of those properties.
 (See issue 36.) In the end the working group decided that
 the crippled form of intrinsic buffers do not provide enough
 added value to justify their existence.

 (14) Is it necessary to require that all the lo gical buffers of a
 framebuffer object have the same dimension s?

 RESOLUTION: Yes. Matching dimensions a re required for
 simplicity. If the dimensions do not m atch, the framebuffer
 object will not be "framebuffer complet e".

 It could be useful to use a single larg e depth buffer when
 rendering to many textures of several d ifferent sizes. This
 is something that could be added later by a layered
 extension that relaxes the matching dim ension restriction.
 Supporting heterogeneous sized logical buffers requires
 defining where in a larger buffer the s maller results are
 written, and deciding what guarantees c an be made and what
 should be left undefined.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 652

 (15) What happens when TexImage or CopyTexImage is called on a
 texture image that is attached as an image of the
 currently bound framebuffer object?

 RESOLUTION: resolved, {Copy}TexImage wi ll redefine the
 texture image, which can affect the com pleteness of the
 framebuffer to which it is attached, an d possibly cause the
 currently bound framebuffer to start fa iling the framebuffer
 completeness test.

 As far as {Copy}TexImage (or Renderbuff erStorage) are
 concerned, there is nothing "special" a bout a texture image
 (or renderbuffer) attached to a framebu ffer object. Attempts
 to redefine attached images in this man ner should succeed.
 However, if the redefined image is no l onger appropriate for
 the relevant attachment point in the fr amebuffer it is
 attached to, then it's possible the fra mebuffer may start
 failing the framebuffer completeness te st.

 Another option that was considered invo lved having TexImage
 and CopyTexImage result in INVALID_OPER ATION and do nothing
 when the target texture is bound for re nder-to-texture. This
 idea was rejected because, in the multi context case, one
 context could change the attachments of a shared framebuffer
 and cause another context to suddenly s tart generating
 errors on {Copy}TexImage calls. This e xtension has tried to
 avoid introducing asynchronous generati on of gl errors.

 Still another option that was considere d was "orphaning" the
 old texture memory such that it could s till be used as a
 framebuffer attachment but the texture would get newly
 allocated storage. However, this impli ed a side-ways copy
 of the texture object memory or the ima ge for its continued
 use as a framebuffer-attachable image, and was therefore
 rejected.

 For the purposes of comparison, conside r that
 ARB_render_texture faced a similar ques tion and resolved it
 by implicitly unbinding the texture fro m the pbuffer when
 TexImage is called.

 (16) What happens when TexImage or CopyTexImage is called on a
 texture object that is attached as an imag e of a
 framebuffer object that is not bound to th e current context?

 RESOLUTION: resolved, {Copy}TexImage wi ll redefine the
 texture image, which can affect the com pleteness of the
 framebuffer object to which it is attac hed. When the
 framebuffer object is bound to the cont ext, it may start
 failing the framebuffer completeness te st. If the
 framebuffer object is bound in another context at the time
 {Copy}TexImage is called, then the fram ebuffer object may
 start failing the framebuffer completen ess test in the other
 context.

 The rationale for this decision is the same as for issue
 (15).

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 653

 However, since in this case the relevan t framebuffer is not
 current, there is no guarantee that thi s framebuffer
 revalidation or invalidation will happe n until the next time
 the framebuffer is bound to a context.

 The texture (or renderbuffer) state is changed immediately,
 regardless of whether the texture image (or renderbuffer) is
 attached to a framebuffer object. Howe ver, a context other
 than the one issuing the {Copy}TexImage operation might not
 notice the state change until after it has (re)bound the
 framebuffer object or reattached the te xture image.

 This is intended to be similar to what happens in the
 multicontext case when the state of a s hared texture object
 is changed by another context. There i s no guarantee that
 texture state change will be visible in the current context
 until the current context binds the tex ture object again.

 (17) Why is render to vertex array missing?

 RESOLUTION: Render to vertex array is s eparate functionality
 from render to logical buffer or render to texture. RTVA
 can be added as a separate extension. The framework is
 general enough to support more than one way of adding RTVA,
 without deciding today on the details o f a particular RTVA
 implementation.

 One idea is to define a way to interpre t a vertex array or
 buffer object, which is inherently byte -oriented linear, as
 a framebuffer, which is inherently comp onent-oriented and
 dimensioned, and then call FramebufferA rrayEXT like this:

 FramebufferArrayEXT(FRAMEBUFFER_EXT, CO LOR, buffer_obj);

 Another idea is to define a general way to interpret a
 component-oriented dimensioned image, s uch as a texture or a
 color buffer, as a byte-oriented vertex stream. Using this
 approach one would render vertex attrib utes to a
 renderbuffer, to a texture image, or to an AUX buffer, and
 then use the image data directly as a v ertex array.

 There is controversy over which RTVA me thod(s) should be
 supported. One goal of EXT_framebuffer _object is to ship
 render-to-texture and render-to-logical -buffer functionality
 today while leaving the door open to ad d one or more RTVA
 solutions in the future.

 (18) What function should perform the action of attaching a texture
 image to a framebuffer for rendering purpo ses?

 RESOLUTION: The new FramebufferTexture* EXT functions perform
 this action.

 Options that were considered include ov erloading
 BindTexture, using a FramebufferParamet er function, and
 adding a new function.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 654

 BindTexture is problematic because it c reates a new texture
 object with default state if the name i s previously unused,
 but the default state has no dimensions , dimensionality, or
 format.

 One reason that FramebufferTexture*EXT was well-received is
 because it sets, in one atomic operatio n, all framebuffer
 attachment state for both texture image and renderbuffer
 type of attachments. Given the polymor phic nature of
 framebuffer-attachable images, this gua rantees that all
 framebuffer attachment state is in a co nsistent
 configuration, without having to define confusing precedent
 rules between competing (texture image and renderbuffer)
 pieces of framebuffer attachment state, or having to create
 enables (either a tri-state enable or s eparate enables again
 with precedence) to select texture imag e or renderbuffer
 attachment state as the "active" set of state.

 This decision also makes it simpler to specify how a
 framebuffer-attachable image is detache d from a
 framebuffer--it would be confusing if d etaching a texture
 image resulted in *attaching* a renderb uffer simply because
 texture image attachment state takes pr ecedence over
 renderbuffer image attachment state.

 (19) What should happen if the texture argument given to
 FramebufferTextureEXT is an unused texture name? And
 similarly, what should happen if the rende rbuffer argument
 given to FramebufferRenderbufferEXT is an unused renderbuffer
 name?

 RESOLUTION: resolved, (a) this is an e rror.

 Options included:

 a) throw an error at Framebuffer{Te xture|Renderbuffer}

 b) texture/renderbuffer is created just like
 Bind{Texture|Renderbuffer}

 c) no error, but the framebuffer ca nnot be "framebuffer
 complete" until a texture/render buffer by that name
 has been created and satisfies t he rules of
 framebuffer completeness.

 This is interesting because on the one hand we might like to
 adopt the model that we simply catch al l the invalid state
 combinations when determining framebuff er completeness,
 i.e., option (c). This has a certain c onsistency but then
 what does it mean to call FramebufferTe xture{1D|2D|3D} when
 the target of the texture name is not y et known? How should
 the other arguments to those calls be v alidated?

 Option (b) was rejected as it would int roduce a second way
 to create a texture/renderbuffer object . I.e., both

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 655

 BindTexture and FramebufferTexture woul d create the texture
 object.

 Since there are "target aware" Framebuf ferTexture{1D|2D|3D}
 calls, the app already has to know the target prior to
 calling FramebufferTexture. Also, the texture target of a
 given object is immutable once set. An app can not set it
 and then change it later so this is rea lly just an issue
 with the order in which they call the r elevant functions.
 Consequently, requiring that the user c all BindTexture prior
 to calling FramebufferTexture does not seem to be a burden.
 So this should be an error, since it's probably a mistake on
 the user's part in the first place.

 (20) What should happen if the texture argument given to
 FramebufferTextureEXT is the name of an ex isting texture
 object, but the texture has no texture ima ge (i.e., TexImage
 has never been called)? Similarly what sh ould happen if the
 renderbuffer argument given to Framebuffer RenderbufferEXT is
 the name of an existing renderbuffer, but the named
 renderbuffer has no storage (i.e., Renderb ufferStorage has
 never been called?)

 RESOLUTION: resolved, option (c) - no e rror, but the
 framebuffer object cannot be "framebuff er complete" until
 the state of the texture image satisfie s the rules of
 framebuffer completeness.

 Same options as issue (19), these inclu de:

 a) throw an error at Framebuffer{Te xture|Renderbuffer}

 b) texture/renderbuffer is created just like
 Bind{Texture|Renderbuffer}

 c) no error, but the framebuffer ca nnot be "framebuffer
 complete" until the texture imag e or renderbuffer
 satisfies the rules of framebuff er completeness.

 This is an issue because you could be a ttempting to attach a
 texture (or renderbuffer) to a framebuf fer attachment point
 prior to the application having called TexImage (or
 RenderbufferStorage) to define the widt h/height/format of
 the framebuffer-attachable image.

 At first, this seems similar to issue (19), so we could
 throw an error in this case too. It is different for two
 reasons however. First, there are defa ult values for the
 texture object and renderbuffer object state. Second, the
 values of the width/height/format/etc f or the texture object
 are mutable, unlike the texture target of the texture
 object. There is really no difference between the case
 where GL uses the default values for an object, and the case
 where the user explictly set the state equivalent to the
 default values using TexImage (or Rende rbufferStorage).
 Because this state is mutable, it must be tested anyway when
 framebuffer completeness is determined.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 656

 Therefore, we simply defer the check fo r whether the
 texture/renderbuffer state is appropria te for the
 framebuffer attachment point until dete rmination of
 framebuffer completeness. If the state is not valid, then
 the framebuffer will not be complete, r egardless of whether
 or not TexImage/RenderbufferStorage has been used to create
 storage for the texture level (renderbu ffer).

 (21) What happens when DeleteTextures is called on a texture that is
 attached to a framebuffer object? Similar ly, what happens when
 DeleteRenderbuffers is called on a renderb uffer that is
 attached to a framebuffer object?

 RESOLUTION: resolved, see issue (77)

 (22) How do you detach a texture or renderbuffe r from a framebuffer
 object? Should we use two routines or cre ate a detach routine?

 RESOLUTION: resolved, 2 routines

 If the user calls either FramebufferTex ture with a zero
 texture name, or FramebufferRenderbuffe r with a zero
 renderbuffer name, then the it as if no thing is attached to
 the specified attachment point.

 There was a concern that having two rou tines be able to set
 the framebuffer attachment state to "no ne" was confusing.
 However, the idea is simply that for an y object that can be
 attached to a framebuffer, there should be a routine that
 can set up the attachment and return th e framebuffer to the
 default "nothing attached" state.

 The implication here is that the defaul t state for
 framebuffer attachments is:
 attachment object type = GL_NONE, a nd
 attached object name = 0

 (23) Should it be legal for the framebuffer sta te to pass through
 invalid configurations? (I.e., depth and color buffer sizes
 don't match, etc)

 RESOLUTION: resolved, "yes"

 It's easier for the application if the render target state
 is allowed to pass through invalid conf igurations when
 transitioning between two valid configu rations. A
 consistency check is defined to determi ne if a configuration
 is valid.

 As long as everything is valid at rende r time, transient
 invalid states are allowed.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 657

 (24) What happens when you try to draw to a fra mebuffer that
 is not "framebuffer complete"?

 RESOLUTION: resolved, rendering is disa bled, and an error is
 generated. See issue (64) as this issu e is essentially a
 duplicate of that one.

 (25) What should happen on a query of framebuff er state while the
 framebuffer is invalid? For instance, wha t does a query of
 RED_BITS return if the currently bound fra mebuffer is not
 "framebuffer complete"?

 RESOLUTION: resolved, there's no issue here. Attempts to
 query bit depths should return the "rea l" answers.

 For instance, if there's no color buffe r attached to the
 framebuffer attachment point, then atte mpts to return
 RED_BITS could return zero. If there i s a color-renderable
 image attached, then RED_BITS would ret urn whatever the
 RED_BITS are, regardless of the valid/i nvalid state of the
 framebuffer.

 Other options include returning some ki nd of magic value or
 generating an error if the framebuffer is invalid. However,
 any "magic value" would simply be a dup licated query for the
 framebuffer completeness status. Also, returning an error
 would be problematic because another co ntext can make a
 framebuffer invalid and we have been tr ying to avoid any API
 in which one context can cause another context to start
 generating errors asynchronously.

 (26) What happens when you try to read (e.g. Re adPixels) from a
 framebuffer that is not "framebuffer compl ete"? Reads cannot
 be "disabled" or "ignored" in the same way that rendering can.

 RESOLUTION: resolved, generate a GL err or. See issue (65).

 Originally this was resolved as "undefi ned pixels are
 generated, but no error"

 Initially, generating an error was reje cted for a few
 reasons. First, it is asymmetric with the behavior for
 drawing - when the framebuffer is not c omplete, drawing is
 disabled. We would like to be consiste nt here. Second,
 there are no other cases where ReadPixe ls or
 CopyTex{Sub}Image will generate an erro r based on the state
 of the framebuffer and we didn't want t o introduce one.
 Third, there is already a pixel ownersh ip requirement in
 order to get defined results back from reading the
 framebuffer, so if we simply behave as if incomplete
 framebuffer fails ths pixel ownership t est, then we can
 leverage that already specified behavio r for reading the
 framebuffer.

 For these reasons, we initially choose to have reads from an
 incomplete framebuffer return undefined pixel values and not
 generate a GL error.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 658

 However, once we subsequntly resolved i ssue (64) to say that
 rendering with an incomplete framebuffe r generates an error,
 we decided again for reasons of symmetr y that reading from
 an incomplete framebuffer should also g enerate an error.
 (And most likely the same error.)

 So in the end, we decided that reads (e .g., ReadPixels and
 CopyTex{Sub}Image) in this case would r esult in an error to
 be named in issue (65).

 See also related issue (73), describing ReadPixels of color
 data from a complete framebuffer while READ_BUFFER is NONE.

 (27) What happens when you query the number of bits per channel
 (e.g., DEPTH_BITS) prior to the consistenc y check being run
 when intrinsic buffers are in use, since i mplementations are
 allowed to select a number of bits for an intrinsic buffer at
 consistency check time to give a better ch ance of a consistent
 state being reached?

 RESOLUTION: This is not an issue since we don't have
 intrinsic buffers, see issue (13). We are keeping this
 issue in the issues list just in case w e ever go back and
 add something like this to a future API .

 If we would have retained the intrinsic buffer api (i.e.,
 glFramebufferStorage) or if some future API adds it back in,
 then one possible resolution of this pr oblem would have been
 to simply say that a query of the numbe r of bits prior to
 the consistency check being run will pr oduce an answer that
 is subject to change.

 This is preferable to some other possib le resolutions that
 have been discussed (e.g., having the q uery cause a
 validation to occur implicitly, thereby "baking" in the
 answer) because it is the one least lik ely to introduce
 unexpected side-effects to an operation as seemingly
 innocuous as a query.

 A possible variant of this proposed res olution would have
 been to have the query return a number of bits that is
 guaranteed to be less than or equal to the actual number of
 bits that will eventually be used. Thi s may or may not be a
 useful guarantee. We could have also h ad the query return 0
 or -1 as a signal that the framebuffer is incomplete.

 Again, this is all moot since we decide d against this style
 of intrinsic buffers in this extension.

 (28) What should the <image> parameter to Frame bufferTexture3DEXT
 actually be called?

 RESOLUTION: resolved, "zoffset"

 This parameter could have been called <i mage> or <slice>.
 <depth> or <zoffset> might also be appro priate. The reason

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 659

 the answer here is non-obvious is that n ormally 3D textures
 are specified all at once, not one 2D "s lice" at a time
 (TexImage3D takes one big array that rep resents all three
 dimensions at once, for example), and be cause texture
 coordinates for TEXTURE_3D targets are n ormalized
 floating-point numbers, just as they are with TEXTURE_2D
 targets, not integer indices.

 The GL uses the term "image" to mean "sl ice" in a few
 instances. For example, pixel unpack pa rameters
 UNPACK_SKIP_IMAGE and UNPACK_IMAGE_HEIGH T describe state
 related to the "slices" a 3d texture.

 However, in some ways the act of renderi ng into a texture is
 most similar to CopyTexSubImage3D, which also redefines a
 texture's contents (but never its format or dimensions) based
 on the contents of the framebuffer. The "zoffset" parameter
 to CopyTexSubImage selects a particular 2D image (depth
 "slice") of a 3-dimensional texture. "z offset" is a
 coordinate, and the parameter to Framebu fferTexture3DEXT is
 also a coordinate. "Image" typically re fers to an array of
 pixels.

 We already use the term "image" througho ut this extension to
 talk about 2d arrays of pixels beyond th eir use in 3D
 textures. It is a little confusing to o verload "image" to
 also mean Z coordinate in FramebufferTex ture3DEXT.

 For the sum of these reasons, we decided "zoffset" is a
 better name than "image", for the parame ter to
 FramebufferTexture3DEXT.

 (29) Should GenerateMipmap functionality be inc luded in this
 extension or put in it's own extension?

 RESOLUTION: resolved, yes, include this functionality

 It is arguably useful separately, i.e., without all this
 machinery. However, it's also kind of required here to have
 some kind of way to deal with the inter action with
 SGIS_generate_mipmap. Probably we shou ld just include it
 here. (maybe also a separate extension ?)

 It's easier to define when automatic mi pmap generation
 happens for a traditional non-rendered texture than it is
 for a texture that is modified by rende ring-to-texture. If
 GENERATE_MIPMAP were to cause a rendere d-texture's mipmaps
 to be automatically generated, presumab ly generation would
 occur when either the texture is detach ed from the
 framebuffer or when the framebuffer is unbound. If neither
 of these events occur, should automatic mipmap generation
 also occur when the texture is bound to a texture unit (of
 same or different context?)

 It's believed the recommended way of ac hieving maximum
 performance using this extension is to make all attachments
 during initialization, and then not cha nge attachments in

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 660

 the steady state. This reasoning is, a fter all, a major
 reason for introducing framebuffer obje cts. If an
 application does not detach textures fr om framebuffers, then
 what event triggers mipmap generation? An explicit
 GenerateMipmap works well here.

 Would the base level have to actually b e modified in order
 for mipmap generation to occur? How sh ould "modified" be
 defined?

 If the application rendered to each lev el of the texture
 before detaching the texture or unbindi ng the framebuffer,
 would automatic mipmap generation happe n anyway? (This
 implies the application needs to set GE NERATE_MIPMAP to
 FALSE before rendering to the texture, but maybe that's OK.)

 Historical background: One reason for i ntroducing
 GenerateMipmap in the context of the or iginal uber_buffers
 proposal was that uber_buffers lacked a Begin-time
 consistency check, but instead prevente d the framebuffer
 from ever getting into an inconsistent state (once
 validated). Operations such as TexImag e that can change the
 dimensions and format of a tetxture's l evels were disallowed
 when the texture was attached to a fram ebuffer. Since
 automatic mipmap generation can change the dimensions and
 format of a texture's levels, that mean t that automatic
 mipmap generation could not be performe d in some cases, but
 there was no good way to communicate th is error to the
 application. Hence there really was a need for a separate
 GenerateMipmaps function. This restric tion does not apply
 to the current API because the semantic s of an incomplete
 framebuffer are different now. Neverth eless, we decided to
 retain this manual mipmap generation as part of this
 extension.

 (30) Do the calls to deal with renderbuffers ne ed a target
 parameter? It seems unlikely this will be used for anything.

 RESOLUTION: resolved, yes

 Whether we call it a "target" or not, t here is *some* piece
 of state in the context to hold the cur rent renderbuffer
 binding. This is required so that we c an call routines like
 RenderbufferStorage and {Get}Renderbuff erParameter() without
 passing in an object name. It is also possible we may
 decide to use the renderbuffer target p arameter to
 distinguish between multisample and non multisample buffers.
 Given those reasons, the precedent of t exture objects, and
 the possibility we may come up with som e other renderbuffer
 target types in the future, it seems pr udent and not all
 that costly to just include the target type now.

 (31) What should happen if you call Framebuffer Texture{1D|2D|3D}
 with a texture name of zero?

 RESOLUTION: This will detach the image from the specified
 attachment point in the currently bound framebuffer object.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 661

 For reference, this reason this is prob lematic because there
 is not really a "texture object zero"

 Texture name zero does not define an ob ject but defines
 context state (one texture named zero, per target, per
 context). The textures referred to by the name zero are
 never shared across contexts. So the b ehavior of
 framebuffer objects shared by multiple contexts where each
 is attached to the context's texture na med zero seems odd at
 best, and confusing at worst. As such, it was decided to
 not allow a framebuffer to attach to te xture named zero.

 Another option would have been to make this an error. If we
 had done this, then we would need a spe cific function to
 detach a texture from an attachment poi nt. That is, we
 would have needed to create something l ike a dedicated
 DetachFramebufferAttachableImage() entr y point.

 (32) Should there be a renderbuffer object with the name of zero?

 RESOLUTION: NO.

 By way of symmetry with textures, rende rbuffer zero, if it
 existed, would not be an object. It wo uld be a
 non-shareable piece of the context stat e. There would be
 one renderbuffer named zero per target per context.

 If we can't share renderbuffer name zer o, then also by way
 of symmetry with textures, we would not want to support
 attaching renderbuffer name zero to a f ramebuffer.

 So, if it can't be used as a rendering destination, then a
 renderbuffer name zero would seem to se rve no purpose as a
 state container.

 However, we'd like to retain the use of name zero in certain
 routines with special semantics, partic ularly for detaching
 non-zero renderbuffer objects from the framebuffer and
 context. See issue (33).

 On implication of this decision is that state
 setting/getting routines that operate o n the currently bound
 renderbuffer should throw a GL error if no renderbuffer is
 bound/attached. A similar choice was m ade in the
 ARB_vertex_buffer_objects specification which also had
 special semantics for object zero.

 Also note, another option considered wa s making object zero
 a full fledged, shareable object just l ike the non-zero
 object names. This was rejected as bei ng too different from
 texture/program vbo's/etc., possibly le ading to confusion.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 662

 (33) What should happen if you call Framebuffer Renderbuffer or
 BindRenderbuffer with a renderbuffer name of zero?

 RESOLUTION: This will detach the imag e from the
 specified attachment point in the curre ntly bound
 framebuffer object.

 This is resolved exactly the same way a s issue (31) was
 resolved for textures, and for the same reasons.

 Similarly, calling BindRenderbuffer wit h a name of zero will
 unbind the currently bound renderbuffer from the context.

 (34) Should there be a way to query a framebuff er object for its
 attached texture and/or renderbuffers? If so, how, and
 what should be the query result when attac hed textures or
 renderbuffers have been deleted?

 RESOLUTION: resolved, yes

 In general, OpenGL lets you query setta ble state, so
 we allow this.
 To see what this query should look like , see related
 issue (51)

 This issue also raises the question abo ut what values should
 be returned for attached objects if the named objects have
 since been deleted. This can happen if the textures were
 attached to non-currently bound framebu ffers or attached to
 framebuffers in other contexts. Three possible solutions
 include:

 a) Don't support this query.

 b) Return zero if no texture has ev er been attached.
 Return zero if the attached text ure has been deleted.

 c) Return zero if no texture has ev er been attached.
 Return the name of the texture t hat was attached even
 though it has been deleted.

 Option (a) was rejected as we would like settable state
 to be queriable.

 So, for this extension originally w e choose option (c).
 However, we have since decided, in issue (21), that
 DeleteTexture and DeleteRenderbuffe r will first detach
 the texture/renderbuffer from any a ttached framebuffer
 objects *in this context*. In prin ciple, the
 application can't tell the differen ce between the
 texture getting deleted now or late r, so whether the
 texture is actually detached from t he current
 framebuffer now and other framebuff ers when they are
 bound, or the texture is actually d etached from all
 framebuffers at once is moot. In p ractice, this means
 that options (b) and (c) are essent ially
 indistinguishable for a single cont ext case.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 663

 However, it's worth noting that if the texture is
 deleted and attached to a framebuff er which is current
 in another context, the standard ru les about undefined
 behavior of state modifcations of s hared objects in
 other contexts will still applye.

 This means that the texture may or may not be detached
 (and thus deleted) from that other context's current
 framebuffer until the next BindFram ebuffer (or
 FramebufferTexture/FramebufferRende rbuffer?) in the
 other context.

 (35) Earlier proposals included a way to create some memory and then
 attach it to a texture object. Should thi s extension include
 this feature?

 RESOLUTION: no.

 This was considered when this extension was intended
 to be a more general purpose memory man ager. Since this
 extension has been retasked to focus in on render-to-X
 functionality, this feature was not nec essary.

 (36) Earlier proposals had renderable memory co nstructs which could
 change internal format or dimensions to me et intra-framebuffer
 compatibiltiy requirements of individual v endors' hardware
 platforms. Should this extension have the se kind of malleable
 format objects?

 RESOLUTION: no.

 Such malleability leads to invariance p roblems when formats
 change. For example, if bits per pixel is decreased then
 increased back to the original value, s ome precision is
 lost.

 Some IHVs wanted to require format conv ersion of existing
 contents in all cases where the format changes. This sort
 of invariance would be an acceptable si de-effect. The
 suggestion was to think of the action o f rendering to a
 texture as an extended non-atomic TexIm age call. TexImage
 is allowed to change the format of an e xisting texture
 image. It was claimed that such intrin sic buffers are more
 convenient in many applicaitons than ar e the explicitly
 managed renderbuffers.

 Other IHVs expressed a strong opinion a gainst implicit
 format conversions, but instead wanted to invalidate the
 buffer's contents whenever the format c hanged. It was
 difficult to define the set of operatio ns that might cause
 the format to change, so it was difficu lt to define when the
 contents could become invalidated. If the contents were
 invalidated by a format change, the API under consideration
 made it cumbersome for the application to detect and handle
 this condition. In the end, under the buffer content
 invalidation approach, application code would not be any

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 664

 better off than if the appliation inste ad used the explicit
 renderbuffers. For the type of intrins ic buffers that could
 not change format and dimensions dynami cally, the claim that
 intrinsic buffers were more convenient than renderbuffers
 was no longer true.

 The working group voted for the latter: no implicit format
 changes. Instead the format would be i mmutable once it is
 known.

 A secondary issue is the question: are the buffer contents
 invalidated when the dimensions change, are the contents
 scaled, or are the contents are clipped /padded (with some
 sort of gravity). This issue could be avoided by requiring
 explicit, rather than implicit, resize of intrinsic buffers.

 The working group voted for no implicit change in the
 dimensions of intrinsic buffers, and fi nally for the removal
 of intrinsic buffers altogether.

 (37) In order to abstract hardware dependent co mpatibility
 requirements, this API introduces a functi on called
 CheckFramebufferStatus to check for compat ibility prior to
 rendering. CheckFramebufferStatus returns a value which
 indicates whether or not the framebuffer o bject is "framebuffer
 complete", and framebuffer completeness de pends in part on
 hardware dependent constraints. The hardw are dependent aspect
 represents a new concept in OpenGL. There fore, should an app
 be required to call this function to help "enforce" the notion
 that apps should be on the lookout for fai lure?

 RESOLUTION: no. Calling CheckFramebuff erStatus is not
 required.

 The group considered requiring a call t o
 CheckFramebufferStatus after changing f ramebuffer state or
 attachment points in order to "enable" rendering. It was
 hoped that requiring a call to CheckFra mebufferStatus would
 push developers to write code which is more platform
 independent. Ultimately though, since the API can't require
 applications to actually observe and de al with a validation
 failure, that it was not worth it to ma ke this function call
 required. There was also feedback from some developers that
 requiring this call would be cumbersome and undesirable.

 Note, however, that the framebuffer is effectively validated
 implicitly at every rendering (and read ing) entry point.
 These include glBegin, gl{Multi}Draw{Ar rays|Elements},
 gl{Draw|Copy|Read}Pixels, glCopyPixels, glReadPixels,
 glCopyTex{Sub}Image, etc.

 Applications are strongly advised to te st framebuffer
 completeness with CheckFramebufferStatu s after setting up or
 changing the configuration of a framebu ffer object, and to
 handle the possible failure cases with a fallback plan that
 selects a different set of internal for mats of attached
 images. See usage example 6. Section 4.4.4.2 lists the

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 665

 operations that can cause the framebuff er's status to
 change.

 In addition, a "format group" API, has been proposed as a
 means of programmatically determining a set of internal
 formats that are guaranteed to be compa tible with respect to
 framebuffer completeness. This API wou ld be specified in a
 layered extension as suggested in issue (12)

 (38) Do we need to support multiple render targ ets, i.e.,
 ARB_draw_buffers?

 RESOLUTION: Yes.

 ARB_draw_buffers is going to be part of OpenGL 2.0 so we'd
 better support it.

 (39) How should we support ARB_draw_buffers?

 RESOLUTION: refactored into the followi ng issues:
 (53), (54), (55), (56), and (57)

 (40) (How) should we support accum buffers?

 RESOLUTION: defer this until (shortly) after this extension.

 Accum buffers appears to be very simple to specify and
 implement. Basically, we would need to add a new internal
 ACCUM format that can be passed to Rend erbufferStorage. We
 would also need to add an ACCUM attachm ent point in the
 framebuffer that could be used to point to one of these
 ACCUM format renderbuffers. A new ACCU M format is needed
 because the ACCUM buffer is defined by GL to be signed
 floating point value, unlike other inte rnal formats.

 Also note, the above solution is the ex act same one we are
 using for STENCIL buffers as well (i.e. , an internal format
 enum and an attachment point).

 We could also decide if this new ACCUM internal format can
 be used with textures in addition to re nderbuffers, for
 creating images that can be attached to the accum buffer
 attachment point.

 Supporting accum was deferred for this extension, primarily
 for time-to-market reasons, and as it w as not critical for
 most render-to-texture applications. H owever, we intend to
 work on some kind of "EXT_accum_renderb uffer" extension
 shortly.

 Since this was deferred, we need to def ine what happens when
 you call the various Accum operations o n a non-default
 framebuffer object. We considered addi ng spec language that
 would generate an error on Accum operat ions. However, it
 seems like we can simply leverage whate ver legacy behavior
 is currently defined for when the pixel format has no accum
 buffer. This is the case in this exten sion as we have

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 666

 defined no way to attach or enable an a ccum buffer. Chapter
 4 on page 188 already says that "If the re is no accumulation
 buffer, or if the GL is in color index mode, Accum generates
 the error INVALID OPERATION", so we don 't actually need any
 additional language of our own.

 (41) (How) should we support multisample buffer s?

 RESOLUTION: defer this until (shortly) after this extension.

 Supporting multisample was deferred for this extension,
 primarily for time-to-market reasons an d because it's not
 entirely clear what is the "best" API f or exposing
 multisample. However, we intend to wor k on some kind of
 "EXT_multisample_renderbuffer" extensio n shortly.

 Since this feature was deferred, we nee d to define what
 happens when you try to enable multisam ple on a non-default
 framebuffer object. For now we need so me way to *not* do
 multisampling. This can either be that we set SAMPLES 1 and
 SAMPLE_BUFFERS to 0, or we say that
 Enable/Disable(MULTISAMPLE) is ignored. This is actually
 related to issue (62) - should SAMPLE_B UFFERS change when
 using a non-default framebuffer or when attachments change?
 When/if we define and export "EXT_multi sample_renderbuffer"
 extension, this state will again have s ignificance.

 A discussion of how we might support th is feature follows:

 There are several considerations here: First, we'd like
 something simple to specify, implement, and use. Second,
 we'd like to not delay this extension's approval,
 implementation or adoption for this par ticular feature.
 Third, we are trying to replace pbuffer functionality, which
 does support multisampling (at least in principle), so we'd
 like to not take a step backward in fun ctionality if
 possible.

 However, this extension is *not* trying to "improve" the
 traditional multisample support. If we do anything, we will
 simply expose the existing multisample buffer semantics
 without causing undue implementation bu rden.

 Finally, if an implementation is curren tly taking short-cuts
 to GL's traditional "per-pixel-resolve" multisample
 semantics, we'd like for this extension to continue to allow
 the exact same short-cuts (to whatever extent the core GL
 spec does or does not allow those short -cuts). If someone
 later decides to go an revamp multisamp ling support in
 general, they can update this extension at the same time.

 Given the above, it appears that the op tions include:

 A) Don't support it. In other words, you can't use
 mulitsampling and EXT_framebuffer_ object. The
 multisample state is either ignore d, or causes the
 framebuffer to not be complete, or generates some kind

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 667

 of error.

 B) Create a separate multisample rend erbuffer that can be
 attached to a new framebuffer atta chment point.

 The reason that we might need a se parate
 RESOLUTION_BUFFER is that all rend erable color buffer
 formats might not be usable for mu ltisampling on all
 implementations.

 Also, this option would allow mult iple framebuffers to
 share the storage for multisample buffers under the
 control of the application.

 Depth sample buffers and stencil s ample buffers
 wouldn't necessarily need resoluti on buffers, but that
 could be added by some future exte nsion.

 This option has several variants:

 B1) Create MULTISAMPLE and/or RE SOLUTION_BUFFER
 internal formats for renderb uffer objects that
 can be used with Renderbuffe rStorage. The
 samples buffer and the resol ution buffer would be
 allocated and attached to th e framebuffer
 separately. Having them be separate allows the
 samples to be deleted after rendering if desired.

 One issue with this option i s that somehow you'd
 need to specify the number o f samples maybe using
 glFramebufferParameter or
 glRenderbufferParameter.

 B2) Perhaps, instead of using a single internal
 format called MULTISAMPLE, u se a set of internal
 formats like MULTISAMPLE_1_S AMPLE,
 MULTISAMPLE_2_SAMPLE, MULTIS AMPLE_4_SAMPLE, etc.
 This is problematic for supp orting depth/stencil
 multisampling unless we want an explosion of
 color/depth/stencil multisam ple internal formats.
 It's also problematic if MRT draw buffers need to
 be multisampled because we'd need a number of
 enums able to support 1 to N draw buffers times
 the number of sample pattern s we support.

 B3) Have RenderbufferStorage alw ays take a number of
 samples. We could do this i f option (B2) is
 insufficient due to the need to support DEPTH or
 STENCIL multisampling, which we probably will.
 We would then allow the inte rnal format to choose
 DEPTH, STENCIL, or RGBA/etc. This is clean but
 it means that the user would always need to
 specify a number of samples even when the value
 is "1".

 B4) Pass in a variable length ar gument list to the
 renderbuffer allocation rout ine, and some of the

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 668

 arguments would indicate int ended usage
 (COLOR/DEPTH/MULTISAMPLE) ot hers would indicate
 internal format (RGBA/DEPTH2 4) and others would
 indicate number of samples. This is how
 EXT_compromise_buffers dealt with this problem,
 though people didn't seem to like this variable
 length argument list. EXT_r ender_target didn't
 deal with this problem so do esn't offer any
 guidance here.

 B5) Create a new RENDERBUFFER_MU LTISAMPLE
 renderbuffer target type and a corresponding
 allocation routine, perhaps called
 RenderbufferMultisampleStora ge(). This is
 analogous to how textures ha ve their own
 allocation routine per targe t type
 (TexImage1D/2D/3D, etc).

 With this option, we could p reclude
 non-multisample targets from being attached to
 non-multisample attachment p oints as well.

 B6-B10) Any of the above options can be implemented
 with either a single mon olithic mulitsample
 buffer that contains the samples for all draw
 buffers, depth and stenc il and a single
 attachment point, *OR* w ith independent
 multisample buffers for each draw buffer and
 depth and stencil and in dependent attachment
 points for each.

 C) Use some kind of "behind the scene s" mulitsample buffer.

 This option also has several varia nts:

 C1) An "implicit" multisample bu ffer that is simply a
 property of the framebuffer object. Each
 framebuffer object could hav e its own multisample
 buffer(s). Multisampling wo uld be enabled with
 some kind of FramebufferPara meter call. This
 implies that each framebuffe r has memory
 allocated with it. It furth er implies that the
 contents of the multisample buffer are
 framebuffer state and are th us retained with the
 framebuffer object.

 C2) We don't say anything except that we say the
 value of the glEnable(MULTIS AMPLE) is still
 respected and we render as d irected. This is
 similar to (C1) but we don't go so far as to say
 that the multisample buffer(s) is/are retained
 per framebuffer object. In other words, a call
 to BindFramebuffer() and cha nges to framebuffer
 attachments may or may not r etain multisample
 buffer contents. Valid impl mentations of this
 would include a multisample buffer per
 framebuffer or one per conte xt.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 669

 D) something else (hopefully simpler?)

 (42) What set of framebuffer targets should the initial extension
 support?

 RESOLUTION: resolved, (D) single target

 Basic possibilities include:

 (A) DRAW_AND_READ_FRAMEBUFFER_EXT

 (B) DRAW_FRAMEBUFFER_EXT
 READ_FRAMEBUFFER_EXT

 (C) DRAW_FRAMEBUFFER_EXT
 READ_FRAMEBUFFER_EXT
 DRAW_AND_READ_FRAMEBUFFER_EXT

 (D) FRAMEBUFFER_EXT

 The fundamental question is: must frame buffer binding points
 mimic the expressiveness of the window- system function
 MakeContextCurrent, which is described in the glX spec and
 the ARB_make_current_read extension?

 It was not immediately clear how to spe cify the distinction
 between a READ and a DRAW framebuffer i n the context of the
 existing read/draw buffer semantics, gi ven that this
 extension relaxes the "compatibility" r equirement between
 read and draw drawables. How would the value of RED_BITS
 for the read framebuffer be queried if it is different than
 the value of RED_BITS for the draw fram ebuffer? What
 exactly is the set of implementation de pendent state (see
 the "Implementation Dependent *" state tables in chapter 6)
 that can differ between read and draw f ramebuffer objects?

 When using MakeContextCurrent, the cont ext's and drawable's
 FBconfig (or pixel format) must be "com patible" or else the
 results are implementation dependent. But
 EXT_framebuffer_object cannot afford to swing such a large
 "undefined" stick, because it is more l ikely that
 framebuffer objects are incompatible in this sense, and
 because the "pixel format compatility" of a framebuffer
 object is dynamic--by changing attachme nts or redefining the
 internal format of an attached texture image.

 The value added by ARB_make_current_rea d through
 MakeContextCurrent is less relevant to
 EXT_framebuffer_object. EXT_framebuffe r_object enables
 rendering to a texture, and textures ar e objects with a
 clearly defined mechanism for use as th e source of a pixel
 copy: rather than using CopyPixels to m ove pixels from the
 READ_BUFFER to the DRAW_BUFFER(s), an a pplication can simply
 use the source data as a texture and th en draw a
 screen-aligned textured quad to the fra mebuffer.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 670

 Additionally, adding separate DRAW and READ bindings in the
 future is pretty straightforward. One solution would be to
 say that FRAMEBUFFER_EXT is the DRAW fr amebuffer, and name
 the new READ framebuffer FRAMEBUFFER_RE AD_EXT. Add a new
 BindFramebuffer-like function which tak es two framebuffer
 names--one for DRAW and one for READ. The current
 BindFramebuffer function binds a single object to both
 FRAMEBUFFER_EXT and FRAMEBUFFER_READ_EX T.

 So, we defer the additional targets unt il need has been
 proven, and go with the simpler option (D) for now.

 (43) In order for a framebuffer object to be "f ramebuffer complete",
 must all textures attached to the framebuf fer be mipmap
 complete (or mipmap cube complete if cubem ap texture)?

 RESOLUTION: resolved, no

 The reason this is a consideration is t hat some
 architectures require framebuffer-attac hable images to be
 located in graphics memory when rendere d to, and it may be
 more convenient to allocate and store a texture in graphics
 memory only if the texture is mipmap (c ube) complete--i.e.,
 the size and format of all levels are c onsistent in the
 normal sense of texture compeleteness.

 However, since framebuffer attachment p oints only really
 deal with single images of a texture le vel, it seems
 excessive to require the state of the o ther levels of a
 texture to affect the validty of the fr amebuffer object
 itself.

 Addtionally, the same difficulties arou nd "incomplete"
 textures already apply to traditional C opyTexSubImage, and
 we have been trying to make the render- to-texture semantics
 similar to CopyTexSubImage.

 Therefore, we chose not to treat render to texture any
 differently than CopyTexSubImage and do not require that the
 attached texture is mipmap (cube) compl ete.

 (44) What should happen if a texture that is cu rrently bound to the
 context is also used as an image attached to the
 currently bound framebuffer? In other wor ds, what happens if a
 texture is used as both a source for textu ring and a
 destination for rendering?

 RESOLUTION: resolved, (b2) - results ar e undefined because
 the framebuffer is not "framebuffer com plete".

 Originally this was resolved as causing framebuffer to fail
 the completeness test--i.e., rendering would be disabled (b1)

 As background, the reason this is an is sue in the first
 place is that simultaneously reading fr om, and writing to,
 the same texture image is likely to be problematic on
 multiple vendors' hardware without payi ng performance

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 671

 penalties for excessive synchronization and/or data copying.

 There are, however, certain cases where this functionality
 would arguably be useful, supportable, and well-defined. In
 particular, we can consider the case of custom mipmap
 generation using one level's image as s ource data to render
 into other levels of the same texture.

 So, at a minimum, we would like to supp ort rendering to a
 currently bound texture object if the s ource texture object
 has the BASE_LEVEL and MAX_LEVEL textur e parameters set such
 that the level being used as a framebuf fer-attachable image
 is excluded from texture fetches.

 This was our original rationale:

 a1) is problematic because one context could modify the
 base/max level on a shared texture causing another
 context which is using the texture as a destination to
 throw an error. This idea was rej ected as it
 essentially meant that the error w ould need to be
 thrown at render timer which peopl e found unacceptable.

 b1) has the same kind of multicontext behavior but no
 error. One context can cause a fr amebuffer shared in
 another context to become invalid, but this is already
 true and can happen for a variety of reasons if the
 participating framebuffer-attachab le images and/or
 framebuffer attachments are modifi ed by either context.

 At the time, we also considered th e following
 questions: should the specificatio n require the
 framebuffer to fail the framebuffe r completeness test?
 Or is the framebuffer simply "allo wed" to not be
 complete in this case? The latter choice would imply
 that the framebuffer might still b e considered
 "framebuffer complete" on some imp lementations. See
 issue (46)

 c1) is the easiest to specify and has an advantage that
 some implementations may be relyin g on this behavior
 already. However, this was reject ed as it is the least
 portable of the three options.

 We originally chose option (b1), though we considered that
 later on, individual hardware vendors m ay offer layered
 extensions that change this "framebuffe r completeness"
 failure into a success with either defi ned or undefined
 rendering behavior.

 However, this issue was re-opened becau es the subsequent
 resolution of issue (66) was that there should be no
 "context-dependent" reasons for framebu ffer incompleteness.
 If we had stuck with option (b1), then we would be making
 the framebuffer completeness predicated on a piece of
 context state (the current texture bind ing). Consider the
 case where texture T is attached to a f ramebuffer. Then

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 672

 this would have meant that a framebuffe r could be complete
 in one context (that didn't have textur e T bound as a
 texture) and incomplete in another cont ext (that did have
 texture T bound).

 When reconsidering this issue, we reali zed that we would not
 throw an error at Begin time without di sabling rendering, so
 we really only considered the following revised set of
 options:

 a2) throw an error and disable ren dering, but don't
 affect framebuffer completenes s
 b2) the behavior is undefined

 The issue was resolved the second time as:
 b2) Undefined behavior

 Another option that was briefly conside red was to make this
 another type of error (unrelated to try ing to render with an
 incomplete framebuffer). However, part of the rationale for
 throwing an error at glBegin time when trying to render with
 an incomplete framebuffer was that if y ou already have to
 test for framebuffer completeness, then throwing an error is
 no additional implementation burden. Y et, since it was
 decided that the "texture-from-destinat ion" condition is not
 part of framebuffer completeness - issu e (66) - then it is
 an additional burden to perform the
 "texture-from-destination" check just s o that an error can
 be generated. The concern was some imp lementations might
 not need to check for this case at all and we didn't want to
 burdern those implementations with an a dditional Begin-time
 error check.

 Also, for what it's worth, if we had le ft the
 "texture-from-destination" case in the framebuffer
 completeness test then any language des cribing how
 framebuffer completeness is affected wh en a currently bound
 texture is used as both source and dest ination needs to be
 explicit that the texture has to be cur rently bound *and*
 enabled. For instance, consider the ca se where a user has a
 cubemap texture object name N bound to unit X and a 2D
 texture object name M also bound to uni t X. What if the
 user would like to use the 2D texture M as a source while
 rendering to the faces of the cubemap t exture N? We would
 like to support this scenario, so the l anguage about a
 currently bound texture object would ha ve needed to take the
 target into account. And to make matte rs more interesting,
 this means we would have needed to take texture enables and
 fragment shaders into account in this d ecision. In the end,
 we decided that "context-state" would n ot affect the
 defintion of framebuffer completeness w e avoided this
 complexity (or at least moved it out of the framebuffer
 completeness test).

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 673

 (45) Are framebuffer configurations with no col or attachments allowed?

 RESOLUTION: resolved, yes

 The reason this is an issue is that the GL spec assumes
 there is always a color buffer. If a f ramebuffer with no
 images attached to any of the color buf fer attachment points
 can be "framebuffer complete", then the core GL spec will
 need to be modified to relax the assump tion that a color
 buffer always exists.

 However, since one of the possible like ly uses of this
 extnesion is to support depth texture r endering and stencil
 rendering for shadowing techniques, it seems like requiring
 an unused "dummy" color buffer in some cases is both
 inconvenient and a waste of memory.

 Therefore, framebuffers do not require color attachments to
 be valid. Perhaps though we should req uire that a
 framebuffer with *no* attachments is in valid.

 It also should be stated that attemptin g to render without
 the "appropriate" buffers attached need s to be defined. For
 instance, presumably, for depth renderi ng with no depth
 buffer attached, the depth test is disa bled, as it is in
 traditional GL.

 (46) In the framebuffer completeness criteria, this extension
 introduces the idea that rendering can fai l for implementation
 dependent reasons. Framebuffer completene ss also considers
 implementation *independent* reasons for f ailure.

 Do we need to make special distinction bet ween the cases where
 a framebuffer is not complete because of i mplementation
 dependent or because of implementation ind epenent reasons?

 RESOLUTION: resolved, yes, though this is really tied into
 how we resolve the minimum requirements for supporting this
 extension. See issue (61)

 Examples where a framebuffer may be inc omplete on some
 implementations but not others include:
 - 16 bit z-buffer used with 8 bit s tencil buffer
 - 32 bit color buffer with 16 bit d epth buffer
 - others?

 Examples where framebuffer MUST be inco mplete on all
 implementations include:

 - color-renderable image attached t o a non-color
 attachment point

 - depth-renderable image attached t o a non-depth
 attachment point

 - stencil-renderable image attached to a non-stencil
 attachment point

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 674

 - all images attached to a framebuf fer do not have the
 same dimensions

 - multiple render targets of differ ent bit depths

 - texture image attached to the fra mebuffer is part of a
 currently bound and enabled textu re and the image is
 within the range of mipmap levels that can be fetched
 by rendering.

 To make this determination we need to de scribe the criteria
 we should use to determine whether a fra mebuffer *can* or
 must be incomplete.

 The arguments for putting state vectors into the "can" fail
 case is that a later extension can come along and simply
 relax those portions of the framebuffer completeness
 definiton with no additional API. State vectors classified
 as "must" fail cases would at least requ ire the later
 extension to add an additional enable to start passing.

 (47) Certain state-modification operations can cause a change to the
 validated state of a framebufffer. (I.e., can make a
 framebuffer that was complete become incom plete, or
 vice-versa). Do we want to list exactly w hich
 state-modification routines can cause this to happen? If so
 what is the list?

 RESOLUTION: resolved, the answer is: ye s we want to
 delineate exactly which routines can ca use validation state
 changes.

 Currently any routine which changes any of the following
 state can potentially cause framebuffer completness to
 change:

 framebuffer state
 state changes to attached objects
 currently bound fragment program
 texture enable state

 The list of operations that can cause f ramebuffer a change
 to framebuffer completeness are spelled out in section
 4.4.4.2.

 (48) What information should be returned from
 CheckFramebufferStatusEXT()?

 New RESOLUTION: resolved: 8 possible en um values, see issue
 (55)

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 675

 Previous RESOLUTION: resolved, return o ne of three
 enumerated values:
 1. GL_FRAMEBUFFER_COMPLETE_EXT
 2. GL_FRAMEBUFFER_UNSUPPORTED_EXT
 3. GL_FRAMEBUFFER_INCOMPLETE_EXT
 where the three values mean the followi ng:
 1. framebuffer is complete and supp orted
 2. framebuffer is not supported for implementation
 dependent reason
 3. framebuffer is incomplete for implementation
 independent reason

 We considered the following two sets of enums:
 Set 1:
 GL_FRAMEBUFFER_COMPLETE_EXT
 GL_FRAMEBUFFER_NOT_COMPLETE_EXT
 GL_FRAMEBUFFER_NOT_SUPPORTED_EX T

 Set 2:
 GL_FRAMEBUFFER_COMPLETE_EXT
 GL_FRAMEBUFFER_INCOMPLETE_EXT
 GL_FRAMEBUFFER_UNSUPPORTED_EXT

 New resolution is Set 2.

 NOTE: In order to fully resolve issue (55), we expanded this set
 of enums to identify all of the impleme ntation-independent
 causes for a failure of the framebuffer completeness test.

 Originally, we had decided to have a qu ery where the
 query returns one of three possible val ues

 One possible set of names that could be returned included:
 FRAMEBUFFER_COMPLETE, and
 FRAMEBUFFER_HW_DEPENDENT, and
 FRAMEBUFFER_HW_INDEPENDENT

 How much information we return from Che ckFramebufferStatus
 is a function of how we expect the retu rn value to be used.
 A framebuffer object that is not comple te for implementation
 indepednent reasons is really an indi cation of a
 programming error (like mismatched size s) and should only
 occur during development phase of an ap plication. The
 correct response to this failure is to modify the
 application to fix the bug. After appl ication development,
 a framebuffer object that is not comple te for implementation
 dependent reasons is possible. Howev er, it's not yet
 clear whether we can easily characteriz e these reasons for
 failure in a programmatic fashion that would really offer
 the application enough information to d o something different
 at runtime. Perhaps a human readable i nfo log, intended
 just as an application debugging aid, w ould be more
 appropriate.

 We also considered whether we needed tw o separate queries:
 One that queried whether the framebuffe r was complete
 according to the spec, and one that que ried whether the

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 676

 framebuffer was supported. This was a little problematic as
 it might not be possible to answer the
 "IsFramebufferSupported" query until th e framebuffer was
 complete. A possible solution would ha ve been to return
 UNKNOWN from the "IsFramebufferSupporte d" query until the
 "IsFramebufferComplete" query returned TRUE.

 In any event, we decided a single query was a simpler
 solution.

 In addition, the proposed "format group / format
 restriction" API (see issue 12) should make the
 implementation-dependent framebuffer in complete case much
 less likely (and perhaps impossible) to occur.

 Note that if a framebuffer's state viol ates more than one of
 the framebuffer completeness rules desc ribed in section
 4.4.4.2, then it is undefined which of the enumerated value
 corresponding to one of the violated ru les will be returned
 by CheckFramebufferStatusEXT. Since th e initial state of a
 framebuffer violates multiple rules fro m section 4.4.4.2,
 it is therefore undefined exactly which value is returned if
 CheckFramebufferStatusEXT is called whi le bound to a newly
 created framebuffer object.

 (49) When this extension is used in conjunction with MRT (multiple
 render targets), it would naively be possi ble to create a
 framebuffer that had different color bit d epths/formats for
 various color attachment points. Should t his be allowed?

 RESOLUTION: resolved, no, not in this e xtension.
 A soon to follow extension may add this feature.

 This feature could be supported by simp ly not requiring that
 all of the FRAMEBUFFER_COLOR_ATTACHMENT n images share the
 same internal format. We decided again st doing so, however.

 ARB_draw_buffers and OpenGL-2.0 do not provide any mechanism
 to support rendering to multiple color buffers of different
 formats. Consequently, we chose not to extend OpenGL in
 this manner as part of the EXT_framebuf fer_object extension.

 Presumably, a future layered extension could easily add this
 feature. There are some open questions about exactly how
 this might work. For instance, what sh ould a query of
 RED_BITS return if the attached color-r enderable images have
 different formats? In any event, we le ave the details of
 rendering to differently formatted MRT for a future
 extension to define.

 (50) This extension introduces the concept of a ttaching one GL
 object (texture, renderbuffer) to another GL object
 (framebuffer). In many ways this situatio n is analogous to a
 previously poorly specified situation wher e a GL object could
 be attached to multiple contexts and the i ssues this raises
 with deletion and state propogation are si milar. Several
 issues resolutions have been predicated on the assumption that

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 677

 as we specify this container/member relati onship, the
 generation of GL errors should never be tr iggered in one
 context based on the asychronous actions o f another context.
 Is this a valid premise?

 In other words, should we be using the pre vention of
 asynchronously generated GL errors as a de sign constraint?

 RESOLUTION: resolved, no.

 We didn't officially decide on this as a design constraint.
 However, we essentially decided it by p roxy. We decided in
 issue (26) and (66) that an incomplete framebuffer can cause
 GL errors on rendering or reading the f ramebuffer.
 Consequently, this means a framebuffer shared by two
 contexts can be made incomplete by eith er context, and
 therefore each context can effectively cause the other
 context to start generating errors asyn chronously.

 We would expect that the state of frame buffer completness,
 like all the state of all shared object s, is not
 "guaranteed" to show up in another cont ext until that
 context makes an "atomic" request to th e server (like a
 BindFramebuffer for instance). Until t hat point, it is
 undefined whether the state change will show up in the other
 context, just like any state change mad e on a shared texture
 object.

 (51) What api should we use to query the attach ments of
 the currently bound framebuffer?

 RESOLUTION: resolved, (b)

 This is an issue because the relevant s tate
 for a specific attachment point is a fu nction
 of the type of object attached to that that attachment point.
 The attachment point state needs to sel ect a
 an image from an object which may have
 a collection of images, for instance
 the faces of a cube map texture.

 This introduces a kind of "polymorphism " into the
 framebuffer attachment point that is pr oblematic
 for queries.

 We have a few options:

 a) Some kind of single atomic query tha t
 returns a variable number of values in an array:

 GetFramebufferParameteriv(enum targe t,
 enum pname ,
 int* param s);
 where
 <target> = a framebuffer target
 <pname> = {attachment_point}

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 678

 Upon success "params" will cont ain an array of
 values where

 params[0] = {NONE | TEXTURE | R ENDERBUFFER}

 if params[0] == TEXTURE then
 params[1] = texture object name
 params[2] = level
 params[3] = face
 params[4] = image
 else if params[0] = RENDERBUFFE R then
 params[1] = renderbuffer na me

 Elements of the params array no t explicitly defined
 above will have undefined value s.

 One problem with (a) is that we woul d potentially also
 need a query to identify how many st ate variables will
 come back in this query. Consider t he case where in the
 future we add a new attachable objec t type that needs
 more selections tate or even add new selection state to
 existing object types. Applications coded to expect a
 maximum of n values returned today m ay break in the
 future unless they have a way to dyn amically learn how
 many attachment state params will co me back from the
 query.

 b) individual queries for all the possi ble attachment
 state values.

 We create a new routine to add a new <attachment>
 argument, otherwise we'd have an exp losion of
 permutations of attachment points an d possible attachment
 selection state values

 This could look like

 void GetFramebufferAttachmentParamet eriv(enum target,
 enum attachment,
 enum pname,
 int *param);

 where
 <target> = a framebuffer target
 <attachment> = {attachment_poin t}
 <pname> = one of
 FRAMEBUFFER_ATTACHMENT_OBJE CT_TYPE_EXT
 FRAMEBUFFER_ATTACHMENT_OBJE CT_NAME_EXT
 FRAMEBUFFER_ATTACHMENT_TEXT URE_LEVEL_EXT
 FRAMEBUFFER_ATTACHMENT_TEXT URE_CUBE_MAP_FACE_EXT
 FRAMEBUFFER_ATTACHMENT_TEXT URE_3D_ZOFFSET_EXT

 Upon success, param will be fil led out as follows:

 if pname is FRAMEBUFFER_ATTACHM ENT_OBJECT_TYPE_EXT,
 then param will contain one of:
 { NONE | TEXTURE | RENDERBU FFER },

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 679

 else if pname is
 FRAMEBUFFER_ATTACHMENT_OBJECT_N AME_EXT, and
 FRAMEBUFFER_ATTACHMENT_OBJECT_T YPE_EXT = TEXTURE,
 then param will contain:
 { name of attached texture }

 else if pname is
 FRAMEBUFFER_ATTACHMENT_OBJECT_N AME_EXT, and
 FRAMEBUFFER_ATTACHMENT_OBJECT_T YPE_EXT =
 RENDERBUFFER, then param will c ontain:
 { renderbuffer object name }

 else if pname is
 FRAMEBUFFER_ATTACHMENT_TEXTURE_ LEVEL_EXT, and
 FRAMEBUFFER_ATTACHMENT_OBJECT_T YPE_EXT = TEXTURE,
 then param will contain:
 { selected mipmap level of attached texture }

 else if pname is
 FRAMEBUFFER_ATTACHMENT_TEXTURE_ CUBE_MAP_FACE_EXT,
 and FRAMEBUFFER_ATTACHMENT_OBJE CT_TYPE_EXT =
 TEXTURE, then param will contai n:
 { selected face of attached cube map texture }
 { 0 if texture target is no t TEXTURE_CUBE_MAP }

 else if pname is
 FRAMEBUFFER_ATTACHMENT_TEXTURE_ ZOFFSET_EXT, and
 FRAMEBUFFER_ATTACHMENT_OBJECT_T YPE_EXT = TEXTURE,
 then param will contain:
 { selected z-slice/image of attached 3D texture }
 { 0 if texture is not 3-dim ensional }

 otherwise, param will contain t he value 0.

 One problem with option (b) is that it is a little
 heavy-handed as every piece of state needs its own query
 and enum

 Given the above choices, and the proble ms of extending option
 (a) in the future, (b) is probably the better of the two
 choices. It really only adds a few enu ms, and though it does
 require an independent function call to obtain each piece of
 state, this is well-precedented behavio r throughout GL.

 (52) Should manual mimpap generation via Genera teMipmap apply to
 textures regardless of whether they are at tached to framebuffer
 objects? Should automatic mimpap generati on apply to all
 textures regardless of whether they are at tached to framebuffer
 objects?

 RESOLUTION: resolved, (a) - both apply to both.

 This is an issue because the introduction of GenerateMipmap is
 intended both to address long standing com plaints about the
 existing "automatic" mipmap generation API and to provide a

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 680

 clear trigger for render to texture API's to know when to do
 the mipmap generation.

 These API's could be considered completely orthogonally. It's
 clear how they could interoperate. The qu estion is should they
 interoperate, or should one supercede the other?

 There are a couple of ways to address this issue:

 a) "automatic" mipmap generation applie s always and is
 triggered by any gl{Copy}Tex{Sub}Im age call if
 GENERATE_MIPMAP is set to TRUE. "M anual" mipmap
 generation applies always and is tr iggered by a call to
 GenerateMipmaps

 b) "automatic" mipmap generation applie s only
 to textures which are not attached t o framebuffer
 objects, calls to GenerateMipmap on "unattached" textures
 are ignored.

 "manual" mipmap generation applies o nly to textures which
 are attached to framebuffer objects, the value of
 GENERATE_MIPMAP for "attached" textu res is ignored

 c) Like option (b), but allow GenerateMi pmap to
 apply to all textures and only let au tomatic mipmap
 generation apply to "non-attached" te xtures.

 d) Create an enable or other piece of st ate
 to toggle between allowing automatic and allowing manual
 generation.

 We disregarded (d) because it's not clear w hy an application
 that had the freedom to set this new enable bit wouldn't
 simply just turn off the legacy automatic m impap generation
 to start with.

 Of the remaining choices, (a) is the most " orthogonal". The
 intent of adding GenerateMipmap is to provi de a cleaner and
 saner interface to mipmap generation that w e would encourage
 developers to use over the automatic method . Given that, it
 seems like restricting the "manual" generat ion to certain
 cases doesn't serve that goal, so we wish t o allow its use
 on any textures, attached or not.

 (53) When supporting ARB_draw_buffers, do we ne ed the level of
 indirection between fragment color outputs and attached
 mages provided in that API?

 RESOLUTION: yes

 ARB_draw_buffers allows the user to set up an "indirection
 table" between the fragment color outpu ts ("result.color[n]"
 in ARB_fragment_program, and "gl_FragDa ta[n]" in GLSL) and
 the attached draw buffers (FRONT, BACK, LEFT, RIGHT, etc).

 Since EXT_framebuffer_object is creatin g new non-visible

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 681

 framebuffer objects for which the legac y attachment points
 may not be appropriate, we could consid er naming the
 attachment points by numerical index (C OLOR0 ... COLORn) in
 which case we could consider dropping t his level of
 indirection and allowing the fragment s hader to output
 directly into the numerically specified COLOR0 attachment
 point with no indirection.

 However, this indirection is deemed to be useful becaues it
 allows the application to redirect the fragment color
 outputs without changing either the fra gment shader itself
 or the current framebuffer attachments, both of which are
 believed to be heavier-weight state cha nge operations than
 simply changing the indirection table v ia glDrawBuffers..

 Therefore, we elect to retain this leve l of indirection.
 This leaves open the question of what t o call the attachment
 points. See issue (54).

 (54) What should we name the logical buffer att achment points,
 bearing in mind the relationship to ARB_dr aw_buffers?

 RESOLUTION: resolved, option (E), which is a modified
 version of (C). Specifically, we use t he names
 COLOR_ATTACHMENT0_EXT through COLOR_ATT ACHMENTn_EXT,
 DEPTH_ATTACHMENT_EXT, and STENCIL_ATTAC HMENT_EXT (and any
 future attachment points also get the A TTACHMENT suffix).

 The reason this is an issue is that pri or to
 EXT_framebuffer_object, the names of th e various color
 logical buffer "attachment points" were heavily influenced
 by their intended usage in a graphical window-system.
 Logical buffers for BACK and FRONT_LEFT make sense in the
 context of double buffering and stereo presentation, but
 their use in off-screen rendering situa tions is
 anachronistic at best and perhaps even confusing.

 There are several options:

 Option (A): stick with the "legacy" nam es

 This would have us use all of the l egacy names which are
 used to identify a single buffer: F RONT_LEFT,
 FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, and AUX0..AUXn.

 This option would require no change to DrawBuffersARB().

 Option (B): AUXn names

 If we wish to avoid using the legac y names, one option
 is to re-use another numerically na med set of color
 buffers, the AUX buffers, and only allow framebuffer
 objects to support AUX0..AUXn attac hment points.

 This has the advantage of being eas y to specify, and
 numerically delimit, but is a littl e strange as
 framebuffer objects could conceivab ly support the same

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 682

 number of AUX buffers as the implem entation supports
 multiple render targets. This woul d have the awkward
 consequence of allowing framebuffer objects to support
 more AUX buffers than the default f ramebuffer could
 support via the pixel format select ion mechanism.

 This option would require no specif ic change to
 DrawBuffers but might require non-d efault framebuffers
 to support more AUX buffers than th e default framebuffer
 controlled by the window-system pix el format.

 Option (C): COLORn names

 Another option is to rename the col or buffer attachment
 points for application-created fram ebuffer objects to
 COLOR0..COLORn. This has the advan tage of avoiding the
 legacy window-centric names, and av oiding the confusion
 with AUX buffers. When considered in conjunction with
 the decision in issue (53) to suppo rt a level of
 indirection when using ARB_draw_buf fers, however, the
 user of the names COLOR0..COLORn ma y be confusing. For
 instance, if an ARB fragment progra m contains color
 output to "result.color[3]", it wil l not necessarily
 output to COLOR3. It will actually write to the buffer
 specified by DrawBuffersARB for DRA W_BUFFER3 which may
 or may not be COLOR3.

 This option would require an update to DrawBuffers to
 accept the new COLOR0..COLORn value s as valid draw
 buffers and would require a change to DrawBuffers to
 disallow the "legacy" names. Or at the very least we
 would need some language to describ e what happens if the
 DrawBuffers are using the legacy na mes when the
 currently bound framebuffer is not the default window
 system framebuffer.

 Option (D): DATAn names

 Yet another option is to call these attachment points
 DATA0..DATAn. This is the same as option (C) but uses
 the word DATA instead of COLOR. Th is has the advantage
 of avoiding the above problems with COLOR0..COLORN, but
 introduces a similar conflict with GLSL which uses the
 "gl_FragData[n]" name for its outpu t. Additionally,
 since we only support multiple rend er targets for color
 logical buffers, it may be that usi ng the word DATA is
 considered too abstract/general.

 Option (E): add ATTACHMENT to *ALL* nam es

 In order to avoid the confusion of option (C) and (D),
 we can choose to be more verbose. We can add the word
 _ATTACHMENT to distinguish these en ums from the color
 outputs of a fragment program or fr agment shader. For
 symmetry we also add _ATTACHMENT to the DEPTH and
 STENCIL (and any other to-be-added) attachment points.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 683

 Similar to (C) and (D), this option requires an update
 to DrawBuffers to at least accept t he new enum values.
 We could choose to make it illegal to specify the legacy
 values for non-default framebuffers as well. This is
 essentially covered by issue (55).

 Here is an pseudo-code example using op tion (E):

 // Assume presence of color renderb uffers
 // with names 1000, 2000, 3000, 400 0

 GLuint db[4] =
 { COLOR_ATTACHMENT4, COLOR_ATTA CHMENT7,
 COLOR_ATTACHMENT1, COLOR_ATTA CHMENT2 };

 glDrawBuffers(4, db);

 glFramebufferRenderbufferEXT(GL_FRA MEBUFFER_EXT, COLOR_ATTACHMENT4,
 GL_REN DERBUFFER_EXT, 1000);

 glFramebufferRenderbufferEXT(GL_FRA MEBUFFER_EXT, COLOR_ATTACHMENT7,
 GL_REN DERBUFFER_EXT, 2000);

 glFramebufferRenderbufferEXT(GL_FRA MEBUFFER_EXT, COLOR_ATTACHMENT1,
 GL_REN DERBUFFER_EXT, 3000);

 glFramebufferRenderbufferEXT(GL_FRA MEBUFFER_EXT, COLOR_ATTACHMENT2,
 GL_REN DERBUFFER_EXT, 4000);

 Then in ARB_fragment_program
 result.color[0] writes to COLOR _ATTACHMENT4 (i.e., renderbuffer 1000)
 result.color[1] writes to COLOR _ATTACHMENT7 (i.e., renderbuffer 2000)
 result.color[2] writes to COLOR _ATTACHMENT1 (i.e., renderbuffer 3000)
 result.color[3] writes to COLOR _ATTACHMENT2 (i.e., renderbuffer 4000)

 And in ARB_fragment_shader
 gl_FragData[0] writes to COLOR _ATTACHMENT4 (i.e., renderbuffer 1000)
 gl_FragData[1] writes to COLOR _ATTACHMENT7 (i.e., renderbuffer 2000)
 gl_FragData[2] writes to COLOR _ATTACHMENT1 (i.e., renderbuffer 3000)
 gl_FragData[3] writes to COLOR _ATTACHMENT2 (i.e., renderbuffer 4000)

 See also issue (57) for discussion on q uerying the number of
 available color buffers.

 (55) What should happen if the current DRAW_BUF FER(s) point to a
 non-existent logical buffer? Likewise for READ_BUFFER.

 RESOLUTION: resolved

 partial resolution #1: DrawBuffer(s)/ReadBuffer throws
 an error if the buffer does not "ex ist" for all
 framebuffers (default and non-defau lt).

 Should it be an error to call d rawBuffer on a
 non-default framebuffer if name d buffer does not
 exist?

 Resolved: yes

 partial resolution #2: The test for having a valid draw
 and read buffer should be part of f ramebuffer
 completeness test.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 684

 Should be part of completeness test and should all 5
 indpenent reasons add 5 enums?

 Resolved: yes

 partial resolution #3: we should cr eate an enum for
 each implementation independent rea son for failing
 the framebuffer completeness test o f section 4.4.4.1

 Current names (could change...)
 FRAMEBUFFER_COMPLETE_EXT
 FRAMEBUFFER_INCOMPLETE_ATTA CHMENTS_EXT
 FRAMEBUFFER_INCOMPLETE_IMAG ES_EXT
 FRAMEBUFFER_INCOMPLETE_DIME NSIONS_EXT
 FRAMEBUFFER_INCOMPLETE_FORM ATS_EXT
 FRAMEBUFFER_INCOMPLETE_DRAW _BUFFER_EXT
 FRAMEBUFFER_INCOMPLETE_READ _BUFFER_EXT
 FRAMEBUFFER_UNSUPPORTED_EXT

 NOTE: as per resolution of issue (78)
 FRAMEBUFFER_INCOMPLETE_ATTA CHMENTS_EXT
 became
 FRAMEBUFFER_INCOMPLETE_ATTA CHMENT_EXT
 and
 FRAMEBUFFER_INCOMPLETE_IMAG ES_EXT
 was dropped.

 This issue is intertwined with issue (5 6), which discusses
 whether the DRAW_BUFFER and READ_BUFFER are context or
 framebuffer object state.

 First, some background: If DRAW_BUFFER state is part of the
 context state vector rather than the fr amebuffer object
 state vector (see issue 56), then there are three ways to
 cause DRAW_BUFFER to reference a color buffer attachment
 point that "does not exist" in the curr ently bound
 framebuffer. If DRAW_BUFFER is part of the framebuffer
 object state vector, then (A) still app lies but (B) and (C)
 do not.

 A) The first case is by detaching, fr om the currently
 bound framebuffer object, the imag e that is attached to
 attachment point named by the valu e of DRAW_BUFFER. If
 an image is attached to COLOR_ATTA CHMENTn_EXT in the
 current framebuffer object and DRA W_BUFFER is set to
 COLOR_ATTACHMENTn_EXT, and then th e application
 detaches the image from COLOR_ATTA CHMENTn_EXT, then
 DRAW_BUFFER will end up specifying a buffer that "does
 not exist" in the currently bound framebuffer object.

 There is no analogue to this case in OpenGL prior to
 EXT_framebuffer_object. Before th is extension, the
 pixel format or fbconfig of a wind ow or pbuffer is
 immutable once one of these drawab les has been created.
 By design, framebuffer objects (wh ich essentially

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 685

 represent a new type of drawable) have mutable "pixel
 formats".

 B) The second case is by binding betw een two user-created
 framebuffer objects, where the two framebuffer objects
 do not have images attached to the same set of color
 attachment points. If an image is attached to
 COLOR_ATTACHMENTn_EXT in the curre nt framebuffer object
 and DRAW_BUFFER is set to COLOR_AT TACHMENTn_EXT, and
 then the user binds to a new frame buffer for which
 there is no image attached to COLO R_ATTACHMENTn_EXT,
 then DRAW_BUFFER will end up speci fying a buffer that
 "does not exist" in the newly boun d framebuffer object.

 This is morally equivalent to call ing MakeCurrent to
 bind a context to a different draw able (window or
 pbuffer) which does not have bitpl anes for the color
 buffer named by the context's valu e of DRAW_BUFFER.
 For example, MakeCurrent to a doub le-buffered window,
 set DRAW_BUFFER to BACK, then Make Current to a
 single-buffered window.

 C) The third case is by binding betwe en the default
 framebuffer and a user-created fra mebuffer object. The
 attachment points of a user-create d framebuffer object
 are named COLOR_ATTACHMENTn_EXT, D EPTH_ATTACHMENT_EXT,
 STENCIL_ATTACHMENT_EXT, etc. Thes e are also the legal
 values of DRAW_BUFFER when a user- created framebuffer
 object is bound. The default fram ebuffer, on the other
 hand, does not use the _ATTACHMENT names but instead
 uses names such as FRONT_LEFT, BAC K_RIGHT, and AUXn as
 legal DRAW_BUFFER values. Because the two sets of
 names do not overlap, no value of DRAW_BUFFER is valid
 for both the default framebuffer a nd a user-created
 framebuffer object.

 This is somewhat equivalent to cas e (B), except that in
 case (C) there is a guarantee that DRAW_BUFFER will
 become invalid, whereas in case (B) it is only
 possible that DRAW_BUFFER will b ecome invalid.

 The very problem of invalid DRAW and RE AD buffers was
 already a feature of OpenGL (and the wi ndow-system APIs)
 before the introduction of the EXT_fram ebuffer_object
 extension. The GLX specification speci fically addresses
 what happens when MakeCurrent is used t o bind a context to a
 different drawable (window or pbuffer) which does not
 possess one of the color buffers refere nced by the context's
 current values of DRAW_BUFFER and READ_ BUFFER. GLX
 addresses this by saying that no GL err or is generated, but
 invalid DRAW_BUFFER behaves as if DRAW_ BUFFER were NONE, and
 reads produce undefined results when RE AD_BUFFER is invalid.

 Now, back to the question of how EXT_fr amebuffer_object
 should handle the situation when a fram ebuffer object is
 bound and DRAW_BUFFER or READ_BUFFER is not valid while
 bound to a user-created framebuffer obj ect.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 686

 Obviously one option is to resolve the issue the same way is
 handled by MakeCurrent in the GLX spec. Invalid DRAW_BUFFER
 acts as if DRAW_BUFFER were NONE, and i nvalid READ_BUFFER
 causes read operations to generate unde fined results.

 A second option is to modify the frameb uffer completeness
 test to fail if the current DRAW_BUFFER or READ_BUFFER
 reference an attachment point to which no image is attached.
 This solution would also result in no r endering being
 performed, but would also generate a GL error when rendering
 is attempted while in this state, as de termined by issue
 (64). When rendering to a framebuffer object, invalid
 DRAW_BUFFER would cause generation of G L errors; but when
 rendering to a window, invalid DRAW_BUF FER would not cause
 generation of GL errors.

 Consider also that, because of the reso lution of issue (66),
 depending on how issue (56) is decided, failing the
 framebuffer completeness test due to a "non-existent"
 DRAW_BUFFER or READ_BUFFER may not be a viable option,
 because the framebuffer completeness te st is not allowed to
 examine context state.

 Additionally, there are two sub-issues that fall out of this
 issue:

 sub-issue 1: Error at DrawBuffer ca ll time or not?
 sub-issue 2: DRAW_BUFFER in or out of completeness test?

 [sub-issue 1]: First, what should be t he behavior of
 DrawBuffer(s) and ReadBuffer if the spe cified buffer does
 not exist at the time DrawBuffer(s) or ReadBuffer is called?

 For default framebuffer (window-system drawables), an error
 is currently thrown. We can not (or do not wish to) change
 this legacy behavior of window-system s upplied drawables.
 Consequently, we must resolve several q uestions here:

 For instance:

 - Should we do the same thing (erro r at DrawBuffer time)
 for user framebuffer objects?

 - Is this decision influenced by th e fact that
 user-created framebuffer objects can change their
 attachments one buffer at a time while window-system
 supplied drawables can not (i.e., must change all
 attachments atomically)?

 - Also, on other places in this API , such as assembling
 a framebuffer from framebuffer-at tachable images, we
 have allowed the system to move t hrough "invalid"
 states without generating an erro r as long as the
 system was back in a "valid" stat e by rendering time
 (or "validation" time). Should w e adhere to that
 principle here, or is this case d ifferent somehow?

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 687

 - Do we wish to retain the legacy w indow-system
 DrawBuffer(s) behavior for applic ation-created
 framebuffer objects for the sake of maintaining
 consistency? i.e., Does the bene fit of treating
 default and non-default framebuff ers consistently
 outweigh the earlier decision to delay validation of
 "invalid" states?

 - Both resolutions are examples of "state combination"
 errors where an error may or may not be generated
 depending on the order state-chan ging function calls
 are made. For instance, in the l egacy behavior
 DrawBuffers does or does not thro w an error on user
 framebuffer objects depending on when you call
 DrawBuffer relative to when you m ade your image
 attachments. On the other hand, if we decided to not
 throw an error at DrawBuffer time for user framebuffer
 objects, then DrawBuffer does or does not throw an
 error depending on whether one is bound to a default
 or non-default framebuffer. Is o ne of these "state
 combination" errors better or wor se than the other?

 [sub-issue 2]: Should having a DRAW_BUF FER that names a
 non-existent buffer cause the framebuff er completeness test
 to fail?

 Since image attachments can be changed after
 DrawBuffer(s) is called, even if we thr ow an error at
 Drawbuffer(s) time, we still must decid e how to handle
 having an invalid DRAW_BUFFER at render (or "validation")
 time. Our options include failing the completeness test,
 (thus disabling rendering and generatin g an error at render
 time) or just behaving as if DRAW_BUFFE R is NONE (thus
 disabling rendering but generating no e rror at render time).

 If the answer is "fail completeness tes t", then since
 currently framebuffer completeness can only be affected by
 framebuffer state, then one of two thin gs has to happen:
 Either the drawbuffer state must be fra mebuffer object
 state, or we have to revisit our decisi on that framebuffer
 completeness is solely a property of th e framebuffer state
 and can not be affected by "per context " state.

 If the answer is "do not fail completen ess test", then the
 practical consequence of this decision is that having an
 invalid DRAW_BUFFER behaves as if DRAW_ BUFFER is NONE, and
 no error is generated at render time. Also, in this case,
 DRAW-BUFFER state can be either per-con text or
 per-framebuffer object state without vi olating any
 previously decided issues.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 688

 (56) Should the value of DRAW_BUFFER, the corre sponding draw buffers
 indirection table for ARB_draw_buffers, an d the value of
 READ_BUFFER, be part of the context state vector or part of the
 the framebuffer object state vector?

 RESOLUTION: resolved, per-framebuffer o bject

 This issue is intertwined with issue (5 5), which discusses
 what happens when the DRAW_BUFFER or RE AD_BUFFER references
 a color buffer that "does not exist" in the current
 framebuffer.

 Please first read the "First, some back ground" section of
 issue (55), which could be, but is not, replicated here.
 Note that depending on how issue (56) i s decided, cases (B)
 and (C) from issue (55) might become mo ot. Specifically, if
 the DRAW_BUFFER and READ_BUFFER state a re added to the
 framebuffer object state vector, then n either case (B) nor
 case (C) remains relevant. Only case (A) would continue to
 be an issue.

 The discussion over this issue centered around the following
 areas:

 i) There must be a unique per-context value of DRAW_BUFFER
 for the default window-system-provi ded framebuffer.

 In GL, before EXT_framebuffer_objec t, the DRAW_BUFFER
 was considered context state becaus e:

 1) When two contexts are rendering to the same drawable,
 each context can use a different value of
 DRAW_BUFFER.

 2) When MakeCurrent alternately bin ds a single context
 to each of two different drawabl es, after MakeCurrent
 DRAW_BUFFER retains the value it had immediately
 before calling MakeCurrent. Thi s is true even if the
 last time the context was bound to a given drawable,
 DRAW_BUFFER had a different valu e than it does when
 that drawable is next bound to t he context.

 Therefore, a per-context value of D RAW_BUFFER must
 exist, and must be in effect when t he
 FRAMEBUFFER_BINDING_EXT is zero.

 Two ways of satisfying this require ment that we have
 considered include:

 A) DRAW_BUFFER is part of the conte xt state vector, but
 is not part of the framebuffer o bject state vector.

 B) Every framebuffer, including the per-context default
 window-system-provided framebuff er, has its own value
 for DRAW_BUFFER.

 ii) MakeCurrent vs. BindFramebuffer

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 689

 As described above, the context sta te vector must
 contain a value for DRAW_BUFFER tha t applies to the
 default window-system-provided fram ebuffer, which is
 used after a call to BindFramebuffe r(0). When
 MakeCurrent is used to bind the con text to a different
 drawable (window or pbuffer), the c ontext's value of
 DRAW_BUFFER remains unchanged. In other words, the
 choice of drawable does not affect the value of
 DRAW_BUFFER.

 An application-created framebuffer object is another
 type of drawable. When the framebu ffer binding is
 changed via BindFramebuffer, issue (56) speaks to the
 way in which DRAW_BUFFER is or is n ot updated. If
 DRAW_BUFFER is part of the context state vector, then
 DRAW_BUFFER remains unchanged after calling
 BindFramebuffer, just like it remai ns unchanged after
 calling MakeCurrent. On the other hand, if DRAW_BUFFER
 is part of the framebuffer object s tate vector, then
 after calling BindFramebuffer DRAW_ BUFFER may change
 along with the rest of the per-fram ebuffer state (i.e.,
 the image attachments).

 By defining DRAW_BUFFER as context state, the behavior
 of BindFramebuffer and MakeCurrent are similar, with
 respect to their effect on the valu e of DRAW_BUFFER.

 On the other hand, by defining DRAW _BUFFER as
 framebuffer object state, then Bind Framebuffer and
 MakeCurrent differ in their impact on the value of
 DRAW_BUFFER.

 iii) Multiple contexts and shared frameb uffer objects

 If DRAW_BUFFER is part of the frame buffer object state
 vector, then a single value of DRAW _BUFFER, like all of
 the framebuffer object state, will be shared by any
 context bound to a given framebuffe r object. This can
 be considered either a feature or a restriction
 depending on whether or not it is d esirable for multiple
 contexts to be able to share a sing le the value of
 DRAW_BUFFER.

 Note that WGL_ARB_pbuffer plus WGL_ ARB_render_texture
 API has limitations due to the fact that the texture
 image selection state is stored in the pbuffer drawable.
 For example, that API does not supp ort six different
 contexts (in six different threads) simultaneously
 rendering to the six faces of a cub e map pbuffer. It
 offers no way to share the images w ithout also sharing
 the pbuffer, and the pbuffer contai ns a single set of
 texture image selection state.

 EXT_framebuffer_object differs from ARB_render_texture,
 however, however, in that EXT_frame buffer_object allows
 the same images of a texture to be attached to multiple

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 690

 framebuffer objects. Consequently, the above cubemap
 example can be implemented in EXT_f ramebuffer_object in
 one or two ways, depending on the r esolution of issue
 (56):

 1) Create six framebuffer objects. Attach a different
 face of a cubemap texture to eac h of the six
 framebuffer objects. Each of th e six contexts binds
 to a unique framebuffer object. Technically, this
 option is available whether DRAW _BUFFER is context or
 framebuffer state. However, if it is context state,
 then there is no reason to creat e six framebuffer
 objects since the value of the D RAW_BUFFER will
 already be unique per context.

 2) On the other hand, if DRAW_BUFFE R is defined as
 context state, then a second opt ion is available.
 Using a single framebuffer objec t, attach each face
 of the cube map texture to a dif ferent attachment
 point in the framebuffer object. Each of the six
 contexts binds to the same frame buffer object, but
 each context uses a different va lue of DRAW_BUFFER.

 iv) Frequency of DrawBuffer calls:

 Whether DRAW_BUFFER is part of cont ext or framebuffer
 state will have an effect on how of ten one must call
 DrawBuffer after modifying framebuf fer state.

 If DRAW_BUFFER is part of the conte xt state vector, then
 DRAW_BUFFER is guaranteed to become invalid after
 calling BindFramebuffer to switch b etween the default
 framebuffer and a user-created fram ebuffer object [i.e.,
 this is case (C) in issue (55)]. D RAW_BUFFER may become
 invalid after switching between two user-created
 framebuffer objects if the framebuf fer objects do not
 have images attached to the same se t of color attachment
 points. When DRAW_BUFFER is invali d, it is necessary to
 call DrawBuffer to set DRAW_BUFFER to a valid value or
 else rendering is disabled.

 If, on the other hand, DRAW_BUFFER is part of the
 framebuffer object state vector, th en it should never be
 necessary to call DrawBuffer after calling
 BindFramebuffer. DRAW_BUFFER would only become invalid
 if an image was detached from the f ramebuffer, or if
 MakeCurrent bound the default frame buffer to a drawable
 with a different set of color buffe rs. (The latter was
 possible prior to this extension.)

 Note that there are several state-m odifying routines
 that may also need to get called af ter a framebuffer
 state change, like Viewport, Scisso r, etc. We are not
 proposing that these other routines be part of
 framebuffer state. One could think of DrawBuffer as
 being similar to these other routin es which you may also
 need to call when you bind between framebuffer objects.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 691

 On the other hand, some have questi oned whether an
 invalid DRAW_BUFFER is really in th e same class of
 problems as an out-of-bounds viewpo rt or scissor
 because: 1) an invalid viewport or scissor never
 generates a GL error, and 2) prior to the
 EXT_framebuffer_object extension an invalid DRAW_BUFFER
 would generate INVALID_ENUM inside DrawBuffer.

 v) Effect on framebuffer completeness test:

 By resolution of issue (66), if the draw buffer is
 context state, then the fact that t he draw buffer names
 a non-existent buffer can not affec t the result of the
 framebuffer completeness test. Not e that this still
 could be considered a "do not rende r" case, but would
 separate from the framebuffer compl eteness test.

 If the draw buffer(s) and read buff er are part of the
 framebuffer object state then havin g a draw or read
 buffer name a non-existent buffer c an (if we choose) be
 part of the framebuffer (in)complet eness test.

 Note, by resolution of issue (64), failing the
 framebuffer completeness test cause s a GL error to be
 generated when draw or read operati ons are attempted.
 Prior to EXT_framebuffer_object, it was already possible
 to have an invalid value of DRAW_BU FFER if a call to
 MakeCurrent bound the context to a drawable that did not
 contain a color buffer correspondin g to the context's
 value of DRAW_BUFFER. However, no GL error would be
 generated if DRAW_BUFFER obtained a n invalid value
 through this method.

 vi) Draw buffer(s) error behavior:

 Prior to the EXT_framebuffer_object extension, it was an
 error to call DrawBuffer or ReadBuf fer with a value that
 did not correspond to one of the lo gical color buffers
 of the currently bound drawable (wi ndow or pbuffer).
 Although it was not possible to set DRAW_BUFFER to an
 invalid value by calling DrawBuffer , it was actually
 possible for DRAW_BUFFER to have an invalid value after
 a call to MakeCurrent, as describe in issue (55).

 It has not been decided yet whether
 EXT_framebuffer_object will relax t he requirement that
 the argument to DrawBuffer referenc es a color buffer
 that "exists" in the currently draw able.

 In working group discussions, there was a perception
 that such an error during DrawBuffe r can be generated
 only if DRAW_BUFFER is part of the framebuffer object
 state vector. Then when the defaul t framebuffer (window
 or pbuffer) is current, the legal v alues of the argument
 to DrawBuffer would be determined b y the pixel format or
 fbconfig. When a user-created fram ebuffer object is
 current, the legal values of DrawBu ffer would either be

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 692

 any of the COLOR_ATTACHMENTn_EXT na mes or only the names
 of attachment points to which an im age is presently
 attached.

 However, given the precedent set by MakeCurrent and
 DRAW_BUFFER, it seems reasonable to retain the
 preexisting requirement that the ar gument to DrawBuffer
 names a buffer that "exists" in the current drawable.
 In other words, there already exist s precedent that says
 it is OK for DrawBuffer to generate an error in all the
 cases described in the preceeding p aragraph, even if
 DRAW_BUFFER is defined as part of t he context state
 vector.

 (57) Should we have a query to define the maxim um number of
 attachable color buffers (to support ARB_d raw_buffers)?

 RESOLUTION: yes, MAX_COLOR_ATTACHMENTS.

 Currently an application can query the GL for the maximum
 number of supported AUX buffers. An ap plication can also
 query for MAX_DRAW_BUFFERS_ARB in the A RB_draw_buffers
 extension. Given that we have named th e color logical
 buffer attachment points, COLOR_ATTACHM ENT0_EXT through
 COLOR_ATTACHMENTn_EXT, it seems natural that we should have
 a query to find the maximum value "n".

 One thought was that we might be able t o use
 MAX_DRAW_BUFFERS_ARB to store this valu e, but that value
 really describes the maximum number of colors that can be
 simultaneously output which is not the same thing as the
 number of buffers which can be attached and then selected
 among using DrawBuffersARB().

 This question is related to issue (54), which covers the
 names of the user-created framebuffer o bject color
 attachment points. Using the names COL OR_ATTACHMENT0_EXT
 through COLOR_ATTACHMENTn_EXT rather th an the legacy color
 buffer attachment names (FRONT_LEFT et. al.) for
 user-created framebuffer objects has an advantage that the
 number of color buffer attachment point s could be queried
 independent of the number of AUX buffer s and existence of
 front/back & left/right color buffers a s specified in the
 pixelformat. The number of available o ffscreen attachment
 points really should be independent of the properties of the
 current drawable's pixelformat, especia lly since MakeCurrent
 can bind a context to a drawable with a different
 pixelformat and thus different set of c olor buffers.

 One implication of this query is that t he value of
 MAX_COLOR_ATTACHMENTS_EXT is possibly s till dependent on the
 context/pixel format but independent of the currently bound
 framebuffer. In other words, MAX_COLOR _ATTACHMENTS_EXT can
 not change simply because the user call ed BindFramebuffer().
 Or can it? See issue (62)

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 693

 (58) What should we do about rendering to textu res with borders?
 (besides attempt to fervently wish them ou t of existence, I mean)

 RESOLUTION: resolved, borders are fully supported

 Should we allow rendering to textur es with borders at
 all?
 Resolved: yes

 If we allow this, can you render to the border pixels?
 Resolved: yes

 The reason this is an issue is that (a) everyone hates
 supporting borders, and (b) it's not cl ear what it means to
 render to a texture with borders.

 To disallow rendering to a texture imag e with non-zero
 border size, we could add a test for no n-zero border size to
 the definition framebuffer completeness . This might be
 preferrable to an error at FramebufferT exture, since the
 user could always redefine the texture to have borders after
 attachment, and so the framebuffer comp leteness test is
 necessary anyway.

 However, since borders do exist today a nd we are not
 planning to rip them out of OpenGL ever ywhere else, we
 decided to support them. It seemed odd that you could still
 specify borders via TexImage but not re nder into the same
 texture so we leave them supported. No te that it's quite
 possible that implementations which don 't support borders
 may continue to either not support them or fall to software
 rasterization.

 If someday we decide to disallow border s in general, they
 will be disallowed from this extension as well.

 One additional note: section 3.8.2, pag e 137, of the OpenGL
 1.5 specification, states that {Copy}Te xSubImage uses
 negative offsets to refer to border tex els. We choose not
 to do this because negative window-coor dinates are
 undefined. (NOTE: Are negative window coordinates actually
 undefined? Or are they just not common ly used in practice?)

 (59) Should we support named bit depths for ste ncil renderbuffers?

 RESOLUTION: resolved, yes, choose 4 com mon formats.

 We intend to support using renderbuffer s to store stencil
 data. This means we need to consider w hat kind of "internal
 format" request we provide for stencil formatted
 renderbuffers.

 We choose to allow a "named" format req uest for the internal
 format. This is essentially equivalent to the named
 internal format request of the TexImage calls. It is merely
 a request and the driver will attempt t o satisfy it as best
 as possible but may approximate the req uested format with

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 694

 another format. Additionally, this req uest is subject to
 the same invariance constraints as the texture internal
 format requests.

 For the initial extension we choose the following four sized
 internal formats, as well as the base i nternal format
 STENCIL_INDEX:

 STENCIL_INDEX1_EXT
 STENCIL_INDEX4_EXT
 STENCIL_INDEX8_EXT
 STENCIL_INDEX16_EXT

 (60) If depth buffer is disabled when a user-cr eated framebuffer
 object is bound and an image is attached t o GL_DEPTH, does the
 depth buffer factor into framebuffer valid ity determination or
 is the depth buffer ignored? Similar for other types of
 logical buffers.

 RESOLUTION: resolved, consider all atta ched images when
 determining framebuffer completeness, e ven if the images are
 "irrelevant" based on the state of the framebuffer.

 The main reason to consider not paying attention to certain
 images (i.e., ignoring the image attach ed to the depth
 buffer when depth test is disabled) wou ld be developer
 convenience. The developer wouldn't ne ed to explicitly
 detach a buffer, but could set the stat e to ignore it
 (disable depth test, or disable color m ask, reset draw
 buffer, etc).

 However, this raises the possibility th at by simply changing
 this other state (depth test, stencil t est, color mask, etc)
 the query for framebuffer completeness could change values.
 This was deemed undesirable. We'd like to be able to
 minimize the amount of state changes th at can cause the
 framebuffer completeness query to chang e.

 Another strange effect of ignoring "irr elevant" images when
 considering framebuffer completeness is that we could get an
 undesirable interaction between draw bu ffer and the pixel
 format for the framebuffer. A framebuf fer is considered
 incomplete if the color buffers do not all have the same
 internal format. But, consider the fol lowing case:

 - an application attaches a floatin g point
 color-renderable image to COLOR_A TTACHMENT1, and

 - the application attaches a fixed point
 color-renderable image to COLOR_A TTACHMENT2 and

 - the application sets the DRAW_BUF FER to
 COLOR_ATTACHMENT1, then

 If we ignored the attached images not p ointed to by
 DRAW_BUFFER(s} when evalutating framebu ffer completeness, we
 could consider this framebuffer complet e. This framebuffer

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 695

 would use floating point rendering. No w, if the application
 simply changes the DRAW_BUFFER to COLOR -ATTACHMENT2, then we
 would also say the framebuffer is compl ete but now the
 framebuffer would be using fixed point rendering. We didn't
 want to allow a change to DRAW_BUFFER t o effectively change
 the pixel format. On the other hand if we always considered
 all attached images, then in this case described above, the
 framebuffer would always be incomplete while the formats of
 the color-renderable images were incons istent.

 To avoid the above complications, we ch oose to have
 framebuffer completeness queries consid er all attached
 buffers, regardless of whether they wou ld be "used"
 according to the current state vector o r not.

 (61) What are the "minimum requirements" to sup port this extension?

 RESOLUTION: resolved, language added to end of 4.4.4.2

 For instance, is it a requirement that there must be at
 least one renderable color, depth, and stencil format that
 can all work together? is it a require ment that you must be
 able to render to *any* "color-renderab le" texture format?

 Since this extension specifically pulli ng in functionality
 that used to be in the domain of the wi ndow sytem, we would
 like to use as a starting point for our requrirements, the
 language from the GLX 1.3 spec, page 15 , which lists the
 minimum requirements langauge for a con formant GLX
 implementation.

 Questions to answer:

 - is the GLX spec a good starting p oint?

 - do we want the same requirements as the GLX spec?

 - do we want stronger requirements than the GLX spec?

 - do we want some kind of requireme nt that states that
 to support this extension, there must be at least one
 "gl conformant" framebuffer confi guration that can be
 constructed on a given implementa tion? If so, how do
 we phrase this?

 Anyway, the GLX spec states:

 "Servers are required to export at least one GLXFBConfig
 that supports RGBA rendering to win dows and passes
 OpenGL conformance (i.e., the GLX R ENDER TYPE attribute
 must have the GLX RGBA BIT set, the GLX DRAWABLE TYPE
 attribute must have the GLX WINDOW BIT set and the GLX
 CONFIG CAVEAT attribute must not be set to GLX NON
 CONFORMANT CONFIG). This GLXFBConf ig must have at least
 one color buffer, a stencil buffer of at least 1 bit, a
 depth buffer of at least 12 bits, a nd an accumulation
 buffer; auxiliary buffers are optio nal, and the alpha

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 696

 buffer may have 0 bits. The color buffer size for this
 GLXFBConfig must be as large as tha t of the deepest
 TrueColor, DirectColor, PseudoColor , or StaticColor
 visual supported on framebuffer lev el zero (the main
 image planes), and this confguratio n must be available
 on framebuffer level zero."

 So if we did a direct translation of th ese requirements into
 our spec, we'd end up with something ap proximately like the
 following:

 Although GL defines a wide variety of internal formats
 for textures and renderbuffers, som e implementations may
 not support particular combinations of internal formats
 for the images attached to the fram ebuffer. For a
 framebuffer with these unsupported combinations of
 internal formats, calls to CheckFra mebufferStatusEXT()
 will return FRAMEBUFFER_UNSUPPORTED _EXT.

 There must exist, however, at least one combinations of
 internal formats for the images att ached to the
 framebuffer for which CheckFramebuf ferStatusEXT() will
 not return FRAMEBUFFER_UNSUPPORTE D_EXT.

 Specifically, implementations are r equired to support at
 least one set of internal formats f or the images
 attached to a framebuffer such that

 - the image attached to the col or buffer supports
 RGBA rendering, and

 - the image attached to the col or buffer has at
 least as many bits as the dee pest visual supported
 by the window-system, althoug h the alpha buffer
 can have 0 bits, and

 - the image attached to the dep th buffer has at
 least 12 bits, and

 - the image attached to the ste ncil buffer has at
 least 1 bit, and

 - rendering to this framebuffer passes OpenGL
 conformance."

 However, it looks like no one is seriou sly using the
 NON_CONFORMANT_CONFIG bit under GLX or AGL, and on WGL,
 there is no such bit, so we'd like to " assume" conformance
 and drop the last clause. Additionally , we'd like to just
 piggy back on the existing requirements without duplicating
 them here so we will simplify this lang uage to leave out the
 last paragraph and list of clauses alto gether.

 We do wish to retain the notion that th ere must be some
 configuration for which FRAMEBUFFER_UNS UPPORTED_EXT is not
 returned.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 697

 (62) Exactly which, if any, queriable state can change after a call
 to BindFramebuffer and/or a change in fram ebuffer attachments?

 RESOLUTION: resolved, at the Sept. 2004 ARB meeting we
 resolved in principle that there is a s mall subset of
 "framebuffer-related" state that can ch ange. We just need
 to define exactly the subset. The curr ent subset as listed
 in section 4.4.5 is below:

 AUX_BUFFERS
 MAX_DRAW_BUFFERS
 MAX_COLOR_ATTACHMENTS
 RGBA_MODE
 INDEX_MODE
 DOUBLEBUFFER
 STEREO
 SAMPLE_BUFFERS
 SAMPLES
 {RED|GREEN|BLUE|ALPHA}_BITS
 DEPTH_BITS
 STENCIL_BITS
 ACCUM_{RED|GREEN|BLUE|ALPHA}_BITS

 The reason this is an issue is that tra ditionally there are
 some GL context state queries that are dependent on pixel
 format and window-system state. For in stance, doing a
 GetIntegerv of DEPTH_BITS returns the b it depth of the
 window-system allocated depth buffer wh ich is a function of
 the pixel format. If DEPTH_BITS is zer o, this means that no
 depth buffer was present in the pixel f ormat. Other context
 state queries like MAX_DRAW_BUFFERS, MA X_ACCUM_BUFFERS,
 SAMPLES, etc are all possibly functions of the current pixel
 format, and have traditionally been con stant over the
 lifetime of a given context.

 However, this extension specifically su bsumes some of the
 operations and state of the window-syst em pixel format
 mechanism. So an obvious question is: what should these
 queries return for things like DEPTH_BI TS and
 MAX_DRAW_BUFFERS when using a non-defau lt framebuffer
 object?

 If we allow these queries to return a v alue that is a
 function of the current framebuffer obj ect, then a
 consequence is that the values returned by these queries can
 change after a call to BindFramebuffer and/or a change in
 the attachments of the currently bound framebuffer object.

 This may be desirable: for instance, a user may rightly
 expect that querying RED_BITS returns t he red bits of the
 currently attached color buffer(s). Bu t is the user also
 expecting that MAX_DRAW_BUFFERS might c hange? What about
 SAMPLES or SAMPLE_BUFFERS? What about
 MAX_COLOR_ATTACHMENTS?

 Consider that in developing ARB_draw_bu ffers it was stated
 that some implementations might want to set MAX_DRAW_BUFFERS

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 698

 to 1 for pixel formats that also suppor ted multisampling.
 This would allow implementations to con trol which
 capabilities they exported. What facil ities do we have for
 this in this extension - can MAX_DRAW_B UFFERS change if we
 supported multisampling on a non-defaul t framebuffer object?

 Fundamentally, all of the state in tabl e 6.28-6.31 of the
 OpenGL 1.5 spec (the MAX_* queries) can in theory change as
 the result of the pixel format changing . Since this
 extension does an effective pixel forma t change, what if any
 of this state can/should be allowed to change when
 framebuffer attachments are changed?

 (63) Should we change ValidateFramebuffer into an explicit
 enum-based query for framebuffer completen ess?

 RESOLUTION: resolved, separate API func tion rather than a
 Get query, to emphasize the "on-demand" state examination.

 We did choose a different name for Vali dateFramebuffer().
 In issue (67) we decided to rename this function
 CheckFramebufferStatus().

 For reference the reason this is an iss ue is that, as
 originally described, ValidateFramebuff er (now called
 CheckFramebufferStatus) served three pu rposes:

 First, it forced an "on-demand" examina tion of the current
 framebuffer state (including framebuffe r attachment state)
 and the state of the attached images. On some
 implementations this examination might be expensive, and
 therefore there was a desire to control exactly when the
 operation would occur.

 Second, because of the implementation d ependent reasons that
 a framebuffer might be considered not c omplete,
 ValidateFramebuffer served as a query f or an application to
 determine at run-time if a seemingly co mpatible combination
 of attached images is actually incompat ible on the current
 GL implementation.

 Third, ValidateFramebuffer was more tha n just a query. It
 was a function that would set a piece o f framebuffer state
 that "enabled" rendering if the framebu ffer was determined
 to be complete. After certain changes to framebuffer state,
 or in the initial default state, unless ValidateFramebuffer
 was called prior to rendering, and unle ss framebuffer
 validation "passed", rendering would be disabled.

 However, now that it is no longer requi red to call
 ValidateFramebuffer prior to rendering, ValidateFramebuffer
 doesn't really set any state. The thir d reason is no longer
 pertinent.

 This leaves us with the first and secon d reasons. The first
 reason in particular seems to be driven by convenience. It
 is convenient to be able to control whe n this operation

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 699

 happens, but it is arguably also conven ient to be able to
 force the examination/validation of a w ide variety of other
 pieces of GL state, yet we don't have s pecific on-demand
 "ValidateTexture" or "ValidateBlendStat e" routines. In
 addition, on some implementations frame buffer validation may
 be less expensive than originally thoug ht.

 So if we ignore the first reason for a moment, we are left
 the second reason for ValidateFramebuff er - a query of the
 framebuffer completeness. We do wish t o retain this query
 somehow, so we could choose to leave it in its current form,
 or we could choose to make it look like other more
 traditional queries, i.e., some kind of GetInteger,
 GetFramebuffer, or GetFramebufferParame ter call.

 If we feel like the first reason is sti ll valid, we could
 also choose to retain a ValidateFramebu ffer call to get the
 "on-demand" state examination and still choose to make
 separate query for the framebuffer comp leteness.

 Either way, if we decide to make an enu m-based query we need
 to choose the form. We could choose to use GetInteger and
 query for COMPLETENESS. (If we do this , we'd need a
 "per-target" variant of the enum, i.e.,
 FRAMEBUFFER_COMPLETE, and if a read fra mebuffer target is
 added later, READ_FRAMEBUFFER_COMPLETE would need to be
 added as well.) This would be similar to how texture
 bindings are queried on a per target ba sis as in
 GetIntegerv(TEXTURE_BINDING_2D, ¶m) . Another option is
 to add a target-aware query routine, i. e.,
 GetFramebufferiv(FRAMEBUFFER, COMPLETE, ¶m); this is
 similar to what the ARB vertex/fragment program API's did to
 query per-target state like PROGRAM_NAT IVE_INSTRUCTIONS_ARB.

 (64) Should it be a GL error to attempt to rend er with an incomplete
 framebuffer?

 RESOLUTION: resolved, "YES"

 In looking at other GL resources that c an be considered
 "incomplete" for rendering, there were two precedents to
 draw on here: (a) textures and (b) prog rams/shaders.

 a) For textures, the GL behaves as if t he incomplete
 resource is simply not available. That is, if an
 application attempts to render with an incomplete texture,
 then the GL behaves as if texturing is simply disabled. No
 error is thrown.

 b) For ARB_vertex_program and ARB_fragm ent_program, and GLSL
 shaders, if a program or shader is inva lid, then the GL
 throws an error at "Begin" time.

 Originally, we choose style (a): treat an incomplete
 framebuffer similar to a "pixel ownersh ip test failure".
 This means that no fragments are genera ted, reads of the

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 700

 framebuffer generate undefined pixels, and no error is
 thrown.

 [NOTE: Technically, according to the GL spec, the fate of
 rendered fragments that fail the pixel ownership test is
 left up to the window-system and is the refore implementation
 dependent. A better way to handle this is to mimic
 make_current_read's language "as if DRA W_BUFFER is NONE"]

 However, since the a query of framebuff er completeness can
 only answer the question "is the frameb uffer complete right
 now?", but doesn't indicate whether the application may have
 attempted to render with an incomplete framebuffer earlier,
 we decided to throw an error in this ca se as an aid to the
 developer. Throwing an error has an ad vantage in that the
 error state is retained, like all GL er rors until the user
 calls GetError().

 Another option that was considered was to extend the
 framebuffer completeness query to indic ate that the
 framebuffer is complete now, but was in complete during
 earlier rendering. The downside of thi s option was that
 then there would then be two return val ues for the query
 that would mean "framebuffer complete r ight now". So in the
 end, we simply decided to leverage the existing GetError
 semantics to capture this "sticky" erro r behavior.

 One additional concern was that gl erro rs are traditionally
 only used to indicate programming error s on the part of the
 application, but the framebuffer comple teness test may have
 failed simply because of implementation dependencies through
 no fault of the application. We decide d to adopt the notion
 is that it is an error to attempt to re nder with an
 incomplete framebuffer, on all implemen tations, and so it
 actually *is* a programming error if an application does not
 attempt to deal with an incomplete fram ebuffer prior to
 rendering.

 (65) If it is an error to render to or read fro m an incomplete
 framebuffer, should we use INVALID_OPERATI ON or create a new
 error?

 RESOLUTION: resolved, INVALID_FRAMEBUFF ER_OPERATION_EXT

 We resolved to create a new error at th e September ARB
 meeting and then resolved the name of t he error within
 the work group.

 We agreed that if we throw an error here, we'd like a
 new error enum, particularly becaus e the error may have
 been triggered by a framebuffer whi ch is incomplete for
 implementation dependent reasons.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 701

 Some options for the new error name which were discussed:

 OPERATION_ON_INCOMPLETE_FRAMEBU FFER
 INCOMPLETE_FRAMEBUFFER
 IMPLEMENTATION_DEPENDENT_FAILUR E
 INVALID_FRAMEBUFFER
 INVALID_FRAMEBUFFER_OPERATION

 (66) There are several issues related to how we treat DrawBuffer(s)
 and other context state with respect to fr amebuffer
 completeness. We'd like a self-consistent model here and this
 may affect the resolution of issue (8), (4 4), (55), and (56).

 RESOLUTION: resolved, (d) - no context state in framebuffer
 completeness test, but context state ca n affect whether
 rendering takes place, does not take pl ace, or is undefined.
 Note option (d) required us to revisit issue (44).

 The first question we had to answer was :

 Is it desireable that "framebuffer completeness" be
 purely a property of the set of fra mebuffer state (which
 includes the state of the images at tached to the
 framebuffer)? Or can a framebuffer 's completeness
 depend on "non-framebuffer" context state as well?

 For instance, there are currently two p ieces of context
 state that can affect framebuffer compl eteness: texture
 binding state and draw buffer state.

 First, in issue (44), we decided that a ttaching an image of
 a currently bound and enabled texture t o a framebuffer can
 cause a framebuffer to be incomplete. The texture binding
 is context state and there are pieces o f the texture object
 state (base level, max level) that can also affect the
 determination of framebuffer completene ss. (Additionally if
 we add render-to-vertex-array functiona lity later, we might
 expect to have a framebuffer completene ss requirement that
 examines the state of the currently bou nd vertex array.)

 One way to avoid this context dependenc y is to revisit issue
 (44) and say that this "texture-from-de stination" case
 simply generates undefined rendering bu t does not affect
 framebuffer completeness. This would r eplace the "expressly
 disabled" rendering and framebuffer inc ompleteness with
 "undefined rendering", but would also l et implementations
 avoid checking context state during the validation of the
 framebuffer state.

 The second piece of context state that might cause
 framebuffer validation failures is the draw buffer(s) and/or
 read buffer state. It has been suggest ed in issue (55) that
 if the draw buffers specify attachment points with no
 attached images, then the framebuffer m ight be considered
 incomplete. If we choose to do this, t hen we would have
 context state influencing framebuffer c ompleteness state.
 However, if we resolve issue (56) to sa y that the draw

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 702

 buffer state is part of the framebuffer object state, then
 the draw buffer is no longer context st ate and this
 particular dependency of framebuffer co mpleteness on context
 state goes away.

 The above discussion leaves us with sev eral self-consistent,
 but different sets of decisions:

 (a) Remove context dependencies fro m framebuffer
 completeness.

 To do this we would:

 - Move draw buffer state from c ontext into
 framebuffer: issue (56)

 - Make "texture-from-destinatio n" undefined instead
 of a reason for framebuffer i ncompleteness: issue
 (44)

 - Presumably, if we created a r ender-to-vertex-array
 extension layered on this one , we would likely
 also make rendering into the currently bound
 vertex array undefined as wel l.

 With option (a), we can say tha t having draw buffer
 set to an non-existent buffer i s a reason for
 framebuffer incompleteness and there are no context
 dependencies. This would resol ve issue (55).

 (b) Allow context dependencies in f ramebuffer
 completeness.

 Essentially this means that the result of a query of
 framebuffer completeness is dep endent on the context
 making the query - or put anoth er way, the
 framebuffer completeness state is context state not
 framebuffer state.

 If we choose this option (b), t hen we are esentially
 free to resolve issues (44), (5 5), and (56)
 however we want. In other word s:

 - draw buffer can be either context or
 framebuffer state: issue (56)

 - "texture-from-destination " can be either
 undefined or a reason for framebuffer
 incompleteness

 - draw buffer specifying a non-existent buffer
 can be a reason for frame buffer incompleteness
 or could result in undefi ned behavior: issue
 (55)

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 703

 (c) Remove the framebuffer object a nd make the
 framebuffer state part of the c ontext.

 This option redefines the issue by not making a
 distinction between framebuffer "object" state and
 "context" state, therefore fram ebuffer completeness
 depends only on "context" state because all of the
 "framebuffer" state is now "con text" state.

 This would mean that there is n ow a subset of state
 in the context that can be cons idered the
 "framebuffer state" of the cont ext. This is the set
 of state that would presumably be pushed/popped
 under a theoretical FRAMEBUFFER _BIT for
 PushAttrib().

 Regardless of whether there is a framebuffer object,
 framebuffer completeness may or may not still depend
 on pieces of other "context" st ate that are not part
 of subset of context state rela ted to the
 "non-default" framebuffer (for instance, texture
 bindings and/or draw buffer sta te).

 If we choose this option (c),

 - we remove the framebuffer object: issue (8)
 This means:

 - removing gen/is/bind/ delete framebuffer
 object

 - moving the attachment state into the
 context

 - creating new context bind points for
 framebuffer attachmen ts and creating new
 BindFramebufferAttach ableImage calls or
 using the Framebuffer Texture() calls to do
 context binds of fram ebuffer-attachable
 images

 - we decide whether there i s a single set of
 draw/read buffer context state or a 2nd set of
 draw/read buffer context state to be used for
 "non-default" framebuffer objects. Either way
 it's "context" state but we need to know if we
 have one set of state or two. This is a
 variation on issue (56).

 - as in option (b), "textur e-from-destination"
 can be either undefined o r a reason for
 framebuffer incompletenes s

 - as in option (b), a draw buffer specifying a
 non-existent buffer can e ither be a reason for
 framebuffer incompletenes s or could result in
 undefined behavior: issue (55)

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 704

 - all the framebuffer attac hments become context
 state

 - we add a framebuffer enab le/disable bit to use
 to distinguish between th e "default" and
 "non-default" framebuffer

 (d) Create a new category of reason s that you can't use
 a framebuffer for rendering in a specific context,
 but that are not part of the te st for "framebuffer
 completeness"

 Essentially, this is a kind of hybrid of options (a)
 and (b). There are no context dependent reasons for
 framebuffer incompleteness, but at the same time
 there are some additional conte xt-dependent
 constraints on using a framebuf fer. In other words,
 a framebuffer can be complete b ut still not suitable
 for rendering by a given contex t.

 This creates two categories of tests that can be
 used to disable rendering - the set of
 context-independent test that a re used to determine
 framebuffer completeness, and t he set of tests that
 are context-dependent and not u sed to determine
 framebuffer completeness.

 An open question is: should we add a separate query
 for this second set of context- dependent tests
 and/or a "meta-query" that woul d cover both sets.
 This "meta-query" would return "true" if and only if
 the framebuffer is complete *an d* it can be used in
 this context.

 Note that while the "is framebu ffer complete" query
 is required by the fact that a framebuffer can be
 incomplete because of implement ation dependent
 reasons, the second query of th e context-dependent
 test results and the "meta quer y" are primarily
 debugging aids, though perhaps convenient ones.

 The framebuffer completeness qu ery is analogous to
 asking if a texture is "mipmap complete". The
 question, "can I render into my framebuffer", is
 analgous to asking the question , "is texturing
 enabled." A bound texture may be "complete", but
 texturing can still be disabled due to an
 unfortunate combination of non- texture-object
 context state. Option (d) is b asically saying the
 same thing of framebuffer objec ts.

 To implement option (d), we'd d o the following:

 - If draw buffer is defined as "context state" it
 can not affect framebuffer co mpleteness, but if
 draw buffer is defined as fra mebuffer state it

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 705

 might affect framebuffer comp leteness. See issues
 (55) and (56).

 - Make "texture-from-destinatio n" undefined instead
 of a reason for framebuffer i ncompleteness: issue
 (44). Technically, this coul d still be an error
 unrelated to framebuffer comp leteness, but we are
 trying to avoid creating a pr ecedent for arbitrary
 "errors at begin time". When this case was
 included in the "framebuffer completeness"
 validation, the additional co st of generating the
 error was free. But if this
 "texture-from-destination" ca se is not part of
 framebuffer completeness, the n it is an additional
 cost at begin time to detect this in order to flag
 an error (and/or disable rend ering). To avoid
 this cost, we would make this undefined.

 - Presumably, if we later creat e a
 render-to-vertex-array extens ion layered on this
 one, we would likely also cho ose the same
 resolution for rendering into the currently bound
 vertex array as we choose for the currently bound
 texture.

 (67) In issue (63) we decided we want to use a dedicated API
 function to test framebuffer completeness. We might want to
 change the name of "ValidateFramebuffer" h owever. If so, what
 name should we use?

 RESOLUTION: resolved, CheckFramebufferS tatus()

 One reason we decided to retain an expl icit API function
 instead of just using a GetInteger styl e query is to
 emphasis the "on-demand" state examinat ion that takes place
 when making this query.

 However, some were uncomfortable with t he name
 ValidateFramebuffer for this purpose. Some felt that it
 implied a requirement to call the funct ion, and others felt
 it was too similar in name to the GLSL function
 ValidateProgram which served a related but slightly
 different purpose. So we chose a new n ame.

 Some options we considered:
 ValidateFramebufferCompleteness()
 CheckFramebufferCompleteness()
 CheckFramebufferStatus()
 IsFramebufferComplete()

 (68) Exactly which levels should by generated b y GenerateMipmapEXT?

 RESOLUTION: resolved, from TEXTURE_BASE _LEVEL+1 through q

 Automatic mipmap generation via GENERAT E_MIPMAP generates
 from TEXTURE_BASE_LEVEL+1 through p, wh ich is the 1x1 level.
 However, applications frequently don't want to waste

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 706

 computation generating past q, which is the min of
 TEXTURE_MAX_LEVEL and p. The only reco urse is to accept the
 performance hit or to not use GENERATE_ MIPMAP.

 Arguably GENERATE_MIPMAP should have be en specified to
 generate only through q. We have the o pportunity to "fix"
 this problem by "correctly" specifying the new function
 GenerateMipmapEXT to generate only from TEXTURE_BASE_LEVEL+1
 through q.

 As the specification of GenerateMipmapE XT is currently
 written, GenerateMipmapEXT only generat es levels
 TEXTURE_BASE_LEVEL+1 through q.

 (69) What should we call the framebuffer object s to distinguish
 them from the default framebuffer?

 RESOLUTION: resolved, "application-crea ted"

 Currently we call these "application-cr eated" framebuffers
 Some places in the spec have also refer red these as
 "GL-allocated" framebuffers. Whichever term we use, we
 should use it consistently.

 Some terms we considered:

 "application-created" framebuffers
 "application-allocated" framebuffer s
 "non-default" framebuffers
 "GL-created" framebuffers
 "GL-allocated" framebuffers
 "dynamically-created" framebuffers
 etc.

 The GL spec already talks about "creati ng" textures, not
 "allocating" them, so "*-created" seems like a better
 choice.

 It's a bit of a toss-up between "GL-cre ated" and
 "application-created". Technically, th e "GL" really creates
 and manages these objects but it only d oes so at the request
 of the application. Going with "applic ation-created" for
 now.

 (70) With which, if any, attribute bit does the framebuffer binding
 push and pop? The same question applies t o the current
 renderbuffer?

 RESOLUTION: resolved, don't push/pop f ramebuffer binding
 bit for now. If desired, we may add t his in the ARB/core
 update of this spec.

 There are a few precedents to choose from.

 The ARB_vertex/fragment_program extensions chose to *not*
 push/pop the current program object binding . It's not clear if
 this was intentional or which existing attr ibute bit was

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 707

 appropriate to use or if there was a desire to not create a new
 attribute bit.

 ARB_vertex_buffer_object buffer objects and GL core texture
 objects do push/pop the bindings with the e xisting VERTEX_ARRAY
 and TEXTURE bits respectively. In addition , the texture enables
 are push/pop'ed with the TEXTURE bit.

 If we do wish to push/pop the FRAMEBUFFER_B INDING_EXT state we
 probably need a new FRAMEBUFFER bit.

 We could also consider adding a RENDERBUFFE R_BIT to cover the
 current renderbuffer binding or allow this renderbuffer binding
 to push/pop with the FRAMEBUFFER bit. Howe ver, it's less clear
 that push/pop'ing the renderbuffer binding is useful since the
 renderbuffer binding is not used for render ing. The
 renderbuffer binding is only used to set th e current
 renderbuffer for renderbuffer storage alloc ation and queries.

 Also, there are a related set of questions about how much state
 should push/pop with a new FRAMEBUFFER bit. Should we push/pop
 all of the framebuffer object state in addi tion to the current
 binding? Similar to the way vertex array's can be attached to
 VBO's, use of VBO, framebuffers can be atta ched to other GL
 objects. The TEXTURE_BIT covers both per o bject (min/mag
 filter) and per context (texture environmen t and enable) state.
 It's not clear if this is useful or desirab le to have per-object
 state push/pop. With the addition of objec t semantics, it seems
 like the need for push/pop of object state is reduced.

 In the end, since we'd need to create a new bit anyway, we
 decided to defer adding push/pop semantics until we understand
 the implementation ramifications better. I f we decide to create
 the bit later on in the ARB or Core revisio n of this extension,
 we can add it in a backward-compatible fash ion.

 (71) Should we spell out precisely which render ing and reading
 routines can cause us to generate an error at the time the
 rendering or reading functions are called?

 RESOLUTION: resolved, keep the same la nguage as ARB
 vertex/fragment program and GLSL for n ow, with the
 addtitions relevant for reading the fr amebuffer, but
 recommend the ARB look at this when do ing the next core GL
 spec revision.

 Currently GL has a few cases that can cause errors at render
 time. Specifically, attempting to render w ith a mapped vertex
 buffer object, an invalid low-level vertex or fragment program,
 or an invalid GLSL program object all gener ate errors at "Begin"
 time.

 This extension adds a new error at "begin" time. Attempting to
 render with an "incomplete" framebuffer gen erates
 INVALID_FRAMEBUFFER_OPERATION_EXT. In addi tion, this extension
 adds the same error at "read" time if the a pplication tries to
 read from an "incomplete" framebuffer.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 708

 The ARB vertex program, ARB fragment progra m, and GLSL extension
 specs state that an app which tries to use an "invalid" object
 can generate errors when Begin, RasterPos, or any command that
 performs an explicit Begin is called.

 This extension has adopted similar language . So the question
 asked by this issue is: do we need ot be mo re explicit.

 There are some ambiguities. For instance, it is an error to
 write pixels using an "implicit Begin" oper ation like DrawArrays
 if the current vertex program is invalid, b ut it is not an error
 to do an Accum operation which also writes pixels to the
 framebuffer.

 This issue applies to all of these extensio ns.

 Options include:

 - listing all routines which can render or read from the
 framebuffer and stating that they can cause an error if
 the framebuffer is incomplete, solvin g the problem for
 this extension only.

 - adding to the GL core a table of "rou tines that read
 pixels" and "routines that write pixe ls" and referencing
 those tables in the language for each of these extensions.

 Because each extension is doing something a little different,
 it's not even clear if the second option is a viable option.
 It's possible each extension would need its own list of routines
 which can generate errors anyway.

 Basically, this is a larger problem than th is
 EXT_framebuffer_object extension. For now, we choose to use the
 same (vague-ish) language adopted by the
 ARB_vertex/fragment_program and GLSL extnes ions.

 We do recommend, however, that the ARB addr ess this issue in the
 next GL core revision.

 (72) Should the framebuffer completeness test include a clause that
 says "at least one color attachment" has been made? Or "at
 least one attachment of any type"? Or is the framebuffer
 still complete when there are no attachme nts at all?

 RESOLUTION: resolved, a framebuffer mus t have at least one
 color-renderable, depth-renderable, or stencil-renderable
 image attached to be complete.

 While a framebuffer with only depth, or only color
 attachments seems plausible, we couldn' t come up with a
 sensible use for a framebuffer with no attachments at all,
 so the assumption is that this is an un intended error on the
 part of the application. Therefore, we choose to make it
 part of the framebuffer completeness te st.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 709

 We could make this its own clause in th e framebuffer
 completeness test. If we choose to do so, we should
 probably come up with a new FRAMEBUFFER _INCOMPLETE_* to
 conform to our previous practice of kee ping one enum per
 clause.

 However, since this is really related t o the attachment
 state, we could just piggy back this on the first clause and
 same all the attachment points must be "attachment complete"
 and there must be at least one color, d epth, or stencil
 buffer attached.

 If we choose this latter option, we can continue to use the
 FRAMEBUFFER_INCOMPLETE_ATTACHMENT enum to cover this case.

 (73) This clause from framebuffer completeness (before it was
 reworded, see below):

 * The value of FRAMEBUFFER_ATTACHMENT_OB JECT_TYPE_EXT must
 not be NONE for any color attachment p oint named by
 READ_BUFFER.

 basically requires at least one color atta chment is non-NULL.
 But this is not what we want. So what sho uld we do?

 RESOLUTION: resolved, (4a) READ_BUFFER can be NONE

 The reason is: READ_BUFFER is not allowed to be NONE, which in
 turn means to be framebuffer complete, REA D_BUFFER must be
 COLOR_ATTACHMENTn_EXT for some n which has an image attached.
 However, we don't wish to preclude a no-co lor framebuffer.
 What should we do?

 Options include:

 4a) Allow READ_BUFFER of NONE, read s of color from the
 framebuffer when read buffer is none, generate error
 INVALID_OPERATION

 4b) Generate an error when a read o peration (ReadPixels,
 CopyPixels, etc) is attempted w hile the color
 attachment point referenced by the READ_BUFFER does
 not have an attached image.

 4c) Reverse earlier decision to all ow complete
 framebuffer not to have any col or attachments.
 Instead, require at least one c olor attachment.
 READ_BUFFER must point to a val id color attachment
 or else the framebuffer object is incomplete.

 (4c) seems to require the user attach a col or buffer just to be
 able to read the depth buffer of a depth-on ly framebuffer.

 (4b) seems to suffer from the same problem (unless we move the
 "valid read buffer" test out of the complet eness test).

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 710

 Of these choices, (4a) seems to be the most palatable. We
 choose the allow the value of READ_BUFFER t o be NONE, but reads
 of color buffers when READ_BUFFER is NONE w ill generate an
 error, in order to be consistent with the d ecision in issues
 (26) and (65).

 Note: that clause was eventually reworded t o say:

 * If READ_BUFFER is not NONE, then the v alue of
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT must not be NONE for
 the color attachment point named by RE AD_BUFFER.

 (74) What should CheckFramebufferStatusEXT retu rn if
 FRAMEBUFFER_BINDING_EXT is zero?

 Secondary question: what should CheckFrame bufferStatusEXT
 return if there is an error?

 RESOLUTION: resolved, default fb retur ns COMPLETE always,
 and CheckFramebufferStatusEXT returns
 FRAMEBUFFER_STATUS_ERROR if there is a n error (bad target)

 This goes to a larger question of wheth er all framebuffers
 including the default window-system-pro vided framebuffer
 have a "completeness" state, or if "com pleteness" is only a
 property which applies to application-c reated framebuffers.

 For the case where the current FRAMEBUF FER_BINDING_EXT is
 zero, options include:

 - CheckFramebufferStatusEXT returns an error when
 FRAMEBUFFER_BINDING_EXT is zero.

 - CheckFramebufferStatusEXT always returns
 FRAMEBUFFER_COMPLETE_EXT when FRA MEBUFFER_BINDING_EXT
 is zero.

 For the case CheckFramebufferStatusEXT generates an error,
 options include:

 - reworking CheckFramebufferStatus into a "get" style
 routine that returns a value (or not) in an input
 parameter like GetIntegerv

 - returning a known value like NONE or 0

 - returning undefined results

 (75) How are state values for the stencil index write mask and
 stencil reference value affected by this e xtension?

 RESOLUTION:
 a) index write mask is stored as 32 bit value, default
 is all 1's, and
 b) reference value is not clamped o n specification but
 rather is clamped on use and que ry, and
 c) we need to add the stencil refer ence value

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 711

 to the state table that lists th e state values that
 might change after a framebuffer state change

 The reason this is an issue is that the current GL
 specification indicates that the stenci l index write mask
 and the stencil reference value are mas ked/clamped according
 to the number of stencil bitplanes. Ho wever, in this
 extension the number of stencil bitplan es can now change
 dynamically as the image attached to th e framebuffer is
 changed.

 For instance, if these values are clamp ed/masked according
 to the bitdepth of the currently attach ed stencil buffer,
 what should happen if the user later at taches a stencil
 buffer of a different bit depth? Must the stencil reference
 value or index write mask be respecifie d?

 For the index write mask: we decide to treat this value as
 "all 1's" as the current specification allows, but further
 define the number of 1's to be 32 (the minimum width of an
 integer in GL), and a likely maximum st encil bitdpeth for
 the forseeable future. This should ret ain backward
 compatbility and still handle the case where the bitdepth of
 the stencil buffer can change dynamical ly.

 For the stencil reference value, we dec ide to treat this
 state similar to way various clamped co lors are treated in
 the ARB floating point pixel extensions . Specifically, the
 state values are clamped against the cu rrent logical buffer
 bitdepths as they are used for renderin g and queried, but
 are not clamped on specification. This means that these
 state values do not need to be respecif ied just because the
 logical buffer bit depth changes, and r etains backward
 compatibility to the behavior prior to this extension.

 We will update the appropriate sections of the specification
 to describe this behavior.

 (76) Currently framebuffer objects are shared, should we make them
 not shared across contexts?

 RESOLUTION: yes, framebuffers are share d like display lists
 and textures are shared.

 Initially it was suggested that some co mplicated
 multi-context semantics might be avoide d if if the namespace
 for framebuffer objects were not shared across contexts.
 Specifically, some members of the group felt that by not
 sharing framebuffer objects, we could a void the situation
 where:

 a) one context can change the draw buffer of a
 framebuffer object in use by ano ther context.

 b) one context can change the attac hments of a
 framebuffer object which may be in use by another
 context.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 712

 However, after some discussion, we real ized that even if we
 didn't share framebuffer objects, there were still
 interactions similar to those listed ab ove because the
 underlying images could still be shared . Consequently, one
 context could still affect the complete ness and attachments
 of the framebuffers in another context by modifying or
 deleting the framebuffer-attachable ima ges shared by both
 contexts.

 So in the end, we decided to retain the share-ability of
 framebuffer objects rather than introdu ce an asymmetry with
 other GL objects like textures.

 (77) If the application deletes an object and t hat object contains
 an image which is attached to a framebuffe r object, exactly
 when and how is the image detached from th e framebuffer?

 RESOLUTION: resolved, option (1): image s are detached from
 the currently bound framebuffer on dele te, but images remain
 attached to any non-bound framebuffers.

 This is issue is somewhat related to th e multi-context
 object-sharing discussion currently goi ng on in the ARB.

 This extension presupposes that framebu ffer attachments
 represent a reference to the attached i mage (or more
 correctly - a reference to the object c ontaining the
 attached image). Since having a refere nce to an object
 affects when the object (and/or its nam e) is deleted, object
 deletion semantics are tied into the no tion when the state
 describing these references is modified . In other words,
 the semantics of when objects are delet ed are affected by
 the details concerning when a change to the framebuffer
 attachment state takes place.

 Prior to the EXT_framebuffer_object and GLSL extensions, the
 only way in which an object not current ly bound to this GL
 context could be modified, was when the object was modified
 by another GL context.

 Both the EXT_framebuffer_object and GLS L extensions allow an
 object (texture, renderbuffer, shader) to be attached to a
 "container" object (framebuffer, progra m). With the
 introduction of "attachment", an object could be bound to
 the context at more than one binding po int. For example, a
 texture can be bound to TEXTURE_2D_BIND ING, and it can also
 be indirectly bound through the FRAMEBU FFER_BINDING if it is
 attached to the framebuffer object boun d to the
 FRAMEBUFFER_BINDING.

 Furthermore, a texture can be attached (by reference) to a
 framebuffer object that is not bound to any context, while
 at the same time the texture *is* bound to context's
 TEXTURE_2D_BINDING. Because the textur e state is a part of
 the framebuffer object's state, it is n ow possible for
 modification of a texture through TEXTU RE_2D_BINDING to

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 713

 cause modification of a framebuffer obj ect, even though the
 framebuffer object is not bound to any context at the time
 it is modified.

 One conceptual model for dealing with t his situation is to
 treat attachment similar to bind, but i nstead of binding to
 a context, you are "binding" to another object. For the
 purposes of managing object references, object lifetimes,
 state propogation semantics, etc., thes e attachments can be
 considered to be "just like" a bind ope ration. [A "bind"
 and an "attach" are not exactly equival ent, however; see
 issue (82) for a further discussion on Bind vs. Attach.]

 If we agree on the above conceptual mod el, then we may wish
 to look to the multi-context situation for guidance on how
 to treat state changes to non-currently -bound framebuffer
 objects.

 Unfortunately, the multi-context semant ics are poorly
 defined by OpenGL. If we decide to use them as a guide, we
 should at least define what they are an d this is why the
 larger ARB is looking at this issue now .

 For EXT_framebuffer_object, there are t hree choices for
 behavior. In each case, we defer to th e larger ARB the
 details about when an object name is av ailable for reuse.
 For the purposes of this discussion, we are looking only at
 state changes governing the attachments . The three choices
 are listed below:

 For the sake of concrete simplicity, this discussion
 speaks to the images of a texture obj ect; but it applies
 equally to the image of a renderbuffe r object.

 If you delete a texture object while one of the texture's
 images is attached to a framebuffer o bject (or multiple
 framebuffer objects), then:

 (1) The image is automatically detach ed from the currently
 bound framebuffer object only.

 If the image is also attached to any other framebuffer
 objects, then the image is NOT au tomatically detached
 from those.

 The application is responsible fo r manually detaching
 images from the other framebuffer objects, by
 rebinding each framebuffer in tur n and performing an
 explicit detach operation.

 Until the application manually de taches the image from
 the other framebuffers, those fra mebuffers continue to
 use the image for rendering. The other framebuffer
 objects have a reference to the i mage until the image
 has been detached from them. In this way, attachment
 behaves as if the image was "boun d to the framebuffer
 object".

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 714

 (2) The image is automatically detach ed from the currently
 bound framebuffer object. Also d uring DeleteTexture,
 the image is automatically detach ed from any other
 framebuffer object to which it is attached; however,
 the image is not guaranteed to be detached from the
 other framebuffer objects until t he next time those
 framebuffer objects are bound via BindFramebufferEXT.

 Similar to option (1), in order t o "really" delete the
 object, the application is respon sible for rebinding
 all the framebuffer objects to wh ich the deleted image
 was attached. However, unlike op tion (1), the
 application need not actually per form an explicit
 detach operation. The applicatio n can merely bind the
 framebuffer.

 Until the application actually re binds the framebuffer
 the images are not actually detac hed and deleted. The
 other framebuffer objects continu e to hold a reference
 (like a binding) to the image unt il the next time the
 framebuffer objects are bound.

 (3) The image is automatically detach ed from all
 framebuffers objects during Delet eTextures, including
 the currently bound framebuffer a s well as any other
 framebuffers to which the image i s attached.

 The application need not explicit ly bind to, and
 detach the image from, any frameb uffer that is not
 bound at the time DeleteTextures was called.

 Because the framebuffer object ha s a reference to the
 texture object, and the texture o bject's state is
 considered part of the framebuffe r object's state,
 this resolution implies that Dele teTextures may
 modifiy the state of a framebuffe r object that is not
 the currently bound object.

 With reference to the object-sharing di scussion that is
 going on in the ARB right now, for (a)- style
 implementations, options (2) and (3) ar e indistinguishable.
 However, for (b)-style implementations, implementing (3)
 would require textures to store a list of all attached
 framebuffers while (2) would not.

 Options (2) and (3) essentially treat t he currently-bound
 and non-currently-bound framebuffers th e same--i.e.,
 deleting the image (ultimately) detache s it from all
 framebuffer. This may be desirable as a convenience to the
 application.

 On the other hand, Option (1) treats th e currently bound
 framebuffer special, in that deletions are performed
 automatically much like textures are un bound automatically
 from the current context's binding poin ts, but they are not
 unbound automatically from other contex ts' binding points.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 715

 Also, Option (1) leaves the application in control of when
 the images are detached, which also may be desirable.

 We choose option (1) because it is the simplest, and it also
 does not unduly burden implementations regardless of their
 choice of (a) versus (b) object-sharing model.

 If an implementation has the (a)-style object sharing model,
 then the fact that images remain attach ed to non-bound
 objects has no affect on when the objec t name may be
 re-used. If the implementation has a (b)-style
 object-sharing model, then the outstand ing attachments will
 delay re-use of the object name until t he image has been
 detached. Regardless of whether the AR B chooses (a) or (b)
 behavior, or even if the ARB chooses to leave this behavior
 undefined, we can "piggy-back" on the n ame-reuse semantics
 they decide.

 Also, option (1) means that if the appl ication deletes a
 texture while one of the texture's imag es is attached to a
 framebuffer object that is not bound, t hen the application
 may continue to render into the image a fter the framebuffer
 is bound again, regardless of the (a) v s. (b) choice.

 Finally, note that if a context deletes an object containing
 an image attached to the currently boun d framebuffer, then
 we first detach the image from the boun d framebuffer. This
 means that the state change to the fram ebuffer (the detach
 operation) is guaranteed to be picked u p by any other
 context the next time the framebuffer i s bound in one of the
 other contexts.

 (78) Should we collapse the notions of "framebu ffer-attachable image
 completeness" and "framebuffer attachment completeness" into a
 single type of completeness (probably reta ining the name
 "framebuffer attachment completeness"

 RESOLUTION: resolved, yes, eliminate "f ramebuffer-attachable
 image completeness" and add a "non-zero -area" requirement to
 the "framebuffer attachement completene ss" test.

 Originally this extension had several l ayers of which
 affected framebuffer completness. They were:

 - framebuffer-attachable image comp leteness
 * image has non-zero width/heig ht/depth
 * image has color, depth, or st encil format
 * image is not from a proxy tex ture

 - framebuffer attachment completene ss
 * attached image is textures/re nderbuffer
 * attached image is from existi ng object
 * attached image has format app ropriate
 for attachment point (depth b uffer
 has depth format, etc)

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 716

 - framebuffer completeness
 * all attachment points are "at tachment complete"
 * all images are "framebuffer-a ttachable image complete"
 * all color buffers have same f ormat
 * draw buffer is attached
 * read buffer is attached
 * framebuffer format combinatio n is supported

 However, upon further reflection of the
 "framebuffer-attachable image completen ess" tests, we
 realized that

 a) the requirement that the renderb le image is not a
 "proxy" texture was already cove red by the fact that
 it's illegal to attach a proxy t exture to a
 framebuffer, and

 b) the requirement that the format be color, depth, or
 stencil is essentially already c overed by the
 "framebuffer attachment complete ness" test
 requirement that the format is a ppropriate for the
 attachment point.

 This left only the "non-zero-area" test , so we decided to
 fold this requirement into the "framebu ffer attachement
 completeness" test and eliminate the co ncept of
 "framebuffer-attachable image completen ess". This decision
 required the elimination of one of the
 FRAMEBUFFER_INCOMPLETE_* enums as they correspond to the
 conditions in the "framebuffer complete ness" test of section
 4.4.4

 (79) Should the internal format chosen by GL fo r a texture (or
 renderbuffer) be invariant with respect to the state of the
 current framebuffer and its attached image s?

 RESOLUTION: yes, the choice of internal format must be
 invariant with respect to framebuffer s tate changes.

 This means that the GL must choose text ure internal format
 based only on the arguments to TexImage and ignore the
 current framebuffer state in this selec tion process.

 Similarly, the GL must choose renderbuf fer internal format
 based only on the arguments to Renderbu fferStorage and
 ignore the current framebuffer state in this selection
 process.

 This issue is a variant of issue (62). The OpenGL 2.0
 specification (p.152, paragraph 4) stat es that:

 "A GL implementation may vary its allocation of
 internal component resolution or c ompressed internal
 format based on any TexImage3D, Te xImage2D (see below),
 or TexImage1D (see below) paramete r (except target),
 but the allocation and chosen comp ressed image format

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 717

 must not be a function of any othe r state and cannot be
 changed once they are established. "

 Consider that prior to this extension, some implementations
 may have considered the the bitdepths o f the logical buffers
 of the framebuffer or the bitdepth of t he display when
 choosing an internal format for texture s. Since, in
 practice, these bitdepths typically wer e immutable for the
 lifetime of a GL context, the invarianc e requirements were
 met.

 With the introduction of EXT_framebuffe r_object, however,
 the logical buffer bitdepths can change over the lifetime of
 the context. So this issue examines wh ether or not
 framebuffer state is allowed to affect texture internal
 format selection.

 After some discussion, we felt it was t oo problematic to
 introduce this type of invariance. So this extension makes
 no modifications to the invariance lang uage, and adds
 similar invariance language applicable to renderbuffer
 objects. As long as the app provides t he same arguments to
 TexImage{1D|2D|3D} or RenderbufferStora ge, then the GL must
 always choose the same internal format.

 Note, however, that the GL is not requi red to provide the
 same internal format resolution for ren derbuffers as it does
 for textures.

 (80) Should attachment routines be display-list 'able?

 RESOLUTION: no, in fact none of the rou tines introduced in
 this extension are included in display lists.

 Initially, we were just considering whe ther or not the
 framebuffer attachement routines should be included in
 display lists. The rationale for not i ncluding them was
 that since query routines can not be in display lists, and
 well-behaved apps should call the query routine
 CheckFramebufferStatusEXT() after calli ng making changes to
 framebuffer attachments, it was not pos sible to write a
 well-behaved app that uses display list s to build up and use
 a framebuffer. So, one possible soluti on was to simply
 disallow from display lists the routine s that change change
 the result of CheckFramebufferStatusEXT ().

 However, we realized on further conside ration that other
 routines which can affect the results o f
 CheckFramebufferStatusEXT are already a llowed in display
 lists. Namely, the routines which affe ct textures (TexImage
 and friends). So, disallowing the atta chment routines is a
 partial solution at best.

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 718

 We also looked for various precedents a nd found some mixed
 results:

 - VBO bind operations are not displ ay-list'able, but
 this is primarily because the VBO bindings are
 considered client-state

 - texture bindings are display-list 'able

 In the end, though we decided to not in clude the routines
 introduced by this extension in display lists for reasons of
 simplicity more than anything else.

 It's possible we may need to add suppor t for display lists
 back in during promotion of this extens ion if we determine
 that it is needed later, but for now, w e leave this out.

 (81) How should PushAttrib and PopAttrib work w ith this extension?

 RESOLUTION: mostly deferred for now, ma y revisit later

 This extension introduces no new push/p op attrib bits to
 cover the state introduced by this exte nsion (for instance
 there is no FRAMEBUFFER_BIT). So the o nly real question to
 answer is what effect should Push/Pop a ttrib have on any
 existing state as it relates to this ex tension.

 In particular, how should Push/PopAttri b of the
 COLOR_BUFFER_BIT which covers the DRAW_ BUFFER and
 READ_BUFFER state interact with this ex tension? Does the
 COLOR_BUFFER_BIT affect the per-object DRAW_BUFFER and
 READ_BUFFER state?

 Currently, the answer is yes. PushAttr ib(COLOR_BUFFER_BIT)
 saves the DRAW_BUFFER value of the curr ently bound
 framebuffer object. If the app later c alls PopAttrib() this
 saved value will be restored even if th e framebuffer bound
 at the time PopAttrib is called is diff erent from the
 framebuffer bound at the time PushAttri b was called.

 In other words, one are considering whe ther or not it is
 strange that PushAttrib(COLOR_BUFFER_BI T) affects a piece of
 per-object state. Note that this is so mewhat similar to the
 way that a PushAttrib(TEXTURE_BIT) can save off
 per-texture-object state and a later ca ll to PopAttrib can
 restore that per-object state even if t he texture bound at
 PopAttrib time has since been changed/ deleted/modified in
 some way.

 There are some differences with the tex ture analogy though.
 Namely, the TEXTURE_BIT does include th e texture bindings so
 at least the texture object binding is restored in
 conjunction with the per-texture-object state. Also, some
 may consider the fact that the TEXTURE_ BIT affects
 per-texture-object state more intuitive than the fact that
 the COLOR_BUFFER_BIT affects per-frameb uffer-object state.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 719

 Also, there is a larger discussion goin g on in the ARB right
 now about whether PushAttrib/PopAttrib save references to
 existing bound objects or only the stat e values which name
 an existing bound object.

 For now, we have deferred further discu ssion of the
 PushAttrib/PopAttrib semantics in this extension until the
 larger issues are cleared up.

 (82) What is the relationship between a "bindin g" and an
 "attachment"?

 RESOLUTION: resolved, the concept of at tachment is described
 below, though final implications will b e affected by larger
 ARB discussions about object sharing an d multiple context
 semantics.

 "Attaching" is the act of connectin g one object to
 another object.

 An "attach" operation is similar to a "bind" operation
 in that both represent a reference to the attached or
 bound object for the purpose of man aging object
 lifetimes and both enable manipulat ion of the state of
 the attached or bound object.

 However, an "attach" is also differ ent from a "bind" in
 that "binding" an unused object cre ates a new object,
 while "attaching" does not. Additi onally, "bind"
 establishes a connection between a context and an
 object, while "attach" establishes a connection between
 two objects.

 Finally, if object "A" is attached to object "B" and
 object "B" is bound to context "C", then in principle,
 we treat "A" as if it is <implicitl y> bound to "C".

 The larger ARB is currently attempt ing to more clearly
 define the mutliple context semanti cs as they relate to
 object sharing and binding. The fi nal implications for
 EXT_framebuffer_object may not be c lear until those
 discussions are resolved. This ext ension may need an
 update once those issues are addres sed.

 (83) We use a non-zero framebuffer binding to e nable the use of this
 extension. Should we instead consider usi ng an explicit
 enable?

 RESOLVED: no, retain the "non-zero-bind ing means enable"
 semantics.

 Currently we enable the use of an appli cation-created
 framebuffer by binding a non-zero frame buffer object to
 FRAMEBUFFER_EXT binding point. If the framebuffer binding
 is zero, then the extension is disabled (i.e., we use the
 window-system-provided framebuffer).

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 720

 It might be cleaner to be able to say t hings like, "when
 FRAMEBUFFER_OBJECT is enabled", rather than "when the
 framebuffer binding is not zero", and a dd an explicit
 enable. Doing so would also allow chan ging framebuffer
 object attachments while FBO is disable d, which might result
 in the driver doing less validation whi le the application is
 setting up framebuffer objects. It wou ld also provide a
 cleaner way to explain that the permitt ed DRAW_BUFFER and
 READ_BUFFER values change when the exte nsion is
 enabled/disabled.

 There are a few object model precedents to choose from:
 Textures and ARB Vertex and Framgment P rogram extensions use
 the explicit enable state. However, Ve rtex Buffer Objects,
 Pixel Buffer Objects, and GLSL Vertex a nd Fragment shaders
 use a non-zero-binding to enable the us e of those features.

 If we used an explicit enable, then we could allow creation
 of an object named zero. Precedent dic tates that an object
 named zero is never shared in the conte xt share group. All
 other framebuffer objects are shared ac ross the share group.
 It might be cleaner to disallow creatio n of an object named
 zero anyway.

 Since binding to zero disables the exte nsion, one way to
 think about this is that there is an ob ject named zero which
 is managed through MakeCurrent, MakeCon textCurrent, and the
 window manager. All other objects are managed through
 FramebufferTexture, FramebufferRenderbu ffer, and the
 operations that define/modify texture a nd renderbuffer
 images. When looked at in this light, lack of an explicit
 enable is not as strange.

 (84) Do we need to add any language to describe the y-orientation of
 framebuffer-attachable images? Specifical ly, what coordinate
 system is used by images attached to the f ramebuffer?

 Resolution: unresolved

 GL defines the rendering origin at the lower-left corner.
 Yet, because of the differences between orientation storage
 of textures and images, pbuffer renderi ng is often
 implemented using a "y-inverted" coordi nate system. Is this
 y-inversion exposed in the API?

 Is the origin in the lower-left? Upper -left? Do we need to
 say anything about this at all, or is i t already covered by
 existing GL language?

 Currently there is place-holder text in section 4.4.2.3

 The intent of this specification is sim ply to mirror the
 y-orientation issues of the pbuffer sty le render to texture
 API's. What's unclear is whether this requires any new
 language in this specification or not.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_object

 721

 (85) Explain what happens when the FBO has a di fferent width/height
 from the window?

 An FBO takes on the width/height of its attachments. This
 width/height can be different than the width/height of the
 window (of framebuffer "zero").

 In such cases, after calling BindFrameb uffer, it is the
 application's responsibility to set the glViewport and the
 glScissor (if necessary) to match that of the new
 framebuffer binding.

 Some background: The default viewport f or a context is
 defined by the dimensions of the window to which the context
 is first made current. When the window is resized, or when
 the context is bound to a different win dow, the viewport
 does not change automatically. It has always been the
 application's responsibility to set the viewport after one
 of these events. FBO is no different; after BindFramebuffer
 it is the application's responsibility to set the viewport
 if the new framebuffer binding has a di fferent width/height
 than the old binding..

 (86) Are any one- or two- component formats col or-renderable?

 Presently none of the one- or two- comp onent texture formats
 defined in unextended OpenGL is color-r enderable. The R
 and RG float formats defined by the NV_ float_buffer
 extension are color-renderable.

 Although an early draft of the FBO spec ification permitted
 rendering into alpha, luminance, and in tensity formats, this
 this capability was pulled when it was realized that it was
 under-specified exactly how rendering i nto these formats
 would work. (specifically, how R/G/B/A map to I/L/A)

 To resolve this we seem to have two opt ions:

 A) Add new R and RG formats like NV_flo at_buffer did.

 B) For the existing one- and two- compo nent formats, define
 the mapping from RGBA components to ILA components.

 The superbuffers group has informally d ecided that option A
 is preferable.

 (87) What happens if a single image is attached more than once to a
 framebuffer object?

 RESOLVED: The value written to the pixel i s undefined.

 There used to be a rule in section 4.4.4.2 that resulted in
 FRAMEBUFFER_INCOMPLETE_DUPLICATE_ATTACHMEN T_EXT if a single
 image was attached more than once to a fra mebuffer object.

 FRAMEBUFFER_INCOMPLETE_DUPLICATE_ATTAC HMENT_EXT 0x8CD8

EXT_framebuffer_object NVIDIA OpenGL Extension Specifications

 722

 * A single image is not attached more than once to the
 framebuffer object.

 { FRAMEBUFFER_INCOMPLETE_DUPLICATE_A TTACHMENT_EXT }

 This rule was removed in version #117 of t he
 EXT_framebuffer_object specification after discussion at the
 September 2005 ARB meeting. The rule esse ntially required an
 O(n*lg(n)) search. Some implementations w ould not need to do that
 search if the completeness rules did not r equire it. Instead,
 language was added to section 4.10 which s ays the values
 written to the framebuffer are undefined w hen this rule is
 violated.

Revision History

 abridged

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 723

Name

 EXT_framebuffer_sRGB

Name Strings

 GL_EXT_framebuffer_sRGB
 GLX_EXT_framebuffer_sRGB
 WGL_EXT_framebuffer_sRGB

Contributors

 Herb (Charles) Kuta, Quantum3D

 From the EXT_texture_sRGB specification...

 Alain Bouchard, Matrox
 Brian Paul, Tungsten Graphics
 Daniel Vogel, Epic Games
 Eric Werness, NVIDIA
 Kiril Vidimce, Pixar
 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3 Graphics
 Jeremy Sandmel, Apple

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: November 6, 2006
 Revision: 2

Number

 337

Dependencies

 OpenGL 1.1 required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

 WGL_EXT_extensions_string is required for WGL s upport.

 WGL_EXT_pixel_format is required for WGL suppor t.

 ARB_color_buffer_float interacts with this exte nsion.

 EXT_framebuffer_object interacts with this exte nsion.

EXT_framebuffer_sRGB NVIDIA OpenGL Extension Specifications

 724

 EXT_texture_sRGB interacts with this extension.

 ARB_draw_buffers interacts with this extension.

Overview

 Conventionally, OpenGL assumes framebuffer colo r components are stored
 in a linear color space. In particular, frameb uffer blending is a
 linear operation.

 The sRGB color space is based on typical (non-l inear) monitor
 characteristics expected in a dimly lit office. It has been
 standardized by the International Electrotechni cal Commission (IEC)
 as IEC 61966-2-1. The sRGB color space roughly corresponds to 2.2
 gamma correction.

 This extension adds a framebuffer capability fo r sRGB framebuffer
 update and blending. When blending is disabled but the new sRGB
 updated mode is enabled (assume the framebuffer supports the
 capability), high-precision linear color compon ent values for red,
 green, and blue generated by fragment coloring are encoded for sRGB
 prior to being written into the framebuffer. W hen blending is enabled
 along with the new sRGB update mode, red, green , and blue framebuffer
 color components are treated as sRGB values tha t are converted to
 linear color values, blended with the high-prec ision color values
 generated by fragment coloring, and then the bl end result is encoded
 for sRGB just prior to being written into the f ramebuffer.

 The primary motivation for this extension is th at it allows OpenGL
 applications to render into a framebuffer that is scanned to a monitor
 configured to assume framebuffer color values a re sRGB encoded.
 This assumption is roughly true of most PC moni tors with default
 gamma correction. This allows applications to achieve faithful
 color reproduction for OpenGL rendering without adjusting the
 monitor's gamma correction.

New Procedures and Functions

 None

New Tokens

 Accepted by the <attribList> parameter of glXCh ooseVisual, and by
 the <attrib> parameter of glXGetConfig:

 GLX_FRAMEBUFFER_SRGB_CAPABLE_EXT 0x20B2

 Accepted by the <piAttributes> parameter of
 wglGetPixelFormatAttribivEXT, wglGetPixelFormat AttribfvEXT, and
 the <piAttribIList> and <pfAttribIList> of wglC hoosePixelFormatEXT:

 WGL_FRAMEBUFFER_SRGB_CAPABLE_EXT 0x20A9

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 725

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 FRAMEBUFFER_SRGB_EXT 0x8DB9

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 FRAMEBUFFER_SRGB_CAPABLE_EXT 0x8DBA

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 DELETE the following sentence from section 4.1. 8 (Blending) because
 it is moved to the new "sRGB Conversion" sectio n:

 "Each of these floating-point values is clamped to [0,1] and
 converted back to a fixed-point value in the ma nner described in
 section 2.14.9."

 If ARB_color_buffer_float is supported, the fol lowing paragraph
 is modified to eliminate the fixed-point clampi ng and conversion
 because this behavior is moved to the new "sRGB Conversion" section.

 "If the color buffer is fixed-point, the compon ents of the source
 and destination values and blend factors are cl amped to [0, 1]
 prior to evaluating the blend equation, the com ponents of the
 blending result are clamped to [0,1] and conver ted to fixed-
 point values in the manner described in section 2.14.9. If the
 color buffer is floating-point, no clamping occ urs. The
 resulting four values are sent to the next oper ation."

 The modified ARB_color_buffer_float paragraph s hould read:

 "If the color buffer is fixed-point, the compon ents of the source
 and destination values and blend factors are cl amped to [0, 1]
 prior to evaluating the blend equation. If the color buffer is
 floating-point, no clamping occurs. The result ing four values are
 sent to the next operation."

EXT_framebuffer_sRGB NVIDIA OpenGL Extension Specifications

 726

 Replace the following sentence:

 "Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.14.9 (Final
 Color Processing), as are source (fragment) com ponents."

 with the following sentences:

 "Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.14.9 (Final
 Color Processing). If FRAMEBUFFER_SRGB_EXT is enabled and the boolean
 FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw able is true, the R,
 G, and B destination color values (after conver sion from fixed-point
 to floating-point) are considered to be encoded for the sRGB color
 space and hence need to be linearized prior to their use in blending.
 Each R, G, and B component is linearized by som e approximation of
 the following:

 { cs / 12.92, cs <= 0. 04045
 cl = {
 { ((cs + 0.055)/1.055)^2.4, cs > 0. 04045

 where cs is the component value prior to linear ization and cl is
 the result. Otherwise if FRAMEBUFFER_SRGB_EXT is disabled, or the
 drawable is not sRGB capable, or the value corr esponds to the A
 component, then cs = cl for such components. T he corresponding cs
 values for R, G, B, and A are recombined as the destination color
 used subsequently by blending."

 ADD new section 4.1.X "sRGB Conversion" after s ection 4.1.8 (Blending)
 and before section 4.1.9 (Dithering). With thi s new section added,
 understand the "next operation" referred to in the section 4.1.8
 (Blending) to now be "sRGB Conversion" (instead of "Dithering").

 "If FRAMEBUFFER_SRGB_EXT is enabled and the boo lean
 FRAMEBUFFER_SRGB_CAPABLE_EXT state for the draw able is true, the R,
 G, and B values after blending are converted in to the non-linear
 sRGB color space by some approximation of the f ollowing:

 { 0.0, 0 <= cl
 { 12.92 * c, 0 < cl < 0.0031308
 cs = { 1.055 * cl^0.41666 - 0.055, 0.003 1308 <= cl < 1
 { 1.0, cl >= 1

 where cl is the R, G, or B element and cs is th e result
 (effectively converted into an sRGB color space). Otherwise if
 FRAMEBUFFER_SRGB_EXT is disabled, or the drawab le is not sRGB
 capable, or the value corresponds to the A elem ent, then cs = cl
 for such elements.

 The resulting cs values form a new RGBA color v alue. If the color
 buffer is fixed-point, the components of this R GBA color value are
 clamped to [0,1] and then converted to a fixed- point value in the
 manner described in section 2.14.9. The result ing four values are
 sent to the subsequent dithering operation."

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 727

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

 None

Additions to the OpenGL Shading Language specificat ion

 None

Additions to the GLX Specification

 None

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, ign ore the edits to
 ARB_color_buffer_float language.

Dependencies on EXT_texture_sRGB and EXT_framebuffe r_object

 If EXT_texture_sRGB and EXT_framebuffer_object are both supported, the
 implementation should set FRAMEBUFFER_SRGB_CAPA BLE_EXT to false when
 rendering to a color texture that is not one of the EXT_texture_sRGB
 introduced internal formats. An implementation can determine whether
 or not it will set FRAMEBUFFER_SRGB_CAPABLE_EXT to true for the
 EXT_texture_sRGB introduced internal formats. Implementations are
 encouraged to allow sRGB update and blending wh en rendering to sRGB
 textures using EXT_framebuffer_object but this is not required.
 In any case, FRAMEBUFFER_SRGB_CAPABLE_EXT shoul d indicate whether
 or not sRGB update and blending is supported.

Dependencies on ARB_draw_buffers, EXT_texture_sRGB, and EXT_framebuffer_object

 If ARB_draw_buffers, EXT_texture_sRGB, and EXT_ framebuffer_object
 are supported and an application attempts to re nder to a set
 of color buffers where some but not all of the color buffers
 are FRAMEBUFFER_SRGB_CAPABLE_EXT individually, the query of
 FRAMEBUFFER_SRGB_CAPABLE_EXT should return true .

 However sRGB update and blending only apply to the color buffers
 that are actually sRGB-capable.

GLX Protocol

 None.

Errors

 Relaxation of INVALID_ENUM errors

 Enable, Disable, IsEnabled, GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev now accept the new token as allo wed in the "New
 Tokens" section.

EXT_framebuffer_sRGB NVIDIA OpenGL Extension Specifications

 728

New State

 Add to table 6.20 (Pixel Operations)

 Get Value Type Get Command Initia l Value Description Sec. Attribute
 -------------------- ---- ----------- ------ ------- --------------- ----- ------------------ -
 FRAMEBUFFER_SRGB_EXT B IsEnabled False sRGB update and 4.1.X color-buffer/enabl e
 blending enable

 Add to table 6.33 (Implementation Dependent Val ues)

 Get Value Type Get Command Initial Value Description Sec. Attri bute
 ---------------------------- ---- ----------- ------------- -------------------- ----- ----- ----
 FRAMEBUFFER_SRGB_CAPABLE_EXT B IsEnabled - true if drawable 4.1.X -
 supports sRGB update
 and blending

New Implementation Dependent State

 None

Issues

 1) What should this extension be called?

 RESOLVED: EXT_framebuffer_sRGB.

 The "EXT_framebuffer" part indicates the ex tension is in
 the framebuffer domain and "sRGB" indicates the extension is
 adding a set of sRGB formats. This mimics the naming of the
 EXT_texture_sRGB extension that adds sRGB t exture formats.

 The mixed-case spelling of sRGB is the esta blished usage so
 "_sRGB" is preferred to "_srgb". The "s" s tands for standard
 (color space).

 For token names, we use "SRGB" since token names are uniformly
 capitalized.

 2) Should alpha be sRGB encoded?

 RESOLVED: No. Alpha remains linear.

 A rationale for this resolution is found in Alvy Ray's "Should
 Alpha Be Nonlinear If RGB Is?" Tech Memo 17 (December 14, 1998).
 See: ftp://ftp.alvyray.com/Acrobat/17_Nonln .pdf

 3) Should the ability to support sRGB framebuf fer update and blending
 be an attribute of the framebuffer?

 RESOLVED: Yes. It should be a capability of some pixel formats
 (mostly likely just RGB8 and RGBA8) that sa ys sRGB blending can
 be enabled.

 This allows an implementation to simply mar k the existing RGB8
 and RGBA8 pixel formats as supporting sRGB blending and then

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 729

 just provide the functionality for sRGB upd ate and blending for
 such formats.

 sRGB support for floating-point formats mak es little sense
 (because floating-point already provide a n on-linear distribution
 of precision and typically have considerabl y more precision
 than 8-bit fixed-point framebuffer componen ts allow) and would
 be expensive to support.

 Requiring sRGB support for all fixed-point buffers means that
 support for 16-bit components or very small 5-bit or 6-bit
 components would require special sRGB conve rsion hardware.
 Typically sRGB is well-suited for 8-bit fix ed-point components
 so we do not want this extension to require expensive tables
 for other component sizes that are unlikely to ever be used.
 Implementations could support sRGB conversi on for any color
 framebuffer format but implementations are not required to
 (honestly nor are implementations like to s upport sRGB on anything
 but 8-bit fixed-point color formats).

 4) Should there be an enable for sRGB update a nd blending?

 RESOLVED: Yes, and it is disabled by defau lt. The enable only
 applies if the framebuffer's underlying pix el format is capable
 of sRGB update and blending. Otherwise, th e enable is silently
 ignored (similar to how the multisample ena bles are ignored when
 the pixel format lacks multisample supports).

 5) How is sRGB blending done?

 RESOLVED: Blending is a linear operation s o should be performed
 on values in linear spaces. sRGB-encoded v alues are in a
 non-linear space so sRGB blending should co nvert sRGB-encoded
 values from the framebuffer to linear value s, blend, and then
 sRGB-encode the result to store it in the f ramebuffer.

 The destination color RGB components are ea ch converted
 from sRGB to a linear value. Blending is t hen performed.
 The source color and constant color are sim ply assumed to be
 treated as linear color components. Then t he result of blending
 is converted to an sRGB encoding and stored in the framebuffer.

 6) What happens if GL_FRAMEBUFFER_SRGB_EXT is enabled (and
 GL_FRAMEBUFFER_SRGB_CAPABLE_EXT is true for the drawable) but
 GL_BLEND is not enabled?

 RESOLVED: The color result from fragment c oloring (the source
 color) is converted to an sRGB encoding and stored in the
 framebuffer.

 7) How are multiple render targets handled?

 RESOLVED: Render targets that are not
 GL_FRAMEBUFFER_SRGB_CAPABLE_EXT ignore the state of the
 GL_FRAMEBUFFER_SRGB_EXT enable for sRGB upd ate and blending.
 So only the render targets that are sRGB-ca pable perform sRGB
 blending and update when GL_FRAMEBUFFER_SRG B_EXT is enabled.

EXT_framebuffer_sRGB NVIDIA OpenGL Extension Specifications

 730

 8) Should sRGB framebuffer support affect the pixel path?

 RESOLVED: No.

 sRGB conversion only applies to color reads for blending and
 color writes. Color reads for glReadPixels , glCopyPixels,
 or glAccum have no sRGB conversion applied.

 For pixel path operations, an application c ould use pixel maps
 or color tables to perform an sRGB-to-linea r conversion with
 these lookup tables.

 9) Can luminance (single color component) fram ebuffer formats
 support sRGB blending?

 RESOLVED: Yes, if an implementation choose s to advertise such
 a format and set the sRGB attribute for the format too.

 Implementations are not obliged to provide such formats.

 10) Should all component sizes be supported for sRGB components or
 just 8-bit?

 RESOLVED: This is at the implementation's discretion since
 the implementation decides what pixel forma ts such support sRGB
 update and blending.

 It likely implementations will only provide sRGB-capable
 framebuffer configurations for configuratio ns with 8-bit
 components.

 11) What must be specified as far as how do you convert to and from
 sRGB and linear RGB color spaces?

 RESOLVED: The specification language needs to only supply the
 linear RGB to sRGB conversion (see section 4.9.X above).

 The sRGB to linear RGB conversion is docume nted in the
 EXT_texture_sRGB specification.

 For completeness, the accepted linear RGB t o sRGB conversion
 (the inverse of the function specified in s ection 3.8.x) is as
 follows:

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 731

 Given a linear RGB component, cl, convert i t to an sRGB component,
 cs, in the range [0,1], with this pseudo-co de:

 if (isnan(cl)) {
 /* Map IEEE-754 Not-a-number to zer o. */
 cs = 0.0;
 } else if (cl > 1.0) {
 cs = 1.0;
 } else if (cl < 0.0) {
 cs = 0.0;
 } else if (cl < 0.0031308) {
 cs = 12.92 * cl;
 } else {
 cs = 1.055 * pow(cl, 0.41666) - 0.0 55;
 }

 The NaN behavior in the pseudo-code is rec ommended but not
 specified in the actual specification lang uage.

 sRGB components are typically stored as un signed 8-bit
 fixed-point values. If cs is computed wit h the above
 pseudo-code, cs can be converted to a [0,2 55] integer with this
 formula:

 csi = floor(255.0 * cs + 0.5)

 12) Does this extension guarantee images render ed with sRGB textures
 will "look good" when output to a device su pporting an sRGB
 color space?

 RESOLVED: No.

 Whether the displayed framebuffer is displa yed to a monitor that
 faithfully reproduces the sRGB color space is beyond the scope
 of this extension. This involves the gamma correction and color
 calibration of the physical display device.

 13) How does this extension interact with EXT_f ramebuffer_object?

 RESOLVED: When rendering to a color textur e, an application
 can query GL_FRAMEBUFFER_SRGB_CAPABLE_EXT t o determine if the
 color texture image is capable of sRGB rend ering.

 This boolean should be false for all textur e internal formats
 except may be true (but are not required to be true) for the sRGB
 internal formats introduced by EXT_texture_ sRGB. The expectation
 is that implementations of this extension w ill be able to support
 sRGB update and blending of sRGB textures.

 14) How is the constant blend color handled for sRGB framebuffers?

 RESOLVED: The constant blend color is spec ified as four
 floating-point values. Given that the text ure border color can
 be specified at such high precision, it is always treated as a
 linear RGBA value.

EXT_framebuffer_sRGB NVIDIA OpenGL Extension Specifications

 732

 15) How does glCopyTex[Sub]Image work with sRGB ? Suppose we're
 rendering to a floating point pbuffer or fr amebuffer object and
 do CopyTexImage. Are the linear framebuffe r values converted
 to sRGB during the copy?

 RESOLVED: No, linear framebuffer values wi ll NOT be automatically
 converted to the sRGB encoding during the c opy. If such a
 conversion is desired, as explained in issu e 12, the red, green,
 and blue pixel map functionality can be use d to implement a
 linear-to-sRGB encoding translation.

 16) Should this extension explicitly specify th e particular
 sRGB-to-linear and linear-to-sRGB conversio ns it uses?

 RESOLVED: The conversions are explicitly s pecified but
 allowance for approximations is provided. The expectation is
 that the implementation is likely to use a table to implement the
 conversions the conversion is necessarily t hen an approximation.

 17) How does this extension interact with multi sampling?

 RESOLVED: There are no explicit interactio ns. However, arguably
 if the color samples for multisampling are sRGB encoded, the
 samples should be linearized before being " resolved" for display
 and then recoverted to sRGB if the output d evice expects sRGB
 encoded color components.

 This is really a video scan-out issue and b eyond the scope
 of this extension which is focused on the r endering issues.
 However some implementation advice is provi ded:

 The implementation sufficiently aware of th e gamma correction
 configured for the display device could dec ide to perform an
 sRGB-correct multisample resolve. Whether this occurs or not
 could be determined by a control panel sett ing or inferred by
 the application's use of this extension.

 18) Why is the sRGB framebuffer GL_FRAMEBUFFER_ SRGB_EXT enable
 disabled by default?

 RESOLVED: This extension could have a bool ean
 sRGB-versus-non-sRGB pixel format configura tion mode that
 determined whether or not sRGB framebuffer update and blending
 occurs. The problem with this approach is 1) it creates may more
 pixel formation configurations because sRGB and non-sRGB versions
 of lots of existing configurations must be advertised, and 2)
 applicaitons unaware of sRGB might unknowin gly select an sRGB
 configuration and then generate over-bright rendering.

 It seems more appropriate to have a capabil ity for sRGB
 framebuffer update and blending that is dis abled by default.
 This allows existing RGB8 and RGBA8 framebu ffer configurations
 to be marked as sRGB capable (so no additio nal configurations
 need be enumerated). Applications that des ire sRGB rendering
 should identify an sRGB-capable framebuffer configuration and
 then enable sRGB rendering.

NVIDIA OpenGL Extension Specifications EXT_framebuffer_sRGB

 733

 This is different from how EXT_texture_sRGB handles sRGB support
 for texture formats. In the EXT_texture_sR GB extension, textures
 are either sRGB or non-sRGB and there is no texture parameter
 to switch textures between the two modes. This makes sense for
 EXT_texture_sRGB because it allows implemen tations to fake sRGB
 textures with higher-precision linear textu res that simply convert
 sRGB-encoded texels to sufficiently precise linear RGB values.

 Texture formats also don't have the problem enumerated pixel
 format descriptions have where a naive appl ication could stumble
 upon an sRGB-capable pixel format. sRGB te xtures require
 explicit use of one of the new EXT_texture_ sRGB-introduced
 internal formats.

 19) How does sRGB and this extension interact w ith digital video
 output standards, in particular DVI?

 RESOLVED: The DVI 1.0 specification recomm ends "as a default
 position that digital moniotrs of all types support a color
 transfer function similar to analog CRT mon itors (gamma=2.2)
 which makes up the majority of the compute display market." This
 means DVI output devices should benefit fro m blending in the
 sRGB color space just like analog monitors.

Revision History

 None

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 734

 Name

 EXT_fog_coord

Name Strings

 GL_EXT_fog_coord

Status

 Shipping (version 1.6)

Version

 $Date: 1999/06/21 19:57:19 $ $Revision: 1.11 $

Number

 149

Dependencies

 OpenGL 1.1 is required.
 The extension is written against the OpenGL 1.2 Specification.

Overview

 This extension allows specifying an explicit pe r-vertex fog
 coordinate to be used in fog computations, rath er than using a
 fragment depth-based fog equation.

Issues

 * Should the specified value be used directly as the fog weighting
 factor, or in place of the z input to the fog e quations?

 As the z input; more flexible and meets ISV requests.

 * Do we want vertex array entry points? Interleav ed array formats?

 Yes for entry points, no for interleaved fo rmats, following the
 argument for secondary_color.

 * Which scalar types should FogCoord accept? The full range, or just
 the unsigned and float versions? At the moment it follows Index(),
 which takes unsigned byte, signed short, signed int, float, and
 double.

 Since we're now specifying a number which b ehaves like an
 eye-space distance, rather than a [0,1] qua ntity, integer types
 are less useful. However, restricting the c ommands to floating
 point forms only introduces some nonorthogo nality.

 Restrict to only float and double, for now.

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 735

 * Interpolation of the fog coordinate may be pers pective-correct or
 not. Should this be affected by PERSPECTIVE_COR RECTION_HINT,
 FOG_HINT, or another to-be-defined hint?

 PERSPECTIVE_CORRECTION_HINT; this is alread y defined to affect
 all interpolated parameters. Admittedly thi s is a loss of
 orthogonality.

 * Should the current fog coordinate be queryable?

 Yes, but it's not returned by feedback.

 * Control the fog coordinate source via an Enable instead of a fog
 parameter?

 No. We might want to add more sources later .

 * Should the fog coordinate be restricted to non- negative values?

 Perhaps. Eye-coordinate distance of fragmen ts will be
 non-negative due to clipping. Specifying ex plicit negative
 coordinates may result in very large comput ed f values, although
 they are defined to be clipped after comput ation.

 * Use existing DEPTH enum instead of FRAGMENT_DEP TH? Change name of
 FRAGMENT_DEPTH_EXT to FOG_FRAGMENT_DEPTH_EXT?

 Use FRAGMENT_DEPTH_EXT; FOG_FRAGMENT_DEPTH_ EXT is somewhat
 misleading, since fragment depth itself has no dependence on
 fog.

New Procedures and Functions

 void FogCoord[fd]EXT(T coord)
 void FogCoord[fd]vEXT(T coord)
 void FogCoordPointerEXT(enum type, sizei stride , void *pointer)

New Tokens

 Accepted by the <pname> parameter of Fogi and F ogf:

 FOG_COORDINATE_SOURCE_EXT 0x8450

 Accepted by the <param> parameter of Fogi and F ogf:

 FOG_COORDINATE_EXT 0x8451
 FRAGMENT_DEPTH_EXT 0x8452

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 CURRENT_FOG_COORDINATE_EXT 0x8453
 FOG_COORDINATE_ARRAY_TYPE_EXT 0x8454
 FOG_COORDINATE_ARRAY_STRIDE_EXT 0x8455

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 736

 Accepted by the <pname> parameter of GetPointer v:

 FOG_COORDINATE_ARRAY_POINTER_EXT 0x8456

 Accepted by the <array> parameter of EnableClie ntState and
 DisableClientState:

 FOG_COORDINATE_ARRAY_EXT 0x8457

Additions to Chapter 2 of the OpenGL 1.2 Specificat ion (OpenGL Operation)

 These changes describe a new current state type, the fog coordinate,
 and the commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

 "Each vertex is specified with two, three, or four coordinates.
 In addition, a current normal, current text ure coordinates,
 current color, and current fog coordinate m ay be used in
 processing each vertex."

 - 2.6.3, p. 19) First paragraph changed to

 "The only GL commands that are allowed with in any Begin/End
 pairs are the commands for specifying verte x coordinates, vertex
 colors, normal coordinates, texture coordin ates, and fog
 coordinates (Vertex, Color, Index, Normal, TexCoord,
 FogCoord)..."

 - (2.7, p. 20) Insert the following paragraph fol lowing the third
 paragraph describing current normals:

 " The current fog coodinate is set using
 void FogCoord[fd]EXT(T coord)
 void FogCoord[fd]vEXT(T coord)."

 The last paragraph is changed to read:

 "The state required to support vertex speci fication consists of
 four floating-point numbers to store the cu rrent texture
 coordinates s, t, r, and q, one floating-po int value to store
 the current fog coordinate, four floating-p oint values to store
 the current RGBA color, and one floating-po int value to store
 the current color index. There is no notion of a current vertex,
 so no state is devoted to vertex coordinate s. The initial values
 of s, t, and r of the current texture coord inates are zero; the
 initial value of q is one. The initial fog coordinate is zero.
 The initial current normal has coordinates (0,0,1). The initial
 RGBA color is (R,G,B,A) = (1,1,1,1). The in itial color index is
 1."

 - (2.8, p. 21) Added fog coordinate command for v ertex arrays:

 Change first paragraph to read:

 "The vertex specification commands describe d in section 2.7
 accept data in almost any format, but their use requires many

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 737

 command executions to specify even simple g eometry. Vertex data
 may also be placed into arrays that are sto red in the client's
 address space. Blocks of data in these arra ys may then be used
 to specify multiple geometric primitives th rough the execution
 of a single GL command. The client may spec ify up to seven
 arrays: one each to store edge flags, textu re coordinates, fog
 coordinates, colors, color indices, normals , and vertices. The
 commands"

 Add to functions listed following first paragra ph:

 void FogCoordPointerEXT(enum type, sizei st ride, void *pointer)

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ------- ----- -----
 FogCoordPointerEXT 1 float,d ouble

 Starting with the second paragraph on p. 23, ch ange to add
 FOG_COORDINATE_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_ COORD_ARRAY,
 FOG_COORDINATE_ARRAY_EXT, COLOR_ARRAY, INDE X_ARRAY,
 NORMAL_ARRAY, or VERTEX_ARRAY, for the edge flag, texture
 coordinate, fog coordinate, color, color in dex, normal, or
 vertex array, respectively.

 The ith element of every enabled array is t ransferred to the GL
 by calling

 void ArrayElement(int i)

 For each enabled array, it is as though the corresponding
 command from section 2.7 or section 2.6.2 w ere called with a
 pointer to element i. For the vertex array, the corresponding
 command is Vertex<size><type>v, where <size > is one of [2,3,4],
 and <type> is one of [s,i,f,d], correspondi ng to array types
 short, int, float, and double respectively. The corresponding
 commands for the edge flag, texture coordin ate, fog coordinate,
 color, color, color index, and normal array s are EdgeFlagv,
 TexCoord<size><type>v, FogCoord<type>v, Col or<size><type>v,
 Index<type>v, and Normal<type>v, respective ly..."

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 738

 Change pseudocode on p. 27 to disable fog coord inate array for
 canned interleaved array formats. After the lin es

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

 insert the line

 DisableClientState(FOG_COORDINATE_ARRAY _EXT);

 Substitute "seven" for every occurence of "six" in the final
 paragraph on p. 27.

 - (2.12, p. 41) Add fog coordinate to the current rasterpos state.

 Change the first sentence of the first paragrap h to read

 "The state required for the current raster position consists of
 three window coordinates x_w, y_w, and z_w, a clip coordinate
 w_c value, an eye coordinate distance, a fo g coordinate, a valid
 bit, and associated data consisting of a co lor and texture
 coordinates."

 Change the last paragraph to read

 "The current raster position requires six s ingle-precision
 floating-point values for its x_w, y_w, and z_w window
 coordinates, its w_c clip coordinate, its e ye coordinate
 distance, and its fog coordinate, a single valid bit, a color
 (RGBA color and color index), and texture c oordinates for
 associated data. In the initial state, the coordinates and
 texture coordinates are both (0,0,0,1), the fog coordinate is 0,
 the eye coordinate distance is 0, the valid bit is set, the
 associated RGBA color is (1,1,1,1), and the associated color
 index color is 1. In RGBA mode, the associa ted color index
 always has its initial value; in color inde x mode, the RGBA
 color always maintains its initial value."

 - (3.10, p. 139) Change the second and third para graphs to read

 "This factor f may be computed according to one of three
 equations:"

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

 If the fog source (as defined below) is FRA GMENT_DEPTH_EXT, then
 c is the eye-coordinate distance from the e ye, (0 0 0 1) in eye
 coordinates, to the fragment center. If the fog source is
 FOG_COORDINATE_EXT, then c is the interpola ted value of the fog
 coordinate for this fragment. The equation and the fog source,
 along with either d or e and s, is specifie d with

 void Fog{if}(enum pname, T param);
 void Fog{if}v(enum pname, T params);

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 739

 If <pname> is FOG_MODE, then <param> must b e, or <param> must
 point to an integer that is one of the symb olic constants EXP,
 EXP2, or LINEAR, in which case equation 3.2 4, 3.25, or 3.26,,
 respectively, is selected for the fog calcu lation (if, when 3.26
 is selected, e = s, results are undefined). If <pname> is
 FOG_COORDINATE_SOURCE_EXT, then <param> is or <params> points to
 an integer that is one of the symbolic cons tants
 FRAGMENT_DEPTH_EXT or FOG_COORDINATE_EXT. I f <pname> is
 FOG_DENSITY, FOG_START, or FOG_END, then <p aram> is or <params>
 points to a value that is d, s, or e, respe ctively. If d is
 specified less than zero, the error INVALID _VALUE results."

 - (3.10, p. 140) Change the last paragraph preced ing section 3.11
 to read

 "The state required for fog consists of a t hree valued integer
 to select the fog equation, three floating- point values d, e,
 and s, an RGBA fog color and a fog color in dex, a two-valued
 integer to select the fog coordinate source , and a single bit to
 indicate whether or not fog is enabled. In the initial state,
 fog is disabled, FOG_COORDINATE_SOURCE_EXT is
 FRAGMENT_DEPTH_EXT, FOG_MODE is EXP, d = 1. 0, e = 1.0, and s =
 0.0; C_f = (0,0,0,0) and i_f=0."

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2 Specificat ion (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None

Additions to the GLX / WGL / AGL Specifications

 None

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 740

GLX Protocol

 Two new GL rendering commands are added. The fo llowing commands are
 sent to the server as part of a glXRender reque st:

 FogCoordfvEXT
 2 8 rendering c ommand length
 2 4124 rendering c ommand opcode
 4 FLOAT32 v[0]

 FogCoorddvEXT
 2 12 rendering c ommand length
 2 4125 rendering c ommand opcode
 8 FLOAT64 v[0]

Errors

 INVALID_ENUM is generated if FogCoordPointerEXT parameter <type> is
 not FLOAT or DOUBLE.

 INVALID_VALUE is generated if FogCoordPointerEX T parameter <stride>
 is negative.

New State

(table 6.5, p. 195)
 Get Value Type Get Command Initial Value Description Sec Attribute
 --------- ---- ----------- ------------- ----------- --- ---------
 CURRENT_FOG_COORDINATE_EXT R GetIntegerv , 0 Current 2.7 current
 GetFloatv fog coordinate
(table 6.6, p. 197)
Get Value Type Get Com mand Initial Value Description Sec Attribute
--------- ---- ------- ---- ------------- ----------- --- ---------
FOG_COORDINATE_ARRAY_EXT B IsEnabl ed False Fog coord array enable 2.8 vertex-array
FOG_COORDINATE_ARRAY_TYPE_EXT Z8 GetInte gerv FLOAT Type of fog coordinate 2.8 vertex-array
FOG_COORDINATE_ARRAY_STRIDE_EXT Z+ GetInte gerv 0 Stride between fog coords 2.8 vertex-array
FOG_COORDINATE_ARRAY_POINTER_EXT Y GetPoin terv 0 Pointer to the fog coord a rray 2.8 vertex-array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attrib ute
--------- ---- ----------- ------------- ----------- --- ------ ---
FOG_COORDINATE_SOURCE_EXT Z2 GetIntegerv, FRAGMENT_DEPTH_EXT Source of fog 3.10 fog
 GetFloatv coordinate for
 fog calculation

Revision History

 * Revision 1.6 - Functionality complete

 * Revision 1.7-1.9 - Fix typos and add fields to bring up to date with
 the new extension template. No functionality ch anges.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 741

Name

 EXT_geometry_shader4

Name String

 GL_EXT_geometry_shader4

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Multi-vendor extension

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 05/22/2007
 NVIDIA Revision: 17

Number

 324

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 EXT_framebuffer_object interacts with this exte nsion.

 EXT_framebuffer_blit interacts with this extens ion.

 EXT_texture_array interacts with this extension .

 ARB_texture_rectangle trivially affects the def inition of this
 extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this
 extension.

 This extension interacts with EXT_tranform_feed back.

Overview

 EXT_geometry_shader4 defines a new shader type available to be run on the
 GPU, called a geometry shader. Geometry shaders are run after vertices are
 transformed, but prior to color clamping, flat shading and clipping.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 742

 A geometry shader begins with a single primitiv e (point, line,
 triangle). It can read the attributes of any of the vertices in the
 primitive and use them to generate new primitiv es. A geometry shader has a
 fixed output primitive type (point, line strip, or triangle strip) and
 emits vertices to define a new primitive. A geo metry shader can emit
 multiple disconnected primitives. The primitive s emitted by the geometry
 shader are clipped and then processed like an e quivalent OpenGL primitive
 specified by the application.

 Furthermore, EXT_geometry_shader4 provides four additional primitive
 types: lines with adjacency, line strips with a djacency, separate
 triangles with adjacency, and triangle strips w ith adjacency. Some of the
 vertices specified in these new primitive types are not part of the
 ordinary primitives, instead they represent nei ghboring vertices that are
 adjacent to the two line segment end points (li nes/strips) or the three
 triangle edges (triangles/tstrips). These verti ces can be accessed by
 geometry shaders and used to match up the verti ces emitted by the geometry
 shader with those of neighboring primitives.

 Since geometry shaders expect a specific input primitive type, an error
 will occur if the application presents primitiv es of a different type.
 For example, if a geometry shader expects point s, an error will occur at
 Begin() time, if a primitive mode of TRIANGLES is specified.

New Procedures and Functions

 void ProgramParameteriEXT(uint program, enum pn ame, int value);
 void FramebufferTextureEXT(enum target, enum at tachment,
 uint texture, int le vel);
 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);
 void FramebufferTextureFaceEXT(enum target, enu m attachment,
 uint texture, in t level, enum face);

New Tokens

 Accepted by the <type> parameter of CreateShade r and returned by the
 <params> parameter of GetShaderiv:

 GEOMETRY_SHADER_EXT 0x8DD9

 Accepted by the <pname> parameter of ProgramPar ameteriEXT and
 GetProgramiv:

 GEOMETRY_VERTICES_OUT_EXT 0x8DDA
 GEOMETRY_INPUT_TYPE_EXT 0x8DDB
 GEOMETRY_OUTPUT_TYPE_EXT 0x8DDC

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 743

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT 0x8C29
 MAX_GEOMETRY_VARYING_COMPONENTS_EXT 0x8DDD
 MAX_VERTEX_VARYING_COMPONENTS_EXT 0x8DDE
 MAX_VARYING_COMPONENTS_EXT 0x8B4B
 MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT 0x8DDF
 MAX_GEOMETRY_OUTPUT_VERTICES_EXT 0x8DE0
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT 0x8DE1

 Accepted by the <mode> parameter of Begin, Draw Arrays,
 MultiDrawArrays, DrawElements, MultiDrawElement s, and
 DrawRangeElements:

 LINES_ADJACENCY_EXT 0xA
 LINE_STRIP_ADJACENCY_EXT 0xB
 TRIANGLES_ADJACENCY_EXT 0xC
 TRIANGLE_STRIP_ADJACENCY_EXT 0xD

 Returned by CheckFramebufferStatusEXT:

 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT 0x8DA8
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT 0x8DA9

 Accepted by the <pname> parameter of GetFramebu fferAttachment-
 ParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_LAYERED_EXT 0x8DA7
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetIntegerv, Ge tFloatv, GetDoublev,
 and GetBooleanv:

 PROGRAM_POINT_SIZE_EXT 0x8642

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 (Note: PROGRAM_POINT_SIZE_EXT is simply an ali as for the
 VERTEX_PROGRAM_POINT_SIZE token provided in Ope nGL 2.0, which is itself an
 alias for VERTEX_PROGRAM_POINT_SIZE_ARB provide d by
 ARB_vertex_program. Program-computed point size s can be enabled if
 geometry shaders are enabled.)

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 744

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Modify Section 2.6.1 (Begin and End Objects), p . 13

 (Add to end of section, p. 18)

 (add figure)

 1 - - - 2----->3 - - - 4 1 - - - 2--->3 --->4--->5 - - - 6

 5 - - - 6----->7 - - - 8

 (a) (b)

 Figure 2.X1 (a) Lines with adjacency, (b) Line strip with adja cency.
 The vertices connected with solid lines belon g to the main primitives;
 the vertices connected by dashed lines are th e adjacent vertices that
 may be used in a geometry shader.

 Lines with Adjacency

 Lines with adjacency are independent line segme nts where each endpoint has
 a corresponding "adjacent" vertex that can be a ccessed by a geometry
 shader (Section 2.16). If a geometry shader is not active, the "adjacent"
 vertices are ignored.

 A line segment is drawn from the 4i + 2nd verte x to the 4i + 3rd vertex
 for each i = 0, 1, ... , n-1, where there are 4 n+k vertices between the
 Begin and End. k is either 0, 1, 2, or 3; if k is not zero, the final k
 vertices are ignored. For line segment i, the 4i + 1st and 4i + 4th
 vertices are considered adjacent to the 4i + 2n d and 4i + 3rd vertices,
 respectively. See Figure 2.X1.

 Lines with adjacency are generated by calling B egin with the argument
 value LINES_ADJACENCY_EXT.

 Line Strips with Adjacency

 Line strips with adjacency are similar to line strips, except that each
 line segment has a pair of adjacent vertices th at can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 A line segment is drawn from the i + 2nd vertex to the i + 3rd vertex for
 each i = 0, 1, ..., n-1, where there are n+3 ve rtices between the Begin
 and End. If there are fewer than four vertices between a Begin and End,
 all vertices are ignored. For line segment i, the i + 1st and i + 4th
 vertex are considered adjacent to the i + 2nd a nd i + 3rd vertices,
 respectively. See Figure 2.X1.

 Line strips with adjacency are generated by cal ling Begin with the
 argument value LINE_STRIP_ADJACENCY_EXT.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 745

 (add figure)

 2 - - - 3 - - - 4 8 - - - 9 - - - 10
 ^\ ^\
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | v | v
 1<------5 7< ------11

 \ | \ |

 \ | \ |

 \ | \ |

 6 12

 Figure 2.X2 Triangles with adjacency. The vertices connected with solid
 lines belong to the main primitive; the verti ces connected by dashed
 lines are the adjacent vertices that may be u sed in a geometry shader.

 Triangles with Adjacency

 Triangles with adjacency are similar to separat e triangles, except that
 each triangle edge has an adjacent vertex that can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 The 6i + 1st, 6i + 3rd, and 6i + 5th vertices (in that order) determine a
 triangle for each i = 0, 1, ..., n-1, where the re are 6n+k vertices
 between the Begin and End. k is either 0, 1, 2 , 3, 4, or 5; if k is
 non-zero, the final k vertices are ignored. Fo r triangle i, the i + 2nd,
 i + 4th, and i + 6th vertices are considered ad jacent to edges from the i
 + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i +
 5th to the i + 1st vertices, respectively. See Figure 2.X2.

 Triangles with adjacency are generated by calli ng Begin with the argument
 value TRIANGLES_ADJACENCY_EXT.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 746

 (add figure)
 6 6

 | \ | \

 | \ | \

 | \ | \

 2 - - - 3- - - >6 2 - - - 3------>7 2 - - - 3------>7- - - 10
 ^\ ^^ | ^^ ^^ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | v | vv | vv v|
 1<------5 1<------5 - - - 8 1<------5<------9

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 4 4 4 8

 6 10

 | \ | \

 | \ | \

 | \ | \
 2 - - - 3------>7------> 11
 ^^ ^^ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | vv v v
 1<------5<------ 9 - - - 12

 \ | \ |

 \ | \ |

 \ | \ |

 4 8

 Figure 2.X3 Triangle strips with adjacency. The vertices conn ected with
 solid lines belong to the main primitives; th e vertices connected by
 dashed lines are the adjacent vertices that m ay be used in a geometry
 shader.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 747

 Triangle Strips with Adjacency

 Triangle strips with adjacency are similar to t riangle strips, except that
 each line triangle edge has an adjacent vertex that can be accessed by a
 geometry shader (Section 2.15). If a geometry shader is not active, the
 "adjacent" vertices are ignored.

 In triangle strips with adjacency, n triangles are drawn using 2 * (n+2) +
 k vertices between the Begin and End. k is eit her 0 or 1; if k is 1, the
 final vertex is ignored. If fewer than 6 verti ces are specified between
 the Begin and End, the entire primitive is igno red. Table 2.X1 describes
 the vertices and order used to draw each triang le, and which vertices are
 considered adjacent to each edge of the triangl e. See Figure 2.X3.

 (add table)
 primitive adjacent
 vertices vertices
 primitive 1st 2nd 3rd 1 /2 2/3 3/1
 --------------- ---- ---- ---- -- -- ---- ----
 only (i==0, n==1) 1 3 5 2 6 4
 first (i==0) 1 3 5 2 7 4
 middle (i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+7
 middle (i even) 2i+1 2i+3 2i+5 2i -1 2i+7 2i+4
 last (i==n-1, i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+6
 last (i==n-1, i even) 2i+1 2i+3 2i+5 2i -1 2i+6 2i+4

 Table 2.X1: Triangles generated by triangle strips with adjacency.
 Each triangle is drawn using the vertices in the "1st", "2nd", and "3rd"
 columns under "primitive vertices", in that o rder. The vertices in the
 "1/2", "2/3", and "3/1" columns under "adjace nt vertices" are considered
 adjacent to the edges from the first to the s econd, from the second to
 the third, and from the third to the first ve rtex of the triangle,
 respectively. The six rows correspond to the six cases: the first and
 only triangle (i=0, n=1), the first triangle of several (i=0, n>0),
 "odd" middle triangles (i=1,3,5...), "even" m iddle triangles
 (i=2,4,6,...), and special cases for the last triangle inside the
 Begin/End, when i is either even or odd. For the purposes of this
 table, the first vertex specified after Begin is numbered "1" and the
 first triangle is numbered "0".

 Triangle strips with adjacency are generated by calling Begin with the
 argument value TRIANGLE_STRIP_ADJACENCY_EXT.

 Modify Section 2.14.1, Lighting (p. 59)

 (modify fourth paragraph, p. 63) Additionally, vertex and geometry shaders
 can operate in two-sided color mode, which is e nabled and disabled by
 calling Enable or Disable with the symbolic val ue VERTEX_PROGRAM_TWO_SIDE.
 When a vertex or geometry shader is active, the shaders can write front
 and back color values to the gl_FrontColor, gl_ BackColor,
 gl_FrontSecondaryColor and gl_BackSecondaryColo r outputs. When a vertex or
 geometry shader is active and two-sided color m ode is enabled, the GL
 chooses between front and back colors, as descr ibed below. If two-sided
 color mode is disabled, the front color output is always selected.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 748

 Modify Section 2.15.2 Program Objects, p. 73

 Change the first paragraph on p. 74 as follows:

 Program objects are empty when they are created . Default values for
 program object parameters are discussed in sect ion 2.15.5, Required
 State. A non-zero name that can be used to refe rence the program object is
 returned.

 Change the language below the LinkProgram comma nd on p. 74 as follows:

 ... Linking can fail for a variety of reasons a s specified in the OpenGL
 Shading Language Specification. Linking will al so fail if one or more of
 the shader objects, attached to <program> are n ot compiled successfully,
 or if more active uniform or active sampler var iables are used in
 <program> than allowed (see sections 2.15.3 and 2.16.3). Linking will also
 fail if the program object contains objects to form a geometry shader (see
 section 2.16), but no objects to form a vertex shader or if the program
 object contains objects to form a geometry shad er, and the value of
 GEOMETRY_VERTICES_OUT_EXT is zero. If LinkProgr am failed, ..

 Add the following paragraphs above the descript ion of
 DeleteProgram, p. 75:

 To set a program object parameter, call

 void ProgramParameteriEXT(uint program, enu m pname, int value)

 <param> identifies which parameter to set for < program>. <value> holds the
 value being set. Legal values for <param> and <value> are discussed in
 section 2.16.

 Modify Section 2.15.3, Shader Variables, p. 75

 Modify the first paragraph of section 'Varying Variables' p. 83 as
 follows:

 A vertex shader may define one or more varying variables (see the OpenGL
 Shading Language specification). Varying variab les are outputs of a vertex
 shader. They are either used as the mechanism t o communicate values to a
 geometry shader, if one is active, or to commun icate values to the
 fragment shader. The OpenGL Shading Language s pecification also defines a
 set of built-in varying variables that vertex s haders can write to (see
 section 7.6 of the OpenGL Shading Language Spec ification). These variables
 can also be used to communicate values to a geo metry shader, if one is
 active, or to communicate values to the fragmen t shader and to the fixed-
 function processing that occurs after vertex sh ading.

 If a geometry shader is not active, the values of all varying variables,
 including built-in variables, are expected to b e interpolated across the
 primitive being rendered, unless flat shaded. T he number of interpolators
 available for processing varying variables is g iven by the
 implementation-dependent constant MAX_VARYING_C OMPONENTS_EXT. This value
 represents the number of individual components that can be interpolated;
 varying variables declared as vectors, matrices , and arrays will all
 consume multiple interpolators. When a program is linked, all components
 of any varying variable written by a vertex sha der, or read by a fragment

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 749

 shader, will count against this limit. The tran sformed vertex position
 (gl_Position) does not count against this limit . A program whose vertex
 and/or fragment shaders access more than MAX_VA RYING_COMPONENTS_EXT
 components worth of varying variables may fail to link, unless
 device-dependent optimizations are able to make the program fit within
 available hardware resources.

 Note that the two values MAX_VARYING_FLOATS and MAX_VARYING_COMPONENTS_EXT
 are aliases of each other. The use of MAX_VARYI NG_FLOATS however is
 discouraged; varying variables can be declared as integers as well.

 If a geometry shader is active, the values of v arying variables are
 collected by the primitive assembly stage and p assed on to the geometry
 shader once enough data for one primitive has b een collected (see also
 section 2.16). The OpenGL Shading Language spec ification also defines a
 set of built-in varying and built-in special va riables that vertex shaders
 can write to (see sections 7.1 and 7.6 of the O penGL Shading Language
 Specification). These variables are also collec ted and passed on to the
 geometry shader once enough data has been colle cted. The number of
 components of varying and special variables tha t can be collected per
 vertex by the primitive assembly stage is given by the implementation
 dependent constant MAX_VERTEX_VARYING_COMPONENT S_EXT. This value
 represents the number of individual components that can be collected;
 varying variables declared as vectors, matrices , and arrays will all
 consume multiple components. When a program is linked, all components of
 any varying variable written by a vertex shader , or read by a geometry
 shader, will count against this limit. A progra m whose vertex and/or
 geometry shaders access more than MAX_VERTEX_VA RYING_COMPONENTS_EXT
 components worth of varying variables may fail to link, unless
 device-dependent optimizations are able to make the program fit within
 available hardware resources.

 Modify Section 2.15.4 Shader Execution, p. 84

 Change the following sentence:

 "The following operations are applied to vertex values that are the result
 of executing the vertex shader:"

 As follows:

 If no geometry shader (see section 2.16) is pre sent in the program object,
 the following operations are applied to vertex values that are the result
 of executing the vertex shader:

 [bulleted list of operations]

 On page 85, below the list of bullets, add the following:

 If a geometry shader is present in the program object, geometry shading
 (section 2.16) is applied to vertex values that are the result of
 executing the vertex shader.

 Modify the first paragraph of the section 'Text ure Access', p. 85,
 as follows:

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 750

 Vertex shaders have the ability to do a lookup into a texture map, if
 supported by the GL implementation. The maximum number of texture image
 units available to a vertex shader is MAX_VERTE X_TEXTURE_IMAGE_UNITS; a
 maximum number of zero indicates that the GL im plementation does not
 support texture accesses in vertex shaders. The vertex shader, geometry
 shader, if exists, and fragment processing comb ined cannot use more than
 MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image units. If the vertex
 shader, geometry shader and the fragment proces sing stage access the same
 texture image unit, then that counts as using t hree texture image units
 against the MAX_COMBINED_TEXTURE_IMAGE_UNITS li mit.

 Modify Section 2.15.5, Required State, p. 88

 Add the following bullets to the state required per program object:

 * One integer to store the value of GEOMETRY_ VERTICES_OUT_EXT, initially
 zero.

 * One integer to store the value of GEOMETRY_ INPUT_TYPE_EXT, initially
 set to TRIANGLES.

 * One integer to store the value of GEOMETRY_ OUTPUT_TYPE_EXT, initially
 set to TRIANGLE_STRIP.

 Insert New Section 2.16, Geometry Shaders after p. 89

 After vertices are processed, they are arranged into primitives, as
 described in section 2.6.1 (Begin/End Objects). This section described a
 new pipeline stage that processes those primiti ves. A geometry shader
 defines the operations that are performed in th is new pipeline stage. A
 geometry shader is an array of strings containi ng source code. The source
 code language used is described in the OpenGL S hading Language
 specification. A geometry shader operates on a single primitive at a time
 and emits one or more output primitives, all of the same type, which are
 then processed like an equivalent OpenGL primit ive specified by the
 application. The original primitive is discard ed after the geometry
 shader completes. The inputs available to a geo metry shader are the
 transformed attributes of all the vertices that belong to the primitive.
 Additional "adjacency" primitives are available which also make the
 transformed attributes of neighboring vertices available to the shader.
 The results of the shader are a new set of tran sformed vertices, arranged
 into primitives by the shader.

 This new geometry shader pipeline stage is inse rted after primitive
 assembly, right before color clamping (section 2.14.6), flat shading
 (section 2.14.7) and clipping (sections 2.12 an d 2.14.8).

 A geometry shader only applies when the GL is i n RGB mode. Its operation
 in color index mode is undefined.

 Geometry shaders are created as described in se ction 2.15.1 using a type
 parameter of GEOMETRY_SHADER_EXT. They are atta ched to and used in program
 objects as described in section 2.15.2. When th e program object currently
 in use includes a geometry shader, its geometry shader is considered
 active, and is used to process primitives. If t he program object has no
 geometry shader, or no program object is in use , this new primitive
 processing pipeline stage is bypassed.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 751

 A program object that includes a geometry shade r must also include a
 vertex shader; otherwise a link error will occu r.

 Section 2.16.1, Geometry shader Input Primitive s

 A geometry shader can operate on one of five in put primitive types.
 Depending on the input primitive type, one to s ix input vertices are
 available when the shader is executed. Each in put primitive type supports
 a subset of the primitives provided by the GL. If a geometry shader is
 active, Begin, or any function that implicitly calls Begin, will produce
 an INVALID_OPERATION error if the <mode> parame ter is incompatible with
 the input primitive type of the currently activ e program object, as
 discussed below.

 The input primitive type is a parameter of the program object, and must be
 set before linking by calling ProgramParameteri EXT with <pname> set to
 GEOMETRY_INPUT_TYPE_EXT and <value> set to one of POINTS, LINES,
 LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ ACENCY_EXT. This setting
 will not be in effect until the next time LinkP rogram has been called
 successfully. Note that queries of GEOMETRY_INP UT_TYPE_EXT will return the
 last value set. This is not necessarily the va lue used to generate the
 executable code in the program object. After a program object has been
 created it will have a default value for GEOMET RY_INPUT_TYPE_EXT, as
 discussed in section 2.15.5, Required State.

 Note that a geometry shader that accesses more input vertices than are
 available for a given input primitive type can be successfully compiled,
 because the input primitive type is not part of the shader
 object. However, a program object, containing a shader object that access
 more input vertices than are available for the input primitive type of the
 program object, will not link.

 The supported input primitive types are:

 Points (POINTS)

 Geometry shaders that operate on points are val id only for the POINTS
 primitive type. There is only a single vertex available for each geometry
 shader invocation.

 Lines (LINES)

 Geometry shaders that operate on line segments are valid only for the
 LINES, LINE_STRIP, and LINE_LOOP primitive type s. There are two vertices
 available for each geometry shader invocation. The first vertex refers to
 the vertex at the beginning of the line segment and the second vertex
 refers to the vertex at the end of the line seg ment. See also section
 2.16.4.

 Lines with Adjacency (LINES_ADJACENCY_EXT)

 Geometry shaders that operate on line segments with adjacent vertices are
 valid only for the LINES_ADJACENCY_EXT and LINE _STRIP_ADJACENCY_EXT
 primitive types. There are four vertices avail able for each program
 invocation. The second vertex refers to attribu tes of the vertex at the
 beginning of the line segment and the third ver tex refers to the vertex at

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 752

 the end of the line segment. The first and four th vertices refer to the
 vertices adjacent to the beginning and end of t he line segment,
 respectively.

 Triangles (TRIANGLES)

 Geometry shaders that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP and TRIANGLE_FAN primitive types .

 There are three vertices available for each pro gram invocation. The first,
 second and third vertices refer to attributes o f the first, second and
 third vertex of the triangle, respectively.

 Triangles with Adjacency (TRIANGLES_ADJACENCY_E XT)

 Geometry shaders that operate on triangles with adjacent vertices are
 valid for the TRIANGLES_ADJACENCY_EXT and TRIAN GLE_STRIP_ADJACENCY_EXT
 primitive types. There are six vertices availa ble for each program
 invocation. The first, third and fifth vertices refer to attributes of the
 first, second and third vertex of the triangle, respectively. The second,
 fourth and sixth vertices refer to attributes o f the vertices adjacent to
 the edges from the first to the second vertex, from the second to the
 third vertex, and from the third to the first v ertex, respectively.

 Section 2.16.2, Geometry Shader Output Primitiv es

 A geometry shader can generate primitives of on e of three types. The
 supported output primitive types are points (PO INTS), line strips
 (LINE_STRIP), and triangle strips (TRIANGLE_STR IP). The vertices output
 by the geometry shader are decomposed into poin ts, lines, or triangles
 based on the output primitive type in the manne r described in section
 2.6.1. The resulting primitives are then furthe r processed as shown in
 figure 2.16.xxx. If the number of vertices emit ted by the geometry shader
 is not sufficient to produce a single primitive , nothing is drawn.

 The output primitive type is a parameter of the program object, and can be
 set by calling ProgramParameteriEXT with <pname > set to
 GEOMETRY_OUTPUT_TYPE_EXT and <value> set to one of POINTS, LINE_STRIP or
 TRIANGLE_STRIP. This setting will not be in eff ect until the next time
 LinkProgram has been called successfully. Note that queries of
 GEOMETRY_OUTPUT_TYPE_EXT will return the last v alue set; which is not
 necessarily the value used to generate the exec utable code in the program
 object. After a program object has been created it will have a default
 value for GEOMETRY_OUTPUT_TYPE_EXT, as discusse d in section 2.15.5,
 Required State. .

 Section 2.16.3 Geometry Shader Variables

 Geometry shaders can access uniforms belonging to the current program
 object. The amount of storage available for geo metry shader uniform
 variables is specified by the implementation de pendent constant
 MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT. This value represents the number of
 individual floating-point, integer, or Boolean values that can be held in
 uniform variable storage for a geometry shader. A link error will be
 generated if an attempt is made to utilize more than the space available
 for geometry shader uniform variables. Uniforms are manipulated as
 described in section 2.15.3. Geometry shaders also have access to

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 753

 samplers, to perform texturing operations, as d escribed in sections 2.15.3
 and 3.8.

 Geometry shaders can access the transformed att ributes of all vertices for
 its input primitive type through input varying variables. A vertex shader,
 writing to output varying variables, generates the values of these input
 varying variables. This includes values for bui lt-in as well as
 user-defined varying variables. Values for any varying variables that are
 not written by a vertex shader are undefined. A dditionally, a geometry
 shader has access to a built-in variable that h olds the ID of the current
 primitive. This ID is generated by the primitiv e assembly stage that sits
 in between the vertex and geometry shader.

 Additionally, geometry shaders can write to one , or more, varying
 variables for each primitive it outputs. These values are optionally flat
 shaded (using the OpenGL Shading Language varyi ng qualifier "flat") and
 clipped, then the clipped values interpolated a cross the primitive (if not
 flat shaded). The results of these interpolatio ns are available to a
 fragment shader, if one is active. Furthermore, geometry shaders can write
 to a set of built- in varying variables, define d in the OpenGL Shading
 Language, that correspond to the values require d for the fixed-function
 processing that occurs after geometry processin g.

 Section 2.16.4, Geometry Shader Execution Envir onment

 If a successfully linked program object that co ntains a geometry shader is
 made current by calling UseProgram, the executa ble version of the geometry
 shader is used to process primitives resulting from the primitive assembly
 stage.

 The following operations are applied to the pri mitives that are the result
 of executing a geometry shader:

 * color clamping or masking (section 2.14.6),

 * flat shading (section 2.14.7),

 * clipping, including client-defined clip pla nes (section 2.12),

 * front face determination (section 2.14.1),

 * color and associated data clipping (section 2.14.8),

 * perspective division on clip coordinates (s ection 2.11),

 * final color processing (section 2.14.9), an d

 * viewport transformation, including depth-ra nge scaling (section
 2.11.1).

 There are several special considerations for ge ometry shader execution
 described in the following sections.

 Texture Access

 Geometry shaders have the ability to do a looku p into a texture map, if
 supported by the GL implementation. The maximum number of texture image

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 754

 units available to a geometry shader is
 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT; a maximum number of zero indicates
 that the GL implementation does not support tex ture accesses in geometry
 shaders.

 The vertex shader, geometry shader and fragment processing combined cannot
 use more than MAX_COMBINED_TEXTURE_IMAGE_UNITS texture image units. If the
 vertex shader, geometry shader and the fragment processing stage access
 the same texture image unit, then that counts a s using three texture image
 units against the MAX_COMBINED_TEXTURE_IMAGE_UN ITS limit.

 When a texture lookup is performed in a geometr y shader, the filtered
 texture value tau is computed in the manner des cribed in sections 3.8.8
 and 3.8.9, and converted to a texture source co lor Cs according to table
 3.21 (section 3.8.13). A four component vector (Rs,Gs,Bs,As) is returned
 to the geometry shader. In a geometry shader it is not possible to perform
 automatic level-of- detail calculations using p artial derivatives of the
 texture coordinates with respect to window coor dinates as described in
 section 3.8.8. Hence, there is no automatic sel ection of an image array
 level. Minification or magnification of a textu re map is controlled by a
 level-of-detail value optionally passed as an a rgument in the texture
 lookup functions. If the texture lookup functio n supplies an explicit
 level-of-detail value lambda, then the pre-bias level-of-detail value
 LAMBDAbase(x, y) = lambda (replacing equation 3 .18). If the texture lookup
 function does not supply an explicit level-of-d etail value, then
 LAMBDAbase(x, y) = 0. The scale factor Rho(x, y) and its approximation
 function f(x, y) (see equation 3.21) are ignore d.

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * the sampler used in a texture lookup functi on is not one of the shadow
 sampler types, and the texture object's int ernal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is not NONE;

 * the sampler used in a texture lookup functi on is one of the shadow
 sampler types, and the texture object's int ernal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE; or

 * the sampler used in a texture lookup functi on is one of the shadow
 sampler types, and the texture object's int ernal format is not DEPTH
 COMPONENT.

 If a geometry shader uses a sampler where the a ssociated texture object is
 not complete as defined in section 3.8.10, the texture image unit will
 return (R,G,B,A) = (0, 0, 0, 1).

 Geometry Shader Inputs

 The OpenGL Shading Language specification descr ibes the set of built-in
 variables that are available as inputs to the g eometry shader. This set
 receives the values from the equivalent built-i n output variables written

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 755

 by the vertex shader. These built-in variables are arrays; each element in
 the array holds the value for a specific vertex of the input
 primitive. The length of each array depends on the value of the input
 primitive type, as determined by the program ob ject value
 GEOMETRY_INPUT_TYPE_EXT, and is set by the GL d uring link. Each built-in
 variable is a one-dimensional array, except for the built-in texture
 coordinate variable, which is a two- dimensiona l array. The vertex shader
 built-in output gl_TexCoord[] is a one-dimensio nal array. Therefore, the
 geometry shader equivalent input variable gl_Te xCoordIn[][] becomes a two-
 dimensional array. See the OpenGL Shading Langu age Specification, sections
 4.3.6 and 7.6 for more information.

 The built-in varying variables gl_FrontColorIn[], gl_BackColorIn[],
 gl_FrontSecondaryColorIn[] and gl_BackSecondary ColorIn[] hold the
 per-vertex front and back colors of the primary and secondary colors, as
 written by the vertex shader to its equivalent built-in output variables.

 The built-in varying variable gl_TexCoordIn[][] holds the per- vertex
 values of the array of texture coordinates, as written by the vertex
 shader to its built-in output array gl_TexCoord [].

 The built-in varying variable gl_FogFragCoordIn [] holds the per- vertex
 fog coordinate, as written by the vertex shader to its built- in output
 variable gl_FogFragCoord.

 The built-in varying variable gl_PositionIn[] h olds the per-vertex
 position, as written by the vertex shader to it s output variable
 gl_Position. Note that writing to gl_Position f rom either the vertex or
 fragment shader is optional. See also section 7 .1 "Vertex and Geometry
 Shader Special Variables" of the OpenGL Shading Language specification.

 The built-in varying variable gl_ClipVertexIn[] holds the per-vertex
 position in clip coordinates, as written by the vertex shader to its
 output variable gl_ClipVertex.

 The built-in varying variable gl_PointSizeIn[] holds the per-vertex point
 size written by the vertex shader to its built- in output varying variable
 gl_PointSize. If the vertex shader does not wri te gl_PointSize, the value
 of gl_PointSizeIn[] is undefined, regardless of the value of the enable
 VERTEX_PROGRAM_POINT_SIZE.

 The built-in special variable gl_PrimitiveIDIn is not an array and has no
 vertex shader equivalent. It is filled with the number of primitives
 processed since the last time Begin was called (directly or indirectly via
 vertex array functions). The first primitive g enerated after a Begin is
 numbered zero, and the primitive ID counter is incremented after every
 individual point, line, or triangle primitive i s processed. For triangles
 drawn in point or line mode, the primitive ID c ounter is incremented only
 once, even though multiple points or lines may be drawn. Restarting a
 primitive topology using the primitive restart index has no effect on the
 primitive ID counter.

 Similarly to the built-in varying variables, us er-defined input varying
 variables need to be declared as arrays. Declar ing a size is optional. If
 no size is specified, it will be inferred by th e linker from the input
 primitive type. If a size is specified, it has to be of the size matching
 the number of vertices of the input primitive t ype, otherwise a link error

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 756

 will occur. The built-in variable gl_VerticesIn , if so desired, can be
 used to size the array correctly for each input primitive
 type. User-defined varying variables can be dec lared as arrays in the
 vertex shader. This means that those, on input to the geometry shader,
 must be declared as two-dimensional arrays. See sections 4.3.6 and 7.6 of
 the OpenGL Shading Language Specification for m ore information.

 Using any of the built-in or user-defined input varying variables can
 count against the limit MAX_VERTEX_VARYING_COMP ONENTS_EXT as discussed in
 section 2.15.3.

 Geometry Shader outputs

 A geometry shader is limited in the number of v ertices it may emit per
 invocation. The maximum number of vertices a ge ometry shader can possibly
 emit needs to be set as a parameter of the prog ram object that contains
 the geometry shader. To do so, call ProgramPara meteriEXT with <pname> set
 to GEOMETRY_VERTICES_OUT_EXT and <value> set to the maximum number of
 vertices the geometry shader will emit in one i nvocation. This setting
 will not be guaranteed to be in effect until th e next time LinkProgram has
 been called successfully. If a geometry shader, in one invocation, emits
 more vertices than the value GEOMETRY_VERTICES_ OUT_EXT, these emits may
 have no effect.

 There are two implementation-dependent limits o n the value of
 GEOMETRY_VERTICES_OUT_EXT. First, the error IN VALID_VALUE will be
 generated by ProgramParameteriEXT if the number of vertices specified
 exceeds the value of MAX_GEOMETRY_OUTPUT_VERTIC ES_EXT. Second, the
 product of the total number of vertices and the sum of all components of
 all active varying variables may not exceed the value of
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT. LinkProgram will fail if it
 determines that the total component limit would be violated.

 A geometry shader can write to built-in as well as user-defined varying
 variables. These values are expected to be inte rpolated across the
 primitive it outputs, unless they are specified to be flat shaded. In
 order to seamlessly be able to insert or remove a geometry shader from a
 program object, the rules, names and types of t he output built-in varying
 variables and user-defined varying variables ar e the same as for the
 vertex shader. Refer to section 2.15.3 and the OpenGL Shading Language
 specification sections 4.3.6, 7.1 and 7.6 for m ore detail.

 The built-in output variables gl_FrontColor, gl _BackColor,
 gl_FrontSecondaryColor, and gl_BackSecondaryCol or hold the front and back
 colors for the primary and secondary colors for the current vertex.

 The built-in output variable gl_TexCoord[] is a n array and holds the set
 of texture coordinates for the current vertex.

 The built-in output variable gl_FogFragCoord is used as the "c" value, as
 described in section 3.10 "Fog" of the OpenGL 2 .0 specification.

 The built-in special variable gl_Position is in tended to hold the
 homogeneous vertex position. Writing gl_Positio n is optional.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 757

 The built-in special variable gl_ClipVertex hol ds the vertex coordinate
 used in the clipping stage, as described in sec tion 2.12 "Clipping" of the
 OpenGL 2.0 specification.

 The built-in special variable gl_PointSize, if written, holds the size of
 the point to be rasterized, measured in pixels.

 Additionally, a geometry shader can write to th e built-in special
 variables gl_PrimitiveID and gl_Layer, whereas a vertex shader cannot. The
 built-in gl_PrimitiveID provides a single integ er that serves as a
 primitive identifier. This written primitive I D is available to fragment
 shaders. If a fragment shader using primitive IDs is active and a
 geometry shader is also active, the geometry sh ader must write to
 gl_PrimitiveID or the primitive ID number is un defined. The built-in
 variable gl_Layer is used in layered rendering, and discussed in the next
 section.

 The number of components available for varying variables is given by the
 implementation-dependent constant
 MAX_GEOMETRY_VARYING_COMPONENTS_EXT. This value represents the number of
 individual components of a varying variable; va rying variables declared as
 vectors, matrices, and arrays will all consume multiple components. When a
 program is linked, all components of any varyin g variable written by a
 geometry shader, or read by a fragment shader, will count against this
 limit. The transformed vertex position (gl_Posi tion) does not count
 against this limit. A program whose geometry an d/or fragment shaders
 access more than MAX_GEOMETRY_VARYING_COMPONENT S_EXT worth of varying
 variable components may fail to link, unless de vice-dependent
 optimizations are able to make the program fit within available hardware
 resources.

 Layered rendering

 Geometry shaders can be used to render to one o f several different layers
 of cube map textures, three-dimensional texture s, plus one- dimensional
 and two-dimensional texture arrays. This functi onality allows an
 application to bind an entire "complex" texture to a framebuffer object,
 and render primitives to arbitrary layers compu ted at run time. For
 example, this mechanism can be used to project and render a scene onto all
 six faces of a cubemap texture in one pass. The layer to render to is
 specified by writing to the built-in output var iable gl_layer. Layered
 rendering requires the use of framebuffer objec ts. Refer to the section
 'Dependencies on EXT_framebuffer_object' for de tails.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.3, Points (p. 95)

 (replace all Section 3.3 text on p. 95)

 A point is drawn by generating a set of fragmen ts in the shape of a square
 or circle centered around the vertex of the poi nt. Each vertex has an
 associated point size that controls the size of that square or circle.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 758

 If no vertex or geometry shader is active, the size of the point is
 controlled by

 void PointSize(float size);

 <size> specifies the requested size of a point. The default value is
 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE.

 The requested point size is multiplied with a d istance attenuation factor,
 clamped to a specified point size range, and fu rther clamped to the
 implementation-dependent point size range to pr oduce the derived point
 size:

 derived size = clamp(size * sqrt(1/(a+b* d+c*d^2)))

 where d is the eye-coordinate distance from the eye, (0,0,0,1) in eye
 coordinates, to the vertex, and a, b, and c are distance attenuation
 function coefficients.

 If a vertex or geometry shader is active, the d erived size depends on the
 per-vertex point size mode enable. Per-vertex point size mode is enabled
 or disabled by calling Enable or Disable with t he symbolic value
 PROGRAM_POINT_SIZE_EXT. If per-vertex point si ze is enabled and a
 geometry shader is active, the derived point si ze is taken from the
 (potentially clipped) point size variable gl_Po intSize written by the
 geometry shader. If per-vertex point size is en abled and no geometry
 shader is active, the derived point size is tak en from the (potentially
 clipped) point size variable gl_PointSize writt en by the vertex shader. If
 per-vertex point size is disabled and a geometr y and/or vertex shader is
 active, the derived point size is taken from th e <size> value provided to
 PointSize, with no distance attenuation applied . In all cases, the
 derived point size is clamped to the implementa tion-dependent point size
 range.

 If multisampling is not enabled, the derived si ze is passed on to
 rasterization as the point width. ...

 Modify section 3.10 "Fog", p. 191

 Modify the third paragraph of this section as f ollows.

 If a vertex or geometry shader is active, or if the fog source, as defined
 below, is FOG_COORD, then c is the interpolated value of the fog
 coordinate for this fragment. Otherwise, ...

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 759

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special
Functions)

 Change section 5.4 Display Lists, p. 237

 Add the command ProgramParameteriEXT to the lis t of commands that are not
 compiled into a display list, but executed imme diately, under "Program and
 Shader Objects", p. 241

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify section 6.1.14, Shader and Program Objec ts, p. 256

 Add to the second paragraph on p. 257:

 ... if <shader> is a fragment shader object, an d GEOMETRY_SHADER_EXT is
 returned if <shader> is a geometry shader objec t.

 Add to the end of the description of GetProgram iv, p. 257:

 If <pname> is GEOMETRY_VERTICES_OUT_EXT, the cu rrent value of the maximum
 number of vertices the geometry shader will out put is returned. If <pname>
 is GEOMETRY_INPUT_TYPE_EXT, the current geometr y shader input type is
 returned and can be one of POINTS, LINES, LINES _ADJACENCY_EXT, TRIANGLES
 or TRIANGLES_ADJACENCY_EXT. If <pname> is GEOM ETRY_OUTPUT_TYPE_EXT, the
 current geometry shader output type is returned and can be one of POINTS,
 LINE_STRIP or TRIANGLE_STRIP.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter gl_PrimitiveIDIn. If NV_pr imitive_restart is not
 supported, references to that extension in the discussion of the primitive
 ID should be removed.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object (or similar functiona lity) is not supported, the
 gl_Layer output has no effect. "FramebufferTex tureEXT" and
 "FramebufferTextureLayerEXT" should be removed from "New Procedures and
 Functions", and FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT,
 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT, and
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT should b e removed from "New
 Tokens".

 Otherwise, this extension modifies EXT_framebuf fer_object to add the
 notion of layered framebuffer attachments and f ramebuffers that can be
 used in conjunction with geometry shaders to al low programs to direct

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 760

 primitives to a face of a cube map or layer of a three-dimensional texture
 or one- or two-dimensional array texture. The layer used for rendering
 can be selected by the geometry shader at run t ime.

 (insert before the end of Section 4.4.2, Attach ing Images to Framebuffer
 Objects)

 There are several types of framebuffer-attachab le images:

 * the image of a renderbuffer object, which i s always two-dimensional,

 * a single level of a one-dimensional texture , which is treated as a
 two-dimensional image with a height of one,

 * a single level of a two-dimensional or rect angle texture,

 * a single face of a cube map texture level, which is treated as a
 two-dimensional image, or

 * a single layer of a one- or two-dimensional array texture or
 three-dimensional texture, which is treated as a two-dimensional
 image.

 Additionally, an entire level of a three-dimens ional texture, cube map
 texture, or one- or two-dimensional array textu re can be attached to an
 attachment point. Such attachments are treated as an array of
 two-dimensional images, arranged in layers, and the corresponding
 attachment point is considered to be layered.

 (replace section 4.4.2.3, "Attaching Texture Im ages to a Framebuffer")

 GL supports copying the rendered contents of th e framebuffer into the
 images of a texture object through the use of t he routines
 CopyTexImage{1D|2D}, and CopyTexSubImage{1D|2D| 3D}. Additionally, GL
 supports rendering directly into the images of a texture object.

 To render directly into a texture image, a spec ified level of a texture
 object can be attached as one of the logical bu ffers of the currently
 bound framebuffer object by calling:

 void FramebufferTextureEXT(enum target, enum attachment,
 uint texture, int level);

 <target> must be FRAMEBUFFER_EXT. <attachment> must be one of the
 attachment points of the framebuffer listed in table 1.nnn.

 If <texture> is zero, any image or array of ima ges attached to the
 attachment point named by <attachment> is detac hed, and the state of the
 attachment point is reset to its initial values . <level> is ignored if
 <texture> is zero.

 If <texture> is non-zero, FramebufferTextureEXT attaches level <level> of
 the texture object named <texture> to the frame buffer attachment point
 named by <attachment>. The error INVALID_VALUE is generated if <texture>
 is not the name of a texture object, or if <lev el> is not a supported
 texture level number for textures of the type c orresponding to <target>.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 761

 The error INVALID_OPERATION is generated if <te xture> is the name of a
 buffer texture.

 If <texture> is the name of a three-dimensional texture, cube map texture,
 or one- or two-dimensional array texture, the t exture level attached to
 the framebuffer attachment point is an array of images, and the
 framebuffer attachment is considered layered.

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates like FramebufferTextureEXT, except tha t only a single layer of
 the texture level, numbered <layer>, is attache d to the attachment point.
 If <texture> is non-zero, the error INVALID_VAL UE is generated if <layer>
 is negative, or if <texture> is not the name of a texture object. The
 error INVALID_OPERATION is generated unless <te xture> is zero or the name
 of a three-dimensional or one- or two-dimension al array texture.

 The command

 void FramebufferTextureFaceEXT(enum target, e num attachment,
 uint texture, int level, enum face);

 operates like FramebufferTextureEXT, except tha t only a single face of a
 cube map texture, given by <face>, is attached to the attachment point.
 <face> is one of TEXTURE_CUBE_MAP_POSITIVE_X, T EXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z. If <texture> is
 non-zero, the error INVALID_VALUE is generated if <texture> is not the
 name of a texture object. The error INVALID_OP ERATION is generated unless
 <texture> is zero or the name of a cube map tex ture.

 The command

 void FramebufferTexture1DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates identically to FramebufferTextureEXT, except for two additional
 restrictions. If <texture> is non-zero, the er ror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_1D and the error INVALID_OPERATION
 is generated unless <texture> is the name of a one-dimensional texture.

 The command

 void FramebufferTexture2DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates similarly to FramebufferTextureEXT. I f <textarget> is TEXTURE_2D
 or TEXTURE_RECTANGLE_ARB, <texture> must be zer o or the name of a
 two-dimensional or rectangle texture. If <text arget> is
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z, <texture>
 must be zero or the name of a cube map texture. For cube map textures,
 only the single face of the cube map texture le vel given by <textarget> is

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 762

 attached. The error INVALID_ENUM is generated if <texture> is not zero
 and <textarget> is not one of the values enumer ated above. The error
 INVALID_OPERATION is generated if <texture> is the name of a texture whose
 type does not match the texture type required b y <textarget>.

 The command

 void FramebufferTexture3DEXT(enum target, enu m attachment,
 enum textarget, uint texture,
 int level, int z offset);

 behaves identically to FramebufferTextureLayerE XT, with the <layer>
 parameter set to the value of <zoffset>. The e rror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_3D. Th e error INVALID_OPERATION
 is generated unless <texture> is zero or the na me of a three-dimensional
 texture.

 For all FramebufferTexture commands, if <textur e> is non-zero and the
 command does not result in an error, the frameb uffer attachment state
 corresponding to <attachment> is updated based on the new attachment.
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is set t o TEXTURE,
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <texture>, and
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to <level>.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_FACE is set to <textarget> if
 FramebufferTexture2DEXT is called and <texture> is the name of a cubemap
 texture; otherwise, it is set to TEXTURE_CUBE_M AP_POSITIVE_X.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer> or <zoffset> if
 FramebufferTextureLayerEXT or FramebufferTextur e3DEXT is called;
 otherwise, it is set to zero. FRAMEBUFFER_ATTA CHMENT_LAYERED_EXT is set
 to TRUE if FramebufferTextureEXT is called and <texture> is the name of a
 three-dimensional texture, cube map texture, or one- or two-dimensional
 array texture; otherwise it is set to FALSE.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness -- add to the
 conditions necessary for attachment completenes s)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a three-dimensional
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_LAY ER_EXT must be smaller than
 the depth of the texture.

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, FRAMEBUFFER_ATTACHMENT_TEXTU RE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify section 4.4.4.2, Framebuffer Completene ss -- add to the list of
 conditions necessary for completeness)

 * If any framebuffer attachment is layered, a ll populated attachments
 must be layered. Additionally, all populat ed color attachments must
 be from textures of the same target (i.e., three-dimensional, cube
 map, or one- or two-dimensional array textu res).
 { FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT }

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 763

 * If any framebuffer attachment is layered, a ll attachments must have
 the same layer count. For three-dimensiona l textures, the layer count
 is the depth of the attached volume. For c ube map textures, the layer
 count is always six. For one- and two-dime nsional array textures, the
 layer count is simply the number of layers in the array texture.
 { FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT }

 The enum in { brackets } after each clause of t he framebuffer completeness
 rules specifies the return value of CheckFrameb ufferStatusEXT (see below)
 that is generated when that clause is violated. ...

 (add section 4.4.7, Layered Framebuffers)

 A framebuffer is considered to be layered if it is complete and all of its
 populated attachments are layered. When render ing to a layered
 framebuffer, each fragment generated by the GL is assigned a layer number.
 The layer number for a fragment is zero if

 * the fragment is generated by DrawPixels, Co pyPixels, or Bitmap,

 * geometry shaders are disabled, or

 * the current geometry shader does not contai n an instruction that
 statically assigns a value to the built-in output variable gl_Layer.

 Otherwise, the layer for each point, line, or t riangle emitted by the
 geometry shader is taken from the layer output of one of the vertices of
 the primitive. The vertex used is implementati on-dependent. To get
 defined results, all vertices of each primitive emitted should set the
 same value for gl_Layer. Since the EndPrimitiv e() built-in function
 starts a new output primitive, defined results can be achieved if
 EndPrimitive() is called between two vertices e mitted with different layer
 numbers. A layer number written by a geometry shader has no effect if the
 framebuffer is not layered.

 When fragments are written to a layered framebu ffer, the fragment's layer
 number selects an image from the array of image s at each attachment point
 from which to obtain the destination R, G, B, A values for blending
 (Section 4.1.8) and to which to write the final color values for that
 attachment. If the fragment's layer number is negative or greater than
 the number of layers attached, the effects of t he fragment on the
 framebuffer contents are undefined.

 When the Clear command is used to clear a layer ed framebuffer attachment,
 all layers of the attachment are cleared.

 When commands such as ReadPixels or CopyPixels read from a layered
 framebuffer, the image at layer zero of the sel ected attachment is always
 used to obtain pixel values.

 When cube map texture levels are attached to a layered framebuffer, there
 are six layers attached, numbered zero through five. Each layer number is
 mapped to a cube map face, as indicated in Tabl e X.4.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 764

 layer number cube map face
 ------------ ---------------------------
 0 TEXTURE_CUBE_MAP_POSITIVE_X
 1 TEXTURE_CUBE_MAP_NEGATIVE_X
 2 TEXTURE_CUBE_MAP_POSITIVE_Y
 3 TEXTURE_CUBE_MAP_NEGATIVE_Y
 4 TEXTURE_CUBE_MAP_POSITIVE_Z
 5 TEXTURE_CUBE_MAP_NEGATIVE_Z

 Table X.4, Layer numbers for cube map texture faces. The lay ers are
 numbered in the same sequence as the cube map face token values.

 (modify Section 6.1.3, Enumerated Queries -- Mo dify/add to list of <pname>
 values for GetFramebufferAttachmentParameterivE XT if
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is TEXTURE)

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTURE_ LAYER_EXT and the attached
 image is a layer of a three-dimensional textu re or one- or
 two-dimensional array texture, then <params> will contain the specified
 layer number. Otherwise, <params> will conta in the value zero.

 If <pname> is FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT, then <params> will
 contain TRUE if an entire level of a three-di mesional texture, cube map
 texture, or one- or two-dimensional array tex ture is attached to the
 <attachment>. Otherwise, <params> will conta in FALSE.

 (Modify the Additions to Chapter 5, section 5.4)

 Add the commands FramebufferTextureEXT, Framebu fferTextureLayerEXT, and
 FramebufferTextureFaceEXT to the list of comman ds that are not compiled
 into a display list, but executed immediately.

Dependencies on EXT_framebuffer_blit

 If EXT_framebuffer_blit is supported, the EXT_f ramebuffer_object language
 should be further amended so that <target> valu es passed to
 FramebufferTextureEXT and FramebufferTextureLay erEXT can be
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT, and that those functions
 set/query state for the draw framebuffer if <ta rget> is FRAMEBUFFER_EXT.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, the disc ussion array textures the
 layered rendering edits to EXT_framebuffer_obje ct should be
 removed. Layered rendering to cube map and 3D t extures would still be
 supported.

 If EXT_texture_array is supported, the edits to EXT_framebuffer_object
 supersede those made in EXT_texture_array, exce pt for language pertaining
 to mipmap generation of array textures.

 There are no functional incompatibilities betwe en the FBO support in these
 two specifications. The only differences are t hat this extension supports
 layered rendering and also rewrites certain sec tions of the core FBO
 specification more aggressively.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 765

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, all references to rectangle
 textures in the EXT_framebuffer_object spec lan guage should be removed.

Dependencies on EXT_texture_buffer_object

 If EXT_buffer_object is not supported, the refe rence to an
 INVALID_OPERATION error if a buffer texture is passed to
 FramebufferTextureEXT should be removed.

GLX protocol

 TBD

Errors

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_INPUT_TYPE_EXT and <value> is not one of POINTS, LINES,
 LINES_ADJACENCY_EXT, TRIANGLES or TRIANGLES_ADJ ACENCY_EXT.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_OUTPUT_TYPE_EXT and <value> is not one of POINTS, LINE_STRIP or
 TRIANGLE_STRIP.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_VERTICES_OUT_EXT and <value> is negati ve.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 GEOMETRY_VERTICES_OUT_EXT and <value> exceeds
 MAX_GEOMETRY_OUTPUT_VERTICES_EXT.

 The error INVALID_VALUE is generated by Program ParameteriEXT if <pname> is
 set to GEOMETRY_VERTICES_OUT_EXT and the produc t of <value> and the sum of
 all components of all active varying variables exceeds
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when a geomet ry shader is active and:

 * the input primitive type of the current geo metry shader is
 POINTS and <mode> is not POINTS,

 * the input primitive type of the current geo metry shader is
 LINES and <mode> is not LINES, LINE_STRIP, or LINE_LOOP,

 * the input primitive type of the current geo metry shader is
 TRIANGLES and <mode> is not TRIANGLES, TRIA NGLE_STRIP or
 TRIANGLE_FAN,

 * the input primitive type of the current geo metry shader is
 LINES_ADJACENCY_EXT and <mode> is not LINES _ADJACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current geo metry shader is
 TRIANGLES_ADJACENCY_EXT and <mode> is not
 TRIANGLES_ADJACENCY_EXT or TRIANGLE_STRIP_A DJACENCY_EXT.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 766

New State

 Initial
 Get Value Type Get Command Value Description Sec. Attribut e
 ------------------------- ---- ----------- ------- ---------------------- ------ -------- --
 FRAMEBUFFER_ATTACHMENT_ nxB GetFramebuff er- FALSE Framebuffer attachment 4.4.2.3 -
 LAYERED_EXT Attachment- is layered
 ParameterivE XT

 Modify the following state value in Table 6.28, Shader Object State,
 p. 289.

 Get Value Type Get Command Va lue Description Sec. Attribut e
 ------------------ ---- ----------- --- ---- ---------------------- ------ -------- -
 SHADER_TYPE Z2 GetShaderiv - Type of shader (vertex, 2.15.1 -
 Fragment, geometry)

 Add the following state to Table 6.29, Program Object State, p. 290

 Initial
 Get Value Type Get Command Value Description Sec. Attribu te
 ------------------------- ---- ------------ ------- ----------------- ------ ------ -
 GEOMETRY_VERTICES_OUT_EXT Z+ GetProgramiv 0 max # of output vertices 2.16.4 -
 GEOMETRY_INPUT_TYPE_EXT Z5 GetProgramiv TRIANGLES Primitive input type 2.16.1 -
 GEOMETRY_OUTPUT_TYPE_EXT Z3 GetProgramiv TRIANGLE_ Primitive output type 2.16.2 -
 STRIP

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 767

New Implementation Dependent State

 Min.
 Get Value Type Get Command Valu e Description Sec. Attrib
 ---------------------- ---- ----------- ---- - -------------------- -------- ------
 MAX_GEOMETRY_TEXTURE_ Z+ GetIntegerv 16 maximum number of 2.16.4 -
 IMAGE_UNITS_EXT texture image units
 accessible in a
 geometry shader
 MAX_GEOMETRY_OUTPUT_ Z+ GetIntegerv 256 maximum number of 2.16.4 -
 VERTICES_EXT vertices that any
 geometry shader can
 can emit
 MAX_GEOMETRY_TOTAL_ Z+ GetIntegerv 1024 maximum number of 2.16.4 -
 OUTPUT_COMPONENTS_EXT total components (all
 vertices) of active
 varyings that a
 geometry shader can
 emit
 MAX_GEOMETRY_UNIFORM_ Z+ GetIntegerv 512 Number of words for 2.16.3 -
 COMPONENTS_EXT geometry shader
 uniform variables
 MAX_GEOMETRY_VARYING_ Z+ GetIntegerv 32 Number of components 2.16.4 -
 COMPONENTS_EXT for varying variables
 between geometry and
 fragment shaders
 MAX_VERTEX_VARYING_ Z+ GetIntegerv 32 Number of components 2.15.3 -
 COMPONENTS_EXT for varying variables
 between Vertex and
 geometry shaders
 MAX_VARYING_ Z+ GetIntegerv 32 Alias for 2.15.3 -
 COMPONENTS_EXT MAX_VARYING_FLOATS

Modifications to the OpenGL Shading Language Specif ication version
1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_geometry_shader4 : <behavio r>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_geometry_shader4 1

 Change the introduction to Chapter 2 "Overview of OpenGL Shading" as
 follows:

 The OpenGL Shading Language is actually three c losely related
 languages. These languages are used to create s haders for the programmable
 processors contained in the OpenGL processing p ipeline. The precise
 definition of these programmable units is left to separate
 specifications. In this document, we define the m only well enough to
 provide a context for defining these languages. Unless otherwise noted in
 this paper, a language feature applies to all l anguages, and common usage

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 768

 will refer to these languages as a single langu age. The specific languages
 will be referred to by the name of the processo r they target: vertex,
 geometry or fragment.

 Change the last sentence of the first paragraph of section 3.2
 "Source Strings" to:

 Multiple shaders of the same language (vertex, geometry or fragment) can
 be linked together to form a single program.

 Change the first paragraph of section 4.1.3, "I ntegers" as follows:

 ... integers are limited to 16 bits of precisio n, plus a sign
 representation in the vertex, geometry and frag ment languages..

 Change the first paragraph of section 4.1.9, "A rrays", as follows:

 Variables of the same type can be aggregated in to one- and two-
 dimensional arrays by declaring a name followed by brackets ([] for
 one-dimensional arrays and [][] for two-dimensi onal arrays) enclosing an
 optional size. When an array size is specified in a declaration, it must
 be an integral constant expression (see Section 4.3.3 "Integral Constant
 Expressions") greater than zero. If an array i s indexed with an
 expression that is not an integral constant exp ression or passed as an
 argument to a function, then its size must be d eclared before any such
 use. It is legal to declare an array without a size and then later
 re-declare the same name as an array of the sam e type and specify a
 size. It is illegal to declare an array with a size, and then later (in
 the same shader) index the same array with an i ntegral constant expression
 greater than or equal to the declared size. It is also illegal to index an
 array with a negative constant expression. Arra ys declared as formal
 parameters in a function declaration must speci fy a size. Undefined
 behavior results from indexing an array with a non-constant expression
 that's greater than or equal to the array's siz e or less than 0. All basic
 types and structures can be formed into arrays.

 Two-dimensional arrays can only be declared as "varying in" variables in a
 geometry shader. See section 4.3.6 for details. All other declarations of
 two-dimensional arrays are illegal.

 Change the fourth paragraph of section 4.2 "Sco ping", as follows:

 Shared globals are global variables declared wi th the same name in
 independently compiled units (shaders) of the s ame language (vertex,
 geometry or fragment) that are linked together .

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 769

 Change section 4.3 "Type Qualifiers"

 Change the "varying", "in" and "out" qualifiers as follows:

 varying - linkage between a vertex shader and g eometry shader, or between
 a geometry shader and a fragment shader, or bet ween a vertex shader and a
 fragment shader.

 in - for function parameters passed into a func tion or for input varying
 variables (geometry only)

 out - for function parameters passed back out o f a function, but not
 initialized for use when passed in. Also for ou tput varying variables
 (geometry only).

 Change section 4.3.6 "Varying" as follows:

 Varying variables provide the interface between the vertex shader and
 geometry shader and also between the geometry s hader and fragment shader
 and the fixed functionality between them. If no geometry shader is
 present, varying variables also provide the int erface between the vertex
 shader and fragment shader.

 The vertex, or geometry shader will compute val ues per vertex (such
 as color, texture coordinates, etc) and write t hem to output variables
 declared with the "varying" qualifier (vertex o r geometry) or "varying
 out" qualifiers (geometry only). A vertex or ge ometry shader may also
 read these output varying variables, getting ba ck the same values it has
 written. Reading an output varying variable in a vertex or geometry shader
 returns undefined results if it is read before being written.

 A geometry shader may also read from an input v arying variable declared
 with the "varying in" qualifiers. The value rea d will be the same value as
 written by the vertex shader for that varying v ariable. Since a geometry
 shader operates on primitives, each input varyi ng variable needs to be
 declared as an array. Each element of such an a rray corresponds to a
 vertex of the primitive being processed. If the varying variable is
 declared as a scalar or matrix in the vertex sh ader, it will be a
 one-dimensional array in the geometry shader. E ach array can optionally
 have a size declared. If a size is not specifie d, it inferred by the
 linker and depends on the value of the input pr imitive type. See table
 4.3.xxx to determine the exact size. The read-o nly built-in constant
 gl_VerticesIn will be set to this value by the linker. If a size is
 specified, it has to be the size as given by ta ble 4.3.xxx, otherwise a
 link error will occur. The built-in constant gl _VerticesIn, if so desired,
 can be used to size the array correctly for eac h input primitive
 type. Varying variables can also be declared as arrays in the vertex
 shader. This means that those, on input to the geometry shader, must be
 declared as two- dimensional arrays. The first index to the
 two-dimensional array holds the vertex number. Declaring a size for the
 first range of the array is optional, just as i t is for one-dimensional
 arrays. The second index holds the per-vertex array data. Declaring a
 size for the second range of the array is not o ptional, and has to match
 the declaration in the vertex shader.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 770

 Value of built-in
 Input primitive type gl_VerticesIn
 ----------------------- -----------------
 POINTS 1
 LINES 2
 LINES_ADJACENCY_EXT 4
 TRIANGLES 3
 TRIANGLES_ADJACENCY_EXT 6

 Table 4.3.xxxx The value of the built-in variable gl_VerticesIn i s
 determined at link time, based on the input pri mitive type.

 It is illegal to index these varying arrays, or in the case of two-
 dimensional arrays, the first range of the arra y, with a negative integral
 constant expression or an integral constant exp ression greater than or
 equal to gl_VerticesIn. A link error will occur in these cases.

 Varying variables that are part of the interfac e to the fragment shader
 are set per vertex and interpolated in a perspe ctive correct manner,
 unless flat shaded, over the primitive being re ndered. If single-sampling,
 the interpolated value is for the fragment cent er. If multi-sampling, the
 interpolated value can be anywhere within the p ixel, including the
 fragment center or one of the fragment samples.

 A fragment shader may read from varying variabl es and the value read will
 be the interpolated value, as a function of the fragment's position within
 the primitive, unless the varying variable is f lat shaded. A fragment
 shader cannot write to a varying variable.

 If a geometry shader is present, the type of th e varying variables with
 the same name declared in the vertex shader and the input varying
 variables in the geometry shader must match, ot herwise the link command
 will fail. Likewise, the type of the output var ying variables with the
 same name declared in the geometry shader and t he varying variables in the
 fragment shader must match.

 If a geometry shader is not present, the type o f the varying variables
 with the same name declared in both the vertex and fragment shaders must
 match, otherwise the link command will fail.

 Only those varying variables used (i.e. read) i n the geometry or fragment
 shader must be written to by the vertex or geom etry shader; declaring
 superfluous varying variables in the vertex sha der or declaring
 superfluous output varying variables in the geo metry shader is
 permissible.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 771

 Varying variables are declared as in the follow ing example:

 varying in float foo[]; // geometry shader input. Size of the
 // array set as a result of link, based
 // on the input pr imitive type.

 varying in float foo[gl_VerticesIn]; // geome try shader input

 varying in float foo[3]; // geometry shader input. Only legal for
 // the TRIANGLES i nput primitive type

 varying in float foo[][5]; // Size of the fir st range set as a
 // result of link. Each vertex holds an
 // array of 5 floa ts.

 varying out vec4 bar; // geometry output
 varying vec3 normal; // vertex shader o utput or fragment
 // shader input

 The varying qualifier can be used only with the data types float, vec2,
 vec3, vec4, mat2, mat3 and mat4 or arrays of th ese. Structures cannot be
 varying. Additionally, the "varying in" and "va rying out" qualifiers can
 only be used in a geometry shader.

 If no vertex shader is active, the fixed functi onality pipeline of OpenGL
 will compute values for the built-in varying va riables that will be
 consumed by the fragment shader. Similarly, if no fragment shader is
 active, the vertex shader or geometry shader is responsible for computing
 and writing to the built-in varying variables t hat are needed for OpenGL's
 fixed functionality fragment pipeline.

 Varying variables are required to have global s cope, and must be declared
 outside of function bodies, before their first use.

 Change section 7.1 "Vertex Shader Special Varia bles"

 Rename this section to "Vertex and Geometry Sha der Special Variables"

 Anywhere in this section where it reads "vertex language" replace it with
 "vertex and geometry language".

 Anywhere in this section where it reads "vertex shader" replace it with
 "vertex shader or geometry shader".

 Change the second paragraph to:

 The variable gl_Position is available only in t he vertex and geometry
 language and is intended for writing the homoge neous vertex position. It
 can be written at any time during shader execut ion. It may also be read
 back by the shader after being written. This va lue will be used by
 primitive assembly, clipping, culling, and othe r fixed functionality
 operations that operate on primitives after ver tex or geometry processing
 has occurred. Compilers may generate a diagnos tic message if they detect
 gl_Position is read before being written, but n ot all such cases are
 detectable. Writing to gl_Position is optional. If gl_Position is not
 written but subsequent stages of the OpenGL pip eline consume gl_Position,
 then results are undefined.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 772

 Change the last sentence of this section into t he following:

 The read-only built-in gl_PrimitiveIDIn is avai lable only in the geometry
 language and is filled with the number of primi tives processed by the
 geometry shader since the last time Begin was c alled (directly or
 indirectly via vertex array functions). See sec tion 2.16.4 for more
 information.

 This variable is intrinsically declared as:

 int gl_PrimitiveIDIn; // read only

 The built-in output variable gl_PrimitiveID is available only in the
 geometry language and provides a single integer that serves as a primitive
 identifier. This written primitive ID is avail able to fragment shaders.
 If a fragment shader using primitive IDs is act ive and a geometry shader
 is also active, the geometry shader must write to gl_PrimitiveID or the
 primitive ID in the fragment shader number is u ndefined.

 The built-in output variable gl_Layer is availa ble only in the geometry
 language, and provides the number of the layer of textures attached to a
 FBO to direct rendering to. If a shader statica lly assigns a value to
 gl_Layer, layered rendering mode is enabled. Se e section 2.16.4 for a
 detailed explanation. If a shader statically as signs a value to gl_Layer,
 and there is an execution path through the shad er that does not set
 gl_Layer, then the value of gl_Layer may be und efined for executions of
 the shader that take that path.

 These variables area intrinsically declared as:

 int gl_PrimitiveID;
 int gl_Layer;

 These variables can be read back by the shader after writing to them, to
 retrieve what was written. Reading the variable before writing it results
 in undefined behavior. If it is written more th an once, the last value
 written is consumed by the subsequent operation s.

 All built-in variables discussed in this sectio n have global scope.

 Change section 7.2 "Fragment Shader Special Var iables"

 Change the first paragraph on p. 44 as follows:

 The fragment shader has access to the read-only built-in variable
 gl_FrontFacing whose value is true if the fragm ent belongs to a
 front-facing primitive. One use of this is to e mulate two-sided lighting
 by selecting one of two colors calculated by th e vertex shader or geometry
 shader.

 Change the first sentence of section 7.4 "Built -in Constants"

 The following built-in constant is provided to geometry shaders.

 const int gl_VerticesIn; // Value set at link time

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 773

 The following built-in constants are provided t o the vertex, geometry and
 fragment shaders:

 Change section 7.6 "Varing Variables"

 Unlike user-defined varying variables, the buil t-in varying variables
 don't have a strict one-to-one correspondence b etween the vertex language,
 geometry language and the fragment language. Fo ur sets are provided, one
 set for the vertex language output, one set for the geometry language
 output, one set for the fragment language input and another set for the
 geometry language input. Their relationship is described below.

 The following built-in varying variables are av ailable to write to in a
 vertex shader or geometry shader. A particular one should be written to if
 any functionality in a corresponding geometry s hader or fragment shader or
 fixed pipeline uses it or state derived from it . Otherwise, behavior is
 undefined.

 Vertex language built-in outputs:

 varying vec4 gl_FrontColor;
 varying vec4 gl_BackColor;
 varying vec4 gl_FrontSecondaryColor;
 varying vec4 gl_BackSecondaryColor;
 varying vec4 gl_TexCoord[]; // at most will b e gl_MaxTextureCoords
 varying float gl_FogFragCoord;

 Geometry language built-in outputs:

 varying out vec4 gl_FrontColor;
 varying out vec4 gl_BackColor;
 varying out vec4 gl_FrontSecondaryColor;
 varying out vec4 gl_BackSecondaryColor;
 varying out vec4 gl_TexCoord[]; // at most gl _MaxTextureCoords
 varying out float gl_FogFragCoord;

 For gl_FogFragCoord, the value written will be used as the "c" value on
 page 160 of the OpenGL 1.4 Specification by the fixed functionality
 pipeline. For example, if the z-coordinate of t he fragment in eye space is
 desired as "c", then that's what the vertex or geometry shader should
 write into gl_FogFragCoord.

 Indices used to subscript gl_TexCoord must eith er be an integral constant
 expressions, or this array must be re-declared by the shader with a
 size. The size can be at most gl_MaxTextureCoor ds. Using indexes close to
 0 may aid the implementation in preserving vary ing resources.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 774

 The following input varying variables are avail able to read from in a
 geometry shader.

 varying in vec4 gl_FrontColorIn[gl_VerticesIn];
 varying in vec4 gl_BackColorIn[gl_VerticesIn] ;
 varying in vec4 gl_FrontSecondaryColorIn[gl_V erticesIn];
 varying in vec4 gl_BackSecondaryColorIn[gl_Ve rticesIn];
 varying in vec4 gl_TexCoordIn[gl_VerticesIn][]; // at most will be
 // gl_MaxTextureCoords
 varying in float gl_FogFragCoordIn[gl_Vertice sIn];
 varying in vec4 gl_PositionIn[gl_VerticesIn];
 varying in float gl_PointSizeIn[gl_VerticesIn];
 varying in vec4 gl_ClipVertexIn[gl_VerticesIn];

 All built-in variables are one-dimensional arra ys, except for
 gl_TexCoordIn, which is a two-dimensional array . Each element of a
 one-dimensional array, or the first index of a two-dimensional array,
 corresponds to a vertex of the primitive being processed and receives
 their value from the equivalent vertex output v arying variables. See also
 section 4.3.6.

 The following varying variables are available t o read from in a fragment
 shader. The gl_Color and gl_SecondaryColor name s are the same names as
 attributes passed to the vertex shader. However , there is no name
 conflict, because attributes are visible only i n vertex shaders and the
 following are only visible in a fragment shader .

 varying vec4 gl_Color;
 varying vec4 gl_SecondaryColor;
 varying vec4 gl_TexCoord[]; // at most will b e gl_MaxTextureCoords
 varying float gl_FogFragCoord;

 The values in gl_Color and gl_SecondaryColor wi ll be derived automatically
 by the system from gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor,
 and gl_BackSecondaryColor. This selection proce ss is described in section
 2.14.1 of the OpenGL 2.0 Specification. If fixe d functionality is used for
 vertex processing, then gl_FogFragCoord will ei ther be the z-coordinate of
 the fragment in eye space, or the interpolation of the fog coordinate, as
 described in section 3.10 of the OpenGL 1.4 Spe cification. The
 gl_TexCoord[] values are the interpolated gl_Te xCoord[] values from a
 vertex or geometry shader or the texture coordi nates of any fixed pipeline
 based vertex functionality.

 Indices to the fragment shader gl_TexCoord arra y are as described above in
 the vertex and geometry shader text.

 Change section 8.7 "Texture Lookup Functions"

 Change the first paragraph to:

 Texture lookup functions are available to verte x, geometry and fragment
 shaders. However, level of detail is not comput ed by fixed functionality
 for vertex or geometry shaders, so there are so me differences in operation
 between texture lookups. The functions.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 775

 Change the third and fourth paragraphs to:

 In all functions below, the bias parameter is o ptional for fragment
 shaders. The bias parameter is not accepted in a vertex or geometry
 shader. For a fragment shader, if bias is prese nt, it is added to the
 calculated level of detail prior to performing the texture access
 operation. If the bias parameter is not provide d, then the implementation
 automatically selects level of detail: For a te xture that is not
 mip-mapped, the texture is used directly. If it is mip- mapped and running
 in a fragment shader, the LOD computed by the i mplementation is used to do
 the texture lookup. If it is mip- mapped and ru nning on the vertex or
 geometry shader, then the base LOD of the textu re is used.

 The built-ins suffixed with "Lod" are allowed o nly in a vertex or geometry
 shader. For the "Lod" functions, lod is directl y used as the level of
 detail.

 Change section 8.9 Noise Functions

 Change the first paragraph to:

 Noise functions are available to the vertex, ge ometry and fragment
 shaders. They are...

 Add a section 8.10 Geometry Shader Functions

 This section contains functions that are geomet ry language specific.

 Syntax:

 void EmitVertex(); // Geometry only
 void EndPrimitive(); // Geometry only

 Description:

 The function EmitVertex() specifies that a vert ex is completed. A vertex
 is added to the current output primitive using the current values of the
 varying output variables and the current values of the special built-in
 output variables gl_PointSize, gl_ClipVertex, g l_Layer, gl_Position and
 gl_PrimitiveID. The values of any unwritten ou tput variables are
 undefined. The values of all varying output var iables and the special
 built-in output variables are undefined after a call to EmitVertex(). If a
 geometry shader, in one invocation, emits more vertices than the value
 GEOMETRY_VERTICES_OUT_EXT, these emits may have no effect.

 The function EndPrimitive() specifies that the current output primitive is
 completed and a new output primitive (of the sa me type) should be
 started. This function does not emit a vertex. The effect of
 EndPrimitive() is roughly equivalent to calling End followed by a new
 Begin, where the primitive mode is taken from t he program object parameter
 GEOMETRY_OUTPUT_TYPE_EXT. If the output primiti ve type is POINTS, calling
 EndPrimitive() is optional.

 A geometry shader starts with an output primiti ve containing no
 vertices. When a geometry shader terminates, th e current output primitive
 is automatically completed. It is not necessary to call EndPrimitive() if
 the geometry shader writes only a single primit ive.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 776

 Add/Change section 9 (Shading language grammar) :

 init_declarator_list:
 single_declaration
 init_declarator_list COMMA IDENTIFIER
 init_declarator_list COMMA IDENTIFIER array _declarator_suffix
 init_declarator_list COMMA IDENTIFIER EQUAL initializer

 single_declaration:
 fully_specified_type
 fully_specified_type IDENTIFIER
 fully_specified_type IDENTIFIER array_decla rator_suffix
 fully_specified_type IDENTIFIER EQUAL initi alizer

 array_declarator_suffix:
 LEFT_BRACKET RIGHT_BRACKET
 LEFT_BRACKET constant_expression RIGHT_BRAC KET
 LEFT_BRACKET RIGHT_BRACKET array_declarator _suffix
 LEFT_BRACKET constant_expression RIGHT_BRAC KET
 array_declarator_suffix

 type_qualifier:
 CONST
 ATTRIBUTE // Vertex only
 VARYING
 VARYING IN // Geometry only
 VARYING OUT // Geometry only
 UNIFORM

NVIDIA Implementation Details

 Because of a hardware limitation, some GeForce 8 series chips use the
 odd vertex of an incomplete TRIANGLE_STRIP_ADJA CENCY_EXT primitive
 as a replacement adjacency vertex rather than i gnoring it.

Issues

 1. How do geometry shaders fit into the existing GL pipeline?

 RESOLVED: The following diagram illustrates how geometry shaders fit
 into the "vertex processing" portion of the G L (Chapter 2 of the OpenGL
 2.0 Specification).

 First, vertex attributes are specified via im mediate-mode commands or
 through vertex arrays. They can be conventio nal attributes (e.g.,
 glVertex, glColor, glTexCoord) or generic (nu mbered) attributes.

 Vertices are then transformed, either using a vertex shader or
 fixed-function vertex processing. Fixed-func tion vertex processing
 includes position transformation (modelview a nd projection matrices),
 lighting, texture coordinate generation, and other calculations. The
 results of either method are a "transformed v ertex", which has a
 position (in clip coordinates), front and bac k colors, texture
 coordinates, generic attributes (vertex shade r only), and so on. Note
 that on many current GL implementations, vert ex processing is performed
 by executing a "fixed function vertex shader" generated by the driver.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 777

 After vertex transformation, vertices are ass embled into primitives,
 according to the topology (e.g., TRIANGLES, Q UAD_STRIP) provided by the
 call to glBegin(). Primitives are points, li nes, triangles, quads, or
 polygons. Many GL implementations do not dir ectly support quads or
 polygons, but instead decompose them into tri angles as permitted by the
 spec.

 After initial primitive assembly, a geometry shader is executed on each
 individual point, line, or triangle primitive , if one is active. It can
 read the attributes of each transformed verte x, perform arbitrary
 computations, and emit new transformed vertic es. These emitted vertices
 are themselves assembled into primitives acco rding to the output
 primitive type of the geometry shader.

 Then, the colors of the vertices of each prim itive are clamped to [0,1]
 (if color clamping is enabled), and flat shad ing may be performed by
 taking the color from the provoking vertex of the primitive.

 Each primitive is clipped to the view volume, and to any enabled
 user-defined clip planes. Color, texture coo rdinate, and other
 attribute values are computed for each new ve rtex introduced by
 clipping.

 After clipping, the position of each vertex (in clip coordinates) is
 converted to normalized device coordinates in the perspective division
 (divide by w) step, and to window coordinates in the viewport
 transformation step.

 At the same time, color values may be convert ed to normalized
 fixed-point values according to the "Final Co lor Processing" portion of
 the specification.

 After the vertices of the primitive are trans formed to window
 coordinate, the GL determines if the primitiv e is front- or back-facing.
 That information is used for two-sided color selection, where a single
 set of colors is selected from either the fro nt or back colors
 associated with each transformed vertex.

 When all this is done, the final transformed position, colors (primary
 and secondary), and other attributes are used for rasterization (Chapter
 3 in the OpenGL 2.0 Specification).

 When the raster position is specified (via gl RasterPos), it goes through
 the entire vertex processing pipeline as thou gh it were a point.
 However, geometry shaders are never run on th e raster position.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 778

 | generic |conventional
 |vertex |vert ex
 |attributes |attr ibutes
 | |
 | +-------------------+
 | | |
 V V V
 vertex fixed-funct ion
 shader vertex
 | processing
 | |
 | |
 +<-------------------+
 | Output
 |position, color, Primitive
 |other vertex data Type
 | |
 V |
 Begin/ primitive geometry primitive |
 End ------> assembly -----> shader ---- > assembly <-+
 State | |
 V |
 +<------------------------ ------+
 |
 |
 | color flat
 +----------> clamping ---- > shading
 | |
 V |
 +<------------------------ ------+
 |
 |
 clipping
 |
 | perspective viewport
 +------> divide ----> transform
 | |
 | +---+-----+
 | V |
 | final f acing |
 +------> color dete rmination |
 | processing | | |
 | | | |
 | | | |
 | +-----+ +--- -+ |
 | | | |
 | V V |
 | two-sided |
 | coloring |
 | | |
 | | |
 +------------------+ | +-- -----------+
 | | |
 V V V
 rasterizati on
 |
 |
 V

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 779

 2. Why is this called GL_EXT_geometry_shader4? There aren't any previous
 versions of this extension, let alone three?

 RESOLVED: To match its sibling, EXT_gpu_shad er4 and the assembly
 version NV_gpu_program4. This is the fourth g eneration of shading
 functionality, hence the "4" in the name.

 3. Should the GL produce errors at Begin time if an application specifies a
 primitive mode that is "incompatible" with th e geometry shader? For
 example, if the geometry shader operates on t riangles and the
 application sends a POINTS primitive?

 RESOLVED: Yes. Mismatches of app-specified primitive types and
 geometry shader input primitive types appear to be errors and would
 produce weird and wonderful effects.

 4. Can the input primitive type of a geometry sh ader be determined at run
 time?

 RESOLVED: No. Each geometry shader has a sin gle input primitive type,
 and vertices are presented to the shader in a specific order based on
 that type.

 5. Can the input primitive type of a geometry sh ader be changed?

 DISCUSSION: The input primitive type is a pro perty of the program
 object. A change of the input primitive type means the program object
 will need to be re-linked. It would be nice i f the input primitive type
 was known at compile time, so that the compil er can do error checking of
 the type and the number of vertices being acc essed by the shader. Since
 we allow multiple compilation units to form o ne geometry shader, it is
 not clear how to achieve that. Therefore, th e input primitive type is a
 property of the program object, and not of a shader object.

 RESOLVED: Yes, but each change means the prog ram object will have to be
 re-linked.

 6. Can the output primitive type of a geometry s hader be determined
 at run time?

 RESOLVED: Not in this extension.

 7. Can the output primitive type of a program ob ject be changed?

 RESOLVED: Yes, but the program object will ha ve to be re-linked in order
 for the change to have effect on program exec ution.

 8. Must the output primitive type of a geometry shader match the
 input primitive type in any way?

 RESOLVED: No, you can have a geometry shader generate points out of
 triangles or triangles out of points. Some c ombinations are analogous
 to existing OpenGL operations: reading trian gles and writing points or
 line strips can be used to emulate a subset o f PolygonMode
 functionality. Reading points and writing tr iangle strips can be used
 to emulate point sprites.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 780

 9. Are primitives emitted by a geometry shader p rocessed like any other
 OpenGL primitive?

 RESOLVED: Yes. Antialiasing, stippling, pol ygon offset, polygon mode,
 culling, two-sided lighting and color selecti on, point sprite
 operations, and fragment processing all work as expected.

 One limitation is that the only output primit ive types supported are
 points, line strips, and triangle strips, non e of which meaningfully
 support edge flags that are sometimes used in conjunction with the POINT
 and LINE polygon modes. Edge flags are always ignored for line-mode
 triangle strips.

 10. Should geometry shaders support additional in put primitive types?

 RESOLVED: Possibly in a future extension. I t should be straightforward
 to build a future extension to support geomet ry shaders that operate on
 quads. Other primitive types might be more d emanding on hardware. Quads
 with adjacency would require 12 vertices per shader execution. General
 polygons may require even more, since there i s no fixed bound on the
 number of vertices in a polygon.

 11. Should geometry shaders support additional ou tput primitive types?

 RESOLVED: Possibly in a future extension. A dditional output types
 (e.g., independent lines, line loops, triangl e fans, polygons) may be
 useful in the future; triangle fans/polygons seem particularly useful.

 12. How are adjacency primitives processed by the GL?

 RESOLVED: The primitive type of an adjacent p rimitive is set as a Begin
 mode parameter. Any vertex of an adjacency pr imitive will be treated as
 a regular vertex, and processed by a vertex s hader as well as the
 geometry shader. The geometry shader cannot o utput adjacency primitives,
 thus processing stops with the geometry shade r. If a geometry shader is
 not active, the GL ignores the "adjacent" ver tices in the adjacency
 primitive.

 13. Should we provide additional adjacency primit ive types that can be
 used inside a Begin/End?

 RESOLVED: Not in this extension. It may be desirable to add new
 primitive types (e.g., TRIANGLE_FAN_ADJACENCY) in a future extension.

 14. How do geometry shaders interact with RasterP os?

 RESOLVED: Geometry shaders are ignored when specifying the raster
 position.

 15. How do geometry shaders interact with pixel p rimitives
 (DrawPixels, Bitmap)?

 RESOLVED: They do not.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 781

 16. Is there a limit on the number of vertices th at can be emitted by
 a geometry shader?

 RESOLVED: Unfortunately, yes. Besides pract ical hardware limits, there
 may also be practical performance advantages when applications guarantee
 a tight upper bound on the number of vertices a geometry shader will
 emit. GPUs frequently excecute programs in p arallel, and there are
 substantial implementation challenges to para llel execution of geometry
 threads that can write an unbounded number of results, particular given
 that all the primitives generated by the firs t geometry shader
 invocation must be consumed before any of the primitives generated by
 the second program invocation. Limiting the amount of data a geometry
 shader can write substantially eases the impl ementation burden.

 A program object, holding a geometry shader, must declare a maximum
 number of vertices that can be emitted. There is an
 implementation-dependent limit on the total n umber of vertices a program
 object can emit (256 minimum) and the product of the number of vertices
 emitted and the number of components of all a ctive varying variables
 (1024 minimum).

 It would be ideal if the limit could be infer red from the instructions
 in the shader itself, and that would be possi ble for many shaders,
 particularly ones with straight-line flow con trol. For shaders with
 more complicated flow control (subroutines, d ata- dependent looping, and
 so on), it would be impossible to make such a n inference and a "safe"
 limit would have to be used with adverse and possibly unexpected
 performance consequences.

 The limit on the number of EmitVertex() calls that can be issued can not
 always be enforced at compile time, or even a t Begin time. We specify
 that if a shader tries to emit more vertices than allowed, emits that
 exceed the limit may or may not have any effe ct.

 17. Should it be possible to change the limit GEO METRY_VERTICES_OUT_EXT, the
 number of vertices emitted by a geometry shad er, after the program
 object, containing the shader, is linked?

 RESOLVED: NO. See also issue 31. Changing thi s limit might require a
 re-compile and/or re-link of the shaders and program object on certain
 implementations. Pretending that this limit c an be changed without
 re-linking does not reflect reality.

 18. How do user clipping and geometry shaders int eract?

 RESOLVED: Just like vertex shaders and user c lipping interact. The
 geometry shader needs to provide the (eye) po sition gl_ClipVertex.
 Primitives are clipped after geometry shader execution, not before.

 19. How do edge flags interact with adjacency pri mitives?

 RESOLVED: If geometry programs are disabled, adjacency primitives are
 still supported. For TRIANGLES_ADJACENCY_EXT , edge flags will apply as
 they do for TRIANGLES. Such primitives are r endered as independent
 triangles as though the adjacency vertices we re not provided. Edge
 flags for the "real" vertices are supported. For all other adjacency
 primitive types, edge flags are irrelevant.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 782

 20. Now that a third shader object type is added, what combinations of
 GLSL, assembly (ARB or NV) low level and fixe d-function do we want
 to support?

 DISCUSSION: With the addition of the geometry shader, the number of
 combinations the GL pipeline could support do ubled (there is no
 fixed-function geometry shading). Possible c ombinations now are:

 vertex geometry fragment

 ff/ASM/GLSL none/ASM/GLSL ff/ASM/GLSL

 for a total of 3 x 3 x 3 is 27 combinations. Before the geometry shader
 was added, the number of combinations was 9, and those we need to
 support. We have a choice on the other 18.

 RESOLUTION: It makes sense to draw a line at raster in the GL
 pipeline. The 'north' side of this line cover s vertex and geometry
 shaders, the 'south' side fragment shaders. W e now add a simple rule
 that states that if a program object contains anything north of this
 line, the north side will be 100% GLSL. This means that:

 a) GLSL program objects with a vertex shader can only use a geometry
 shader and not an assembly geometry program. If an assembly geometry
 program is enabled, it is bypassed. This als o avoids a tricky case -- a
 GLSL program object with a vertex and a fragm ent program linked
 together. Injecting an assembly geometry sha der in the middle at run
 time won't work well.

 b) GLSL program objects with a geometry shade r must have a vertex shader
 (cannot be ARB/NV or fixed-function vertex sh ading).

 The 'south' side in this program object still can be any of
 ff/ARB/NV/GLSL.

 21. How do geometry shaders interact with color c lamping?

 RESOLVED: Geometry shader execution occurs p rior to color clamping in
 the pipeline. This means the colors written by vertex shaders are not
 clamped to [0,1] before they are read by geom etry shaders. If color
 clamping is enabled, any vertex colors writte n by the geometry shader
 will have their components clamped to [0,1].

 22. What is a primitive ID and a vertex ID? I am confused.

 DISCUSSION: A vertex shader can read a built- in attribute that holds the
 ID of the current vertex it is processing. Se e the EXT_gpu_shader4 spec
 for more information on vertex ID. If the geo metry shader needs access
 to a vertex ID as well, it can be passed as a user-defined varying
 variable. A geometry shader can read a built- in varying variable that
 holds the ID of the current primitive it is p rocessing. It also has the
 ability to write to a built-in output primiti ve ID variable, to
 communicate the primitive ID to a fragment sh ader. A fragment shader
 can read a built-in attribute that holds the ID of the current primitive
 it is processing. A primitive ID will be gene rated even if no geometry
 shader is active.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 783

 23. After a call to EmitVertex(), should the valu es of the output varying
 variables be retained or be undefined?

 DISCUSSION: There is not a clear answer to th is question .The underlying
 HW mechanism is as follows. An array of outpu t registers is set aside to
 store vertices that make up primitives. Afte r each EmitVertex() a
 pointer into that array is incremented. The shader no longer has access
 to the previous set of values. This argues t hat the values of output
 varying variables should be undefined after a n EmitVertex() call. The
 shader is responsible for writing values to a ll varying variables it
 wants to emit, for each emit. The counter arg ument to this is that this
 is not a nice model for GLSL to program in. T he compiler can store
 varying outputs in a temp register and preser ve their values across
 EmitVertex() calls, at the cost of increased register pressure.

 RESOLUTION: For now, without being a clear wi nner, we've decided to go
 with the undefined option. The shader is resp onsible for writng values
 to all varying variabvles it wants to emit, f or each emit.

 24. How to distinguish between input and output " varying" variables?

 DISCUSSION: Geometry shader outputs are varyi ng variables consistent
 with the existing definition of varying (used to communicate to the
 fragment processing stage). Geometry inputs a re received from a vertex
 shader writing to its varying variable output s. The inputs could be
 called "varying", to match with the vertex sh ader, or could be called
 "attributes" to match the vertex shader input s (which are called
 attributes).

 RESOLUTION: We'll call input variables "varyi ng", and not
 "attributes". To distinguish between input an d output, they will be
 further qualified with the words "in" and "ou t" resulting in, for
 example:

 varying in float foo;
 varying out vec4 bar[];

 25. What is the syntax for declaring varying inpu t variables?

 DISCUSSION: We need a way to distinguish betw een the vertices of the
 input primitive. Suggestions:

 1. Declare each input varying variable as a n unsized array. Its size
 is inferred by the linker based on the o utput primitive type.

 2. Declare each input varying variable as a sized array. If the size
 does not match the output primitive type , a link error occurs.

 3. Have an array of structures, where the s tructure contains the
 attributes for each vertex.

 RESOLUTION: Option 1 seems simple and solves the problem, but it is not
 a clear winner over the other two. To aid the shader writer in figuring
 out the size of each array, a new built-in co nstant, gl_VerticesIn, is
 defined that holds the number of vertices for the current input
 primitive type.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 784

 26. Does gl_PointSize, gl_Layer, gl_ClipVertex co unt agains the
 MAX_GEOMETRY_VARYING_COMPONENTS limit?

 RESOLUTION: Core OpenGL 2.0 makes a distincti on between varying
 variables, output from a vertex shader and in terpolated over a
 primitive, and 'special built-in variables' t hat are outputs, but not
 interpolated across a primitive. Only varying variables do count against
 the MAX_VERTEX_VARYING_COMPONENTS limit. gl_ PointSize, gl_Layer,
 gl_ClipVertex and gl_Position are 'special bu ilt-in' variables, and
 therefore should not count against the limit. If HW does need to take
 components away to support those, that is ok. The actual spec language
 does mention possible implementation dependen cies.

 27. Should writing to gl_Position be optional?

 DISCUSSION: Before this extensions, the OpenG L Shading Language required
 that gl_Position be written to in a vertex sh ader. With the addition of
 geometry shaders, it is not necessary anymore for a vertex shader to
 output gl_Position. The geometry shader can d o so. With the addition of
 transform-feedback (see the transform feedbac k specification) it is not
 necessary useful for the geometry shader to w rite out gl_Position
 either.

 RESOLUTION: Yes, this should be optional.

 28. Should geometry shaders be able to select a l ayer of a 3D texture, cube
 map texture, or array texture at run time? I f so, how?

 RESOLVED: See also issue 32. This extension p rovides a per-vertex output
 called "gl_Layer", which is an integer specif ying the layer to render
 to. In order to get defined results, the valu e of gl_Layer needs to be
 constant for each primitive (point, line or t riangle) being emitted by a
 geometry shader. This layer value is used for all fragments generated by
 that primitive.

 The EXT_framebuffer_object (FBO) extension is used for rendering to
 textures, but for cube maps and 3D textures, it only provides the
 ability to attach a single face or layer of s uch textures.

 This extension generalizes FBO by creates new entry points to bind an
 entire texture level (FramebufferTextureEXT) or a single layer of a
 texture level (FramebufferTextureLayerEXT) or a single face of a level
 of a cube map texture (FramebufferTextureFace EXT) to an attachment
 point. The existing FBO binding functions, F ramebufferTexture[123]DEXT
 are retained, and are defined in terms of the more general new
 functions.

 The new functions do not have a dimension in the function name or a
 <textarget> parameter, which can be inferred from the provided
 texture.

 When an entire texel level of a cube map, 3D, or array texture is
 attached, that attachment is considered layer ed. The framebuffer is
 considered layered if any attachment is layer ed. When the framebuffer
 is layered, there are three additional comple teness requirements:

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 785

 * all attachments must be layered
 * all color attachments must be from textur es of identical type
 * all attachments must have the same number of layers

 We expect subsequent versions of the FBO spec to relax the requirement
 that all attachments must have the same width and height, and plan to
 relax the similar requirement for layer count at that time.

 When rendering to a layered framebuffer, laye r zero is used unless a
 geometry shader that writes (statically assin gs, to be precise) to
 gl_Layer. When rendering to a non-layered fra mebuffer, the value of
 gl_Layer is ignored and the set of single-ima ge attachments are used.
 When reading from a layered framebuffer (e.g. , ReadPixels), layer zero
 is always used. When clearing a layered fram ebuffer, all layers are
 cleared to the corresponding clear values.

 Several other approaches were considered, inc luding leveraging existing
 FBO attachment functions and requiring the us e of FramebufferTexture3D
 with a <zoffset> of zero to make a framebuffe r attachment "layerable"
 (attaching layer zero means that the attachme nt could be used for either
 layered- or non- layered rendering). Whether rendering was layered or
 not could either be inferred from the active geometry shader, or set as
 a new property of the framebuffer object. Th ere is presently no
 FramebufferParameter API to set a property of a framebuffer, so it would
 have been necessary to create new set/query A PIs if this approach were
 chosen.

 29. How should per-vertex point size work with ge ometry shaders?

 RESOLVED: The value of the existing VERTEX_PR OGRAM_POINT_SIZE enable, to
 control the point size behavior of a vertex s hader, does not affect
 geometry shaders. Specifically, If a geometr y shader is active, the
 point size is taken from the point size outpu t gl_PointSize of the
 vertex shader, regardless of the value of VER TEX_PROGRAM_POINT_SIZE.

 30. Geometry shaders don't provide a QUADS or gen eric POLYGON input
 primitive type. In this extension, what happ ens if an application
 provides QUADS, QUAD_STRIP, or POLYGON primit ives?

 RESOLVED: Not all vendors supporting this ex tension were able to accept
 quads and polygon primitives as input, so suc h functionality was not
 provided in this extension. This extension r equires that primitives
 provided to the GL must match the input primi tive type of the active
 geometry shader (if any). QUADS, QUAD_STRIP, and POLYGON primitives are
 considered not to match any input primitive t ype, so an
 INVALID_OPERATION error will result.

 The NV_geometry_shader4 extension (built on t op of this one) allows
 applications to provide quads or general poly gon primitives to a
 geometry shader with an input primitive type of TRIANGLES. Such
 primitives are decomposed into triangles, and a geometry shader is run
 on each triangle independently.

EXT_geometry_shader4 NVIDIA OpenGL Extension Specifications

 786

 31. Geometry shaders provide a limit on the numbe r of vertices that can be
 emitted. Can this limit be changed at dynami cally?

 RESOLVED: See also issue 17. Not in this ext ension. This functionality
 was not provided because it would be an expen sive operation on some
 implementations of this extension. The NV_ge ometry_shader4 extension
 (layered on top of this one) does allow appli cations to change this
 limit dynamically.

 An application can change the vertex output l imit at any time. To allow
 for the possibility of dynamic changes (as in NV_geometry_shader4) but
 not require it, a limit change is not guarant eed to take effect unless
 the program object is re-linked. However, th ere is no guarantee that
 such limit changes will not take effect immed iately.

 32. See also issue 28. Each vertex emitted by a g eometry shader can specify
 a layer to render to using the output variabl e "gl_Layer". For
 LINE_STRIP and TRIANGLE_STRIP output primitiv e types, which vertex's
 layer is used?

 RESOLVED: The vertex from which the layer is extracted is unfortunately
 undefined. In practice, some implementations of this extension will
 extract the layer number from the first verte x of the output primitive;
 others will extract it from the last (provoki ng) vertex. A future
 geometry shader extension may choose to defin e this behavior one way or
 the other.

 To get portable results, the layer number sho uld be the same for all
 vertices in any single primitive emitted by t he geometry shader. The
 EndPrimitive() built-in function available in a geometry shader starts a
 new primitive, and the layer number emitted c an be safely changed after
 EndPrimitive() is called.

 33. The grammar allows "varying", "varying out", and "varying in" as
 type-qualifiers for geometry shaders. What d oes "varying" without "in"
 or "out" mean for a geometry shader?

 RESOLVED: The "varying" type qualifier in a geometry shader not
 followed by "in" or "out" means the same as " varying out".

 This is consistent with the specification say ing: "In order to seamlessly
 be able to insert or remove a geometry shader from a program object,
 the rules, names and types of the output buil t-in varying variables and
 user-defined varying variables are the same a s for the vertex shader."

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 17 05/22/07 mjk Clarify that "varying " means the same as
 "varying out" in a ge ometry shader.

 16 01/10/07 pbrown Specify that the tota l component limit is
 enforced at LinkProgr am time.

NVIDIA OpenGL Extension Specifications EXT_geometry_shader4

 787

 15 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 14 -- Pre-release revisions .

EXT_gpu_program_parameters NVIDIA OpenGL Extension Specifications

 788

Name

 EXT_gpu_program_parameters

Name Strings

 GL_EXT_gpu_program_parameters

Contributors

 Pat Brown
 Haroon Sheikh

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)
 Geoff Stahl, Apple Computer, Inc. (gstahl 'at' apple.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 9/27/07
 Revision: 6

Number

 320

Dependencies

 ARB_vertex_program or ARB_fragment_program is r equired.

 This specification is written against the spec language from the
 ARB_vertex_program extension.

Overview

 This extension provides a new set of procedures to load multiple
 consecutive program environment parameters more efficiently, via a single
 GL call instead of multiple calls. This will r educe the amount of CPU
 overhead involved in loading parameters.

 With the existing ARB_vertex_program and ARB_fr agment_program APIs,
 program parameters must be loaded one at a time , via separate calls.
 While the NV_vertex_program extension provides a set of similar functions
 that can be used to load program environment pa rameters (which are
 equivalent to "program parameters" in NV_vertex _program), no such function
 exists for program local parameters.

NVIDIA OpenGL Extension Specifications EXT_gpu_program_parameters

 789

New Procedures and Functions

 void ProgramEnvParameters4fvEXT(enum target, ui nt index, sizei count,
 const float *par ams);

 void ProgramLocalParameters4fvEXT(enum target, uint index, sizei count,
 const float *p arams);

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 (modify ARB_vertex_program and ARB_fragment_pro gram, add paragraph after
 introduction of ProgramEnvParameter* calls)

 The command

 void ProgramEnvParameters4fvEXT(enum target, uint index, sizei count,
 const float * params);

 updates the values of the program environment p arameters numbered <index>
 through <index> + <count> - 1 for the given pro gram target <target>.
 <params> points to an array of 4*<count> values , where the first four are
 used to update the program environment paramete r numbered <index> and the
 last four update the program environment parame ter numbered <index> +
 <count> - 1. The error INVALID_VALUE is genera ted if <count> is less than
 zero or if the sum of <index> and <count> is gr eater than the number of
 program environment parameters supported by <ta rget>.

 (modify ARB_vertex_program and ARB_fragment_pro gram, add paragraph after
 introduction of ProgramLocalParameter* calls)

 The command

 void ProgramLocalParameters4fvEXT(enum target , uint index, sizei count,
 const float *params);

 updates the values of the program local paramet ers numbered <index>
 through <index> + <count> - 1 belonging to the program object currently
 bound to <target>. <params> points to an array of 4*<count> values, where
 the first four are used to update the program l ocal parameter numbered
 <index> and the last four update the program lo cal parameter numbered
 <index> + <count> - 1. The error INVALID_VALUE is generated if <count> is
 less than zero or if the sum of <index> and <co unt> is greater than the
 number of program local parameters supported by <target>.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

EXT_gpu_program_parameters NVIDIA OpenGL Extension Specifications

 790

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 Four new GL commands are added. The following commands are sent to the
 server as part of a glXRender request:

 ProgramEnvParameters4fvEXT
 2 16+16*n rendering c ommand length
 2 4281 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 params

 ProgramLocalParameters4fvEXT
 2 16+16*n rendering c ommand length
 2 4282 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 params

Errors

 INVALID_VALUE is generated by ProgramEnvParamet ers4fvEXT or
 ProgramLocalParameters4fvEXT if <count> is less than zero.

 INVALID_VALUE is generated by ProgramEnvParamet ers4fvEXT if <index> plus
 <count> is greater than the number of program e nvironment parameters
 supported by <target>.

 INVALID_VALUE is generated by ProgramLocalParam eters4fvEXT if <index> plus
 <count> is greater than the number of program l ocal parameters supported
 by <target>.

New State

 None.

NVIDIA OpenGL Extension Specifications EXT_gpu_program_parameters

 791

Issues

 (1) Should a set of ProgramEnvParameters*EXT() calls be added, or is using
 NV_vertex_program's ProgramParameters*NV() sufficient?

 RESOLVED: We should add an ARB-style Program EnvParameters*() call for
 naming consistency. Also ProgramParameters*NV () are not available on
 all platforms.

 (2) Should an equivalent set of calls be added to query multiple program
 parameters at once?

 RESOLVED: No.

 (3) Should double-precision versions be support ed?

 RESOLVED: No. Double-precision parameter va lues will be converted to
 single-precision in current driver implementa tions, anyway.

 (4) Why is this spec called "EXT_gpu_program_pa rameters"?

 RESOLVED: The functionality provided by this spec applies to more than
 one program type. The term "GPU" was used in the extension name to
 indicate functionality common to all supporte d program types, which are
 commonly executed on a GPU.

 (5) Is it an error to load multiple parameters with a <count> of zero?

 RESOLVED: No. However, it was illegal in ve rsions of the spec prior to
 9/27/07. The spec was changed to resolve dif ferences between the
 shipping implementations from NVIDIA (which d id enforce the error) and
 Apple (which did not). The new behavior is m ore consistent with the
 standard OpenGL practice of allowing zero to be passed to GLsizei
 parameters, and avoids the need for special-c ase behavior to
 handle/avoid zero counts in both drivers and applications. Since
 loading zero program parameters has no actual effect, the only
 difference between the two behaviors is the u pdate of the GL error
 state.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 6 09/27/07 pbrown Change the spec to in dicate that it's not
 illegal to load zero parameters, just
 pointless.

 5 11/06/06 mjk Indicate shipping

 4 06/28/06 barthold Make clear that this spec modifies both
 ARB_vertex_program an d ARB_fragment_program.

 3 06/27/06 pbrown Fix incorrect error l anguage in checking the
 sum of <index> and <c ount>, added an issue
 about the spec name.

 2 06/02/06 haroon Changed to EXT. Added contributors.

EXT_gpu_program_parameters NVIDIA OpenGL Extension Specifications

 792

 1 04/24/06 pbrown Initial revision.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 793

Name

 EXT_gpu_shader4

Name Strings

 GL_EXT_gpu_shader4

Contact

 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)
 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)

Status

 Multi vendor extension

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 Author revision: 12

Number

 326

Dependencies

 OpenGL 2.0 is required.

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension trivially interacts with ARB_tex ture_rectangle.

 This extension trivially interacts with GL_EXT_ texture_array.

 This extension trivially interacts with GL_EXT_ texture_integer.

 This extension trivially interacts with GL_EXT_ geometry_shader4

 This extension trivially interacts with GL_EXT_ texture_buffer_object.

 NV_primitive_restart trivially affects the defi nition of this extension.

 ARB_color_buffer_float affects the definition o f this extension.
 EXT_draw_instanced affects the definition of th is extension.

Overview

 This extension provides a set of new features t o the OpenGL Shading
 Language and related APIs to support capabiliti es of new hardware. In
 particular, this extension provides the followi ng functionality:

 * New texture lookup functions are provided that allow shaders to

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 794

 access individual texels using integer coo rdinates referring to the
 texel location and level of detail. No fil tering is performed. These
 functions allow applications to use textur es as one-, two-, and
 three-dimensional arrays.

 * New texture lookup functions are provided that allow shaders to query
 the dimensions of a specific level-of-deta il image of a texture
 object.

 * New texture lookup functions variants are provided that allow shaders
 to pass a constant integer vector used to offset the texel locations
 used during the lookup to assist in custom texture filtering
 operations.

 * New texture lookup functions are provided that allow shaders to
 access one- and two-dimensional array text ures. The second, or third,
 coordinate is used to select the layer of the array to access.

 * New "Grad" texture lookup functions are pr ovided that allow shaders
 to explicitely pass in derivative values w hich are used by the GL to
 compute the level-of-detail when performin g a texture lookup.

 * A new texture lookup function is provided to access a buffer texture.

 * The existing absolute LOD texture lookup f unctions are no longer
 restricted to the vertex shader only.

 * The ability to specify and use cubemap tex tures with a
 DEPTH_COMPONENT internal format. This also enables shadow mapping on
 cubemaps. The 'q' coordinate is used as th e reference value for
 comparisons. A set of new texture lookup f unctions is provided to
 lookup into shadow cubemaps.

 * The ability to specify if varying variable s are interpolated in a
 non-perspective correct manner, if they ar e flat shaded or, if
 multi-sampling, if centroid sampling shoul d be performed.

 * Full signed integer and unsigned integer s upport in the OpenGL
 Shading Language:

 - Integers are defined as 32 bit value s using two's complement.

 - Unsigned integers and vectors thereo f are added.

 - New texture lookup functions are pro vided that return integer
 values. These functions are to be us ed in conjunction with new
 texture formats whose components are actual integers, rather
 than integers that encode a floating -point value. To support
 these lookup functions, new integer and unsigned-integer
 sampler types are introduced.

 - Integer bitwise operators are now en abled.

 - Several built-in functions and opera tors now operate on
 integers or vectors of integers.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 795

 - New vertex attribute functions are a dded that load integer
 attribute data and can be referenced in a vertex shader as
 integer data.

 - New uniform loading commands are add ed to load unsigned integer
 data.

 - Varying variables can now be (unsign ed) integers. If declared
 as such, they have to be flat shaded .

 - Fragment shaders can define their ow n output variables, and
 declare them to be of type floating- point, integer or unsigned
 integer. These variables are bound t o a fragment color index
 with the new API command BindFragDat aLocationEXT(), and directed
 to buffers using the existing DrawBu ffer or DrawBuffers API
 commands.

 * Added new built-in functions truncate() an d round() to the shading
 language.

 * A new built-in variable accessible from wi thin vertex shaders that
 holds the index <i> implicitly passed to A rrayElement to specify the
 vertex. This is called the vertex ID.

 * A new built-in variable accessible from wi thin fragment and geometry
 shaders that hold the index of the current ly processed
 primitive. This is called the primitive ID .

 This extension also briefly mentions a new shad er type, called a geometry
 shader. A geometry shader is run after vertices are transformed, but
 before clipping. A geometry shader begins with a single primitive (point,
 line, triangle. It can read the attributes of a ny of the vertices in the
 primitive and use them to generate new primitiv es. A geometry shader has a
 fixed output primitive type (point, line strip, or triangle strip) and
 emits vertices to define a new primitive. Geome try shaders are discussed
 in detail in the GL_EXT_geometry_shader4 specif ication.

New Procedures and Functions

 void VertexAttribI1iEXT(uint index, int x);
 void VertexAttribI2iEXT(uint index, int x, int y);
 void VertexAttribI3iEXT(uint index, int x, int y, int z);
 void VertexAttribI4iEXT(uint index, int x, int y, int z, int w);

 void VertexAttribI1uiEXT(uint index, uint x);
 void VertexAttribI2uiEXT(uint index, uint x, ui nt y);
 void VertexAttribI3uiEXT(uint index, uint x, ui nt y, uint z);
 void VertexAttribI4uiEXT(uint index, uint x, ui nt y, uint z,
 uint w);

 void VertexAttribI1ivEXT(uint index, const int *v);
 void VertexAttribI2ivEXT(uint index, const int *v);
 void VertexAttribI3ivEXT(uint index, const int *v);
 void VertexAttribI4ivEXT(uint index, const int *v);

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 796

 void VertexAttribI1uivEXT(uint index, const uin t *v);
 void VertexAttribI2uivEXT(uint index, const uin t *v);
 void VertexAttribI3uivEXT(uint index, const uin t *v);
 void VertexAttribI4uivEXT(uint index, const uin t *v);

 void VertexAttribI4bvEXT(uint index, const byte *v);
 void VertexAttribI4svEXT(uint index, const shor t *v);
 void VertexAttribI4ubvEXT(uint index, const uby te *v);
 void VertexAttribI4usvEXT(uint index, const ush ort *v);

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 void GetVertexAttribIivEXT(uint index, enum pna me, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pn ame,
 uint *params);

 void Uniform1uiEXT(int location, uint v0);
 void Uniform2uiEXT(int location, uint v0, uint v1);
 void Uniform3uiEXT(int location, uint v0, uint v1, uint v2);
 void Uniform4uiEXT(int location, uint v0, uint v1, uint v2,
 uint v3);

 void Uniform1uivEXT(int location, sizei count, const uint *value);
 void Uniform2uivEXT(int location, sizei count, const uint *value);
 void Uniform3uivEXT(int location, sizei count, const uint *value);
 void Uniform4uivEXT(int location, sizei count, const uint *value);

 void GetUniformuivEXT(uint program, int locatio n, uint *params);

 void BindFragDataLocationEXT(uint program, uint colorNumber,
 const char *name);
 int GetFragDataLocationEXT(uint program, const char *name);

New Tokens

 Accepted by the <pname> parameters of GetVertex Attribdv,
 GetVertexAttribfv, GetVertexAttribiv, GetVertex AttribIuivEXT and
 GetVertexAttribIivEXT:

 VERTEX_ATTRIB_ARRAY_INTEGER_EXT 0x88FD

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 797

 Returned by the <type> parameter of GetActiveUn iform:

 SAMPLER_1D_ARRAY_EXT 0x8DC0
 SAMPLER_2D_ARRAY_EXT 0x8DC1
 SAMPLER_BUFFER_EXT 0x8DC2
 SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
 SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4
 SAMPLER_CUBE_SHADOW_EXT 0x8DC5
 UNSIGNED_INT 0x1405
 UNSIGNED_INT_VEC2_EXT 0x8DC6
 UNSIGNED_INT_VEC3_EXT 0x8DC7
 UNSIGNED_INT_VEC4_EXT 0x8DC8
 INT_SAMPLER_1D_EXT 0x8DC9
 INT_SAMPLER_2D_EXT 0x8DCA
 INT_SAMPLER_3D_EXT 0x8DCB
 INT_SAMPLER_CUBE_EXT 0x8DCC
 INT_SAMPLER_2D_RECT_EXT 0x8DCD
 INT_SAMPLER_1D_ARRAY_EXT 0x8DCE
 INT_SAMPLER_2D_ARRAY_EXT 0x8DCF
 INT_SAMPLER_BUFFER_EXT 0x8DD0
 UNSIGNED_INT_SAMPLER_1D_EXT 0x8DD1
 UNSIGNED_INT_SAMPLER_2D_EXT 0x8DD2
 UNSIGNED_INT_SAMPLER_3D_EXT 0x8DD3
 UNSIGNED_INT_SAMPLER_CUBE_EXT 0x8DD4
 UNSIGNED_INT_SAMPLER_2D_RECT_EXT 0x8DD5
 UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT 0x8DD6
 UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT 0x8DD7
 UNSIGNED_INT_SAMPLER_BUFFER_EXT 0x8DD8

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MIN_PROGRAM_TEXEL_OFFSET_EXT 0x8904
 MAX_PROGRAM_TEXEL_OFFSET_EXT 0x8905

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Modify Section 2.7 "Vertex Specification", p.20

 Insert before last paragraph, p.22:

 The VertexAttrib* commands described so far sho uld not be used to load
 data for vertex attributes declared as signed o r unsigned integers or
 vectors thereof in a vertex shader. If they are used to load signed or
 unsigned integer vertex attributes, the value i n those attributes are
 undefined. Instead use the commands

 void VertexAttribI[1234]{i,ui}EXT(uint index, T values);
 void VertexAttribI[1234]{i,ui}vEXT(uint index , T values);
 void VertexAttribI4{b,s,ub,us}vEXT(uint index , T values);

 to specify fixed-point attributes that are not converted to
 floating-point. These attributes can be accesse d in vertex shaders that
 declare attributes as signed or unsigned intege rs or vectors. The
 VertexAttribI4* commands extend the data passed in to a full signed or
 unsigned integer. If a VertexAttribI* command i s used that does not match

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 798

 the type of the attribute declared in a vertex shader, the values in the
 attributes are undefined. This means that the u nsigned versions of the
 VertexAttribI* commands need to be used to load data for unsigned integer
 vertex attributes or vectors, and the signed ve rsions of the
 VertexAttribI* commands for signed integer vert ex attributes or
 vectors. Note that this also means that the Ver texAttribI* commands should
 not be used to load data for a vertex attribute declared as a float, float
 vector or matrix, otherwise their values are un defined.

 Insert at end of function list, p.24:

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 (modify last paragraph, p.24) The <index> param eter in the
 VertexAttribPointer and VertexAttribIPointerEXT commands identify the
 generic vertex attribute array being described. The error INVALID_VALUE is
 generated if <index> is greater than or equal t o
 MAX_VERTEX_ATTRIBS. Generic attribute arrays wi th integer <type> arguments
 can be handled in one of three ways: converted to float by normalizing to
 [0,1] or [-1,1] as specified in table 2.9, conv erted directly to float, or
 left as integers. Data for an array specified b y VertexAttribPointer will
 be converted to floating-point by normalizing i f the <normalized>
 parameter is TRUE, and converted directly to fl oating-point
 otherwise. Data for an array specified by Verte xAttribIPointerEXT will
 always be left as integer values.

 (modify Table 2.4, p. 25)
 Integer
 Command Sizes Handling Types
 ---------------------- ------- --------- -----------------
 VertexPointer 2,3,4 cast ...
 NormalPointer 3 normalize ...
 ColorPointer 3,4 normalize ...
 SecondaryColorPointer 3 normalize ...
 IndexPointer 1 cast ...
 FogCoordPointer 1 n/a ...
 TexCoordPointer 1,2,3,4 cast ...
 EdgeFlagPointer 1 integer ...
 VertexAttribPointer 1,2,3,4 flag ...
 VertexAttribIPointerEXT 1,2,3,4 integer byte, ubyte,
 short, ushort,
 int, uint

 Table 2.4: Vertex array sizes (values per vert ex) and data types. The
 "integer handling" column indicates how fixed-p oint data types are
 handled: "cast" means that they converted to fl oating-point directly,
 "normalize" means that they are converted to fl oating-point by normalizing
 to [0,1] (for unsigned types) or [-1,1] (for si gned types), "integer"
 means that they remain as integer values, and " flag" means that either
 "cast" or "normalized" applies, depending on th e setting of the
 <normalized> flag in VertexAttribPointer.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 799

 (modify end of pseudo-code, pp. 27-28)

 for (j = 1; j < genericAttributes; j++) {
 if (generic vertex attribute j array enable d) {
 if (generic vertex attribute j array is a pure integer array)
 {
 VertexAttribI[size][type]vEXT(j, generi c vertex attribute j
 array e lement i);
 } else if (generic vertex attribute j arr ay normalization
 flag is set and <type> is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]v(j, generic v erex attribute j
 array ele ment i);
 } else {
 VertexAttrib[size][type]v(j, generic ve rex attribute j
 array elem ent i);
 }
 }
 }

 if (generic vertex attribute 0 array enabled) {
 if (generic vertex attribute 0 array is a p ure integer array) {
 VertexAttribI[size][type]vEXT(0, generic verex attribute 0
 array ele ment i);
 } else if (generic vertex attribute 0 array normalization flag
 is set and <type> is not FLOAT o r DOUBLE) {
 VertexAttrib[size]N[type]v(0, generic vere x attribute 0
 array elemen t i);
 } else {
 VertexAttrib[size][type]v(0, generic vere x attribute 0
 array elemen t i);
 }
 }

 Modify section 2.14.7, "Flatshading", p. 69

 Add a new paragraph at the end of the section o n p. 70 as follows:

 If a vertex or geometry shader is active, the f lat shading control
 described so far applies to the built-in varyin g variables gl_FrontColor,
 gl_BackColor, gl_FrontSecondaryColor and gl_Bac kSecondaryColor. Through
 the OpenGL Shading Language varying qualifier f lat any vertex attribute
 can be flagged to be flat-shaded. See the OpenG L Shading Language
 Specification section 4.3.6 for more informatio n.

 Modify section 2.14.8, "Color and Associated Da ta Clipping", p. 71

 Add to the end of this section:

 For vertex shader varying variables specified t o be interpolated without
 perspective correction (using the noperspective keyword), the value of t
 used to obtain the varying value associated wit h P will be adjusted to
 produce results that vary linearly in screen sp ace.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 800

 Modify section 2.15.3, "Shader Variables", page 75

 Add the following new return types to the descr iption of GetActiveUniform
 on p. 81.

 SAMPLER_1D_ARRAY_EXT,
 SAMPLER_2D_ARRAY_EXT,
 SAMPLER_1D_ARRAY_SHADOW_EXT,
 SAMPLER_2D_ARRAY_SHADOW_EXT,
 SAMPLER_CUBE_SHADOW_EXT,
 SAMPLER_BUFFER_EXT,

 INT_SAMPLER_1D_EXT,
 INT_SAMPLER_2D_EXT,
 INT_SAMPLER_3D_EXT,
 INT_SAMPLER_CUBE_EXT,
 INT_SAMPLER_2D_RECT_EXT,
 INT_SAMPLER_1D_ARRAY_EXT,
 INT_SAMPLER_2D_ARRAY_EXT,
 INT_SAMPLER_BUFFER_EXT,

 UNSIGNED_INT,
 UNSIGNED_INT_VEC2_EXT,
 UNSIGNED_INT_VEC3_EXT,
 UNSIGNED_INT_VEC4_EXT,
 UNSIGNED_INT_SAMPLER_1D_EXT,
 UNSIGNED_INT_SAMPLER_2D_EXT,
 UNSIGNED_INT_SAMPLER_3D_EXT,
 UNSIGNED_INT_SAMPLER_CUBE_EXT,
 UNSIGNED_INT_SAMPLER_2D_RECT_EXT,
 UNSIGNED_INT_SAMPLER_1D_ARRAY_EXT,
 UNSIGNED_INT_SAMPLER_2D_ARRAY_EXT,
 UNSIGNED_INT_SAMPLER_BUFFER_EXT.

 Add the following uniform loading command proto types on p. 81 as follows:

 void Uniform{1234}uiEXT(int location, T value);
 void Uniform{1234}uivEXT(int location, sizei count, T value);

 (add the following paragraph to the description of the above
 commands)

 The Uniform*ui{v} commands will load count sets of one to four unsigned
 integer values into a uniform location defined as a unsigned integer, an
 unsigned integer vector, an array of unsigned i ntegers or an array of
 unsigned integer vectors.

 (change the first sentence of the last paragrap h as follows)

 When loading values for a uniform declared as a Boolean, the Uniform*i{v},
 Uniform*ui{v} and Uniform*f{v} set of commands can be used to load boolean
 values.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 801

 Modify section 2.15.4 Shader execution, p. 84.

 Add a new section "2.15.4.1 Shader Only Texturi ng" before the sub-
 section "Texture Access" on p. 85

 This section describes texture functionality th at is only accessible
 through vertex, geometry or fragment shaders. A lso refer to the OpenGL
 Shading Language Specification, section 8.7 and Section 3.8 of the OpenGL
 2.0 specification.

 Note: For unextended OpenGL 2.0 and the OpenGL Shading Language version
 1.20, all supported texture internal formats st ore unsigned integer values
 but return floating-point results in the range [0, 1] and are considered
 unsigned "normalized" integers. The ARB_textur e_float extension
 introduces floating-point internal format where components are both stored
 and returned as floating-point values, and are not clamped. The
 EXT_texture_integer extension introduces format s that store either signed
 or unsigned integer values.

 This extension defines additional OpenGL Shadin g Language texture lookup
 functions, see section 8.7 of the OpenGL Shadin g Language, that return
 either signed or unsigned integer values if the internal format of the
 texture is signed or unsigned, respectively.

 Texel Fetches

 The OpenGL Shading Language texel fetch functio ns provide the ability to
 extract a single texel from a specified texture image. The integer
 coordinates passed to the texel fetch functions are used directly as the
 texel coordinates (i, j, k) into the texture im age. This in turn means the
 texture image is point-sampled (no filtering is performed).

 The level of detail accessed is computed by add ing the specified
 level-of-detail parameter <lod> to the base lev el of the texture,
 level_base.

 The texel fetch functions can not perform depth comparisons or access cube
 maps. Unlike filtered texel accesses, texel fet ches do not support LOD
 clamping or any texture wrap mode, and require a mipmapped minification
 filter to access any level of detail other than the base level.

 The results of the texel fetch are undefined:

 * if the computed LOD is less than the textu re's base level
 (level_base) or greater than the maximum l evel (level_max),

 * if the computed LOD is not the texture's b ase level and the texture's
 minification filter is NEAREST or LINEAR,

 * if the layer specified for array textures is negative or greater than
 the number of layers in the array texture,

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 802

 * if the texel at (i,j,k) coordinates refer to a border texel outside
 the defined extents of the specified LOD, where

 i < -b_s, j < -b_s, k < -b_s,
 i >= w_s - b_s, j >= h_s - b_s, or k >= d_s - b_s,

 where the size parameters (w_s, h_s, d_s, and b_s) refer to the
 width, height, depth, and border size of t he image, as in equations
 3.15, 3.16, and 3.17, or

 . if the texture being accessed is not compl ete (or cube complete for
 cubemaps).

 Texture Size Query

 The OpenGL Shading Language texture size functi ons provide the ability to
 query the size of a texture image. The LOD valu e <lod> passed in as an
 argument to the texture size functions is added to the level_base of the
 texture to determine a texture image level. Th e dimensions of that image
 level, excluding a possible border, are then re turned. If the computed
 texture image level is outside the range [level _base, level_max], the
 results are undefined. When querying the size o f an array texture, both
 the dimensions and the layer index are returned . Note that buffer textures
 do not support mipmapping, therefore the previo us lod discussion does not
 apply to buffer textures

 Make the section "Texture Access" a subsection of 2.15.4.1

 Modify the first paragraph on p. 86 as follows:

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * The sampler used in a texture lookup funct ion is not one of the
 shadow sampler types, and the texture obje ct's internal format is
 DEPTH COMPONENT, and the TEXTURE COMPARE M ODE is not NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is not DEPTH
 COMPONENT.

 Add a new section "2.15.4.2 Shader Inputs" befo re "Position
 Invariance" on p. 86

 Besides having access to vertex attributes and uniform variables,
 vertex shaders can access the read-only built-i n variables
 gl_VertexID and gl_InstanceID. The gl_VertexID variable holds the
 integer index <i> implicitly passed to ArrayEle ment() to specify

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 803

 the vertex. The variable gl_InstanceID holds th e integer index of
 the current primitive in an instanced draw call . See also section
 7.1 of the OpenGL Shading Language Specificatio n.

 Add a new section "2.15.4.3 Shader Outputs"

 A vertex shader can write to built-in as well a s user-defined varying
 variables. These values are expected to be inte rpolated across the
 primitive it outputs, unless they are specified to be flat shaded. Refer
 to section 2.15.3 and the OpenGL Shading Langua ge specification sections
 4.3.6, 7.1 and 7.6 for more detail.

 The built-in output variables gl_FrontColor, gl _BackColor,
 gl_FrontSecondaryColor, and gl_BackSecondaryCol or hold the front and back
 colors for the primary and secondary colors for the current vertex.

 The built-in output variable gl_TexCoord[] is a n array and holds the set
 of texture coordinates for the current vertex.

 The built-in output variable gl_FogFragCoord is used as the "c" value, as
 described in section 3.10 "Fog" of the OpenGL 2 .0 specification.

 The built-in special variable gl_Position is in tended to hold the
 homogeneous vertex position. Writing gl_Positio n is optional.

 The built-in special variable gl_ClipVertex hol ds the vertex coordinate
 used in the clipping stage, as described in sec tion 2.12 "Clipping" of the
 OpenGL 2.0 specification.

 The built in special variable gl_PointSize, if written, holds the size of
 the point to be rasterized, measured in pixels.

 Number section "Position Invariance", "Validati on" and "Undefined
 Behavior" as sections 2.15.4.4, 2.15.4.5, and 2 .15.4.6 respectively.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.8.1, Texture Image Specificati on, p. 150

 (modify 4th paragraph, p. 151 -- add cubemaps t o the list of texture
 targets that can be used with DEPTH_COMPONENT t extures)

 Textures with a base internal format of DEPTH_C OMPONENT are supported by
 texture image specification commands only if <t arget> is TEXTURE_1D,
 TEXTURE_2D, TEXTURE_CUBE_MAP, TEXTURE_RECTANGLE_ARB, PROXY_TEXTURE_1D,
 PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
 PROXY_TEXTURE_RECTANGLE_ARB. Using this format in conjunction with any
 other target will result in an INVALID_OPERATIO N error.

 Modify Section 3.8.8, Texture Minification:

 (replace the last paragraph, p. 171): Let s(x, y) be the function that
 associates an s texture coordinate with each se t of window coordinates
 (x,y) that lie within a primitive; define t(x,y) and r(x,y) analogously.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 804

 Let

 u(x,y) = w_t * s(x,y)
 v(x,y) = h_t * t(x,y) (3.20a)
 w(x,y) = d_t * r(x,y)

 where w_t, h_t, and d_t are as defined by equat ions 3.15, 3.16, and 3.17
 with w_s, h_s, and d_s equal to the width, heig ht, and depth of the image
 array whose level is level_base. For a one-dime nsional texture, define
 v(x,y) == 0 and w(x,y) == 0; for two-dimensiona l textures, define w(x,y)
 == 0.

 (start a new paragraph with "For a polygon, rho is given at a fragment
 with window coordinates...", and then continue with the original spec
 text.)

 (replace text starting with the last paragraph on p. 172,
 continuing to the end of p. 174)

 The (u,v,w) coordinates are then modified, as f ollows:

 u'(x,y) = u(x,y) + offsetu_shader,
 v'(x,y) = v(x,y) + offsetv_shader,
 w'(x,y) = w(x,y) + offsetw_shader

 where (offsetu_shader, offsetv_shader, offsetw_ shader) is the texel offset
 specified in the OpenGL Shading Language textur e lookup functions that
 support offsets. If the texture function used d oes not support offsets, or
 for fixed-function texture accesses, all three shader offsets are taken to
 be zero.

 The (u',v',w') coordinates are then further mod ified according the texture
 wrap modes, as specified in Table X.19, to gene rate a new set of
 coordinates (u'',v'',w'').

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 805

 TEXTURE_WRAP_S Coordinate Transf ormation
 -------------------------- ----------------- ----------------------
 CLAMP u'' = clamp(u', 0 , w_t-0.5),
 if NEAREST filtering,
 clamp(u', 0 , w_t),
 otherwise
 CLAMP_TO_EDGE u'' = clamp(u', 0 .5, w_t-0.5)
 CLAMP_TO_BORDER u'' = clamp(u', - 0.5, w_t+0.5)
 REPEAT u'' = clamp(fmod(u', w_t), 0.5, w_t-0.5)
 MIRROR_CLAMP_EXT u'' = clamp(fabs(u'), 0.5, w_t-0.5),
 if NEAREST filtering, or
 = clamp(fabs(u'), 0.5, w_t),
 otherwise
 MIRROR_CLAMP_TO_EDGE_EXT u'' = clamp(fabs(u'), 0.5, w_t-0.5)
 MIRROR_CLAMP_TO_BORDER_EXT u'' = clamp(fabs(u'), 0.5, w_t+0.5)
 MIRRORED_REPEAT u'' = w_t -
 clamp(fabs(w_t - fmod(u', 2*w_t)),
 0.5, w _t-0.5)

 Table X.19: Texel coordinate wrap mode application. clamp(a, b,c)
 returns b if a<b, c if a>c, and a otherwise. fmod(a,b) returns a-
 b*floor(a/b), and fabs(a) returns the absolut e value of a. For the v
 and w coordinates, TEXTURE_WRAP_T and h_t, an d TEXTURE_WRAP_R and d_t,
 respectively, are used.

 When lambda indicates minification, the value a ssigned to
 TEXTURE_MIN_FILTER is used to determine how the texture value for a
 fragment is selected.

 When TEXTURE_MIN_FILTER is NEAREST the texel in the image array of level
 level_base that is nearest (in Manhattan distan ce) to (u'',v'',w'') is
 obtained. The coordinate (i,j,k) is then comput ed as (floor(u''),
 floor(v''), floor(w'')).

 For a three-dimensional texture, the texel at l ocation (i,j,k) becomes the
 texture value. For a two-dimensional texture, k is irrelevant, and the
 texel at location (i,j) becomes the texture val ue. For a one-dimensional
 texture, j and k are irrelevant, and the texel at location i becomes the
 texture value.

 If the selected (i,j,k), (i,j), or i location r efers to a border texel
 that satisfies any of the following conditions:

 i < -b_s,
 j < -b_s,
 k < -b_s,
 i >= w_l + b_s,
 j >= h_l + b_s, or
 j >= d_l + b_s,

 then the border values defined by TEXTURE_BORDE R_COLOR are used in place
 of the non-existent texel. If the texture conta ins color components, the
 values of TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match
 the texture's internal format in a manner consi stent with table 3.15. If
 the texture contains depth components, the firs t component of
 TEXTURE_BORDER_COLOR is interpreted as a depth value.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 806

 When TEXTURE_MIN_FILTER is LINEAR, a 2x2x2 cube of texels in the image
 array of level level_base is selected. Let:

 i_0 = floor(u'' - 0.5),
 j_0 = floor(v'' - 0.5),
 k_0 = floor(w'' - 0.5),
 i_1 = i_0 + 1,
 j_1 = j_0 + 1,
 k_1 = k_0 + 1,
 alpha = frac(u'' - 0.5),
 beta = frac(v'' - 0.5), and
 gamma = frac(w'' - 0.5),

 For a three-dimensional texture, the texture va lue tau is found as...

 (replace last paragraph, p.174) For any texel i n the equation above that
 refers to a border texel outside the defined ra nge of the image, the texel
 value is taken from the texture border color as with NEAREST filtering.

 Rename section 3.8.9 "Texture Magnification" to section 3.8.8

 modify the first paragraph of section 3.8.8 "Te xture
 Magnification" as follows:

 When lambda indicates magnification, the value assigned to
 TEXTURE_MAG_FILTER determines how the texture v alue is obtained. There are
 two possible values for TEXTURE_MAG_FILTER: NEA REST and LINEAR. NEAREST
 behaves exactly as NEAREST for TEXTURE_MIN_FILT ER and LINEAR behaves
 exactly as LINEAR for TEXTURE_MIN_FILTER, as de scribed in the previous
 section, including the wrapping calculations. T he level-of-detail
 level_base texture array is always used for mag nification.

 modify the last paragraph of section 3.8.8, p. 175, as follows:

 The rules for NEAREST or LINEAR filtering are t hen applied to the selected
 array. Specifically, the coordinate (u,v,w) is computed as in equation
 3.20a, with w_s, h_s, and d_s equal to the widt h, height, and depth of the
 image array whose level is 'd'.

 Modify the second paragraph on p. 176

 The rules for NEAREST or LINEAR filtering are t hen applied to each of the
 selected arrays, yielding two corresponding tex ture valutes Tau1 and
 Tau2. Specifically, for level d1, the coordinat e (u,v,w) is computed as in
 equation 3.20a, with w_s, h_s, and d_s equal to the width, height, and
 depth of the image array whose level is 'd1'. F or level d2 the coordinate
 (u', v', w') is computed as in equation 3.20a, with w_s, h_s, and d_s
 equal to the width, height, and depth of the im age array whose level is
 'd2'.

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify 2nd paragraph, p. 188, indicating that the Q texture coordinate is
 used for depth comparisons on cubemap textures)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 807

 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 an OpenGL Shading Language lookup function, let R be the reference value
 for depth comparisons provided in the lookup fu nction, also clamped to [0,
 1]. Then the effective texture value L_t, I_t, or A_t is computed as
 follows:

 Modify section 3.11, Fragment Shaders, p. 193

 Modify the third paragraph on p. 194 as follows :

 Additionally, when a vertex shader is active, i t may define one or more
 varying variables (see section 2.15.3 and the O penGL Shading Language
 Specification). These values are, if not flat s haded, interpolated across
 the primitive being rendered. The results of th ese interpolations are
 available when varying variables of the same na me are defined in the
 fragment shader.

 Add the following paragraph to the end of secti on 3.11.1, p. 194

 A fragment shader can also write to varying out variables. Values written
 to these variables are used in the subsequent p er-fragment operations.
 Varying out variables can be used to write floa ting-point, integer or
 unsigned integer values destined for buffers at tached to a framebuffer
 object, or destined for color buffers attached to the default
 framebuffer. The subsection 'Shader Outputs' of the next section describes
 API how to direct these values to buffers.

 Add a new paragraph at the beginning of the sec tion "Texture
 Access", p. 194

 Section 2.15.4.1 describes texture lookup funct ionality accessible to a
 vertex shader. The texel fetch and texture size query functionality
 described there also applies to fragment shader s.

 Modify the second paragraph on p. 195 as follow s:

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 the R value (see section 3.8.14) used to perfor m the lookup. The
 comparison operation is requested in the shader by using any of the shadow
 sampler and in the texture using the TEXTURE CO MPARE MODE parameter. These
 requests must be consistent; the results of a t exture lookup are undefined
 if:

 * The sampler used in a texture lookup funct ion is not one of the
 shadow sampler types, and the texture obje ct's internal format is
 DEPTH COMPONENT, and the TEXTURE COMPARE M ODE is not NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is DEPTH
 COMPONENT, and the TEXTURE COMPARE MODE is NONE.

 * The sampler used in a texture lookup funct ion is one of the shadow
 sampler types, and the texture object's in ternal format is not DEPTH
 COMPONENT.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 808

 Add the following paragraph to the section Shad er Inputs, p. 196

 If a geometry shader is active, the built-in va riable gl_PrimitiveID
 contains the ID value emitted by the geometry s hader for the provoking
 vertex. If no geometry shader is active, gl_Pri mitiveID is filled with the
 number of primitives processed by the rasterize r since the last time Begin
 was called (directly or indirectly via vertex a rray functions). The first
 primitive generated after a Begin is numbered z ero, and the primitive ID
 counter is incremented after every individual p oint, line, or polygon
 primitive is processed. For polygons drawn in point or line mode, the
 primitive ID counter is incremented only once, even though multiple points
 or lines may be drawn. For QUADS and QUAD_STRI P primitives that are
 decomposed into triangles, the primitive ID is incremented after each
 complete quad is processed. For POLYGON primit ives, the primitive ID
 counter is undefined. The primitive ID is unde fined for fragments
 generated by DrawPixels or Bitmap. Restarting a primitive topology using
 the primitive restart index has no effect on th e primitive ID counter.

 Modify the first paragraph of the section Shade r Outputs, p. 196 as
 follows

 The OpenGL Shading Language specification descr ibes the values that may be
 output by a fragment shader. These outputs are split into two
 categories. User-defined varying out variables and built-in variables. The
 built-in variables are gl_FragColor, gl_FragDat a[n], and gl_FragDepth. If
 fragment clamping is enabled, the final fragmen t color values or the final
 fragment data values or the final varying out v ariable values written by a
 fragment shader are clamped to the range [0,1] and then may be converted
 to fixed-point as described in section 2.14.9. Only user-defined varying
 out variables declared as a floating-point type are clamped and may be
 converted. If fragment clamping is disabled, th e final fragment color
 values or the final fragment data values or the final varying output
 variable values are not modified. The final fra gment depth written...

 Modify the second paragraph of the section Shad er Outputs, p. 196
 as follows

 ...A fragment shader may not statically assign values to more than one of
 gl_FragColor, gl_FragData or any user-defined v arying output variable. In
 this case, a compile or link error will result. A shader statically...

 Add the following to the end of the section Sha der Outputs, p. 197

 The values of user-defined varying out variable s are directed to a color
 buffer in a two step process. First the varying out variable is bound to a
 fragment color by using its number. The GL will assign a number to each
 varying out variable, unless overridden by the command
 BindFragDataLocationEXT(). The number of the fr agment color assigned for
 each user-defined varying out variable can be q ueried with
 GetFragDataLocationEXT(). Next, the DrawBuffer or DrawBuffers commands (see
 section 4.2.1) direct each fragment color to a particular buffer.

 The binding of a user-defined varying out varia ble to a fragment color
 number can be specified explicitly. The command

 void BindFragDataLocationEXT(uint program, uint colorNumber,
 const char *na me);

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 809

 specifies that the varying out variable name in program should be bound to
 fragment color colorNumber when the program is next linked. If name was
 bound previously, its assigned binding is repla ced with colorNumber. name
 must be a null terminated string. The error IN VALID_VALUE is generated if
 colorNumber is equal or greater than MAX_DRAW_B UFFERS.
 BindFragDataLocationEXT has no effect until the program is linked. In
 particular, it doesn't modify the bindings of v arying out variables in a
 program that has already been linked. The error INVALID OPERATION is
 generated if name starts with the reserved "gl_ " prefix.

 When a program is linked, any varying out varia bles without a binding
 specified through BindFragDataLocationEXT will automatically be bound to
 fragment colors by the GL. Such bindings can be queried using the command
 GetFragDataLocationEXT. LinkProgram will fail if the assigned binding of a
 varying out variable would cause the GL to refe rence a non-existant
 fragment color number (one greater than or equa l to MAX DRAW_BUFFERS).
 LinkProgram will also fail if more than one var ying out variable is bound
 to the same number. This type of aliasing is no t allowed.

 BindFragDataLocationEXT may be issued before an y shader objects are
 attached to a program object. Hence it is allow ed to bind any name (except
 a name starting with "gl_") to a color number, including a name that is
 never used as a varying out variable in any fra gment shader
 object. Assigned bindings for variables that do not exist are ignored.

 After a program object has been linked successf ully, the bindings of
 varying out variable names to color numbers can be queried. The command

 int GetFragDataLocationEXT(uint program, co nst char *name);

 returns the number of the fragment color that t he varying out variable
 name was bound to when the program object progr am was last linked. name
 must be a null terminated string. If program ha s not been successfully
 linked, the error INVALID OPERATION is generate d. If name is not a varying
 out variable, or if an error occurs, -1 will be returned.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.2.1, Selecting a Buffer for Wr iting (p. 212)

 (modify next-to-last paragraph, p. 213) If a fr agment shader writes to
 gl_FragColor, DrawBuffers specifies a set of dr aw buffers into which the
 single fragment color defined by gl_FragColor i s written. If a fragment
 shader writes to gl_FragData or a user-defined varying out variable,
 DrawBuffers specifies a set of draw buffers int o which each of the
 multiple output colors defined by these variabl es are separately written.
 If a fragment shader writes to neither gl_FragC olor, nor gl FragData, nor
 any user-defined varying out variables, the val ues of the fragment colors
 following shader execution are undefined, and m ay differ for each fragment
 color.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 810

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Change section 5.4 Display Lists, p. 237

 Add the commands VertexAttribIPointerEXT and Bi ndFragDataLocationEXT to
 the list of commands that are not compiled into a display list, but
 executed immediately, under "Program and Shader Objects", p. 241

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify section 6.1.14 "Shader and Program Queri es", p. 256

 Modify 2nd paragraph, p.259:

 Add the following to the list of GetVertexAttri b* commands:

 void GetVertexAttribIivEXT(uint index, enum p name, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pname, uint *params);

 obtain the... <pname> must be one of VERTEX_AT TRIB_ARRAY_ENABLED ,.,
 VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_A RRAY_INTEGER_EXT, or
 CURRENT_VERTEX_ATTRIB. ...

 Split 3rd paragraph, p.259

 ... The size, stride, type, normalized flag, an d unconverted integer flag
 are set by the commands VertexAttribPointer and VertexAttribIPointerEXT.
 The normalized flag is always set to FALSE by b y VertexAttribIPointerEXT.
 The unconverted integer flag is always set to F ALSE by VertexAttribPointer
 and TRUE by VertexAttribIPointerEXT.

 The query CURRENT_VERTEX_ATTRIB returns the cur rent value for the generic
 attribute <index>. GetVertexAttribdv and GetVe rtexAttribfv read and
 return the current attribute values as floating -point values;
 GetVertexAttribiv reads them as floating-point values and converts them
 to integer values; GetVertexAttribIivEXT reads and returns them as
 integers; GetVertexAttribIuivEXT reads and retu rns them as unsigned
 integers. The results of the query are undefin ed if the current attribute
 values are read using one data type but were sp ecified using a different
 one. The error INVALID_OPERATION is generated i f <index> is zero.

 Change the prototypes in the first paragraph on page 260 as
 follows:

 void GetUniformfv(uint program, int location, float *params);
 void GetUniformiv(uint program, int location, int *params);
 void GetUniformuivEXT(uint program, int locat ion, uint *params);

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 811

Interactions with GL_ARB_color_buffer_float

 If the GL_ARB_color_buffer_float extension is n ot supported then any
 reference to fragment clamping in section 3.11. 2 "Shader Execution" needs
 to be deleted.

Interactions with GL_ARB_texture_rectangle

 If the GL_ARB_texture_rectangle extension is no t supported then all
 references to texture lookup functions with 'Re ct' in the name need to be
 deleted.

Interactions with GL_EXT_texture_array

 If the GL_EXT_texture_array extension is not su pported, all references to
 one- and two-dimensional array texture sampler types (e.g.,
 sampler1DArray, sampler2DArray) and the texture lookup functions that use
 them need to be deleted.

Interactions with GL_EXT_geometry_shader4

 If the GL_EXT_geometry_shader4 extension is not supported, all references
 to a geometry shader need to be deleted.

Interactions with GL_NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count). If NV_primitive_restart is no t supported, references to
 that extension in the discussion of the primiti ve ID counter should be
 removed.

 If NV_primitive_restart is supported, index val ues causing a primitive
 restart are not considered as specifying an End command, followed by
 another Begin. Primitive restart is therefore n ot guaranteed to
 immediately update material properties when a v ertex shader is active. The
 spec language on p.64 of the OpenGL 2.0 specifi cation says "changes are
 not guaranteed to update material parameters, d efined in table 2.11, until
 the following End command."

Interactions with EXT_texture_integer

 If the EXT_texture_integer spec is not supporte d, the discussion about
 this spec in section 2.15.4.1 needs to be remov ed. All texture lookup
 functions that return integers or unsigned inte gers, as discussed in
 section 8.7 of the OpenGL Shading Language spec ification, also need to be
 removed.

Interactions with EXT_texture_buffer_object

 If EXT_texture_buffer_object is not supported, references to buffer
 textures, as well as the texelFetchBuffer and t exelSizeBuffer lookup
 functions and samplerBuffer types, need to be r emoved.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 812

Interactions with EXT_draw_instanced

 If EXT_draw_instanced is not supported, the val ue of gl_InstanceID
 is always zero.

Errors

 The error INVALID_VALUE is generated by BindFra gDataLocationEXT() if
 colorNumber is equal or greater than MAX_DRAW_B UFFERS.

 The error INVALID OPERATION is generated by Bin dFragDataLocationEXT() if
 name starts with the reserved "gl_" prefix.

 The error INVALID_OPERATOIN is generated by Bin dFragDataLocationEXT() or
 GetFragDataLocationEXT if program is not the na me of a program object.

 The error INVALID_OPERATION is generated by Get FragDataLocationEXT() if
 program has not been successfully linked.

New State

 (add to table 6.7, p. 268)
 In itial
 Get Value Type Get Command Va lue Description Sec. Attribute
 --------- ---- --------------- -- ----- -------------------- ---- ---------
 VERTEX_ATTRIB_ARRAY 16+xB GetVertexAttrib FA LSE vertex attrib array 2.8 vertex-array
 INTEGER_EXT has unconverted ints

New Implementation Dependent State

 Minimum
 Get Value Type Get Com mand Value Description Sec. Att rib
 -------------------------------- ---- ------- -------- ------- --------------------- ------ --- ---
 MIN_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv -8 minimum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv +7 maximum texel offset 2.x.4.4 -
 allowed in lookup

Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_gpu_shader4 : <behavior>

 where <behavior> is as specified in section 3.3 .

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_gpu_shader4 1

 Add to section 3.6 "Keywords"

 Add the following keywords:

 noperspective, flat, centroid

 Remove the unsigned keyword from the list of ke ywords reserved for future

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 813

 use, and add it to the list of keywords.

 The following new vector types are added:

 uvec2, uvec3, uvec4

 The following new sampler types are added:

 sampler1DArray, sampler2DArray, sampler1DArra yShadow,
 sampler2DArrayShadow, samplerCubeShadow

 isampler1D, isampler2D, isampler3D, isamplerC ube, isampler2DRect,
 isampler1DArray, isampler2DArray

 usampler1D, usampler2D, usampler3D, usamplerC ube, usampler2DRect,
 usampler1DArray, usampler2DArray

 samplerBuffer, isamplerBuffer, usamplerBuffer

 Add to section 4.1 "Basic Types"

 Break the table in this section up in several t ables. The first table
 4.1.1 is named "scalar, vector and matrix data types". It includes the
 first row through the 'mat4" row.

 Add the following to the first section of this table:

 unsigned int An unsigned integer
 uvec2 A two-component unsign ed integer vector
 uvec3 A three-component unsi gned integer vector
 uvec4 A four-component unsig ned integer vector

 Break out the sampler types in a separate table , and name that table 4.1.2
 "default sampler types". Add the following samp ler types to this new
 table:

 sampler1DArray handle for accessing a 1D array texture
 sampler2DArray handle for accessing a 2D array texture
 sampler1DArrayShadow handle for accessing a 1D array depth texture
 with comparison
 sampler2DArrayShadow handle for accessing a 2D array depth texture
 with comparison
 samplerBuffer handle for accessing a buffer texture

 Add a table 4.1.3 called "integer sampler types ":

 isampler1D handle for accessing a n integer 1D texture
 isampler2D handle for accessing a n integer 2D texture
 isampler3D handle for accessing a n integer 3D texture
 isamplerCube handle for accessing a n integer cube map texture
 isampler2DRect handle for accessing a n integer rectangle texture
 isampler1DArray handle for accessing a n integer 1D array texture
 isampler2DArray handle for accessing a n integer 2D array texture
 isamplerBuffer handle for accessing a n integer buffer texture

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 814

 Add a table 4.1.4 called "unsigned integer samp ler types":

 usampler1D handle for accessing a n unsigned integer
 1D texture
 usampler2D handle for accessing a n unsigned integer
 2D texture
 usampler3D handle for accessing a n unsigned integer
 3D texture
 usamplerCube handle for accessing a n unsigned integer
 cube map texture
 usampler2DRect handle for accessing a n unsigned integer
 rectangle texture
 usampler1DArray handle for accessing a n unsigned integer 1D
 array texture
 usampler2DArray handle for accessing a n unsigned integer 2D
 array texture
 usamplerBuffer handle for accessing a n unsigned integer
 buffer texture

 Change section 4.1.3 "Integers"

 Remove the first two paragraphs and replace wit h the following:

 Signed, as well as unsigned integers, are fully supported. Integers hold
 whole numbers. Integers have at least 32 bits o f precision, including a
 sign bit. Signed integers are stored using a tw o's complement
 representation.

 Integers are declared and optionally initialize d with integer expressions
 as in the following example:

 int i, j = 42;
 unsigned int k = 3u;

 Literal integer constants can be expressed in d ecimal (base 10), octal
 (base 8), or hexadecimal (base 16) as follows.

 integer-constant:
 decimal-constant integer-suffix_opt
 octal-constant integer-suffix_opt
 hexadecimal-constant integer-suffix _opt

 integer-suffix: one of
 u U

 Change section 4.3 "Type Qualifiers"

 Change the "varying" and "out" qualifier as fol lows:

 varying - linkage between a vertex shader and f ragment shader, or between
 a fragment shader and the back end of the OpenG L pipeline.

 out - for function parameters passed back out o f a function, but not
 initialized for use when passed in. Also for ou tput varying variables
 (fragment only).

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 815

 In the qualifier table, add the following sub-q ualifiers under the varying
 qualifier:

 flat varying
 noperspective varying
 centroid varying

 Change section 4.3.4 "Attribute"

 Change the sentence:

 The attribute qualifier can be used only with t he data types float, vec2,
 vec3, vec4, mat2, mat3, and mat4.

 To:

 The attribute qualifier can be used only with t he data types int, ivec2,
 ivec3, ivec4, unsigned int, uvec2, uvec3, uvec4 , float, vec2, vec3, vec4,
 mat2, mat3, and mat4.

 Change the fourth paragraph to:

 It is expected that graphics hardware will have a small number of fixed
 locations for passing vertex attributes. Theref ore, the OpenGL Shading
 language defines each non-matrix attribute vari able as having space for up
 to four integer or floating-point values (i.e., a vec4, ivec4 or
 uvec4). There is an implementation dependent li mit on the number of
 attribute variables that can be used and if thi s is exceeded it will cause
 a link error. (Declared attribute variables tha t are not used do not count
 against this limit.) A scalar attribute counts the same amount against
 this limit as a vector of size four, so applica tions may want to consider
 packing groups of four unrelated scalar attribu tes together into a vector
 to better utilize the capabilities of the under lying hardware. A mat4
 attribute will...

 Change section 4.3.6 "Varying"

 Change the first paragraph to:

 Varying variables provide the interface between the vertex shader, the
 fragment shader, and the fixed functionality be tween the vertex and
 fragment shader, as well as the interface from the fragment shader to the
 back-end of the OpenGL pipeline.

 The vertex shader will compute values per verte x (such as color, texture
 coordinates, etc.) and write them to variables declared with the varying
 qualifier. A vertex shader may also read varyin g variables, getting back
 the same values it has written. Reading a varyi ng variable in a vertex
 shader returns undefined values if it is read b efore being written.

 The fragment shader will compute values per fra gment and write them to
 variables declared with the varying out qualifi er. A fragment shader may
 also read varying variables, getting back the s ame result it has
 written. Reading a varying variable in a fragme nt shader returns undefined
 values if it is read before being written.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 816

 Varying variables may be written more than once . If so, the last value
 assigned is the one used.

 Change the second paragraph to:

 Varying variables that are set per vertex are i nterpolated by default in a
 perspective-correct manner over the primitive b eing rendered, unless the
 varying is further qualified with noperspective . Interpolation in a
 perspective correct manner is specified in equa tions 3.6 and 3.8 in the
 OpenGL 2.0 specification. When noperspective is specified, interpolation
 must be linear in screen space, as described in equation 3.7 and the
 approximation that follows equation 3.8.

 If single-sampling, the value is interpolated t o the pixel's center, and
 the centroid qualifier, if present, is ignored. If multi-sampling, and the
 varying is not qualified with centroid, then th e value must be
 interpolated to the pixel's center, or anywhere within the pixel, or to
 one of the pixel's samples. If multi-sampling a nd the varying is qualified
 with centroid, then the value must be interpola ted to a point that lies in
 both the pixel and in the primitive being rende red, or to one of the
 pixel's samples that falls within the primitive .

 [NOTE: Language for centroid sampling taken fro m the GLSL 1.20.4
 specification]

 Varying variables, set per vertex, can be compu ted on a per-primitive
 basis (flat shading), or interpolated over a li ne or polygon primitive
 (smooth shading). By default, a varying variabl e is smooth shaded, unless
 the varying is further qualified with flat. Whe n smooth shading, the
 varying is interpolated over the primitive. Whe n flat shading, the varying
 is constant over the primitive, and is taken fr om the single provoking
 vertex of the primitive, as described in Sectio n 2.14.7 of the OpenGL 2.0
 specification.

 Change the fourth paragraph to:

 The type and any qualifications (flat, noperspe ctive, centroid) of varying
 variables with the same name declared in both t he vertex and fragment
 shaders must match, otherwise the link command will fail. Note that
 built-in varying variables, which have names st arting with "gl_", can not
 be further qualified with flat, noperspective o r centroid. The flat
 keyword cannot be used together with either the noperspective or centroid
 keywords to further qualify a single varying va riable, otherwise a compile
 error will occur. When using the keywords centr oid, flat or noperspective,
 it must immediately precede the varying keyword . When using both centroid
 and noperspective keywords, either one can be s pecified first. Only those
 varying variables used (i.e. read) in the frag ment shader must be written
 to by the vertex shader; declaring superfluous varying variables in the
 vertex shader is permissible. Varying out varia bles, set per fragment, can
 not be further qualified with flat, noperspecti ve or centroid.

 Fragment shaders output values to the back-end of the OpenGL pipeline
 using either user-defined varying out variables or built-in variables, as
 described in section 7.2, unless the discard ke yword is executed. If the
 back-end of the OpenGL pipeline consumes a user -defined varying out
 variable and an execution of a fragment shader does not write a value to
 that variable, then the value consumed is undef ined. If the back-end of

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 817

 the OpenGL pipeline consumes a varying out vari able and a fragment shader
 either writes values into less components of th e variable, or if the
 variable is declared to have less components, t han needed, the values of
 the missing component(s) are undefined. The Ope nGL specification, section
 3.x.x, describes API to route varying output va riables to color buffers.

 Add the following examples:

 noperspective varying float temperature;
 flat varying vec3 myColor;
 centroid varying vec2 myTexCoord;
 centroid noperspective varying vec2 myTexCoor d;
 varying out ivec3 foo;

 Change the third paragraph on p. 25 as follows:

 The "varying" qualifier can be used only with t he data types float, vec2,
 vec3, vec4, mat2, mat3, and mat4, int, ivec2, i vec3, ivec4, unsigned int,
 uvec2, uvec3, uvec4 or arrays of these. Struct ures cannot be varying. If
 the varying is declared as one of the integer o r unsigned integer data
 type variants, then it has to also be qualified as being flat shaded,
 otherwise a compile error will occur.

 The "varying out" qualifier can be used only wi th the data types float,
 vec2, vec3, vec4, int, ivec2, ivec3, ivec4, uns igned int, uvec2, uvec3 or
 uvec4. Structures or arrays cannot be declared as varying out.

 Change section 5.1 "Operators"

 Remove the "reserved" qualifications from the f ollowing operator
 precedence table entries:

 Precedence Operator class
 ---------- ------------------------- ----------
 3 (tilde is reserved)
 4 (modulus reserved)
 6 bit-wise shift (reserved)
 9 bit-wise and (reserved)
 10 bit-wise exclusive or (re served)
 11 bit-wise inclusive or (re served)
 16 (modulus, shift, and bit- wise are reserved)

 Change section 5.8 "Assignments"

 Change the first bullet from:

 * The arithmetic assignments add into (+=)..

 To:

 * The arithmetic assignments add into (+=), subtract from (-
 =), multiply into (*=), and divide into (/ =) as well as the
 assignments modulus into (%=), left shift by (<<=), right
 shift by (>>=), and into (&=), inclusive o r into (|=),
 exclusive or into (^=). The expression

 Delete the last bullet in this paragraph.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 818

 Remove the second bullet in the section startin g with: The assignments
 modulus into..

 Change section 5.9 "Expressions"

 Change the bullet: The operator modulus (%) is reserved for future
 use to:

 * The arithmetic operator % that operates on si gned or unsigned integer
 typed expressions (including vectors). The tw o operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. I f the second operand is
 zero, results are undefined. If one operand i s scalar and the other is a
 vector, the scalar is applied component-wise to the vector, resulting in
 the same type as the vector. If both operands are non-negative, then the
 remainder is non-negative. Results are undefi ned if one, or both,
 operands are negative.

 Change the last bullet: "Operators and (&), or (|), exclusive or (^), not
 (~), right-shift (>>), left shift (<<). These o perators are reserved for
 future use." To the following bullets:

 * The one's complement operator ~. The operand must be of type signed or
 unsigned integer (including vectors), and the result is the one's
 complement of its operand. If the operand is a vector, the operator is
 applied component-wise to the vector. If the operand is unsigned, the
 result is computed by subtracting the value f rom the largest unsigned
 integer value. If the operand is signed, the result is computed by
 converting the operand to an unsigned integer , applying ~, and
 converting back to a signed integer.

 * The shift operators << and >>. For both opera tors, the operands must be
 of type signed or unsigned integer (including vectors). If the first
 operand is a scalar, the second operand has t o be a scalar as well. The
 result is undefined if the right operand is n egative, or greater than or
 equal to the number of bits in the left expre ssion's type. The value of
 E1 << E2 is E1 (interpreted as a bit pattern) left-shifted by E2
 bits. The value of E1 >> E2 is E1 right-shift ed by E2 bit positions. If
 E1 is a signed integer, the right-shift will extend the sign bit. If E1
 is an unsigned integer, the right-shift will zero-extend.

 * The bitwise AND operator &. The operands must be of type signed or
 unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise AND function of the operands.

 * The bitwise exclusive OR operator ^. The oper ands must be of type signed
 or unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise exclusive OR function of the operands .

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 819

 * The bitwise inclusive OR operator |. The oper ands must be of type signed
 or unsigned integer (including vectors). The two operands must be of the
 same type, or one can be a signed or unsigned integer scalar and the
 other a signed or unsigned integer vector. If one operand is a scalar
 and the other a vector, the scalar is applied component-wise to the
 vector, resulting in the same type as the vec tor. The result is the
 bitwise inclusive OR function of the operands .

 Change Section 7.1 "Vertex Shader Special Varia bles"

 Add the following definition to the list of bui lt-in variable definitions:

 int gl_VertexID // read-only
 int gl_InstanceID // read-only

 Add the following paragraph at the end of the s ection:

 The variable gl_VertexID is available as a read -only variable from within
 vertex shaders and holds the integer index <i> implicitly passed to
 ArrayElement() to specify the vertex. The value of gl_VertexID is defined
 if and only if:

 * the vertex comes from a vertex array comman d that specifies a complete
 primitive (e.g. DrawArrays, DrawElements),

 * all enabled vertex arrays have non-zero buf fer object bindings, and

 * the vertex does not come from a display lis t, even if the display list
 was compiled using DrawArrays / DrawElement s with data sourced from
 buffer objects.

 The variable gl_InstanceID is availale as a rea d-only variable from within
 vertex shaders and holds holds the integer inde x of the current primitive
 in an instanced draw call (DrawArraysInstancedE XT,
 DrawElementsInstancedEXT). If the current primi tive does not come from an
 instanced draw call, the value of gl_InstanceID is zero.

 Change Section 7.2 "Fragment Shader Special Var iables"

 Change the 8th and 9th paragraphs on p. 43 as f ollows:

 If a shader statically assigns a value to gl_Fr agColor, it may not assign
 a value to any element of gl_FragData nor to an y user-defined varying
 output variable (section 4.3.6). If a shader st atically writes a value to
 any element of gl_FragData, it may not assign a value to gl_FragColor nor
 to any user-defined varying output variable. Th at is, a shader may assign
 values to either gl_FragColor, gl_FragData, or any user-defined varying
 output variable, but not to a combination of th e three options.

 If a shader executes the discard keyword, the f ragment is discarded, and
 the values of gl_FragDepth, gl_FragColor, gl_Fr agData and any user-defined
 varying output variables become irrelevant.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 820

 Add the following paragraph to the top of p. 44 :

 The variable gl_PrimitiveID is available as a r ead-only variable from
 within fragment shaders and holds the id of the currently processed
 primitive. Section 3.11, subsection "Shader Inp uts" of the OpenGL 2.0
 specification describes what value it holds bas ed on the primitive type.

 Add the following prototype to the list of buil t-in variables accessible
 from a fragment shader:

 int gl_PrimitiveID;

 Change Chapter 8, sixth paragraph on page 50:

 Change the sentence:

 When the built-in functions are specified below , where the input arguments
 (and corresponding output)can be float, vec2, v ec3, or vec4, genType is
 used as the argument.

 To:

 When the built-in functions are specified below , where the input arguments
 (and corresponding output) can be float, vec2, vec3, or vec4, genType is
 used as the argument. Where the input arguments (and corresponding output)
 can be int, ivec2, ivec3 or ivec4, genIType is used as the argument. Where
 the input arguments (and corresponding output) can be unsigned int, uvec2,
 uvec3, or uvec4, genUType is used as the argume nt.

 Add to section 8.3 "Common functions"

 Add integer versions of the abs, sign, min, max and clamp functions, as
 follows:

 Syntax:

 genIType abs(genIType x)

 genIType sign(genIType x)

 genIType min(genIType x, genIType y)
 genIType min(genIType x, int y)
 genUType min(genUType x, genUType y)
 genUType min(genUType x, unsigned int y)

 genIType max(genIType x, genIType y)
 genIType max(genIType x, int y)
 genUType max(genUType x, genUType y)
 genUType max(genUType x, unsigned int y)

 genIType clamp(genIType x, genIType minval, g enIType maxval)
 genIType clamp(genIType x, int minval, int ma xval)
 genUType clamp(genUType x, genUType minval, g enUType maxval)
 genUType clamp(genUType x, unsigned int minva l,
 unsigned int maxval)

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 821

 Add the following new functions:

 Syntax:

 genType truncate(genType x)

 Description:

 Returns a value equal to the integer closest to x whose absolute value
 is not larger than the absolute value of x.

 Syntax:

 genType round(genType x)

 Description:

 Returns a value equal to the closest integer to x. If the fractional
 portion of the operand is 0.5, the nearest ev en integer is returned. For
 example, round (1.0) returns 1.0. round(-1.5) returns -2.0. round(3.5)
 and round (4.5) both return 4.0.

 Add to section 8.6 "Vector Relational Functions "

 Change the sentence:

 Below, "bvec" is a placeholder for one of bvec2 , bvec3, or bvec4, "ivec"
 is a placeholder for one of ivec2, ivec3, or iv ec4, and "vec" is a
 placeholder for vec2, vec3, or vec4.

 To:

 Below, "bvec" is a placeholder for one of bvec2 , bvec3, or bvec4, "ivec"
 is a placeholder for one of ivec2, ivec3, or iv ec4, "uvec" is a
 placeholder for one of uvec2, uvec3 or uvec4 an d "vec" is a placeholder
 for vec2, vec3, or vec4.

 Add uvec versions of all but the any, all and n ot functions to the table
 in this section, as follows:

 bvec lessThan(uvec x, uvec y)
 bvec lessThanEqual(uvec x, uvec y)

 bvec greaterThan(uvec x, uvec y)
 bvec greaterThanEqual(uvec x, uvec y)

 bvec equal(uvec x, uvec y)
 bvec notEqual(uvec x, uvec y)

 Add to section 8.7 "Texture Lookup Functions"

 Remove the first sentence in the last paragraph :

 "The built-ins suffixed with "Lod" are allowed only in a vertex shader.".

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 822

 Add to this section:

 Texture data can be stored by the GL as floatin g point, unsigned
 normalized integer, unsigned integer or signed integer data. This is
 determined by the type of the internal format o f the texture. Texture
 lookups on unsigned normalized integer and floa ting point data return
 floating point values in the range [0, 1]. See also section 2.15.4.1 of
 the OpenGL specification.

 Texture lookup functions are provided that can return their result as
 floating point, unsigned integer or signed inte ger, depending on the
 sampler type passed to the lookup function. Car e must be taken to use the
 right sampler type for texture access. Table 8. xxx lists the supported
 combinations of sampler types and texture inter nal formats.

 texture
 internal default (float) integer uns igned integer
 format sampler sampler sam pler
 float vec4 n/a n/ a
 normalized vec4 n/a n/ a
 signed int n/a ivec4 n/ a
 unsigned int n/a n/a uv ec4

 Table 8.xxx Valid combinations of the type of the internal for mat of a
 texture and the type of the sampler used to acc ess the texture. Each cell
 in the table indicates the type of the return v alue of a texture
 lookup. N/a means this combination is not suppo rted. A texture lookup
 using a n/a combination will return undefined v alues. The exceptions to
 this table are the "textureSize" lookup functio ns, which will return an
 integer or integer vector, regardless of the sa mpler type.

 If a texture with a signed integer internal for mat is accessed, one of the
 signed integer sampler types must be used. If a texture with an unsigned
 integer internal format is accessed, one of the unsigned integer sampler
 types must be used. Otherwise, one of the defau lt (float) sampler types
 must be used. If the types of a sampler and the corresponding texture
 internal format do not match, the result of a t exture lookup is undefined.

 If an integer sampler type is used, the result of a texture lookup is an
 ivec4. If an unsigned integer sampler type is u sed, the result of a
 texture lookup is a uvec4. If a default sampler type is used, the result
 of a texture lookup is a vec4, where each compo nent is in the range [0,
 1].

 Integer and unsigned integer functions of all t he texture lookup functions
 described in this section are also provided, ex cept for the "shadow"
 versions, using function overloading. Their pro totypes, however, are not
 listed separately. These overloaded functions u se the integer or
 unsigned-integer versions of the sampler types and will return an ivec4 or
 an uvec4 respectively, except for the "textureS ize" functions, which will
 always return an integer, or integer vector. Re fer also to table 8.xxxx
 for valid combinations of texture internal form ats and sampler types. For
 example, for the texture1D function, the comple te set of prototypes is:

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 823

 vec4 texture1D(sampler1D sampler, float coor d
 [, float bias])
 ivec4 texture1D(isampler1D sampler, float co ord
 [, float bias])
 uvec4 texture1D(usampler1D sampler, float co ord
 [, float bias])

 Add the following new texture lookup functions:

 Syntax:

 vec4 texelFetch1D(sampler1D sampler, int coor d, int lod)
 vec4 texelFetch2D(sampler2D sampler, ivec2 co ord, int lod)
 vec4 texelFetch3D(sampler3D sampler, ivec3 co ord, int lod)
 vec4 texelFetch2DRect(sampler2DRect sampler, ivec2 coord)
 vec4 texelFetch1DArray(sampler1DArray sampler , ivec2 coord, int lod)
 vec4 texelFetch2DArray(sampler2DArray sampler , ivec3 coord, int lod)

 Description:

 Use integer texture coordinate <coord> to looku p a single texel from the
 level-of-detail <lod> on the texture bound to < sampler> as described in
 section 2.15.4.1 of the OpenGL specification "T exel Fetches". For the
 "array" versions, the layer of the texture arra y to access is either
 coord.t or coord.p, depending on the use of the 1D or 2D texel fetch
 lookup, respectively. Note that texelFetch2DRec t does not take a
 level-of-detail input.

 Syntax:

 vec4 texelFetchBuffer(samplerBuffer sampler, int coord)

 Description:

 Use integer texture coordinate <coord> to looku p into the buffer texture
 bound to <sampler>.

 Syntax:

 int textureSizeBuffer(samplerBuffer sampler)
 int textureSize1D(sampler1D sampler, int lod)
 ivec2 textureSize2D(sampler2D sampler, int lo d)
 ivec3 textureSize3D(sampler3D sampler, int lo d)
 ivec2 textureSizeCube(samplerCube sampler, in t lod)
 ivec2 textureSize2DRect(sampler2DRect sampler , int lod)
 ivec2 textureSize1DArray(sampler1DArray sampl er, int lod)
 ivec3 textureSize2DArray(sampler2DArray sampl er, int lod)

 Description:

 Returns the dimensions, width, height, depth, a nd number of layers, of
 level <lod> for the texture bound to <sampler>, as described in section
 2.15.4.1 of the OpenGL specification section "T exture Size Query". For the
 textureSize1DArray function, the first (".x") c omponent of the returned
 vector is filled with the width of the texture image and the second
 component with the number of layers in the text ure array. For the
 textureSize2DArray function, the first two comp onents (".x" and ".y") of

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 824

 the returned vector are filled with the width a nd height of the texture
 image respectively. The third component (".z") is filled with the number
 of layers in the texture array.

 Syntax:

 vec4 texture1DArray(sampler1DArray sampler, v ec2 coord
 [, float bias])
 vec4 texture1DArrayLod(sampler1DArray sampler , vec2 coord,
 float lod)

 Description:

 Use the first element (coord.s) of texture coor dinate coord to do a
 texture lookup in the layer indicated by the se cond coordinate coord.t of
 the 1D texture array currently bound to sampler . The layer to access is
 computed by layer = max (0, min(d - 1, floor (c oord.t + 0.5)) where 'd' is
 the depth of the texture array.

 Syntax:

 vec4 texture2DArray(sampler2DArray sampler, v ec3 coord
 [, float bias])
 vec4 texture2DArrayLod(sampler2DArray sampler , vec3 coord,
 float lod)
 Description:

 Use the first two elements (coord.s, coord.t) o f texture coordinate coord
 to do a texture lookup in the layer indicated b y the third coordinate
 coord.p of the 2D texture array currently bound to sampler. The layer to
 access is computed by layer = max (0, min(d - 1 , floor (coord.p + 0.5))
 where 'd' is the depth of the texture array.

 Syntax:

 vec4 shadow1DArray(sampler1DArrayShadow sampl er, vec3 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow sa mpler,
 vec3 coord, float lod)
 Description:

 Use texture coordinate coord.s to do a depth co mparison lookup on an array
 layer of the depth texture bound to sampler, as described in section
 3.8.14 of version 2.0 of the OpenGL specificati on. The layer to access is
 indicated by the second coordinate coord.t and is computed by layer = max
 (0, min(d - 1, floor (coord.t + 0.5)) where 'd' is the depth of the
 texture array. The third component of coord (co ord.p) is used as the R
 value. The texture bound to sampler must be a d epth texture, or results
 are undefined.

 Syntax:

 vec4 shadow2DArray(sampler2DArrayShadow sampl er, vec4 coord)

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 825

 Description:

 Use texture coordinate (coord.s, coord.t) to do a depth comparison lookup
 on an array layer of the depth texture bound to sampler, as described in
 section 3.8.14 of version 2.0 of the OpenGL spe cification. The layer to
 access is indicated by the third coordinate coo rd.p and is computed by
 layer = max (0, min(d - 1, floor (coord.p + 0.5)) where 'd' is the depth
 of the texture array. The fourth component of c oord (coord.q) is used as
 the R value. The texture bound to sampler must be a depth texture, or
 results are undefined.

 Syntax:

 vec4 shadowCube(samplerCubeShadow sampler, vec4 coord)

 Description:

 Use texture coordinate (coord.s, coord.t, coord .p) to do a depth
 comparison lookup on the depth cubemap bound to sampler, as described in
 section 3.8.14. The direction of the vector (co ord.s, coord.t, coord.p) is
 used to select which face to do a two-dimension al texture lookup in, as
 described in section 3.8.6 of the OpenGL 2.0 sp ecification. The fourth
 component of coord (coord.q) is used as the R v alue. The texture bound to
 sampler must be a depth cubemap, otherwise resu lts are undefined.

 Syntax:

 vec4 texture1DGrad(sampler1D sampler, float c oord,
 float ddx, float ddy);
 vec4 texture1DProjGrad(sampler1D sampler, vec 2 coord,
 float ddx, float ddy);
 vec4 texture1DProjGrad(sampler1D sampler, vec 4 coord,
 float ddx, float ddy);
 vec4 texture1DArrayGrad(sampler1DArray sample r, vec2 coord,
 float ddx, float ddy) ;

 vec4 texture2DGrad(sampler2D sampler, vec2 co ord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DProjGrad(sampler2D sampler, vec 3 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DProjGrad(sampler2D sampler, vec 4 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DArrayGrad(sampler2DArray sample r, vec3 coord,
 vec2 ddx, vec2 ddy);

 vec4 texture3DGrad(sampler3D sampler, vec3 co ord,
 vec3 ddx, vec3 ddy);
 vec4 texture3DProjGrad(sampler3D sampler, vec 4 coord,
 vec3 ddx, vec3 ddy);

 vec4 textureCubeGrad(samplerCube sampler, vec 3 coord,
 vec3 ddx, vec3 ddy);

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 826

 vec4 shadow1DGrad(sampler1DShadow sampler, ve c3 coord,
 float ddx, float ddy);
 vec4 shadow1DProjGrad(sampler1DShadow sampler , vec4 coord,
 float ddx, float ddy);
 vec4 shadow1DArrayGrad(sampler1DArrayShadow s ampler, vec3 coord,
 float ddx, float ddy);

 vec4 shadow2DGrad(sampler2DShadow sampler, ve c3 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DProjGrad(sampler2DShadow sampler , vec4 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DArrayGrad(sampler2DArrayShadow s ampler, vec4 coord,
 vec2 ddx, vec2 ddy);

 vec4 texture2DRectGrad(sampler2DRect sampler, vec2 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DRectProjGrad(sampler2DRect samp ler, vec3 coord,
 vec2 ddx, vec2 ddy);
 vec4 texture2DRectProjGrad(sampler2DRect samp ler, vec4 coord,
 vec2 ddx, vec2 ddy);

 vec4 shadow2DRectGrad(sampler2DRectShadow sam pler, vec3 coord,
 vec2 ddx, vec2 ddy);
 vec4 shadow2DRectProjGrad(sampler2DRectShadow sampler, vec4 coord,
 vec2 ddx, vec2 ddy) ;

 vec4 shadowCubeGrad(samplerCubeShadow sampler , vec4 coord,
 vec3 ddx, vec3 ddy);

 Description:

 The "Grad" functions map the partial derivative s ddx and ddy to ds/dx,
 dt/dx, dr/dx, and ds/dy, dt/dy, dr/dy respectiv ely and use texture
 coordinate "coord" to do a texture lookup as de scribed for their non
 "Grad" counterparts. The derivatives ddx and dd y are used as the explicit
 derivate of "coord" with respect to window x an d window y respectively and
 are used to compute lambda_base(x,y) as in equa tion 3.18 in the OpenGL 2.0
 specification. For the "Proj" versions, it is a ssumed that the partial
 derivatives ddx and ddy are already projected. I.e. the GL assumes that
 ddx and ddy represent d(s/q)/dx, d(t/q)/dx, d(r /q)/dx and d(s/q)/dy,
 d(t/q)/dy, d(r/q)/dy respectively. For the "Cub e" versions, the partial
 derivatives ddx and ddy are assumed to be in th e coordinate system used
 before texture coordinates are projected onto t he appropriate cube
 face. The partial derivatives of the post-proje ction texture coordinates,
 which are used for level-of-detail and anisotro pic filtering
 calculations, are derived from coord, ddx and d dy in an
 implementation-dependent manner.

 NOTE: Except for the "array" and shadowCubeGrad () functions, these
 functions are taken from the ARB_shader_texture _lod spec and are
 functionally equivalent.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 827

 Syntax:

 vec4 texture1DOffset(sampler1D sampler, float coord,
 int offset [,float bias])
 vec4 texture1DProjOffset(sampler1D sampler, v ec2 coord,
 int offset [,float b ias])
 vec4 texture1DProjOffset(sampler1D sampler, v ec4 coord,
 int offset [,float b ias])
 vec4 texture1DLodOffset(sampler1D sampler, fl oat coord,
 float lod, int offset)
 vec4 texture1DProjLodOffset(sampler1D sampler , vec2 coord,
 float lod, int of fset)
 vec4 texture1DProjLodOffset(sampler1D sampler , vec4 coord,
 float lod, int of fset)

 vec4 texture2DOffset(sampler2D sampler, vec2 coord,
 ivec2 offset [,float bia s])
 vec4 texture2DProjOffset(sampler2D sampler, v ec3 coord,
 ivec2 offset [,float bias])
 vec4 texture2DProjOffset(sampler2D sampler, v ec4 coord,
 ivec2 offset [,float bias])
 vec4 texture2DLodOffset(sampler2D sampler, ve c2 coord,
 float lod, ivec2 offs et)
 vec4 texture2DProjLodOffset(sampler2D sampler , vec3 coord,
 float lod, ivec2 offset)
 vec4 texture2DProjLodOffset(sampler2D sampler , vec4 coord,
 float lod, ivec2 offset)

 vec4 texture3DOffset(sampler3D sampler, vec3 coord,
 ivec3 offset [,float bia s])
 vec4 texture3DProjOffset(sampler3D sampler, v ec4 coord,
 ivec3 offset [,float bias])
 vec4 texture3DLodOffset(sampler3D sampler, ve c3 coord,
 float lod, ivec3 offs et)
 vec4 texture3DProjLodOffset(sampler3D sampler , vec4 coord,
 float lod, ivec3 offset)

 vec4 shadow1DOffset(sampler1DShadow sampler, vec3 coord,
 int offset [,float bias])
 vec4 shadow2DOffset(sampler2DShadow sampler, vec3 coord,
 ivec2 offset [,float bias])
 vec4 shadow1DProjOffset(sampler1DShadow sampl er, vec4 coord,
 int offset [,float bi as])
 vec4 shadow2DProjOffset(sampler2DShadow sampl er, vec4 coord,
 ivec2 offset [,float bias])
 vec4 shadow1DLodOffset(sampler1DShadow sample r, vec3 coord,
 float lod, int offset)
 vec4 shadow2DLodOffset(sampler2DShadow sample r, vec3 coord,
 float lod, ivec2 offse t)
 vec4 shadow1DProjLodOffset(sampler1DShadow sa mpler, vec4 coord,
 float lod, int off set)
 vec4 shadow2DProjLodOffset(sampler2DShadow sa mpler, vec4 coord,
 float lod, ivec2 o ffset)

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 828

 vec4 texture2DRectOffset(sampler2DRect sample r, vec2 coord,
 ivec2 offset)
 vec4 texture2DRectProjOffset(sampler2DRect sa mpler, vec3 coord,
 ivec2 offset)
 vec4 texture2DRectProjOffset(sampler2DRect sa mpler, vec4 coord,
 ivec2 offset)
 vec4 shadow2DRectOffset(sampler2DRectShadow s ampler, vec3 coord,
 ivec2 offset)
 vec4 shadow2DRectProjOffset(sampler2DRectShad ow sampler, vec4 coord,
 ivec2 offset)

 vec4 texelFetch1DOffset(sampler1D sampler, in t coord, int lod,
 int offset)
 vec4 texelFetch2DOffset(sampler2D sampler, iv ec2 coord, int lod,
 ivec2 offset)
 vec4 texelFetch3DOffset(sampler3D sampler, iv ec3 coord, int lod,
 ivec3 offset)
 vec4 texelFetch2DRectOffset(sampler2DRect sam pler, ivec2 coord,
 ivec2 offset)
 vec4 texelFetch1DArrayOffset(sampler1DArray s ampler, ivec2 coord,
 int lod, int off set)
 vec4 texelFetch2DArrayOffset(sampler2DArray s ampler, ivec3 coord,
 int lod, ivec2 o ffset)

 vec4 texture1DArrayOffset(sampler1DArray samp ler, vec2 coord,
 int offset [, float bias])
 vec4 texture1DArrayLodOffset(sampler1DArray s ampler, vec2 coord,
 float lod, int o ffset)

 vec4 texture2DArrayOffset(sampler2DArray samp ler, vec3 coord,
 ivec2 offset [, flo at bias])
 vec4 texture2DArrayLodOffset(sampler2DArray s ampler, vec3 coord,
 float lod, ivec2 offset)

 vec4 shadow1DArrayOffset(sampler1DArrayShadow sampler, vec3 coord,
 int offset, [float b ias])
 vec4 shadow1DArrayLodOffset(sampler1DArraySha dow sampler, vec3 coord,
 float lod, int of fset)

 vec4 shadow2DArrayOffset(sampler2DArrayShadow sampler,
 vec4 coord, ivec2 of fset)

 vec4 texture1DGradOffset(sampler1D sampler, f loat coord,
 float ddx, float ddy , int offset);
 vec4 texture1DProjGradOffset(sampler1D sample r, vec2 coord,
 float ddx, float ddy, int offset);
 vec4 texture1DProjGradOffset(sampler1D sample r, vec4 coord,
 float ddx, float ddy, int offset);
 vec4 texture1DArrayGradOffset(sampler1DArray sampler, vec2 coord,
 float ddx, floa t ddy, int offset);

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 829

 vec4 texture2DGradOffset(sampler2D sampler, v ec2 coord,
 vec2 ddx, vec2 ddy, ivec2 offset);
 vec4 texture2DProjGradOffset(sampler2D sample r, vec3 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DProjGradOffset(sampler2D sample r, vec4 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DArrayGradOffset(sampler2DArray sampler, vec3 coord,
 vec2 ddx, vec2 ddy, ivec2 offset);

 vec4 texture3DGradOffset(sampler3D sampler, v ec3 coord,
 vec3 ddx, vec3 ddy, ivec3 offset);
 vec4 texture3DProjGradOffset(sampler3D sample r, vec4 coord,
 vec3 ddx, vec3 d dy, ivec3 offset);

 vec4 shadow1DGradOffset(sampler1DShadow sampl er, vec3 coord,
 float ddx, float ddy, int offset);
 vec4 shadow1DProjGradOffset(sampler1DShadow s ampler,
 vec4 coord, float ddx, float ddy,
 int offset);
 vec4 shadow1DArrayGradOffset(sampler1DArraySh adow sampler,
 vec3 coord, floa t ddx, float ddy,
 int offset);

 vec4 shadow2DGradOffset(sampler2DShadow sampl er, vec3 coord,
 vec2 ddx, vec2 ddy, i vec2 offset);
 vec4 shadow2DProjGradOffset(sampler2DShadow s ampler, vec4 coord,
 vec2 ddx, vec2 dd y, ivec2 offset);
 vec4 shadow2DArrayGradOffset(sampler2DArraySh adow sampler,
 vec4 coord, vec2 ddx, vec2 ddy,
 ivec2 offset);

 vec4 texture2DRectGradOffset(sampler2DRect sa mpler, vec2 coord,
 vec2 ddx, vec2 d dy, ivec2 offset);
 vec4 texture2DRectProjGradOffset(sampler2DRec t sampler, vec3 coord,
 vec2 ddx, ve c2 ddy, ivec2 offset);
 vec4 texture2DRectProjGradOffset(sampler2DRec t sampler, vec4 coord,
 vec2 ddx, ve c2 ddy, ivec2 offset);

 vec4 shadow2DRectGradOffset(sampler2DRectShad ow sampler,
 vec3 coord, vec2 ddx, vec2 ddy,
 ivec2 offset);
 vec4 shadow2DRectProjGradOffset(sampler2DRect Shadow sampler,
 vec4 coord, v ec2 ddx, vec2 ddy,
 ivec2 offset) ;

 Description:

 The "offset" version of each function provides an extra parameter <offset>
 which is added to the (u,v,w) texel coordinates before looking up each
 texel. The offset value must be a constant expr ession. A limited range
 of offset values are supported; the minimum and maximum offset values are
 implementation-dependent and given by MIN_PROGR AM_TEXEL_OFFSET_EXT and
 MAX_PROGRAM_TEXEL_OFFSET_EXT, respectively. Not e that <offset> does not
 apply to the layer coordinate for texture array s. This is explained in
 detail in section 3.8.7 of the OpenGL Specifica tion. Note that texel
 offsets are also not supported for cubemaps or buffer textures.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 830

 Add to section 9 "Grammar"

 type_qualifer:
 CONST
 ATTRIBUTE // Vertex only
 varying-modifier_opt VARYING
 UNIFORM

 varying-modifier:
 FLAT
 CENTROID
 NOPERSPECTIVE

 type_specifier:
 VOID
 FLOAT
 INT
 UNSIGNED_INT
 BOOL

Issues

 1. Should we support shorts in GLSL?

 DISCUSSION:

 RESOLUTION: UNRESOLVED

 2. Do bitwise shifts, AND, exclusive OR and inc lusive OR support all
 combinations of scalars and vectors for each operand?

 DISCUSSION: It seems sense to support scalar O P scalar, vector OP scalar
 and vector OP vector. But what about scalar OP vector? Should the scalar
 be promoted to a vector first?

 RESOLUTION: RESOLVED. Yes, this should work es sentially as the '+'
 operator. The scalar is applied to each compon ent of the vector.

 3. Which built-in functions should also operate on integers?

 DISCUSSION: There are several that don't make sense to define to operate
 on integers at all, but the following can be d ebated: pow, sqrt, dot (and
 the functions that use dot), cross.

 RESOLUTION: RESOLVED. Integer versions of the abs, sign, min, max and
 clamp functions are defined. Note that the mod ulus operator % has been
 defined for integer operands.

 4. Do we need to support integer matrices?

 DISCUSSION:

 RESOLUTION: RESOLVED No, not at the moment.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 831

 5. Which texture array lookup functions do we ne ed to support?

 DISCUSSION: We don't want to support lookup fu nctions that need more than
 four components passed as parameters. Componen ts can be used for texture
 coordinates, layer selection, 'R' depth compar e and the 'q' coordinate
 for projection. However, texture projection mi ght be relatively easy to
 support through code-generation, thus we might be able to support
 functions that need five components, as long a s one of them is 'q' for
 projective texturing. Specifically, should we support:

 vec4 texture2DArrayProjLod(sampler2DArray sa mpler, vec4 coord,
 float lod)
 vec4 shadow1DArray(sampler1DArrayShadow samp ler, vec3 coord,
 [float bias])
 vec4 shadow1DArrayProj(sampler1DArrayShadow sampler, vec4 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow s ampler, vec3 coord,
 float lod)
 vec4 shadow1DArrayProjLod(sampler1DArrayShad ow sampler,
 vec4 coord, float lod)
 vec4 shadow2DArray(sampler2DArrayShadow samp ler, vec4 coord)
 vec4 shadow2DArrayProj(sampler2DArrayShadow sampler, vec4 coord,
 float refValue)

 RESOLUTION: RESOLVED, We'll support all but t he "Proj" versions. The
 assembly spec (NV_gpu_program4) doesn't suppo rt the equivalent
 functionality, either.

 6. How do we handle conversions between integer and unsigned
 integers?

 DISCUSSION: Do we allow automatic type conver sions between signed and
 unsigned integers?

 RESOLUTION: RESOLVED. We will not add this un til GLSL version 1.20 has
 been defined, and the implicit conversion rul es have been established
 there. If we do this, we would likely only su pport implicit conversion
 from int to unsigned int, just like C does.

 7. Should varying modifiers (flat, noperspectiv e) apply to built-in
 varying variables also?

 DISCUSSION: There is API to control flat vs s mooth shading for colors
 through glShadeModel(). There is also API to hint if colors should be
 interpolated perspective correct, or not, thr ough glHint(). These API
 commands apply to the built-in color varying variables (gl_FrontColor
 etc). If the varying modifiers in a shader al so apply to the color
 built-ins, which has precedence?

 RESOLUTION: RESOLVED. It is simplest and clea nest to only allow the
 varying modifiers to apply to user-defined va rying variables. The
 behavior of the built-in color varying variab les can still be controlled
 through the API.

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 832

 8. How should perspective-incorrect interpolati on (linear in screen space)
 and clipping interact?

 RESOLVED: Primitives with attributes specifi ed to be perspective-
 incorrect should be clipped so that the verti ces introduced by clipping
 should have attribute values consistent with the interpolation mode. We
 do not want to have large color shifts introd uced by clipping a
 perspective-incorrect attribute. For example , a primitive that
 approaches, but doesn't cross, a frustum clip plane should look pretty
 much identical to a similar primitive that ju st barely crosses the clip
 plane.

 Clipping perspective-incorrect interpolants t hat cross the W==0 plane is
 very challenging. The attribute clipping equ ation provided in the spec
 effectively projects all the original vertice s to screen space while
 ignoring the X and Y frustum clip plane. As W approaches zero, the
 projected X/Y window coordinates become extre mely large. When clipping
 an edge with one vertex inside the frustum an d the other out near
 infinity (after projection, due to W approach ing zero), the interpolated
 attribute for the entire visible portion of t he edge should almost
 exactly match the attribute value of the visi ble vertex.

 If an outlying vertex approaches and then goe s past W==0, it can be said
 to go "to infinity and beyond" in screen spac e. The correct answer for
 screen-linear interpolation is no longer obvi ous, at least to the author
 of this specification. Rather than trying to figure out what the
 "right" answer is or if one even exists, the results of clipping such
 edges is specified as undefined.

 9. Do we need to support a non-MRT fragment sha der writing to (unsigned)
 integer outputs?

 DISCUSSION: Fragment shaders with only one fr agment output are
 considered non-MRT shaders. This means that t he output of the shader
 gets smeared across all color buffers attache d to the
 framebuffer. Fragment shaders with multiple f ragment outputs are MRT
 shaders. Each output is directed to a color b uffer using the DrawBuffers
 API (for gl_FragData) and a combination of th e BindFragDataLocationEXT
 and DrawBuffers API (for varying out variable s). Before this extension,
 a non-MRT shader would write to gl_Color only . A shader writing to
 gl_FragData[] is a MRT shader. With the addi tion of varying out
 variables in this extension, any shader writi ng to a variable out
 variable is a MRT shader. It is not possible to construct a non-MRT
 shader writing to varying out variables. Vary ing out variables can be
 declared to be of type integer or unsigned in teger. In order to support
 a non-MRT shader that can write to (unsigned) integer outputs, we could
 define two new built-in variables:

 ivec4 gl_FragColorInt;
 uvec4 gl_FragColorUInt;

 Or we could add a special rule stating that i f the program object writes
 to exactly one varying out variable, it is co nsidered to be non-MRT.

 RESOLUTION: NO. We don't care enough to suppo rt this.

NVIDIA OpenGL Extension Specifications EXT_gpu_shader4

 833

 10. Is section 2.14.8, "Color and Associated Dat a Clipping" in the core
 specification still correct?

 DISCUSSION: This section is in need of some u pdating, now that varying
 variables can be interpolated without perspec tive correction. Some (not
 so precise) language has been added in the sp ec body, suggesting that
 the interpolation needs to be performed in su ch a way as to produce
 results that vary linearly in screen space. H owever, we could define the
 exact interpolation method required to achiev e this. A suggested updated
 paragraph follows, but we'll leave updating s ection 2.14.8 to a future
 edit of the core specification, not this exte nsion.

 Replace Section 2.14.8, and rename it to "Ver tex Attribute Clipping"

 After lighting, clamping or masking and possi ble flatshading, vertex
 attributes, including colors, texture and fog coordinates, shader
 varying variables, and point sizes computed o n a per vertex basis, are
 clipped. Those attributes associated with a v ertex that lies within the
 clip volume are unaffected by clipping. If a primitive is clipped,
 however, the attributes assigned to vertices produced by clipping are
 produced by interpolating attributes along th e clipped edge.

 Let the attributes assigned to the two vertic es P_1 and P_2 of an
 unclipped edge be a_1 and a_2. The value of t (section 2.12) for a
 clipped point P is used to obtain the attribu te associated with P as

 a = t * a_1 + (1-t) * a_2

 unless the attribute is specified to be inter polated without perspective
 correction in a shader (using the noperspecti ve keyword). In that case,
 the attribute associated with P is

 a = t' * a_1 + (1-t') * a_2

 where

 t' = (t * w_1) / (t * w_1 + (1-t) * w_2)

 and w_1 and w_2 are the w clip coordinates of P_1 and P_2,
 respectively. If w_1 or w_2 is either zero or negative, the value of the
 associated attribute is undefined.

 For a color index color, multiplying a color by a scalar means
 multiplying the index by the scalar. For a ve ctor attribute, it means
 multiplying each vector component by the scal ar. Polygon clipping may
 create a clipped vertex along an edge of the clip volume's
 boundary. This situation is handled by noting that polygon clipping
 proceeds by clipping against one plane of the clip volume's boundary at
 a time. Attribute clipping is done in the sam e way, so that clipped
 points always occur at the intersection of po lygon edges (possibly
 already clipped) with the clip volume's bound ary.

 11. When and where in the texture filtering proce ss are texel offsets
 applied?

 DISCUSSION: Texel offsets are applied to the (u,v,w) coordinates of the
 base level of the texture if the texture filt er mode does not indicate

EXT_gpu_shader4 NVIDIA OpenGL Extension Specifications

 834

 mipmapping. Otherwise, texel offsets are appl ied to the (u,v,w)
 coordinates of the mipmap level 'd', as found by equation 3.27 or to
 mipmap levels 'd1' and 'd2' as found by equat ion 3.28 in the OpenGL 2.0
 specification. In other words, texel offsets are applied to the
 (u,v,w) coordinate of whatever mipmap level i s accessed.

 12. Why is writing to the built-in output variabl e "gl_Position" in a vertex
 shader now optional?

 DISCUSSION: Before this specification, writin g to gl_Position in a
 vertex shader was mandatory. The GL pipeline required a vertex position
 to be written in order to produce well-define d output. This is still the
 case if the GL pipeline indeed needs a vertex position. However, with
 fourth-generation programmable hardware there are now cases where the GL
 pipeline no longer requires a vertex position in order to produce
 well-defined results. If a geometry shader is present, the vertex shader
 does not need to write to gl_Position anymore . Instead, the geometry
 shader can compute a vertex position and writ e to its gl_Position
 output. In case of transform-feedback, where the output of a vertex or
 geometry shader is streamed to one or more bu ffer objects, perfectly
 valid results can be obtained without either the vertex shader nor
 geometry shader writing to gl_Position. The t ransform-feedback
 specification adds a new enable to discard pr imitives right before
 rasterization, making it potentially unnecess ary to write to
 gl_Position.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 12 02/04/08 pbrown Fix errors in texture wrap mode handling.
 Added a missing clamp to avoid sampling border
 in REPEAT mode. Fixe d incorrectly specified
 weights for LINEAR fi ltering.

 11 05/08/07 pbrown Add VertexAttribIPoin terEXT to the list of
 commands that can't g o in display lists.

 10 01/23/07 pbrown Fix prototypes for a variety of functions
 that were specified w ith an incorrect sampler
 type.

 9 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 8 -- Pre-release revisions .

NVIDIA OpenGL Extension Specifications EXT_multi_draw_arrays

 835

Name

 EXT_multi_draw_arrays

Name Strings

 GL_EXT_multi_draw_arrays

Version

 $Date: 1998/04/03 04:35:50 $ $Revision: 1.1 $

Number

 148

Dependencies

 OpenGL 1.1 is required. The language is written against the OpenGL 1.2
 specification.

Overview

 These functions behave identically to the stand ard OpenGL 1.1 functions
 glDrawArrays() and glDrawElements() except they handle multiple lists of
 vertices in one call. Their main purpose is to allow one function call
 to render more than one primitive such as trian gle strip, triangle fan,
 etc.

New Procedures and Functions

 void glMultiDrawArraysEXT(GLenum mode,
 GLint *first,
 GLsizei *count,
 GLsizei primcount)
 Parameters

 mode Specifies what kind of prim itives to
 render. Symbolic constants GL_POINTS,
 GL_LINE_STRIP, GL_LINE_LOOP , GL_LINES,
 GL_TRIANGLE_STRIP, GL_TRIAN GLE_FAN,
 GL_TRIANGLES, GL_QUAD_STRIP , GL_QUADS,
 and GL_POLYGON are accepted .

 first Points to an array of start ing indices in
 the enabled arrays.

 count Points to an array of the n umber of indices
 to be rendered.

 primcount Specifies the size of first and count

EXT_multi_draw_arrays NVIDIA OpenGL Extension Specifications

 836

 void glMultiDrawElementsEXT(GLenum mode,
 GLsizei *count,
 GLenum type,
 const GLvoid **ind ices,
 GLsizei primcount)

 Parameters

 mode Specifies what kind of prim itives to render.
 Symbolic constants GL_POINT S, GL_LINE_STRIP,
 GL_LINE_LOOP, GL_LINES, GL_ TRIANGLE_STRIP,
 GL_TRIANGLE_FAN, GL_TRIANGL ES, GL_QUAD_STRIP,
 GL_QUADS, and GL_POLYGON ar e accepted.

 count Points to and array of the element counts

 type Specifies the type of the v alues in indices.
 Must be one of GL_UNSIGNE D_BYTE,
 GL_UNSIGNED_SHORT, or GL_UN SIGNED_INT.

 indices Specifies a pointer to the location where
 the indices are stored.

 primcount Specifies the size of the c ount array

New Tokens

 None

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 Section 2.8 Vertex Arrays:

 The command

 void glMultiDrawArraysEXT(GLenum mode,
 GLint* first,
 GLsizei *count,
 GLsizei primcoun t)

 Behaves identically to DrawArrays except that a list of arrays is
 specified instead. The number of lists is speci fied in the primcount
 parameter. It has the same effect as:

 for(i=0; i<primcount; i++) {
 if (*(count+i)>0) DrawArrays(mode, *(fir st+i), *(count+i));
 }

NVIDIA OpenGL Extension Specifications EXT_multi_draw_arrays

 837

 The command

 void glMultiDrawElementsEXT(GLenum mode,
 GLsizei *count ,
 GLenum type,
 const GLvoid * *indices,
 GLsizei primco unt)

 Behaves identically to DrawElements except that a list of arrays is
 specified instead. The number of lists is speci fied in the primcount
 parameter. It has the same effect as:

 for(i=0; i<primcount; i++) {
 if (*(count+i)>0) DrawElements(mode, *(count+i), type,
 *(indice s+i));
 }

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None.

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations and

 None.

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None.

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None.

Additions to the GLX Specification

 None.

GLX Protocol

 None.

Errors

 GL_INVALID_ENUM is generated if <mode> is not a n accepted value.

 GL_VALUE is generated if <primcount> is negativ e.

 GL_INVALID_OPERATION is generated if glMultiDra wArraysEXT or
 glMultiDrawElementsEXT is executed between the execution of glBegin
 and the corresponding glEnd.

New State

 None.

EXT_packed_float NVIDIA OpenGL Extension Specifications

 838

Name

 EXT_packed_float

Name Strings

 GL_EXT_packed_float
 WGL_EXT_pixel_format_packed_float
 GLX_EXT_fbconfig_packed_float

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: November 6, 2006
 Revision: 0.4

Number

 328

Dependencies

 OpenGL 1.1 required

 ARB_color_buffer_float affects this extension.

 EXT_texture_shared_exponent trivially affects t his extension.

 EXT_framebuffer_object affects this extension.

 WGL_ARB_pixel_format is required for use with W GL.

 WGL_ARB_pbuffer affects WGL pbuffer support for this extension.

 GLX 1.3 is required for use with GLX.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension adds a new 3-component floating- point texture format
 that fits within a single 32-bit word. This fo rmat stores 5 bits
 of biased exponent per component in the same ma nner as 16-bit
 floating-point formats, but rather than 10 mant issa bits, the red,
 green, and blue components have 6, 6, and 5 bit s respectively.
 Each mantissa is assumed to have an implied lea ding one except in the
 denorm exponent case. There is no sign bit so only non-negative
 values can be represented. Positive infinity, positive denorms,

NVIDIA OpenGL Extension Specifications EXT_packed_float

 839

 and positive NaN values are representable. The value of the fourth
 component returned by a texture fetch is always 1.0.

 This extension also provides support for render ing into an unsigned
 floating-point rendering format with the assump tion that the texture
 format described above could also be advertised as an unsigned
 floating-point format for rendering.

 The extension also provides a pixel external fo rmat for specifying
 packed float values directly.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D,
 TexImage2D, TexImage3D, CopyTexImage1D, CopyTex Image2D, and
 RenderbufferStorageEXT:

 R11F_G11F_B10F_EXT 0x8C3A

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, GetTexImage, TexImage3D , TexSubImage1D,
 TexSubImage2D, TexSubImage3D, GetHistogram, Get Minmax,
 ConvolutionFilter1D, ConvolutionFilter2D, Convo lutionFilter3D,
 GetConvolutionFilter, SeparableFilter2D, GetSep arableFilter,
 ColorTable, ColorSubTable, and GetColorTable:

 UNSIGNED_INT_10F_11F_11F_REV_EXT 0x8C3B

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv, and
 GetDoublev:

 RGBA_SIGNED_COMPONENTS_EXT 0x8C3C

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_TYPE_RGBA_UNSIGNED_FLOAT_EXT 0x20A8

 Accepted as values of the <render_type> argumen ts in the
 glXCreateNewContext and glXCreateContext functi ons

 GLX_RGBA_UNSIGNED_FLOAT_TYPE_EXT 0x20B1

 Returned by glXGetFBConfigAttrib (when <attribu te> is set to
 GLX_RENDER_TYPE) and accepted by the <attrib_li st> parameter of
 glXChooseFBConfig (following the GLX_RENDER_TYP E token):

 GLX_RGBA_UNSIGNED_FLOAT_BIT_EXT 0x00000008

EXT_packed_float NVIDIA OpenGL Extension Specifications

 840

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 -- Add two new sections after Section 2.1.2, (page 6):

 2.1.A Unsigned 11-Bit Floating-Point Numbers

 An unsigned 11-bit floating-point number has no sign bit, a 5-bit
 exponent (E), and a 6-bit mantissa (M). The va lue of an unsigned
 11-bit floating-point number (represented as an 11-bit unsigned
 integer N) is determined by the following:

 0.0, if E == 0 and M = = 0,
 2^-14 * (M / 64), if E == 0 and M ! = 0,
 2^(E-15) * (1 + M/64), if 0 < E < 31,
 INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0,

 where

 E = floor(N / 64), and
 M = N mod 64.

 Implementations are also allowed to use any of the following
 alternative encodings:

 0.0, if E == 0 and M ! = 0
 2^(E-15) * (1 + M/64) if E == 31 and M == 0
 2^(E-15) * (1 + M/64) if E == 31 and M != 0

 When a floating-point value is converted to an unsigned 11-bit
 floating-point representation, finite values ar e rounded to the closet
 representable finite value. While less accurat e, implementations
 are allowed to always round in the direction of zero. This means
 negative values are converted to zero. Likewis e, finite positive
 values greater than 65024 (the maximum finite r epresentable unsigned
 11-bit floating-point value) are converted to 6 5024. Additionally:
 negative infinity is converted to zero; positiv e infinity is converted
 to positive infinity; and both positive and neg ative NaN are converted
 to positive NaN.

 Any representable unsigned 11-bit floating-poin t value is legal
 as input to a GL command that accepts 11-bit fl oating-point data.
 The result of providing a value that is not a f loating-point number
 (such as infinity or NaN) to such a command is unspecified, but must
 not lead to GL interruption or termination. Pr oviding a denormalized
 number or negative zero to GL must yield predic table results.

NVIDIA OpenGL Extension Specifications EXT_packed_float

 841

 2.1.B Unsigned 10-Bit Floating-Point Numbers

 An unsigned 10-bit floating-point number has no sign bit, a 5-bit
 exponent (E), and a 5-bit mantissa (M). The va lue of an unsigned
 10-bit floating-point number (represented as an 10-bit unsigned
 integer N) is determined by the following:

 0.0, if E == 0 and M = = 0,
 2^-14 * (M / 32), if E == 0 and M ! = 0,
 2^(E-15) * (1 + M/32), if 0 < E < 31,
 INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0,

 where

 E = floor(N / 32), and
 M = N mod 32.

 When a floating-point value is converted to an unsigned 10-bit
 floating-point representation, finite values ar e rounded to the closet
 representable finite value. While less accurat e, implementations
 are allowed to always round in the direction of zero. This means
 negative values are converted to zero. Likewis e, finite positive
 values greater than 64512 (the maximum finite r epresentable unsigned
 10-bit floating-point value) are converted to 6 4512. Additionally:
 negative infinity is converted to zero; positiv e infinity is converted
 to positive infinity; and both positive and neg ative NaN are converted
 to positive NaN.

 Any representable unsigned 10-bit floating-poin t value is legal
 as input to a GL command that accepts 10-bit fl oating-point data.
 The result of providing a value that is not a f loating-point number
 (such as infinity or NaN) to such a command is unspecified, but must
 not lead to GL interruption or termination. Pr oviding a denormalized
 number or negative zero to GL must yield predic table results.

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 -- Section 3.6.4, Rasterization of Pixel Rectangle s

 Add a new row to Table 3.5 (page 128):

 type Parameter Correspon ding Special
 Token Name GL Data T ype Interpretation
 -------------------------------- --------- ---- --------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint yes

 Add a new row to table 3.8: Packed pixel format s (page 132):

 type Parameter GL Data Number of Matching
 Token Name Type Components Pixel Formats
 -------------------------------- ------- ---------- -------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint 3 RGB

EXT_packed_float NVIDIA OpenGL Extension Specifications

 842

 Add a new entry to table 3.11: UNSIGNED_INT for mats (page 134):

 UNSIGNED_INT_10F_11F_11F_REV_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 1 7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +----------------------------+------------- -------------------+------------------------------- --+
 | 3rd | 2nd | 1st |
 +----------------------------+------------- -------------------+------------------------------- --+

 Add to the end of the 2nd paragraph starting "P ixels are draw using":

 "If type is UNSIGNED_INT_10F_11F_11F_REV_EXT an d format is not RGB
 then the error INVALID_ENUM occurs."

 Add UNSIGNED_INT_10F_11F_11F_REV_EXT to the lis t of packed formats
 in the 10th paragraph after the "Packing" subse ction (page 130).

 Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels
 with a type of BITMAP...") from the end of the "Packing" subsection:

 "Calling DrawPixels with a type of UNSIGNED_INT _10F_11F_11F_REV_EXT
 and format of RGB is a special case in which th e data are a series
 of GL uint values. Each uint value specifies 3 packed components
 as shown in table 3.11. The 1st, 2nd, and 3rd components are
 called f_red (11 bits), f_green (11 bits), and f_blue (10 bits)
 respectively.

 f_red and f_green are treated as unsigned 11-bi t floating-point values
 and converted to floating-point red and green c omponents respectively
 as described in section 2.1.A. f_blue is treat ed as an unsigned
 10-bit floating-point value and converted to a floating-point blue
 component as described in section 2.1.B."

 -- Section 3.8.1, Texture Image Specification:

 "Alternatively if the internalformat is R11F_G1 1F_B10F_EXT, the red,
 green, and blue bits are converted to unsigned 11-bit, unsigned
 11-bit, and unsigned 10-bit floating-point valu es as described
 in sections 2.1.A and 2.1.B. These encoded val ues can be later
 decoded back to floating-point values due to te xture image sampling
 or querying."

 Add a new row to Table 3.16 (page 154).

 Sized Base R G B A L I D
 Internal Format Internal Format bit s bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ----
 R11F_G11F_B10F_EXT RGB 11 11 10

NVIDIA OpenGL Extension Specifications EXT_packed_float

 843

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 -- Modify Chapter 4 Introduction, (page 198)

 Modify first sentence of third paragraph (page 198):

 "Color buffers consist of either signed or unsi gned integer color
 indices, R, G, B and optionally A signed or uns igned integer values,
 or R, G, B, and optionally A signed or unsigned floating-point
 values."

 -- Section 4.3.2, Reading Pixels

 Add a row to table 4.7 (page 224);

 Component
 type Parameter GL Data Type Conversion Formula
 -------------------------------- ------------ ------------------
 UNSIGNED_INT_10F_11F_11F_REV_EXT uint special

 Replace second paragraph of "Final Conversion" (page 222) to read:

 For an RGBA color, if <type> is not one of FLOA T,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT,
 or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM P_READ_COLOR_ARB
 is FIXED_ONLY_ARB and the selected color (or te xture) buffer is
 a fixed-point buffer, each component is first c lamped to [0,1].
 Then the appropriate conversion formula from ta ble 4.7 is applied
 the component."

 Add a paragraph after the second paragraph of " Final Conversion"
 (page 222):

 "In the special case when calling ReadPixels wi th a type of
 UNSIGNED_INT_10F_11F_11F_REV_EXT and format of RGB, the conversion
 is done as follows: The returned data are pack ed into a series of
 GL uint values. The red, green, and blue compon ents are converted
 to unsigned 11-bit floating-point, unsigned 11- bit floating-point,
 and unsigned 10-bit floating point as described in section
 2.1.A and 2.1.B. The resulting red 11 bits, gr een 11 bits, and blue
 10 bits are then packed as the 1st, 2nd, and 3r d components of the
 UNSIGNED_INT_10F_11F_11F_REV_EXT format as show n in table 3.11."

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

 None

Additions to the OpenGL Shading Language specificat ion

 None

EXT_packed_float NVIDIA OpenGL Extension Specifications

 844

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and
Errors)

 Replace Section 3.3.3 (p.12) Paragraph 4 to:

 The attribute GLX_RENDER_TYPE has as its value a mask indicating
 what type of GLXContext a drawable created with the corresponding
 GLXFBConfig can be bound to. The following bit settings are supported:
 GLX_RGBA_BIT, GLX_RGBA_FLOAT_BIT, GLX_RGBA_UNSI GNED_FLOAT_BIT,
 GLX_COLOR_INDEX_BIT. If combinations of bits a re set in the mask
 then drawables created with the GLXFBConfig can be bound to those
 corresponding types of rendering contexts.

 Add to Section 3.3.3 (p.15) after first paragra ph:

 Note that unsigned floating point rendering is only supported
 for GLXPbuffer drawables. The GLX_DRAWABLE_TYP E attribute of
 the GLXFBConfig must have the GLX_PBUFFER_BIT b it set and the
 GLX_RENDER_TYPE attribute must have the GLX_RGB A_UNSIGNED_FLOAT_BIT
 set. Unsigned floating point rendering assumes the framebuffer
 format has no sign bits so all component values are non-negative.
 In contrast, conventional floating point render ing assumes signed
 components.

 Modify Section 3.3.7 (p.25 Rendering Contexts) remove period
 at end of second paragraph and replace with:

 ; if render_type is set to GLX_RGBA_UNSIGNED_FL OAT_TYPE then a
 context that supports unsigned floating point R GBA rendering is
 created.

GLX Protocol

 None.

Additions to the WGL Specification

 Modify the values accepted by WGL_PIXEL_TYPE_AR B to:

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,
 WGL_TYPE_RGBA_FLOAT_ARB, WGL_TYPE_RGBA_UNSI GNED_FLOAT_EXT,
 or WGL_TYPE_COLORINDEX_ARB.

 Add this explanation of unsigned floating point rendering:

 "Unsigned floating point rendering assumes the framebuffer format has
 no sign bits so all component values are non-ne gative. In contrast,
 conventional floating point rendering assumes s igned components."

Dependencies on WGL_ARB_pbuffer

 Ignore the "Additions to the WGL Specification" section if
 WGL_ARB_pbuffer is not supported.

NVIDIA OpenGL Extension Specifications EXT_packed_float

 845

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format with unsigned float components.

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, rep lace this amended
 sentence from 4.3.2 above

 For an RGBA color, if <type> is not one of FLOA T,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT,
 or if the CLAMP_READ_COLOR_ARB is TRUE, or CLAM P_READ_COLOR_ARB
 is FIXED_ONLY_ARB and the selected color (or te xture) buffer is
 a fixed-point buffer, each component is first c lamped to [0,1]."

 with

 "For an RGBA color, if <type> is not one of FLO AT,
 UNSIGNED_INT_5_9_9_9_REV_EXT, or UNSIGNED_INT_1 0F_11F_11F_REV_EXT
 and the selected color buffer (or texture image for GetTexImage)
 is a fixed-point buffer (or texture image for G etTexImage), each
 component is first clamped to [0,1]."

Dependencies on EXT_texture_shared_exponent

 If EXT_texture_shared_exponent is not supported , delete the reference
 to UNSIGNED_INT_5_9_9_9_REV_EXT in section 4.3. 2.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is not supported, the n
 RenderbufferStorageEXT is not supported and the R11F_G11F_B10F_EXT
 internalformat is therefore not supported by Re nderbufferStorageEXT.

 If EXT_framebuffer_object is supported, glRende rbufferStorageEXT
 accepts GL_RG11F_B10F_EXT for its internalforma t parameter because
 GL_RG11F_B10F_EXT has a base internal format of GL_RGB that is listed
 as color-renderable by the EXT_framebuffer_obje ct specification.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 and RenderbufferStorageEXT accept the new R11F_ G11F_B10F_EXT token
 for internalformat.

 DrawPixels, ReadPixels, TexImage1D, TexImage2D, GetTexImage,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 GetHistogram, GetMinmax, ConvolutionFilter1D, C onvolutionFilter2D,
 ConvolutionFilter3D, GetConvolutionFilter, Sepa rableFilter2D,
 GetSeparableFilter, ColorTable, ColorSubTable, and GetColorTable
 accept the new UNSIGNED_INT_10F_11F_11F_REV_EXT token for type.

EXT_packed_float NVIDIA OpenGL Extension Specifications

 846

 New errors

 INVALID_OPERATION is generated by DrawPixels, R eadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3D, TexSubImag e1D, TexSubImage2D,
 TexSubImage3D, GetHistogram, GetMinmax, Convolu tionFilter1D,
 ConvolutionFilter2D, ConvolutionFilter3D, GetCo nvolutionFilter,
 SeparableFilter2D, GetSeparableFilter, ColorTab le, ColorSubTable,
 and GetColorTable if <type> is UNSIGNED_INT_10F _11F_11F_REV_EXT and
 <format> is not RGB.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 1 for the R11F_G11F_B10F_EXT format.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

 (modify table 6.33, p. 294)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 -------------------------- ---- ----------- ------- ------------------ ---- ----------
 RGBA_SIGNED_COMPONENTS_EXT 4xB GetIntegerv - True if respective 4 -
 R, G, B, and A
 components are
 signed

New Implementation Dependent State

 None

Issues

 1) What should this extension be called?

 RESOLVED: EXT_packed_float

 This extension provides a new 3-component p acked float format
 for use as a texture internal format, pixel external format,
 and framebuffer color format.

 "packed" indicates the extension is packing components
 at reduced precisions (similar to EXT_packe d_pixels or
 NV_packed_depth_stencil).

 EXT_r11f_g11f_b10f_float was considered but there's no precedent
 for extension names to be so explicit (or c ryptic?) about format
 specifics in the extension name.

 2) Should there be an rgb11f_b10f framebuffer format?

 RESOLVED: Yes. Unsigned floating-point re ndering formats for GLX
 and WGL are provided. The assumption is th at this functionality
 could be used to advertise a pixel format w ith 11 bits of unsigned

NVIDIA OpenGL Extension Specifications EXT_packed_float

 847

 floating-point red, 11 bits of unsigned flo ating-point green,
 and 10 bits of floating-point blue.

 In theory, an implementation could advertis e other component sizes
 other than 11/11/10 for an unsigned floatin g-point framebuffer
 format but that is not expected.

 3) Should there be GLX and WGL extension strin gs?

 RESOLVED: Yes, there are WGL and GLX token s added to
 support querying unsigned floating-point co lor buffer
 formats named WGL_EXT_pixel_format_packed_f loat and
 GLX_EXT_fbconfig_packed_float respectively.

 4) Should there be an unequal distribution of red, green, and blue
 mantissa bits?

 RESOLVED: Yes. A 6-bit mantissa for red a nd green is unbalanced
 with the 5-bit mantissa for blue, but this allows all the bits of
 a 32 bit word (6+6+5+3*5=32) to be used. T he blue component is
 chosen to have fewer bits because 1) it is the third component,
 and 2) there's a belief that the human eye is less sensitive
 to blue variations..

 Developers should be aware that subtle yell owing or bluing
 of gray-scale values is possible because of the extra bit of
 mantissa in the red and green components.

 5) Should there be an external format for r11f _g11f_b10f?

 RESOLVED: Yes. This makes it fast to load GL_R11F_G11F_B10F_EXT
 textures without any translation by the dri ver.

 6) What is the exponent bias?

 RESOLVED: 15, just like 16-bit half-precis ion floating-point
 values.

 7) Can s10e5 floating-point filtering be used to filter
 r11f_g11f_b10f values? If so, how?

 RESOLVED: Yes. It is easy to promote r11f _g11f_b10f values to
 s10e5 components.

 8) Should automatic mipmap generation be suppo rted for r11f_g11f_b10f
 textures?

 RESOLVED: Yes.

 9) Should non-texture and non-framebuffer comm ands for loading
 pixel data accept the GL_UNSIGNED_INT_10F_1 1F_11F_REV_EXT type?

 RESOLVED: Yes.

 Once the pixel path has to support the new type/format combination
 of GL_UNSIGNED_INT_5_9_9_9_REV_EXT / GL_RGB for specifying and
 querying texture images, it might as well b e supported for all

EXT_packed_float NVIDIA OpenGL Extension Specifications

 848

 commands that pack and unpack RGB pixel dat a.

 The specification is written such that the glDrawPixels
 type/format parameters are accepted by glRe adPixels,
 glTexGetImage, glTexImage2D, and other comm ands that are specified
 in terms of glDrawPixels.

 10) Should non-texture internal formats (such a s for color tables,
 convolution kernels, histogram bins, and mi n/max tables) accept
 GL_R11F_G11F_B10F_EXT format?

 RESOLVED: No.

 That's pointless. No hardware is ever like ly to support
 GL_R11F_G11F_B10F_EXT internal formats for anything other than
 textures and maybe color buffers in the fut ure. This format is
 not interesting for color tables, convoluti on kernels, etc.

 11) Should a format be supported with sign bits for each component?

 RESOLVED: No. A sign bit for each of the three components would
 steal too many bits from the mantissa. Thi s format is intended
 for storing radiance and irradiance values that are physically
 non-negative.

 12) Should we support a non-REV version of the
 GL_UNSIGNED_INT_10F_11F_11F_REV_EXT token?

 RESOLVED: No. We don't want to promote di fferent arrangements
 of the bitfields for r11f_g11f_b10f values.

 13) Can you use the GL_UNSIGNED_INT_10F_11F_11F _REV_EXT format with
 just any format?

 RESOLVED: You can only use the
 GL_UNSIGNED_INT_10F_11F_11F_REV_EXT format with GL_RGB.
 Otherwise, the GL generates an GL_INVALID_O PERATION error.
 Just as the GL_UNSIGNED_BYTE_3_3_2 format j ust works with GL_RGB
 (or else the GL generates an GL_INVALID_OPE RATION error), so
 should GL_UNSIGNED_INT_10F_11F_11F_REV_EXT.

 14) Should blending be supported for a packed f loat framebuffer
 format?

 RESOLVED: Yes. Blending is required for o ther floating-point
 framebuffer formats introduced by ARB_color _buffer_float.
 The equations for blending should be evalua ted with signed
 floating-point math but the result will hav e to be clamped to
 non-negative values to be stored back into the packed float
 format of the color buffer.

 15) Should unsigned floating-point framebuffers be queried
 differently from conventional (signed) floa ting-point
 framebuffers?

 RESOLVED: Yes. An existing application us ing
 ARB_color_buffer_float can rightfully expec t a floating-point

NVIDIA OpenGL Extension Specifications EXT_packed_float

 849

 color buffer format to provide signed compo nents. The packed
 float format does not provide a sign bit. Simply treating packed
 float color buffer formats as floating-poin t might break some
 existing applications that depend on a floa t color buffer to be
 signed.

 For this reason, there are new WGL_TYPE_RGB A_UNSIGNED_FLOAT_EXT
 (for WGL) and GLX_RGBA_UNSIGNED_FLOAT_BIT_E XT (for GLX)
 framebuffer format parameters.

 16) What should glGet of GL_RGBA_FLOAT_MODE_ARB return for unsigned
 float color buffer formats?

 RESOLVED. GL_RGBA_FLOAT_MODE_ARB should re turn true. The packed
 float components are unsigned but still flo ating-point.

 17) Can you query with glGet to determine if th e color buffer has
 unsigned float components?

 RESOLVED: Yes. Call glGetIntegerv
 on GL_RGBA_SIGNED_COMPONENTS_EXT. The valu e returned is
 a 4-element array. Element 0 corresponds t o red, element 1
 corresponds to green, element 2 corresponds to blue, and element
 3 corresponds to alpha. If a color compone nt is signed, its
 corresponding element is true (GL_TRUE). T his is the same way
 the GL_COLOR_WRITEMASK bits are formatted.

 For the packed float format, all the elemen ts are zeroed since
 the red, green, and blue components are uns igned and the alpha
 component is non-existent. All elements ar e also zeroed for
 conventional fixed-point color buffer forma ts. Elements are
 set for signed floating-point formats such as those introduced
 by ARB_color_buffer_float. If a component (such as alpha) has
 zero bits, the component should not be cons idered signed and so
 the bit for the respective component should be zeroed.

 This generality allows a future extension t o specify float
 color buffer formats that had a mixture of signed and unsigned
 floating-point components. However, this e xtension only provides
 a packed float color format with all unsign ed components.

 18) How many bits of alpha should GL_ALPHA_BITS return for the packed
 float color buffer format?

 RESOLVED: Zero.

 19) Can you render to a packed float texture wi th the
 EXT_framebuffer_object functionality?

 RESOLVED: Yes.

 Potentially an implementation could return
 GL_FRAMEBUFFER_UNSUPPORTED_EXT when glCheck FramebufferStatusEXT
 for a framebuffer object including a packed float color buffer,
 but implementations are likely to support (and strongly encouraged
 to support) the packed float format for use with a framebuffer
 object because the packed float format is e xpected to be a

EXT_packed_float NVIDIA OpenGL Extension Specifications

 850

 memory-efficient floating-point color forma t well-suited for
 rendering, particularly rendering involving high-dynamic range.

 20) This extension is for a particular packed f loat format. What if
 new packed float formats come along?

 RESOLVED: A new extension could be introdu ced with a name like
 EXT_packed_float2, but at this time, no oth er such extensions
 are expected except for the EXT_texture_sha red_exponent
 extension. It simply hard to justify packi ng three or more
 components into a single 32-bit word in lot s of different ways
 since any approach is going to be a comprom ise of some sort.
 For two-component or one-component floating -point formats, the
 existing ARB_texture_float formats fit nice ly into 16 or 32 bits
 by simply using half precision floating-poi nt. If 64 bits are
 allowed for a pixel, the GL_RGBA16F_ARB is a good choice.

 The packed float format is similar to the f ormat introduced by
 the EXT_texture_shared_exponent extension, but that extension
 is not a pure packed float format. Unlike the packed float
 format, the EXT_texture_shared_exponent for mat shares a single
 exponent between the RGB components rather than providing
 an independent exponent for each component. Because the
 EXT_texture_shared_exponent uses fewer bits to store exponent
 values, more mantissa precision is provided .

 21) Should this extension provide pbuffer suppo rt?

 RESOLVED: Yes. Pbuffers are core GLX 1.3 functionality.
 While using FBO is probably the preferred w ay to render to
 r11f_g11f_b10f framebuffers but pbuffer sup port is natural
 to provide. WGL should have r11f_g11f_b10f pbuffer support too.

 22) Must an implementation support NaN, Infinit y, and/or denorms?

 RESOLVED: The preferred implementation is to support NaN,
 Infinity, and denorms. Implementations are allowed to flush
 denorms to zero, and treat NaN and Infinity values as large
 finite values.

 This allowance flushes denorms to zero:

 0.0, if E == 0 and M != 0

 This allowance treats Infinity as a finite value:

 2^16 if E == 31 an d M == 0

 This allowance treats NaN encodings as fini te values:

 2^16 * (1 + M/64) if E == 31 an d M != 0

 The expectation is that mainstream GPUs wil l support NaN,
 Infinity, and denorms while low-end impleme ntations such as for
 OpenGL ES 2.0 will likely support denorms b ut neither NaN nor
 Infinity.

NVIDIA OpenGL Extension Specifications EXT_packed_float

 851

 There is not an indication of how these flo ating-point special
 values are treated (though an application c ould test an
 implementation if necessary).

 23) Should this extension interoperate with fra mebuffer objects?

 RESOLVED: Definitely. No particular speci fication language is
 required.

 In particular, glRenderbufferStorageEXT sho uld accept
 GL_R11F_G11F_B10F_EXT for its internalforma t parameter (true
 because this extension adds a new format to Table 3.16).

 24) Are negative color components clamped to ze ro when written into
 an unsigned floating-point color buffer? I f so, do we need to
 say in the Blending or Dithering language t hat negative color
 components are clamped to zero?

 RESOLVED: Yes, negative color components a re clamped to
 zero when written to an unsigned floating-p oint color buffer.
 No specification language is required for t his behavior because
 the ARB_color_buffer_float extension says

 "In RGBA mode dithering selects, for each c olor component, either
 the most positive representable color value (for that particular
 color component) that is less than or equal to the incoming
 color component value, c, or the most negat ive representable
 color value that is greater than or equal t o c.

 If dithering is disabled, then each incomin g color component
 c is replaced with the most positive repres entable color value
 (for that particular component) that is les s than or equal to c,
 or by the most negative representable value , if no representable
 value is less than or equal to c;"

 The most negative representable value for u nsigned
 floating-point values is zero. So the exis ting language from
 ARB_color_buffer_float already indicates th at negative values
 are clamped to zero for unsigned floating-p oint color buffers.
 No additional specification language is req uired.

 25) Prior texture internal formats have generic formats (example:
 GL_RGB) and corresponding sized formats (GL _RGB8, GL_RGB10,
 etc.). Should we add a generic format corr esponding to
 GL_R11F_G11F_B10F_EXT?

 RESOLVED: No. It's unlikely there will be any other unsigned
 floating-point texture formats.

Revision History

 None

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 852

Name

 EXT_packed_pixels

Name Strings

 GL_EXT_packed_pixels

Version

 $Date: 1997/09/22 23:23:58 $ $Revision: 1.21 $

Number

 23

Dependencies

 EXT_abgr affects the definition of this extensi on
 EXT_texture3D affects the definition of this ex tension
 EXT_subtexture affects the definition of this e xtension
 EXT_histogram affects the definition of this ex tension
 EXT_convolution affects the definition of this extension
 SGI_color_table affects the definition of this extension
 SGIS_texture4D affects the definition of this e xtension
 EXT_cmyka affects the definition of this extens ion

Overview

 This extension provides support for packed pixe ls in host memory. A
 packed pixel is represented entirely by one uns igned byte, one
 unsigned short, or one unsigned integer. The f ields with the packed
 pixel are not proper machine types, but the pix el as a whole is. Thus
 the pixel storage modes, including PACK_SKIP_PI XELS, PACK_ROW_LENGTH,
 PACK_SKIP_ROWS, PACK_IMAGE_HEIGHT_EXT, PACK_SKI P_IMAGES_EXT,
 PACK_SWAP_BYTES, PACK_ALIGNMENT, and their unpa cking counterparts all
 work correctly with packed pixels.

New Procedures and Functions

 None

New Tokens

 Accepted by the <type> parameter of DrawPixels, ReadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3DEXT, TexSubI mage1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, GetHistogra mEXT, GetMinmaxEXT,
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
 GetSeparableFilterEXT, ColorTableSGI, GetColorT ableSGI, TexImage4DSGIS,
 and TexSubImage4DSGIS:

 UNSIGNED_BYTE_3_3_2_EXT 0x8032
 UNSIGNED_SHORT_4_4_4_4_EXT 0x8033
 UNSIGNED_SHORT_5_5_5_1_EXT 0x8034
 UNSIGNED_INT_8_8_8_8_EXT 0x8035
 UNSIGNED_INT_10_10_10_2_EXT 0x8036

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 853

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 The five tokens defined by this extension are a dded to Table 3.4:

 <type> Parameter Correspondi ng Special
 Token Value GL Data Typ e Interpretation
 ---------------- ----------- -- --------------
 UNSIGNED_BYTE ubyte No
 BYTE byte No
 UNSIGNED_SHORT ushort No
 SHORT short No
 UNSIGNED_INT uint No
 INT int No
 FLOAT float No
 BITMAP ubyte Yes
 UNSIGNED_BYTE_3_3_2_EXT ubyte Yes
 UNSIGNED_SHORT_4_4_4_4_EXT ushort Yes
 UNSIGNED_SHORT_5_5_5_1_EXT ushort Yes
 UNSIGNED_INT_8_8_8_8_EXT uint Yes
 UNSIGNED_INT_10_10_10_2_EXT uint Yes

 Table 3.4: DrawPixels and ReadPixels <type> parameter values and the
 corresponding GL data types. Refer to tabl e 2.2 for definitions of
 GL data types. Special interpretations are described near the end
 of section 3.6.3.

 [Section 3.6.3 of the GL Specification (Rasteri zation of Pixel
 Rectangles) is rewritten as follows:]

 3.6.3 Rasterization of Pixel Rectangles

 The process of drawing pixels encoded in host m emory is diagrammed in
 Figure 3.7. We describe the stages of this pro cess in the order in which
 they occur.

 Pixels are drawn using

 void DrawPixels(sizei width,
 sizei height,
 enum format,
 enum type,
 void* data);

 <format> is a symbolic constant indicating what the values in memory
 represent. <width> and <height> are the width and height, respectively,
 of the pixel rectangle to be drawn. <data> is a pointer to the data to
 be drawn. These data are represented with one of seven GL data types,
 specified by <type>. The correspondence betwee n the thirteen <type>
 token values and the GL data types they indicat e is given in Table 3.4.
 If the GL is in color index mode and <format> i s not one of COLOR_INDEX,
 STENCIL_INDEX, or DEPTH_COMPONENT, then the err or INVALID_OPERATION

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 854

 occurs. Some additional constraints on the com binations of <format>
 and <type> values that are accepted are discuss ed below.

 Unpacking

 Data are taken from host memory as a sequence o f signed or unsigned bytes
 (GL data types byte and ubyte), signed or unsig ned short integers (GL data
 types short and ushort), signed or unsigned int egers (GL data types int
 and uint), or floating-point values (GL data ty pe float). These elements
 are grouped into sets of one, two, three, four, or five values, depending
 on the <format>, to form a group. Table 3.5 su mmarizes the format of
 groups obtained from memory. It also indicates those formats that yield
 indices and those that yield components.

 Target
 Format Name Buffer Element Meaning and Order
 ----------- ------ ------------------- ------
 COLOR_INDEX Color Color index
 STENCIL_INDEX Stencil Stencil index
 DEPTH_COMPONENT Depth Depth component
 RED Color R component
 GREEN Color G component
 BLUE Color B component
 ALPHA Color A component
 RGB Color R, G, B components
 RGBA Color R, G, B, A componen ts
 ABGR_EXT Color A, B, G, R componen ts
 CMYK_EXT Color Cyan, Magenta, Yell ow, Black components
 CMYKA_EXT Color Cyan, Magenta, Yell ow, Black, A components
 LUMINANCE Color Luminance component
 LUMINANCE_ALPHA Color Luminance, A compon ents

 Table 3.5: DrawPixels and ReadPixels format s. The third column
 gives a description of and the number and o rder of elements in a
 group.

 By default the values of each GL data type are interpreted as they would
 be specified in the language of the client's GL binding. If
 UNPACK_SWAP_BYTES is set to TRUE, however, then the values are
 interpreted with the bit orderings modified as per the table below. The
 modified bit orderings are defined only if the GL data type ubyte has
 eight bits, and then for each specific GL data type only if that type
 is represented with 8, 16, or 32 bits.

 Element Default
 Size Bit Ordering Modified Bi t Ordering
 ------- ------------ ----------- ----------
 8-bit [7..0] [7..0]
 16-bit [15..0] [7..0] [15. .8]
 32-bit [31..0] [7..0] [15. .8] [23..16] [31..24]

 Table: Bit ordering modification of element s when UNPACK_SWAP_BYTES
 is TRUE. These reorderings are defined onl y when GL data type ubyte
 has 8 bits, and then only for GL data types with 8, 16, or 32 bits.

 The groups in memory are treated as being arran ged in a rectangle. This
 rectangle consists of a series of rows, with th e first element of the

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 855

 first group of the first row pointed to by the pointer passed to
 DrawPixels. If the value of UNPACK_ROW_LENGTH is not positive, then the
 number of groups in a row is <width>; otherwise the number of groups is
 UNPACK_ROW_LENGTH. If the first element of the first row is at location
 p in memory, then the location of the first ele ment of the Nth row is

 p + Nk

 where N is the row number (counting from zero) and k is defined as

 / nl s >= a
 k = <
 \ a/s * ceiling(snl/a) s < a

 where n is the number of elements in a group, l is the number of groups
 in a row, a is the value of UNPACK_ALIGNMENT, a nd s is the size,
 in units of GL ubytes, of an element. If the n umber of bits per
 element is not 1, 2, 4, or 8 times the number o f bits in a GL ubyte,
 then k = nl for all values of a.

 There is a mechanism for selecting a sub-rectan gle of groups from a
 larger containing rectangle. This mechanism re lies on three integer
 parameters: UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS , and UNPACK_SKIP_PIXELS.
 Before obtaining the first group from memory, t he pointer supplied to
 DrawPixels is effectively advanced by

 UNPACK_SKIP_PIXELS * n + UNPACK_SKIP_ROWS * k

 elements. Then <width> groups are obtained fro m contiguous elements
 in memory (without advancing the pointer), afte r which the pointer is
 advanced by k elements. <height> sets of <widt h> groups of values are
 obtained this way. See Figure 3.8.

 Calling DrawPixels with a <type> of UNSIGNED_BY TE_3_3_2,
 UNSIGNED_SHORT_4_4_4_4, UNSIGNED_SHORT_5_5_5_1, UNSIGNED_INT_8_8_8_8,
 or UNSIGNED_INT_10_10_10_2 is a special case in which all the elements
 of each group are packed into a single unsigned byte, unsigned short,
 or unsigned int, depending on the type. The nu mber of elements per
 packed pixel is fixed by the type, and must mat ch the number of
 elements per group indicated by the <format> pa rameter. (See the table
 below.) The error INVALID_OPERATION is generat ed if a mismatch occurs.

 GL Num ber
 <type> Parameter Data of Matching
 Token Name Type Ele ments Pixel Formats
 ---------------- ---- --- ----- -------------

 UNSIGNED_BYTE_3_3_2_EXT ubyte 3 RGB
 UNSIGNED_SHORT_4_4_4_4_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_SHORT_5_5_5_1_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_INT_8_8_8_8_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_INT_10_10_10_2_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT

 Bitfield locations of the first, second, third, and fourth elements
 of each packed pixel type are illustrated in th e diagrams below. Each
 bitfield is interpreted as an unsigned integer value. If the base GL

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 856

 type is supported with more than the minimum pr ecision (e.g. a 9-bit
 byte) the packed elements are right-justified i n the pixel.

 UNSIGNED_BYTE_3_3_2_EXT:

 7 6 5 4 3 2 1 0
 +-----------+-----------+-------+
 | | | |
 +-----------+-----------+-------+

 first second third
 element element element

 UNSIGNED_SHORT_4_4_4_4_EXT:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +---------------+---------------+------ ---------+---------------+
 | | | | |
 +---------------+---------------+------ ---------+---------------+

 first second thi rd fourth
 element element ele ment element

 UNSIGNED_SHORT_5_5_5_1_EXT:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-------------------+------------------ -+-------------------+---+
 | | | | |
 +-------------------+------------------ -+-------------------+---+

 first second third fourth
 element element element element

 UNSIGNED_INT_8_8_8_8_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-----------------------+-------------- ---------+-----------------------+----------------- ------+
 | | | | |
 +-----------------------+-------------- ---------+-----------------------+----------------- ------+

 first second third fourth
 element elemen t element element

 UNSIGNED_INT_10_10_10_2_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-----------------------------+-------- ---------------------+----------------------------- +-----+
 | | | | |
 +-----------------------------+-------- ---------------------+----------------------------- +-----+

 first second third fourth
 element element element element

 The assignment of elements to fields in the pac ked pixel is as
 described in the table below:

 First Second Thi rd Fourth
 Format Element Element Ele ment Element
 ------ ------- ------- --- ---- -------
 RGB red green blu e
 RGBA red green blu e alpha
 ABGR_EXT alpha blue gre en red
 CMYK_EXT cyan magenta yel low black

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 857

 Byte swapping, if enabled, is performed before the elements are
 extracted from each pixel. The above discussio ns of row length and
 image extraction are valid for packed pixels, i f "group" is substituted
 for "element" and the number of elements per gr oup is understood to
 be one.

 Calling DrawPixels with a <type> of BITMAP is a special case in which
 the data are a series of GL ubyte values. Each ubyte value specifies
 8 1-bit elements with its 8 least-significant b its. The 8 single-bit
 elements are ordered from most significant to l east significant if the
 value of UNPACK_LSB_FIRST is FALSE; otherwise, the ordering is from
 least significant to most significant. The val ues of bits other than
 the 8 least significant in each ubyte are not s ignificant.

 The first element of the first row is the first bit (as defined above)
 of the ubyte pointed to by the pointer passed t o DrawPixels. The first
 element of the second row is the first bit (aga in as defined above) of
 the ubyte at location p+k, where k is computed as

 k = a * ceiling(nl/8a)

 There is a mechanism for selecting a sub-rectan gle of elements from
 a BITMAP image as well. Before obtaining the f irst element from memory,
 the pointer supplied to DrawPixels is effective ly advanced by

 UNPACK_SKIP_ROWS * k

 ubytes. Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the
 subsequent <width> 1-bit elements are obtained, without advancing the
 ubyte pointer, after which the pointer is advan ced by k ubytes. <height>
 sets of <width> elements are obtained this way.

 Conversion to floating-point

 This step applies only to groups of components. It is not performed on
 indices. Each element in a group is converted to a floating-point value
 according to the appropriate formula in Table 2 .4 (section 2.12).
 Unsigned integer bitfields extracted from packe d pixels are interpreted
 using the formula

 f = c / ((2**N)-1)

 where c is the value of the bitfield (interpret ed as an unsigned
 integer), N is the number of bits in the bitfie ld, and the division is
 performed in floating point.

 [End of changes to Section 3.6.3]

 If this extension is supported, all commands th at accept pixel data
 also accept packed pixel data. These commands are DrawPixels,
 TexImage1D, TexImage2D, TexImage3DEXT, TexSubIm age1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, Convolution Filter1DEXT,
 ConvolutionFilter2DEXT, ConvolutionFilter3DEXT, SeparableFilter2DEXT,
 SeparableFilter3DEXT, ColorTableSGI, TexImage4D SGIS, and
 TexSubImage4DSGIS.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 858

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Framebuffer)

 [Make the following changes to Section 4.3.2 (R eading Pixels):]

 Final Conversion

 For an index, if the <type> is not FLOAT, final conversion consists of
 masking the index with the value given in Table 4.6; if the <type> is
 FLOAT, then the integer index is converted to a GL float data value.
 For a component, each component is first clampe d to [0,1]. Then,
 the appropriate conversion formula from Table 4 .7 is applied to the
 component.

 <type> Parameter Index Mask
 ---------------- ----------
 UNSIGNED_BYTE 2**8 - 1
 BITMAP 1
 BYTE 2**7 - 1
 UNSIGNED_SHORT 2**16 - 1
 SHORT 2**15 - 1
 UNSIGNED_INT 2**32 - 1
 INT 2**31 - 1

 Table 4.6: Index masks used by ReadPixels. Floating point data
 are not masked.

 <type> GL Data Component
 Parameter Type Conversion Formula
 --------- ------- ------------------
 UNSIGNED_BYTE ubyte c = ((2**8)-1)*f
 BYTE byte c = (((2**8)-1)*f-1)/2
 UNSIGNED_SHORT ushort c = ((2**16)-1)*f
 SHORT short c = (((2**16)-1)*f-1)/2
 UNSIGNED_INT uint c = ((2**32)-1)*f
 INT int c = (((2**32)-1)*f-1)/2
 FLOAT float c = f
 UNSIGNED_BYTE_3_3_2_EXT ubyte c = ((2**N)-1)*f
 UNSIGNED_SHORT_4_4_4_4_EXT ushort c = ((2**N)-1)*f
 UNSIGNED_SHORT_5_5_5_1_EXT ushort c = ((2**N)-1)*f
 UNSIGNED_INT_8_8_8_8_EXT uint c = ((2**N)-1)*f
 UNSIGNED_INT_10_10_10_2_EXT uint c = ((2**N)-1)*f

 Table 4.7: Reversed component conversions - used when component data
 are being returned to client memory. Color , normal, and depth
 components are converted from the internal floating-point
 representation (f) to a datum of the specif ied GL data type (c) using
 the equations in this table. All arithmeti c is done in the internal
 floating point format. These conversions a pply to component data
 returned by GL query commands and to compon ents of pixel data returned
 to client memory. The equations remain the same even if the
 implemented ranges of the GL data types are greater than the minimum
 required ranges. (Refer to table 2.2.) Eq uations with N as the
 exponent are performed for each bitfield of the packed data type,
 with N set to the number of bits in the bit field.

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 859

 Placement in Client Memory

 Groups of elements are placed in memory just as they are taken from memory
 for DrawPixels. That is, the ith group of the jth row (corresponding to
 the ith pixel in the jth row) is placed in memo ry must where the ith group
 of the jth row would be taken from for DrawPixe ls. See Unpacking under
 section 3.6.3. The only difference is that the storage mode parameters
 whose names begin with PACK_ are used instead o f those whose names begin
 with UNPACK_.

 [End of changes to Section 4.3.2]

 If this extension is supported, all commands th at return pixel data
 also return packed pixel data. These commands are ReadPixels,
 GetTexImage, GetHistogramEXT, GetMinmaxEXT, Get ConvolutionFilterEXT,
 GetSeparableFilterEXT, and GetColorTableSGI.

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Dependencies on EXT_abgr

 If EXT_abgr is not implemented, then the refere nces to ABGR_EXT in this
 file are invalid, and should be ignored.

Dependencies on EXT_texture3D

 If EXT_texture3D is not implemented, then the r eferences to
 TexImage3DEXT in this file are invalid, and sho uld be ignored.

Dependencies on EXT_subtexture

 If EXT_subtexture is not implemented, then the references to
 TexSubImage1DEXT, TexSubImage2DEXT, and TexSubI mage3DEXT in this file
 are invalid, and should be ignored.

Dependencies on EXT_histogram

 If EXT_histogram is not implemented, then the r eferences to
 GetHistogramEXT and GetMinmaxEXT in this file a re invalid, and should be
 ignored.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 860

Dependencies on EXT_convolution

 If EXT_convolution is not implemented, then the references to
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT, and
 GetSeparableFilterEXT in this file are invalid, and should be ignored.

Dependencies on SGI_color_table

 If SGI_color_table is not implemented, then the references to
 ColorTableSGI and GetColorTableSGI in this file are invalid, and should
 be ignored.

Dependencies on SGIS_texture4D

 If SGIS_texture4D is not implemented, then the references to
 TexImage4DSGIS and TexSubImage4DSGIS in this fi le are invalid, and should
 be ignored.

Dependencies on EXT_cmyka

 If EXT_cmyka is not implemented, then the refer ences to CMYK_EXT and
 CMYKA_EXT in this file are invalid, and should be ignored.

Errors

 [For the purpose of this enumeration of errors, GenericPixelFunction
 represents any OpenGL function that accepts or returns pixel data, using
 parameters <type> and <format> to define the ty pe and format of that
 data. Currently these functions are DrawPixels , ReadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3DEXT, TexSubI mage1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, GetHistogra mEXT, GetMinmaxEXT,
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
 GetSeparableFilterEXT, ColorTableSGI, GetColorT ableSGI, TexImage4DSGIS,
 and TexSubImage4DSGIS.]

 INVALID_OPERATION is generated by GenericPixelF unction if its <type>
 parameter is UNSIGNED_BYTE_3_3_2_EXT and its <f ormat> parameter does not
 specify three components. Currently the only 3 -component format is RGB.

 INVALID_OPERATION is generated by GenericPixelF unction if its <type>
 parameter is UNSIGNED_SHORT_4_4_4_4_EXT, UNSIGN ED_SHORT_5_5_5_1_EXT,
 UNSIGNED_INT_8_8_8_8_EXT, or UNSIGNED_INT_10_10 _10_2_EXT and its
 <format> parameter does not specify four compon ents. Currently the only
 4-component formats are RGBA, ABGR_EXT, and CMY K_EXT.

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 861

Name

 EXT_paletted_texture

Name Strings

 GL_EXT_paletted_texture

Version

 $Date: 2004/03/24 01:07:42 $ $Revision: 1.4 $

Number

 78

Support

 Intel 810/815.

 Mesa.

 Microsoft software OpenGL implementation.

 Selected NVIDIA GPUs: NV1x (GeForce 256, GeForc e2, GeForce4 MX,
 GeForce4 Go, Quadro, Quadro2), NV2x (GeForce3, GeForce4 Ti,
 Quadro DCC, Quadro4 XGL), and NV3x (GeForce FX 5xxxx, Quadro FX
 1000/2000/3000). NV3 (Riva 128) and NV4 (TNT, TNT2) GPUs and NV4x
 GPUs do NOT support this functionality (no hard ware support).
 Future NVIDIA GPU designs will no longer suppor t paletted textures.

 S3 ProSavage, Savage 2000.

 3Dfx Voodoo3, Voodoo5.

 3Dlabs GLINT.

Dependencies

 GL_EXT_paletted_texture shares routines and enu merants with
 GL_SGI_color_table with the minor modification that EXT replaces SGI.
 In all other ways these calls should function i n the same manner and the
 enumerant values should be identical. The port ions of
 GL_SGI_color_table that are used are:

 ColorTableSGI, GetColorTableSGI, Ge tColorTableParameterivSGI,
 GetColorTableParameterfvSGI.
 COLOR_TABLE_FORMAT_SGI, COLOR_TABLE _WIDTH_SGI,
 COLOR_TABLE_RED_SIZE_SGI, COLOR_TAB LE_GREEN_SIZE_SGI,
 COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TA BLE_ALPHA_SIZE_SGI,
 COLOR_TABLE_LUMINANCE_SIZE_SGI, COL OR_TABLE_INTENSITY_SIZE_SGI.

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 862

 Portions of GL_SGI_color_table which are not us ed in
 GL_EXT_paletted_texture are:

 CopyColorTableSGI, ColorTableParame terivSGI,
 ColorTableParameterfvSGI.
 COLOR_TABLE_SGI, POST_CONVOLUTION_C OLOR_TABLE_SGI,
 POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
 PROXY_POST_CONVOLUTION_COLOR_TABLE_ SGI,
 PROXY_POST_COLOR_MATRIX_COLOR_TABLE _SGI, COLOR_TABLE_SCALE_SGI,
 COLOR_TABLE_BIAS_SGI.

 EXT_paletted_texture can be used in conjunction with EXT_texture3D.
 EXT_paletted_texture modifies TexImage3DEXT to accept paletted image
 data and allows TEXTURE_3D_EXT and PROXY_TEXTUR E_3D_EXT to be used a
 targets in the color table routines. If EXT_te xture3D is unsupported
 then references to 3D texture support in this s pec are invalid and
 should be ignored.

 EXT_paletted_texture can be used in conjunction with
 ARB_texture_cube_map. EXT_paletted_texture mod ifies TexImage2D
 to accept paletted image data and allows TEXTUR E_CUBE_MAP_ARB, and
 PROXY_TEXTURE_CUBE_MAP_ARB to be used a targets in the color table
 routines. If ARB_texture_cube_map is unsupport ed then references
 to cube map texture support in this spec are in valid and should be
 ignored.

Overview

 EXT_paletted_texture defines new texture format s and new calls to
 support the use of paletted textures in OpenGL. A paletted texture is
 defined by giving both a palette of colors and a set of image data which
 is composed of indices into the palette. The p aletted texture cannot
 function properly without both pieces of inform ation so it increases the
 work required to define a texture. This is off set by the fact that the
 overall amount of texture data can be reduced d ramatically by factoring
 redundant information out of the logical view o f the texture and placing
 it in the palette.

 Paletted textures provide several advantages ov er full-color textures:

 * As mentioned above, the amount of data requir ed to define a
 texture can be greatly reduced over what would be needed for full-color
 specification. For example, consider a source texture that has only 256
 distinct colors in a 256 by 256 pixel grid. Fu ll-color representation
 requires three bytes per pixel, taking 192K of texture data. By putting
 the distinct colors in a palette only eight bit s are required per pixel,
 reducing the 192K to 64K plus 768 bytes for the palette. Now add an
 alpha channel to the texture. The full-color r epresentation increases
 by 64K while the paletted version would only in crease by 256 bytes.
 This reduction in space required is particularl y important for hardware
 accelerators where texture space is limited.

 * Paletted textures allow easy reuse of texture data for images
 which require many similar but slightly differe nt colored objects.
 Consider a driving simulation with heavy traffi c on the road. Many of
 the cars will be similar but with different col or schemes. If
 full-color textures are used a separate texture would be needed for each

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 863

 color scheme, while paletted textures allow the same basic index data to
 be reused for each car, with a different palett e to change the final
 colors.

 * Paletted textures also allow use of all the p alette tricks
 developed for paletted displays. Simple animat ion can be done, along
 with strobing, glowing and other palette-cyclin g effects. All of these
 techniques can enhance the visual richness of a scene with very little
 data.

New Procedures and Functions

 void ColorTableEXT(
 enum target,
 enum internalFormat,
 sizei width,
 enum format,
 enum type,
 const void *data);

 void ColorSubTableEXT(
 enum target,
 sizei start,
 sizei count,
 enum format,
 enum type,
 const void *data);

 void GetColorTableEXT(
 enum target,
 enum format,
 enum type,
 void *data);

 void GetColorTableParameterivEXT(
 enum target,
 enum pname,
 int *params);

 void GetColorTableParameterfvEXT(
 enum target,
 enum pname,
 float *params);

New Tokens

 Accepted by the internalformat parameter of Tex Image1D, TexImage2D and
 TexImage3DEXT:
 COLOR_INDEX1_EXT 0x80E2
 COLOR_INDEX2_EXT 0x80E3
 COLOR_INDEX4_EXT 0x80E4
 COLOR_INDEX8_EXT 0x80E5
 COLOR_INDEX12_EXT 0x80E6
 COLOR_INDEX16_EXT 0x80E7

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 864

 Accepted by the pname parameter of GetColorTabl eParameterivEXT and
 GetColorTableParameterfvEXT:
 COLOR_TABLE_FORMAT_EXT 0x80D8
 COLOR_TABLE_WIDTH_EXT 0x80D9
 COLOR_TABLE_RED_SIZE_EXT 0x80DA
 COLOR_TABLE_GREEN_SIZE_EXT 0x80DB
 COLOR_TABLE_BLUE_SIZE_EXT 0x80DC
 COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD
 COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE
 COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

 Accepted by the value parameter of GetTexLevelP arameter{if}v:
 TEXTURE_INDEX_SIZE_EXT 0x80ED

 Accepted by the target parameter of ColorTableE XT,
 GetColorTableParameterivEXT, and GetColorTableP arameterfvEXT:
 TEXTURE_1D 0x0DE0
 TEXTURE_2D 0x0DE1
 TEXTURE_3D_EXT 0x806F
 TEXTURE_CUBE_MAP_ARB 0x8513
 PROXY_TEXTURE_1D 0x8063
 PROXY_TEXTURE_2D 0x8064
 PROXY_TEXTURE_3D_EXT 0x8070
 PROXY_TEXTURE_CUBE_MAP_ARB 0x851B

 Accepted by the target parameter of ColorSubTab leEXT and
 GetColorTableEXT:
 TEXTURE_1D 0x0DE0
 TEXTURE_2D 0x0DE1
 TEXTURE_3D_EXT 0x806F
 TEXTURE_CUBE_MAP_ARB 0x8513

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 Section 3.6.4, 'Pixel Transfer Operations,' subse ction 'Color Index
 Lookup,'

 Point two is modified from 'The groups will be loaded as an
 image into texture memory' to 'The groups will be loaded as an image
 into texture memory and the internalformat para meter is not one of the
 color index formats from table 3.8.'

 Section 3.8, 'Texturing,' subsection 'Texture Ima ge Specification' is
 modified as follows:

 The portion of the first paragraph discussing i nterpretation of format,
 type and data is split from the portion discuss ing target, width and
 height. The target, width and height section n ow ends with the sentence
 'Arguments width and height specify the image's width and height.'

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 865

 The format, type and data section is moved unde r a subheader 'Direct
 Color Texture Formats' and begins with 'If inte rnalformat is not one of
 the color index formats from table 3.8,' and co ntinues with the existing
 text through the internalformat discussion.

 After that section, a new section 'Paletted Tex ture Formats' has the
 text:

 If format is given as COLOR_INDEX then the im age data is
 composed of integer values representing indic es into a table of colors
 rather than colors themselves. If internalfo rmat is given as one of the
 color index formats from table 3.8 then the t exture will be stored
 internally as indices rather than undergoing index-to-RGBA mapping as
 would previously have occurred. In this case the only valid values for
 type are BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED _SHORT, INT and
 UNSIGNED_INT.

 The image data is unpacked from memory exactl y as for a
 DrawPixels command with format of COLOR_INDEX for a context in color
 index mode. The data is then stored in an in ternal format derived from
 internalformat. In this case the only legal values of internalformat
 are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT, COLOR _INDEX4_EXT,
 COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR _INDEX16_EXT and the
 internal component resolution is picked accor ding to the index
 resolution specified by internalformat. Any excess precision in the
 data is silently truncated to fit in the inte rnal component precision.

 An application can determine whether a partic ular
 implementation supports a particular paletted format (or any paletted
 formats at all) by attempting to use the pale tted format with a proxy
 target. TEXTURE_INDEX_SIZE_EXT will be zero if the implementation
 cannot support the texture as given.

 An application can determine an implementatio n's desired
 format for a particular paletted texture by m aking a TexImage call with
 COLOR_INDEX as the internalformat, in which c ase target must be a proxy
 target. After the call the application can q uery
 TEXTURE_INTERNAL_FORMAT to determine what int ernal format the
 implementation suggests for the texture image parameters.
 TEXTURE_INDEX_SIZE_EXT can be queried after s uch a call to determine the
 suggested index resolution numerically. The index resolution suggested
 by the implementation does not have to be as large as the input data
 precision. The resolution may also be zero i f the implementation is
 unable to support any paletted format for the given texture image.

 Table 3.8 should be augmented with a column ti tled 'Index bits.' All
 existing formats have zero index bits. The fol lowing formats are added
 with zeroes in all existing columns:

 Name Ind ex bits
 COLOR_INDEX1_EXT 1
 COLOR_INDEX2_EXT 2
 COLOR_INDEX4_EXT 4
 COLOR_INDEX8_EXT 8
 COLOR_INDEX12_EXT 12
 COLOR_INDEX16_EXT 16

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 866

 At the end of the discussion of level the follo wing text should be
 added:

 All mipmapping levels share the same palette. If levels
 are created with different precision indices then their internal formats
 will not match and the texture will be incons istent, as discussed above.

 In the discussion of internalformat for CopyTex Image{12}D, at end of the
 sentence specifying that 1, 2, 3 and 4 are ille gal there should also be
 a mention that paletted internalformat values a re illegal.

 At the end of the width, height, format, type a nd data section under
 TexSubImage there should be an additional sente nce:

 If the target texture has an color index inte rnal format
 then format may only be COLOR_INDEX.

 At the end of the first paragraph describing Te xSubImage and
 CopyTexSubImage the following sentence should b e added:

 If the target of a CopyTexSubImage is a palet ted texture
 image then INVALID_OPERATION is returned.

 After the Alternate Image Specification Command s section, a new 'Palette
 Specification Commands' section should be added .

 Paletted textures require palette information to
 translate indices into full colors. The comm and

 void ColorTableEXT(enum target, enum intern alformat, sizei width,
 enum format, enum type, const void *data);

 is used to specify the format and size of the palette for paletted
 textures. target specifies which texture is to have its palette
 changed and may be one of TEXTURE_1D, TEXTURE _2D, PROXY_TEXTURE_1D,
 PROXY_TEXTURE_2D, TEXTURE_3D_EXT, PROXY_TEXTU RE_3D_EXT,
 TEXTURE_CUBE_MAP_ARB, or PROXY_TEXTURE_CUBE_M AP_ARB. internalformat
 specifies the desired format and resolution o f the palette when
 in its internal form. internalformat can be any of the non-index
 values legal for TexImage internalformat alth ough implementations
 are not required to support palettes of all p ossible formats.
 width controls the size of the palette and mu st be a power of two
 greater than or equal to one. format and typ e specify the number
 of components and type of the data given by d ata. format can be
 any of the formats legal for DrawPixels altho ugh implementations
 are not required to support all possible form ats. type can be
 any of the types legal for DrawPixels except GL_BITMAP.
 Data is taken from memory and converted just as if each
 palette entry were a single pixel of a 1D tex ture. Pixel unpacking and
 transfer modes apply just as with texture dat a. After unpacking and
 conversion the data is translated into a inte rnal format that matches
 the given format as closely as possible. An implementation does not,
 however, have a responsibility to support mor e than one precision for
 the base formats.

 If the palette's width is greater than than t he range of
 the color indices in the texture data then so me of the palettes entries

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 867

 will be unused. If the palette's width is le ss than the range of the
 color indices in the texture data then the mo st-significant bits of the
 texture data are ignored and only the appropr iate number of bits of the
 index are used when accessing the palette.

 Specifying a proxy target causes the proxy te xture's
 palette to be resized and its parameters set but no data is transferred
 or accessed. If an implementation cannot han dle the palette data given
 in the call then the color table width and co mponent resolutions are set
 to zero.

 Portions of the current palette can be replac ed with

 void ColorSubTableEXT(enum target, sizei st art, sizei count,
 enum format, enum type, const void *data);

 target can be any of the non-proxy values leg al for
 ColorTableEXT. start and count control which entries of the palette are
 changed out of the range allowed by the inter nal format used for the
 palette indices. count is silently clamped s o that all modified entries
 all within the legal range. format and type can be any of the values
 legal for ColorTableEXT. The data is treated as a 1D texture just as in
 ColorTableEXT.

 In the 'Texture State and Proxy State' section the sentence fragment
 beginning 'six integer values describing the re solutions...' should be
 changed to refer to seven integer values, with the seventh being the
 index resolution.

 Palette data should be added in as a third cate gory of texture state.

 After the discussion of properties, the followi ng should be added:

 Next there is the texture palette. All textu res have a
 palette, even if their internal format is not color index. A texture's
 palette is initially one RGBA element with al l four components set to
 1.0.

 The sentence mentioning that proxies do not hav e image data or
 properties should be extended with 'or palettes .'

 The sentence beginning 'If the texture array is too large' describing
 the effects of proxy failure should change to r ead:

 If the implementation is unable to handle the texture
 image data the proxy width, height, border wi dth and component
 resolutions are set to zero. This situation can occur when the texture
 array is too large or an unsupported paletted format was requested.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 868

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 Section 5.4, 'Display Lists' is modified as follo ws:

 Include PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PRO XY_TEXTURE_3D,
 and PROXY_TEXTURE_CUBE_MAP_ARB in the list of t okens for which
 ColorTableEXT is executed immediately.

Additions to Chapter 6 of the GL Specification (Sta te and State
Requests)

 In the section on GetTexImage, the sentence say ing 'The components are
 assigned among R, G, B and A according to' shou ld be changed to be

 If the internal format of the texture is not a color
 index format then the components are assigned among R, G, B, and A
 according to Table 6.1. Specifying COLOR_IND EX for format in this case
 will generate the error INVALID_ENUM. If the internal format of the
 texture is color index then the components ar e handled in one of two
 ways depending on the value of format. If fo rmat is not COLOR_INDEX,
 the texture's indices are passed through the texture's palette and the
 resulting components are assigned among R, G, B, and A according to
 Table 6.1. If format is COLOR_INDEX then the data is treated as single
 components and the palette indices are return ed. Components are taken
 starting...

 Following the GetTexImage section there should be a new section:

 GetColorTableEXT is used to get the current t exture palette.

 void GetColorTableEXT(enum target, enum format, enum type, void *data);

 GetColorTableEXT retrieves the texture palett e of the
 texture given by target. target can be any o f the non-proxy targets
 valid for ColorTableEXT. format and type are interpreted just as for
 ColorTableEXT. All textures have a palette b y default so
 GetColorTableEXT will always be able to retur n data even if the internal
 format of the texture is not a color index fo rmat.

 Palette parameters can be retrieved using

 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

 target specifies the texture being queried an d pname
 controls which parameter value is returned. Data is returned in the
 memory pointed to by params.

 Querying COLOR_TABLE_FORMAT_EXT returns the i nternal
 format requested by the most recent ColorTabl eEXT call or the default.
 COLOR_TABLE_WIDTH_EXT returns the width of th e current palette.
 COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_S IZE_EXT,
 COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALP HA_SIZE_EXT return the
 actual size of the components used to store t he palette data internally,
 not the size requested when the palette was d efined.

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 869

 Table 6.11, "Texture Objects" should have a lin e appended for
 TEXTURE_INDEX_SIZE_EXT:

TEXTURE_INDEX_SIZE_EXT n x Z+ GetTexLevelParamete r 0 xD texture image i's index resolution 3.8 -

New State

 In table 6.16, Texture Objects, p. 224, add the following:

Get Value Type Get Command Initial Value Description Sec. Attribute
---------------------- -------- ----------------- ---------- ------------- ---------------- ----- ---------
TEXTURE_1D I GetColorTableEXT empty 1D palette 3.8 -
TEXTURE_2D I GetColorTableEXT empty 2D palette 3.8 -
TEXTURE_3D I GetColorTableEXT empty 3D palette 3.8 -
TEXTURE_CUBE_MAP I GetColorTableEXT empty cube map palette 3.8 -
COLOR_TABLE_FORMAT_EXT 2x4xZn GetColorTablePara meterivEXT RGBA paletted texture 3.8 -
 formats
COLOR_TABLE_WIDTH_EXT 2x4xZ+ GetColorTablePara meteriv 0 paletted texture 3.8 -
 width
COLOR_TABLE_x_SIZE_EXT 6x2x4xZ+ GetColorTablePara meteriv 0 paletted texture 3.8 -
 component sizes
TEXTURE_INDEX_SIZE_EXT nxZ+ GetTexLevelParame ter 0 texture image's 3.8 -
 index resolution

New Implementation Dependent State

 None

Revision History

Original draft, revision 0.5, December 20, 1995 (dr ewb) Created

Minor revisions and clarifications, revision 0.6, J anuary 2, 1996 (drewb)
 Replaced all request-for-comment blocks with fi nal text
 based on implementation.

Minor revisions and clarifications, revision 0.7, F eburary 5, 1996 (drewb)
 Specified the state of the palette color inform ation
 when existing data is replaced by new data.

 Clarified behavior of TexPalette on inconsisten t textures.

Major changes due to ARB review, revision 0.8, Marc h 1, 1996 (drewb)
 Switched from using TexPaletteEXT and GetTexPal etteEXT
 to using SGI's ColorTableEXT routines. Added C olorSubTableEXT so
 equivalent functionality is available.

 Allowed proxies in all targets.

 Changed PALETTE?_EXT values to COLOR_INDEX?_EXT . Added
 support for one and two bit palettes. Removed PALETTE_INDEX_EXT in
 favor of COLOR_INDEX.

 Decoupled palette size from texture data type. Palette
 size is controlled only by ColorTableEXT.

Changes due to ARB review, revision 1.0, May 23, 19 97 (drewb)
 Mentioned texture3D.

 Defined TEXTURE_INDEX_SIZE_EXT.

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 870

 Allowed implementations to return an index size of zero to indicate
 no support for a particular format.

 Allowed usage of GL_COLOR_INDEX as a generic fo rmat in
 proxy queries for determining an optimal index size for a particular
 texture.

 Disallowed CopyTexImage and CopyTexSubImage to paletted
 formats.

 Deleted mention of index transfer operations du ring GetTexImage with
 paletted formats.

Changes due to ARB_texture_cube_map, revision 1.1, June 27, 2002.
 Add language to section 5.4 about proxy texture tokens for ColorTable
 executing immediately.

 Document ARB_texture_cube_map interactions.

 Document texture target usage for ColorTable API.

 Add "New State" section with table and "New Implementation Dependent
 State" sections.

Changes, revision 1.4, March 24, 2004.
 Document vendor support for this extension; note that future NVIDIA
 GPU designs will not support this extension.

NVIDIA OpenGL Extension Specifications EXT_pixel_buffer_object

 871

Name

 EXT_pixel_buffer_object

Name Strings

 GL_EXT_pixel_buffer_object

Status

 Implemented by NVIDIA drivers (Release 55).

IP Status

 Unknown.

Version

 NVIDIA Date: March 29, 2004 (version 1.0)

Number

 302

Status

 NVIDIA Release 55 (early 2004) drivers support this extension.

Dependencies

 Written based on the wording of the OpenGL 1.5 specification.

 GL_NV_pixel_data_range affects the definition o f this extension.

Overview

 This extension expands on the interface provide d by buffer objects.
 It is intended to permit buffer objects to be u sed not only with
 vertex array data, but also with pixel data.
 Buffer objects were promoted from the ARB_verte x_buffer_object
 extension in OpenGL 1.5.

 Recall that buffer objects conceptually are not hing more than arrays
 of bytes, just like any chunk of memory. Buffer objects allow GL
 commands to source data from a buffer object by binding the buffer
 object to a given target and then overloading a certain set of GL
 commands' pointer arguments to refer to offsets inside the buffer,
 rather than pointers to user memory. An offset is encoded in a
 pointer by adding the offset to a null pointer.

 This extension does not add any new functionali ty to buffer
 objects themselves. It simply adds two new tar gets to which buffer
 objects can be bound: PIXEL_PACK_BUFFER and PIX EL_UNPACK_BUFFER.
 When a buffer object is bound to the PIXEL_PACK _BUFFER target,
 commands such as ReadPixels write their data in to a buffer object.
 When a buffer object is bound to the PIXEL_UNPA CK_BUFFER target,
 commands such as DrawPixels read their data fro m a buffer object.

EXT_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 872

 There are a wide variety of applications for su ch functionality.
 Some of the most interesting ones are:

 - "Render to vertex array." The application ca n use a fragment
 program to render some image into one of its buffers, then read
 this image out into a buffer object via ReadP ixels. Then, it can
 use this buffer object as a source of vertex data.

 - Streaming textures. If the application uses MapBuffer/UnmapBuffer
 to write its data for TexSubImage into a buff er object, at least
 one of the data copies usually required to do wnload a texture can
 be eliminated, significantly increasing textu re download
 performance.

 - Asynchronous ReadPixels. If an application n eeds to read back a
 number of images and process them with the CP U, the existing GL
 interface makes it nearly impossible to pipel ine this operation.
 The driver will typically send the hardware a readback command
 when ReadPixels is called, and then wait for all of the data to
 be available before returning control to the application. Then,
 the application can either process the data i mmediately or call
 ReadPixels again; in neither case will the re adback overlap with
 the processing. If the application issues se veral readbacks into
 several buffer objects, however, and then map s each one to process
 its data, then the readbacks can proceed in p arallel with the data
 processing.

Issues

 How does this extension relate to ARB_vertex_bu ffer_object?

 It builds on the ARB_vertex_buffer_object f ramework by adding
 two new targets that buffers can be bound t o.

 How does this extension relate to NV_pixel_data _range?

 This extension relates to NV_pixel_data_ran ge in the same way that
 ARB_vertex_buffer_object relates to NV_vert ex_array_range. To
 paraphrase the ARB_vertex_buffer_object spe c, here are the main
 differences:

 - Applications are no longer responsible fo r memory management
 and synchronization.

 - Applications may still access high-perfor mance memory directly,
 but this is optional, and such access is more restricted.

 - Buffer changes (BindBuffer) are generally expected to
 be very lightweight, rather than extremel y heavyweight
 (PixelDataRangeNV).

 - A platform-specific allocator such as wgl /glXAllocateMemoryNV
 is no longer required.

NVIDIA OpenGL Extension Specifications EXT_pixel_buffer_object

 873

 Can a given buffer be used for both vertex and pixel data?

 RESOLVED: YES. All buffers can be used wit h all buffer bindings,
 in whatever combinations the application fi nds useful. Consider
 yourself warned, however, by the following issue.

 May implementations make use of the target as a hint to select an
 appropriate memory space for the buffer?

 RESOLVED: YES, as long as such behavior is transparent to the
 application. Some implementations may choos e, for example,
 that they would rather stream vertex data f rom write-combined
 system memory, element (or index) data from video memory, and
 pixel data from video memory.

 In fact, one can imagine arbitrarily compli cated heuristics for
 selecting the memory space, based on factor s such as the target,
 the "usage" argument, and the application's observed behavior.

 While it is entirely legal to create a buff er object by binding
 it to ARRAY_BUFFER and loading it with data , then using it with
 the PIXEL_UNPACK_BUFFER_EXT or PIXEL_PACK_B UFFER_EXT binding, such
 behavior is liable to confuse the driver an d may hurt performance.
 If the driver implemented the hypothetical heuristic described
 earlier, such a buffer might have already b een located in
 write-combined system memory, and so the dr iver would have to
 choose between two bad options: relocate th e buffer into video
 memory, or accept lower performance caused by streaming pixel
 data from slower system memory.

 Should all pixel path commands be supported, or just a subset of
 them?

 RESOLVED: ALL. While there is little reaso n to believe that,
 say, ConvolutionFilter2D would benefit from this extension, there
 is no reason _not_ to support it. The full list of commands
 affected by this extension is listed in the spec.

 Should PixelMap and GetPixelMap be supported?

 RESOLVED: YES. They're not really pixel pa th operations, but,
 again, there is no good reason to omit oper ations, and they _are_
 operations that pass around big chunks of p ixel-related data.
 If we support PolygonStipple, surely we sho uld support this.

 How does the buffer binding state push/pop?

 RESOLVED: As part of the pixel store client state. This is
 analogous to how the vertex buffer object b indings pushed/popped
 as part of the vertex array client state.

 Should NV_pixel_data_range (PDR) be used concur rently with pixel
 buffer objects ?

 RESOLVED: NO. While it would be possible to allocate a memory
 range for PDR, using a pointer into this me mory range with one
 of the commands affected by EXT_pixel_buffe r_object will not

EXT_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 874

 work if a pixel buffer object other than ze ro is bound to the
 buffer binding point affecting the command. Pixel buffer objects
 always have higher precedence than PDR.

 Do the null pointer rules for glTexImage1D, glT exImage2D
 and glTexImage3D for allocating textures with u ndefined
 content also apply when a non-zero buffer objec t is bound to
 PIXEL_UNPACK_BUFFER_BINDING_EXT ?

 RESOLVED: NO. The null pointer is interpret ed as a non-zero
 pointer to the data storage whose contents may be still
 undefined. This data will be used to create the texture array.
 If the null pointer rule is required, no no n-zero buffer object
 should be bound to PIXEL_UNPACK_BUFFER_BIND ING_EXT.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData,
 GetBufferParameteriv, and GetBufferPointerv:

 PIXEL_PACK_BUFFER_EXT 0x88EB
 PIXEL_UNPACK_BUFFER_EXT 0x88EC

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PIXEL_PACK_BUFFER_BINDING_EXT 0x88ED
 PIXEL_UNPACK_BUFFER_BINDING_EXT 0x88EF

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the 1.2.1 Specification (Rasterization)

 Additions to subsection 3.8.1 of the 1.2.1 Spec ification (Texture
 Image Specification)

 The extension EXT_pixel_buffer_object makes an exception to this
 rule of passing a null pointer to glTexImage1D, glTexImage2D and
 glTexImage3D. If PIXEL_UNPACK_BUFFER_BINDING_EX T is non-zero
 and a null pointer is passed to these functions , the texture
 array is created and the image contents are sou rced from the
 data store of the bound buffer object.

Additions to Chapter 4 of the 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

 Added a subsection 4.3.5 (Pixel Buffer Object u npack operation)
 in section 4.3 (Drawing, Reading and copying Pi xels)

NVIDIA OpenGL Extension Specifications EXT_pixel_buffer_object

 875

 The extension EXT_pixel_buffer_object affects t he operation of
 several OpenGL commands described in section 3. 6 (Pixel Rectangles),
 section 3.7 (Bitmaps), and section 3.8 (Texturi ng).

 In unextended OpenGL 1.3 with ARB_imaging suppo rt, the commands
 glBitmap, glColorSubTable, glColorTable, glComp ressedTexImage1D,
 glCompressedTexImage2D, glCompressedTexImage3D,
 glCompressedTexSubImage1D, glCompressedTexSubIm age2D,
 glCompressedTexSubImage3D, glConvolutionFilter1 D,
 glConvolutionFilter2D, glDrawPixels, glPixelMap fv, glPixelMapuiv,
 glPixelMapusv, glPolygonStipple, glSeparableFil ter2D, glTexImage1D,
 glTexImage2D, glTexImage3D, glTexSubImage1D, gl TexSubImage2D
 and glTexSubImage3D operate as previously defin ed, except
 that pixel data is sourced from a buffer object 's data store if
 PIXEL_UNPACK_BUFFER_BINDING_EXT is non-zero. Wh en the data is sourced
 from a buffer object, the pointer value passed in as an argument to
 the command is used to compute an offset, in ba sic machine units,
 into the data store of the buffer object. This offset is computed
 by subtracting a null pointer from the pointer value, where both
 pointers are treated as pointers to basic machi ne units.

Additions to Chapter 5 of the 1.2.1 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2.1 Specification (State and State
Requests)

 Additions to subsection 6.1.13 (Buffer Object Q ueries) in chapter 6

 In unextended OpenGL 1.5 with ARB_imaging suppo rt, the commands
 glGetColorTable, glGetCompressedTexImage, glGet ConvolutionFilter,
 glGetHistogram, glGetMinmax, glGetPixelMapfv, g lGetPixelMapuiv,
 glGetPixelMapusv, glGetPolygonStipple, glGetSep arableFilter,
 glGetTexImage and glReadPixels operate as previ ously defined,
 except that pixel data is stored in a buffer ob ject's data store if
 PIXEL_PACK_BUFFER_BINDING_EXT is non-zero. When a buffer object is
 the target of the pixel data, the target pointe r value passed in as
 an argument to the command is used to compute a n offset, in basic
 machine units, into the data store of the buffe r object. This offset
 is computed by subtracting a null pointer from the pointer value,
 where both pointers are treated as pointers to basic machine units.

Errors

 None

New State

(table 6.20, Pixels, p. 235)

Get Value Type Get Command Initial Value Sec Attribute
--------- ---- ----------- ------------- --- ---------
PIXEL_PACK_BUFFER_BINDING_EXT Z+ GetIntegerv 0 4.3.5 pixel-store
PIXEL_UNPACK_BUFFER_BINDING_EXT Z+ GetIntegerv 0 6.1.13 pixel-store

EXT_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 876

New Implementation Dependent State

 (none)

Usage Examples

 Convenient macro definition for specifying buff er offsets:

 #define BUFFER_OFFSET(i) ((char *)NULL + (i))

 Example 1: Render to vertex array

 // create a buffer object for a number of v ertices consisting of
 // 4 float values per vertex
 GenBuffers(1, vertexBuffer);
 BindBuffer(PIXEL_PACK_BUFFER_EXT, vertexBuf fer);
 BufferData(PIXEL_PACK_BUFFER_EXT, numberVer tices*4, NULL, DYNAMIC_DRAW);

 // render vertex data into framebuffer usin g a fragment program
 BindProgramARB(FRAGMENT_PROGRAM_ARB, fragme ntProgram);
 DrawBuffer(GL_BACK);
 renderVertexData();
 BindProgramARB(FRAGMENT_PROGRAM_ARB, 0);

 // read the vertex data back from framebuff er
 ReadBuffer(GL_BACK);
 ReadPixels(0, 0, numberVertices*4, height/2 ,
 GL_BGRA, GL_FLOAT, BUFFER_OFFSET(0));

 // change the binding point of the buffer o bject to
 // the vertex array binding point
 BindBuffer(GL_ARRAY_BUFFER, vertexBuffer);

 EnableClientState(VERTEX_ARRAY);
 VertexPointer(4, FLOAT, 0, BUFFER_OFFSET(0));
 DrawArrays(TRIANGLE_STRIP, 0, numberVertice s);

NVIDIA OpenGL Extension Specifications EXT_pixel_buffer_object

 877

 Example 2: Streaming textures

 streaming textures using NV_pixel_data_range

 void *pdrMemory, *texData;

 pdrMemory = AllocateMemoryNV(texsize, 0.0, 1.0, 1.0);

 PixelDataRangeNV(GL_WRITE_PIXEL_DATA_RANGE_ NV, texsize, pdrMemory);

 EnableClientState(GL_WRITE_PIXEL_DATA_RANGE _NV);

 // setup texture environment
 ...

 texData = getNextImage();

 while (texData) {

 memcpy(pdrMemory, texData, texsize);

 FlushPixelDataRangeNV(GL_WRITE_PIXEL_DA TA_RANGE_NV);

 TexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
 texWidth, texHeight, GL_BGRA, GL_UN SIGNED_BYTE, pdrMemory);

 // draw textured geometry
 Begin(GL_QUADS);
 ...
 End();

 texData = getNextImage();
 }

 DisableClientState(GL_WRITE_PIXEL_DATA_RANG E_NV);

 FreeMemoryNV(pdrMemory);

EXT_pixel_buffer_object NVIDIA OpenGL Extension Specifications

 878

 streaming textures using EXT_pixel_buffer_objec t:

 void *pboMemory, *texData;

 // create and bind texture image buffer obj ect
 GenBuffers(1, &texBuffer);
 BindBuffer(PIXEL_UNPACK_BUFFER_EXT, texBuff er);
 BufferData(PIXEL_UNPACK_BUFFER_EXT, texSize , NULL, STREAM_DRAW);

 texData = getNextImage();

 while (texData) {

 // map the texture image buffer
 pboMemory = MapBuffer(PIXEL_UNPACK_BUFF ER_EXT, WRITE_ONLY);

 // modify (sub-)buffer data
 memcpy(pboMemory, texData, texsize);

 // unmap the texture image buffer
 if (!UnmapBuffer(PIXEL_UNPACK_BUFFER_EX T)) {
 // Handle error case
 }

 // update (sub-)teximage from texture i mage buffer
 TexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, t exWidth, texHeight,
 GL_BGRA, GL_UNSIGNED_BYTE , BUFFER_OFFSET(0));

 // draw textured geometry
 Begin(GL_QUADS);
 ...
 End();

 texData = getNextImage();
 }

 BindBuffer(PIXEL_UNPACK_BUFFER_EXT, 0);

NVIDIA OpenGL Extension Specifications EXT_pixel_buffer_object

 879

 Example 3: Asynchronous ReadPixels

 traditional ReadPixels

 unsigned int readBuffer[imagewidth*imagehei ght*4];

 // render to framebuffer
 DrawBuffer(GL_BACK);
 renderScene()

 // read image from framebuffer
 ReadBuffer(GL_BACK);
 ReadPixels();

 // process image when ReadPixels returns af ter reading the whole buffer
 processImage(readBuffer);

 asynchronous ReadPixels

 GenBuffers(2, imageBuffers);

 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[0]);
 BufferData(PIXEL_PACK_BUFFER_EXT, imageSize / 2, NULL, STATIC_READ);

 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[1]);
 BufferData(PIXEL_PACK_BUFFER_EXT, imageSize / 2, NULL, STATIC_READ);

 // render to framebuffer
 DrawBuffer(GL_BACK);
 renderScene();

 // Bind two different buffer objects and st art the ReadPixels
 // asynchronously. Each call will return di rectly after starting the
 // DMA transfer.
 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[0]);
 ReadPixels(0, 0, width, height/2,
 GL_BGRA, GL_UNSIGNED_BYTE, BUFFER_OFFSE T(0));

 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[1]);
 ReadPixels(0, height/2, width, height/2, GL _BGRA, GL_UNSIGNED_BYTE,
 BUFFER_OFFSET(0));

 // process partial images
 pboMemory1 = MapBuffer(PIXEL_PACK_BUFFER_EX T, READ_ONLY);
 processImage(pboMemory1);
 pboMemory2 = MapBuffer(PIXEL_PACK_BUFFER_EX T, READ_ONLY);
 processImage(pboMemory2);

 // unmap the image buffers
 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[0]);
 if (!UnmapBuffer(PIXEL_PACK_BUFFER_EXT)) {
 // Handle error case
 }
 BindBuffer(PIXEL_PACK_BUFFER_EXT, imageBuff ers[1]);
 if (!UnmapBuffer(PIXEL_PACK_BUFFER_EXT)) {
 // Handle error case
 }

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 880

Name

 EXT_point_parameters

Name Strings

 GL_EXT_point_parameters

Version

 $Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Number

 54

Dependencies

 SGIS_multisample affects the definition of thi s extension.

Overview

 This extension supports additional geometric ch aracteristics of points. It
 can be used to render particles or tiny light s ources, commonly referred
 as "Light points".

 The raster brightness of a point is a function of the point area, point
 color, point transparency, and the response of the display's electron gun
 and phosphor. The point area and the point tran sparency are derived from the
 point size, currently provided with the <size> parameter of glPointSize.

 The primary motivation is to allow the size of a point to be affected by
 distance attenuation. When distance attenuation has an effect, the final
 point size decreases as the distance of the poi nt from the eye increases.

 The secondary motivation is a mean to control t he mapping from the point
 size to the raster point area and point transpa rency. This is done in order
 to increase the dynamic range of the raster bri ghtness of points. In other
 words, the alpha component of a point may be de creased (and its transparency
 increased) as its area shrinks below a defined threshold.

 This extension defines a derived point size to be closely related to point
 brightness. The brightness of a point is given by:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 brightness(Pe) = Brightness * dist_atten(|P e|)

 where 'Pe' is the point in eye coordinates, and 'Brightness' is some initial
 value proportional to the square of the size pr ovided with glPointSize. Here
 we simplify the raster brightness to be a funct ion of the rasterized point
 area and point transparency.

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 881

 brightness(Pe) brightness(Pe) >= Threshold_Area
 area(Pe) =
 Threshold_Area Otherwise

 factor(Pe) = brightness(Pe)/Threshold_Area

 alpha(Pe) = Alpha * factor(Pe)

 where 'Alpha' comes with the point color (possi bly modified by lighting).

 'Threshold_Area' above is in area units. Thus, it is proportional to the
 square of the threshold provided by the program mer through this extension.

 The new point size derivation method applies to all points, while the
 threshold applies to multisample points only.

Issues

 * Does point alpha modification affect the cu rrent color ?

 No.

 * Do we need a special function glGetPointPar ameterfvEXT, or get by with
 glGetFloat ?

 No.

 * If alpha is 0, then we could toss the point before it reaches the
 fragment stage.

 No. This can be achieved with enabling the alpha test with reference of
 0 and function of LEQUAL.

 * Do we need a disable for applying the thres hold ? The default threshold
 value is 1.0. It is applied even if the poi nt size is constant.

 If the default threshold is not overriden, the area of multisample
 points with provided constant size of less than 1.0, is mapped to 1.0,
 while the alpha component is modulated acco rdingly, to compensate for
 the larger area. For multisample points thi s is not a problem, as there
 are no relevant applications yet. As mentio ned above, the threshold does
 not apply to alias or antialias points.

 The alternative is to have a disable of thr eshold application, and state
 that threshold (if not disabled) applies to non antialias points only
 (that is, alias and multisample points).

 The behavior without an enable/disable look s fine.

 * Future extensions (to the extension)

 1. GL_POINT_FADE_ALPHA_CLAMP_EXT

 When the derived point size is larger than the threshold size defined by
 the GL_POINT_FADE_THRESHOLD_SIZE_EXT parame ter, it might be desired to
 clamp the computed alpha to a minimum value , in order to keep the point
 visible. In this case the formula below cha nge:

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 882

 factor = (derived_size/threshold)^2

 factor cla mp <= factor
 clamped_value =
 clamp fac tor < clamp

 1.0 der ived_size >= threshold
 alpha *=
 clamped_value Oth erwise

 where clamp is defined by the GL_POINT_FADE _ALPHA_CLAMP_EXT new
 parameter.

New Procedures and Functions

 void glPointParameterfEXT (GLenum pname, GLflo at param);
 void glPointParameterfvEXT (GLenum pname, GLfl oat *params);

New Tokens

 Accepted by the <pname> parameter of glPointPar ameterfEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT
 GL_POINT_SIZE_MAX_EXT
 GL_POINT_FADE_THRESHOLD_SIZE_EXT

 Accepted by the <pname> parameter of glPointPar ameterfvEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT 0x8126
 GL_POINT_SIZE_MAX_EXT 0x8127
 GL_POINT_FADE_THRESHOLD_SIZE_EXT 0x8128
 GL_DISTANCE_ATTENUATION_EXT 0x8129

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 All parameters of the glPointParameterfEXT and glPointParameterfvEXT
 functions set various values applied to point r endering. The derived point
 size is defined to be the <size> provided with glPointSize modulated with a
 distance attenuation factor.

 The parameters GL_POINT_SIZE_MIN_EXT and GL_POI NT_SIZE_MAX_EXT simply
 define an upper and lower bounds respectively o n the derived point size.

 The above parameters affect non multisample poi nts as well as multisample
 points, while the GL_POINT_FADE_THRESHOLD_SIZE_ EXT parameter, has no effect
 on non multisample points. If the derived point size is larger than
 the threshold size defined by the GL_POINT_FADE _THRESHOLD_SIZE_EXT
 parameter, the derived point size is used as th e diameter of the rasterized
 point, and the alpha component is intact. Other wise, the threshold size is
 set to be the diameter of the rasterized point, while the alpha component is

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 883

 modulated accordingly, to compensate for the la rger area.

 The distance attenuation function coefficients, namely a, b, and c in:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 are defined by the <pname> parameter GL_DISTANC E_ATTENUATION_EXT of the
 function glPointParameterfvEXT. By default a = 1, b = 0, and c = 0.

 Let 'size' be the point size provided with glPo intSize, let 'dist' be the
 distance of the point from the eye, and let 'th reshold' be the threshold
 size defined by the GL_POINT_FADE_THRESHOLD_SIZ E parameter of
 glPointParameterfEXT. The derived point size is given by:

 derived_size = size * sqrt(dist_atten(dist))

 Note that when default values are used, the abo ve formula reduces to:

 derived_size = size

 the diameter of the rasterized point is given b y:

 derived_size der ived_size >= threshold
 diameter =
 threshold Oth erwise

 The alpha of a point is calculated to allow the fading of points instead of
 shrinking them past a defined threshold size. T he alpha component of the
 rasterized point is given by:

 1 der ived_size >= threshold
 alpha *=
 (derived_size/threshold)^2 Oth erwise

 The threshold defined by GL_POINT_FADE_THRESHOL D_SIZE_EXT is not clamped
 to the minimum and maximum point sizes.

 Points do not affect the current color.

 This extension doesn't change the feedback or s election behavior of points.

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 None

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 884

Additions to the GLX Specification

 None

Dependencies on SGIS_multisample

 If SGIS_multisample is not implemented, then th e references to
 multisample points are invalid, and should be i gnored.

Errors

 INVALID_ENUM is generated if PointParameterfEXT parameter <pname> is not
 GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT, o r
 GL_POINT_FADE_THRESHOLD_SIZE_EXT.

 INVALID_ENUM is generated if PointParameterfvEX T parameter <pname> is
 not GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EX T,
 GL_POINT_FADE_THRESHOLD_SIZE_EXT, or GL_DISTANC E_ATTENUATION_EXT

 INVALID_VALUE is generated when values are out of range according to:

 <pname> val id range
 -------- --- --------
 GL_POINT_SIZE_MIN_EXT >= 0
 GL_POINT_SIZE_MAX_EXT >= 0
 GL_POINT_FADE_THRESHOLD_SIZE_EXT >= 0

 Issues

 - should we generate INVALID_VALUE or just cl amp?

New State

 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- --------- ---------
 GL_POINT_SIZE_MIN_EXT GetFloatv R 0 point
 GL_POINT_SIZE_MAX_EXT GetFloatv R M point
 GL_POINT_FADE_THRESHOLD_SIZE_EXT GetFloatv R 1 point
 GL_DISTANCE_ATTENUATION_EXT GetFloatv 3xR (1,0,0) point

 M is the largest available point size.

New Implementation Dependent State

 None

Backwards Compatibility

 This extension replaces SGIS_point_parameters. The procedures, tokens,
 and name strings now refer to EXT instead of SG IS. Enumerant values are
 unchanged. SGI implementations which previously provided this
 functionality should support both forms of the extension.

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

 885

Name

 EXT_rescale_normal

Name Strings

 GL_EXT_rescale_normal

Version

 $Date: 1997/07/02 23:38:17 $ $Revision: 1.7 $

Number

 27

Dependencies

 None

Overview

 When normal rescaling is enabled a new operatio n is added to the
 transformation of the normal vector into eye co ordinates. The normal vector
 is rescaled after it is multiplied by the inver se modelview matrix and
 before it is normalized.

 The rescale factor is chosen so that in many ca ses normal vectors with unit
 length in object coordinates will not need to b e normalized as they
 are transformed into eye coordinates.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 RESCALE_NORMAL_EXT 0x803A

Additions to Chapter 2 of the 1.1 Specification (Op enGL Operation)

 Section 2.10.3

 Finally, we consider how the ModelView transfor mation state affects
 normals. Normals are of interest only in eye co ordinates, so the rules
 governing their transformation to other coordin ate systems are not
 examined.

 Normals which have unit length when sent to the GL, have their length
 changed by the inverse of the scaling factor af ter transformation by
 the model-view inverse matrix when the model-vi ew matrix represents
 a uniform scale. If rescaling is enabled, then normals specified with

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

 886

 the Normal command are rescaled after transform ation by the ModelView
 Inverse.

 Normals sent to the GL may or may not have unit length. In addition,
 the length of the normals after transformation might be altered due
 to transformation by the model-view inverse mat rix. If normalization
 is enabled, then normals specified with the Nor mal3 command are
 normalized after transformation by the model-vi ew inverse matrix and
 after rescaling if rescaling is enabled. Norma lization and rescaling
 are controlled with

 void Enable(enum target);

 and

 void Disable(enum target);

 with target equal to NORMALIZE or RESCALE_NORMA L. This requires two
 bits of state. The initial state is for normal s not to be normalized or
 rescaled.
 .
 .
 .

 Therefore, if the modelview matrix is M, then t he transformed plane equation
 is

 (n_x' n_y' n_z' q') = ((n_x n_y n_z q) * (M^-1)),

 the rescaled normal is

 (n_x" n_y" n_z") = f * (n_x' n_y' n_z'),

 and the fully transformed normal is

 1 (n_x ")
 ____________ (n_y ") (2.1)
 __________________________________ (n_z ")
 V (n_x")^2 + (n_y")^2 + (n_z")^2

 If rescaling is disabled then f is 1, otherwis e f is computed
 as follows:

 Let m_ij denote the matrix element in row i an d column j of M^-1,
 numbering the topmost row of the matrix as row 1, and the leftmost
 column as column 1. Then

 1

 f = ________________________________
 V (m_31)^2 + (m_32)^2 + (m_33)^2

 Alternatively, an implementation my chose to n ormalize the normal
 instead of rescaling the normal. Then

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

 887

 1

 f = ________________________________
 V (n_x')^2 + (n_y')^2 + (n_z')^2

 If normalization is disabled, then the square root in equation 2.1 is
 replaced with 1, otherwise

Additions to Chapter 3 of the 1.1 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.1 Specification (Pe r-Fragment Operations and
the Framebuffer)

 None

Additions to Chapter 5 of the 1.1 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.1 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 None

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- -------- ----- ---------
RESCALE_NORMAL_EXT IsEnabled B FALSE transform/enable

New Implementation Dependent State

 None

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 888

Name

 EXT_secondary_color

Name Strings

 GL_EXT_secondary_color

Version

 NVIDIA Date: February 22, 2000
 $Date: 1999/06/21 19:57:47 $ $Revision: 1.8 $

Number

 145

Dependencies

 Either EXT_separate_specular_color or OpenGL 1. 2 is required, to specify
 the "Color Sum" stage and other handling of the secondary color. This is
 written against the 1.2 specification (availabl e from www.opengl.org).

Overview

 This extension allows specifying the RGB compon ents of the secondary
 color used in the Color Sum stage, instead of u sing the default
 (0,0,0,0) color. It applies only in RGBA mode a nd when LIGHTING is
 disabled.

Issues

 * Can we use the secondary alpha as an explicit f og weighting factor?

 ISVs prefer a separate interface (see GL_EX T_fog_coord). The current
 interface specifies only the RGB elements, leaving the option of a
 separate extension for SecondaryColor4() en try points open (thus
 the apparently useless ARRAY_SIZE state ent ry).

 There is an unpleasant asymmetry with Color 3() - one assumes A =
 1.0, the other assumes A = 0.0 - but this a ppears unavoidable given
 the 1.2 color sum specification language. A lternatively, the color
 sum language could be rewritten to not sum secondary A.

 * What about multiple "color iterators" for use w ith aggrandized
 multitexture implementations?

 We may need this eventually, but the second ary color is well defined
 and a more generic interface doesn't seem j ustified now.

 * Interleaved array formats?

 No. The multiplicative explosion of formats is too great.

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 889

 * Do we want to be able to query the secondary co lor value? How does it
 interact with lighting?

 The secondary color is not part of the GL s tate in the
 separate_specular_color extension that went into OpenGL 1.2. There,
 it can't be queried or obtained via feedbac k.

 The secondary_color extension is slightly m ore general-purpose, so
 the secondary color is explicitly in the GL state and can be queried
 - but it's still somewhat limited and can't be obtained via
 feedback, for example.

New Procedures and Functions

 void SecondaryColor3[bsifd ubusui]EXT(T compone nts)
 void SecondaryColor3[bsifd ubusui]vEXT(T compon ents)
 void SecondaryColorPointerEXT(int size, enum ty pe, sizei stride,
 void *pointer)

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 COLOR_SUM_EXT 0x8458

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 CURRENT_SECONDARY_COLOR_EXT 0x8459
 SECONDARY_COLOR_ARRAY_SIZE_EXT 0x845A
 SECONDARY_COLOR_ARRAY_TYPE_EXT 0x845B
 SECONDARY_COLOR_ARRAY_STRIDE_EXT 0x845C

 Accepted by the <pname> parameter of GetPointer v:

 SECONDARY_COLOR_ARRAY_POINTER_EXT 0x845D

 Accepted by the <array> parameter of EnableClie ntState and
 DisableClientState:

 SECONDARY_COLOR_ARRAY_EXT 0x845E

Additions to Chapter 2 of the 1.2 Draft Specificati on (OpenGL Operation)

 These changes describe a new current state type, the secondary color, and
 the commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

 "Each vertex is specified with two, three, or four coordinates. In
 addition, a current normal, current texture coordinates, current
 color, and current secondary color may be u sed in processing each
 vertex."

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 890

 Third paragraph, second sentence changed to:

 "These associated colors are either based o n the current color and
 current secondary color, or produced by lig hting, depending on
 whether or not lighting is enabled."

 - 2.6.3, p. 19) First paragraph changed to

 "The only GL commands that are allowed with in any Begin/End pairs
 are the commands for specifying vertex coor dinates, vertex colors,
 normal coordinates, and texture coordinates (Vertex, Color,
 SecondaryColorEXT, Index, Normal, TexCoord) ..."

 - (2.7, p. 20) Starting with the fourth paragraph , change to:

 "Finally, there are several ways to set the current color and
 secondary color. The GL stores a current si ngle-valued color index
 as well as a current four-valued RGBA color and secondary color.
 Either the index or the color and secondary color are significant
 depending as the GL is in color index mode or RGBA mode. The mode
 selection is made when the GL is initialize d.

 The commands to set RGBA colors and seconda ry colors are:

 void Color[34][bsifd ubusui](T componen ts)
 void Color[34][bsifd ubusui]v(T compone nts)
 void SecondaryColor3[bsifd ubusui]EXT(T components)
 void SecondaryColor3[bsifd ubusui]vEXT(T components)

 The color command has two major variants: C olor3 and Color4. The
 four value versions set all four values. Th e three value versions
 set R, G, and B to the provided values; A i s set to 1.0. (The
 conversion of integer color components (R, G, B, and A) to
 floating-point values is discussed in secti on 2.13.)

 The secondary color command has only the th ree value versions.
 Secondary A is always set to 0.0.

 Versions of the Color and SecondaryColorEXT commands that take
 floating-point values accept values nominal ly between 0.0 and
 1.0...."

 The last paragraph is changed to read:

 "The state required to support vertex speci fication consists of four
 floating-point numbers to store the current texture coordinates s,
 t, r, and q, four floating-point values to store the current RGBA
 color, four floating-point values to store the current RGBA
 secondary color, and one floating-point val ue to store the current
 color index. There is no notion of a curren t vertex, so no state is
 devoted to vertex coordinates. The initial values of s, t, and r of
 the current texture coordinates are zero; t he initial value of q is
 one. The initial current normal has coordin ates (0,0,1). The initial
 RGBA color is (R,G,B,A) = (1,1,1,1). The in itial RGBA secondary
 color is (R,G,B,A) = (0,0,0,0). The initial color index is 1."

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 891

 - (2.8, p. 21) Added secondary color command for vertex arrays:

 Change first paragraph to read:

 "The vertex specification commands describe d in section 2.7 accept
 data in almost any format, but their use re quires many command
 executions to specify even simple geometry. Vertex data may also be
 placed into arrays that are stored in the c lient's address space.
 Blocks of data in these arrays may then be used to specify multiple
 geometric primitives through the execution of a single GL command.
 The client may specify up to seven arrays: one each to store edge
 flags, texture coordinates, colors, seconda ry colors, color indices,
 normals, and vertices. The commands"

 Add to functions listed following first paragra ph:

 void SecondaryColorPointerEXT(int size, enu m type, sizei stride,
 void *pointer)

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ------- ----- -----
 SecondaryColorPointerEXT 3 byte,ub yte,short,ushort,int,uint,
 float,d ouble

 Starting with the second paragraph on p. 23, ch ange to add
 SECONDARY_COLOR_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_ COORD_ARRAY, COLOR_ARRAY,
 SECONDARY_COLOR_ARRAY_EXT, INDEX_ARRAY, NOR MAL_ARRAY, or
 VERTEX_ARRAY, for the edge flag, texture co ordinate, color,
 secondary color, color index, normal, or ve rtex array, respectively.

 The ith element of every enabled array is t ransferred to the GL by
 calling

 void ArrayElement(int i)

 For each enabled array, it is as though the corresponding command
 from section 2.7 or section 2.6.2 were call ed with a pointer to
 element i. For the vertex array, the corres ponding command is
 Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
 one of [s,i,f,d], corresponding to array ty pes short, int, float,
 and double respectively. The corresponding commands for the edge
 flag, texture coordinate, color, secondary color, color index, and
 normal arrays are EdgeFlagv, TexCoord<size> <type>v,
 Color<size><type>v, SecondaryColor3<type>vE XT, Index<type>v, and
 Normal<type>v, respectively..."

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 892

 Change pseudocode on p. 27 to disable secondary color array for
 canned interleaved array formats. After the lin es

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

 insert the line

 DisableClientState(SECONDARY_COLOR_ARRA Y_EXT);

 Substitute "seven" for every occurence of "six" in the final paragraph
 on p. 27.

 - (2.12, p. 41) Add secondary color to the curren t rasterpos state.

 Change the last paragraph to read

 "The current raster position requires five single-precision
 floating-point values for its x_w, y_w, and z_w window coordinates,
 its w_c clip coordinate, and its eye coordi nate distance, a single
 valid bit, a color (RGBA color, RGBA second ary color, and color
 index), and texture coordinates for associa ted data. In the initial
 state, the coordinates and texture coordina tes are both $(0,0,0,1)$,
 the eye coordinate distance is 0, the valid bit is set, the
 associated RGBA color is $(1,1,1,1)$, the a ssociated RGBA secondary
 color is $(0,0,0,0)$, and the associated co lor index color is 1. In
 RGBA mode, the associated color index alway s has its initial value;
 in color index mode, the RGBA color and and secondary color always
 maintain their initial values."

 - (2.13, p. 43) Change second paragraph to acknow ledge two colors when
 lighting is disabled:

 "Next, lighting, if enabled, produces eithe r a color index or
 primary and secondary colors. If lighting i s disabled, the current
 color index or current color (primary color) and current secondary
 color are used in further processing. After lighting, RGBA colors
 are clamped..."

 - (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
 both lit and unlit paths.

 - (2.13.1, p. 44) Change so that the second parag raph starts:

 "Lighting may be in one of two states:

 1. Lighting Off. In this state, the current co lor and current secondary
 color are assigned to the vertex primary co lor and vertex secondary
 color, respectively.

 2. ..."

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 893

 - (2.13.1, p. 48) Change the sentence following e quation 2.5 (for spot_i)
 so that color sum is implicitly enabled when SE PARATE_SPECULAR_COLOR is
 set:

 "All computations are carried out in eye coordi nates. When c_es =
 SEPARATE_SPECULAR_COLOR, it is as if color sum (see section 3.9) were
 enabled, regardless of the value of COLOR_SUM_E XT."

 - (3.9, p. 136) Change the first paragraph to rea d

 "After texturing, a fragment has two RGBA color s: a primary color c_pri
 (which texturing, if enabled, may have modified) and a secondary color
 c_sec.

 If color sum is enabled, the components of thes e two colors are summed
 to produce a single post-texturing RGBA color c (the A component of the
 secondary color is always 0). The components of c are then clamped to
 the range [0,1]. If color sum is disabled, then c_pri is assigned to the
 post texturing color. Color sum is enabled or d isabled using the generic
 Enable and Disable commands, respectively, with the symbolic constant
 COLOR_SUM_EXT.

 The state required is a single bit indicating w hether color sum is
 enabled or disabled. In the initial state, colo r sum is disabled."

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 Eight new GL rendering commands are added. The following commands
 are sent to the server as part of a glXRender r equest:

 SecondaryColor3bvEXT
 2 8 rendering c ommand length
 2 4126 rendering c ommand opcode
 1 INT8 v[0]
 1 INT8 v[1]
 1 INT8 v[2]
 1 unused

 SecondaryColor3svEXT
 2 12 rendering c ommand length
 2 4127 rendering c ommand opcode
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 894

 SecondaryColor3ivEXT
 2 16 rendering c ommand length
 2 4128 rendering c ommand opcode
 4 INT32 v[0]
 4 INT32 v[1]
 4 INT32 v[2]

 SecondaryColor3fvEXT
 2 16 rendering c ommand length
 2 4129 rendering c ommand opcode
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

 SecondaryColor3dvEXT
 2 28 rendering c ommand length
 2 4130 rendering c ommand opcode
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 SecondaryColor3ubvEXT
 2 8 rendering c ommand length
 2 4131 rendering c ommand opcode
 1 CARD8 v[0]
 1 CARD8 v[1]
 1 CARD8 v[2]
 1 unused

 SecondaryColor3usvEXT
 2 12 rendering command length
 2 4132 rendering c ommand opcode
 2 CARD16 v[0]
 2 CARD16 v[1]
 2 CARD16 v[2]
 2 unused

 SecondaryColor3uivEXT
 2 16 rendering command length
 2 4133 rendering c ommand opcode
 4 CARD32 v[0]
 4 CARD32 v[1]
 4 CARD32 v[2]

Errors

 INVALID_VALUE is generated if SecondaryColorPoi nterEXT parameter <size>
 is not 3.

 INVALID_ENUM is generated if SecondaryColorPoin terEXT parameter <type>
 is not BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHO RT, INT, UNSIGNED_INT,
 FLOAT, or DOUBLE.

 INVALID_VALUE is generated if SecondaryColorPoi nterEXT parameter
 <stride> is negative.

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 895

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_SECONDARY_COLOR_EXT C GetIntegerv, (0,0,0,0) Current 2.7 current
 GetFloatv secondary color

(table 6.6, p. 197)
Get Value Type Get Com mand Initial Value Description Sec Attribute
--------- ---- ------- ---- ------------- ----------- --- ---------
SECONDARY_COLOR_ARRAY_EXT B IsEnabl ed False Sec. color array enable 2.8 vertex-array
SECONDARY_COLOR_ARRAY_SIZE_EXT Z+ GetInte gerv 3 Sec. colors per vertex 2.8 vertex-array
SECONDARY_COLOR_ARRAY_TYPE_EXT Z8 GetInte gerv FLOAT Type of sec. color compone nts 2.8 vertex-array
SECONDARY_COLOR_ARRAY_STRIDE_EXT Z+ GetInte gerv 0 Stride between sec. colors 2.8 vertex-array
SECONDARY_COLOR_ARRAY_POINTER_EXT Y GetPoin terv 0 Pointer to the sec. color array 2.8 vertex-array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
COLOR_SUM_EXT B IsEnabled False True if color 3.9 fog/enable
 sum enabled

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 896

Name

 EXT_separate_specular_color

Name Strings

 GL_EXT_separate_specular_color

Version

 $Date: 1997/10/05 00:16:23 $ $Revision: 1.3 $

Number

 144

Dependencies

 None

Overview

 This extension adds a second color to rasterizati on when lighting is
 enabled. Its purpose is to produce textured obje cts with specular
 highlights which are the color of the lights. It applies only to
 rgba lighting.

 The two colors are computed at the vertexes. The y are both clamped,
 flat-shaded, clipped, and converted to fixed-poin t just like the
 current rgba color (see Figure 2.8). Rasterizati on interpolates
 both colors to fragments. If texture is enabled, the first (or
 primary) color is the input to the texture enviro nment; the fragment
 color is the sum of the second color and the colo r resulting from
 texture application. If texture is not enabled, the fragment color
 is the sum of the two colors.

 A new control to LightModel*, LIGHT_MODEL_COLOR_C ONTROL_EXT, manages
 the values of the two colors. It takes values: S INGLE_COLOR_EXT, a
 compatibility mode, and SEPARATE_SPECULAR_COLOR_E XT, the object of
 this extension. In single color mode, the primar y color is the
 current final color and the secondary color is 0. 0. In separate
 specular mode, the primary color is the sum of th e ambient, diffuse,
 and emissive terms of final color and the seconda ry color is the
 specular term.

 There is much concern that this extension may not be compatible with
 the future direction of OpenGL with regards to be tter lighting and
 shading models. Until those impacts are resolved , serious
 consideration should be given before adding to th e interface
 specified herein (for example, allowing the user to specify a
 second input color).

Issues

 * Where is emissive included?

 RESOLVED - Emissive is included with the ambien t and diffuse

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 897

 terms. Grouping emissive with specular (the "p roper" thing) could
 be implemented with a new value for the color c ontrol.

* Should there be two colors when not lighting or w ith index
 lighting?

 RESOLVED - The answer is probably yes--there sh ould be two colors
 when lighting is disabled and there could be an incorporation of
 two colors with index lighting; but these are b eyond the scope of
 this extension. Further, attempts to accomplis h these may not be
 compatible with the future direction of OpenGL with respect to
 high quality lighting and shading models.

 * What happens when texture is disabled?

 RESOLVED - The extension specifies to add the t wo colors when
 texture is disabled. This is compatible with t he philosophy of
 "if texture is disabled, this mode does not app ly".

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of LightModel*, and also by the
 <pname> parameter of GetBooleanv, GetIntegerv, Ge tFloatv, and
 GetDoublev:

 LIGHT_MODEL_COLOR_CONTROL_EXT 0x81F8

 Accepted by the <param> parameter of LightModel* when <pname> is
 LIGHT_MODEL_COLOR_CONTROL_EXT:

 SINGLE_COLOR_EXT 0x81F9
 SEPARATE_SPECULAR_COLOR_EXT 0x81FA

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 - (2.13, p. 40) Rework the second paragraph to ac knowledge two
 colors:

 "Next, lighting, if enabled, produces either a color index or
 primary and secondary colors. If lighting is d isabled, the
 current color index or color is used in further processing (the
 current color is the primary color and the seco ndary color is 0).
 After lighting, colors are clamped..."

 - (Figure 2.8, p. 41) Change RGBA to primary RGBA and secondary RGB:

 Ideally, there might be an RGB2 underneath RGBA (both places).
 Alternatively, a note in the caption could clar ify that RGBA
 referred to the primary RGBA and a secondary RG B. (Speaking of
 the caption, the part about "m is the number of bits an R, G, B,
 or A component" could be removed as m doesn't a ppear in the
 diagram.)

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 898

 - (2.13.1, p. 42) Rework the opening of this sect ion to not imply a
 single color:

 In the first sentence, change "a color" to "col ors". Rephrase the
 itemization of the two lighting states to:

 "1. Lighting Off. In this state, the current co lor is assigned to
 the vertex primary color. The vertex secon dary color is 0.

 2. Lighting On. In this state, the vertex pri mary and secondary
 colors are computed from the current lighti ng parameters."

 - (Table 2.7, p.44) Add new entry (at the bottom) :

 Parameter Type Default Value Description
 --------- ---- ---------------- ------------ ------------------
 c_es enum SINGLE_COLOR_EXT controls com putation of colors

 - (p. 45, top of page) Rephrase the first line an d equation:

 "Lighting produces two colors at a vertex: a pr imary color c_1 and
 a secondary color c_2. The values of c_1 and c _2 depend on the
 light model color control, c_es (note: c_es sho uld be in italics
 and c_1 and c_2 in bold, so this really won't b e as confusing as
 it seems). If c_es = SINGLE_COLOR_EXT, then th e equations to
 compute c_1 and c_2 are (note: the equation for c_1 is the current
 equation for c):

 c_1 = e_cm
 + a_cm * a_cs
 + SUM(att_i * spot_i * (a_cm * a_cli
 + dot(n, VP_pli) * d _cm * d_cli
 + f_i * dot(n, h_i)^ s_rm * s_cm * s_cli)
 c_2 = 0

 If c_es = SEPARATE_SPECULAR_COLOR_EXT, then:

 c_1 = e_cm
 + a_cm * a_cs
 + SUM (att_i * spot_i * (a_cm * a_cli
 + (n dot VP_pli) * d_cm * d_cli)

 c_2 = SUM(att_i * spot_i * (f_i * (n dot h_i) ^s_rm * s_cm * s_cli)

 - (p. 45, second paragraph from bottom) Clarify t hat A is in the
 primary color:

 After the sentence "The value of A produced by lighting is the
 alpha value associated with d_cm", add "A is al ways associated
 with the primary color c_1; c_2 has no alpha co mponent."

 - (Table 2.8, p. 48) Add a new entry (at the bott om):

 Parameter Name Numbe r of values
 --------- ----------------------------- ----- -----------
 c_es LIGHT_MODEL_COLOR_CONTROL_EXT 1

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 899

 - (2.13.6, p. 51) Clarify that both primary and s econdary colors are
 clamped:

 Replace "RGBA" in the first line of the section with "both primary
 and secondary".

 - (2.13.7, p. 52) Clarify what happens to primary and secondary
 colors when flat shading--reword the first para graph:

 "A primitive may be flatshaded, meaning that al l vertices of the
 primitive are assigned the same color index or primary and
 secondary colors. These come from the vertex t hat spawned the
 primitive. For a point, these are the colors a ssociated with the
 point. For a line segment, they are the colors of the second
 (final) vertex of the segment. For a polygon, they come from a
 selected vertex depending on how the polygon wa s generated. Table
 2.9 summarizes the possibilities."

 - (2.13.8, p. 52) Rework to not imply a single co lor:

 In the second sentence, change "If the color is " to "Those" and ",
 it is" to "are". In the first sentence of the next paragraph,
 change "the color" to "two colors".

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 - (Figure 3.1, p. 55) Add a box between texturing and fog called
 "color sum".

 - (3.8, p. 85) In the first paragraph, second sen tence, insert
 "primary" before RGBA. Insert after this sente nce "Texturing does
 not affect the secondary color."

 - (new section before 3.9) Insert new section tit led "Color Sum":

 "At the beginning of this stage in RGBA mode, a fragment has two
 colors: a primary RGBA color (which texture, if enabled, may have
 modified) and a secondary RGB color. This stag e sums the R, G,
 and B components of these two colors to produce a single RGBA
 color. If the resulting RGB values exceed 1.0, they are clamped
 to 1.0.

 In color index mode, a fragment only has a sing le color index and
 this stage does nothing."

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None.

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 - (5.3, p. 137) Specify that feedback returns the primary color by
 changing the last sentence of the large paragra ph in the middle
 of the page to:

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 900

 "The colors returned are the primary colors. T hese colors and the
 texture coordinates are those resulting from th e clipping operations
 as described in section 2.13.8."

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 - (Table 6.9, p. 157) Add:

 Get Value - LIGHT_MODEL_COLOR_CONTROL_EXT
 Type - Z2
 Get Cmnd - GetIntegerv
 Initial Value - SINGLE_COLOR_EXT
 Description - color control
 Sec. - (whatever it ends up as)
 Attribute - lighting

Additions to the GLX Specification

 None.

GLX Protocol

 None.

Errors

 None.

New State

 (see changes to table 6.9)

NVIDIA OpenGL Extension Specifications EXT_shadow_funcs

 901

Name

 EXT_shadow_funcs

Name Strings

 GL_EXT_shadow_funcs

Status

 Complete

Version

 Last Modified Date: $Date: 2002/03/22 $
 NVIDIA Revision: $Revision: #5 $

Number

 267

Dependencies

 OpenGL 1.1 is required.
 ARB_depth_texture is required.
 ARB_shadow is required.
 This extension is written against the OpenGL 1. 3 Specification.

Overview

 This extension generalizes the GL_ARB_shadow ex tension to support all
 eight binary texture comparison functions rathe r than just GL_LEQUAL
 and GL_GEQUAL.

IP Status

 None.

Issues

 (1) What should this extension be called?

 RESOLUTION: EXT_shadow_funcs. The extension adds new texture
 compare (shadow) comparison functions to ARB_ shadow.

 (2) Are there issues with GL_EQUAL and GL_NOTEQ UAL?

 The GL_EQUAL mode (and GL_NOTEQUAL) may be di fficult to obtain
 well-defined behavior from. This is because t here is no guarantee
 that the divide done by the shadow mapping r/ q division is going
 to exactly match the z/w perspective divide a nd depth range scale
 & bias used to generate depth values. Perhap s it can work in a
 well-defined manner in orthographic views or if you can guarantee
 that the texture hardware's r/q is computed w ith the same hardware
 used to compute z/w (NVIDIA's NV_texture_shad er extension can
 provide such a guarantee).

EXT_shadow_funcs NVIDIA OpenGL Extension Specifications

 902

 Similiarly, GL_LESS and GL_GREATER or only di fferent from GL_LEQUAL
 and GL_GEQUAL respectively by a single unit o f depth precision
 which may make the difference between these m odes very subtle.

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the 1.3 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.3 Specification (Ra sterization)

 Section 3.8.4, Texture Parameters , p. 133, update table 3.19 with the
 following new legal values for TEXTURE_COMPARE_ FUNC_ARB:

 Name Type Legal Val ues
 -------------------------- ---- --------- ----------------------
 TEXTURE_COMPARE_FUNC_ARB enum LEQUAL, G EQUAL, LESS, GREATER,
 EQUAL, NO TEQUAL, ALWAYS, NEVER

 After section 3.8.12, Texture Environments and Texture Functions,
 p. 149, update the texture compare pseudo-code in section 3.8.13.1
 (as added by ARB_shadow):

 if TEXTURE_COMPARE_MODE_ARB = NONE

 r = Dt

 else if TEXTURE_COMPARE_MODE_ARB = COMPARE_ R_TO_TEXTURE_ARB

 if TEXTURE_COMPARE_FUNC_ARB = LEQUAL

 { 1.0, if R <= Dt
 r = {
 { 0.0, if R > Dt

 else if TEXTURE_COMPARE_FUNC_ARB = GEQU AL

 { 1.0, if R >= Dt
 r = {
 { 0.0, if R < Dt

 else if TEXTURE_COMPARE_FUNC_ARB = LESS

 { 1.0, if R < Dt
 r = {
 { 0.0, if R >= Dt

 else if TEXTURE_COMPARE_FUNC_ARB = GREA TER

NVIDIA OpenGL Extension Specifications EXT_shadow_funcs

 903

 { 1.0, if R > Dt
 r = {
 { 0.0, if R <= Dt

 else if TEXTURE_COMPARE_FUNC_ARB = EQUA L

 { 1.0, if R == Dt
 r = {
 { 0.0, if R != Dt

 else if TEXTURE_COMPARE_FUNC_ARB = NOTE QUAL

 { 1.0, if R != Dt
 r = {
 { 0.0, if R == Dt

 else if TEXTURE_COMPARE_FUNC_ARB = ALWA YS

 r = 1.0

 else if TEXTURE_COMPARE_FUNC_ARB = NEVE R

 r = 0.0

 endif

 if DEPTH_TEXTURE_MODE_ARB = LUMINANCE

 Lt = r

 else if DEPTH_TEXTURE_MODE_ARB = INTENS ITY

 It = r

 else if DEPTH_TEXTURE_MODE_ARB = ALPHA

 At = r

 endif

 endif

Additions to Chapter 4 of the 1.3 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.3 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.3 Specification (St ate and State Requests)

 None

EXT_shadow_funcs NVIDIA OpenGL Extension Specifications

 904

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated if TexParameter[if][v] parameter <pname>
 is TEXTURE_COMPARE_FUNC_ARB and parameter <para m> is not one of
 LEQUAL, GEQUAL, LESS, GREATER, EQUAL, NOTEQUAL, ALWAYS, or NEVER.

New State

 In table 6.16, Texture Objects, p. 224, add the following:

 Get Value Type Get Command Initial Value Description Sec. Attr ibute
 -------------------------- ---- ------------- ------- ------------- -------------- ----- ---- -----
 TEXTURE_COMPARE_FUNC_ARB Z_8 GetTexParamet er[if]v LEQUAL compare func 3.8.13 text ure

New Implementation Dependent State

 None

Revision History

 None

NV20 Implementation Details

 NV20 (GeForce3 and Quadro DCC) will fallback to software rasterization
 if two or more texture units have distinct TEXT URE_COMPARE_FUNC_ARB
 settings that are not opposites (eg, GL_EQUAL a nd GL_NOTEQUAL).
 This is not an issue on NV25 (GeForce4 and Quad ro4).

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

 905

Name

 EXT_shared_texture_palette

Name Strings

 GL_EXT_shared_texture_palette

Version

 $Date: 2004/03/24 23:23:04 $ $Revision: 1.4 $

Number

 141

Support

 Mesa.

 Selected NVIDIA GPUs: NV1x (GeForce 256, GeForc e2, GeForce4 MX,
 GeForce4 Go, Quadro, Quadro2), NV2x (GeForce3, GeForce4 Ti,
 Quadro DCC, Quadro4 XGL), and NV3x (GeForce FX 5xxxx, Quadro FX
 1000/2000/3000). NV3 (Riva 128) and NV4 (TNT, TNT2) GPUs and NV4x
 GPUs do NOT support this functionality (no hard ware support).
 Future NVIDIA GPU designs will no longer suppor t paletted textures.

 S3 ProSavage, Savage 2000.

 3Dfx Voodoo3, Voodoo5.

 3Dlabs GLINT.

Dependencies

 EXT_paletted_texture is required.

Overview

 EXT_shared_texture_palette defines a shared tex ture palette which may be
 used in place of the texture object palettes pr ovided by
 EXT_paletted_texture. This is useful for rapidl y changing a palette
 common to many textures, rather than having to reload the new palette
 for each texture. The extension acts as a switc h, causing all lookups
 that would normally be done on the texture's pa lette to instead use the
 shared palette.

Issues

 * Do we want to use a new <target> to ColorTab le to specify the
 shared palette, or can we just infer the new target from the
 corresponding Enable?

 * A future extension of larger scope might def ine a "texture palette
 object" and bind these objects to texture ob jects dynamically, rather
 than making palettes part of the texture obj ect state as the current
 EXT_paletted_texture spec does.

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

 906

 * Should there be separate shared palettes for 1D, 2D, and 3D
 textures?

 Probably not; palette lookups have nothing t o do with the
 dimensionality of the texture. If multiple s hared palettes
 are needed, we should define palette objects .

 * There's no proxy mechanism for checking if a shared palette can
 be defined with the requested parameters. Wi ll it suffice to
 assume that if a texture palette can be defi ned, so can a shared
 palette with the same parameters?

 * The changes to the spec are based on changes already made for
 EXT_paletted_texture, which means that all t hree documents must
 be referred to. This is quite difficult to r ead.

 * The changes to section 3.8.6, defining how s hared palettes are
 enabled and disabled, might be better placed in section 3.8.1.
 However, the underlying EXT_paletted_texture does not appear to
 modify these sections to define exactly how palette lookups are
 done, and it's not clear where to put the ch anges.

 * How does the shared texture palette interact with multitexture
 support? There is a single global shared te xture palette that
 all texture units utilize (as opposed to a s hared texture palette
 per texture unit).

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, GetDoublev, IsEnabled, Enable, Disab le, ColorTableEXT,
 ColorSubTableEXT, GetColorTableEXT, GetColorTab leParameterivEXT, and
 GetColorTableParameterfd EXT:

 SHARED_TEXTURE_PALETTE_EXT 0x81FB

Additions to Chapter 2 of the 1.1 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.1 Specification (Ra sterization)

 Section 3.8, 'Texturing,' subsection 'Texture Ima ge Specification' is
 modified as follows:

 In the Palette Specification Commands section, the sentence
 beginning 'target specifies which texture is to ' should be changed
 to:

 target specifies the texture palette or share d palette to be
 changed, and may be one of TEXTURE_1D, TEXTUR E_2D,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3 D_EXT,

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

 907

 PROXY_TEXTURE_3D_EXT, or SHARED_TEXTURE_PALET TE_EXT.

 In the 'Texture State and Proxy State' section, the sentence
 beginning 'A texture's palette is initially...' should be changed
 to:

 There is also a shared palette not associated with any texture,
 which may override a texture palette. (Even w hen multiple texture
 units are available, there is still only a si ngle shared texture
 palette.) All palettes are initially...

 Section 3.8.6, 'Texture Application' is modified by appending the
 following:

 Use of the shared texture palette is enabled or disabled using the
 generic Enable or Disable commands, respectivel y, with the symbolic
 constant SHARED_TEXTURE_PALETTE_EXT.

 The required state is one bit indicating whethe r the shared palette is
 enabled or disabled. In the initial state, the shared palettes is
 disabled.

Additions to Chapter 4 of the 1.1 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.1 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.1 Specification (St ate and State Requests)

 In the section on GetTexImage, the sentence beg inning 'If format is
 not COLOR_INDEX...' should be changed to:

 If format is not COLOR_INDEX, the texture's i ndices are passed
 through the texture's palette, or the shared palette if one is
 enabled, and the resulting components are ass igned among R, G, B,
 and A according to Table 6.1.

 In the GetColorTable section, the first sentenc e of the second
 paragraph should be changed to read:

 GetColorTableEXT retrieves the texture palett e or shared palette
 given by target.

 The first sentence of the third paragraph shoul d be changed to read:

 Palette parameters can be retrieved using

 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

 target specifies the texture palette or share d palette being
 queried and pname controls which parameter va lue is returned.

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

 908

Additions to the GLX Specification

 None

New State

Get Value Type Get Command Initial Value Description Sec A ttribute
-------------------------- ---- ----------------- ---------- ------------- -------------- ----- - -------------
SHARED_TEXTURE_PALETTE_EXT B IsEnabled False shared texture 3.8.6 t exture/enable
 palette enable
SHARED_TEXTURE_PALETTE_EXT I GetColorTableEXT empty shared texture 3.8 -
 palette table
COLOR_TABLE_FORMAT_EXT Zn GetColorTablePara meterivEXT RGBA shared texture 3.8 -
 palette format
COLOR_TABLE_WIDTH_EXT Z+ GetColorTablePara meteriv 0 shared texture 3.8 -
 palette width
COLOR_TABLE_x_SIZE_EXT 6xZ+ GetColorTablePara meteriv 0 shared texture 3.8 -
 palette
 component sizes

New Implementation Dependent State

 None

Revision History

 July 10, 2002 - Added "New State" tables entries. Clarify that there
 is a single global shared texture palette, rather than a per-texture
 unit palette when multitexture is available.

 March 24, 2004 - Document vendor support for this extension; note
 that future NVIDIA GPU designs will not support this extension.

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 909

Name

 EXT_stencil_clear_tag

Name Strings

 GL_EXT_stencil_clear_tag

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2004.

Status

 Implemented, September 2004

 Advertised and hardware-supported on NVIDIA GeForce 6 TurboCache
 GPUs.

Version

 Last Modified: 10/15/2004
 NVIDIA Revision: 4

Number

 314

Dependencies

 Written based on the wording of the OpenGL 1.5 specification.

Overview

 Stencil-only framebuffer clears are increasingly common as 3D
 applications are now using rendering algorithms such as stenciled
 shadow volume rendering for multiple light sources in a single frame,
 recent "soft" stenciled shadow volume techniques, and stencil-based
 constructive solid geometry techniques. In such algorithms there
 are multiple stencil buffer clears for each depth buffer clear.
 Additionally in most cases, these algorithms do not require all
 of the 8 typical stencil bitplanes for their stencil requirements.
 In such cases, there is the potential for unused stencil bitplanes
 to encode a "stencil clear tag" in such a way to reduce the number
 of actual stencil clears. The idea is that switching to an unused
 stencil clear tag logically corresponds to when an application would
 otherwise perform a framebuffer-wide stencil clear.

 This extension exposes an inexpensive hardware mechanism for
 amortizing the cost of multiple stencil-only clears by using a
 client-specified number of upper bits of the stencil buffer to
 maintain a per-pixel stencil tag.

 The upper bits of each stencil value is treated as a tag that
 indicates the state of the upper bits of the "stencil clear tag" state
 when the stencil value was last written. If a stencil value is read
 and its upper bits containing its tag do NOT match the current upper
 bits of the stencil clear tag state, the stencil value is substituted
 with the lower bits of the stencil clear tag (the reset value).

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 910

 Either way, the upper tag bits of the stencil value are ignored by
 subsequent stencil function and operation processing of the stencil
 value.

 When a stencil value is written to the stencil buffer, its upper bits
 are overridden with the upper bits of the current stencil clear tag
 state so subsequent reads, prior to any subsequent stencil clear
 tag state change, properly return the updated lower bits.

 In this way, the stencil clear tag functionality provides a way to
 replace multiple bandwidth-intensive stencil clears with very
 inexpensive update of the stencil clear tag state.

 If used as expected with the client specifying 3 bits for the stencil
 tag, every 7 of 8 stencil-only clears of the entire stencil buffer can
 be substituted for an update of the current stencil clear tag rather
 than an actual update of all the framebuffer's stencil values. Still,
 every 8th clear must be an actual stencil clear. The net effect is
 that the aggregate cost of stencil clears is reduced by a factor of
 1/(2^n) where n is the number of bits devoted to the stencil tag.

 The application specifies two new pieces of state: 1) the number of
 upper stencil bits, n, assigned to maintain the tag bits for each
 stencil value within the stencil buffer, and 2) a stencil clear tag
 value that packs the current tag and a reset value into a single
 integer values. The upper n bits of the stencil clear tag value
 specify the current tag while the lower s-min(n,s) bits specify
 the current reset value, where s is the number of bitplanes in the
 stencil buffer and n is the current number of stencil tag bits.

 If zero stencil clear tag bits are assigned to the stencil tag
 encoding, then the stencil buffer operates in the conventional
 manner.

Issues

 1) Can the stencil clear tag state be switched at anytime?

 RESOLUTION: Yes. The state controls the interpretation of
 the stencil values without actually change the values within
 the stencil buffer. So, for example, it is possible to render
 to the stencil buffer with 3 tag bits and then switch to 4 tag
 bits and a different reset value.

 The effect of changing stencil clear tag state is well-defined
 though perhaps not useful.

 The motivation for this decision is to make the underlying
 hardware implementation simple and not encumber operations such
 as stencil readback with extra expense to re-interpret stencil
 values.

 2) Can two distinct OpenGL rendering contexts render to the same
 framebuffer but with different stencil clear tag state?

 RESOLUTION: Yes. The stencil buffer contains raw stencil values
 whose interpretation and update may be different for the two
 contexts, but the values themselves are the same.

 The motivation for this is that it avoids trying to coordinate
 two different contexts into maintaining the same interpretation
 of the stencil buffer. Different contexts can each view the

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 911

 stencil buffer values differently based on their own stencil
 clear tag state.

 3) For the purposes of the stencil comparison and stencil operations,
 how are upper bits of the read stencil value treated?

 RESOLUTION: The upper n bits where n is the current value of
 stencil tag bits (GL_STENCIL_TAG_BITS_EXT) are masked to zero
 when n is greater than zero.

 For example, if a raw stencil value is 0xFA and the current
 stencil tag bits state is 3 with a stencil clear tag value of
 0x82, the effective read stencil value is 0x02 because the upper
 3 bits of 0xFA do not match the upper 3 bits of 0x82 and so the
 effective read stencil value is replaced with the lower 5 bits
 of 0x82 which is 0x02 while masking to zero the upper 3 bits.
 If instead, the stencil clear tag value was 0xEB, then the
 effective read stencil value is 0x1A because the upper 3 bits
 of 0xEB match the upper 3 bits of 0xFF so the effective read
 stencil value is 0xFA with the upper 3 bits masked to zero.

 4) How does the GL_INCR operation work when the stencil tag bits
 value is greater than zero?

 RESOLUTION: GL_INCR saturates to the value 2^(s-min(n,s))-1
 where s is the number of stencil bits in the stencil buffer and n
 is the current value of stencil tag bits, rather than saturating
 to 2^s-1 or wrapping.

 The motivation for this is to ensure that the stencil clear tag
 mechanism can fully emulate stencil buffers with fewer than s
 bits.

 5) What is the initial number of stencil tag bits?

 RESOLUTION: Zero. This is consistent with the conventional
 operation of the stencil buffer. The stencil clear tag value
 state is ignored when the stencil tag bits value is zero.

 6) Should glClear involving GL_STENCIL_BUFFER_BIT be subject to the
 stencil clear tag or tag bits state?

 RESOLUTION: No. An actual clear to the stencil buffer needs to
 reset the bitplanes allocated to the upper stencil tag bits as
 well as the lower bitplanes. So the stencil mask applies, but
 the stencil clear tag and tag bits state is ignored by glClear.

 7) Should glDrawPixels operations be subject to the stencil
 clear tag functionality?

 RESOLUTION: Yes. glDrawPixels to stencil already abides by
 the stencil write mask. Conceptually, think of glDrawPixels to
 stencil as being the GL_REPLACE operation where the value to be
 written comes from the glDrawPixels image rectangle rather than
 the stencil reference value.

 The motivation is to allow the stencil clear tag mechanism to
 fully simulate a stencil buffer with fewer stencil bits.

 If you want to write the entire stencil value, including upper
 bits that are allocated to encode the stencil tag, simply set
 the stencil tag bits state to zero for the duration of the
 glDrawPixels command.

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 912

 8) Should glReadPixels operations of type GL_STENCIL_INDEX be
 subject to the stencil clear tag state?

 RESOLUTION: Yes. So if you read stencil values from the
 stencil buffer, the n upper bits of each stencil value is
 compared to the n upper bits of the stencil clear tag value
 and if they mismatch, the lower s-min(n,s) bits of the stencil
 clear tag value (the reset value) are returned instead, where s
 is the number of stencil bitplanes and n is the current stencil
 tag bits value. In any case, the upper n bits of the stencil
 value are zeroed.

 The motivation is to allow the stencil clear tag mechanism to
 fully simulate a stencil buffer with fewer stencil bits.

 If you want to read the entire stencil value, including upper
 bits that are allocated to encode the stencil tag, then set
 the stencil tag bits state to zero for the duration of the
 glReadPixels command.

 9) Should glCopyPixels operations of type GL_STENCIL_INDEX be
 subject to the stencil clear tag state?

 RESOLUTION: Yes, because glReadPixels and glDrawPixels are both
 affected and glCopyPixels is defined in terms of glReadPixels
 and glDrawPixels.

 10) Should the current tag and reset value in the current stencil
 clear tag be packed into a single value where the stencil tag
 bits value divides the upper tag value bits from the lower reset
 value bits?

 RESOLUTION: Yes. This makes a lot of sense because there are
 always s bits required where n bits are for the current tag value
 and s-min(n,s) bits are for the reset value, where s is the number
 of stencil bitplanes and n is the number of stencil tag bits.

 This packing also makes the explanation of how bit comparisons
 and the required masking operations operate in the specification
 language. It also naturally corresponds to how a hardware
 implementation would maintain the state.

 11) Clears can be scissored to only update a subrectangle of the
 entire framebuffer. Can the stencil clear tag facility accelerate
 scissored clears that do not clear the entire framebuffer?

 RESOLUTION: No. The stencil clear tag state is a single
 per-context state value that applies to the entire framebuffer.

 For scissored clears to sufficiently small enough subrectangles
 of the screen, it may be more advantageous to perform an actual
 scissored clear if changing the current stencil clear tag value
 would be better used to save an subsequent actual stencil clear
 of the entire (or nearly the entire) framebuffer.

 Doom 3 uses scissored clears when performing per-light stencil
 clears for its stenciled shadow volumes where the scissor is a
 2D bound for the light's illumination.

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 913

 12) How does this extension interact with EXT_stencil_two_side or
 other two-sided stencil testing functionality such as that
 provided by OpenGL 2.0?

 RESOLUTION: The stencil clear tag state is not two-sided because
 it reflects the manner that stencil values in the stencil buffer
 are read to and written from the buffer rather than anything to
 do with the facingness of primitives.

 13) How does the GL_KEEP operation operate when the value of
 GL_STENCIL_TAG_BITS_EXT is greater than zero?

 RESOLUTION: GL_KEEP means no stencil write is performed so the
 pixel's stencil value is completely unchanged. This means the
 pixel's stencil value will still have the old stencil tag.

 The rationale for this is that GL_KEEP will always avoid memory
 writes to the stencil buffer, even when the current stencil tag
 state does not match the tag of pixel's stencil value.

 All other stencil operations must actually write the stencil
 tag bits into the upper bits of the pixel's stencil value
 if the old value's tag does not match the current stencil tag
 state. For example, if the value of GL_STENCIL_TAG_BITS_EXT is 3,
 the value of GL_STENCIL_CLEAR_TAG_EXT is 0x80, the stencil write
 mask is 0xFF, and a pixel's stencil value is 0x00, the result
 of a GL_ZERO stencil operation for this pixel is to write 0x80.
 into the stencil buffer.

 14) How does a stencil write mask of zero operate when the value of
 GL_STENCIL_GENERATION_BITS_EXT is greater than zero?

 RESOLUTION: A stencil write mask of zero means no stencil write
 is performed so the pixel's stencil value is completely unchanged.
 This means the pixel's stencil value will still have the old
 stencil tag bits.

 The rationale for this is essentially the same for GL_KEEP's
 behavior in the previous issue.

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 914

 15) Conceptually, how does the stencil clear tag functionality
 augment the existing stencil processing pipeline?

 RESOLUTION: Unextended OpenGL stencil processing (ignoring the
 depth test interactions) says:

 read stencil value
 |
 v
 evaluate stencil function
 |
 v
 apply appropriate stencil operation
 |
 v
 if operation is non-GL_KEEP, write stencil value

 The EXT_stencil_clear_tag functionality augments this pipeline
 with two new stages:

 read stencil value
 |
 v
 perform stencil clear tag "read merge"
 |
 v
 evaluate stencil function
 |
 v
 apply appropriate stencil operation
 |
 v
 perform stencil clear tag "write merge"
 |
 v
 if a non-KEEP operation, write stencil value

 The new stencil clear tag merge stages are pass-through operations
 if the value of GL_STENCIL_TAG_BITS_EXT is zero (the initial
 state).

 16) Can you provide an example of how this stencil clear tag mechanism
 could be used to eliminate stencil clears for a stenciled shadow
 volume application with multiple light sources per frame.

 First assume the application's shadow complexity is such that
 scenes never exceed a shadow complexity of 31 (or 63 or 127)
 at any pixel, meaning a 5 (or 6 or 7) bit stencil buffer is
 sufficient to avoid artifacts.

 The code assumes "Z fail" shadow volume rendering with two-sided
 stencil testing and an 8-bit stencil buffer.

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 915

 So initialize the stencil-related state as follows:

 const GLint stencilTagBits = 3; // or 2 or 1
 const int hasStencilClearTagExtension =
 queryExtension("GL_EXT_stencil_clear_tag");

 GLint stencilBits;
 GLuint maxStencilValue;
 GLint tagInit;
 GLint tagDecrement;
 GLint stencilClearTag;

 if (hasStencilClearTagExtension) {
 glGetIntegerv(GL_STENCIL_BITS, &stencilBits);
 maxStencilValue = (1U<<stencilBits)-1;
 assert(stencilBits > stencilTagBits);
 tagDecrement = 1<<(stencilBits - stencilTagBits);
 tagInit = ~(tagDecrement-1) & maxStencilValue;

 glStencilClearTagEXT(stencilTagBits, tagInit);
 glStencilClear(tagInit);
 } else {
 glStencilClear(0);
 }

 glEnable(GL_STENCIL_TWO_SIDE_EXT);
 glActiveStencilFaceEXT(GL_BACK);
 glStencilMask(~0);
 glActiveStencilFaceEXT(GL_FRONT);
 glStencilMask(~0);

 Then rendering one frame of a shadowed scene looks like:

 int i;

 glDepthMask(1);
 glColorMask(1,1,1,1);

 if (hasStencilClearTagExtension) {
 stencilClearTag = tagInit;
 glStencilClearTagEXT(stencilTagBits, stencilClearTag);
 }
 glClear(GL_STENCIL_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT |
 GL_COLOR_BUFFER_BIT);

 glDisable(GL_BLEND);
 glDisable(GL_STENCIL_TEST);
 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST);

 renderDepthAndAmbient();

 glEnable(GL_BLEND);
 glBlendFunc(GL_ONE, GL_ONE);
 glEnable(GL_STENCIL_TEST);
 glDepthMask(0);
 glDepthFunc(GL_EQUAL);

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 916

 for (i=0; i<numberOfLights; i++) {
 if (i == 0) {
 // First light can hitches ride on frame's initial gang clear
 } else {
 // Subsequent lights must effect a clear
 if (hasStencilClearTagExtension) {
 // Did start on a new set of tags?
 if (stencilClearTag == tagInit) {
 // If so, do real stencil clear and reset stencilClearTag.
 glClear(GL_STENCIL_BUFFER_BIT);
 // Decrement to next tag.
 stencilClearTag -= tagDecrement;
 }
 // Are we out of tags?
 else if (stencilClearTag == 0) {
 // Reset to the initial tag.
 stencilClearTag = tagInit;
 } else {
 // Decrement to next tag.
 stencilClearTag -= tagDecrement;
 }
 glStencilClearTagEXT(stencilTagBits, stencilClearTag);
 } else {
 // Actual per-light clear needed
 glClear(GL_STENCIL_BUFFER_BIT);
 }
 }
 glActiveStencilFaceEXT(GL_BACK);
 glStencilFunc(GL_ALWAYS, 0, ~0);
 glStencilOp(GL_KEEP, GL_INCR_WRAP, GL_KEEP);
 glActiveStencilFaceEXT(GL_FRONT);
 glStencilFunc(GL_ALWAYS, 0, ~0);
 glStencilOp(GL_KEEP, GL_DECR_WRAP, GL_KEEP);
 glColorMask(0,0,0,0);

 renderShadowVolumesForLight(i);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilFunc(GL_EQUAL, 0, ~0);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
 glActiveStencilFaceEXT(GL_FRONT);
 glStencilFunc(GL_EQUAL, 0, ~0);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
 glColorMask(1,1,1,1);

 renderLightingContributionForLight(i);
 }

 A smarter implementation could include computation of the scissor
 (and depth bounds) for each light source. If the number of
 lights exceeds the number of available stencil tags, the lights
 with the smallest scissor area could be performed as actual
 scissored clears so the clears to the largest regions could be
 done as stencil clear tag state updates.

 stencilTagBits can be adjusted based on the number of active
 lights. For example, if there are only 4 lights active,
 stencilTagBits could be 2 instead of 3 and thereby recover a
 bit of stencil precision for the shadow volume count.

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 917

 17) Why "s-min(n,s)" instead of simply "s-n" where s is the number
 of stencil bits and n is the number of stencil tag bits?

 RESOLVED: This makes sure if a context migrates to a
 drawable with fewer stencil bits than a drawable had when
 glStencilClearTagEXT was last called, the effect should be
 well-defined.

 For example, if glStencilClearTagEXT(3,0) is called with an
 8-bit stencil buffer and then that context is bound to a drawable
 with no stencil buffer (effectively, 0 bits), s-min(n,s) is zero
 rather than s-n being -3.

 18) Should the stencil reference value be ANDed with
 2^(s-min(n,s))-1?

 RESOLOVED: Yes. this way the reference value and the compared
 stencil value compare a matching number of bits.

New Procedures and Functions

 StencilClearTagEXT(sizei stencilTagBits,
 uint stencilClearTag)

New Tokens

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 STENCIL_TAG_BITS_EXT 0x88F2
 STENCIL_CLEAR_TAG_VALUE_EXT 0x88F3

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 Section 4.1.5 "Stencil Test" (page 174), add after the 1st paragraph:

 "The command

 void StencilClearTagEXT(sizei stencilTagBits,
 uint stencilClearTag);

 controls the stencil clear tag state. stencilTagBits is a count of
 the number of most-significant stencil buffer bits involved in the
 stencil clear tag update. The error INVALID_VALUE is generated if
 stencilTagBits is negative or greater or equal to s."

 Add after the 2nd sentence in the 2nd paragraph:

 "The effective reference value used for the stencil comparison is
 ref ANDed with 2^(s-min(n,s))-1, where n is equal to stencilTagBits."

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 918

 Addd after the 2nd paragraph:

 "The stored stencil value used for the stencil comparison and
 subsequent stencil operations is obtained by reading the pixel's
 corresponding stencil value from the stencil buffer and possibly
 modifying that value based on the stencil clear tag state.

 The stored stencil value is modified prior to the stencil comparison
 if n (again where n is equal to stencilTagBits) is greater than zero;
 otherwise if zero, the stored stencil value remains unmodified.
 If n is greater than zero and the n most-significant bits of
 the stored stencil value all match the corresponding bits of
 the stencilClearTag, then the stored stencil value is ANDed with
 2^(s-min(n,s))-1. If n is greater than zero and the n most-significant
 bits of the stored stencil value do NOT match all the corresponding
 bits of the stencilClearTag, then the stored stencil value becomes
 stencilClearTag ANDed with 2^(s-min(n,s))-1. "

 Change the KEEP operation description in the 4th sentence to indicate
 that KEEP does not perform the stencil clear tag write merge:

 "keeping the current value without writing the stencil buffer,"

 Change the second sentence of the fourth paragraph to read:

 "Incrementing or decrementing with saturation clamps the stencil
 value at 0 and 2^(s-min(n,s))-1 so when stencilTagBits is zero the
 maximum saturation value is the maximum representable stencil value."

 Section 4.2.5 "Fine Control of Buffer Updates" (page 185), prior to
 the paragraph describing the StencilMask command, add:

 "Writes to the stencil buffer are controlled through a combination
 of stencil mask and stencil clear tag state."

 Then add after the paragraph describing the StencilMask command:

 "If the stencil mask ANDed with s^2(s-min(n,s))-1 is zero, no write
 occurs. Otherwise, the pixel's stencil value is written with the
 value determined by the following C-style bit-wise expression:

 (stencilClearTag & ~tagMask) |
 (newValue & mask & tagMask) |
 (storedValue & ~mask & tagMask)

 where tagMask is 2^(s-min(n,s))-1, n is the value of the
 stencil tag bits state, newValue is the stencil value to
 be written (after the stored value's potential modification due to
 stencil clear tag state AND after the effect of applying a stencil
 operation to the value), and storedValue is the pixel's stored
 stencil value after to its potential modification due to stencil
 clear tag state BUT BEFORE to any stencil operation that may have
 been performed (as discussed in section 4.1.5). When n is zero,
 this is equivalent to

 (newValue & mask) |
 (storedValue & ~mask)

 "

NVIDIA OpenGL Extension Specifications EXT_stencil_clear_tag

 919

 Section 4.2.3 "Clearing the Buffers", change the ClearStencil sentence
 to read:

 "Similarly,

 void ClearStencil(int s);

 takes a single integer argument that is the value to which to clear
 the stencil buffer. s is masked to the number of bitplanes in the
 stencil buffer. Clearing stencil ignores the stencil clear tag
 state."

 Section 4.3.1 "Writing to the Stencil Buffer", change the last
 sentence to say:

 "Finally, each stencil index is written to its indicated location
 in the framebuffer, subject to the current setting of StencilMask
 and StencilClearTagEXT (see section 4.2.5). This means the
 most-significant n stencil bitplanes cannot be written by DrawPixels
 where n is the current number of stencil tag bits."

 Section 4.3.2 "Reading Pixels - Obtaining Pixels from the
 Framebuffer", change third paragraph to read:

 "If the format is STENCIL_INDEX, then values are taken from the
 stencil buffer; again, if there is no stencil buffer, the error
 INVALID_OPERATION occurs. If the current stencil tag bits state is
 zero (see section 4.2.5), the read stencil value is unmodified when
 read. If the current stencil tag bits state is greater than zero,
 then the upper most-significant n bits of the read stencil value are
 compared to the corresponding n bits of the stencil clear tag value,
 where n is the current number of stencil tag bits. If these upper
 bits mismatch, the read stencil value is replaced with the lower
 s-min(n,s) bits of the stencil clear tag state (zeroing the upper
 n bits), where s is the number of stencil bitplanes. If the upper
 bits match, the upper n bits of the read stencil value are zeroed."

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The following command is sent
 to the server as part of a glXRender request:

 StencilClearTagEXT
 2 12 rendering command length
 2 4223 rendering command opcode
 4 INT32 stencilTagBits
 4 CARD32 stencilClearTag

Errors

 INVALID_VALUE is generated by StencilClearTagEXT if stencilTagBits
 is negative or greater or equal to s where s is the number of bits
 in the stencil buffer.

EXT_stencil_clear_tag NVIDIA OpenGL Extension Specifications

 920

New State

(table 6.19, page 245)
 Get Value Type Get Command Initial Value Sec Attribute
 ------------------------ ---- ------------ ------------- ----- ---------
 STENCIL_TAG_BITS_EXT Z+ GetIntegerv 0 4.1.5 stencil-buffer
 STENCIL_CLEAR_TAG_EXT Z+ GetIntegerv 0 4.1.5 stencil-buffer

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 921

Name

 EXT_stencil_two_side

Name Strings

 GL_EXT_stencil_two_side

Notice

 Copyright NVIDIA Corporation, 2001-2002.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/01/08 $
 $Id: //sw/main/docs/OpenGL/specs/GL_EXT_stencil _two_side.txt#6 $

Number

 268

Dependencies

 Written based on the OpenGL 1.3 specification.

 NV_packed_depth_stencil affects the definition of this extension.

Overview

 This extension provides two-sided stencil testi ng where the
 stencil-related state (stencil operations, refe rence value, compare
 mask, and write mask) may be different for fron t- and back-facing
 polygons. Two-sided stencil testing may improv e the performance
 of stenciled shadow volume and Constructive Sol id Geometry (CSG)
 rendering algorithms.

Issues

 Is this sufficient for shadow volume stencil up date in a single pass?

 RESOLUTION: Yes.

 An application that wishes to increment the s tencil value for
 rasterized depth-test passing fragments of fr ont-facing polygons and
 decrement the stencil value for rasterized fr agments of depth-test
 passing back-facing polygons in a single pass can use the following
 configuration:

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 922

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth te st fail
 GL_DECR_WRAP_EXT); // depth te st pass
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth te st fail
 GL_INCR_WRAP_EXT); // depth te st pass
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 renderShadowVolumePolygons();

 Notice the use of EXT_stencil_wrap to avoid s aturating decrements
 losing the shadow volume count. An alternati ve, using the
 conventional GL_INCR and GL_DECR operations, is to clear the stencil
 buffer to one half the stencil buffer value r ange, say 128 for an
 8-bit stencil buffer. In the case, a pixel i s "in shadow" if the
 final stencil value is greater than 128 and " out of shadow" if the
 final stencil value is 128. This does still create a potential
 for stencil value overflow if the stencil val ue saturates due
 to an increment or decrement. However satura tion is less likely
 with two-sided stencil testing than the conve ntional two-pass
 approach because front- and back-facing polyg ons are mixed together,
 rather than processing batches of front-facin g then back-facing
 polygons.

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 923

 Contrast the two-sided stencil testing approa ch with the more
 or less equivalent approach using facingness- independent stencil
 testing:

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glEnable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 // Increment for front faces
 glCullFace(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth test fail
 GL_INCR); // depth test pass

 renderShadowVolumePolygons();

 // Decrement for back faces
 glCullFace(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth test fail
 GL_DECR); // depth test pass

 renderShadowVolumePolygons();

 Notice that all the render work implicit
 in renderShadowVolumePolygons is performed tw ice with the
 conventional approach, but only once with the two-sided stencil
 testing approach.

 Should there be just front and back stencil tes t state, or should
 the stencil write mask also have a front and ba ck state?

 RESOLUTION: Both the stencil test and stenci l write mask state
 should have front and back versions.

 The shadow volume application for two-sided s tencil testing does
 not require differing front and back versions of the stencil write
 mask, but we anticipate other applications wh ere front and back
 write masks may be useful.

 For example, it may be useful to draw a conve x polyhedra such that
 (assuming the stencil bufer is cleared to the binary value 1010):

 1) front-facing polygons that pass the depth test set stencil bit 0

 2) front-facing polygons that fail the depth test zero stencil bit 1

 3) back-facing polygons that pass the depth t est set stencil bit 2

 4) back-facing polygons that fail the depth t est zero stencil bit 3

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 924

 This could be accomplished in a single render ing pass using:

 glStencilMask(~0);
 glStencilClear(0xA);
 glClear(GL_STENCIL_BUFFER_BIT);

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test f ail
 GL_ZERO, // depth test fai l
 GL_REPLACE); // depth test pas s
 glStencilMask(0xC);
 glStencilFunc(GL_ALWAYS, 0x4, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test f ail
 GL_ZERO, // depth test fai l
 GL_REPLACE); // depth test pas s
 glStencilMask(0x3);
 glStencilFunc(GL_ALWAYS, 0x1, ~0);

 renderConvexPolyhedra();

 Is there a performance advantage to using two-s ided stencil testing?

 RESOLUTION: It depends.

 In a fill-rate limited situation, rendering f ront-facing primitives,
 then back-facing primitives in two passes wil l generate the same
 number of rasterized fragments as rendering f ront- and back-facing
 primitives in a single pass.

 However, in other situations that are CPU-lim ited,
 transform-limited, or setup-limited, two-side d stencil testing can
 be faster than the conventional two-pass face culling rendering
 approaches. For example, if a lengthy vertex program is executed
 for every shadow volume vertex, rendering the shadow volume with
 a single two-sided stencil testing pass is ad vantageous.

 Often applications using stencil shadow volum e techniques require
 substantial CPU resources to determine potent ial silhouette
 boundaries to project shadow volumes from. I f the shadow volume
 geometry generated by the CPU is only require d to be sent to the GL
 once per-frame (rather than twice with the co nventional technique),
 that can ease the CPU burden required to impl ement stenciled shadow
 volumes.

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 925

 Should GL_FRONT_AND_BACK be accepted by glActiv eStencilFaceEXT?

 RESOLUTION: No.

 GL_FRONT_AND_BACK is useful when materials ar e being updated for
 two-sided lighting because the front and back material are often
 identical and may change frequently (glMateri al calls are allowed
 within glBegin/glEnd pairs).

 Two-sided stencil has no similiar performance justification.

 It is also likely that forcing implementation s to support this mode
 would increase the amount of overhead require d to set stencil
 state, even for applications that don't use t wo-sided stencil.

 How should the two-sided stencil enable operate ?

 RESOLUTION: It should be modeled after the w ay two-sided lighting
 works. There is a GL_LIGHTING enable and the n an additional
 two-sided lighting mode. Unlike two-sided li ghting which is a
 light model boolean, the two-sided stencil te sting is a standard
 enable named GL_STENCIL_TEST_TWO_SIDE_EXT.

 Here is the pseudo-code for the stencil testi ng enables:

 if (glIsEnabled(GL_STENCIL_TEST)) {
 if (glIsEnabled(GL_STENCIL_TEST_TWO_SIDE_EXT) && primitiveType == polygon) {
 use two-sided stencil testing
 } else {
 use conventional stencil testing
 }
 } else {
 no stencil testing
 }

 How should the two-sided stencil interact with glPolygonMode?

 RESOLUTION: Primitive type is determined by the begin mode
 so GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_QUAD_S TRIP, GL_QUADS,
 GL_TRIANGLE_FAN, and GL_POLYGON generate poly gon primitives. If the
 polygon mode is set such that lines or points are rasterized,
 two-sided stencil testing still operates base d on the original
 polygon facingness if stencil testing and two -sided stencil testing
 are enabled.

 This is consistent with how two-sided lightin g and face culling
 interact with glPolygonMode.

New Procedures and Functions

 void ActiveStencilFaceEXT(enum face);

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 926

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 STENCIL_TEST_TWO_SIDE_EXT 0 x8910

 Accepted by the <face> parameter of ActiveStenc ilFaceEXT:

 FRONT
 BACK

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 ACTIVE_STENCIL_FACE_EXT 0 x8911

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 -- Section 4.1.5 "Stencil test"

 Replace the first paragraph in the section with :

 "The stencil test conditionally discards a frag ment based on the
 outcome of a comparison between the value in th e stencil buffer at
 location (xw,yw) and a reference value.

 The test is enabled or disabled with the Enable and Disable commands,
 using the symbolic constant STENCIL_TEST. When disabled, the stencil
 test and associated modifications are not made, and the fragment is
 always passed.

 Stencil testing may operate in a two-sided mode . Two-sided stencil
 testing is enabled or disabled with the Enable and Disable commands,
 using the symbolic constant STENCIL_TEST_TWO_SI DE_EXT. When stencil
 testing is disabled, the state of two-sided ste ncil testing does
 not affect fragment processing.

 There are two sets of stencil-related state, th e front stencil
 state set and the back stencil state set. When two-sided stencil
 testing is enabled, stencil tests and writes us e the front set of
 stencil state when processing fragments rasteri zed from non-polygon
 primitives (points, lines, bitmaps, image recta ngles) and front-facing
 polygon primitives while the back set of stenci l state is used when
 processing fragments rasterized from back-facin g polygon primitives.
 For the purposes of two-sided stencil testing, a primitive is still
 considered a polygon even if the polygon is to be rasterized as

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 927

 points or lines due to the current polygon mode . Whether a polygon
 is front- or back-facing is determined in the s ame manner used for
 two-sided lighting and face culling (see sectio ns 2.13.1 and 3.5.1).
 When two-sided stencil testing is disabled, the front set of stencil
 state is always used when stencil testing fragm ents.

 The active stencil face determines whether sten cil-related commands
 update the front or back stencil state. The ac tive stencil face is
 set with:

 void ActiveStencilFace(enum face);

 where face is either FRONT or BACK. Stencil co mmands (StencilFunc,
 StencilOp, and StencilMask) that update the ste ncil state update the
 front stencil state if the active stencil face is FRONT and the back
 stencil state if the active stencil face is BAC K. Additionally,
 queries of stencil state return the front or ba ck stencil state
 depending on the current active stencil face.

 The stencil test state is controlled with

 void StencilFunc(enum func, int ref, uint ma sk);
 void StencilOp(enum sfail, enum dpfail, enum dppass);"

 Replace the third and second to the last senten ce in the last
 paragraph in section 4.1.5 with:

 "In the initial state, stencil testing and two- sided stencil testing
 are both disabled, the front and back stencil r eference values are
 both zero, the front and back stencil compariso n functions are ALWAYS,
 and the front and back stencil mask are both al l ones. Initially,
 both the three front and the three back stencil operations are KEEP."

 -- Section 4.2.2 "Fine Control of Buffer Updates"

 Replace the last sentence of the third paragrap h with:

 "The initial state is for both the front and ba ck stencil plane mask
 to be all ones. The clear operation always use s the front stencil
 write mask when clearing the stencil buffer."

 -- Section 4.3.1 "Writing to the Stencil Buffer or to the Depth and
 Stencil Buffers"

 Replace the final sentence in the first paragra ph with:

 "Finally, each stencil index is written to its indicated location
 in the framebuffer, subject to the current fron t stencil mask state
 (set with StencilMask), and if a depth componen t is present, if the
 setting of DepthMask is not FALSE, it is also w ritten to the
 framebuffer; the setting of DepthTest is ignore d."

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 928

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX, WGL, and AGL Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

 ActiveStencilFaceEXT
 2 8 rendering c ommand length
 2 4220 rendering c ommand opcode
 4 ENUM face

Errors

 None

New State

(table 6.15, page 205) amend the following entries:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ------------------- ----- ------------- -
STENCIL_FUNC 2xZ8 GetIntegerv ALWAY S Stencil function 4.1.4 stencil-buffe r
STENCIL_VALUE_MASK 2xZ+ GetIntegerv 1's Stencil mask 4.1.4 stencil-buffe r
STENCIL_REF 2xZ+ GetIntegerv 0 Stencil reference 4.1.4 stencil-buffe r
 value
STENCIL_FAIL 2xZ6 GetIntegerv KEEP Stencil fail action 4.1.4 stencil-buffe r
STENCIL_PASS_DEPTH_FAIL 2xZ6 GetIntegerv KEEP Stencil depth 4.1.4 stencil-buffe r
 buffer fail action
STENCIL_PASS_DEPTH_PASS 2xZ6 GetIntegerv KEEP Stencil depth 4.1.4 stencil-buffe r
 buffer pass action

[Type field is amended with "2x" prefix.]

(table 6.15, page 205) add the following entries:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ----------------- ------ --------------- ------
STENCIL_TEST_TWO_SIDE_EXT B IsEnabled False Two-sided stencil 4.1.4 stencil-buffer/ enable
 test enable
ACTIVE_STENCIL_FACE_EXT Z2 GetIntegerv FRONT Active stencil 4.1.4 stencil-buffer
 face selector

(table 6.16, page 205) ammend the following entry:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ----------------- ------ --------------
STENCIL_WRITE_MASK 2xZ+ GetIntegerv 1's Stencil buffer 4.2.2 stencil-buffer
 writemask

[Type field is amended with "2x" prefix.]

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 929

Revision History

 None

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

 930

Name

 EXT_stencil_wrap

Name Strings

 GL_EXT_stencil_wrap

Version

 Date: 4/4/2002 Version 1.2

Number

 176

Dependencies

 None

Overview

 Various algorithms use the stencil buffer to "c ount" the number of
 surfaces that a ray passes through. As the ray passes into an object,
 the stencil buffer is incremented. As the ray passes out of an object,
 the stencil buffer is decremented.

 GL requires that the stencil increment operatio n clamps to its maximum
 value. For algorithms that depend on the diffe rence between the sum
 of the increments and the sum of the decrements , clamping causes an
 erroneous result.

 This extension provides an enable for both maxi mum and minimum wrapping
 of stencil values. Instead, the stencil value wraps in both directions.

 Two additional stencil operations are specified . These new operations
 are similiar to the existing INCR and DECR oper ations, but they wrap their
 result instead of saturating it. This function ality matches the new
 stencil operations introduced by DirectX 6.

New Procedures and Functions

 None

New Tokens

 Accepted by the <sfail>, <dpfail>, and <dppass> parameter of
 StencilOp:

 INCR_WRAP_EXT 0x8507
 DECR_WRAP_EXT 0x8508

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

 931

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:

 "... The symbolic constants are KEEP, ZERO, RE PLACE, INCR, DECR,
 INVERT, INCR_WRAP_EXT, and DECR_WRAP_EXT. The correspond to
 keeping the current value, setting it to zero, replacing it with
 the reference value, incrementing it with satur ation, decrementing
 it with saturation, bitwise inverting it, incre menting it without
 saturation, and decrementing it without saturat ion. For purposes of
 incrementing and decrementing, the stencil bits are considered as an
 unsigned integer. Incrementing or decrementing with saturation will
 clamp values at 0 and the maximum representable value. Incrementing
 or decrementing without saturation will wrap su ch that incrementing
 the maximum representable value results in 0 an d decrementing 0
 results in the maximum representable value. .. ."

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated by StencilOp if any o f its parameters
 are not KEEP, ZERO, REPLACE, INCR, DECR, INVERT , INCR_WRAP_EXT,
 or DECR_WRAP_EXT.

New State

(table 6.15, page 205)
 Get Value Type Get Command Initial Value Sec Attribute
 ------------------------ ---- ------------ ------------- ----- ---------
 STENCIL_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
 STENCIL_PASS_DEPTH_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
 STENCIL_PASS_DEPTH_PASS Z8 GetIntegerv KEEP 4.1.4 stencil-buffer

NOTE: the only change is that Z6 type changes to Z8

New Implementation Dependent State

 None

EXT_texture3D NVIDIA OpenGL Extension Specifications

 932

Name

 EXT_texture3D

Name Strings

 GL_EXT_texture3D

Version

 $Date: 1996/04/05 19:17:05 $ $Revision: 1.22 $

Number

 6

Dependencies

 EXT_abgr affects the definition of this extensi on
 EXT_texture is required

Overview

 This extension defines 3-dimensional texture ma pping. In order to
 define a 3D texture image conveniently, this ex tension also defines the
 in-memory formats for 3D images, and adds pixel storage modes to support
 them.

 One important application of 3D textures is ren dering volumes of image
 data.

New Procedures and Functions

 void TexImage3DEXT(enum target,
 int level,
 enum internalformat,
 sizei width,
 sizei height,
 sizei depth,
 int border,
 enum format,
 enum type,
 const void* pixels);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev, and by the <pname> p arameter of PixelStore:

 PACK_SKIP_IMAGES_EXT 0x806B
 PACK_IMAGE_HEIGHT_EXT 0x806C
 UNPACK_SKIP_IMAGES_EXT 0x806D
 UNPACK_IMAGE_HEIGHT_EXT 0x806E

NVIDIA OpenGL Extension Specifications EXT_texture3D

 933

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev, and by the <target> parameter of Te xImage3DEXT, GetTexImage,
 GetTexLevelParameteriv, GetTexLevelParameterfv, GetTexParameteriv, and
 GetTexParameterfv:

 TEXTURE_3D_EXT 0x806F

 Accepted by the <target> parameter of TexImage3 DEXT,
 GetTexLevelParameteriv, and GetTexLevelParamete rfv:

 PROXY_TEXTURE_3D_EXT 0x8070

 Accepted by the <pname> parameter of GetTexLeve lParameteriv and
 GetTexLevelParameterfv:

 TEXTURE_DEPTH_EXT 0x8071

 Accepted by the <pname> parameter of TexParamet eriv, TexParameterfv,
 GetTexParameteriv, and GetTexParameterfv:

 TEXTURE_WRAP_R_EXT 0x8072

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_3D_TEXTURE_SIZE_EXT 0x8073

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 The pixel storage modes are augmented to suppor t 3D image formats in
 memory. Table 3.1 is replaced with the table b elow:

 Parameter Name Type Ini tial Value Valid Range
 -------------- ---- --- ---------- -----------
 UNPACK_SWAP_BYTES boolean FAL SE TRUE/FALSE
 UNPACK_LSB_FIRST boolean FAL SE TRUE/FALSE
 UNPACK_ROW_LENGTH integer 0 [0, infinity]
 UNPACK_SKIP_ROWS integer 0 [0, infinity]
 UNPACK_SKIP_PIXELS integer 0 [0, infinity]
 UNPACK_ALIGNMENT integer 4 1, 2, 4, 8
 UNPACK_IMAGE_HEIGHT_EXT integer 0 [0, infinity]
 UNPACK_SKIP_IMAGES_EXT integer 0 [0, infinity]

 Table 3.1: PixelStore parameters pertaining to one or more of
 DrawPixels, TexImage1D, TexImage2D, and Tex Image3DEXT.

 When TexImage3DEXT is called, the groups in mem ory are treated as being
 arranged in a sequence of adjacent rectangles. Each rectangle is a
 2-dimensional image, whose size and organizatio n are specified by the
 <width> and <height> parameters to TexImage3DEX T. The values of
 UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row spacing in
 these images in exactly the manner described in the GL Specification for

EXT_texture3D NVIDIA OpenGL Extension Specifications

 934

 2-dimensional images. If the value of UNPACK_I MAGE_HEIGHT_EXT is not
 positive, then the number of rows in each 2-dim ensional image is
 <height>; otherwise the number of rows is UNPAC K_IMAGE_HEIGHT_EXT. Each
 2-dimensional image comprises an integral numbe r of rows, and is exactly
 adjacent to its neighbor images.

 The mechanism for selecting a sub-volume of a 3 -dimensional image builds
 on the mechanism for selecting a sub-rectangle of groups from a larger
 containing rectangle. If UNPACK_SKIP_IMAGES_EX T is positive, the
 pointer is advanced by UNPACK_SKIP_IMAGES_EXT t imes the number of
 elements in one 2-dimensional image. Then <dep th> 2-dimensional images
 are processed, each having a subimage extracted in the manner described
 in the GL Specification for 2-dimensional image s.

 The selected groups are processed as though the y were part of a
 2-dimensional image. When the final R, G, B, a nd A components have been
 computed for a group, they are assigned to comp onents of a texel as
 described by Table 3.6 in the EXT_texture exten sion. Counting from
 zero, each resulting Nth texel is assigned inte rnal integer coordinates
 [i,j,k], where

 i = (N mod width) - border

 j = ((N div width) mod height) - border

 k = ((N div (width * height)) mod depth) - border

 and the div operator performs integer division with truncation. Thus
 the last 2-dimensional image of the 3-dimension al image is indexed with
 the highest value of k. The dimensions of the 3-dimensional texture
 image are <width> x <height> x <depth>. Intege r values that will
 represent the base-2 logarithm of these dimensi ons are n, m, and l,
 defined such that

 width = 2**n + (2 * border)

 height = 2**m + (2 * border)

 depth = 2**l + (2 * border)

 It is acceptable for an implementation to vary its allocation of
 internal component resolution based any TexImag e3DEXT parameter, but the
 allocation must not be a function of any other factor, and cannot be
 changed once it is established. In particular, allocations must be
 invariant -- the same allocation must be made e ach time a texture image
 is specified with the same parameter values. P rovision is made for an
 application to determine what component resolut ions are available
 without having to fully specify the texture (se e below).

NVIDIA OpenGL Extension Specifications EXT_texture3D

 935

 Texture Wrap Modes

 The additional token value TEXTURE_WRAP_R_EXT i s accepted by
 TexParameteri, TexParameterv, TexParameteriv, a nd TexParameterfv,
 causing table 3.7 to be replaced with the table below:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT
 TEXTURE_WRAP_T integer CLAMP, REPEAT
 TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]

 Table 3.7: Texture parameters and their val ues.

 If TEXTURE_WRAP_R_EXT is set to REPEAT, then th e GL ignores the integer
 part of R coordinates, using only the fractiona l part. CLAMP causes R
 to be clamped to the range [0, 1]. The initial state is for
 TEXTURE_WRAP_R_EXT to be REPEAT.

 Texture Minification

 Continuous coordinates s, t, u, and v are defin ed in figure 3.10 of the
 GL Specification. To discuss 3-dimensional tex ture mapping, coordinates
 r and w are defined similarly. Coordinate w is equal to -border at the
 "far" edge of the 3D image, understanding the i mage to be right-handed,
 with k values increasing toward the viewer. It has value depth+border
 at the near edge of this volume. Coordinate r has the same direction,
 but is normalized so that it is 0.0 and 1.0 at the "far" and "near"
 edges of a borderless volume. If the volume ha s a border, the 0.0 and
 1.0 mappings of r continue to bound the core im age.

 The formulas for p, used to determine the level of detail, are modified
 by including dw/dx and dw/dy terms in the obvio us ways. Equation 3.7
 sums (dw/dx)**2 into the left term, and (dw/dy) **2 into the right term.
 Equation 3.8 has ((dw/dx * Dx + dw/dy * Dy)**2 added to the two terms
 under the square root. The requirements for th e function f(x,y) become

 1. f(x, y) is continuous and monotonically increasing in each of
 |du/dx|, |du/dy|, |dv/dx|, |dv/dy|, |dw /dx|, and |dw/dy|.

 2. Let

 m_u = max(|du/dx|, |du/dy|)
 m_v = max(|dv/dx|, |dv/dy|)
 m_w = max(|dw/dx|, |dw/dy|)

 Then

 max(m_u, m_v, m_w) <= f(x, y) <= m_ u + m_v + m_w

EXT_texture3D NVIDIA OpenGL Extension Specifications

 936

 The i and j coordinates of the texel selected f or NEAREST filtering are
 as defined in equations 3.9 and 3.10 of the GL Specification.
 Coordinate k is computed as

 / floor(w), r < 1
 k = (
 \ 2**l - 1, r = 1

 A 2x2x2 cube of texels is selected for LINEAR f iltering. The i and j
 coordinates of these texels are computed as def ined in the GL
 Specification for 2-dimensional images. The k coordinates are
 computed as

 / floor(w - 1/2) mod 2**l, TEX TURE_WRAP_R_EXT is REPEAT
 k0 = (
 \ floor(w - 1/2), TEX TURE_WRAP_R_EXT is CLAMP

 / (k0 + 1) mod 2**l, TEXTURE_WRA P_R_EXT is REPEAT
 k1 = (
 \ k0 + 1, TEXTURE_WRA P_R_EXT is CLAMP

 Let

 A = frac(u - 1/2)
 B = frac(v - 1/2)
 C = frac(w - 1/2)

 where frac(x) denotes the fractional part of x. Let T[i,j,k] be the
 texel at location [i,j,k] in the texture image. Then the texture value,
 T, is found as

 T = (1-A) * (1-B) * (1-C) * T[i0,j0,k0] +
 A * (1-B) * (1-C) * T[i1,j0,k0] +
 (1-A) * B * (1-C) * T[i0,j1,k0] +
 A * B * (1-C) * T[i1,j1,k0] +
 (1-A) * (1-B) * C * T[i0,j0,k1] +
 A * (1-B) * C * T[i1,j0,k1] +
 (1-A) * B * C * T[i0,j1,k1] +
 A * B * C * T[i1,j1,k1]

 for a 3-dimensional texture. If any of the sel ected T[i,j,k] in the
 above equation refer to a border texel with uns pecified value, then the
 border color given by the current setting of TE XTURE_BORDER_COLOR is
 used instead of the unspecified value or values .

 Mipmapping

 TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEARES T, NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of
 a mipmap. A 3-dimensional mipmap is an ordered set of arrays
 representing the same image; each array has a r esolution lower than the
 previous one. If the texture, excluding is bor der, has dimensions
 2**n x 2**m x 2**l, then there are exactly max(n, m, l) + 1 mipmap
 arrays. Each subsequent array has dimensions

 size(i-1) x size(j-1) x size(k-1)

NVIDIA OpenGL Extension Specifications EXT_texture3D

 937

 where the dimensions of the previous array are

 size(i) x size(j) x size(k)

 and

 / 2**x + 2*border, x > 0
 size(x) = (
 \ 1 + 2*border, x <= 0

 Each array in a 3-dimensional mipmap is transmi tted to the GL using
 TexImage3DEXT; the array being set is indicated with the <level>
 parameter. The rules for completeness of the s et of arrays are as
 described in the GL Specification, augmented in EXT_texture. The rules
 for mipmap array selection, and for filtering o f the two selected
 arrays, are also as described in the GL Specifi cation. Finally, the
 rules for texture magnification are also exactl y as described in the
 GL Specification.

 Texture Application

 3-dimensional texture mapping is enabled and di sabled using the generic
 Enable and Disable commands, with <cap> specifi ed as TEXTURE_3D_EXT. If
 either or both TEXTURE_1D or TEXTURE_2D are ena bled at the same time as
 TEXTURE_3D_EXT, the 3-dimensional texture is us ed.

 Query support

 The proxy texture PROXY_TEXTURE_3D_EXT can be u sed by applications to
 query an implementations maximum configurations just as it can be for
 1-dimensional and 2-dimensional textures.

 Alternate sets of partial per-level texture sta te are defined for
 the proxy texture PROXY_TEXTURE_3D_EXT. Specif ically,
 TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH_EX T, TEXTURE_BORDER,
 TEXTURE_COMPONENTS, TEXTURE_RED_SIZE_EXT, TEXTURE_GREEN_SIZE_EXT,
 TEXTURE_BLUE_SIZE_EXT, TEXTURE_ALPHA_SIZE_EXT,
 TEXTURE_LUMINANCE_SIZE_EXT, and TEXTURE_INTENSI TY_SIZE_EXT are
 maintained the the proxy texture. When TexImag e3DEXT is called
 with <target> set to PROXY_TEXTURE_3D_EXT, thes e proxy state
 values are always respecified, even if the text ure is too large to
 actually be used. If the texture is too large, all of these state
 variables are set to zero. If the texture coul d be accommodated
 by TexImage3DEXT called with <target> TEXTURE_3 D_EXT, these values
 are set as though TEXTURE_3D_EXT were being def ined. All of these
 state value can be queried with GetTexLevelPara meteriv with
 <target> set to PROXY_TEXTURE_3D_EXT. Calling TexImage3DEXT with
 <target> PROXY_TEXTURE_3D_EXT has no effect on the actual
 3-dimensional texture or its state.

 There is no image associated with PROXY_TEXTURE _3D_EXT. Therefore
 PROXY_TEXTURE_3D_EXT cannot be used as a textur e, and its image must
 never be queried using GetTexImage. (The error INVALID_ENUM results if
 this is attempted.) Likewise, there is no nonl evel-related state
 associated with a proxy texture, so calling Get TexParameteriv or
 GetTexParameterfv with <target> PROXY_TEXTURE_3 D_EXT results in the

EXT_texture3D NVIDIA OpenGL Extension Specifications

 938

 error INVALID_ENUM.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 TexImage3DEXT with a proxy target is not includ ed in display
 lists, but is instead executed immediately.

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 3-dimensional texture images are queried using GetTexImage with its
 <target> parameter set to TEXTURE_3D_EXT. The assignment of texel
 component values to the initial R, G, B, and A components of a pixel
 group is described in EXT_texture. Pixel trans fer and pixel storage
 operations are applied as if the image were 2-d imensional, except that
 the additional pixel storage state values PACK_ IMAGE_HEIGHT_EXT and
 PACK_SKIP_IMAGES_EXT affect the storage of the image into memory. The
 correspondence of texels to memory locations is as defined for
 TexImage3DEXT above, substituting PACK* state f or UNPACK* state in all
 occurrences.

Additions to the GLX Specification

 None

NVIDIA OpenGL Extension Specifications EXT_texture3D

 939

GLX Protocol

 A new GL rendering command is added. This comma nd contains pixel data;
 thus it is sent to the server either as part of a glXRender request
 or as part of a glXRenderLarge request:

 TexImage3DEXT
 2 84+n+p rendering c ommand length
 2 4114 rendering c ommand opcode
 1 BOOL swap_bytes
 1 BOOL lsb_first
 2 unused
 4 CARD32 row_length
 4 CARD32 image_heigh t
 4 CARD32 image_depth
 4 CARD32 skip_rows
 4 CARD32 skip_images
 4 CARD32 skip_volume s
 4 CARD32 skip_pixels
 4 CARD32 alignment
 4 ENUM target
 4 INT32 level
 4 ENUM internalfor mat
 4 INT32 width
 4 INT32 height
 4 INT32 depth
 4 INT32 size4d
 4 INT32 border
 4 ENUM format
 4 ENUM type
 4 CARD32 null_image
 n LISTofBYTE pixels
 p unused, p=p ad(n)

 If the command is encoded in a glXRende rLarge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 88+n+p rendering c ommand length
 4 4114 rendering c ommand opcode

 If <width> < 0, <height> < 0, <depth> < 0, <format> is invalid or <type> is
 invalid, then the command is erroneous and n=0.

 <pixels> is arranged as a sequence of adjacent rectangles. Each rectangle is a
 2-dimensional image, whose structure is determined by the image height and the
 parameters <swap_bytes>, <lsb_first>, <row_length>, <skip_rows>, <skip_pixels>,
 <alignment>, <width>, <format>, and <type> given in the request. If <image_height>
 is not positive then the number of rows (i.e., the image height) is <height>;
 otherwise the number of rows is <image_height>.

 <skip_images> allows a sub-volume of the 3-dimensional image to be selected.
 If <skip_images> is positive, then the pointer is advanced by <skip_images>
 times the number of elements in one 2-dimensional image. Then <depth>
 2-dimensional images are read, each having a subimage extracted in the
 manner described in Appendix A of the GLX Protocol Specification.

Dependencies on EXT_abgr

 If EXT_abgr is supported, the <format> paramete r of TexImage3DEXT
 accepts ABGR_EXT. Otherwise it does not.

EXT_texture3D NVIDIA OpenGL Extension Specifications

 940

Dependencies on EXT_texture

 EXT_texture is required. All of the <component s> tokens defined by
 EXT_texture are accepted by the <internalformat > parameter of
 TexImage3DEXT, with the same semantics that are defined by EXT_texture.

 The query and error extensions defined by EXT_t exture are extended in
 this document.

Errors

 INVALID_ENUM is generated if <target> is not TE XTURE_3D_EXT or
 PROXY_TEXTURE_3D_EXT.

 INVALID_ENUM is generated if the <target> param eter to
 GetTexParameteriv, GetTexParameterfv or GetTexI mage is
 PROXY_TEXTURE_3D_EXT.

 INVALID_VALUE is generated if <level> is less t han zero

 INVALID_ENUM is generated if <internalformat> i s not ALPHA, RGB, RGBA,
 LUMINANCE, LUMINANCE_ALPHA, or one of the token s defined by the
 EXT_texture extension. (Values 1, 2, 3, and 4 are not accepted as
 internal formats by TexImage3DEXT).

 INVALID_VALUE is generated if <width>, <height> , or <depth> is less than
 zero, or cannot be represented as 2**k + 2*bord er for some integer k.

 INVALID_VALUE is generated if <border> is not 0 or 1.

 INVALID_ENUM is generated if <format> is not CO LOR_INDEX, RED, GREEN,
 BLUE, ALPHA, RGB, RGBA, LUMINANCE, or LUMINANCE _ALPHA (or ABGR_EXT if
 EXT_abgr is supported).

 INVALID_ENUM is generated if <type> is not UNSI GNED_BYTE, BYTE,
 UNSIGNED_SHORT, SHORT, UNSIGNED_INT, INT, or FL OAT.

 INVALID_OPERATION is generated if TexImage3DEXT is called between
 execution of Begin and the corresponding execut ion of End.

 TEXTURE_TOO_LARGE_EXT is generated if the textu re as specified cannot be
 accommodated by the implementation. This error will not occur if none
 of <width>, <height>, or <depth> is greater tha n MAX_3D_TEXTURE_SIZE_EXT.

NVIDIA OpenGL Extension Specifications EXT_texture3D

 941

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
UNPACK_SKIP_IMAGES_EXT GetIntegerv Z+ 0 -
UNPACK_IMAGE_HEIGHT_EXT GetIntegerv Z+ 0 -
PACK_SKIP_IMAGES_EXT GetIntegerv Z+ 0 -
PACK_IMAGE_HEIGHT_EXT GetIntegerv Z+ 0 -
TEXTURE_3D_EXT IsEnabled B FALSE texture/enable
TEXTURE_WRAP_R_EXT GetTexParameter iv 1 x Z2 REPEAT texture
TEXTURE_DEPTH_EXT GetTexLevelPara meteriv 1 x 2 x levels x Z+ 0 -

 (old state with new type information)

TEXTURE GetTexImage 3 x 1 x levels x I null -
TEXTURE_RED_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_GREEN_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_BLUE_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_ALPHA_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_INTENSITY_SIZE_EXT GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_WIDTH GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_HEIGHT GetTexLevelPara meteriv 2 x 2 x levels x Z+ 0 -
TEXTURE_BORDER GetTexLevelPara meteriv 3 x 2 x levels x Z+ 0 -
TEXTURE_COMPONENTS (1D and 2D) GetTexLevelPara meteriv 2 x 2 x levels x Z42 1 -
TEXTURE_COMPONENTS (3D) GetTexLevelPara meteriv 1 x 2 x levels x Z38 LUMINANCE -
TEXTURE_BORDER_COLOR GetTexParameter iv 3 x C 0, 0, 0, 0 texture
TEXTURE_MIN_FILTER GetTexParameter iv 3 x Z6 NEAREST_MIPMAP_LIN EAR texture
TEXTURE_MAG_FILTER GetTexParameter iv 3 x Z2 LINEAR texture
TEXTURE_WRAP_S GetTexParameter iv 3 x Z2 REPEAT texture
TEXTURE_WRAP_T GetTexParameter iv 2 x Z2 REPEAT texture

New Implementation Dependent State

Get Value Get Command Type Minimum Value
--------- ----------- ---- -------------
MAX_3D_TEXTURE_SIZE_EXT GetIntegerv Z+ 16

EXT_texture_array NVIDIA OpenGL Extension Specifications

 942

Name

 EXT_texture_array

Name Strings

 GL_EXT_texture_array

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Last Modified Date: 02/04/2008
 Author revision: 6

Number

 329

Dependencies

 This extension is written against the OpenGL 2. 0 specification and version
 1.10.59 of the OpenGL Shading Language specific ation.

 This extension is interacts with EXT_framebuffe r_object.

 This extension interacts with NV_geometry_progr am4.

 This extension interacts with NV_gpu_program4 o r the OpenGL Shading
 Language, which provide the mechanisms necessar y to access array textures.

 This extension interacts with EXT_texture_compr ession_s3tc and
 NV_texture_compression_vtc.

Overview

 This extension introduces the notion of one- an d two-dimensional array
 textures. An array texture is a collection of one- and two-dimensional
 images of identical size and format, arranged i n layers. A
 one-dimensional array texture is specified usin g TexImage2D; a
 two-dimensional array texture is specified usin g TexImage3D. The height
 (1D array) or depth (2D array) specify the numb er of layers in the image.

 An array texture is accessed as a single unit i n a programmable shader,
 using a single coordinate vector. A single lay er is selected, and that
 layer is then accessed as though it were a one- or two-dimensional
 texture. The layer used is specified using the "t" or "r" texture
 coordinate for 1D and 2D array textures, respec tively. The layer
 coordinate is provided as an unnormalized float ing-point value in the
 range [0,<n>-1], where <n> is the number of lay ers in the array texture.
 Texture lookups do not filter between layers, t hough such filtering can be

NVIDIA OpenGL Extension Specifications EXT_texture_array

 943

 achieved using programmable shaders. When mipm apping is used, each level
 of an array texture has the same number of laye rs as the base level; the
 number of layers is not reduced as the image si ze decreases.

 Array textures can be rendered to by binding th em to a framebuffer object
 (EXT_framebuffer_object). A single layer of an array texture can be bound
 using normal framebuffer object mechanisms, or an entire array texture can
 be bound and rendered to using the layered rend ering mechanisms provided
 by NV_geometry_program4.

 This extension does not provide for the use of array textures with
 fixed-function fragment processing. Such suppo rt could be added by
 providing an additional extension allowing appl ications to pass the new
 target enumerants (TEXTURE_1D_ARRAY_EXT and TEX TURE_2D_ARRAY_EXT) to
 Enable and Disable.

New Procedures and Functions

 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);

New Tokens

 Accepted by the <target> parameter of TexParame teri, TexParameteriv,
 TexParameterf, TexParameterfv, and BindTexture:

 TEXTURE_1D_ARRAY_EXT 0x8C18
 TEXTURE_2D_ARRAY_EXT 0x8C1A

 Accepted by the <target> parameter of TexImage3 D, TexSubImage3D,
 CopyTexSubImage3D, CompressedTexImage3D, and Co mpressedTexSubImage3D:

 TEXTURE_2D_ARRAY_EXT
 PROXY_TEXTURE_2D_ARRAY_EXT 0x8C1B

 Accepted by the <target> parameter of TexImage2 D, TexSubImage2D,
 CopyTexImage2D, CopyTexSubImage2D, CompressedTe xImage2D, and
 CompressedTexSubImage2D:

 TEXTURE_1D_ARRAY_EXT
 PROXY_TEXTURE_1D_ARRAY_EXT 0x8C19

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev, GetIntegerv
 and GetFloatv:

 TEXTURE_BINDING_1D_ARRAY_EXT 0x8C1C
 TEXTURE_BINDING_2D_ARRAY_EXT 0x8C1D
 MAX_ARRAY_TEXTURE_LAYERS_EXT 0x88FF

EXT_texture_array NVIDIA OpenGL Extension Specifications

 944

 Accepted by the <param> parameter of TexParamet erf, TexParameteri,
 TexParameterfv, and TexParameteriv when the <pn ame> parameter is
 TEXTURE_COMPARE_MODE_ARB:

 COMPARE_REF_DEPTH_TO_TEXTURE_EXT 0x884E

 (Note: COMPARE_REF_DEPTH_TO_TEXTURE_EXT is sim ply an alias for the
 existing COMPARE_R_TO_TEXTURE token in OpenGL 2 .0; the alternate name
 reflects the fact that the R coordinate is not always used.)

 Accepted by the <internalformat> parameter of T exImage3D and
 CompressedTexImage3D, and by the <format> param eter of
 CompressedTexSubImage3D:

 COMPRESSED_RGB_S3TC_DXT1_EXT
 COMPRESSED_RGBA_S3TC_DXT1_EXT
 COMPRESSED_RGBA_S3TC_DXT3_EXT
 COMPRESSED_RGBA_S3TC_DXT5_EXT

 Accepted by the <pname> parameter of
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 Returned by the <type> parameter of GetActiveUn iform:

 SAMPLER_1D_ARRAY_EXT 0x8DC0
 SAMPLER_2D_ARRAY_EXT 0x8DC1
 SAMPLER_1D_ARRAY_SHADOW_EXT 0x8DC3
 SAMPLER_2D_ARRAY_SHADOW_EXT 0x8DC4

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify section 2.15.3, "Shader Variables", page 75

 Add the following new return types to the descr iption of GetActiveUniform
 on p. 81.

 SAMPLER_1D_ARRAY_EXT,
 SAMPLER_2D_ARRAY_EXT,
 SAMPLER_1D_ARRAY_SHADOW_EXT,
 SAMPLER_2D_ARRAY_SHADOW_EXT

 Modify Section 2.15.4, Shader Execution (p. 84)

 (modify first paragraph, p. 86 -- two simple ed its:

 (1) Change reference to the "r" coordinate to simply indicate that the
 reference value for shadow mapping is pro vided in the lookup
 function. It's still usually in the "r" coordinate, except for
 two-dimensional array textures, where it' s in "q".

NVIDIA OpenGL Extension Specifications EXT_texture_array

 945

 (2) Add new EXT_gpu_shader4 sampler types use d for array textures.)

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 a reference depth value specified in the coordi nates passed to the texture
 lookup function, as described in section 3.8.14 . The comparison operation
 is requested in the shader by using the shadow sampler types
 (sampler1DShadow, sampler2DShadow, sampler1DArr ayShadow, or
 sampler2DArrayShadow) and in the texture using the TEXTURE_COMPARE_MODE
 parameter. ...

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.8, Texturing (p. 149).

 (add new paragraph at the top of p. 150) Six ty pes of texture are
 supported; each is a collection of images built from one-, two-, or
 three-dimensional array of image elements refer red to as texels. One-,
 two-, and three-dimensional textures consist of a one-, two-, or
 three-dimensional texel arrays. One- and two-d imensional array textures
 are arrays of one- or two-dimensional images, c onsisting of one or more
 layers. Finally, a cube map is a special two-d imensional array texture
 with six layers that represent the faces of a c ube. When accessing a cube
 map, the texture coordinates are projected onto one of the six faces.

 Modify Section 3.8.1, Texture Image Specificati on (p. 150).

 (modify first paragraph of section, p. 150) The command

 void TexImage3D(enum target, int level, int internalformat,
 sizei width, sizei height, s izei depth, int border,
 enum format, enum type, void *data);

 is used to specify a three-dimensional texture image. target must be one
 of TEXTURE_3D for a three-dimensional texture o r TEXTURE_2D_ARRAY_EXT for
 an two-dimensional array texture. Additionally , target may be either
 PROXY_TEXTURE_3D for a three-dimensional proxy texture, or
 PROXY_TEXTURE_2D_ARRAY_EXT for a two-dimensiona l proxy array texture. ...

 (modify the fourth paragraph on p. 151) Texture s with a base internal
 format of DEPTH_COMPONENT are supported by text ure image specification
 commands only if target is TEXTURE_1D, TEXTURE_ 2D, TEXTURE_1D_ARRAY_EXT,
 TEXTURE_2D_ARRAY_EXT, PROXY_TEXTURE_1D, PROXY_T EXTURE_2D,
 PROXY_TEXTURE_1D_ARRAY_EXT, or PROXY_TEXTURE_2D _ARRAY_EXT. Using this
 format in conjunction with any other target wil l result in an INVALID
 OPERATION error.

 (modify the first paragraph on p. 153 -- In par ticular, add new terms w_b,
 h_b, and d_b to represent border width, height, or depth, instead of a
 single border size term b_s. Subsequent equati ons referring to b_s should
 be modified to refer to w_b, h_b, and d_b, as a ppropriate.)

EXT_texture_array NVIDIA OpenGL Extension Specifications

 946

 ... Counting from zero, each resulting Nth texe l is assigned internal
 integer coordinates (i, j, k), where

 i = (N mod width) - w_b
 j = (floor(N/width) mod height) - h_b
 k = (floor(N/(width*height)) mod depth) - d_b

 and w_b, h_b, and d_b are the specified border width, height, and depth.
 w_b and h_b are the specified <border> value; d _b is the specified
 <border> value if <target> is TEXTURE_3D or zer o if <target> is
 TEXTURE_2D_ARRAY_EXT. ...

 (modify equations 3.15-3.17 and third paragraph of p. 155)

 w_s = w_t + 2 * w_b (3.15)
 h_s = h_t + 2 * h_b (3.16)
 d_s = d_t + 2 * d_b (3.17)

 ... If <border> is less than zero, or greater t han b_t, then the error
 INVALID_VALUE is generated.

 (modify the last paragraph on p. 155 on to p. 1 56)

 The maximum allowable width, height, or depth o f a texel array for a
 three-dimensional texture is an implementation dependent function of the
 level-of-detail and internal format of the resu lting image array. It must
 be at least 2^(k-lod) + 2 * b_t for image array s of level-of-detail 0
 through k, where k is the log base 2 of MAX_3D_ TEXTURE_SIZE, lod is the
 level-of-detail of the image array, and b_t is the maximum border width.
 It may be zero for image arrays of any level-of -detail greater than k. The
 error INVALID VALUE is generated if the specifi ed image is too large to be
 stored under any conditions.

 In a similar fashion, the maximum allowable wid th of a texel array for a
 one- or two-dimensional, or one- or two-dimensi onal array texture, and the
 maximum allowable height of a two-dimensional o r two-dimensional array
 texture, must be at least 2^(k-lod) + 2 * b_t f or image arrays of level 0
 through k, where k is the log base 2 of MAX_TEX TURE_SIZE. The maximum
 allowable width and height of a cube map textur e must be the same, and
 must be at least 2^(k-lod) + 2 * b_t for image arrays level 0 through k,
 where k is the log base 2 of MAX_CUBE_MAP_TEXTU RE_SIZE. The maximum
 number of layers for one- and two-dimensional a rray textures (height or
 depth, respectively) must be at least MAX_ARRAY _TEXTURE_LAYERS_EXT for all
 levels.

 (modify the fourth paragraph on p. 156) The com mand

 void TexImage2D(enum target, int level,
 int internalformat, sizei wi dth, sizei height,
 int border, enum format, enu m type, void *data);

 is used to specify a two-dimensional texture im age. target must be one of
 TEXTURE_2D for a two-dimensional texture, TEXTU RE_1D_ARRAY_EXT for a
 one-dimensional array texture, or one of TEXTUR E_CUBE_MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z for a cube map text ure. Additionally, target

NVIDIA OpenGL Extension Specifications EXT_texture_array

 947

 may be either PROXY_TEXTURE_2D for a two-dimens ional proxy texture,
 PROXY_TEXTURE_1D_ARRAY_EXT for a one-dimensiona l proxy array texture, or
 PROXY TEXTURE_CUBE_MAP for a cube map proxy tex ture in the special case
 discussed in section 3.8.11. The other paramet ers match the corresponding
 parameters of TexImage3D.

 For the purposes of decoding the texture image, TexImage2D is equivalent
 to calling TexImage3D with corresponding argume nts and depth of 1, except
 that

 * The border depth, d_b, is zero, and the dep th of the image is always 1
 regardless of the value of border.

 * The border height, h_b, is zero if <target> is TEXTURE_1D_ARRAY_EXT,
 and <border> otherwise.

 * Convolution will be performed on the image (possibly changing its width
 and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

 * UNPACK SKIP IMAGES is ignored.

 (modify the fourth paragraph on p. 157) For the purposes of decoding the
 texture image, TexImage1D is equivalent to call ing TexImage2D with
 corresponding arguments and height of 1, except that

 * The border height and depth (h_b and d_b) a re always zero, regardless
 of the value of <border>.

 * Convolution will be performed on the image (possibly changing its
 width) only if CONVOLUTION 1D is enabled.

 (modify the last paragraph on p. 157 and the fi rst paragraph of p. 158 --
 changing the phrase "texture array" to "texel a rray" to avoid confusion
 with array textures. All subsequent references to "texture array" in the
 specification should also be changed to "texel array".)

 We shall refer to the (possibly border augmente d) decoded image as the
 texel array. A three-dimensional texel array h as width, height, and depth
 ws, hs, and ds as defined respectively in equat ions 3.15, 3.16, and
 3.17. A two-dimensional texel array has depth d s = 1, with height hs and
 width ws as above, and a one-dimensional texel array has depth ds = 1,
 height hs = 1, and width ws as above.

 An element (i,j,k) of the texel array is called a texel (for a
 two-dimensional texture or one-dimensional arra y texture, k is irrelevant;
 for a one-dimensional texture, j and k are both irrelevant). The texture
 value used in texturing a fragment is determine d by that fragment’s
 associated (s,t,r) coordinates, but may not cor respond to any actual
 texel. See figure 3.10.

EXT_texture_array NVIDIA OpenGL Extension Specifications

 948

 Modify Section 3.8.2, Alternate Texture Image S pecification Commands
 (p. 159)

 (modify second paragraph, p. 159 -- allow 1D ar ray textures) The command

 void CopyTexImage2D(enum target, int level,
 enum internalformat, int x, int y, sizei width,
 sizei height, int border);

 defines a two-dimensional texture image in exac tly the manner of
 TexImage2D, except that the image data are take n from the framebuffer
 rather than from client memory. Currently, targ et must be one of
 TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z.

 (modify last paragraph, p. 160) ... Currently t he target arguments of
 TexSubImage1D and CopyTexSubImage1D must be TEX TURE_1D, the target
 arguments of TexSubImage2D and CopyTexSubImage2 D must be one of
 TEXTURE_2D, TEXTURE_1D_ARRAY_EXT, TEXTURE_CUBE_ MAP_POSITIVE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
 TEXTURE_CUBE_MAP_NEGATIVE_Z, and the target arg uments of TexSubImage3D and
 CopyTexSubImage3D must be TEXTURE_3D or TEXTURE _2D_ARRAY_EXT. ...

 (modify last paragraph, p. 161 and subsequent i nequalities)

 Negative values of xoffset, yoffset, and zoffse t correspond to the
 coordinates of border texels, addressed as in f igure 3.10. Taking w_s,
 h_s, d_s, w_b, h_b, and d_b to be the specified width, height, depth, and
 border width, height, and depth of the texture array, and taking x, y, z,
 w, h, and d to be the xoffset, yoffset, zoffset , width, height, and depth
 argument values, any of the following relations hips generates the error
 INVALID VALUE:

 x < -w_b
 x + w > w_s - w_b
 y < -h_b
 y + h > h_s - h_b
 z < -d_b
 z + d > d_s - d_b

 Modify Section 3.8.4, Texture Parameters (p. 16 6)

 (modify first paragraph of section, p. 166) Var ious parameters control how
 the texel array is treated when specified or ch anged, and when applied to
 a fragment. Each parameter is set by calling

 void TexParameter{if}(enum target, enum pnam e, T param);
 void TexParameter{if}v(enum target, enum pna me, T params);

 target is the target, either TEXTURE_1D, TEXTUR E_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT.

NVIDIA OpenGL Extension Specifications EXT_texture_array

 949

 Modify Section 3.8.8, Texture Minification (p. 170)

 (modify first paragraph, p. 172) ... For a one- dimensional or
 one-dimensional array texture, define v(x, y) = = 0 and w(x, y) == 0; for a
 two-dimensional, two-dimensional array, or cube map texture, define w(x,
 y) == 0. ...

 (modify second paragraph, p. 173) For one-dimen sional or one-dimensional
 array textures, j and k are irrelevant; the tex el at location i becomes
 the texture value. For two-dimensional, two-dim ensional array, or cube map
 textures, k is irrelevant; the texel at locatio n (i, j) becomes the
 texture value. For one- and two-dimensional ar ray textures, the texel is
 obtained from image layer l, where

 l = clamp(floor(t + 0.5), 0, h_t-1), for one- dimensional array textures,
 clamp(floor(r + 0.5), 0, d_t-1), for two- dimensional array textures.

 (modify third paragraph, p. 174) For a two-dim ensional, two-dimensional
 array, or cube map texture,

 tau = ...

 where tau_ij is the texel at location (i, j) in the two-dimensional
 texture image. For two-dimensional array textu res, all texels are
 obtained from layer l, where

 l = clamp(floor(r + 0.5), 0, d_t-1).

 And for a one-dimensional or one-dimensional ar ray texture,

 tau = ...

 where tau_i is the texel at location i in the o ne-dimensional texture.
 For one-dimensional array textures, both texels are obtained from layer l,
 where

 l = clamp(floor(t + 0.5), 0, h_t-1).

 (modify first two paragraphs of "Mipmapping", p . 175) TEXTURE_MIN_FILTER
 values NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_L INEAR,
 LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR each require the use of a
 mipmap. A mipmap is an ordered set of arrays re presenting the same image;
 each array has a resolution lower than the prev ious one.

 If the image array of level level_base, excludi ng its border, has
 dimensions, w_t × h_t × d_t, then there are flo or(log2(maxsize)) + 1
 levels in the mipmap, where

 maxsize = w_t, for one-dimen sional and one-dimensional
 array texture s,
 max(w_t, h_t), for two-dimen sional, two-dimensional
 array, and cu be map textures
 max(w_t, h_t, d_t), for three dim ensional textures.

EXT_texture_array NVIDIA OpenGL Extension Specifications

 950

 Numbering the levels such that level level_base is the 0th level, the ith
 array has dimensions

 max(1, floor(w_t/w_d)) x max(1, floor(h_t/h_d)) x max(1, floor(d_t/d_d))

 where

 w_d = 2 ^ i;
 h_d = 1, for one-dimensional array textures an d
 2 ^ i, otherwise; and
 d_d = 1, for two-dimensional array textures an d
 2 ^ i, otherwise,

 until the last array is reached with dimension 1 × 1 × 1.

 Each array in a mipmap is defined using TexImag e3D, TexImage2D,
 CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array being set is
 indicated with the level-of-detail argument lev el. Level-of-detail numbers
 proceed from level_base for the original textur e array through p =
 floor(log2(maxsize)) + level_base with each uni t increase indicating an
 array of half the dimensions of the previous on e (rounded down to the next
 integer if fractional) as already described. A ll arrays from level_base
 through q = min{p, level_max} must be defined, as discussed in section
 3.8.10.

 (modify third paragraph in the "Mipmap Generati on" section, p. 176)

 The contents of the derived arrays are computed by repeated, filtered
 reduction of the level_base array. For one- an d two-dimensional array
 textures, each layer is filtered independently. ...

 Modify Section 3.8.10, Texture Completeness (p. 177)

 (modify second paragaph of section, p. 177) For one-, two-, or
 three-dimensional textures and one- or two-dime nsional array textures, a
 texture is complete if the following conditions all hold true: ...

 Modify Section 3.8.11, Texture State and Proxy State (p. 178)

 (modify second and third paragraphs, p. 179, ad ding array textures and
 making minor wording changes)

 In addition to image arrays for one-, two-, and three-dimensional
 textures, one- and two-dimensional array textur es, and the six image
 arrays for the cube map texture, partially inst antiated image arrays are
 maintained for one-, two-, and three-dimensiona l textures and one- and
 two-dimensional array textures. Additionally, a single proxy image array
 is maintained for the cube map texture. Each p roxy image array includes
 width, height, depth, border width, and interna l format state values, as
 well as state for the red, green, blue, alpha, luminance, and intensity
 component resolutions. Proxy image arrays do no t include image data, nor
 do they include texture properties. When TexIma ge3D is executed with
 target specified as PROXY_TEXTURE_3D, the three -dimensional proxy state
 values of the specified level-of-detail are rec omputed and updated. If the
 image array would not be supported by TexImage3 D called with target set to
 TEXTURE 3D, no error is generated, but the prox y width, height, depth,
 border width, and component resolutions are set to zero. If the image

NVIDIA OpenGL Extension Specifications EXT_texture_array

 951

 array would be supported by such a call to TexI mage3D, the proxy state
 values are set exactly as though the actual ima ge array were being
 specified. No pixel data are transferred or pro cessed in either case.

 Proxy arrays for one- and two-dimensional textu res and one- and
 two-dimensional array textures are operated on in the same way when
 TexImage1D is executed with target specified as PROXY_TEXTURE_1D,
 TexImage2D is executed with target specified as PROXY_TEXTURE_2D or
 PROXY_TEXTURE_1D_ARRAY_EXT, or TexImage3D is ex ecuted with target
 specified as PROXY_TETXURE_2D_ARRAY_EXT.

 Modify Section 3.8.12, Texture Objects (p. 180)

 (update most of the beginning of the section to allow array textures)

 In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_EXT, named one-,
 two-, and three-dimensional, cube map, and one- and two-dimensional array
 texture objects can be created and operated upo n. The name space for
 texture objects is the unsigned integers, with zero reserved by the GL.

 A texture object is created by binding an unuse d name to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT. The binding is effected b y calling

 void BindTexture(enum target, uint texture) ;

 with <target> set to the desired texture target and <texture> set to the
 unused name. The resulting texture object is a new state vector,
 comprising all the state values listed in secti on 3.8.11, set to the same
 initial values. If the new texture object is bo und to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTU RE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT, it is and remains a one-, two-, three-dimensional,
 cube map, one- or two-dimensional array texture respectively until it is
 deleted.

 BindTexture may also be used to bind an existin g texture object to either
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB E_MAP,
 TEXTURE_1D_ARRAY_EXT, or TEXTURE_2D_ARRAY_EXT. The error INVALID_OPERATION
 is generated if an attempt is made to bind a te xture object of different
 dimensionality than the specified target. If th e bind is successful no
 change is made to the state of the bound textur e object, and any previous
 binding to target is broken.

 While a texture object is bound, GL operations on the target to which it
 is bound affect the bound object, and queries o f the target to which it is
 bound return state from the bound object. If te xture mapping of the
 dimensionality of the target to which a texture object is bound is
 enabled, the state of the bound texture object directs the texturing
 operation.

 In the initial state, TEXTURE_1D, TEXTURE_2D, T EXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and TEX TURE_2D_ARRAY_EXT have
 one-, two-, three-dimensional, cube map, and on e- and two-dimensional
 array texture state vectors respectively associ ated with them. In order
 that access to these initial textures not be lo st, they are treated as
 texture objects all of whose names are 0. The i nitial one-, two-,

EXT_texture_array NVIDIA OpenGL Extension Specifications

 952

 three-dimensional, cube map, one- and two-dimen sional array textures are
 therefore operated upon, queried, and applied a s TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, and
 TEXTURE_2D_ARRAY_EXT respectively while 0 is bo und to the corresponding
 targets.

 (modify second paragraph, p. 181) ... If a tex ture that is currently
 bound to one of the targets TEXTURE_1D, TEXTURE _2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or TEXT URE_2D_ARRAY_EXT is
 deleted, it is as though BindTexture had been e xecuted with the same
 target and texture zero. ...

 (modify second paragraph, p. 182) The texture o bject name space, including
 the initial one-, two-, and three dimensional, cube map, and one- and
 two-dimensional array texture objects, is share d among all texture
 units. ...

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify second through fourth paragraphs, p. 18 8, reflecting that the
 texture coordinate used for depth comparisons v aries, including a new enum
 name)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture
 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 a program instruction, let R be the reference v alue for depth comparisons
 provided in the instruction, also clamped to [0 , 1]. Then the effective
 texture value L_t, I_t, or A_t is computed as f ollows: ...

 If the value of TEXTURE_COMPARE_MODE is NONE, t hen

 r = Dt

 If the value of TEXTURE_COMPARE_MODE is COMPARE _REF_DEPTH_TO_TEXTURE_EXT),
 then r depends on the texture comparison functi on as shown in table 3.27.

 Modify Section 3.11.2, Shader Execution (p. 194)

 (modify second paragraph, p. 195 -- two simple edits:

 (1) Change reference to the "r" coordinate to simply indicate that the
 reference value for shadow mapping is pro vided in the lookup
 function. It's still usually in the "r" coordinate, except for
 two-dimensional array textures, where it' s in "q".
 (2) Add new EXT_gpu_shader4 sampler types use d for array textures.)

 Texture lookups involving textures with depth c omponent data can either
 return the depth data directly or return the re sults of a comparison with
 a reference depth value specified in the coordi nates passed to the texture
 lookup function. The comparison operation is r equested in the shader by
 using the shadow sampler types (sampler1DShadow , sampler2DShadow,
 sampler1DArrayShadow, and sampler2DArrayShadow) and in the texture using
 the TEXTURE COMPARE MODE parameter. ...

NVIDIA OpenGL Extension Specifications EXT_texture_array

 953

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Modify Section 5.4, Display Lists (p. 237)

 (modify first paragraph, p. 242) TexImage3D, Te xImage2D, TexImage1D,
 Histogram, and ColorTable are executed immediat ely when called with the
 corresponding proxy arguments PROXY_TEXTURE_3D or
 PROXY_TEXTURE_2D_ARRAY_EXT; PROXY_TEXTURE_2D, PROXY_TEXTURE_CUBE_MAP, or
 PROXY_TEXTURE_1D_ARRAY_EXT; PROXY_TEXTURE_1D; PROXY_HISTOGRAM; and
 PROXY_COLOR_TABLE, PROXY_POST_CONVOLUTION_COLOR_TABLE, or
 PROXY_POST_COLOR_MATRIX_COLOR_TABLE.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.3, Enumerated Queries (p. 24 6)

 (modify second paragraph, p. 247)

 GetTexParameter parameter <target> may be one o f TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, TEXTURE_1D_ARRAY_EXT, or
 TEXTURE_2D_ARRAY_EXT, indicating the currently bound one-, two-,
 three-dimensional, cube map, or one- or two-dim ensional array texture.
 GetTexLevelParameter parameter target may be on e of TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_POSITI VE_X,
 TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
 TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
 TEXTURE_CUBE_MAP_NEGATIVE_Z, TEXTURE_1D_ARRAY_EXT, TEXTURE_2D_ARRAY_EXT,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
 PROXY_TEXTURE_CUBE_MAP, PROXY_TEXTURE_1D_ARRAY, or PROXY_TEXTURE_2D_ARRAY,
 indicating the one-, two-, or three-dimensional texture, one of the six
 distinct 2D images making up the cube map textu re, the one- or
 two-dimensional array texture, or the one-, two -, three-dimensional, cube
 map, or one- or two-dimensional array proxy sta te vector. ...

 Modify Section 6.1.4, Texture Queries (p. 248)

 (modify first three paragraphs of section, p. 2 48) The command

 void GetTexImage(enum tex, int lod, enum for mat,
 enum type, void *img);

 is used to obtain texture images. It is somewha t different from the other
 get commands; tex is a symbolic value indicatin g which texture (or texture
 face in the case of a cube map texture target n ame) is to be obtained.
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ ARRAY_EXT, and
 TEXTURE_2D_ARRAY_EXT indicate a one-, two-, or three-dimensional texture,
 or one- or two-dimensional array texture, respe ctively.
 TEXTURE_CUBE_MAP_POSITIVE_X, ...

 GetTexImage obtains... from the first image to the last for
 three-dimensional textures. One- and two-dimen sional array textures are

EXT_texture_array NVIDIA OpenGL Extension Specifications

 954

 treated as two- and three-dimensional images, r espectively, where the
 layers are treated as rows or images. These gr oups are then...

 For three-dimensional and two-dimensional array textures, pixel storage
 operations are applied as if the image were two -dimensional, except that
 the additional pixel storage state values PACK_ IMAGE_HEIGHT and
 PACK_SKIP_IMAGES are applied. ...

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is supported, a singl e layer of an array texture
 can be bound to a framebuffer attachment point, and manual mipmap
 generation support is extended to include array textures.

 Several modifications are made to the EXT_frame buffer_object
 specification. First, the token identifying th e attached layer of a 3D
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFF SET_EXT, is renamed to
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT. This is done because this
 extension generalizes the "z offset" concept to become notion of attaching
 a layer of a multi-layer texture, which is appl icable for both
 three-dimensional and array textures. All refe rences to this token in
 EXT_framebuffer_object should be changed to the new token, and references
 to "z offset" in the specification text should be replaced with "layer" as
 appropriate. Additional edits follow.

 (modify "Manual Mipmap Generation" in edits to Section 3.8.8)

 Mipmaps can be generated manually with the comm and

 void GenerateMipmapEXT(enum target);

 where <target> is one of TEXTURE_1D, TEXTURE_2D , TEXTURE_CUBE_MAP,
 TEXTURE_3D, TEXTURE_1D_ARRAY, or TEXTURE_2D_ARR AY. Mipmap generation
 affects the texture image attached to <target>. ...

 (modify Section 4.4.2.3, Attaching Texture Imag es to a Framebuffer -- add
 to the end of the section)

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates identically to FramebufferTexture3DEXT , except that it attaches a
 single layer of a three-dimensional texture or a one- or two-dimensional

NVIDIA OpenGL Extension Specifications EXT_texture_array

 955

 array texture. <layer> is an integer indicatin g the layer number, and is
 treated identically to the <zoffset> parameter in FramebufferTexture3DEXT.
 The error INVALID_VALUE is generated if <layer> is negative. The error
 INVALID_OPERATION is generated if <texture> is non-zero and is not the
 name of a three dimensional texture or one- or two-dimensional array
 texture. Unlike FramebufferTexture3D, no <text arget> parameter is
 accepted.

 If <texture> is non-zero and the command does n ot result in an error, the
 framebuffer attachment state corresponding to < attachment> is updated as
 in the other FramebufferTexture commands, excep t that
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer>.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 ...

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, then FRAMEBUFFER_ATTACHMENT_ TEXTURE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify Section 6.1.3, Enumerated Queries)

 ...

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTUR E_LAYER_EXT and the texture
 object named FRAMEBUFFER_ATTACHMENT_OBJECT_ NAME_EXT is a
 three-dimensional texture or a one- or two- dimensional array texture,
 then <params> will contain the number of te xture layer attached to the
 attachment point. Otherwise, <params> will contain the value zero.

Dependencies on NV_geometry_program4

 NV_geometry_program4 provides additional modifi cations to
 EXT_framebuffer_object to support layered rende ring, which allows
 applications to bind entire three-dimensional, cube map, or array textures
 to a single attachment point, and select a laye r to render to according to
 a layer number written by the geometry program.

 The framebuffer object modifications provided i n NV_geometry_program4 are
 more extensive than the more limited support pr ovided for array textures.
 The edits in this spec are a functional subset of the edits in
 NV_geometry_program4. All of the modifications that this extension makes
 to EXT_framebuffer_object are superseded by NV_ geometry_program4, except
 for the minor language changes made to Generate MipmapsEXT().

Dependencies on NV_gpu_program4 and the OpenGL Shad ing Language (GLSL)

 If NV_gpu_program4, EXT_gpu_shader4, and the Op enGL Shading Language
 (GLSL) are not supported, and no other mechanis m is provided to perform
 texture lookups into array textures, this exten sion is pointless, given
 that it provides no fixed-function mechanism to access texture arrays.

EXT_texture_array NVIDIA OpenGL Extension Specifications

 956

 If GLSL is supported, the language below descri bes the modifications to
 the shading language to support array textures. The extension
 EXT_gpu_shader4 provides a broader set of shadi ng language modifications
 that include array texture lookup functions des cribed here, plus a number
 of additional functions.

 If GLSL is not supported, the shading language below and references to the
 SAMPLER_{1D,2D}_ARRAY_EXT and SAMPLER_{1D,2D}_A RRAY_SHADOW_EXT tokens
 should be removed.

Dependencies on EXT_texture_compression_s3tc and NV _texture_compression_vtc

 S3TC texture compression is supported for two-d imensional array textures.
 When <target> is TEXTURE_2D_ARRAY_EXT, each lay er is stored independently
 as a compressed two-dimensional textures. When specifying or querying
 compressed images using one of the S3TC formats , the images are provided
 and/or returned as a series of two-dimensional textures stored
 consecutively in memory, with the layer closest to zero specified first.
 For array textures, images are not arranged in 4x4x4 or 4x4x2 blocks as in
 the three-dimensional compression format provid ed in the
 EXT_texture_compression_vtc extension. Pixel s tore parameters, including
 those specific to three-dimensional images, are ignored when compressed
 image data are provided or returned, as in the
 EXT_texture_compression_s3tc extension.

 S3TC compression is not supported for one-dimen sional texture targets in
 EXT_texture_compression_s3tc, and is not suppor ted for one-dimensional
 array textures in this extension. If compresse d one-dimensional arrays
 are needed, use a two-dimensional texture with a height of one.

 As with NV_texture_compression_vtc, this extens ion allows the use of the
 four S3TC internal format types in TexImage3D, CompressedTexImage3D, and
 CompressedTexSubImage3D calls. Unlike NV_textu re_compression_vtc (for 3D
 textures), compressed sub-image updates are all owed at arbitrary locations
 along the Z axis. The language describing Comp ressedTexSubImage* APIs,
 edited by EXT_texture_compression_s3tc (allowin g updates at 4x4 boundaries
 for 2D textures) and NV_texture_compression_vtc (allowing updates at 4x4x4
 boundaries for 3D textures) is updated as follo ws:

 "If the internal format of the texture image being modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_ RGBA_S3TC_DXT5_EXT, the
 texture is stored using one of several S3TC o r VTC compressed texture
 image formats. Since these algorithms suppor t only 2D and 3D images,
 CompressedTexSubImage1DARB produces an INVALI D_ENUM error if <format> is
 an S3TC/VTC format. Since S3TC/VTC images ar e easily edited along 4x4,
 4x4x1, or 4x4x4 texel boundaries, the limitat ions on
 CompressedTexSubImage2D and CompressedTexSubI mage3D are relaxed.
 CompressedTexSubImage2D and CompressedTexSubI mage3D will result in an
 INVALID_OPERATION error only if one of the fo llowing conditions occurs:

NVIDIA OpenGL Extension Specifications EXT_texture_array

 957

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.
 * <depth> is not a multiple of four or equa l to TEXTURE_DEPTH, and
 <target> is TEXTURE_3D.
 * <zoffset> is not a multiple of four and < target> is TEXTURE_3D."

 (Note: The original version of this specificati on incorrectly failed to
 allow compressed subimage updates of array text ures via
 CompressedTexSubImage3D, except at 4x4x4 bounda ries/sizes. This
 undesirable behavior was also implemented by al l NVIDIA OpenGL drivers
 published prior to February 2008.)

Errors

 None. Some error conditions are removed, due t o the ability to use the
 new TEXTURE_1D_ARRAY_EXT and TEXTURE_2D_ARRAY_E XT enums.

New State

 (add to table 6.15, p. 276)
 Initial
 Get Value Type Get Comman d Value Description Sec. Attribute
 ---------------------------- ----- ---------- - ----- -------------------- ------ ---------
 TEXTURE_BINDING_1D_ARRAY_EXT 2*xZ+ GetInteger v 0 texture object bound 3.8.12 texture
 to TEXTURE_1D_ARRAY
 TEXTURE_BINDING_2D_ARRAY_EXT 2*xZ+ GetInteger v 0 texture object bound 3.8.12 texture
 to TEXTURE_2D_ARRAY

New Implementation Dependent State

 (add to Table 6.32, p. 293)
 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 ---------------------------- ---- ----------- ------- ------------------ ----- ---------
 MAX_TEXTURE_ARRAY_LAYERS_EXT Z+ GetIntegerv 64 maximum number of 3.8.1 -
 layers for texture
 arrays

Modifications to The OpenGL Shading Language Specif ication, Version 1.10.59

 (This section describes additions to GLSL to al low shaders to access array
 textures. This is a subset of the new shading language provided by the
 EXT_gpu_shader4 extension, limited to array te xture support. It is
 provided here in case implementations choose t o support EXT_texture_array
 without supporting EXT_gpu_shader4 or equivale nt functionality.

 Note that if the EXT_gpu_shader4 extension is enabled in a shader via an
 "#extension" line, there is no need to separat ely enable
 EXT_texture_array.)

 Including the following line in a shader can be used to control the
 language features described in this extension:

 #extension GL_EXT_texture_array : <behavior>

 where <behavior> is as specified in section 3.3 .

EXT_texture_array NVIDIA OpenGL Extension Specifications

 958

 A new preprocessor #define is added to the Open GL Shading Language:

 #define GL_EXT_texture_array 1

 Add to section 3.6 "Keywords"

 The following new sampler types are added:

 sampler1DArray, sampler2DArray, sampler1DArra yShadow,
 sampler2DArrayShadow

 Add to section 4.1 "Basic Types"

 Add the following entries to the type table:

 sampler1DArray handle for accessing a 1D array texture
 sampler2DArray handle for accessing a 2D array texture
 sampler1DArrayShadow handle for accessing a 1D array depth texture
 with comparison
 sampler2DArrayShadow handle for accessing a 2D array depth texture
 with comparison

 Add to section 8.7 "Texture Lookup Functions"

 Add new functions to the set of allowed texture lookup functions:

 Syntax:

 vec4 texture1DArray(sampler1DArray sampler, v ec2 coord
 [, float bias])
 vec4 texture1DArrayLod(sampler1DArray sampler , vec2 coord,
 float lod)

 Description:

 Use the first element (coord.s) of texture coor dinate coord to do a
 texture lookup in the layer indicated by the se cond coordinate coord.t of
 the 1D texture array currently bound to sampler . The layer to access is
 computed by layer = max (0, min(d - 1, floor (c oord.t + 0.5)) where 'd' is
 the depth of the texture array.

 Syntax:

 vec4 texture2DArray(sampler2DArray sampler, v ec3 coord
 [, float bias])
 vec4 texture2DArrayLod(sampler2DArray sampler , vec3 coord,
 float lod)
 Description:

 Use the first two elements (coord.s, coord.t) o f texture coordinate coord
 to do a texture lookup in the layer indicated b y the third coordinate
 coord.p of the 2D texture array currently bound to sampler. The layer to
 access is computed by layer = max (0, min(d - 1 , floor (coord.p + 0.5))
 where 'd' is the depth of the texture array.

NVIDIA OpenGL Extension Specifications EXT_texture_array

 959

 Syntax:

 vec4 shadow1DArray(sampler1DArrayShadow sampl er, vec3 coord,
 [float bias])
 vec4 shadow1DArrayLod(sampler1DArrayShadow sa mpler,
 vec3 coord, float lod)
 Description:

 Use texture coordinate coord.s to do a depth co mparison lookup on an array
 layer of the depth texture bound to sampler, as described in section
 3.8.14 of version 2.0 of the OpenGL specificati on. The layer to access is
 indicated by the second coordinate coord.t and is computed by layer = max
 (0, min(d - 1, floor (coord.t + 0.5)) where 'd' is the depth of the
 texture array. The third component of coord (co ord.p) is used as the R
 value. The texture bound to sampler must be a d epth texture, or results
 are undefined.

 Syntax:

 vec4 shadow2DArray(sampler2DArrayShadow sampl er, vec4 coord)

 Description:

 Use texture coordinate (coord.s, coord.t) to do a depth comparison lookup
 on an array layer of the depth texture bound to sampler, as described in
 section 3.8.14 of version 2.0 of the OpenGL spe cification. The layer to
 access is indicated by the third coordinate coo rd.p and is computed by
 layer = max (0, min(d - 1, floor (coord.p + 0.5)) where 'd' is the depth
 of the texture array. The fourth component of c oord (coord.q) is used as
 the R value. The texture bound to sampler must be a depth texture, or
 results are undefined.

Issues

 (1) Should this extension generalize the notion of 1D and 2D textures to
 be arrays of 1D or 2D images, or simply int roduce new targets?

 RESOLVED: Introduce new targets.

 It would have been possible to simply extend the notion of 1D and 2D
 textures, and allow applications to pass TEXT URE_1D to TexImage2D (1D
 arrays) or TEXTURE_2D to TexImage3D (2D array s). This would have
 avoided introducing a new set of texture targ ets (and proxy targets),
 and a "default texture" (object zero) for eac h new target.

 It is desirable to have a distinction between array and non-array
 textures in programmable shaders, so compiler s can generate code
 appropriate to the texture type. For "normal " textures, a 2D texture
 requires two component texture coordinates, w hile a 2D array texture
 requires three. Without a distinction betwee n array and non-array
 textures, implementations must choose between compiling shaders to the
 most general form (2D arrays) or recompiling shaders based on texture
 usage. Texture lookups with shadow mapping, LOD bias, or per-pixel LOD
 have additional complexity, and the interpret ation of a coordinate
 vector may need to depend on whether the text ure was an array or
 non-array texture.

EXT_texture_array NVIDIA OpenGL Extension Specifications

 960

 It would be possible to limit the distinction between array and
 non-array textures to the shaders, but it cou ld then become the
 responsibility of the application developer t o ensure that a texture
 with multiple layers is used when an "array l ookup" is performed, and
 that a single-layer texture is used when a "n on-array lookup" is
 performed. That begs the question of what th e distinction between an
 "array texture" and a "non-array texture" is. At least two possible
 distinctions have been identified: one vs. m ultiple layers, or the API
 call used to specify the texture (TexImage3D with TEXTURE_2D == array
 texture, TexImage2D == non-array texture). T he former does not allow
 for the possibility of single-layer array tex tures; it may be the case
 that application developers want to use a gen eral shader supporting
 array textures, but there may be cases where only a single layer might
 be provided. The latter approach allows for single-layer array
 textures, but the distinction is now based on the API call.

 Adding separate targets eliminates the need f or such a distinction.
 "Array lookups" refer to the TEXTURE_1D_ARRAY _EXT or
 TEXTURE_2D_ARRAY_EXT targets; "non-array look ups" refer to TEXTURE_1D or
 TEXTURE_2D. There is never a case where the wrong kind of texture can
 be used, as TEXTURE_1D_ARRAY_EXT and TEXTURE_ 2D_ARRAY_EXT textures are
 always arrays by definition.

 This distinction should also be helpful if an d when fixed-function
 fragment processing is supported; the enabled texture target is used to
 generate an internal fragment shader using th e proper "array lookup".
 There would be no need to recompile shaders d epending on whether an
 enabled texture is an "array texture" or not.

 (2) Should texture arrays be supported for fixe d-function fragment
 processing?

 RESOLVED: No; it's not believed to be worth the effort. Fixed-function
 fragment processing could be easily supported by allowing applications
 to enable or disable TEXTURE_1D_ARRAY_EXT or TEXTURE_2D_ARRAY_EXT.

 Note that for fixed-function fragment process ing, there would be issues
 with texture lookups of two-dimensional array textures with shadow
 mapping. Given that all texture lookups are projective, a total of five
 coordinate components would be required (s, t , layer, depth, q).

 (3) If fixed-function were supported, should th e layer number (T or R) be
 divided by Q in projective texture lookups?

 RESOLVED: It doesn't need to be resolved in this extension, but it
 would be a problem. There are probably cases where an application would
 want the divide (handle R more-or-less like S /T); there are probably
 other cases where the divide would not be wan ted. Many developers won't
 care, and may not even know what the Q coordi nate is used for! The
 default of 1.0 allows applications that don't care about projective
 lookups to simply ignore that fact.

 For programmable fragment shading, an applica tion can code it either way
 and use non-projective lookups. To the exten t that the divide by Q for
 projective lookups is "free" or "cheap" on Op enGL hardware, compilers
 may be able to recognize a projective pattern in the computed
 coordinates and generate code appropriately.

NVIDIA OpenGL Extension Specifications EXT_texture_array

 961

 (4) Should DEPTH_COMPONENT textures be supporte d for texture arrays?

 RESOLVED: Yes; multi-layer shadow maps are u seful.

 (5) How should shadow mapping in texture arrays work with programmable
 shaders, and fixed-function shaders (if eve r supported)?

 RESOLVED: The layer number is in the "next" coordinate following the
 normal 1D or 2D coordinate. That's the "t" c oordinate for 1D arrays and
 the "r" coordinate for 2D arrays. For shadow maps, this is a problem,
 as the "r" coordinate is generally used as th e depth reference value.
 This is resolved by instead taking the depth reference value from the
 "q" coordinate.

 For some programmable texture lookups (explic it LOD, LOD bias,
 projective), "too many" coordinates are requi red. Such lookups are not
 possible with four-component vectors; it woul d require at least two
 parameters to perform such operations.

 For fixed-function shading, it is recommended that shadow mapping
 lookups in two-dimensional array textures be treated as non-projective,
 even though all other lookups would be projec tive. Additionally, the
 "q" coordinate should be used for the depth r eference value in this
 case.

 (6) How do texture borders interact with array textures?

 RESOLVED: Each individual layer of an array texture can have a border,
 as though it were a normal one- or two-dimens ional texture. However,
 there are no "border layers".

 (7) How does mipmapping work with array texture s?

 RESOLVED: Level <N+1> is half the size of le vel <N> in width and/or
 height, but the number of layers is always th e same for each level --
 layer <M> of level <N+1> is expected to be a filtered version of layer
 <M> of the higher mipmap levels. This behavi or impacts the texture
 consistency rules for array textures.

 (8) Are compressed textures supported for array textures?

 RESOLVED: Yes; they may be loaded via normal TexImage APIs, as well as
 CompressedTexImage2D and CompressedTexImage3D . Compressed array
 textures are treated as arrays of compressed 1D or 2D images.

 (9) Should these things be called "array textur es" or "texture arrays"?

 RESOLVED: "Array textures", mostly because i t was easier spec wording.
 Calling them "array textures" also seems like better disambiguation;
 there are several different things that can b e thought of as "texture
 arrays":

 * the array of texture levels (mipmapping)
 * the array of texture layers (array textur es)
 * the array of texels in each image

EXT_texture_array NVIDIA OpenGL Extension Specifications

 962

 This spec changes the use of "texture array" in the core specification
 (which means the array of texels) to instead refer to "texel array".

 (10) If they're called "array textures", why do es the extension name
 include "texture_array"?

 RESOLVED: Because this is primarily a textur e extension, and all such
 extensions start with "texture".

 (11) Should new functions be provided for loadi ng or modifying array
 textures?

 RESOLVED: No. Existing TexImage2D (1D array s) and TexImage3D (2D
 arrays), plus corresponding TexSubImage, Copy TexImage, and
 CopyTexSubImage calls are sufficient.

 (12) Should ARB_imaging functionality to be ext ended to support
 two-dimensional array textures?

 RESOLVED: No. Convolution is rarely used wh en texture images are
 defined, and is even less likely for array te ture images. This could be
 addressed via a separate extension if the nee d were identified, and such
 operations could be defined for 3D textures a s well at that time.

 Note that with the API chosen, one-dimensiona l array textures do have
 convolution applied (if enabled), because ima ge data is treated as a
 normal two-dimensional image.

 (13) What if an application wants to populate a n array texture using
 separate mipmap chains a layer at a time r ather than specifying all
 layers of a given mipmap level at once?

 RESOLVED: For 2D array textures, call TexIma ge3D once with a NULL image
 pointer for each level to establish the texel array sizes. Then, call
 TexSubImage3D for each layer/mipmap level to define individual images.

 (14) Should we provide a way to query a single layer of an array texture?

 RESOLVED: No; we don't expect this to be an issue in practice.
 GetTexImage() will return a two- or three-dim ensional image for one- and
 two-dimensional arrays, including all levels. If this were identified
 as an important need, a follow-on extension c ould be added in the
 future.

 (15) How is the LOD (lambda) computed for array textures?

 RESOLVED: LOD is computed in the same manner for 1D and 2D array
 textures as it is for normal 1D and 2D textur es. The layer coordinate
 has no effect on LOD computations.

 (16) What's the deal with this new "COMPARE_REF _DEPTH_TO_TEXTURE_EXT"?

 RESOLVED: It's a new name for the existing e numerant
 "COMPARE_R_TO_TEXTURE". This alternate name is provided to reflect the
 fact that it's not always the R coordinate th at is used for depth
 comparisons.

NVIDIA OpenGL Extension Specifications EXT_texture_array

 963

 (17) How do array textures work with framebuffe r objects
 (EXT_framebuffer_object extension, also kn own as "FBO")?

 RESOLVED: A new function, FramebufferTexture LayerEXT(), is provided to
 attach a single layer of a one- or two-dimens ional array texture to an
 framebuffer attachment point. That new funct ion can also be used to
 attach a layer of a three-dimensional texture .

 In addition to supporting FBO attachments, th e manual mipmap generation
 support provided by glGenerateMipmapEXT is ex tended to array textures.
 Mipmap generation applies to each layer of th e array texture
 independently, as is the case with the GENERA TE_MIPMAPS texture
 parameter.

 This support provided here a limited subset o f the FBO support added by
 NV_geometry_program4, which additionally prov ides the ability to attach
 an entire level of a three-dimensional, cube map, or array texture.
 When such attachments are performed, a geomet ry program can be used to
 select a layer to render each emitted primiti ve to.

 (18) Should array texture targets be supported for creation of "render
 buffers"?

 RESOLVED: No. These are inherently two-dime nsional images.

 (19) Should we provide a mipmap generation func tion to generate mipmaps
 for only a single layer of an array textur e?

 RESOLVED: Not in this extension. We conside red adding this toward the
 end of the development of this extension, but decided not to add it
 because this mipmap generation function would have very different
 requirements from the GenerateMipmapEXT funct ion provided by
 EXT_framebuffer_object.

 The existing GenerateMipmapEXT function repla ces all levels of detail
 below the base level with generated mipmaps. If those mipmap levels are
 unpopulated or inconsistent with the base lev el, they are completely
 overwritten with a generated image that is co nsistent with the base
 level. If we were to provide a function to g enerate mipmaps for only a
 single layer, all other layers of non-base le vels would need to be
 preserved. However, since there are not sepa rate formats or sizes per
 level, this form of mipmap generation would r equire that all non-base
 levels be present and consistent with the bas e level, or mipmap
 generation wouldn't work.

 We expect that future revisions of the GL wil l change the specification
 of mipmapped textures in

 (20) This extension allows the use of S3TC text ure internal formats in
 TexImage3D and CompressedTexImage3D. Does this mean that they are
 now supported for 3D textures?

 RESOLVED: No. With this extension alone, Te xImage3D and
 CompressedTexImage3D only support S3TC compre ssed formats with a target
 of TEXTURE_2D_ARRAY_EXT. The S3TC tokens wer e added to the list of
 internal formats supported by TexImage3D and friends because

EXT_texture_array NVIDIA OpenGL Extension Specifications

 964

 two-dimensional array textures are specified using the three-dimensional
 TexImage functions.

 The existing extension NV_texture_compression _vtc does provides support
 for S3TC-style compressed 3D textures.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 6 02/04/08 pbrown Added a missing inter action with the VTC texture
 compression spec allo wing updates of compressed
 2D array textures alo ng 4x4x1 boundaries (we
 previously inherited the VTC restriction of
 4x4x4).

 5 12/15/06 pbrown Documented that the ' #extension' token
 for this extension sh ould begin with "GL_",
 as apparently called for per convention.

 4 -- Pre-release revisions .

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 965

Name

 EXT_texture_buffer_object

Name Strings

 GL_EXT_texture_buffer_object

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Last Modified Date: 10/30/2007
 NVIDIA Revision: 4

Number

 330

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 is required.

 This extension is written against the OpenGL 2. 0 specification.

 This extension depends trivially on EXT_texture _array.

 This extension depends trivially on NV_texture_ shader.

 This extension depends trivially on EXT_texture _integer.

 This extension depends trivially on ARB_texture _float.

 This extension depends trivially on ARB_half_fl oat_pixel.

Overview

 This extension provides a new texture type, cal led a buffer texture.
 Buffer textures are one-dimensional arrays of t exels whose storage comes
 from an attached buffer object. When a buffer object is bound to a buffer
 texture, a format is specified, and the data in the buffer object is
 treated as an array of texels of the specified format.

 The use of a buffer object to provide storage a llows the texture data to
 be specified in a number of different ways: vi a buffer object loads
 (BufferData), direct CPU writes (MapBuffer), fr amebuffer readbacks
 (EXT_pixel_buffer_object extension). A buffer object can also be loaded
 by transform feedback (NV_transform_feedback ex tension), which captures
 selected transformed attributes of vertices pro cessed by the GL. Several

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 966

 of these mechanisms do not require an extra dat a copy, which would be
 required when using conventional TexImage-like entry points.

 Buffer textures do not support mipmapping, text ure lookups with normalized
 floating-point texture coordinates, and texture filtering of any sort, and
 may not be used in fixed-function fragment proc essing. They can be
 accessed via single texel fetch operations in p rogrammable shaders. For
 assembly shaders (NV_gpu_program4), the TXF ins truction is used. For
 GLSL, a new sampler type and texel fetch functi on are used.

 While buffer textures can be substantially larg er than equivalent
 one-dimensional textures; the maximum texture s ize supported for buffer
 textures in the initial implementation of this extension is 2^27 texels,
 versus 2^13 (8192) texels for otherwise equival ent one-dimensional
 textures. When a buffer object is attached to a buffer texture, a size is
 not specified; rather, the number of texels in the texture is taken by
 dividing the size of the buffer object by the s ize of each texel.

New Procedures and Functions

 void TexBufferEXT(enum target, enum internalfor mat, uint buffer);

New Tokens

 Accepted by the <target> parameter of BindBuffe r, BufferData,
 BufferSubData, MapBuffer, BindTexture, UnmapBuf fer, GetBufferSubData,
 GetBufferParameteriv, GetBufferPointerv, and Te xBufferEXT, and
 the <pname> parameter of GetBooleanv, GetDouble v, GetFloatv, and
 GetIntegerv:

 TEXTURE_BUFFER_EXT 0x8C2A

 Accepted by the <pname> parameters of GetBoolea nv, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_TEXTURE_BUFFER_SIZE_EXT 0x8C2B
 TEXTURE_BINDING_BUFFER_EXT 0x8C2C
 TEXTURE_BUFFER_DATA_STORE_BINDING_EXT 0x8C2D
 TEXTURE_BUFFER_FORMAT_EXT 0x8C2E

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 (Insert new Section 3.8.4, Buffer Textures. Re number subsequent
 sections.)

 In addition to one-, two-, and three-dimensiona l and cube map textures
 described in previous sections, one additional type of texture is
 supported. A buffer texture is similar to a on e-dimensional texture.
 However, unlike other texture types, the texel array is not stored as part
 of the texture. Instead, a buffer object is at tached to a buffer texture
 and the texel array is taken from the data stor e of an attached buffer
 object. When the contents of a buffer object's data store are modified,
 those changes are reflected in the contents of any buffer texture to which

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 967

 the buffer object is attached. Also unlike oth er textures, buffer
 textures do not have multiple image levels; onl y a single data store is
 available.

 The command

 void TexBufferEXT(enum target, enum internalf ormat, uint buffer);

 attaches the storage for the buffer object name d <buffer> to the active
 buffer texture, and specifies an internal forma t for the texel array found
 in the attached buffer object. If <buffer> is zero, any buffer object
 attached to the buffer texture is detached, and no new buffer object is
 attached. If <buffer> is non-zero, but is not the name of an existing
 buffer object, the error INVALID_OPERATION is g enerated. <target> must be
 TEXTURE_BUFFER_EXT. <internalformat> specifies the storage format, and
 must be one of the sized internal formats found in Table X.1.

 When a buffer object is attached to a buffer te xture, the buffer object's
 data store is taken as the texture's texel arra y. The number of texels in
 the buffer texture's texel array is given by

 floor(<buffer_size> / (<components> * sizeof(<base_type>)),

 where <buffer_size> is the size of the buffer o bject, in basic machine
 units and <components> and <base_type> are the element count and base data
 type for elements, as specified in Table X.1. The number of texels in the
 texel array is then clamped to the implementati on-dependent limit
 MAX_TEXTURE_BUFFER_SIZE_EXT. When a buffer tex ture is accessed in a
 shader, the results of a texel fetch are undefi ned if the specified texel
 number is greater than or equal to the clamped number of texels in the
 texel array.

 When a buffer texture is accessed in a shader, an integer is provided to
 indicate the texel number being accessed. If n o buffer object is bound to
 the buffer texture, the results of the texel ac cess are undefined.
 Otherwise, the attached buffer object's data st ore is interpreted as an
 array of elements of the GL data type correspon ding to <internalformat>.
 Each texel consists of one to four elements tha t are mapped to texture
 components (R, G, B, A, L, and I). Element <m> of the texel numbered <n>
 is taken from element <n> * <components> + <m> of the attached buffer
 object's data store. Elements and texels are b oth numbered starting with
 zero. For texture formats with normalized comp onents, the extracted
 values are converted to floating-point values a ccording to Table 2.9. The
 components of the texture are then converted to an (R,G,B,A) vector
 according to Table X.21, and returned to the sh ader as a four-component
 result vector with components of the appropriat e data type for the
 texture's internal format. The base data type, component count,
 normalized component information, and mapping o f data store elements to
 texture components is specified in Table X.1.

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 968

 Component
 Sized Internal Format Base Type Componen ts Norm 0 1 2 3
 ------------------------ --------- -------- -- ---- -------
 ALPHA8 ubyte 1 Y A . . .
 ALPHA16 ushort 1 Y A . . .
 ALPHA16F_ARB half 1 N A . . .
 ALPHA32F_ARB float 1 N A . . .
 ALPHA8I_EXT byte 1 N A . . .
 ALPHA16I_EXT short 1 N A . . .
 ALPHA32I_EXT int 1 N A . . .
 ALPHA8UI_EXT ubyte 1 N A . . .
 ALPHA16UI_EXT ushort 1 N A . . .
 ALPHA32UI_EXT uint 1 N A . . .

 LUMINANCE8 ubyte 1 Y L . . .
 LUMINANCE16 ushort 1 Y L . . .
 LUMINANCE16F_ARB half 1 N L . . .
 LUMINANCE32F_ARB float 1 N L . . .
 LUMINANCE8I_EXT byte 1 N L . . .
 LUMINANCE16I_EXT short 1 N L . . .
 LUMINANCE32I_EXT int 1 N L . . .
 LUMINANCE8UI_EXT ubyte 1 N L . . .
 LUMINANCE16UI_EXT ushort 1 N L . . .
 LUMINANCE32UI_EXT uint 1 N L . . .

 LUMINANCE8_ALPHA8 ubyte 2 Y L A . .
 LUMINANCE16_ALPHA16 ushort 2 Y L A . .
 LUMINANCE_ALPHA16F_ARB half 2 N L A . .
 LUMINANCE_ALPHA32F_ARB float 2 N L A . .
 LUMINANCE_ALPHA8I_EXT byte 2 N L A . .
 LUMINANCE_ALPHA16I_EXT short 2 N L A . .
 LUMINANCE_ALPHA32I_EXT int 2 N L A . .
 LUMINANCE_ALPHA8UI_EXT ubyte 2 N L A . .
 LUMINANCE_ALPHA16UI_EXT ushort 2 N L A . .
 LUMINANCE_ALPHA32UI_EXT uint 2 N L A . .

 INTENSITY8 ubyte 1 Y I . . .
 INTENSITY16 ushort 1 Y I . . .
 INTENSITY16F_ARB half 1 N I . . .
 INTENSITY32F_ARB float 1 N I . . .
 INTENSITY8I_EXT byte 1 N I . . .
 INTENSITY16I_EXT short 1 N A . . .
 INTENSITY32I_EXT int 1 N A . . .
 INTENSITY8UI_EXT ubyte 1 N A . . .
 INTENSITY16UI_EXT ushort 1 N A . . .
 INTENSITY32UI_EXT uint 1 N A . . .

 RGBA8 ubyte 4 Y R G B A
 RGBA16 ushort 4 Y R G B A
 RGBA16F_ARB half 4 N R G B A
 RGBA32F_ARB float 4 N R G B A
 RGBA8I_EXT byte 4 N R G B A
 RGBA16I_EXT short 4 N R G B A
 RGBA32I_EXT int 4 N R G B A
 RGBA8UI_EXT ubyte 4 N R G B A
 RGBA16UI_EXT ushort 4 N R G B A
 RGBA32UI_EXT uint 4 N R G B A

 Table X.1, Internal Formats for Buffer Textures. For each fo rmat, the
 data type of each element is indicated in the "Base Type" column and the
 element count is in the "Components" column. The "Norm" column
 indicates whether components should be treate d as normalized
 floating-point values. The "Component 0, 1, 2, and 3" columns indicate
 the mapping of each element of a texel to tex ture components.

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 969

 In addition to attaching buffer objects to text ures, buffer objects can be
 bound to the buffer object target named TEXTURE _BUFFER_EXT, in order to
 specify, modify, or read the buffer object's da ta store. The buffer
 object bound to TEXTURE_BUFFER_EXT has no effec t on rendering. A buffer
 object is bound to TEXTURE_BUFFER_EXT by callin g BindBuffer with <target>
 set to TEXTURE_BUFFER_EXT. If no corresponding buffer object exists, one
 is initialized as defined in section 2.9.

 The commands BufferData, BufferSubData, MapBuff er, and UnmapBuffer may all
 be used with <target> set to TEXTURE_BUFFER_EXT . In this case, these
 commands operate in the same fashion as describ ed in section 2.9, but on
 the buffer currently bound to the TEXTURE_BUFFE R_EXT target.

 Modify Section 3.8.11, Texture State and Proxy State (p. 178)

 (insert into the first paragraph of the section , p. 178) ... a zero
 compressed size, and zero-sized components). T he buffer texture target
 contains an integer identifying the buffer obje ct that buffer that
 provided the data store for the texture, initia lly zero, and an integer
 identifying the internal format of the texture, initially LUMINANCE8.
 Next, there are the two sets of texture propert ies; ...

 Modify Section 3.8.12, Texture Objects (p. 180)

 (modify first paragraphs of section, p. 180, si mply adding references to
 buffer textures, which are treated as texture objects)

 In addition to the default textures TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT, named one-, two-, and
 three-dimensional, cube map, and buffer texture objects can be created and
 operated upon. The name space for texture objec ts is the unsigned
 integers, with zero reserved by the GL.

 A texture object is created by binding an unuse d name to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE XTURE_BUFFER_EXT. The
 binding is effected by calling

 void BindTexture(enum target, uint texture) ;

 with target set to the desired texture target a nd texture set to the
 unused name. The resulting texture object is a new state vector,
 comprising all the state values listed in secti on 3.8.11, set to the same
 initial values. If the new texture object is bo und to TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP, or TE XTURE_BUFFER_EXT, it is and
 remains a one-, two-, three-dimensional, cube m ap, or buffer texture
 respectively until it is deleted.

 BindTexture may also be used to bind an existin g texture object to either
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_CUB E_MAP, or
 TEXTURE_BUFFER_EXT. The error INVALID_OPERATION is generated if an attempt
 is made to bind a texture object of different d imensionality than the
 specified target. If the bind is successful no change is made to the state
 of the bound texture object, and any previous b inding to target is broken.

 ...

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 970

 In the initial state, TEXTURE_1D, TEXTURE_2D, T EXTURE_3D,
 TEXTURE_CUBE_MAP, and TEXTURE_BUFFER_EXT have o ne-, two-,
 three-dimensional, cube map, and buffer texture state vectors respectively
 associated with them. In order that access to t hese initial textures not
 be lost, they are treated as texture objects al l of whose names are 0. The
 initial one-, two-, three-dimensional, cube map , and buffer texture is
 therefore operated upon, queried, and applied a s TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP, or TEXTURE_BUFFER _EXT respectively while 0
 is bound to the corresponding targets.

 Texture objects are deleted by calling

 void DeleteTextures(sizei n, uint *textures);

 textures contains n names of texture objects to be deleted. After a
 texture object is deleted, it has no contents o r dimensionality, and its
 name is again unused. If a texture that is curr ently bound to one of the
 targets TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEX TURE_CUBE_MAP, or
 TEXTURE_BUFFER_EXT is deleted, it is as though BindTexture had been
 executed with the same target and texture zero. Unused names in textures
 are silently ignored, as is the value zero.

 (modify second paragraph, p. 182, adding buffer textures, plus cube map
 textures, which is an oversight in the core spe cification)

 The texture object name space, including the in itial one-, two-, and
 three-dimensional, cube map, and buffer texture objects, is shared among
 all texture units. A texture object may be boun d to more than one texture
 unit simultaneously. After a texture object is bound, any GL operations on
 that target object affect any other texture uni ts to which the same
 texture object is bound.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 Modify Section 5.4, Display Lists (p. 237)

 (modify "Vertex buffer objects" portion of the list of non-listable
 commands, p. 241)

 Buffer objects: GenBuffers, DeleteBuffers, Bi ndBuffer, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, and Te xBufferEXT.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.13, Buffer Object Queries (p . 255)

 (modify the first paragraph on p. 256) The comm and

 void GetBufferSubData(enum target, intptr of fset,
 sizeiptr size, void *d ata);

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 971

 queries the data contents of a buffer object. t arget is ARRAY_BUFFER,
 ELEMENT_ARRAY_BUFFER, or TEXTURE_BUFFER_EXT. .. .

 (modify the last paragraph of the section, p. 2 56) While the data store of
 a buffer object is mapped, the pointer to the d ata store can be queried by
 calling

 void GetBufferPointerv(enum target, enum pna me, void **params);

 with target set to ARRAY_BUFFER, ELEMENT_ARRAY_ BUFFER, or
 TEXTURE_BUFFER_EXT, and pname set to BUFFER MAP POINTER.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on EXT_texture_array

 If EXT_texture_array is supported, the introduc tory language describing
 buffer textures should acknowledge the existenc e of array textures. Other
 than that, there are no dependencies between th e two extensions.

Dependencies on NV_texture_shader

 If NV_texture_shader is not supported, referenc es to the signed normalized
 internal formats provided by that extension sho uld be removed, and such
 formats may not be passed to TexBufferEXT.

Dependencies on EXT_texture_integer

 If EXT_texture_integer is not supported, refere nces to the signed and
 unsigned integer internal formats provided by t hat extension should be
 removed, and such formats may not be passed to TexBufferEXT.

Dependencies on ARB_texture_float

 If ARB_texture_float is not supported, referenc es to the floating-point
 internal formats provided by that extension sho uld be removed, and such
 formats may not be passed to TexBufferEXT.

Dependencies on ARB_half_float_pixel

 If ARB_texture_float is not supported, referenc es to the 16-bit
 floating-point internal formats provided by ARB _texture_float should be
 removed, and such formats may not be passed to TexBufferEXT. If an
 implementation supports ARB_texture_float, but does not support
 ARB_half_float_pixel, 16-bit floating-point tex ture formats may be
 available using normal texture mechanisms, but not with buffer textures.

Errors

 INVALID_OPERATION is generated by TexBufferEXT if <buffer> is non-zero and
 is not the name of an existing buffer object.

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 972

New State

 (add to table 6.15, Texture State Per Texture U nit/Binding Point p. 276)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BINDING_BUFFER_EXT 2*xZ+ Get Integerv 0 Texture object bound to 3.8.12 texture
 TEXTURE_BUFFER_EXT

 (add to table 6.16, Texture State Per Texture O bject, p. 276)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BUFFER_DATA_STORE_ nxZ+ Get Integerv 0 Buffer object bound as 3.8.12 texture
 BINDING_EXT the data store for the
 active image unit's buffer
 texture
 TEXTURE_BUFFER_FORMAT_EXT nxZ+ Get Integerv LUMIN- Internal format for the 3.8.12 texture
 ANCE8 active image unit's buffer
 texture

 (add to table 6.37, Miscellaneous State, p. 298)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------------- ---- --- -------- ------- --------------------------- ------ ---------
 TEXTURE_BUFFER_EXT Z+ Get Integerv 0 Buffer object bound to 3.8.12 texture
 the generic buffer texture
 binding point

New Implementation Dependent State

 (modify Table 6.32, p. 293)
 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 --------------------------- ---- ----------- ------- --------------------- ----- ---------
 MAX_TEXTURE_BUFFER_SIZE_EXT Z+ GetIntegerv 65536 number of addressable 3.8.4 -
 texels for buffer
 textures

Issues

 (1) Buffer textures are potentially large one-d imensional arrays that can
 be accessed with single-texel fetches. How should this functionality
 be exposed?

 RESOLVED: Several options were considered. The final approach creates
 a new type of texture object, called a buffer texture, whose texel array
 is taken from the data store from a buffer ob ject. The combined set of
 extensions using buffer objects provides nume rous locations where the GL
 can read and write data to a buffer object:

 EXT_vertex_buffer_object allows vertex attr ibutes to be pulled from a
 buffer object.

 EXT_pixel_buffer_object allows pixel operat ions (DrawPixels,
 ReadPixels, TexImage) to read or write data to a buffer object.

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 973

 EXT_parameter_buffer_object and EXT_bindabl e_uniform allows assembly
 vertex, fragment, and geometry programs, an d all GLSL shaders to read
 program parameter / uniform data from a buf fer object.

 EXT_texture_buffer_object allows programs t o read texture data from a
 buffer object.

 NV_transform_feedback allows programs to wr ite transformed vertex
 attributes to a buffer object.

 When combined, interesting feedback paths are possible, where large
 arrays of data can be generated by the GPU an d the consumed by it in
 multi-pass algorithms, using the buffer objec t's storage to hold
 intermediate data. This allows applications to run complicated
 algorithms on the GPU without necessarily pul ling data back to host CPU
 for additional processing.

 Given that buffer object memory is visible to users as raw memory, all
 uses of the memory must have well-defined dat a formats. For VBO and
 PBO, those formats are explicitly given by ca lls such as VertexPointer,
 TexImage2D, or ReadPixels. When used as a bu ffer texture, it is
 necessary to specify an internal format with which the bytes of the
 buffer object's data store are interpreted.

 Another option considered was to greatly incr ease the maximum texture
 size for 1D texture. This has the advantage of not requiring new
 mechanisms. However, there are a couple limi tations of this approach.
 First, conventional textures have their own s torage that is not
 accessible elsewhere, which limits some of th e sharing opportunities
 described above. Second, buffer textures do have slightly different
 hardware implementations than 1D textures. I n the hardware of interest,
 "normal" 1D textures can be mipmapped and fil tered, but have a maximum
 size that is considerably smaller than that s upported for buffer
 textures. If both texture types used the sam e API mechanism, it might
 be necessary to reprogram texture hardware an d/or shaders depending on
 the size of the textures used. This will inc ur CPU overhead to
 determine if such reprogramming is necessary and to perform the
 reprogramming if so.

 (2) Since buffer textures borrow storage from b uffer objects, whose
 storage is visible to applications, a forma t must be imposed on the
 bytes of the buffer object. What texture f ormats are supported for
 buffer objects?

 RESOLVED: All sized one-, two-, and four-com ponent internal formats
 with 8-, 16-, and 32-bit components are suppo rted. Unsized internal
 formats, and sized formats with other compone nt sizes are also not
 supported. Three-component (RGB) formats are not supported due to
 hardware limitations.

 All component data types supported for normal textures are also
 supported for buffer textures. This includes unsigned [0,1] normalized
 components (e.g., RGBA8), floating-point comp onents from
 ARB_texture_float (e.g., RGBA32F_ARB), signed and unsigned integer
 components from EXT_texture_integer (e.g., RG BA8I_EXT, RGBA16UI_EXT),

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 974

 and signed [-1,+1] normalized components from NV_texture_shader (e.g.,
 SIGNED_RGBA8_NV).

 (3) How can arrays of three-component vectors b e accessed by applications?

 RESOLVED: Several approaches are possible.

 First, the vectors can be padded out to four components (RGBA), with an
 extra unused component for each texel. This has a couple undesirable
 properties: it adds 33% to the required stor age and adding the extra
 component may require reformatting of origina l data generated by the
 application. However, the data in this forma t can be retrieved with a
 single 32-, 64-, or 128-bit lookup.

 Alternately, the buffer texture can be define d using a single component,
 and a shader can perform three lookups to sep arately fetch texels 3*N,
 3*N+1, and 3*N+2, combining the result in a t hree-component vector
 representing "RGB" texel N. This doesn't req uire extra storage or
 reformatting and doesn't require additional b andwidth for texture
 fetches. But it does require additional shad er instructions to obtain
 each texel.

 (4) Does this extension support fixed-function fragment processing,
 somehow allowing buffer textures to be acce ssed without programmable
 shaders?

 RESOLVED: No. We expect that it would be di fficult to properly access
 a buffer texture and combine the returned tex el with other color or
 texture data, given the extremely limited pro gramming model provided by
 fixed-function fragment processing.

 Note also that the single-precision floating- point representation
 commonly used by current graphics hardware is not sufficiently precise
 to exactly represent all texels in a large bu ffer texture. For example,
 it is not possible to represent 2^24+1 using the 32-bit IEEE
 floating-point representation.

 (5) What happens if a buffer object is deleted or respecified when bound
 to a buffer texture?

 RESOLVED: BufferData is allowed to be used to update a buffer object that
 has already been bound to a texture with TexB uffer. The update to the data
 is not guaranteed to affect the texture until next time it is bound to a
 texture image unit. When DeleteBuffers is ca lled, any buffer that is
 bound to a texture is removed from the names array, but remains as long as
 it is bound to a texture. The buffer is full y removed when the texture
 unbinds it or when the texture buffer object is deleted.

 (6) Should applications be able to modify the d ata store of a buffer
 object while it is bound to a buffer textur e?

 RESOLVED: An application is allowed to update the data store for a buffer
 object when the buffer object is bound to a t exture.

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 975

 (7) Do buffer textures support texture paramete rs (TexParameter) or
 queries (GetTexParameter, GetTexLevelParame ter, GetTexImage)?

 RESOLVED: No. None of the existing paramete rs apply to buffer
 textures, and this extension doesn't introduc e the need for any new
 ones. Buffer textures have no levels, and th e size in texels is
 implicit (based on the data store). Given th at the texels themselves
 are obtained from a buffer object, it seems m ore appropriate to retrieve
 such data with buffer object queries. The on ly "parameter" of a buffer
 texture is the internal format, which is spec ified at the same time the
 buffer object is bound.

 Note that the spec edits above don't add expl icit error language for any
 of these cases. That is because each of the functions enumerate the set
 of valid <target> parameters. Not editing th e spec to allow
 TEXTURE_BUFFER_EXT in these cases means that target is not legal, and an
 INVALID_ENUM error should be generated.

 (8) What about indirect rendering with a mix of big- and little-endian
 clients? If components are 16- or 32-bit, how are they interpreted?

 RESOLVED: Buffer object data are interpreted according to the native
 representation of the server. If the server and client have different
 endianness, applications must perform byte sw apping as needed to match
 the server's representation. No mechanism is provided to perform this
 byte swapping on buffer object updates or whe n texels are fetched.

 The same problem also exists when buffer obje cts are used for vertex
 arrays (VBO). For buffer objects used for pi xel packing and unpacking
 (ARB_pixel_buffer_object), the PixelStore byt e swapping parameters
 (PACK_SWAP_BYTES, UNPACK_SWAP_BYTES) would pr esumably apply and could be
 used to perform the necessary byte swapping.

 (9) Should the set of formats supported for buf fer textures be enumerated,
 or should the extension instead nominally s upport all formats, but
 accept only an implementation-dependent sub set?

 RESOLVED: Provide a specified set of support ed formats. This
 extension simply enumerates all 8-, 16-, and 32-byte internal formats
 with 1, 2, or 4 components, and specifies the mapping of unformatted
 buffer object data to texture components. A follow-on extension could
 be done to support 3-component texels when be tter native hardware
 support is available.

 Other than 3-component texels, the set of for mats supported seems pretty
 compehensive. We expect that buffer textures would be used for general
 computational tasks, where there is little ne ed for formats with smaller
 components (e.g., RGBA4444). Such formats ar e generally not supported
 natively on CPUs today. With the general com putational model provided
 by NV_gpu_program4 and EXT_gpu_shader4, it wo uld be possible to treat
 such "packed" formats as larger single-compon ent formats and unpack them
 with a small number of shader instructions.

 If and when double-precision floats or 64-bit integers are supported as
 basic types usable by shaders, we would expec t that an extension would
 add new texture internal formats with 64-bit components and that those

EXT_texture_buffer_object NVIDIA OpenGL Extension Specifications

 976

 formats would also be supported for general-p urpose textures and buffer
 textures as well.

 (10) How are buffer textures supported in GLSL?

 RESOLVED: Create a new sampler type (sampler Buffer) for buffer textures
 and add a new lookup function (texelFetchBuff er) to explicitly access
 them using texture hardware.

 Other possibilities considered included exten ding the notion of bindable
 uniforms to support uniforms whose correspond ing buffer objects can be
 bound to texture resources (e.g., "texture bi ndable uniform" instead of
 "bindable uniform"). We also considered auto matically assigning
 bindable uniforms to texture or shader resour ces as appropriate. Note
 that the restrictions, size limits, and perfo rmance characterstics of
 buffer textures and parameter buffers (NV_par ameter_buffer_object)
 differ. Automatic handling of uniforms adds driver complexity and may
 tend to hide performance characteristics sinc e it isn't clear what
 resource would be used for what variable. Ad ditionally, it could
 require shader recompilation if the size of a uniform array is variable,
 and the hardware resource used depended on th e size.

 In the end, the texture approach seemed the s implest, and we chose that.
 It might be worth doing something more comple x in the future.

 (11) What is the TEXTURE_BUFFER_EXT buffer obje ct binding point good for?

 RESOLVED: It can be used for loading data in to buffer objects, and for
 mapping and unmapping buffers, both without d isturbing other binding
 points. Otherwise, it has no effect on GL op erations, since buffer
 objects are bound to textures using the TexBu fferEXT() command that does
 not affect the buffer object binding point.

 Buffer object binding points have mixed usage . In the
 EXT_vertex_buffer_object extension (OpenGL 1. 5), there are two binding
 points. The ELEMENT_ARRAY_BUFFER has a direc t effect on rendering, as
 it modifies DrawElements() calls. The effect of ARRAY_BUFFER is much
 more indirect; it is only used to affect subs equent vertex array calls
 (e.g., VertexPointer) and has no direct effec t on rendering. The reason
 for this is that the API was retrofitted on t op of existing vertex array
 APIs. If a new vertex array API were created that emphasized or even
 required the use of buffer objects, it seems likely that the buffer
 object would be included in the calls equival ent to today's
 VertexPointer() call.

 (12) How is the various buffer texture-related state queried?

 RESOLVED: There are three pieces of state th at can be queried: (a) the
 texture object bound to buffer texture bindin g point for the active
 texture image unit, (b) the buffer object who se data store was used by
 that texture object, and (c) the buffer objec t bound to the
 TEXTURE_BUFFER_EXT binding point.

 All three are queried with GetIntegerv, becau se it didn't seem worth the
 trouble to add one or more new query function s. Note that for (a) and
 (b), the texture queried is the one bound to TEXTURE_BUFFER_EXT on the
 active texture image unit.

NVIDIA OpenGL Extension Specifications EXT_texture_buffer_object

 977

 (13) Should we provide a new set of names for t he signed normalized
 textures introduced in NV_texture_shader t hat match the convention
 used for floating-point and integer textur es?

 RESOLVED: No.

 (14) Can a buffer object be attached to more th an one buffer texture at
 once?

 RESOLVED: Multiple buffer textures may attach to the same buffer object
 simultaneously.

 (15) How does this extension interact with disp lay lists?

 RESOLVED: Buffer object commands can't be co mpiled into a display list.
 The new command in this extension uses buffer objects, so we specify
 that it also can't be compiled into a display list.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 4 10/30/07 ewerness Add resolutions to va rious issues

 3 -- Pre-release revisions .

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 978

Name

 EXT_texture_compression_latc

Name Strings

 GL_EXT_texture_compression_latc
 GL_NV_texture_compression_latc (legacy)

Contributors

 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3
 Attila Barsi, Holografika

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 1/21/2008
 Revision: 1.2

Number

 331

Dependencies

 OpenGL 1.3 or ARB_texture_compression required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension introduces four new block-based texture compression
 formats suited for unsigned and signed luminanc e and luminance-alpha
 textures (hence the name "latc" for Luminance-A lpha Texture
 Compression).

 These formats are designed to reduce the storag e requirements and
 memory bandwidth required for luminance and lum inance-alpha textures
 by a factor of 2-to-1 over conventional uncompr essed luminance and
 luminance-alpha textures with 8-bit components (GL_LUMINANCE8 and
 GL_LUMINANCE8_ALPHA8).

 The compressed signed luminance-alpha format is reasonably suited
 for storing compressed normal maps.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 979

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2D and th e <format> parameter
 of CompressedTexSubImage2D:

 COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 -- Section 3.8.1, Texture Image Specification

 Add to Table 3.17 (page 155): Specific compres sed internal formats

 Compressed Internal Format Base Internal Format
 --- --------------------
 COMPRESSED_LUMINANCE_LATC1_EXT LUMINANCE
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT LUMINANCE
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT LUMINANCE_ALPHA

 -- Section 3.8.2, Alternative Texture Image Specif ication Commands

 Add to the end of the section (page 163):

 "If the internal format of the texture image be ing modified is
 COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e texture is stored
 using one of the two LATC compressed texture im age encodings (see
 appendix). Such images are easily edited along 4x4 texel boundaries,
 so the limitations on TexSubImage2D or CopyTexS ubImage2D parameters
 are relaxed. TexSubImage2D and CopyTexSubImage 2D will result in
 an INVALID_OPERATION error only if one of the f ollowing conditions
 occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH,
 unless <xoffset> and <yoffset> are both z ero.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT,
 unless <xoffset> and <yoffset> are both z ero.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an L ATC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 980

 -- Section 3.8.3, Compressed Texture Images

 Add after the 4th paragraph (page 164) at the e nd of the
 CompressedTexImage discussion:

 "If <internalformat> is COMPRESSED_LUMINANCE_LA TC1_EXT,
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e compressed texture is
 stored using one of several LATC compressed tex ture image formats.
 The LATC texture compression algorithm supports only 2D images
 without borders. CompressedTexImage1D and Comp ressedTexImage3D
 produce an INVALID_ENUM error if <internalforma t> is an LATC format.
 CompressedTexImage2D will produce an INVALID_OP ERATION error if
 <border> is non-zero.

 Add to the end of the section (page 166) at the end of the
 CompressedTexSubImage discussion:

 "If the internal format of the texture image be ing modified is
 COMPRESSED_LUMINANCE_LATC1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT, th e texture is stored
 using one of the several LATC compressed textur e image formats.
 Since the LATC texture compression algorithm su pports only 2D images,
 CompressedTexSubImage1D and CompressedTexSubIma ge3D produce an
 INVALID_ENUM error if <format> is an LATC forma t. Since LATC images
 are easily edited along 4x4 texel boundaries, t he limitations on
 CompressedTexSubImage2D are relaxed. Compresse dTexSubImage2D will
 result in an INVALID_OPERATION error only if on e of the following
 conditions occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an L ATC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 981

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on ARB_texture_compression

 If ARB_texture_compression is supported, all th e
 errors and accepted tokens for CompressedTexIma ge1D,
 CompressedTexImage2D, CompressedTexImage3D, Com pressedTexSubImage1D,
 CompressedTexSubImage2D, and CompressedTexSubIm age3D also apply
 respectively to the ARB-suffixed CompressedTexI mage1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, and
 CompressedTexSubImage3DARB.

Errors

 INVALID_ENUM is generated by CompressedTexImage 1D
 or CompressedTexImage3D if <internalformat> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

 INVALID_OPERATION is generated by CompressedTex Image2D
 if <internalformat> is COMPRESSED_LUMINANCE_LAC T1_EXT,
 COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT and <border> is not
 equal to zero.

 INVALID_ENUM is generated by CompressedTexSubIm age1D
 or CompressedTexSubImage3D if <format> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT.

 INVALID_OPERATION is generated by TexSubImage2D CopyTexSubImage2D,
 or CompressedTexSubImage2D if TEXTURE_INTERNAL_ FORMAT is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT,
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, or
 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT and any of the following
 apply: <width> is not a multiple of four or equ al to TEXTURE_WIDTH;
 <height> is not a multiple of four or equal to TEXTURE_HEIGHT;
 <xoffset> or <yoffset> is not a multiple of fou r.

 The following restrictions from the ARB_texture _compression
 specification do not apply to LATC texture form ats, since subimage
 modification is straightforward as long as the subimage is properly
 aligned.

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 982

 DELETE: INVALID_OPERATION is generated by TexSu bImage1D, TexSubImage2D,
 DELETE: TexSubImage3D, CopyTexSubImage1D, CopyT exSubImage2D, or
 DELETE: CopyTexSubImage3D if the internal forma t of the texture image is
 DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
 DELETE: -b, where b is value of TEXTURE_BORDER.

 DELETE: INVALID_VALUE is generated by Compresse dTexSubImage1D,
 DELETE: CompressedTexSubImage2D, or CompressedT exSubImage3D if the
 DELETE: entire texture image is not being edite d: if <xoffset>,
 DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
 DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
 DELETE: + <depth> is less than d+b, where b is the value of
 DELETE: TEXTURE_BORDER, w is the value of TEXTU RE_WIDTH, h is the value of
 DELETE: TEXTURE_HEIGHT, and d is the value of T EXTURE_DEPTH.

 See also errors in the GL_ARB_texture_compressi on specification.

New State

 4 new state values are added for the per-textur e object
 GL_TEXTURE_INTERNAL_FORMAT state.

 In the "Textures" state table(page 278), incre ment the
 TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in the "Type" row.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

Appendix

 LATC Compressed Texture Image Formats

 Compressed texture images stored using the LATC compressed image
 encodings are represented as a collection of 4x 4 texel blocks,
 where each block contains 64 or 128 bits of tex el data. The image
 is encoded as a normal 2D raster image in which each 4x4 block is
 treated as a single pixel. If an LATC image ha s a width or height
 less than four, the data corresponding to texel s outside the image
 are irrelevant and undefined.

 When an LATC image with a width of <w>, height of <h>, and block
 size of <blocksize> (8 or 16 bytes) is decoded, the corresponding
 image size (in bytes) is:

 ceil(<w>/4) * ceil(<h>/4) * blocksize.

 When decoding an LATC image, the block containi ng the texel at offset
 (<x>, <y>) begins at an offset (in bytes) relat ive to the base of the
 image of:

 blocksize * (ceil(<w>/4) * floor(<y>/4) + f loor(<x>/4)).

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 983

 The data corresponding to a specific texel (<x> , <y>) are extracted
 from a 4x4 texel block using a relative (x,y) v alue of

 (<x> modulo 4, <y> modulo 4).

 There are four distinct LATC image formats:

 COMPRESSED_LUMINANCE_LATC1: Each 4x4 block of texels consists of
 64 bits of unsigned luminance image data.

 Each luminance image data block is encoded as a sequence of 8 bytes,
 called (in order of increasing address):

 lum0, lum1, bits_0, bits_1, bits_2, bit s_3, bits_4, bits_5

 The 6 "bits_*" bytes of the block are decod ed into a 48-bit bit
 vector:

 bits = bits_0 +
 256 * (bits_1 +
 256 * (bits_2 +
 256 * (bits_3 +
 256 * (bi ts_4 +
 25 6 * bits_5))))

 lum0 and lum1 are 8-bit unsigned integers t hat are unpacked to
 luminance values LUM0 and LUM1 as though th ey were pixels with
 a <format> of LUMINANCE and a type of UNSIG NED_BTYE.

 bits is a 48-bit unsigned integer, from whi ch a three-bit control
 code is extracted for a texel at location (x,y) in the block
 using:

 code(x,y) = bits[3*(4*y+x)+2..3*(4*y+x) +0]

 where bit 47 is the most significant and bi t 0 is the least
 significant bit.

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 984

 The luminance value L for a texel at locati on (x,y) in the block
 is given by:

 LUM0, if lum0 > lum1 and c ode(x,y) == 0
 LUM1, if lum0 > lum1 and c ode(x,y) == 1
 (6*LUM0+ LUM1)/7, if lum0 > lum1 and c ode(x,y) == 2
 (5*LUM0+2*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 3
 (4*LUM0+3*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 4
 (3*LUM0+4*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 5
 (2*LUM0+5*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 6
 (LUM0+6*LUM1)/7, if lum0 > lum1 and c ode(x,y) == 7

 LUM0, if lum0 <= lum1 and code(x,y) == 0
 LUM1, if lum0 <= lum1 and code(x,y) == 1
 (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
 (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
 (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
 (LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
 MINLUM, if lum0 <= lum1 and code(x,y) == 6
 MAXLUM, if lum0 <= lum1 and code(x,y) == 7

 MINLUM and MAXLUM are 0.0 and 1.0 respectiv ely.

 Since the decoded texel has a luminance format, the resulting RGBA
 value for the texel is (L,L,L,1).

 COMPRESSED_SIGNED_LUMINANCE_LATC1: Each 4x4 block of texels consists
 of 64 bits of signed luminance image data. The luminance values of
 a texel are extracted in the same way as COMPRE SSED_LUMINANCE_LATC1
 except lum0, lum1, LUM0, LUM1, MINLUM, and MAXL UM are signed values
 defined as follows:

 lum0 and lum1 are 8-bit signed (two's compl ement) integers.

 { lum0 / 127.0, lum0 > -128
 LUM0 = {
 { -1.0, lum0 == -128

 { lum1 / 127.0, lum1 > -128
 LUM1 = {
 { -1.0, lum1 == -128

 MINLUM = -1.0

 MAXLUM = 1.0

 CAVEAT for signed lum0 and lum1 values: the exp ressions "lum0 >
 lum1" and "lum0 <= lum1" above are considered u ndefined (read: may
 vary by implementation) when lum0 equals -127 a nd lum1 equals -128,
 This is because if lum0 were remapped to -127 p rior to the comparison
 to reduce the latency of a hardware decompresso r, the expressions
 would reverse their logic. Encoders for the si gned LA formats should
 avoid encoding blocks where lum0 equals -127 an d lum1 equals -128.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 985

 COMPRESSED_LUMINANCE_ALPHA_LATC2: Each 4x4 block of texels consists
 of 64 bits of compressed unsigned luminance ima ge data followed by
 64 bits of compressed unsigned alpha image data .

 The first 64 bits of compressed luminance are d ecoded exactly like
 COMPRESSED_LUMINANCE_LATC1 above.

 The second 64 bits of compressed alpha are deco ded exactly like
 COMPRESSED_LUMINANCE_LATC1 above except the dec oded value L for this
 second block is considered the resulting alpha value A.

 Since the decoded texel has a luminance-alpha f ormat, the resulting
 RGBA value for the texel is (L,L,L,A).

 COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2: Each 4x4 block of texels
 consists of 64 bits of compressed signed lumina nce image data followed
 by 64 bits of compressed signed alpha image dat a.

 The first 64 bits of compressed luminance are d ecoded exactly like
 COMPRESSED_SIGNED_LUMINANCE_LATC1 above.

 The second 64 bits of compressed alpha are deco ded exactly like
 COMPRESSED_SIGNED_LUMINANCE_LATC1 above except the decoded value L
 for this second block is considered the resulti ng alpha value A.

 Since this image has a luminance-alpha format, the resulting RGBA
 value is (L,L,L,A).

Issues

 1) What should these new formats be called?

 RESOLVED: "latc" for Luminance-Alpha Textur e Compression.

 2) How should the uncompressed and filtered te xels be returned by
 texture fetches?

 RESOLVED: Luminance values show up as they do conventionally as
 (L,L,L,1) where the luminance value L is re plicated in the red,
 green, and blue components and alpha is for ced to 1. Likewise,
 luminance-alpha values show up as (L,L,L,A) where A is the alpha
 value.

 Alternatively, prior extensions such as NV_ float_buffer and
 NV_texture_shader have introduced formats s uch as GL_FLOAT_R_NV
 and GL_DSDT_NV where one- and two-component texture formats show
 up as (X,0,0,1) or (X,Y,0,1) RGBA texels. Such formats have
 not proven popular. In particular, they in teract awkwardly with
 the pixel path and conventional texture env ironment modes.

 The (X,Y,0,1) convention, particularly with signed components,
 is nice for normal maps because a normalize d vector can be
 formed by a shader program by computing sqr t(abs(1-X*X-Y*Y))
 for the Z component. However, this nicenes s is mostly conceptual
 however since the same effect can be accomp lished with swizzling
 as shown in this GLSL code:

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 986

 vec2 texLA = texture2D(samplerLA, gl_T exCoord[0]).xw;
 vec3 normal = vec3(texLA.x,
 texLA.y,
 sqrt(abs(1-texLA.x*t exLA.x-texLA.y*texLA.y)));

 The most important reason to make these new compressed formats
 show up identically to conventional luminan ce and luminance-alpha
 texels is to allow applications to seamless ly substitute
 the new compressed formats for existing GL_ LUMINANCE and
 GL_LUMINANCE_ALPHA textures. Alternative c omponent arrangements
 would make it more cumbersome for existing applications to switch
 over luminance and luminance-alpha textures to these compressed
 formats.

 3) Should luminance and luminance-alpha compre ssion formats with
 signed components be introduced when the co re specification
 lacked uncompressed luminance and luminance -alpha texture formats?

 RESOLVED: Yes, signed luminance and lumina nce-alpha compression
 formats should be added.

 Signed luminance-alpha formats are suited f or compressed normal
 maps. Compressed normal maps may well be t he dominant use of
 this extension.

 Unsigned luminance-alpha formats require an extra "expand normal"
 operation to convert [0,1] to [-1,+1]. Dir ect support for signed
 luminance-alpha formats avoids this step in a shader program.

 4) Should there be a mix of signed luminance a nd unsigned alpha or
 vice versa?

 RESOLVED: No.

 NV_texture_shader provided an internal form at
 (GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe d signed and unsigned
 components. The format saw little usage. There's no reason to
 think a GL_SIGNED_LUMINANCE_UNSIGNED_ALPHA format would be any
 more useful or popular.

 5) How are signed integer values mapped to flo ating-point values?

 RESOLVED: A signed 8-bit two's complement value X is computed to
 a floating-point value Xf with the formula:

 { X / 127.0, X > -128
 Xf = {
 { -1.0, X == -128

 This conversion means -1, 0, and +1 are all exactly representable,
 however -128 and -127 both map to -1.0. Ma pping -128 to -1.0
 avoids the numerical awkwardness of have a representable value
 slightly more negative than -1.0.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 987

 This conversion is intentionally NOT the "b yte" conversion listed
 in Table 2.9 for component conversions. Th at conversion says:

 Xf = (2*X + 1) / 255.0

 The Table 2.9 conversion is incapable of ex actly representing
 zero.

 6) How will signed components resulting from
 GL_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT an d
 GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_ EXT texture fetches
 interact with fragment coloring?

 RESOLVED: The specification language for t his extension is silent
 about clamping behavior leaving this to the core specification
 and other extensions. The clamping or lack of clamping is left
 to the core specification and other extensi ons.

 For assembly program extensions supporting texture fetches
 (ARB_fragment_program, EXT_fragment_program , EXT_vertex_program3,
 etc.) or the OpenGL Shading Language, these signed formats will
 appear as expected with unclamped signed co mponents as a result
 of a texture fetch instruction.

 If ARB_color_buffer_float is supported, its clamping controls
 will apply.

 NV_texture_shader extension, if supported, adds support for
 fixed-point textures with signed components and relaxed the
 fixed-function texture environment clamping appropriately. If the
 NV_texture_shader extension is supported, i ts specified behavior
 for the texture environment applies where i ntermediate values
 are clamped to [-1,1] unless stated otherwi se as in the case
 of explicitly clamped to [0,1] for GL_COMBI NE. or clamping the
 linear interpolation weight to [0,1] for GL _DECAL and GL_BLEND.

 Otherwise, the conventional core texture en vironment clamps
 incoming, intermediate, and output color co mponents to [0,1].

 This implies that the conventional texture environment
 functionality of unextended OpenGL 1.5 or O penGL 2.0 without
 using GLSL (and with none of the extensions referred to above)
 is unable to make proper use of the signed texture formats added
 by this extension because the conventional texture environment
 requires texture source colors to be clampe d to [0,1]. Texture
 filtering of these signed formats would be still signed, but
 negative values generated post-filtering wo uld be clamped to
 zero by the core texture environment functi onality. The
 expectation is clearly that this extension would be co-implemented
 with one of the previously referred to exte nsions or used with
 GLSL for the new signed formats to be usefu l.

 7) Should a specific normal map compression fo rmat be added?

 RESOLVED: No.

 It's probably short-sighted to design a for mat just for normal

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 988

 maps. Indeed, NV_texture_shader added a GL _SIGNED_HILO_NV
 format with exactly the kind of "hemisphere remap" useful for
 normal maps and the format went basically u nused. Instead,
 this extension provides the mechanism for c ompressed normal maps
 based on the more conventional luminance-al pha format.

 The GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT and
 GL_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_ EXT formats are
 sufficient for normal maps with additional shader instructions
 used to generate the 3rd component.

 8) Should uncompressed signed luminance and lu minance-alpha formats
 be added by this extension?

 RESOLVED: No, this extension is focused on just adding compressed
 texture formats.

 The NV_texture_shader extension adds such u ncompressed signed
 texture formats. A distinct multi-vendor e xtension for signed
 fixed-point texture formats could provide a ll or a subset of
 the signed fixed-point uncompressed texture formats introduced
 by NV_texture_shader.

 9) What compression ratios does this extension provide?

 The LATC1 formats are 8 bytes (64 bits) per 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8 data requires 16 bytes (1 byte
 per texel). This is a 2-to-1 compression r atio.

 The LATC2 formats are 16 bytes (128 bits) p er 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8_ALPHA8 data re quires 32 bytes
 (2 bytes per texel). This is again a 2-to- 1 compression ratio.

 In contrast, the comparable compression rat io for the S3TC
 formats is 4-to-1.

 Arguably, the lower compression ratio allow s better compression
 quality particularly because the LATC forma ts compress each
 component separately.

 10) How do these new formats compare with the e xisting GL_LUMINANCE4,
 GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP HA2 internal formats?

 RESOLVED: The existing GL_LUMINANCE4, GL_L UMINANCE4_ALPHA4,
 and GL_LUMINANCE6_ALPHA2 internal formats p rovide a similar
 2-to-1 compression ratio but mandate a unif orm quantization
 for all components. In contrast, this exte nsion provides a
 compression format with 3-bit quantization over a specifiable
 min/max range that can vary per 4x4 texel t ile.

 Additionally, many OpenGL implementations d o not natively support
 the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an d GL_LUMINANCE6_ALPHA2
 internal formats but rather silently promot e these formats
 to store 8 bits per component, thereby elim inating any
 storage/bandwidth advantage for these forma ts.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_latc

 989

 11) Does this extension require EXT_texture_com pression_s3tc?

 RESOLVED: No.

 As written, this specification does not rel y on wording of the
 EXT_texture_compression_s3tc extension. Fo r example, certain
 discussion added to Sections 3.8.2 and 3.8. 3 is quite similar
 to corresponding EXT_texture_compression_s3 tc language.

 12) Should anything be said about the precision of texture filtering
 for these new formats?

 RESOLVED: No precision requirements are pa rt of the specification
 language since OpenGL extensions typically leave precision
 details to the implementation.

 Realistically, at least 8-bit filtering pre cision can be expected
 from implementations (and probably more).

 13) Should these formats be allowed to specify 3D texture images
 when NV_texture_compression_vtc is supporte d?

 RESOLVED: The NV_texture_compression_vtc st acks 4x4 blocks into
 4x4x4 bricks. It may be more desirable to represent compressed
 3D textures as simply slices of 4x4 blocks.

 However the NV_texture_compression_vtc exte nsion expects
 data passed to the glCompressedTexImage com mands to be "bricked"
 rather than blocked slices.

 14) Why is GL_NV_texture_compression_latc also listed in the Name Strings
 section?

 The very first GeForce 8800 driver shipped with the extension
 designated as NV before EXT-ization with S3 was agreed.
 Subsequent NVIDIA drivers will rename the e xtension to its EXT
 name only.

 15) Should the the generic formats
 GL_COMPRESSED_LUMINANCE and GL_COMPRESSED_L UMINANCE_ALPHA
 correspond to COMPRESSED_LUMINANCE_LATC1_EX T and
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT respec itively when this
 extension is supported?

 RESOLVED: Yes. While no generic compressi on is strictly
 required for an implementation and there mi ght exist superior
 compression schemes for luminance and lumin ance-alpha textures
 in the future, an application should reason ably expect that an
 implementation that supports EXT_texture_co mpression_latc will
 also use these formats for the generic comp ressed luminance and
 luminance-alpha formats.

 The COMPRESSED_LUMINANCE_LATC1_EXT and
 COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT are ge neric enough in their
 respective luminance and luminance-alpha be havior that these
 compression formats are acceptable generic compressed formats
 for luminance and luminance-alpha generic c ompressed formats.

EXT_texture_compression_latc NVIDIA OpenGL Extension Specifications

 990

 16) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and
 GL_COMPRESSED_TEXTURE_FORMATS queries retur n the LATC formats?

 RESOLVED: No.

 The OpenGL 2.1 specification says "The only values returned
 by this query [GL_COMPRESSED_TEXTURE_FORMAT S"] are those
 corresponding to formats suitable for gener al-purpose usage.
 The renderer will not enumerate formats wit h restrictions that
 need to be specifically understood prior to use."

 Historically, OpenGL implementation have ad vertised the RGB and
 RGBA versions of the S3TC extensions compre ssed format tokens
 through this mechanism.

 The specification is not sufficiently clear about what "suitable
 for general-purpose usage" means. Historic ally that seems to mean
 unsigned RGB or unsigned RGBA. The DXT1 fo rmat supporting alpha
 (GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) is not e xposed in the list (at
 least for NVIDIA drivers) because the alpha is always 1.0 expect
 when it is 0.0 when RGB is required to be b lack. NVIDIA's even
 limits itself to true linear RGB or RGBA fo rmats, specifically
 not including EXT_texture_sRGB's sRGB S3TC compressed formats.

 Adding luminance and luminance-alpha textur e formats (and
 certainly signed versions of luminance and luminance-alpha
 formats!) invites potential comptaibility p roblems with old
 applications using this mechanism since old applications are
 unlikely to expect non-RGB or non-RGBA form ats to be advertised
 through this mechanism. However no specifi c misinteractions
 with old applications is known.

 Applications that seek to use the LATC form ats should do so
 by looking for this extension's name in the string returned by
 glGetString(GL_EXTENSIONS) rather than
 what GL_NUM_COMPRESSED_TEXTURE_FORMATS and
 GL_COMPRESSED_TEXTURE_FORMATS return.

Revision History

 Revision 1.1, April 24, 2007: mjk
 - Add caveat about how signed LA decompres sion happens when
 lum0 equals -127 and lum1 equals -128. This caveat matches
 a decoding allowance in DirectX 10.

 Revision 1.2, January 21, 2008: mjk
 - Add issues #15 and #16.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 991

Name

 EXT_texture_compression_rgtc

Name Strings

 GL_EXT_texture_compression_rgtc

Contributors

 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3
 Attila Barsi, Holografika

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Shipping for GeForce 8 Series (November 2006, R elease 95)

Version

 Date: January 21, 2008
 Revision: 1.2

Number

 332

Dependencies

 OpenGL 1.3 or ARB_texture_compression required

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 This extension introduces four new block-based texture compression
 formats suited for unsigned and signed red and red-green textures
 (hence the name "rgtc" for Red-Green Texture Co mpression).

 These formats are designed to reduce the storag e requirements
 and memory bandwidth required for red and red-g reen textures by
 a factor of 2-to-1 over conventional uncompress ed luminance and
 luminance-alpha textures with 8-bit components (GL_LUMINANCE8 and
 GL_LUMINANCE8_ALPHA8).

 The compressed signed red-green format is reaso nably suited for
 storing compressed normal maps.

 This extension uses the same compression format as the
 EXT_texture_compression_latc extension except t he color data is stored
 in the red and green components rather than lum inance and alpha.

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 992

 Representing compressed red and green component s is consistent with
 the BC4 and BC5 compressed formats supported by DirectX 10.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2D and th e <format> parameter
 of CompressedTexSubImage2D:

 COMPRESSED_RED_RGTC1_EXT 0x8DBB
 COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
 COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 -- Section 3.8.1, Texture Image Specification

 Add to Table 3.17 (page 155): Specific compres sed internal formats

 Compressed Internal Format Base Internal Format
 --- --------------------
 COMPRESSED_RED_RGTC1_EXT RGB
 COMPRESSED_SIGNED_RED_RGTC1_EXT RGB
 COMPRESSED_RED_GREEN_RGTC2_EXT RGB
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT RGB

 -- Section 3.8.2, Alternative Texture Image Specif ication Commands

 Add to the end of the section (page 163):

 "If the internal format of the texture image
 being modified is COMPRESSED_RED_RGTC1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t exture is stored
 using one of the two RGTC compressed texture im age encodings (see
 appendix). Such images are easily edited along 4x4 texel boundaries,
 so the limitations on TexSubImage2D or CopyTexS ubImage2D parameters
 are relaxed. TexSubImage2D and CopyTexSubImage 2D will result in
 an INVALID_OPERATION error only if one of the f ollowing conditions
 occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH,
 unless <xoffset> and <yoffset> are both z ero.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT,
 unless <xoffset> and <yoffset> are both z ero.
 * <xoffset> or <yoffset> is not a multiple of four.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 993

 The contents of any 4x4 block of texels of an R GTC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

 -- Section 3.8.3, Compressed Texture Images

 Add after the 4th paragraph (page 164) at the e nd of the
 CompressedTexImage discussion:

 "If <internalformat> is COMPRESSED_RED_RGTC1_EX T,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the c ompressed texture is
 stored using one of several RGTC compressed tex ture image formats.
 The RGTC texture compression algorithm supports only 2D images
 without borders. CompressedTexImage1D and Comp ressedTexImage3D
 produce an INVALID_ENUM error if <internalforma t> is an RGTC format.
 CompressedTexImage2D will produce an INVALID_OP ERATION error if
 <border> is non-zero.

 Add to the end of the section (page 166) at the end of the
 CompressedTexSubImage discussion:

 "If the internal format of the texture image
 being modified is COMPRESSED_RED_RGTC1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT, the t exture is stored
 using one of the several RGTC compressed textur e image formats.
 Since the RGTC texture compression algorithm su pports only 2D images,
 CompressedTexSubImage1D and CompressedTexSubIma ge3D produce an
 INVALID_ENUM error if <format> is an RGTC forma t. Since RGTC images
 are easily edited along 4x4 texel boundaries, t he limitations on
 CompressedTexSubImage2D are relaxed. Compresse dTexSubImage2D will
 result in an INVALID_OPERATION error only if on e of the following
 conditions occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an R GTC compressed texture
 image that does not intersect the area being mo dified are preserved
 during valid TexSubImage2D and CopyTexSubImage2 D calls."

 -- Section 3.8.8, Texture Minification

 Add a sentence to the last paragraph (page 174) just prior to the
 "Mipmapping" subheading:

 "If the texture's internal format lacks compone nts that exist in
 the texture's base internal format, such compon ents are considered
 zero when the texture border color is sampled. (So despite the
 RGB base internal format of the COMPRESSED_RED_ RGTC1_EXT and
 COMPRESSED_SIGNED_RED_RGTC1_EXT formats, the gr een and blue
 components of the texture border color are alwa ys considered
 zero. Likewise for the COMPRESSED_RED_GREEN_RG TC2_EXT, and
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT formats, the blue component
 is always considered zero.)"

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 994

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on ARB_texture_compression

 If ARB_texture_compression is supported, all th e
 errors and accepted tokens for CompressedTexIma ge1D,
 CompressedTexImage2D, CompressedTexImage3D, Com pressedTexSubImage1D,
 CompressedTexSubImage2D, and CompressedTexSubIm age3D also apply
 respectively to the ARB-suffixed CompressedTexI mage1DARB,
 CompressedTexImage2DARB, CompressedTexImage3DAR B,
 CompressedTexSubImage1DARB, CompressedTexSubIma ge2DARB, and
 CompressedTexSubImage3DARB.

Errors

 INVALID_ENUM is generated by CompressedTexImage 1D
 or CompressedTexImage3D if <internalformat> is
 COMPRESSED_LUMINANCE_LACT1_EXT, COMPRESSED_SIGNED_RED_RGTC1_EXT,
 COMPRESSED_RED_GREEN_RGTC2_EXT, or
 COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

 INVALID_OPERATION is generated by CompressedTex Image2D
 if <internalformat> is COMPRESSED_LUMINANCE_LAC T1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and <b order> is not equal
 to zero.

 INVALID_ENUM is generated by CompressedTexSubIm age1D
 or CompressedTexSubImage3D if
 <format> is COMPRESSED_LUMINANCE_LACT1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 995

 INVALID_OPERATION is generated by TexSubImage2D
 CopyTexSubImage2D, or CompressedTexSubImage2D i f
 TEXTURE_INTERNAL_FORMAT is COMPRESSED_LUMINANCE_LACT1_EXT,
 COMPRESSED_SIGNED_RED_RGTC1_EXT, COMPRESSED_RED_GREEN_RGTC2_EXT,
 or COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT and an y of the following
 apply: <width> is not a multiple of four or equ al to TEXTURE_WIDTH;
 <height> is not a multiple of four or equal to TEXTURE_HEIGHT;
 <xoffset> or <yoffset> is not a multiple of fou r.

 The following restrictions from the ARB_texture _compression
 specification do not apply to RGTC texture form ats, since subimage
 modification is straightforward as long as the subimage is properly
 aligned.

 DELETE: INVALID_OPERATION is generated by TexSu bImage1D, TexSubImage2D,
 DELETE: TexSubImage3D, CopyTexSubImage1D, CopyT exSubImage2D, or
 DELETE: CopyTexSubImage3D if the internal forma t of the texture image is
 DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
 DELETE: -b, where b is value of TEXTURE_BORDER.

 DELETE: INVALID_VALUE is generated by Compresse dTexSubImage1D,
 DELETE: CompressedTexSubImage2D, or CompressedT exSubImage3D if the
 DELETE: entire texture image is not being edite d: if <xoffset>,
 DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
 DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
 DELETE: + <depth> is less than d+b, where b is the value of
 DELETE: TEXTURE_BORDER, w is the value of TEXTU RE_WIDTH, h is the value of
 DELETE: TEXTURE_HEIGHT, and d is the value of T EXTURE_DEPTH.

 See also errors in the GL_ARB_texture_compressi on specification.

New State

 4 new state values are added for the per-textur e object
 GL_TEXTURE_INTERNAL_FORMAT state.

 In the "Textures" state table(page 278), incre ment the
 TEXTURE_INTERNAL_FORMAT subscript for Z by 4 in the "Type" row.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

Appendix

 RGTC Compressed Texture Image Formats

 Compressed texture images stored using the RGTC compressed image
 encodings are represented as a collection of 4x 4 texel blocks,
 where each block contains 64 or 128 bits of tex el data. The image
 is encoded as a normal 2D raster image in which each 4x4 block is
 treated as a single pixel. If an RGTC image ha s a width or height

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 996

 less than four, the data corresponding to texel s outside the image
 are irrelevant and undefined.

 When an RGTC image with a width of <w>, height of <h>, and block
 size of <blocksize> (8 or 16 bytes) is decoded, the corresponding
 image size (in bytes) is:

 ceil(<w>/4) * ceil(<h>/4) * blocksize.

 When decoding an RGTC image, the block containi ng the texel at offset
 (<x>, <y>) begins at an offset (in bytes) relat ive to the base of the
 image of:

 blocksize * (ceil(<w>/4) * floor(<y>/4) + f loor(<x>/4)).

 The data corresponding to a specific texel (<x> , <y>) are extracted
 from a 4x4 texel block using a relative (x,y) v alue of

 (<x> modulo 4, <y> modulo 4).

 There are four distinct RGTC image formats:

 COMPRESSED_RED_RGTC1: Each 4x4 block of texels consists of
 64 bits of unsigned red image data.

 Each red image data block is encoded as a seque nce of 8 bytes, called
 (in order of increasing address):

 red0, red1, bits_0, bits_1, bits_2, bit s_3, bits_4, bits_5

 The 6 "bits_*" bytes of the block are decod ed into a 48-bit bit
 vector:

 bits = bits_0 +
 256 * (bits_1 +
 256 * (bits_2 +
 256 * (bits_3 +
 256 * (bi ts_4 +
 25 6 * bits_5))))

 red0 and red1 are 8-bit unsigned integers t hat are unpacked to red
 values RED0 and RED1 as though they were pi xels with a <format>
 of LUMINANCE and a type of UNSIGNED_BTYE.

 bits is a 48-bit unsigned integer, from whi ch a three-bit control
 code is extracted for a texel at location (x,y) in the block
 using:

 code(x,y) = bits[3*(4*y+x)+2..3*(4*y+x) +0]

 where bit 47 is the most significant and bi t 0 is the least
 significant bit.

 The red value R for a texel at location (x, y) in the block is
 given by:

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 997

 RED0, if red0 > red1 and c ode(x,y) == 0
 RED1, if red0 > red1 and c ode(x,y) == 1
 (6*RED0+ RED1)/7, if red0 > red1 and c ode(x,y) == 2
 (5*RED0+2*RED1)/7, if red0 > red1 and c ode(x,y) == 3
 (4*RED0+3*RED1)/7, if red0 > red1 and c ode(x,y) == 4
 (3*RED0+4*RED1)/7, if red0 > red1 and c ode(x,y) == 5
 (2*RED0+5*RED1)/7, if red0 > red1 and c ode(x,y) == 6
 (RED0+6*RED1)/7, if red0 > red1 and c ode(x,y) == 7

 RED0, if red0 <= red1 and code(x,y) == 0
 RED1, if red0 <= red1 and code(x,y) == 1
 (4*RED0+ RED1)/5, if red0 <= red1 and code(x,y) == 2
 (3*RED0+2*RED1)/5, if red0 <= red1 and code(x,y) == 3
 (2*RED0+3*RED1)/5, if red0 <= red1 and code(x,y) == 4
 (RED0+4*RED1)/5, if red0 <= red1 and code(x,y) == 5
 MINRED, if red0 <= red1 and code(x,y) == 6
 MAXRED, if red0 <= red1 and code(x,y) == 7

 MINRED and MAXRED are 0.0 and 1.0 respectiv ely.

 Since the decoded texel has a red format, the r esulting RGBA value
 for the texel is (R,0,0,1).

 COMPRESSED_SIGNED_RED_RGTC1: Each 4x4 block of texels consists of
 64 bits of signed red image data. The red valu es of a texel are
 extracted in the same way as COMPRESSED_RED_RGT C1 except red0, red1,
 RED0, RED1, MINRED, and MAXRED are signed value s defined as follows:

 red0 and red1 are 8-bit signed (two's compl ement) integers.

 { red0 / 127.0, red0 > -128
 RED0 = {
 { -1.0, red0 == -128

 { red1 / 127.0, red1 > -128
 RED1 = {
 { -1.0, red1 == -128

 MINRED = -1.0

 MAXRED = 1.0

 CAVEAT for signed red0 and red1 values: the exp ressions "red0 >
 red1" and "red0 <= red1" above are considered u ndefined (read: may
 vary by implementation) when red0 equals -127 a nd red1 equals -128,
 This is because if red0 were remapped to -127 p rior to the comparison
 to reduce the latency of a hardware decompresso r, the expressions
 would reverse their logic. Encoders for the si gned LA formats should
 avoid encoding blocks where red0 equals -127 an d red1 equals -128.

 COMPRESSED_RED_GREEN_RGTC2: Each 4x4 block of texels consists of
 64 bits of compressed unsigned red image data f ollowed by 64 bits
 of compressed unsigned green image data.

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 998

 The first 64 bits of compressed red are decoded exactly like
 COMPRESSED_RED_RGTC1 above.

 The second 64 bits of compressed green are deco ded exactly like
 COMPRESSED_RED_RGTC1 above except the decoded v alue R for this
 second block is considered the resulting green value G.

 Since the decoded texel has a red-green format, the resulting RGBA
 value for the texel is (R,G,0,1).

 COMPRESSED_SIGNED_RED_GREEN_RGTC2: Each 4x4 block of texels consists
 of 64 bits of compressed signed red image data followed by 64 bits
 of compressed signed green image data.

 The first 64 bits of compressed red are decoded exactly like
 COMPRESSED_SIGNED_RED_RGTC1 above.

 The second 64 bits of compressed green are deco ded exactly like
 COMPRESSED_SIGNED_RED_RGTC1 above except the de coded value R
 for this second block is considered the resulti ng green value G.

 Since this image has a red-green format, the re sulting RGBA value is
 (R,G,0,1).

Issues

 1) What should these new formats be called?

 RESOLVED: "rgtc" for Red-Green Texture Comp ression.

 2) How should the uncompressed and filtered te xels be returned by
 texture fetches?

 RESOLVED: Red values show up as (R,0,0,1) where R is the red
 value, green and blue are forced to 0, and alpha is forced to 1.
 Likewise, red-green values show up as (R,G, 0,1) where G is the
 green value.

 Prior extensions such as NV_float_buffer an d NV_texture_shader
 have introduced formats such as GL_FLOAT_R_ NV and GL_DSDT_NV where
 one- and two-component texture formats show up as (X,0,0,1) or
 (X,Y,0,1) RGBA texels. The RGTC formats mi mic these two-component
 formats.

 The (X,Y,0,1) convention, particularly with signed components,
 is nice for normal maps because a normalize d vector can be
 formed by a shader program by computing sqr t(abs(1-X*X-Y*Y))
 for the Z component.

 While GL_RED is a valid external format, co re OpenGL provides
 no GL_RED_GREEN external format. Applicati ons can either use
 GL_RGB or GL_RGBA and pad out the blue and alpha components,
 or use the two-component GL_LUMINANCE_ALPHA color format and
 use the color matrix functionality to swizz le the luminance and
 alpha values into red and green respectivel y.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 999

 3) Should red and red-green compression format s with signed
 components be introduced when the core spec ification lacked
 uncompressed red and red-green texture form ats?

 RESOLVED: Yes, signed red and red-green co mpression formats
 should be added.

 Signed red-green formats are suited for com pressed normal maps.
 Compressed normal maps may well be the domi nant use of this
 extension.

 Unsigned red-green formats require an extra "expand normal"
 operation to convert [0,1] to [-1,+1]. Dir ect support for signed
 red-green formats avoids this step in a sha der program.

 4) Should there be a mix of signed red and uns igned green or
 vice versa?

 RESOLVED: No.

 NV_texture_shader provided an internal form at
 (GL_SIGNED_RGB_UNSIGNED_ALPHA_NV) with mixe d signed and unsigned
 components. The format saw little usage. There's no reason to
 think a GL_SIGNED_RED_UNSIGNED_GREEN format would be any more
 useful or popular.

 5) How are signed integer values mapped to flo ating-point values?

 RESOLVED: A signed 8-bit two's complement value X is computed to
 a floating-point value Xf with the formula:

 { X / 127.0, X > -128
 Xf = {
 { -1.0, X == -128

 This conversion means -1, 0, and +1 are all exactly representable,
 however -128 and -127 both map to -1.0. Ma pping -128 to -1.0
 avoids the numerical awkwardness of have a representable value
 slightly more negative than -1.0.

 This conversion is intentionally NOT the "b yte" conversion listed
 in Table 2.9 for component conversions. Th at conversion says:

 Xf = (2*X + 1) / 255.0

 The Table 2.9 conversion is incapable of ex actly representing
 zero.

 6) How will signed components resulting
 from GL_COMPRESSED_SIGNED_RED_RGTC1_EXT and
 GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT te xture fetches interact
 with fragment coloring?

 RESOLVED: The specification language for t his extension is silent
 about clamping behavior leaving this to the core specification
 and other extensions. The clamping or lack of clamping is left
 to the core specification and other extensi ons.

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 1000

 For assembly program extensions supporting texture fetches
 (ARB_fragment_program, NV_fragment_program, NV_vertex_program3,
 etc.) or the OpenGL Shading Language, these signed formats will
 appear as expected with unclamped signed co mponents as a result
 of a texture fetch instruction.

 If ARB_color_buffer_float is supported, its clamping controls
 will apply.

 NV_texture_shader extension, if supported, adds support for
 fixed-point textures with signed components and relaxed the
 fixed-function texture environment clamping appropriately. If the
 NV_texture_shader extension is supported, i ts specified behavior
 for the texture environment applies where i ntermediate values
 are clamped to [-1,1] unless stated otherwi se as in the case
 of explicitly clamped to [0,1] for GL_COMBI NE. or clamping the
 linear interpolation weight to [0,1] for GL _DECAL and GL_BLEND.

 Otherwise, the conventional core texture en vironment clamps
 incoming, intermediate, and output color co mponents to [0,1].

 This implies that the conventional texture environment
 functionality of unextended OpenGL 1.5 or O penGL 2.0 without
 using GLSL (and with none of the extensions referred to above)
 is unable to make proper use of the signed texture formats added
 by this extension because the conventional texture environment
 requires texture source colors to be clampe d to [0,1]. Texture
 filtering of these signed formats would be still signed, but
 negative values generated post-filtering wo uld be clamped to
 zero by the core texture environment functi onality. The
 expectation is clearly that this extension would be co-implemented
 with one of the previously referred to exte nsions or used with
 GLSL for the new signed formats to be usefu l.

 7) Should a specific normal map compression fo rmat be added?

 RESOLVED: No.

 It's probably short-sighted to design a for mat just for normal
 maps. Indeed, NV_texture_shader added a GL _SIGNED_HILO_NV
 format with exactly the kind of "hemisphere remap" useful for
 normal maps and the format went basically u nused. Instead,
 this extension provides the mechanism for c ompressed normal maps
 based on the more conventional red-green fo rmat.

 The GL_COMPRESSED_RED_GREEN_RGTC2_EXT and
 GL_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT fo rmats are sufficient
 for normal maps with additional shader inst ructions used to
 generate the 3rd component.

 8) Should uncompressed signed red and red-gree n formats be added
 by this extension?

 RESOLVED: No, this extension is focused on just adding compressed
 texture formats.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 1001

 The NV_texture_shader extension adds such u ncompressed signed
 texture formats. A distinct multi-vendor e xtension for signed
 fixed-point texture formats could provide a ll or a subset of
 the signed fixed-point uncompressed texture formats introduced
 by NV_texture_shader.

 9) What compression ratios does this extension provide?

 The RGTC1 formats are 8 bytes (64 bits) per 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8 data requires 16 bytes (1 byte
 per texel). This is a 2-to-1 compression r atio.

 The RGTC2 formats are 16 bytes (128 bits) p er 4x4 pixel block.
 A 4x4 block of GL_LUMINANCE8_ALPHA8 data re quires 32 bytes
 (2 bytes per texel). This is again a 2-to- 1 compression ratio.

 In contrast, the comparable compression rat io for the S3TC
 formats is 4-to-1.

 Arguably, the lower compression ratio allow s better compression
 quality particularly because the RGTC forma ts compress each
 component separately.

 10) How do these new formats compare with the e xisting GL_LUMINANCE4,
 GL_LUMINANCE4_ALPHA4, and GL_LUMINANCE6_ALP HA2 internal formats?

 RESOLVED: The existing GL_LUMINANCE4, GL_L UMINANCE4_ALPHA4,
 and GL_LUMINANCE6_ALPHA2 internal formats p rovide a similar
 2-to-1 compression ratio but mandate a unif orm quantization
 for all components. In contrast, this exte nsion provides a
 compression format with 3-bit quantization over a specifiable
 min/max range that can vary per 4x4 texel t ile.

 Additionally, many OpenGL implementations d o not natively support
 the GL_LUMINANCE4, GL_LUMINANCE4_ALPHA4, an d GL_LUMINANCE6_ALPHA2
 internal formats but rather silently promot e these formats
 to store 8 bits per component, thereby elim inating any
 storage/bandwidth advantage for these forma ts.

 11) Does this extension require EXT_texture_com pression_s3tc?

 RESOLVED: No.

 As written, this specification does not rel y on wording of the
 EXT_texture_compression_s3tc extension. Fo r example, certain
 discussion added to Sections 3.8.2 and 3.8. 3 is quite similar
 to corresponding EXT_texture_compression_s3 tc language.

 12) Should anything be said about the precision of texture filtering
 for these new formats?

 RESOLVED: No precision requirements are pa rt of the specification
 language since OpenGL extensions typically leave precision
 details to the implementation.

 Realistically, at least 8-bit filtering pre cision can be expected
 from implementations (and probably more).

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 1002

 13) Should these formats be allowed to specify 3D texture images
 when NV_texture_compression_vtc is supporte d?

 RESOLVED: The NV_texture_compression_vtc st acks 4x4 blocks into
 4x4x4 bricks. It may be more desirable to represent compressed
 3D textures as simply slices of 4x4 blocks.

 However the NV_texture_compression_vtc exte nsion expects data
 passed to the glCompressedTexImage commands to be "bricked"
 rather than blocked slices.

 14) How is the texture border color handled for the blue component
 of an RGTC2 texture and the green and blue components of an
 RGTC1 texture?

 RESOLVED: The base texture format is RGB f or the RGTC1 and
 RGTC2 texture formats. This would mean tab le 3.15 would be
 used to determine how the texture border co lor is interpreted
 and which components are considered.

 However since only red or red/green compone nts exist for the
 RGTC1 and RGTC2 formats, it makes little se nse to require
 the blue component be supplied by the textu re border color and
 hence be involved (meaningfully only when t he border is sampled)
 in texture filtering.

 For this reason, a statement is added to se ction 3.8.8 says that
 if a texture's internal format lacks compon ents that exist in
 the texture's base internal format, such co mponents contain
 zero (ignoring the texture's corresponding texture border color
 component value) when the texture border co lor is sampled.

 So the green and blue components of the fil tered result of a
 RGTC1 texture are always zero, even when th e border is sampled.
 Similarly the blue component of the filtere d result of a RGTC2
 texture is always zero, even when the borde r is sampled.

 15) What should glGetTexLevelParameter return f or
 GL_TEXTURE_GREEN_SIZE and GL_TEXTURE_BLUE_S IZE for the RGTC1
 formats? What should glGetTexLevelParamete r return for
 GL_TEXTURE_BLUE_SIZE for the RGTC2 formats?

 RESOLVED: Zero bits.

 These formats always return 0.0 for these r espective components
 and have no bits devoted to these component s.

 Returning 8 bits for red size of RGTC1 and the red and green
 sizes of RGTC2 makes sense because that's t he maximum potential
 precision for the uncompressed texels.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_rgtc

 1003

 16) Should the token names contain R and RG or RED and RED_GREEN?

 RESOLVED: RED and RED_GREEN.

 Saying RGB and RGBA makes sense for three- and four-component
 formats rather than spelling out the compon ent names because
 RGB and RGBA are used so commonly and spell ing out the names it
 too wordy.

 But for 1- and 2-component names, we follow the precedent by
 GL_LUMINANCE and GL_LUMINANCE_ALPHA. This extension spells out
 the component names of 1- and 2-component n ames.

 Another reason to avoid R and RG is the exi sting meaning of
 the GL_R and GL_RED tokens. GL_RED already exists as a token
 name for a single-component external format . GL_R also already
 exists as a token name but refers to the R texture coordinate,
 not the red color component.

 17) Can you use the GL_RED external format with glTexImage2D and other
 such commands to load textures with the
 GL_COMPRESSED_RED_RGTC1_EXT or GL_COMPRESSE D_SIGNED_RED_RGTC1_EXT
 internal formats?

 RESOLVED: Yes.

 GL_RED has been a valid external format par ameter to glTexImage
 and similar commands since OpenGL 1.0.

 18) Should any of the generic compression GL_CO MPRESSED_* tokens in
 OpenGL 2.1 map to RGTC formats?

 RESOLVED: No. The RGTC formats are missin g color components
 so are not adequate implementations for any of the generic
 compression formats.

 19) Should the GL_NUM_COMPRESSED_TEXTURE_FORMAT S and
 GL_COMPRESSED_TEXTURE_FORMATS queries retur n the RGTC formats?

 RESOLVED: No.

 The OpenGL 2.1 specification says "The only values returned
 by this query [GL_COMPRESSED_TEXTURE_FORMAT S"] are those
 corresponding to formats suitable for gener al-purpose usage.
 The renderer will not enumerate formats wit h restrictions that
 need to be specifically understood prior to use."

 Compressed textures with just red or red-gr een components are
 not general-purpose so should not be return ed by these queries
 because they have restrictions.

 Applications that seek to use the RGTC form ats should do so
 by looking for this extension's name in the string returned by
 glGetString(GL_EXTENSIONS) rather than
 what GL_NUM_COMPRESSED_TEXTURE_FORMATS and
 GL_COMPRESSED_TEXTURE_FORMATS return.

EXT_texture_compression_rgtc NVIDIA OpenGL Extension Specifications

 1004

Revision History

 Revision 1.1, April 24, 2007: mjk
 - Add caveat about how signed LA decompres sion happens when
 lum0 equals -127 and lum1 equals -128. This caveat matches
 a decoding allowance in DirectX 10.

 Revision 1.2, January 21, 2008: mjk
 - Add issues #18 and #19.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 1005

Name

 EXT_texture_compression_s3tc

Name Strings

 GL_EXT_texture_compression_s3tc

Status

 FINAL

Version

 1.3, 07 June 2007 (containing only clarifications relative to
 version 1.0, dated 7 July 2000)

Number

 198

Dependencies

 OpenGL 1.1 is required.

 GL_ARB_texture_compression is required.

 This extension is written against the OpenGL 1.2.1 Specification.

Overview

 This extension provides additional texture compression functionality
 specific to S3's S3TC format (called DXTC in Microsoft's DirectX API),
 subject to all the requirements and limitations described by the extension
 GL_ARB_texture_compression.

 This extension supports DXT1, DXT3, and DXT5 texture compression formats.
 For the DXT1 image format, this specification supports an RGB-only mode
 and a special RGBA mode with single-bit "transparent" alpha.

IP Status

 Contact S3 Incorporated (http://www.s3.com) regarding any intellectual
 property issues associated with implementing this extension.

 WARNING: Vendors able to support S3TC texture compression in Direct3D
 drivers do not necessarily have the right to use the same functionality in
 OpenGL.

Issues

 (1) Should DXT2 and DXT4 (premultiplied alpha) formats be supported?

 RESOLVED: No -- insufficient interest. Supporting DXT2 and DXT4
 would require some rework to the TexEnv definition (maybe add a new
 base internal format RGBA_PREMULTIPLIED_ALPHA) for these formats.
 Note that the EXT_texture_env_combine extension (which extends normal
 TexEnv modes) can be used to support textures with premultipled alpha.

 (2) Should generic "RGB_S3TC_EXT" and "RGBA_S3TC_EXT" enums be supported
 or should we use only the DXT<n> enums?

 RESOLVED: No. A generic RGBA_S3TC_EXT is problematic because DXT3

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 1006

 and DXT5 are both nominally RGBA (and DXT1 with the 1-bit alpha is
 also) yet one format must be chosen up front.

 (3) Should TexSubImage support all block-aligned edits or just the minimal
 functionality required by the ARB_texture_compression extension?

 RESOLVED: Allow all valid block-aligned edits.

 (4) A pre-compressed image with a DXT1 format can be used as either an
 RGB_S3TC_DXT1 or an RGBA_S3TC_DXT1 image. If the image has
 transparent texels, how are they treated in each format?

 RESOLVED: The renderer has to make sure that an RGB_S3TC_DXT1 format
 is decoded as RGB (where alpha is effectively one for all texels),
 while RGBA_S3TC_DXT1 is decoded as RGBA (where alpha is zero for all
 texels with "transparent" encodings). Otherwise, the formats are
 identical.

 (5) Is the encoding of the RGB components for DXT1 formats correct in this
 spec? MSDN documentation does not specify an RGB color for the
 "transparent" encoding. Is it really black?

 RESOLVED: Yes. The specification for the DXT1 format initially
 required black, but later changed that requirement to a
 recommendation. All vendors involved in the definition of this
 specification support black. In addition, specifying black has a
 useful behavior.

 When blending multiple texels (GL_LINEAR filtering), mixing opaque and
 transparent samples is problematic. Defining a black color on
 transparent texels achieves a sensible result that works like a
 texture with premultiplied alpha. For example, if three opaque white
 and one transparent sample is being averaged, the result would be a
 75% intensity gray (with an alpha of 75%). This is the same result on
 the color channels as would be obtained using a white color, 75%
 alpha, and a SRC_ALPHA blend factor.

 (6) Is the encoding of the RGB components for DXT3 and DXT5 formats
 correct in this spec? MSDN documentation suggests that the RGB blocks
 for DXT3 and DXT5 are decoded as described by the DXT1 format.

 RESOLVED: Yes -- this appears to be a bug in the MSDN documentation.
 The specification for the DXT2-DXT5 formats require decoding using the
 opaque block encoding, regardless of the relative values of "color0"
 and "color1".

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of TexImage2D, CopyTexImage2D,
 and CompressedTexImage2DARB and the <format> parameter of
 CompressedTexSubImage2DARB:

 COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
 COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
 COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
 COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 1007

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

 Add to Table 3.16.1: Specific Compressed Internal Formats

 Compressed Internal Format Base Internal Format
 ========================== ====================
 COMPRESSED_RGB_S3TC_DXT1_EXT RGB
 COMPRESSED_RGBA_S3TC_DXT1_EXT RGBA
 COMPRESSED_RGBA_S3TC_DXT3_EXT RGBA
 COMPRESSED_RGBA_S3TC_DXT5_EXT RGBA

 Modify Section 3.8.2, Alternate Image Specification

 (add to end of TexSubImage discussion, p.123 -- after edit from the
 ARB_texture_compression spec)

 If the internal format of the texture image being modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
 texture is stored using one of the several S3TC compressed texture image
 formats. Such images are easily edited along 4x4 texel boundaries, so the
 limitations on TexSubImage2D or CopyTexSubImage2D parameters are relaxed.
 TexSubImage2D and CopyTexSubImage2D will result in an INVALID_OPERATION
 error only if one of the following conditions occurs:

 * <width> is not a multiple of four or equal to TEXTURE_WIDTH,
 unless <xoffset> and <yoffset> are both zero.
 * <height> is not a multiple of four or equal to TEXTURE_HEIGHT,
 unless <xoffset> and <yoffset> are both zero.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an S3TC compressed texture
 image that does not intersect the area being modified are preserved during
 valid TexSubImage2D and CopyTexSubImage2D calls.

 Add to Section 3.8.2, Alternate Image Specification (adding to the end of
 the CompressedTexImage section introduced by the ARB_texture_compression
 spec)

 If <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT, the compressed texture is stored using one
 of several S3TC compressed texture image formats. The S3TC texture
 compression algorithm supports only 2D images without borders.
 CompressedTexImage1DARB and CompressedTexImage3DARB produce an
 INVALID_ENUM error if <internalformat> is an S3TC format.
 CompressedTexImage2DARB will produce an INVALID_OPERATION error if
 <border> is non-zero.

 Add to Section 3.8.2, Alternate Image Specification (adding to the end of
 the CompressedTexSubImage section introduced by the
 ARB_texture_compression spec)

 If the internal format of the texture image being modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 1008

 texture is stored using one of the several S3TC compressed texture image
 formats. Since the S3TC texture compression algorithm supports only 2D
 images, CompressedTexSubImage1DARB and CompressedTexSubImage3DARB produce
 an INVALID_ENUM error if <format> is an S3TC format. Since S3TC images
 are easily edited along 4x4 texel boundaries, the limitations on
 CompressedTexSubImage2D are relaxed. CompressedTexSubImage2D will result
 in an INVALID_OPERATION error only if one of the following conditions
 occurs:

 * <width> is not a multiple of four or equal to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equal to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four.

 The contents of any 4x4 block of texels of an S3TC compressed texture
 image that does not intersect the area being modified are preserved during
 valid TexSubImage2D and CopyTexSubImage2D calls.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 INVALID_ENUM is generated by CompressedTexImage1DARB or
 CompressedTexImage3DARB if <internalformat> is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT.

 INVALID_OPERATION is generated by CompressedTexImage2DARB if
 <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT and <border> is not equal to zero.

 INVALID_ENUM is generated by CompressedTexSubImage1DARB or
 CompressedTexSubImage3DARB if <format> is COMPRESSED_RGB_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT.

 INVALID_OPERATION is generated by TexSubImage2D CopyTexSubImage2D, or
 CompressedTexSubImage2D if TEXTURE_INTERNAL_FORMAT is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 1009

 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT and any of
 the following apply: <width> is not a multiple of four or equal to
 TEXTURE_WIDTH; <height> is not a multiple of four or equal to
 TEXTURE_HEIGHT; <xoffset> or <yoffset> is not a multiple of four.

 The following restrictions from the ARB_texture_compression specification
 do not apply to S3TC texture formats, since subimage modification is
 straightforward as long as the subimage is properly aligned.

 DELETE: INVALID_OPERATION is generated by TexSubImage1D, TexSubImage2D,
 DELETE: TexSubImage3D, CopyTexSubImage1D, CopyTexSubImage2D, or
 DELETE: CopyTexSubImage3D if the internal format of the texture image is
 DELETE: compressed and <xoffset>, <yoffset>, or <zoffset> does not equal
 DELETE: -b, where b is value of TEXTURE_BORDER.

 DELETE: INVALID_VALUE is generated by CompressedTexSubImage1DARB,
 DELETE: CompressedTexSubImage2DARB, or CompressedTexSubImage3DARB if the
 DELETE: entire texture image is not being edited: if <xoffset>,
 DELETE: <yoffset>, or <zoffset> is greater than -b, <xoffset> + <width> is
 DELETE: less than w+b, <yoffset> + <height> is less than h+b, or <zoffset>
 DELETE: + <depth> is less than d+b, where b is the value of
 DELETE: TEXTURE_BORDER, w is the value of TEXTURE_WIDTH, h is the value of
 DELETE: TEXTURE_HEIGHT, and d is the value of TEXTURE_DEPTH.

 See also errors in the GL_ARB_texture_compression specification.

New State

 In the "Textures" state table, increment the TEXTURE_INTERNAL_FORMAT
 subscript for Z by 4 in the "Type" row.

New Implementation Dependent State

 None

Appendix

 S3TC Compressed Texture Image Formats

 Compressed texture images stored using the S3TC compressed image formats
 are represented as a collection of 4x4 texel blocks, where each block
 contains 64 or 128 bits of texel data. The image is encoded as a normal
 2D raster image in which each 4x4 block is treated as a single pixel. If
 an S3TC image has a width or height less than four, the data corresponding
 to texels outside the image are irrelevant and undefined.

 When an S3TC image with a width of <w>, height of <h>, and block size of
 <blocksize> (8 or 16 bytes) is decoded, the corresponding image size (in
 bytes) is:

 ceil(<w>/4) * ceil(<h>/4) * blocksize.

 When decoding an S3TC image, the block containing the texel at offset
 (<x>, <y>) begins at an offset (in bytes) relative to the base of the
 image of:

 blocksize * (ceil(<w>/4) * floor(<y>/4) + floor(<x>/4)).

 The data corresponding to a specific texel (<x>, <y>) are extracted from a
 4x4 texel block using a relative (x,y) value of

 (<x> modulo 4, <y> modulo 4).

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 1010

 There are four distinct S3TC image formats:

 COMPRESSED_RGB_S3TC_DXT1_EXT: Each 4x4 block of texels consists of 64
 bits of RGB image data.

 Each RGB image data block is encoded as a sequence of 8 bytes, called (in
 order of increasing address):

 c0_lo, c0_hi, c1_lo, c1_hi, bits_0, bits_1, bits_2, bits_3

 The 8 bytes of the block are decoded into three quantities:

 color0 = c0_lo + c0_hi * 256
 color1 = c1_lo + c1_hi * 256
 bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * bits_3))

 color0 and color1 are 16-bit unsigned integers that are unpacked to
 RGB colors RGB0 and RGB1 as though they were 16-bit packed pixels with
 a <format> of RGB and a type of UNSIGNED_SHORT_5_6_5.

 bits is a 32-bit unsigned integer, from which a two-bit control code
 is extracted for a texel at location (x,y) in the block using:

 code(x,y) = bits[2*(4*y+x)+1..2*(4*y+x)+0]

 where bit 31 is the most significant and bit 0 is the least
 significant bit.

 The RGB color for a texel at location (x,y) in the block is given by:

 RGB0, if color0 > color1 and code(x,y) == 0
 RGB1, if color0 > color1 and code(x,y) == 1
 (2*RGB0+RGB1)/3, if color0 > color1 and code(x,y) == 2
 (RGB0+2*RGB1)/3, if color0 > color1 and code(x,y) == 3

 RGB0, if color0 <= color1 and code(x,y) == 0
 RGB1, if color0 <= color1 and code(x,y) == 1
 (RGB0+RGB1)/2, if color0 <= color1 and code(x,y) == 2
 BLACK, if color0 <= color1 and code(x,y) == 3

 Arithmetic operations are done per component, and BLACK refers to an
 RGB color where red, green, and blue are all zero.

 Since this image has an RGB format, there is no alpha component and the
 image is considered fully opaque.

 COMPRESSED_RGBA_S3TC_DXT1_EXT: Each 4x4 block of texels consists of 64
 bits of RGB image data and minimal alpha information. The RGB components
 of a texel are extracted in the same way as COMPRESSED_RGB_S3TC_DXT1_EXT.

 The alpha component for a texel at location (x,y) in the block is
 given by:

 0.0, if color0 <= color1 and code(x,y) == 3
 1.0, otherwise

 IMPORTANT: When encoding an RGBA image into a format using 1-bit
 alpha, any texels with an alpha component less than 0.5 end up with an
 alpha of 0.0 and any texels with an alpha component greater than or
 equal to 0.5 end up with an alpha of 1.0. When encoding an RGBA image
 into the COMPRESSED_RGBA_S3TC_DXT1_EXT format, the resulting red,

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 1011

 green, and blue components of any texels with a final alpha of 0.0
 will automatically be zero (black). If this behavior is not desired
 by an application, it should not use COMPRESSED_RGBA_S3TC_DXT1_EXT.
 This format will never be used when a generic compressed internal
 format (Table 3.16.2) is specified, although the nearly identical
 format COMPRESSED_RGB_S3TC_DXT1_EXT (above) may be.

 COMPRESSED_RGBA_S3TC_DXT3_EXT: Each 4x4 block of texels consists of 64
 bits of uncompressed alpha image data followed by 64 bits of RGB image
 data.

 Each RGB image data block is encoded according to the
 COMPRESSED_RGB_S3TC_DXT1_EXT format, with the exception that the two code
 bits always use the non-transparent encodings. In other words, they are
 treated as though color0 > color1, regardless of the actual values of
 color0 and color1.

 Each alpha image data block is encoded as a sequence of 8 bytes, called
 (in order of increasing address):

 a0, a1, a2, a3, a4, a5, a6, a7

 The 8 bytes of the block are decoded into one 64-bit integer:

 alpha = a0 + 256 * (a1 + 256 * (a2 + 256 * (a3 + 256 * (a4 +
 256 * (a5 + 256 * (a6 + 256 * a7))))))

 alpha is a 64-bit unsigned integer, from which a four-bit alpha value
 is extracted for a texel at location (x,y) in the block using:

 alpha(x,y) = bits[4*(4*y+x)+3..4*(4*y+x)+0]

 where bit 63 is the most significant and bit 0 is the least
 significant bit.

 The alpha component for a texel at location (x,y) in the block is
 given by alpha(x,y) / 15.

 COMPRESSED_RGBA_S3TC_DXT5_EXT: Each 4x4 block of texels consists of 64
 bits of compressed alpha image data followed by 64 bits of RGB image data.

 Each RGB image data block is encoded according to the
 COMPRESSED_RGB_S3TC_DXT1_EXT format, with the exception that the two code
 bits always use the non-transparent encodings. In other words, they are
 treated as though color0 > color1, regardless of the actual values of
 color0 and color1.

 Each alpha image data block is encoded as a sequence of 8 bytes, called
 (in order of increasing address):

 alpha0, alpha1, bits_0, bits_1, bits_2, bits_3, bits_4, bits_5

 The alpha0 and alpha1 are 8-bit unsigned bytes converted to alpha
 components by multiplying by 1/255.

 The 6 "bits" bytes of the block are decoded into one 48-bit integer:

 bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * (bits_3 +
 256 * (bits_4 + 256 * bits_5))))

EXT_texture_compression_s3tc NVIDIA OpenGL Extension Specifications

 1012

 bits is a 48-bit unsigned integer, from which a three-bit control code
 is extracted for a texel at location (x,y) in the block using:

 code(x,y) = bits[3*(4*y+x)+1..3*(4*y+x)+0]

 where bit 47 is the most significant and bit 0 is the least
 significant bit.

 The alpha component for a texel at location (x,y) in the block is
 given by:

 alpha0, code(x,y) == 0
 alpha1, code(x,y) == 1

 (6*alpha0 + 1*alpha1)/7, alpha0 > alpha1 and code(x,y) == 2
 (5*alpha0 + 2*alpha1)/7, alpha0 > alpha1 and code(x,y) == 3
 (4*alpha0 + 3*alpha1)/7, alpha0 > alpha1 and code(x,y) == 4
 (3*alpha0 + 4*alpha1)/7, alpha0 > alpha1 and code(x,y) == 5
 (2*alpha0 + 5*alpha1)/7, alpha0 > alpha1 and code(x,y) == 6
 (1*alpha0 + 6*alpha1)/7, alpha0 > alpha1 and code(x,y) == 7

 (4*alpha0 + 1*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 2
 (3*alpha0 + 2*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 3
 (2*alpha0 + 3*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 4
 (1*alpha0 + 4*alpha1)/5, alpha0 <= alpha1 and code(x,y) == 5
 0.0, alpha0 <= alpha1 and code(x,y) == 6
 1.0, alpha0 <= alpha1 and code(x,y) == 7

NVIDIA Implementation Note

 NVIDIA GeForce 6 and 7 Series of GPUs (NV4x- and G7x-based GPUs)
 and their Quadro counterparts (Quadro FX 4000, 4400, 4500; Quadro
 NVS 440; etc.) do not ignore the order of the 16-bit RGB values
 color0 and color1 when decoding DXT3 and DXT5 texture formats (i.e.,
 COMPRESSED_RGBA_S3TC_DXT5_EXT and COMPRESSED_RGBA_S3TC_DXT5_EXT).
 This is at variance with the specification language saying:

 Each RGB image data block is encoded according to the
 COMPRESSED_RGB_S3TC_DXT1_EXT format, with the exception that
 the two code bits always use the non-transparent encodings.
 In other words, they are treated as though color0 > color1,
 regardless of the actual values of color0 and color1.

 With these NV4x and G7x GPUs, when decoding the DXT3 and DXT5 formats,
 if color0 <= color1 then the code(x,y) values of 2 and 3 encode
 (RGB0+RGB1)/2 and BLACK respectively (as is the case for DXT1).

 All other NVIDIA GPUs (those based on GPU designs other than NV4x
 and G7x) implement DXT3 and DXT5 decoding strictly according to the
 specification. Specifically, the order of color0 and color1 does
 not affect the decoding of the DXT3 and DXT5 format, consistent with
 the specification paragraph cited above.

 To ensure reliable decoding of DXT3 and DXT5 textures, please avoid
 encoding an RGB image data block with color0 <= color1 when the
 block also uses code(x,y) values of 2 and 3.

Revision History

 1.3 07/07/07 mjk Correct NVIDIA note about DXT3/5 decoding issue.

 1.2 01/26/06 mjk Add NVIDIA note about DXT3/5 decoding issue.

NVIDIA OpenGL Extension Specifications EXT_texture_compression_s3tc

 1013

 1.1, 11/16/01 pbrown: Updated contact info, clarified where texels
 fall within a single block.

 1.0, 07/07/00 prbrown1: Published final version agreed to by working
 group members.

 0.9, 06/24/00 prbrown1: Documented that block-aligned TexSubImage calls
 do not modify existing texels outside the
 modified blocks. Added caveat to allow for a
 (0,0)-anchored TexSubImage operation of
 arbitrary size.

 0.7, 04/11/00 prbrown1: Added issues on DXT1, DXT3, and DXT5 encodings
 where the MSDN documentation doesn't match what
 is really done. Added enum values from the
 extension registry.

 0.4, 03/28/00 prbrown1: Updated to reflect final version of the
 ARB_texture_compression extension. Allowed
 block-aligned TexSubImage calls.

 0.3, 03/07/00 prbrown1: Resolved issues pertaining to the format of RGB
 blocks in the DXT3 and DXT5 formats (they don't
 ever use the "transparent" encoding). Fixed
 decoding of DXT1 blocks. Pointed out issue of
 "transparent" texels in DXT1 encodings having
 different behaviors for RGB and RGBA internal
 formats.

 0.2, 02/23/00 prbrown1: Minor revisions; added several issues.

 0.11, 02/17/00 prbrown1: Slight modification to error semantics
 (INVALID_ENUM instead of INVALID_OPERATION).

 0.1, 02/15/00 prbrown1: Initial revisio

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 1014

Name

 EXT_texture_cube_map

Name Strings

 GL_EXT_texture_cube_map

Forward Compatibility

 This extension is superceded by the ARB_texture _cube_map extension
 that is officially sanctioned by the OpenGL Arc hitectural
 Review Board. Enumerant values for EXT_texture _cube_map and
 ARB_texture_cube_map are identical. The two ex tensions are
 operationally identical; the only difference is the change of
 identifier from EXT to ARB.

 Because the enumerants are identical for the tw o extensions and
 because there are no new entry points, an appli cation that detects
 either the "GL_EXT_texture_cube_map" or "GL_ARB _texture_cube_map"
 extension name will operate correctly using eit her extension.

 NVIDIA's Release 4 drivers and early versions o f NVIDIA's Release 5
 drivers advertised the EXT_texture_cube_map wit hout also advertising
 the ARB_texture_cube_map extension because the ARB version of the
 extension was not then available. To ensure th at your applications
 operate correctly with these older drivers, NVI DIA recommends that you
 query for either the EXT_texture_cube_map or AR B_texture_cube_map
 extension to determine when texture cube map fu nctionality is
 available. Because the enumerants and function ality is unchanged,
 programs written to use ARB_texture_cube_map ne ed only recognize
 EXT_texture_cube_map to operate correctly.

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

 1015

Name

 EXT_texture_edge_clamp

Name Strings

 GL_EXT_texture_edge_clamp

Version

 $Date: 1997/09/22 23:04:01 $ $Revision: 1.1 $

Dependencies

 SGIS_texture_filter4 affects the definition of this extension

Overview

 The base OpenGL provides clamping such that the texture coordinates are
 limited to exactly the range [0,1]. When a texture coordinate is
 clamped using this algorithm, the texture sampling filter straddles the
 edge of the texture image, taking 1/2 its sample values from within the
 texture image, and the other 1/2 from the texture border. It is
 sometimes desirable to clamp a texture without requiring a border, and
 without using the constant border color.

 This extension defines a new texture clamping algorithm.
 CLAMP_TO_EDGE_EXT clamps texture coordinates at all mipmap levels such
 that the texture filter never samples a border texel. When used with a
 NEAREST or a LINEAR filter, the color returned when clamping is derived
 only from texels at the edge of the texture image. When used with
 FILTER4 filters, the filter operations of CLAMP_TO_EDGE_EXT are defined
 but don't result in a nice clamp-to-edge color.

 CLAMP_TO_EDGE_EXT is supported by 1, 2, and 3-dimensional textures
 only.

Issues

 * Is the arithmetic for FILTER4 filters correct? Is this the right
 thing to do?

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParameteri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or
 TEXTURE_WRAP_R:

 CLAMP_TO_EDGE_EXT 0x812F

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

EXT_texture_edge_clamp NVIDIA OpenGL Extension Specifications

 1016

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 GL Specification Table 3.7 is updated as follows:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_WRAP_T integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_WRAP_R integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS,
 LINEAR_CLIPMAP_LINEAR_SGIX
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS,
 LINEAR_LEQUAL_R_SGIS,
 LINEAR_GEQUAL_R_SGIS
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD float any value
 TEXTURE_MAX_LOD float any value
 TEXTURE_BASE_LEVEL integer any non-negative integer
 TEXTURE_MAX_LEVEL integer any non-negative integer
 GENERATE_MIPMAP_SGIS boolean TRUE or FALSE
 TEXTURE_CLIPMAP_OFFSET_SGIX 2 floats any 2 values

 Table 3.7: Texture parameters and their values.

 CLAMP_TO_EDGE_EXT texture clamping is specified by calling
 TexParameteri with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D, <pname> set to TEXTURE_WRAP_S, TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R, and <param> set to CLAMP_TO_EDGE_EXT.

 Let [min,max] be the range of a clamped texture coordinate, and let N
 be the size of the 1D, 2D, or 3D texture image in the direction of
 clamping. Then in all cases

 max = 1 - min

 because the clamping is always symmetric about the [0,1] mapped range of
 a texture coordinate. When used with NEAREST or LINEAR filters,
 CLAMP_TO_EDGE_EXT defines a minimum clamping value of

 min = 1 / 2*N

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

 1017

 When used with FILTER4 filters, CLAMP_TO_EDGE_EXT defines a minimum
 clamping value of

 min = 3 / 2*N, N > 2

 min = 1/2 N <= 2

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on SGIS_texture_filter4

 If SGIS_texture_filter4 is not implemented, then discussions about the
 interaction of filter4 texture filters and the clamping function
 described in this file are invalid, and should be ignored.

Errors

 None

New State

 Only the type information changes for these parameters:

 Get Value Get Command Type Initial Value Attrib
 --------- ----------- ---- ------------- ------
 TEXTURE_WRAP_S GetTexParameteriv n x Z3 REPEAT texture
 TEXTURE_WRAP_T GetTexParameteriv n x Z3 REPEAT texture
 TEXTURE_WRAP_R GetTexParameteriv n x Z3 REPEAT texture

New Implementation Dependent State

 None

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

 1018

Name

 EXT_texture_env_add

Name Strings

 GL_EXT_texture_env_add

Status

 Shipping (version 1.6)

Version

 $Date: 1999/03/22 17:28:00 $ $Revision: 1.1 $

Number

 185

Dependencies

 None

Overview

 New texture environment function ADD is support ed with the following
 equation:
 Cv = Cf + Ct

 New function may be specified by calling TexEnv with ADD token.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnvfi when the <pname> parameter value is GL _TEXTURE_ENV_MODE

 ADD

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

NVIDIA OpenGL Extension Specifications EXT_texture_env_add

 1019

Additions to Chapter 3 of the GL Specification (Ras terization)

 Texture Environment

 Base Texture Format REPLACE MODULATE BLEND DECAL ADD
 ------------------- ------- -------- ----- ----- ---

 ALPHA Rv = Rf
 Gv = Gf
 Bv = Bf
 Av = AfAt

 LUMINANCE Rv = Rf+Lt
 Gv = Gf+Lt
 Bv = Bf+Lt
 Av = Af

 LUMINANCE_ALPHA Rv = Rf+Lt
 Gv = Gf+Lt
 Bv = Bf+Lt
 Av = AfAt

 INTENSITY Rv = Rf+It
 Gv = Gf+It
 Bv = Bf+It
 Av = Af+It

 RGB Rv = Rf+Rt
 Gv = Gf+Gt
 Bv = Bf+Bt
 Av = Af

 RGBA Rv = Rf+Rt
 Gv = Gf+Gt
 Bv = Bf+Bt
 Av = AfAt

 Table 3.11: Texture functions.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

 1020

Additions to the GLX / WGL / AGL Specifications

 None

GLX Protocol

 None

Errors

 None

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 1021

Name

 EXT_texture_env_combine

Name Strings

 GL_EXT_texture_env_combine

Version

 $Date: 1999/04/02 13:54:17 $ $Revision: 1.7 $

Number

 158

Dependencies

 SGI_texture_color_table affects the definition of this extension
 SGIX_texture_scale_bias affects the definition of this extension

Overview

 New texture environment function COMBINE_EXT al lows programmable
 texture combiner operations, including:

 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
 INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

 where Arg0, Arg1 and Arg2 are derived from

 PRIMARY_COLOR_EXT primary color of incoming fragment
 TEXTURE texture color of correspo nding texture unit
 CONSTANT_EXT texture environment const ant color
 PREVIOUS_EXT result of previous textur e environment; on
 texture unit 0, this maps to PRIMARY_COLOR_EXT

 and Arg2 is restricted to the alpha component o f the corresponding source.

 In addition, the result may be scaled by 1.0, 2 .0 or 4.0.

Issues

 Should the explicit bias be removed in favor of an implcit bias as
 part of a ADD_SIGNED_EXT function?

 - Yes. This pre-scale bias is a special case and will be treated
 as such.

 Should the primary color of the incoming fragme nt be available to
 all texture environments? Currently it is only available to the
 texture environment of texture unit 0.

 - Yes, PRIMARY_COLOR_EXT has been added as an input source.

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 1022

 Should textures from other texture units be all owed as sources?

 - No, not in the base spec. Too many vendors have expressed
 concerns about the scalability of such funct ionality. This can
 be added as a subsequent extension.

 All of the 1.2 modes except BLEND can be expres sed in terms of
 this extension. Should texture color be allowe d as a source for
 Arg2, so all of the 1.2 modes can be expressed? If so, should all
 color sources be allowed, to maintain orthogona lity?

 - No, not in the base spec. This can be added as a subsequent
 extension.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s TEXTURE_ENV_MODE

 COMBINE_EXT 0x8570

 Accepted by the <pname> parameter of TexEnvf, T exEnvi, TexEnvfv,
 and TexEnviv when the <target> parameter value is TEXTURE_ENV

 COMBINE_RGB_EXT 0x8571
 COMBINE_ALPHA_EXT 0x8572
 SOURCE0_RGB_EXT 0x8580
 SOURCE1_RGB_EXT 0x8581
 SOURCE2_RGB_EXT 0x8582
 SOURCE0_ALPHA_EXT 0x8588
 SOURCE1_ALPHA_EXT 0x8589
 SOURCE2_ALPHA_EXT 0x858A
 OPERAND0_RGB_EXT 0x8590
 OPERAND1_RGB_EXT 0x8591
 OPERAND2_RGB_EXT 0x8592
 OPERAND0_ALPHA_EXT 0x8598
 OPERAND1_ALPHA_EXT 0x8599
 OPERAND2_ALPHA_EXT 0x859A
 RGB_SCALE_EXT 0x8573
 ALPHA_SCALE

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s COMBINE_RGB_EXT
 or COMBINE_ALPHA_EXT

 REPLACE
 MODULATE
 ADD
 ADD_SIGNED_EXT 0x8574
 INTERPOLATE_EXT 0x8575

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 1023

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, or SOURCE2_ALPHA_EXT

 TEXTURE
 CONSTANT_EXT 0x8576
 PRIMARY_COLOR_EXT 0x8577
 PREVIOUS_EXT 0x8578

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s
 OPERAND0_RGB_EXT or OPERAND1_RGB_EXT

 SRC_COLOR
 ONE_MINUS_SRC_COLOR
 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s
 OPERAND0_ALPHA_EXT or OPERAND1_ALPHA_EXT

 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s
 OPERAND2_RGB_EXT or OPERAND2_ALPHA_EXT

 SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s RGB_SCALE_EXT or
 ALPHA_SCALE

 1.0
 2.0
 4.0

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 Added to subsection 3.8.9, before the paragraph describing the
 state requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE_EXT , the form of the
 texture function depends on the values of COMBI NE_RGB_EXT and
 COMBINE_ALPHA_EXT, according to table 3.20. Th e RGB and ALPHA
 results of the texture function are then multip lied by the values
 of RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are
 clamped to [0,1].

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 1024

 COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT Texture Function
 ------------------ ----------------
 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
 INTERPOLATE_EXT Arg0 * (Arg2) + Arg 1 * (1-Arg2)

 Table 3.20: COMBINE_EXT texture functions

 The arguments Arg0, Arg1 and Arg2 are determine d by the values of
 SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and
 OPERAND<n>_ALPHA_EXT. In the following two tab les, Ct and At are
 the filtered texture RGB and alpha values; Cc a nd Ac are the
 texture environment RGB and alpha values; Cf an d Af are the RGB
 and alpha of the primary color of the incoming fragment; and Cp
 and Ap are the RGB and alpha values resulting f rom the previous
 texture environment. On texture environment 0, Cp and Ap are
 identical to Cf and Af, respectively. The rela tionship is
 described in tables 3.21 and 3.22.

 SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
 ----------------- -------------- --------
 TEXTURE SRC_COLOR Ct
 ONE_MINUS_SRC_COLOR (1-Ct)
 SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_COLOR Cc
 ONE_MINUS_SRC_COLOR (1-Cc)
 SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_COLOR Cf
 ONE_MINUS_SRC_COLOR (1-Cf)
 SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_COLOR Cp
 ONE_MINUS_SRC_COLOR (1-Cp)
 SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.21: Arguments for COMBINE_RGB_EXT f unctions

 SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
 ----------------- -------------- --------
 TEXTURE SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.22: Arguments for COMBINE_ALPHA_EXT functions

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 1025

 The mapping of texture components to source com ponents is
 summarized in Table 3.23. In the following tab le, At, Lt, It, Rt,
 Gt and Bt are the filtered texel values.

 Base Internal Format RGB Values Alpha Value
 -------------------- ---------- -----------
 ALPHA 0, 0, 0 At
 LUMINANCE Lt, Lt, Lt 1
 LUMINANCE_ALPHA Lt, Lt, Lt At
 INTENSITY It, It, It It
 RGB Rt, Gt, Bt 1
 RGBA Rt, Gt, Bt At

 Table 3.23: Correspondence of texture compo nents to source
 components for COMBINE_RGB_EXT and COMBINE_ ALPHA_EXT arguments

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT is not one of REPLACE, MODULA TE, ADD,
 ADD_SIGNED_EXT, or INTERPOLATE_EXT.

 INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT or SOURCE2_ALPHA_EXT is not o ne of TEXTURE,
 CONSTANT_EXT, PRIMARY_COLOR_EXT or PREVIOUS_EXT .

 INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT
 or OPERAND1_RGB_EXT is not one of SRC_COLOR, ON E_MINUS_SRC_COLOR,
 SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
 or OPERAND1_ALPHA_EXT is not one of SRC_ALPHA o r
 ONE_MINUS_SRC_ALPHA.

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 1026

 INVALID_ENUM is generated if <params> value for OPERAND2_RGB_EXT
 or OPERAND2_ALPHA_EXT is not SRC_ALPHA.

 INVALID_VALUE is generated if <params> value fo r RGB_SCALE_EXT or
 ALPHA_SCALE is not one of 1.0, 2.0, or 4.0.

Dependencies on SGI_texture_color_table

 If SGI_texture_color_table is implemented, the expanded Rt, Gt,
 Bt, and At values are used directly instead of the expansion
 described by Table 3.23.

Dependencies on SGIX_texture_scale_bias

 If SGIX_texture_scale_bias is implemented, the expanded Rt, Gt,
 Bt, and At values are used directly instead of the expansion
 described by Table 3.23.

New State

 Get Value Get Command Type Ini tial Value Attribute
 --------- ----------- ---- --- ---------- ---------
 COMBINE_RGB_EXT GetTexEnviv n x Z4 MOD ULATE texture
 COMBINE_ALPHA_EXT GetTexEnviv n x Z4 MOD ULATE texture
 SOURCE0_RGB_EXT GetTexEnviv n x Z3 TEX TURE texture
 SOURCE1_RGB_EXT GetTexEnviv n x Z3 PRE VIOUS_EXT texture
 SOURCE2_RGB_EXT GetTexEnviv n x Z3 CON STANT_EXT texture
 SOURCE0_ALPHA_EXT GetTexEnviv n x Z3 TEX TURE texture
 SOURCE1_ALPHA_EXT GetTexEnviv n x Z3 PRE VIOUS_EXT texture
 SOURCE2_ALPHA_EXT GetTexEnviv n x Z3 CON STANT_EXT texture
 OPERAND0_RGB_EXT GetTexEnviv n x Z6 SRC _COLOR texture
 OPERAND1_RGB_EXT GetTexEnviv n x Z6 SRC _COLOR texture
 OPERAND2_RGB_EXT GetTexEnviv n x Z1 SRC _ALPHA texture
 OPERAND0_ALPHA_EXT GetTexEnviv n x Z4 SRC _ALPHA texture
 OPERAND1_ALPHA_EXT GetTexEnviv n x Z4 SRC _ALPHA texture
 OPERAND2_ALPHA_EXT GetTexEnviv n x Z1 SRC _ALPHA texture
 RGB_SCALE_EXT GetTexEnvfv n x R3 1.0 texture
 ALPHA_SCALE GetTexEnvfv n x R3 1.0 texture

New Implementation Dependent State

 None

NVIDIA Implementation Details

 Because of a hardware limitation, TNT, TNT2, GeForce, and Quadro
 treat "scale by 4.0" with the COMBINE_RGB_EXT or COMBINE_ALPHA_EXT
 mode of ADD_SIGNED_EXT as "scale by 2.0".

NVIDIA OpenGL Extension Specifications EXT_texture_env_dot3

 1027

Name

 EXT_texture_env_dot3

Name Strings

 EXT_texture_env_dot3

Notice

 Copyright ATI Technologies, 2000.

IP Status

 None

Version

 $Date: 2000/09/28 13:54:17 $ $Revision: 1.2 $

Number

 None.

Dependencies

 EXT_texture_env_combine is required and is modi fied by this extension
 ARB_multitexture affects the definition of this extension

Overview

 Adds new operation to the texture combiner oper ations.

 DOT3_RGB_EXT Arg0 <dotpr od> Arg1
 DOT3_RGBA_EXT Arg0 <dotpr od> Arg1

 where Arg0, Arg1 are derived from

 PRIMARY_COLOR_EXT primary color of in coming fragment
 TEXTURE texture color of co rresponding texture unit
 CONSTANT_EXT texture environment constant color
 PREVIOUS_EXT result of previous texture environment; on
 texture unit 0, thi s maps to PRIMARY_COLOR_EXT

 This operaion can only be performed if SOURCE0_ RGB_EXT,
 SOURCE1_RGB_EXT are defined.

Issues

 None

New Procedures and Functions

 None

EXT_texture_env_dot3 NVIDIA OpenGL Extension Specifications

 1028

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value i s COMBINE_RGB_EXT

 DOT3_RGB_EXT 0x8740
 DOT3_RGBA_EXT 0x8741

Additions to Chapter 2 of the OpenGL 1.2 Specificat ion (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.2 Specificat ion (Rasterization)

 Added to subsection 3.8.9, before the paragraph describing the
 state requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE_EXT , the form of the
 texture function depends on the values of COMBI NE_RGB_EXT and
 COMBINE_ALPHA_EXT, according to table 3.20. Th e RGB and ALPHA
 results of the texture function are not multipl ied by the values
 of RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are
 clamped to [0,1].

 COMBINE_RGB_EXT Texture Function
 ------------------ ----------------
 DOT3_RGB_EXT 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
 (Arg0_g - 0.5)*(Arg1_g - 0.5) +
 (Arg0_b - 0.5)*(Arg1_b - 0.5))
 This value is place d into all three
 r,g,b components of the output.
 DOT3_RGBA_EXT 4*((Arg0_r - 0.5)*(Arg1_r - 0.5) +
 (Arg0_g - 0.5)*(Arg1_g - 0.5) +
 (Arg0_b - 0.5)*(Arg1_b - 0.5))
 This value is place d into all four
 r,g,b,a components of the output.

 Table 3.20: COMBINE_EXT texture functions

Additions to Chapter 4 of the OpenGL 1.2 Specificat ion (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the OpenGL 1.2 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2 Specificat ion (State and State
Requests)

 None

NVIDIA OpenGL Extension Specifications EXT_texture_env_dot3

 1029

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 None

Errors

Modifications to EXT_texture_env_combine

Dependencies on ARB_multitexture

New State

 None

New Implementation Dependent State

 None

Revision History

 None

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 1030

Name

 EXT_texture_filter_anisotropic

Name Strings

 GL_EXT_texture_filter_anisotropic

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 August 24, 1999

Number

 187

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 Texture mapping using OpenGL's existing mipmap texture filtering
 modes assumes that the projection of the pixel filter footprint into
 texture space is a square (ie, isotropic). In practice however, the
 footprint may be long and narrow (ie, anisotrop ic). Consequently,
 mipmap filtering severely blurs images on surfa ces angled obliquely
 away from the viewer.

 Several approaches exist for improving texture sampling by accounting
 for the anisotropic nature of the pixel filter footprint into texture
 space. This extension provides a general mecha nism for supporting
 anisotropic texturing filtering schemes without specifying a
 particular formulation of anisotropic filtering .

 The extension permits the OpenGL application to specify on
 a per-texture object basis the maximum degree o f anisotropy to
 account for in texture filtering.

 Increasing a texture object's maximum degree of anisotropy may
 improve texture filtering but may also signific antly reduce the
 implementation's texture filtering rate. Imple mentations are free
 to clamp the specified degree of anisotropy to the implementation's
 maximum supported degree of anisotropy.

 A texture's maximum degree of anisotropy is spe cified independent
 from the texture's minification and magnificati on filter (as
 opposed to being supported as an entirely new f iltering mode).
 Implementations are free to use the specified m inification and
 magnification filter to select a particular ani sotropic texture
 filtering scheme. For example, a NEAREST filte r with a maximum
 degree of anisotropy of two could be treated as a 2-tap filter that

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 1031

 accounts for the direction of anisotropy. Impl ementations are also
 permitted to ignore the minification or magnifi cation filter and
 implement the highest quality of anisotropic fi ltering possible.

 Applications seeking the highest quality anisot ropic filtering
 available are advised to request a LINEAR_MIPMA P_LINEAR minification
 filter, a LINEAR magnification filter, and a la rge maximum degree
 of anisotropy.

Issues

 Should there be a particular anisotropic textur e filtering minification
 and magnification mode?

 RESOLUTION: NO. The maximum degree of aniso tropy should control
 when anisotropic texturing is used. Making t his orthogonal to
 the minification and magnification filtering modes allows these
 settings to influence the anisotropic scheme used. Yes, such
 an anisotropic filtering scheme exists in har dware.

 What should the minimum value for MAX_TEXTURE_M AX_ANISTROPY_EXT be?

 RESOLUTION: 2.0. To support this extension, at least 2 to 1
 anisotropy should be supported.

 Should an implementation-defined limit for the maximum maximum degree of
 anisotropy be "get-able"?

 RESOLUTION: YES. But you should not assume that a high maximum
 maximum degree of anisotropy implies anything about texture
 filtering performance or quality.

 Should anything particular be said about anisot ropic 3D texture filtering?

 Not sure. Does the implementation example sh own in the spec for
 2D anisotropic texture filtering readily exte nd to 3D anisotropic
 texture filtering?

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetTexPar ameterfv,
 GetTexParameteriv, TexParameterf, TexParameterf v, TexParameteri,
 and TexParameteriv:

 TEXTURE_MAX_ANISOTROPY_EXT 0x84FE

 Accepted by the <pname> parameters of GetBoolea nv, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 1032

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Sections 3.8.3 "Texture Parameters"

 Add the following entry to the end of Table 3. 17:

 Name Type Legal Val ues
 -------------------------- ------ --------- -----------------
 TEXTURE_MAX_ANISOTROPY_EXT float greater o r equal to 1.0

 -- Sections 3.8.5 "Texture Minification" and 3.8. 6 "Texture Magnification"

 After the first paragraph in Section 3.8.5:

 "When the texture's value of TEXTURE_MAX_ANISO TROPY_EXT is equal to 1.0,
 the GL uses an isotropic texture filtering app roach as described in
 this section and Section 3.8.6. However, when the texture's value
 of TEXTURE_MAX_ANISOTROPY_EXT is greater than 1.0, the GL implementation
 should use a texture filtering scheme that acc ounts for a degree
 of anisotropy up to the smaller of the value o f TEXTURE_MAX_ANISTROPY_EXT
 or the implementation-defined value of MAX_TEX TURE_MAX_ANISTROPY_EXT.

 The particular scheme for anisotropic texture filtering is
 implementation dependent. Additionally, imple mentations are free
 to consider the current texture minification a nd magnification modes
 to control the specifics of the anisotropic fi ltering scheme used.

 The anisotropic texture filtering scheme may o nly access mipmap
 levels if the minification filter is one that requires mipmaps.
 Additionally, when a minification filter is sp ecified, the
 anisotropic texture filtering scheme may only access texture mipmap
 levels between the texture's values for TEXTUR E_BASE_LEVEL and
 TEXTURE_MAX_LEVEL, inclusive. Implementations are also recommended
 to respect the values of TEXTURE_MAX_LOD and T EXTURE_MIN_LOD to
 whatever extent the particular anisotropic tex ture filtering
 scheme permits this."

 The following describes one particular approac h to implementing
 anisotropic texture filtering for the 2D textu ring case:

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 1033

 "Anisotropic texture filtering substantially c hanges Section 3.8.5.
 Previously a single scale factor P was determi ned based on the
 pixel's projection into texture space. Now tw o scale factors,
 Px and Py, are computed.

 Px = sqrt(dudx^2 + dvdx^2)
 Py = sqrt(dudy^2 + dvdy^2)

 Pmax = max(Px,Py)
 Pmin = min(Px,Py)

 N = min(ceil(Pmax/Pmin),maxAniso);
 Lamda' = log2(Pmax/N)

 where maxAniso is the smaller of the texture's value of
 TEXTURE_MAX_ANISOTROPY_EXT or the implementati on-defined value of
 MAX_TEXTURE_MAX_ANISOTROPY_EXT.

 It is acceptable for implementation to round ' N' up to the nearest
 supported sampling rate. For example an imple mentation may only
 support power-of-two sampling rates.

 It is also acceptable for an implementation to approximate the ideal
 functions Px and Py with functions Fx and Fy s ubject to the following
 conditions:

 1. Fx is continuous and monotonically incre asing in |du/dx| and |dv/dx|.
 Fy is continuous and monotonically incre asing in |du/dy| and |dv/dy|.

 2. max(|du/dx|,|dv/dx|} <= Fx <= |du/dx| + |dv/dx|.
 max(|du/dy|,|dv/dy|} <= Fy <= |du/dy| + |dv/dy|.

 Instead of a single sample, Tau, at (u,v,Lamda), 'N' locations in the
 mipmap at LOD Lamda, are sampled within the te xture footprint of the pixel.
 This sum TauAniso is defined using the single sample Tau. When the
 texture's value of TEXTURE_MAX_ANISOTROPHY_EXT is greater than 1.0, use
 TauAniso instead of Tau to determine the fragm ent's texture value.

 i=N

 TauAniso = 1/N \ Tau(u(x - 1/2 + i/(N+1), y), v(x - 1/2 + i/(N+1), y)), Px > Py
 /

 i=1

 i=N

 TauAniso = 1/N \ Tau(u(x, y - 1/2 + i/(N+1)), v(x, y - 1/2 + i/(N+1))), Py >= Px
 /

 i=1

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 1034

 It is acceptable to approximate the u and v fu nctions with equally spaced
 samples in texture space at LOD Lamda:

 i=N

 TauAniso = 1/N \ Tau(u(x,y)+dudx(i/(N+1)-1/2), v(x,y)+dvdx(i/(N+1)-1/2)), Px > Py
 /

 i=1

 i=N

 TauAniso = 1/N \ Tau(u(x,y)+dudy(i/(N+1)-1/2), v(x,y)+dvdy(i/(N+1)-1/2)), Py >= Px
 /

 i=1

 "

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_VALUE is generated when TexParameter i s called with <pname>
 of TEXTURE_MAX_ANISOTROPY_EXT and a <param> va lue or value of what
 <params> points to less than 1.0.

New State

(table 6.13, p203) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribut e
-------------------------- ---- ----------------- -------------- --------------- ----- -------- -
TEXTURE_MAX_ANISOTROPY_EXT R GetTexParameterfv 1.0 Maximum degree 3.8.5 texture
 of anisotropy

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 1035

New Implementation State

(table 6.25, p215) add the entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------------ ---- ------------ -------------- --------------- ----- ---------
MAX_TEXTURE_MAX_ANISOTROPY_EXT R GetFloatv 2.0 Limit of 3.8.5 -
 maximum degree
 of anisotropy

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1036

Name

 EXT_texture_integer

Name Strings

 GL_EXT_texture_integer

Contact

 Michael Gold, NVIDIA Corporation (gold 'at' nvi dia.com)
 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 07/15/2006
 NVIDIA Revision: 5

Number

 343

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 or EXT_gpu_shader4 is required.

 ARB_texture_float affects the definition of thi s extension.

 ARB_color_buffer_float affects the definition o f this extension.

 EXT_framebuffer_object affects the definition o f this extension.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 Fixed-point textures in unextended OpenGL have integer components,
 but those values are taken to represent floatin g-point values in
 the range [0,1]. These integer components are considered
 "normalized" integers. When such a texture is accessed by a
 shader or by fixed-function fragment processing , floating-point
 values are returned.

 This extension provides a set of new "unnormali zed" integer texture
 formats. Formats with both signed and unsigned integers are provided. In
 these formats, the components are treated as tr ue integers. When such
 textures are accessed by a shader, actual integ er values are returned.

 Pixel operations that read from or write to a t exture or color
 buffer with unnormalized integer components fol low a path similar
 to that used for color index pixel operations, except that more

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1037

 than one component may be provided at once. In teger values flow
 through the pixel processing pipe, and no pixel transfer
 operations are performed. Integer format enume rants used for such
 operations indicate unnormalized integer data.

 Textures or render buffers with unnormalized in teger formats may also be
 attached to framebuffer objects to receive frag ment color values written
 by a fragment shader. Per-fragment operations that require floating-point
 color components, including multisample alpha o perations, alpha test,
 blending, and dithering, have no effect when th e corresponding colors are
 written to an integer color buffer. The NV_gpu _program4 and
 EXT_gpu_shader4 extensions add the capability t o fragment programs and
 fragment shaders to write signed and unsigned i nteger output values.

 This extension does not enforce type consistenc y for texture accesses or
 between fragment shaders and the corresponding framebuffer attachments.
 The results of a texture lookup from an integer texture are undefined:

 * for fixed-function fragment processing, or

 * for shader texture accesses expecting float ing-point return values.

 The color components used for per-fragment oper ations and written into a
 color buffer are undefined:

 * for fixed-function fragment processing with an integer color buffer,

 * for fragment shaders that write floating-po int color components to an
 integer color buffer, or

 * for fragment shaders that write integer col or components to a color
 buffer with floating point or normalized in teger components.

New Procedures and Functions

 void ClearColorIiEXT (int r, int g, int b, int a);
 void ClearColorIuiEXT (uint r, uint g, uint b, uint a);
 void TexParameterIivEXT(enum target, enum pnam e, int *params);
 void TexParameterIuivEXT(enum target, enum pna me, uint *params);
 void GetTexParameterIivEXT (enum target, enum pname, int *params);
 void GetTexParameterIuivEXT (enum target, enum pname, uint *params);

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 RGBA_INTEGER_MODE_EXT 0x8D9E

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1038

 Accepted by the <internalFormat> parameter of T exImage1D,
 TexImage2D, and TexImage3D:

 RGBA32UI_EXT 0x8D70
 RGB32UI_EXT 0x8D71
 ALPHA32UI_EXT 0x8D72
 INTENSITY32UI_EXT 0x8D73
 LUMINANCE32UI_EXT 0x8D74
 LUMINANCE_ALPHA32UI_EXT 0x8D75

 RGBA16UI_EXT 0x8D76
 RGB16UI_EXT 0x8D77
 ALPHA16UI_EXT 0x8D78
 INTENSITY16UI_EXT 0x8D79
 LUMINANCE16UI_EXT 0x8D7A
 LUMINANCE_ALPHA16UI_EXT 0x8D7B

 RGBA8UI_EXT 0x8D7C
 RGB8UI_EXT 0x8D7D
 ALPHA8UI_EXT 0x8D7E
 INTENSITY8UI_EXT 0x8D7F
 LUMINANCE8UI_EXT 0x8D80
 LUMINANCE_ALPHA8UI_EXT 0x8D81

 RGBA32I_EXT 0x8D82
 RGB32I_EXT 0x8D83
 ALPHA32I_EXT 0x8D84
 INTENSITY32I_EXT 0x8D85
 LUMINANCE32I_EXT 0x8D86
 LUMINANCE_ALPHA32I_EXT 0x8D87

 RGBA16I_EXT 0x8D88
 RGB16I_EXT 0x8D89
 ALPHA16I_EXT 0x8D8A
 INTENSITY16I_EXT 0x8D8B
 LUMINANCE16I_EXT 0x8D8C
 LUMINANCE_ALPHA16I_EXT 0x8D8D

 RGBA8I_EXT 0x8D8E
 RGB8I_EXT 0x8D8F
 ALPHA8I_EXT 0x8D90
 INTENSITY8I_EXT 0x8D91
 LUMINANCE8I_EXT 0x8D92
 LUMINANCE_ALPHA8I_EXT 0x8D93

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1039

 Accepted by the <format> parameter of TexImage1 D, TexImage2D,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 DrawPixels and ReadPixels:

 RED_INTEGER_EXT 0x8D94
 GREEN_INTEGER_EXT 0x8D95
 BLUE_INTEGER_EXT 0x8D96
 ALPHA_INTEGER_EXT 0x8D97
 RGB_INTEGER_EXT 0x8D98
 RGBA_INTEGER_EXT 0x8D99
 BGR_INTEGER_EXT 0x8D9A
 BGRA_INTEGER_EXT 0x8D9B
 LUMINANCE_INTEGER_EXT 0x8D9C
 LUMINANCE_ALPHA_INTEGER_EXT 0x8D9D

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 126:

 (modify the last paragraph, p. 126)
 Pixels are drawn using

 void DrawPixels(sizei width, sizei height, enum format,
 enum type, void *data);

 <format> is a symbolic constant indicating what the values in
 memory represent. <width> and <height> are the width and height,
 respectively, of the pixel rectangle to be draw n. <data> is a
 pointer to the data to be drawn. These data are represented with
 one of seven GL data types, specified by <type> . The
 correspondence between the twenty type token va lues and the GL
 data types they indicate is given in table 3.5. If the GL is in
 color index mode and <format> is not one of COL OR_INDEX,
 STENCIL_INDEX, or DEPTH_COMPONENT, then the err or
 INVALID_OPERATION occurs. If the GL is in RGBA mode and the color
 buffer is an integer format and no fragment sha der is active, the
 error INVALID_OPERATION occurs. If <type> is B ITMAP and <format>
 is not COLOR_INDEX or STENCIL_INDEX then the er ror INVALID_ENUM
 occurs. If <format> is one of the integer comp onent formats as
 defined in table 3.6, and <type> is FLOAT, then the error
 INVALID_ENUM occurs. Some additional constrain ts on the
 combinations of format and type values that are accepted is
 discussed below.

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1040

 (add the following to table 3.6, p. 129)
 Format Name Element Meaning an d Order Target Buffer
 ------ ---- ------- ------- -- - ----- ------ ------
 RED_INTEGER_EXT iR Color
 GREEN_INTEGER_EXT iG Color
 BLUE_INTEGER_EXT iB Color
 ALPHA_INTEGER_EXT iA Color
 RGB_INTEGER_EXT iR, iG, iB Color
 RGBA_INTEGER_EXT iR, iG, iB, iA Color
 BGR_INTEGER_EXT iB, iG, iR Color
 BGRA_INTEGER_EXT iB, iG, iR, iA Color
 LUMINANCE_INTEGER_EXT iLuminance Color
 LUMINANCE_ALPHA_INTEGER_EXT iLuminance, iA Color

 Table 3.6: DrawPixels and ReadPixels formats. The second colu mn
 gives a description of and the number and order of elements in a
 group. Unless specified as an index, formats yi eld components.
 Components are floating-point unless prefixed w ith the letter 'i'
 which indicates they are integer.

 (modify first paragraph, p. 129)
 Data are taken from host memory as a sequence o f signed or
 unsigned bytes (GL data types byte and ubyte), signed or unsigned
 short integers (GL data types short and ushort) , signed or
 unsigned integers (GL data types int and uint), or floating point
 values (GL data type float). These elements are grouped into sets
 of one, two, three, or four values, depending o n the format, to
 form a group. Table 3.6 summarizes the format of groups obtained
 from memory; it also indicates those formats th at yield indices
 and those that yield floating-point or integer components.

 (modify the last paragraph, p. 135)
 Conversion to floating-point

 This step applies only to groups of floating-po int components. It
 is not performed on indices or integer componen ts.

 (modify the third paragraph, p. 136)
 Final Expansion to RGBA

 This step is performed only for non-depth compo nent groups. Each
 group is converted to a group of 4 elements as follows: if a group
 does not contain an A element, then A is added and set to 1 for
 integer components or 1.0 for floating-point co mponents. If any of
 R, G, or B is missing from the group, each miss ing element is
 added and assigned a value of 0 for integer com ponents or 0.0 for
 floating-point components.

 (modify the last paragraph, p. 136)
 Final Conversion

 For a color index, final conversion consists of masking the bits
 of the index to the left of the binary point by 2^n - 1, where n is
 the number of bits in an index buffer. For flo ating-point RGBA
 components, each element is clamped to [0, 1]. The resulting
 values are converted to fixed-point according t o the rules given
 in section 2.14.9 (Final Color Processing). Fo r integer RGBA

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1041

 components, no conversion is applied. For a de pth component, an
 element is first clamped to [0, 1] and then con verted to
 fixed-point as if it were a window z value (see section 2.11.1,
 Controlling the Viewport). Stencil indices are masked by 2^n - 1,
 where n is the number of bits in the stencil bu ffer.

 Modify Section 3.6.5 (Pixel Transfer Operations), p. 137

 (modify last paragraph, p. 137)
 The GL defines five kinds of pixel groups:

 1. Floating-point RGBA component: Each group co mprises four color
 components in floating point format: red, gr een, blue, and
 alpha.

 2. Integer RGBA component: Each group comprises four color
 components in integer format: red, green, bl ue, and alpha.

 3. Depth component: Each group comprises a sing le depth component.

 4. Color index: Each group comprises a single c olor index.

 5. Stencil index: Each group comprises a single stencil index.

 (modify second paragraph, p. 138)
 Each operation described in this section is app lied sequentially
 to each pixel group in an image. Many operation s are applied only
 to pixel groups of certain kinds; if an operati on is not
 applicable to a given group, it is skipped. No ne of the
 operations defined in this section affect integ er RGBA component
 pixel groups.

 Modify Section 3.8 (Texturing), p. 149

 (insert between the first and second paragraphs , p. 150)
 The internal data type of a texture may be fixe d-point,
 floating-point, signed integer or unsigned inte ger, depending on
 the internalformat of the texture. The corresp ondence between
 internalformat and the internal data type is gi ven in table 3.16.
 Fixed-point and floating-point textures return a floating-point
 value and integer textures return signed or uns igned integer
 values. When a fragment shader is active, the shader is
 responsible for interpreting the result of a te xture lookup as the
 correct data type, otherwise the result is unde fined. Fixed
 functionality assumes floating-point data, henc e the result of
 using fixed functionality with integer textures is undefined.

 Modify Section 3.8.1 (Texture Image Specificati on), p. 150

 (modify second paragraph, p. 151) The selected groups are
 processed exactly as for DrawPixels, stopping j ust before final
 conversion. If the <internalformat> of the tex ture is integer,
 the components are clamped to the representable range of the
 internal format: for signed formats, this is [- 2^(n-1), 2^(n-1)-1]
 where n is the number of bits per component; fo r unsigned formats,
 the range is [0, 2^n-1]. For R, G, B, and A, i f the

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1042

 <internalformat> of the texture is fixed-point, the components are
 clamped to [0, 1]. Otherwise, the components a re not modified.

 (insert between paragraphs five and six, p. 151)
 Textures with integer internal formats (table 3 .16) require
 integer data. The error INVALID_OPERATION is g enerated if the
 internal format is integer and <format> is not one of the integer
 formats listed in table 3.6, or if the internal format is not
 integer and <format> is an integer format, or i f <format> is an
 integer format and <type> is FLOAT.

 (add the following to table 3.16, p. 154)
 Sized Base R G B A L I
 Internal Format Internal Format bits b its bits bits bits bits
 ----------------------- --------------- ---- - --- ---- ---- ---- ----
 ALPHA8I_EXT ALPHA i8
 ALPHA8UI_EXT ALPHA ui8
 ALPHA16I_EXT ALPHA i16
 ALPHA16UI_EXT ALPHA ui16
 ALPHA32I_EXT ALPHA i32
 ALPHA32UI_EXT ALPHA ui32
 LUMINANCE8I_EXT LUMINANCE i8
 LUMINANCE8UI_EXT LUMINANCE ui8
 LUMINANCE16I_EXT LUMINANCE i16
 LUMINANCE16UI_EXT LUMINANCE ui16
 LUMINANCE32I_EXT LUMINANCE i32
 LUMINANCE32UI_EXT LUMINANCE ui32
 LUMINANCE_ALPHA8I_EXT LUMINANCE_ALPHA i8 i8
 LUMINANCE_ALPHA8UI_EXT LUMINANCE_ALPHA ui8 ui8
 LUMINANCE_ALPHA16I_EXT LUMINANCE_ALPHA i16 i16
 LUMINANCE_ALPHA16UI_EXT LUMINANCE_ALPHA ui16 ui16
 LUMINANCE_ALPHA32I_EXT LUMINANCE_ALPHA i32 i32
 LUMINANCE_ALPHA32UI_EXT LUMINANCE_ALPHA ui32 ui32
 INTENSITY8I_EXT INTENSITY i8
 INTENSITY8UI_EXT INTENSITY ui8
 INTENSITY16I_EXT INTENSITY i16
 INTENSITY16UI_EXT INTENSITY ui16
 INTENSITY32I_EXT INTENSITY i32
 INTENSITY32UI_EXT INTENSITY ui32
 RGB8I_EXT RGB i8 i8 i8
 RGB8UI_EXT RGB ui8 ui8 ui8
 RGB16I_EXT RGB i16 i16 i16
 RGB16UI_EXT RGB ui16 u i16 ui16
 RGB32I_EXT RGB i32 i32 i32
 RGB32UI_EXT RGB ui32 u i32 ui32
 RGBA8I_EXT RGBA i8 i8 i8 i8
 RGBA8UI_EXT RGBA ui8 ui8 ui8 ui8
 RGBA16I_EXT RGBA i16 i16 i16 i16
 RGBA16UI_EXT RGBA ui16 u i16 ui16 ui16
 RGBA32I_EXT RGBA i32 i32 i32 i32
 RGBA32UI_EXT RGBA ui32 u i32 ui32 ui32

 Table 3.16: Correspondence of sized internal formats to base
 internal formats, internal data type and desire d component
 resolutions for each sized internal format. Th e component
 resolution prefix indicates the internal data t ype: <f> is

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1043

 floating point, <i> is signed integer, <ui> is unsigned integer,
 and no prefix is fixed-point.

 Modify Section 3.8.2 (Alternate Texture Image S pecification
 Commands), p. 159:

 (modify the second paragraph, p. 159)
 The error INVALID_OPERATION is generated if dep th component data
 is required and no depth buffer is present, or if integer RGBA
 data is required and the format of the current color buffer is not
 integer, or if floating-point or fixed-point RG BA data is required
 and the format of the current color buffer is i nteger.

 Modify Section 3.8.4 (Texture Parameters), p. 1 66:

 Various parameters control how the texture arra y is treated when
 specified or changed, and when applied to a fra gment. Each
 parameter is set by calling

 void TexParameter{if}(enum target, enum pn ame, T param);
 void TexParameter{if}v(enum target, enum p name, T params);
 void TexParameterIivEXT(enum target, enum pname, int *params);
 void TexParameterIuivEXT(enum target, enum pname, uint *params);

 <target> is the target, either TEXTURE_1D, TEXT URE_2D, TEXTURE_3D,
 or TEXTURE_CUBE_MAP. <pname> is a symbolic cons tant indicating the
 parameter to be set; the possible constants and corresponding
 parameters are summarized in table 3.19. In the first form of the
 command, <param> is a value to which to set a s ingle-valued
 parameter; in the second and third forms of the command, <params>
 is an array of parameters whose type depends on the parameter
 being set.

 If the value for TEXTURE_PRIORITY is specified as an integer, the
 conversion for signed integers from table 2.9 i s applied to
 convert the value to floating-point. The float ing point value of
 TEXTURE_PRIORITY is clamped to lie in [0, 1].

 If the values for TEXTURE_BORDER_COLOR are spec ified with
 TexParameterIivEXT or TexParameterIuivEXT, the values are
 unmodified and stored with an internal data typ e of integer. If
 specified with TexParameteriv, the conversion f or signed integers
 from table 2.9 is applied to convert these valu es to
 floating-point. Otherwise the values are unmod ified and stored as
 floating-point.

 (modify table 3.19, p. 167)
 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_BORDER_COLOR 4 floats or any 4 values
 4 ints or
 4 uints

 Table 3.19: Texture parameters and their values.

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1044

 Modify Section 3.8.8 (Texture Minification), p. 170

 (modify last paragraph, p. 174)

 ... If the texture contains color components, t he values of
 TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the
 texture's internal format in a manner consisten t with table 3.15.
 The internal data type of the border values mus t be consistent
 with the type returned by the texture as descri bed in section 3.8,
 or the result is undefined. The border values for texture
 components stored as fixed-point values are cla mped to [0, 1]
 before they are used. If the texture contains depth components,
 the first component of TEXTURE_BORDER_COLOR is interpreted as a
 depth value

 Modify Section 3.8.10 (Texture Completeness), p . 177:

 (add to the requirements for one-, two-, or thr ee-dimensional
 textures)
 If the internalformat is integer, TEXTURE_MAG_F ILTER must be
 NEAREST and TEXTURE_MIN_FILTER must be NEAREST or
 NEAREST_MIPMAP_NEAREST.

 Modify Section 3.11.2 (Shader Execution), p. 19 4

 (modify Shader Outputs, first paragraph, p. 196)
 ... These are gl_FragColor, gl_FragData[n], and gl_FragDepth. If
 fragment clamping is enabled and the color buff er has a
 fixed-point or floating-point format, the final fragment color
 values or the final fragment data values writte n by a fragment
 shader are clamped to the range [0, 1]. If fra gment clamping is
 disabled or the color buffer has an integer for mat, the final
 fragment color values or the final fragment dat a values are not
 modified. The final fragment depth...

 (insert between the first paragraph and second paragraphs of
 "Shader Outputs", p. 196)
 Colors values written by the fragment shader ma y be floating-
 point, signed integer or unsigned integer. If the color buffer
 has a fixed-point format, the color values are assumed to be
 floating-point and are converted to fixed-point as described in
 section 2.14.9; otherwise no type conversion is applied. If the
 values written by the fragment shader do not ma tch the format(s)
 of the corresponding color buffer(s), the resul t is undefined.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Chapter 4 Introduction, (p. 198)

 (modify third paragraph, p. 198)
 Color buffers consist of unsigned integer color indices, R, G, B
 and optionally A floating-point components repr esented as
 fixed-point unsigned integer or floating-point values, or R, G, B
 and optionally A integer components represented as signed or
 unsigned integer values. The number of bitplan es...

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1045

 Modify Section 4.1.3 (Multisample Fragment Oper ations), p. 200

 (modify the second paragraph in this section)
 ... If SAMPLE_ALPHA_TO_COVERAGE is enabled and the color buffer
 has a fixed-point or floating-point format, a t emporary coverage
 value is generated ...

 Modify Section 4.1.4 (Alpha Test), p. 201

 (modify the first paragraph in this section)
 This step applies only in RGBA mode and only if the color buffer
 has a fixed-point or floating-point format. In color index mode or
 if the color buffer has an integer format, proc eed to the next
 operation. The alpha test discards ...

 Modify Section 4.1.8 (Blending), p. 205

 (modify the second paragraph, p. 206)
 ... Blending is dependent on the incoming fragm ent's alpha value
 and that of the corresponding currently stored pixel. Blending
 applies only in RGBA mode and only if the color buffer has a
 fixed-point or floating-point format; in color index mode or if
 the color buffer has an integer format, it is b ypassed. ...

 Modify Section 4.2.3 (Clearing the Buffers), p. 215

 void ClearColor(float r, float g, float b, f loat a);

 sets the clear value for fixed-point and floati ng-point color
 buffers in RGBA mode. The specified components are stored as
 floating-point values.

 void ClearColorIiEXT(int r, int g, int b, in t a);
 void ClearColorIuiEXT(uint r, uint g, uint b , uint a);

 set the clear value for signed integer and unsi gned integer color
 buffers, respectively, in RGBA mode. The speci fied components are
 stored as integer values.

 (add to the end of first partial paragraph, p. 217) ... then a
 Clear directed at that buffer has no effect. W hen fixed-point
 RGBA color buffers are cleared, the clear color values are assumed
 to be floating-point and are clamped to [0,1] b efore being
 converted to fixed-point according to the rules of section 2.14.9.
 The result of clearing fixed-point or floating- point color buffers
 is undefined if the clear color was specified a s integer values.
 The result of when clearing integer color buffe rs is undefined if
 the clear color was specified as floating-point values.

 Modify Section 4.3.2 (Reading Pixels), p. 219

 (append to the last paragraph, p. 221)
 The error INVALID_OPERATION occurs if <format> is an integer
 format and the color buffer is not an integer f ormat, or if the
 color buffer is an integer format and <format> is not. The error
 INVALID_ENUM occurs if <format> is an integer f ormat and <type> is
 FLOAT.

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1046

 (modify the first paragraph, p. 222)
 ... For a fixed-point color buffer, each elemen t is taken to be a
 fixed-point value in [0, 1] with m bits, where m is the number of
 bits in the corresponding color component of th e selected buffer
 (see section 2.14.9). For an integer or floati ng-point color
 buffer, the elements are unmodified.

 (modify the section labeled "Conversion to L", p. 222)
 This step applies only to RGBA component groups . If the format is
 either LUMINANCE or LUMINANCE_ALPHA, a value L is computed as

 L = R + G + B

 otherwise if the format is either LUMINANCE_INT EGER_EXT or
 LUMINANCE_ALPHA_INTEGER_EXT, L is computed as

 L = R

 where R, G, and B are the values of the R, G, a nd B
 components. The single computed L component rep laces the R, G, and
 B components in the group.

 (modify the section labeled "Final Conversion", p. 222)

 For a floating-point RGBA color, each component is first clamped
 to [0, 1]. Then the appropriate conversion form ula from table 4.7
 is applied to the component. For an integer RG BA color, each
 component is clamped to the representable range of <type>.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.3 (Enumerated Queries), p. 2 46

 (insert in the list of query functions, p. 246)
 void GetTexParameterIivEXT(enum target, enum v alue, int *data);
 void GetTexParameterIuivEXT(enum target, enum value, uint *data);

 (modify the second paragraph, p. 247)
 ... For GetTexParameter, value must be either T EXTURE_RESIDENT, or
 one of the symbolic values in table 3.19. Quer ying <value>
 TEXTURE_BORDER_COLOR with GetTexParameterIivEXT or
 GetTexParameterIuivEXT returns the border color values as signed
 integers or unsigned integers, respectively; ot herwise the values
 are returned as described in section 6.1.2. If the border color
 is queried with a type that does not match the original type with
 which it was specified, the result is undefined . The <lod>
 argument ...

 (add to end of third paragraph, p. 247) Queries with a <value> of
 TEXTURE_RED_TYPE_ARB, TEXTURE_GREEN_TYPE_ARB, TEXTURE_BLUE_TYPE_ARB,
 TEXTURE_ALPHA_TYPE_ARB, TEXTURE_LUMINANCE_TYPE_ARB,
 TEXTURE_INTENSITY_TYPE_ARB, or TEXTURE_DEPTH_TY PE_ARB, return the data
 type used to store the component. Values of NO NE,
 UNSIGNED_NORMALIZED_ARB, FLOAT, INT, or UNSIGNE D_INT, indicate missing,

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1047

 unsigned normalized integer, floating-point, si gned unnormalized integer,
 and unsigned unnormalized integer components, r espectively.

GLX Protocol

 TBD

Dependencies on ARB_texture_float

 The following changes should be made if ARB_tex ture_float is not
 supported:

 The references to floating-point data types in section 3.8, p. 150
 should be deleted.

 The language in section 3.8.1 should indicate t hat final
 conversion always clamps when the internalforma t is not integer.

 The description of table 3.16 should not mentio n the <f>
 floating-point formats.

 Section 3.8.4 should indicate that border color values should be
 clamped to [0,1] before being stored, if not sp ecified with one of
 the TexParameterI* functions.

 Section 3.8.8 should not mention clamping borde r color values to
 [0,1] for fixed-point textures, since this occu rs in 3.8.4 at
 TexParameter specification.

Dependencies on ARB_color_buffer_float

 The following changes should be made if ARB_col or_buffer_float is
 not supported:

 Section 3.11.2, subsection "Shader Outputs: p. 196 should not
 mention fragment clamping or color buffers with floating-point
 formats.

 Chapter 4, p. 198 should not mention components represented as
 floating-point values.

 Section 4.1.3, p. 200, section 4.1.4 p. 205, se ction 4.1.8 p. 206,
 section 4.2.3 p. 215 and section 4.3.2 p. 222 s hould not mention
 color buffers with a floating-point format.

 Section 4.2.3 p. 217 should not mention clampin g the clear color
 values to [0,1].

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap,
 CopyPixels, or a command that performs an expli cit Begin if the
 color buffer has an integer RGBA format and no fragment shader is
 active.

 INVALID_ENUM is generated by DrawPixels, TexIma ge* and
 SubTexImage* if <format> is one of the integer component formats

EXT_texture_integer NVIDIA OpenGL Extension Specifications

 1048

 described in table 3.6 and <type> is FLOAT.

 INVALID_OPERATION is generated by TexImage* and SubTexImage* if
 the texture internalformat is an integer format as described in
 table 3.16 and <format> is not one of the integ er component
 formats described in table 3.6, or if the inter nalformat is not an
 integer format and <format> is an integer forma t.

 INVALID_OPERATION is generated by CopyTexImage* and
 CopyTexSubImage* if the texture internalformat is an integer
 format and the read color buffer is not an inte ger format, or if
 the internalformat is not an integer format and the read color
 buffer is an integer format.

 INVALID_ENUM is generated by ReadPixels if <for mat> is an integer
 format and <type> is FLOAT.

 INVALID_OPERATON is generated by ReadPixels if <format> is an
 integer format and the color buffer is not an i nteger format, or
 if <format> is not an integer format and the co lor buffer is an
 integer format.

New State

 (modify table 6.33, p. 294)

 Minimum
 Get Value Type Get Command Value Description Sec. Attribute
 ------------------------ ---- ----------- ------- ---------------- ---- ----------
 RGBA_INTEGER_MODE_EXT B GetBooleanv - True if RGBA 2.7 -
 components are
 integers

Issues

 How should the integer pixel path be triggered: by the destination
 type, new source types, or new source formats?

 RESOLVED: New source formats, based on the precedence of
 COLOR_INDEX and STENCIL_INDEX formats which invoke distinct
 pixel path behavior with identical data typ es and independent
 of the destination.

 Should pixel transfer operations be defined for the integer pixel
 path?

 RESOLVED: No. Fragment shaders can achieve similar results
 with more flexibility. There is no need to aggrandize this
 legacy mechanism.

 What happens if a shader reads a float texel fr om an integer
 texture or vice-versa?

 RESOLVED: The result is undefined. The sha der must have
 knowledge of the texture internal data type .

NVIDIA OpenGL Extension Specifications EXT_texture_integer

 1049

 How do integer textures behave in fixed functio n fragment
 processing?

 RESOLVED: The fixed function texture pipeli ne assumes textures
 return floating-point values, hence the ret urn value from an
 integer texture will not be in a meaningful format.

 How does TEXTURE_BORDER_COLOR work with integer textures?

 RESOLVED: The internal storage of border va lues effectively
 becomes a union, and the returned values ar e interpreted as
 the same type as the texture. New versions of TexParameter
 allow specification of signed and unsigned integer border
 values.

 How does logic op behave with RGBA mode renderi ng into integer
 color buffer?

 RESOLVED: The color logic op operates when enabled when
 rendering into integer color buffers.

 Logic op operations make sense for integer color buffers so the
 COLOR_LOGIC_OP enable is respected when ren dering into integer
 color buffers.

 Blending does not apply to RGBA mode render ing when rendering
 into integer color buffers (as section 4.1. 8 is updated to say).
 The color logic op (described in section 4. 1.10) is not a blending
 operation (though it does take priority ove r the blending enable).

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 5 07/15/07 pbrown Fix typo in GetTexPar ameterIuivEXT function
 name in "New Procedur es and Functions".

 4 -- Pre-release revisions .

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 1050

Name

 EXT_texture_lod_bias

Name Strings

 GL_EXT_texture_lod_bias

Notice

 Copyright NVIDIA Corporation, 1999, 2000.

Status

 Shipping since late 1999.

 The texture LOD bias functionality in OpenGL 1. 4 is based on this
 extension though the OpenGL 1.4 functionality a dded the ability to
 specify a second per-texture object bias term. The OpenGL 1.4 enum
 values match the EXT enum values.

Version

 NVIDIA Date: August 27, 2003
 $Date: 2003/08/27 $ $Revision: #13 $

Number

 186

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

 Affects ARB_multitexture.

Overview

 OpenGL computes a texture level-of-detail param eter, called lambda
 in the GL specification, that determines which mipmap levels and
 their relative mipmap weights for use in mipmap ped texture filtering.

 This extension provides a means to bias the lam bda computation
 by a constant (signed) value. This bias can pr ovide a way to blur
 or pseudo-sharpen OpenGL's standard texture fil tering.

 This blurring or pseudo-sharpening may be usefu l for special effects
 (such as depth-of-field effects) or image proce ssing techniques
 (where the mipmap levels act as pre-downsampled image versions).
 On some implementations, increasing the texture lod bias may improve
 texture filtering performance (at the cost of t exture bluriness).

 The extension mimics functionality found in Dir ect3D.

Issues

 Should the texture LOD bias be settable per-tex ture object or

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 1051

 per-texture stage?

 RESOLUTION: Per-texture stage. This matches the Direct3D
 semantics for texture lod bias. Note that th is differs from
 the semantics of SGI's SGIX_texture_lod_bias extension that
 has the biases per-texture object.

 This also allows the same texture object to b e used by two different
 texture units for different blurring. This is useful for
 extrapolating detail between various levels o f detail in a
 mipmapped texture.

 For example, you can extrapolate texture deta il with
 ARB_multitexture and EXT_texture_env_combine by computing

 (B0 - B2) * 2 + B2

 where B0 is a non-biased texture (normal shar pness) and B2 is
 the same texture but bias by 2 levels-of-deta il (fairly blurry).
 This has the effect of increasing the high-fr equency information
 in the texture. There are immediate Earth Sc iences and medical
 imaging applications for this technique.

 Per-texture stage control of the LOD bias is also useful for
 allowing an application to control overall te xture bluriness.
 This can be used in games to simulate disorie ntation (note that
 only textures will blur, not edges). It can also be used to
 globally control texturing performance. An a pplication may be
 able to sustain a constant frame rate by avoi ding texture fetch
 stalls by using slightly blurrier textures.

 How does EXT_texture_lod_bias differ from SGIX_ texture_lod bias?

 EXT_texture_lod_bias adds a bias to lambda. The
 SGIX_texture_lod_bias extension changes the c omputation of rho (the
 log2 of which is lambda). The SGIX extension provides separate
 biases in each texture dimension. The EXT ex tension does not
 provide an "directionality" in the LOD contro l.

 Does the texture lod bias occur before or after the TEXTURE_MAX_LOD
 and TEXTURE_MIN_LOD clamping?

 RESOLUTION: BEFORE. This allows the texture lod bias to still
 be clamped within the max/min lod range.

 Does anything special have to be said to keep t he biased lambda value
 from being less than zero or greater than the m aximum number of
 mipmap levels?

 RESOLUTION: NO. The existing clamping in th e specification
 handles these situations.

 The texture lod bias is specified to be a float . In practice, what
 sort of range is assumed for the texture lod bi as?

 RESOLUTION: The MAX_TEXTURE_LOD_BIAS_EXT imp lementation constant
 advertises the maximum absolute value of the supported texture

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 1052

 lod bias. The value is recommended to be at least the maximum
 mipmap level supported by the implementation.

 The texture lod bias is specified to be a float . In practice, what
 sort of precision is assumed for the texture lo d bias?

 RESOLUTION; This is implementation dependent . Presumably,
 hardware would implement the texture lod bias as a fractional bias
 but the exact fractional precision supported is implementation
 dependent. At least 4 fractional bits is rec ommended.

New Procedures and Functions

 None

New Tokens

 Accepted by the <target> parameters of GetTexEn vfv, GetTexEnviv,
 TexEnvi, TexEnvf, Texenviv, and TexEnvfv:

 TEXTURE_FILTER_CONTROL_EXT 0x8500

 When the <target> parameter of GetTexEnvfv, Get TexEnviv, TexEnvi,
 TexEnvf, TexEnviv, and TexEnvfv is TEXTURE_FILT ER_CONTROL_EXT, then
 the value of <pname> may be:

 TEXTURE_LOD_BIAS_EXT 0x8501

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_TEXTURE_LOD_BIAS_EXT 0x84FD

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.8.5 "Texture Minification"

 Change the first formula under "Scale Factor a nd Level of Detail" to read:

 "The choice is governed by a scale factor p(x, y), the level of detail
 parameter lambda(x,y), defined as

 lambda'(x,y) = log2[p(x,y)] + lodB ias

 where lodBias is the texture unit's (signed) t exture lod bias parameter
 (as described in Section 3.8.9) clamped betwee n the positive and negative
 values of the implementation defined constant MAX_TEXTURE_LOD_BIAS_EXT."

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 1053

 -- Section 3.8.9 "Texture Environments and Textur e Functions"

 Change the first paragraph to read:

 "The command

 void TexEnv{if}(enum target, enum pname, T param);
 void TexEnv{if}v(enum target, enum pname, T params);

 sets parameters of the texture environment tha t specifies how texture
 values are interepreted when texturing a fragm ent or sets per-texture
 unit texture filtering parameters. The possib le target parameters
 are TEXTURE_ENV or TEXTURE_FILTER_CONTROL_EXT. ... When target is
 TEXTURE_ENV, the possible environment paramete rs are TEXTURE_ENV_MODE
 and TEXTURE_ENV_COLOR. ... When target is TEXT URE_FILTER_CONTROL_EXT,
 the only possible texture filter parameter is TEXTURE_LOD_BIAS_EXT.
 TEXTURE_LOD_BIAS_EXT is set to a signed floati ng point value that
 is used to bias the level of detail parameter, lambda, as described
 in Section 3.8.5."

 Add a final paragraph at the end of the sectio n:

 "The state required for the per-texture unit f iltering parameters
 consists of one floating-point value."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

-- Section 6.1.3 "Texture Environments and Texture Functions"

 Change the third sentence of the third paragra ph to read:

 "The env argument to GetTexEnv must be either TEXTURE_ENV or
 TEXTURE_FILTER_CONTROL_EXT."

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexEnv is calle d with a <pname> of
 TEXTURE_FILTER_CONTROL_EXT and the value of <p aram> or what is pointed to
 by <params> is not TEXTURE_LOD_BIAS_EXT.

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 1054

New State

(table 6.14, p204) add the entry:

Get Value Type Get Command Initi al Value Description Sec Attribute
----------------------- ---- ----------- ----- --------- --------------- ----- ---------
TEXTURE_LOD_BIAS_EXT R GetTexEnvfv 0.0 Biases texture 3.8.9 texture
 level of detail

(When ARB_multitexture is supported, the TEXTURE_LO D_BIAS_EXT state is per-texture unit.)

New Implementation State

(table 6.24, p214) add the following entries:

Get Value Type Get Command Minim um Value Description Sec Attribute
----------------------- ---- ----------- ----- -------- ----------------- ----- ---------
MAX_TEXTURE_LOD_BIAS_EXT R+ GetFloatv 4.0 Maximum 3.8.9 -
 absolute texture
 lod bias

Revision History

 8/27/03 - updated status to mention OpenGL 1.4 functionality

 8/26/03 - fixed incorrect enum name (TEXTURE_FI LTER_CONTROL_EXT is
 correct) in the Errors section.

 6/2/00 - add spec language to allow GetTexEnv t o accept
 TEXTURE_FILTER_CONTROL_EXT.

NVIDIA OpenGL Extension Specifications EXT_texture_mirror_clamp

 1055

Name

 EXT_texture_mirror_clamp

Name Strings

 GL_EXT_texture_mirror_clamp

Status

 Shipping as of May 2004 for GeForce6.

Version

 Last Modified Date: $Date: 2004/05/17 $
 NVIDIA Revision: $Revision: #4 $

Number

 298

Issues

 How does EXT_texture_mirror_clamp extend ATI_te xture_mirror_once?

 This EXT extension provides the two wrap mo des that
 ATI_texture_mirror_once adds but also adds a third new wrap mode
 (GL_MIRROR_CLAMP_TO_BORDER_EXT). This exte nsion uses the same
 enumerant values for the ATI_texture_mirror _once modes.

 Why is the GL_MIRROR_CLAMP_TO_BORDER_EXT mode m ore interesting than
 the two other modes?

 Rather than clamp to 100% of the edge of th e texture
 (GL_MIRROR_CLAMP_TO_EDGE_EXT) or to 50% of the edge and border
 color (GL_MIRROR_CLAMP), it is preferable t o clamp to 100%
 of the border color (GL_MIRROR_CLAMP_TO_BOR DER_EXT). This
 avoids "bleeding" at smaller mipmap levels.

 Consider a texture that encodes a circular fall-off pattern such
 as for a projected spotlight. A circular p attern is bi-symmetric
 so a "mirror clamp" wrap modes can reduce t he memory footprint
 of the texture by a fourth. Far outside th e spotlight pattern,
 you'd like to sample 100% of the border col or (typically black
 for a spotlight texture). The way to achie ve this without any
 bleeding of edge texels is with GL_MIRROR_C LAMP_TO_BORDER_EXT.

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications

 1056

 Does this extension complete the orthogonality of the current five
 OpenGL 1.5 wrap modes?

 Yes. There are two ways for repetition to operate (repeated
 & mirrored) and four ways for texture coor dinate clamping to
 operate (unclamped, clamp, clamp to edge, & clamp to border).
 The complete table of all 8 modes looks li ke this:

 Repeat Mirror
 +---------------- ------- ---------------
 Unclamped | REPEAT MIRRORE D_REPEAT
 Clamp | CLAMP MIRROR_ CLAMP
 Clamp to edge | CLAMP_TO_EDGE MIRROR_ CLAMP_TO_EDGE
 Clamp to border | CLAMP_TO_BORDER MIRROR_ CLAMP_TO_BORDER

 OpenGL 1.0 introduced REPEAT & CLAMP.
 OpenGL 1.2 introduced CLAMP_TO_EDGE
 OpenGL 1.3 introduced CLAMP_TO_BORDER
 OpenGL 1.4 introduced MIRRORED_REPEAT
 ATI_texture_mirror_once introduced MIRROR_ CLAMP & MIRROR_CLAMP_TO_EDGE
 EXT_texture_mirror_clamp introduces MIRROR _CLAMP_TO_BORDER

 Do these three new wrap modes work with 1D, 2D, 3D, and cube map
 texture targets?

 RESOLUTION: Yes.

 Do these three new wrap modes work with ARB_tex ture_non_power_of_two
 functionality?

 RESOLUTION: Yes.

 Do these three new wrap modes interact with NV_ texture_rectangle?

 RESOLUTION: Mirroring wrap modes are not supported by
 GL_TEXTURE_RECTANGLE_NV textures. Convent ional mirroring is
 already not supported for texture rectangl es so supporting
 clamped mirroring modes should not be supp orted either.

 Does the specification of MIRROR_CLAMP_EXT & MI RROR_CLAMP_TO_EDGE_EXT
 match the ATI_texture_mirror_once specification ?

 I believe yes. The ATI_texture_mirror_onc e specification is
 somewhat vague what happens to texture coo rdinates at or very
 near (within half a texel of) zero. The p resumption is that a
 CLAMP_TO_EDGE behavior is used. This spec ification is quite
 explicit that values near zero are clamped to plus or minus
 1/(2*N) respectively so that the CLAMP_TO_ EDGE behavior is
 explicit.

 What should this extension be called?

 Calling the extension EXT_texture_mirror_o nce might cause
 confusion since this extension has additio nal functionality.
 Also, "once" never appears in the specific ation.
 EXT_texture_mirror_clamp is a good name be cause it implies
 support for all the clamped versions of mi rroring.

NVIDIA OpenGL Extension Specifications EXT_texture_mirror_clamp

 1057

 There is GL_MIRRORED_REPEAT and then GL_MIRROR_ CLAMP_EXT,
 GL_MIRROR_CLAMP_TO_EDGE_EXT, and GL_MIRROR_CLAMP_TO_BORDER_EXT.
 Why does the first enumerant name say "MIRRORED " while the other
 three say "MIRROR"?

 This extension follows the naming preceden t set by the
 ATI_texture_mirror_once specification.

 Moreover, MIRRORED_REPEAT uses "mirrored" to help that the
 mirroring repeats infinitely. For the oth er three modes,
 there is just one mirror that occurs and t hen a clamp.

Dependencies

 Written based on the wording of the OpenGL 1.4.

 Extends ATI_texture_mirror_once by adding
 GL_MIRROR_CLAMP_TO_BORDER_EXT.

 NV_texture_rectangle trivially affects the defi nition of this
 extension.

Overview

 EXT_texture_mirror_clamp extends the set of tex ture wrap modes to
 include three modes (GL_MIRROR_CLAMP_EXT, GL_MI RROR_CLAMP_TO_EDGE_EXT,
 GL_MIRROR_CLAMP_TO_BORDER_EXT) that effectively use a texture map
 twice as large as the original image in which t he additional half
 of the new image is a mirror image of the origi nal image.

 This new mode relaxes the need to generate imag es whose opposite
 edges match by using the original image to gene rate a matching
 "mirror image". This mode allows the texture t o be mirrored only
 once in the negative s, t, and r directions.

New Procedure and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv,
 when their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R:

 MIRROR_CLAMP_EXT 0x8742 (same value as MIRROR_CLAMP_ATI)
 MIRROR_CLAMP_TO_EDGE_EXT 0x8743 (same value as MIRROR_CLAMP_TO_EDGE_ATI)
 MIRROR_CLAMP_TO_BORDER_EXT 0x8912

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (Operation)

 None

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications

 1058

Additions to Chapter 3 if the OpenGL 1.2.1 Specific ation (Rasterization):

 - (3.8.4, page 136, as amended by the NV_texture_ rectangle extension)

 Add the 3 new wrap modes to the list of wrap mo des unsupported for
 the TEXTURE_RECTANGLE_NV texture target.

 "Certain texture parameter values may not be sp ecified for textures
 with a target of TEXTURE_RECTANGLE_NV. The err or INVALID_ENUM
 is generated if the target is TEXTURE_RECTANGLE _NV and the
 TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP _R parameter is set to
 REPEAT, MIRRORED_REPEAT_IBM, MIRROR_CLAMP_EXT, MIRROR_CLAMP_TO_EDGE_EXT, and
 MIRROR_CLAMP_TO_BORDER_EXT. The error INVALID_ ENUM is generated
 if the target is TEXTURE_RECTANGLE_NV and the T EXTURE_MIN_FILTER is
 set to a value other than NEAREST or LINEAR (no mipmap filtering
 is permitted). The error INVALID_ENUM is gener ated if the target
 is TEXTURE_RECTANGLE_NV and TEXTURE_BASE_LEVEL is set to any value
 other than zero."

 - Table 3.19, page 137: Change first three entrie s in table:

 "TEXTURE_WRAP_S integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT"

 - (3.8.7, page 140) After the last paragraph of t he section add:

 "Wrap Mode MIRROR_CLAMP_EXT

 Wrap mode MIRROR_CLAMP_EXT mirrors and clamps t he texture coordinate,
 where mirroring and clamping a value f computes

 mirrorClamp(f) = min(1, max(1/(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping.

 Wrap Mode MIRROR_CLAMP_TO_EDGE_EXT

 Wrap mode MIRROR_CLAMP_TO_EDGE_EXT mirrors and clamps to edge the
 texture coordinate, where mirroring and clampin g to edge a value f
 computes

 mirrorClampToEdge(f) = min(1-1/(2*N), max(1/(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping.

NVIDIA OpenGL Extension Specifications EXT_texture_mirror_clamp

 1059

 Wrap Mode MIRROR_CLAMP_TO_BORDER_EXT

 Wrap mode MIRROR_CLAMP_TO_BORDER_EXT mirrors an d clamps to border the
 texture coordinate, where mirroring and clampin g to border a value
 f computes

 mirrorClampToBorder(f) = min(1+1/(2*N), max(1 /(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping."

 - (3.8.8, page 142) Delete this phrase because it is out of date and
 unnecessary given the current way section 3.8.7 is written:

 "(if the wrap mode for a coordinate is CLAMP or CLAMP_TO_EDGE)"

Additions to Chapter 4:

 None

Additions to Chapter 5:

 None

Additions to Chapter 6:

 None

Additions to the GLX Specification

 None

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, ignor e the statement that
 the initial value for the S, T, and R wrap mode s is CLAMP_TO_EDGE
 for rectangular textures.

 Ignore the error for a texture target of TEXTUR E_RECTANGLE_NV.

GLX Protocol

 None

Errors

 INVALID_ENUM is generated when TexParameter is called with
 a target of TEXTURE_RECTANGLE_NV and the TEXTUR E_WRAP_S,
 TEXTURE_WRAP_T, or TEXTURE_WRAP_R parameter is set to REPEAT,
 MIRRORED_REPEAT_IBM, MIRROR_CLAMP_EXT, MIRROR_C LAMP_TO_EDGE_EXT,
 or MIRROR_CLAMP_TO_BORDER_EXT.

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications

 1060

New State

 (table 6.15, p230) amend the following entries [Z5 changed to Z8]:

Get Value Type Get Command Initial Valu e Description Sec Attribute
-------------- ---- --------------- ------------ --- ------------------- ----- ---------
TEXTURE_WRAP_S n*Z8 GetTexParameter REPEAT excep t Texture wrap mode S 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E
TEXTURE_WRAP_T n*Z8 GetTexParameter REPEAT excep t Texture wrap mode T 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E
TEXTURE_WRAP_R n*Z8 GetTexParameter REPEAT excep t Texture wrap mode R 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_texture_object

 1061

Name

 EXT_texture_object

Name Strings

 GL_EXT_texture_object

Version

 $Date: 1995/10/03 05:39:56 $ $Revision: 1.27 $

Number

 20

Dependencies

 EXT_texture3D affects the definition of this ex tension

Overview

 This extension introduces named texture objects . The only way to name
 a texture in GL 1.0 is by defining it as a sing le display list. Because
 display lists cannot be edited, these objects a re static. Yet it is
 important to be able to change the images and p arameters of a texture.

Issues

 * Should the dimensions of a texture object b e static once they are
 changed from zero? This might simplify the management of texture
 memory. What about other properties of a t exture object?

 No.

Reasoning

 * Previous proposals overloaded the <target> parameter of many Tex
 commands with texture object names, as well as the original
 enumerated values. This proposal eliminate d such overloading,
 choosing instead to require an application to bind a texture object,
 and then operate on it through the binding reference. If this
 constraint ultimately proves to be unaccept able, we can always
 extend the extension with additional bindin g points for editing and
 querying only, but if we expect to do this, we might choose to bite
 the bullet and overload the <target> parame ters now.

 * Commands to directly set the priority of a texture object and to
 query the resident status of a texture obje ct are included. I feel
 that binding a texture object would be an u nacceptable burden for
 these management operations. These command s also allow queries and
 operations on lists of texture objects, whi ch should improve
 efficiency.

 * GenTexturesEXT does not return a success/fa ilure boolean because
 it should never fail in practice.

EXT_texture_object NVIDIA OpenGL Extension Specifications

 1062

New Procedures and Functions

 void GenTexturesEXT(sizei n,
 uint* textures);

 void DeleteTexturesEXT(sizei n,
 const uint* textures);

 void BindTextureEXT(enum target,
 uint texture);

 void PrioritizeTexturesEXT(sizei n,
 const uint* textures ,
 const clampf* priori ties);

 boolean AreTexturesResidentEXT(sizei n,
 const uint* text ures,
 boolean* residen ces);

 boolean IsTextureEXT(uint texture);

New Tokens

 Accepted by the <pname> parameters of TexParame teri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameter iv, and GetTexParameterfv:

 TEXTURE_PRIORITY_EXT 0x8066

 Accepted by the <pname> parameters of GetTexPar ameteriv and
 GetTexParameterfv:

 TEXTURE_RESIDENT_EXT 0x8067

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 TEXTURE_1D_BINDING_EXT 0x8068
 TEXTURE_2D_BINDING_EXT 0x8069
 TEXTURE_3D_BINDING_EXT 0x806A

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 Add the following discussion to section 3.8 (Te xturing). In addition
 to the default textures TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT, it
 is possible to create named 1, 2, and 3-dimensi onal texture objects.
 The name space for texture objects is the unsig ned integers, with zero
 reserved by the GL.

 A texture object is created by binding an unuse d name to TEXTURE_1D,
 TEXTURE_2D, or TEXTURE_3D_EXT. This binding is accomplished by calling
 BindTextureEXT with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, and <texture> set to the name o f the new texture object.

NVIDIA OpenGL Extension Specifications EXT_texture_object

 1063

 When a texture object is bound to a target, the previous binding for
 that target is automatically broken.

 When a texture object is first bound it takes t he dimensionality of its
 target. Thus, a texture object first bound to TEXTURE_1D is
 1-dimensional; a texture object first bound to TEXTURE_2D is
 2-dimensional, and a texture object first bound to TEXTURE_3D_EXT is
 3-dimensional. The state of a 1-dimensional te xture object
 immediately after it is first bound is equivale nt to the state of the
 default TEXTURE_1D at GL initialization. Likew ise, the state of a
 2-dimensional or 3-dimensional texture object i mmediately after it is
 first bound is equivalent to the state of the d efault TEXTURE_2D or
 TEXTURE_3D_EXT at GL initialization. Subsequen t bindings of a texture
 object have no effect on its state. The error INVALID_OPERATION is
 generated if an attempt is made to bind a textu re object to a target of
 different dimensionality.

 While a texture object is bound, GL operations on the target to which it
 is bound affect the bound texture object, and q ueries of the target to
 which it is bound return state from the bound t exture object. If
 texture mapping of the dimensionality of the ta rget to which a texture
 object is bound is active, the bound texture ob ject is used.

 By default when an OpenGL context is created, T EXTURE_1D, TEXTURE_2D,
 and TEXTURE_3D_EXT have 1, 2, and 3-dimensional textures associated
 with them. In order that access to these defau lt textures not be
 lost, this extension treats them as though thei r names were all zero.
 Thus the default 1-dimensional texture is opera ted on, queried, and
 applied as TEXTURE_1D while zero is bound to TE XTURE_1D. Likewise,
 the default 2-dimensional texture is operated o n, queried, and applied
 as TEXTURE_2D while zero is bound to TEXTURE_2D , and the default
 3-dimensional texture is operated on, queried, and applied as
 TEXTURE_3D_EXT while zero is bound to TEXTURE_3 D_EXT.

 Texture objects are deleted by calling DeleteTe xturesEXT with <textures>
 pointing to a list of <n> names of texture obje ct to be deleted. After
 a texture object is deleted, it has no contents or dimensionality, and
 its name is freed. If a texture object that is currently bound is
 deleted, the binding reverts to zero. DeleteTe xturesEXT ignores names
 that do not correspond to textures objects, inc luding zero.

 GenTexturesEXT returns <n> texture object names in <textures>. These
 names are chosen in an unspecified manner, the only condition being that
 only names that were not in use immediately pri or to the call to
 GenTexturesEXT are considered. Names returned by GenTexturesEXT are
 marked as used (so that they are not returned b y subsequent calls to
 GenTexturesEXT), but they are associated with a texture object only
 after they are first bound (just as if the name were unused).

 An implementation may choose to establish a wor king set of texture
 objects on which binding operations are perform ed with higher
 performance. A texture object that is currentl y being treated as a
 part of the working set is said to be resident. AreTexturesResidentEXT
 returns TRUE if all of the <n> texture objects named in <textures> are
 resident, FALSE otherwise. If FALSE is returne d, the residence of each
 texture object is returned in <residences>. Ot herwise the contents of
 the <residences> array are not changed. If any of the names in

EXT_texture_object NVIDIA OpenGL Extension Specifications

 1064

 <textures> is not the name of a texture object, FALSE is returned, the
 error INVALID_VALUE is generated, and the conte nts of <residences> are
 indeterminate. The resident status of a single bound texture object
 can also be queried by calling GetTexParameteri v or GetTexParameterfv
 with <target> set to the target to which the te xture object is bound,
 and <pname> set to TEXTURE_RESIDENT_EXT. This is the only way that the
 resident status of a default texture can be que ried.

 Applications guide the OpenGL implementation in determining which
 texture objects should be resident by specifyin g a priority for each
 texture object. PrioritizeTexturesEXT sets the priorities of the <n>
 texture objects in <textures> to the values in <priorities>. Each
 priority value is clamped to the range [0.0, 1. 0] before it is
 assigned. Zero indicates the lowest priority, and hence the least
 likelihood of being resident. One indicates th e highest priority, and
 hence the greatest likelihood of being resident . The priority of a
 single bound texture object can also be changed by calling
 TexParameteri, TexParameterf, TexParameteriv, o r TexParameterfv with
 <target> set to the target to which the texture object is bound, <pname>
 set to TEXTURE_PRIORITY_EXT, and <param> or <pa rams> specifying the new
 priority value (which is clamped to [0.0,1.0] b efore being assigned).
 This is the only way that the priority of a def ault texture can be
 specified. (PrioritizeTexturesEXT silently ign ores attempts to
 prioritize nontextures, and texture zero.)

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 BindTextureEXT and PrioritizeTexturesEXT are in cluded in display lists.
 All other commands defined by this extension ar e not included in display
 lists.

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 IsTextureEXT returns TRUE if <texture> is the n ame of a valid texture
 object. If <texture> is zero, or is a non-zero value that is not the
 name of a texture object, or if an error condit ion occurs, IsTextureEXT
 returns FALSE.

 Because the query values of TEXTURE_1D, TEXTURE _2D, and TEXTURE_3D_EXT
 are already defined as booleans indicating whet her these textures are
 enabled or disabled, another mechanism is requi red to query the
 binding associated with each of these texture t argets. The name
 of the texture object currently bound to TEXTUR E_1D is returned in
 <params> when GetIntegerv is called with <pname > set to
 TEXTURE_1D_BINDING_EXT. If no texture object i s currently bound to
 TEXTURE_1D, zero is returned. Likewise, the na me of the texture object
 bound to TEXTURE_2D or TEXTURE_3D_EXT is return ed in <params> when
 GetIntegerv is called with <pname> set to TEXTU RE_2D_BINDING_EXT or
 TEXTURE_3D_BINDING_EXT. If no texture object i s currently bound to
 TEXTURE_2D or to TEXTURE_3D_EXT, zero is return ed.

NVIDIA OpenGL Extension Specifications EXT_texture_object

 1065

 A texture object comprises the image arrays, pr iority, border color,
 filter modes, and wrap modes that are associate d with that object. More
 explicitly, the state list

 TEXTURE,
 TEXTURE_PRIORITY_EXT
 TEXTURE_RED_SIZE,
 TEXTURE_GREEN_SIZE,
 TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE,
 TEXTURE_LUMINANCE_SIZE,
 TEXTURE_INTENSITY_SIZE,
 TEXTURE_WIDTH,
 TEXTURE_HEIGHT,
 TEXTURE_DEPTH_EXT,
 TEXTURE_BORDER,
 TEXTURE_COMPONENTS,
 TEXTURE_BORDER_COLOR,
 TEXTURE_MIN_FILTER,
 TEXTURE_MAG_FILTER,
 TEXTURE_WRAP_S,
 TEXTURE_WRAP_T,
 TEXTURE_WRAP_R_EXT

 composes a single texture object.

 When PushAttrib is called with TEXTURE_BIT enab led, the priorities,
 border colors, filter modes, and wrap modes of the currently bound
 texture objects are pushed, as well as the curr ent texture bindings and
 enables. When an attribute set that includes t exture information is
 popped, the bindings and enables are first rest ored to their pushed
 values, then the bound texture objects have the ir priorities, border
 colors, filter modes, and wrap modes restored t o their pushed values.

Additions to the GLX Specification

 Texture objects are shared between GLX renderin g contexts if and only
 if the rendering contexts share display lists. No change is made to
 the GLX API.

GLX Protocol

 Six new GL commands are added.

 The following rendering command is sent to the server as part of a
 glXRender request:

 BindTextureEXT
 2 12 rendering c ommand length
 2 4117 rendering c ommand opcode
 4 ENUM target
 4 CARD32 texture

 The following rendering command can be sent to the server as part of a
 glXRender request or as part of a glXRenderLarg e request:

EXT_texture_object NVIDIA OpenGL Extension Specifications

 1066

 PrioritizeTexturesEXT
 2 8+(n*8) rendering c ommand length
 2 4118 rendering c ommand opcode
 4 INT32 n
 n*4 LISTofCARD32 textures
 n*4 LISTofFLOAT32 priorities

 If the command is encoded in a glXRende rLarge request, the
 command opcode and command length field s above are expanded to
 4 bytes each:

 4 12+(n*8) rendering c ommand length
 4 4118 rendering c ommand opcode

 The remaining commands are non-rendering comman ds. These commands are
 sent separately (i.e., not as part of a glXRend er or glXRenderLarge
 request), using either the glXVendorPrivate req uest or the
 glXVendorPrivateWithReply request:

 DeleteTexturesEXT
 1 CARD8 opcode (X a ssigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 4+n request len gth
 4 12 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 CARD32 textures

 GenTexturesEXT
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 13 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 4*n LISTofCARD32 textures

NVIDIA OpenGL Extension Specifications EXT_texture_object

 1067

 AreTexturesResidentEXT
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 11 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 4*n LISTofCARD32 textures
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 (n+p)/4 reply lengt h
 4 BOOL32 return_valu e
 20 unused
 n LISTofBOOL residences
 p unused, p=p ad(n)

 IsTextureEXT
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 14 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 textures
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return_valu e
 20 unused

Dependencies on EXT_texture3D

 If EXT_texture3D is not supported, then all ref erences to 3D textures
 in this specification are invalid.

Errors

 INVALID_VALUE is generated if GenTexturesEXT pa rameter <n> is negative.

 INVALID_VALUE is generated if DeleteTexturesEXT parameter <n> is
 negative.

 INVALID_ENUM is generated if BindTextureEXT par ameter <target> is not
 TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT.

 INVALID_OPERATION is generated if BindTextureEX T parameter <target> is
 TEXTURE_1D, and parameter <texture> is the name of a 2-dimensional or
 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEX T parameter <target> is
 TEXTURE_2D, and parameter <texture> is the name of a 1-dimensional or
 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEX T parameter <target> is

EXT_texture_object NVIDIA OpenGL Extension Specifications

 1068

 TEXTURE_3D_EXT, and parameter <texture> is the name of a 1-dimensional
 or 2-dimensional texture object.

 INVALID_VALUE is generated if PrioritizeTexture sEXT parameter <n>
 negative.

 INVALID_VALUE is generated if AreTexturesReside ntEXT parameter <n>
 is negative.

 INVALID_VALUE is generated by AreTexturesReside ntEXT if any of the
 names in <textures> is zero, or is not the name of a texture.

 INVALID_OPERATION is generated if any of the co mmands defined in this
 extension is executed between the execution of Begin and the
 corresponding execution of End.

New State

Get Get Value Get Command Type Initial Value Attr ibute
--------- ----------- ---- ------------- ---- -----
TEXTURE_1D IsEnabled B FALSE text ure/enable
TEXTURE_2D IsEnabled B FALSE text ure/enable
TEXTURE_3D_EXT IsEnabled B FALSE text ure/enable
TEXTURE_1D_BINDING_EXT GetIntegerv Z+ 0 text ure
TEXTURE_2D_BINDING_EXT GetIntegerv Z+ 0 text ure
TEXTURE_3D_BINDING_EXT GetIntegerv Z+ 0 text ure
TEXTURE_PRIORITY_EXT GetTexParameterfv n x Z+ 1 text ure
TEXTURE_RESIDENT_EXT AreTexturesResident EXT n x B unknown -

TEXTURE GetTexImage n x levels x I null -
TEXTURE_RED_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_GREEN_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_BLUE_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_ALPHA_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_INTENSITY_SIZE_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_WIDTH GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_HEIGHT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_DEPTH_EXT GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_4DSIZE_SGIS GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_BORDER GetTexLevelParamete riv n x levels x Z+ 0 -
TEXTURE_COMPONENTS (1D and 2D) GetTexLevelParamete riv n x levels x Z42 1 -
TEXTURE_COMPONENTS (3D and 4D) GetTexLevelParamete riv n x levels x Z38 LUMINANCE -
TEXTURE_BORDER_COLOR GetTexParameteriv n x C 0, 0, 0, 0 text ure
TEXTURE_MIN_FILTER GetTexParameteriv n x Z7 NEAREST_MIPMAP_LINEAR text ure
TEXTURE_MAG_FILTER GetTexParameteriv n x Z3 LINEAR text ure
TEXTURE_WRAP_S GetTexParameteriv n x Z2 REPEAT text ure
TEXTURE_WRAP_T GetTexParameteriv n x Z2 REPEAT text ure
TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z2 REPEAT text ure
TEXTURE_WRAP_Q_SGIS GetTexParameteriv n x Z2 REPEAT text ure

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1069

Name

 EXT_texture_shared_exponent

Name Strings

 GL_EXT_texture_shared_exponent

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Contributors

 Pat Brown
 Jon Leech

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Date: February 6, 2007
 Revision: 0.5

Number

 333

Dependencies

 OpenGL 1.1 required

 ARB_color_buffer_float affects this extension.

 EXT_framebuffer_object affects this extension.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 Existing texture formats provide either fixed-p oint formats with
 limited range and precision but with compact en codings (allowing 32
 or fewer bits per multi-component texel), or fl oating-point formats
 with tremendous range and precision but without compact encodings
 (typically 16 or 32 bits per component).

 This extension adds a new packed format and new internal texture
 format for encoding 3-component vectors (typica lly RGB colors) with
 a single 5-bit exponent (biased up by 15) and t hree 9-bit mantissas
 for each respective component. There is no sig n bit so all three
 components must be non-negative. The fractiona l mantissas are
 stored without an implied 1 to the left of the decimal point.
 Neither infinity nor not-a-number (NaN) are rep resentable in this
 shared exponent format.

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1070

 This 32 bits/texel shared exponent format is pa rticularly well-suited
 to high dynamic range (HDR) applications where light intensity is
 typically stored as non-negative red, green, an d blue components
 with considerable range.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D,
 TexImage2D, TexImage3D, CopyTexImage1D, CopyTex Image2D, and
 RenderbufferStorageEXT:

 RGB9_E5_EXT 0x8C3D

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, GetTexImage, TexImage3D , TexSubImage1D,
 TexSubImage2D, TexSubImage3D, GetHistogram, Get Minmax,
 ConvolutionFilter1D, ConvolutionFilter2D, Convo lutionFilter3D,
 GetConvolutionFilter, SeparableFilter2D, GetSep arableFilter,
 ColorTable, ColorSubTable, and GetColorTable:

 UNSIGNED_INT_5_9_9_9_REV_EXT 0x8C3E

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_SHARED_SIZE_EXT 0x8C3F

Additions to Chapter 2 of the 2.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 2.0 Specification (Ra sterization)

 -- Section 3.6.4, Rasterization of Pixel Rectangle s

 Add a new row to Table 3.5 (page 128):

 type Parameter Correspondin g Special
 Token Name GL Data Type Interpretation
 ----------------------------- ------------ - --------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint yes

 Add a new row to table 3.8: Packed pixel format s (page 132):

 type Parameter GL Data Num ber of Matching
 Token Name Type Com ponents Pixel Formats
 ----------------------------- ------- --- ------- -------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint 4 RGB

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1071

 Add a new entry to table 3.11: UNSIGNED_INT for mats (page 134):

 UNSIGNED_INT_5_9_9_9_REV_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 1 7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-------------+--------------------------+- --------------------------+------------------------ --+
 | 4th | 3rd | 2nd | 1st |
 +-------------+--------------------------+- --------------------------+------------------------ --+

 Add to the end of the 2nd paragraph starting "P ixels are draw using":

 "If type is UNSIGNED_INT_5_9_9_9_REV_EXT and fo rmat is not RGB then
 the error INVALID_ENUM occurs."

 Add UNSIGNED_INT_5_9_9_9_REV_EXT to the list of packed formats in
 the 10th paragraph after the "Packing" subsecti on (page 130).

 Add before the 3rd paragraph (page 135, startin g "Calling DrawPixels
 with a type of BITMAP...") from the end of the "Packing" subsection:

 "Calling DrawPixels with a type of UNSIGNED_INT _5_9_9_9_REV_EXT and
 format of RGB is a special case in which the da ta are a series of GL
 uint values. Each uint value specifies 4 packe d components as shown
 in table 3.11. The 1st, 2nd, 3rd, and 4th comp onents are called
 p_red, p_green, p_blue, and p_exp respectively and are treated as
 unsigned integers. These are then used to comp ute floating-point
 RGB components (ignoring the "Conversion to flo ating-point" section
 below in this case) as follows:

 red = p_red * 2^(p_exp - B)
 green = p_green * 2^(p_exp - B)
 blue = p_blue * 2^(p_exp - B)

 where B is 15."

 -- Section 3.8.1, Texture Image Specification:

 "Alternatively if the internalformat is RGB9_E5 _EXT, the red, green,
 and blue bits are converted to a shared exponen t format according
 to the following procedure:

 Components red, green, and blue are first clamp ed (in the process,
 mapping NaN to zero) so:

 red_c = max(0, min(sharedexp_max, red))
 green_c = max(0, min(sharedexp_max, green))
 blue_c = max(0, min(sharedexp_max, blue))

 where sharedexp_max is (2^N-1)/2^N * 2^(Emax-B) , N is the number
 of mantissa bits per component, Emax is the max imum allowed biased
 exponent value (careful: not necessarily 2^E-1 when E is the number
 of exponent bits), bits, and B is the exponent bias. For the
 RGB9_E5_EXT format, N=9, Emax=30 (careful: not 31!), and B=15.

 The largest clamped component, max_c, is determ ined:

 max_c = max(red_c, green_c, blue_c)

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1072

 A shared exponent is computed:

 exp_shared = max(-B-1, floor(log2(max_c))) + 1 + B

 These integers values in the range 0 to 2^N-1 a re then computed:

 red_s = floor(red_c / 2^(exp_shared - B + N) + 0.5)
 green_s = floor(green_c / 2^(exp_shared - B + N) + 0.5)
 blue_s = floor(blue_c / 2^(exp_shared - B + N) + 0.5)

 Then red_s, green_s, and blue_s are stored alon g with exp_shared in
 the red, green, blue, and shared bits respectiv ely of the texture
 image.

 An implementation accepting pixel data of type
 UNSIGNED_INT_5_9_9_9_REV_EXT with a format of R GB is allowed to store
 the components "as is" if the implementation ca n determine the current
 pixel transfer state act as an identity transfo rm on the components."

 Add a new row and the "shared bits" column (bla nk for all existing
 rows) to Table 3.16 (page 154).

 Sized Base R G B A L I D shared
 Internal Format Internal Format bit s bits bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ---- ------
 RGB9_E5_EXT RGB 9 9 9 5

 -- Section 3.8.x, Shared Exponent Texture Color Co nversion

 Insert this section AFTER section 3.8.14 Textur e Comparison Modes
 and BEFORE section 3.8.15 Texture Application (and after the "sRGB
 Texture Color Conversion" if EXT_texture_sRGB i s supported).

 "If the currently bound texture's internal form at is RGB9_E5_EXT, the
 red, green, blue, and shared bits are converted to color components
 (prior to filtering) using the following shared exponent decoding.

 The components red_s, green_s, blue_s, and exp_ shared values (see
 section 3.8.1) are treated as unsigned integers and are converted
 to red, green, blue as follows:

 red = red_s * 2^(exp_shared - B)
 green = green_s * 2^(exp_shared - B)
 blue = blue_s * 2^(exp_shared - B)"

Additions to Chapter 4 of the 2.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 -- Section 4.3.2, Reading Pixels

 Add a row to table 4.7 (page 224);

 Co mponent
 type Parameter GL Data Type Co nversion Formula
 ----------------------------- ------------ -- ----------------
 UNSIGNED_INT_5_9_9_9_REV_EXT uint sp ecial

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1073

 Replace second paragraph of "Final Conversion" (page 222) to read:

 For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT, or if the CLAMP_R EAD_COLOR_ARB is
 TRUE, or CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB and the selected
 color (or texture) buffer is a fixed-point buff er, each component
 is first clamped to [0,1]. Then the appropriat e conversion formula
 from table 4.7 is applied the component.

 In the special case when calling ReadPixels wit h a type of
 UNSIGNED_INT_5_9_9_9_REV_EXT and format of RGB, the conversion
 is done as follows: The returned data are pack ed into a series of
 GL uint values. The red, green, and blue compon ents are converted
 to red_s, green_s, blue_s, and exp_shared integ ers as described in
 section 3.8.1 when the internalformat is RGB9_E 5_EXT. The red_s,
 green_s, blue_s, and exp_shared are then packed as the 1st, 2nd,
 3rd, and 4th components of the UNSIGNED_INT_5_9 _9_9_REV_EXT format
 as shown in table 3.11."

Additions to Chapter 5 of the 2.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 2.0 Specification (St ate and State Requests)

-- Section 6.1.3, Enumerated Queries

 Add TEXTURE_SHARED_SIZE_EXT to the list of quer ies in the first
 sentence of the fifth paragraph (page 247) so i t reads:

 "For texture images with uncompressed internal formats, queries of
 value of TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TEX TURE_DEPTH_SIZE,
 TEXTURE_SHARED_SIZE_EXTT, and TEXTURE_INTENSITY _SIZE return the
 actual resolutions of the stored image array co mponents, not the
 resolutions specified when the image array was defined."
Additions to the OpenGL Shading Language specificat ion

 None

Additions to the GLX Specification

 None

GLX Protocol

 None.

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is not supported, rep lace this amended
 sentence from 4.3.2 above

 "For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT, or if the CLAMP_R EAD_COLOR_ARB is TRUE, or
 CLAMP_READ_COLOR_ARB is FIXED_ONLY_ARB and the selected color buffer

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1074

 (or texture image for GetTexImage) is a fixed-p oint buffer (or texture
 image for GetTexImage), each component is first clamped to [0,1]."

 with

 "For an RGBA color, if <type> is not FLOAT or
 UNSIGNED_INT_5_9_9_9_REV_EXT and the selected c olor buffer (or
 texture image for GetTexImage) is a fixed-point buffer (or texture
 image for GetTexImage), each component is first clamped to [0,1]."

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object is not supported, the n
 RenderbufferStorageEXT is not supported and the RGB9_E5_EXT
 internalformat is therefore not supported by Re nderbufferStorageEXT.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 and RenderbufferStorageEXT accept the new RGB9_ E5_EXT token for
 internalformat.

 DrawPixels, ReadPixels, TexImage1D, TexImage2D, GetTexImage,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexSu bImage3D,
 GetHistogram, GetMinmax, ConvolutionFilter1D, C onvolutionFilter2D,
 ConvolutionFilter3D, GetConvolutionFilter, Sepa rableFilter2D,
 GetSeparableFilter, ColorTable, ColorSubTable, and GetColorTable
 accept the new UNSIGNED_INT_5_9_9_9_REV_EXT tok en for type.

 GetTexLevelParameterfv and GetTexLevelParameter iv accept the new
 TEXTURE_SHARED_SIZE_EXT token for <pname>.

 New errors

 INVALID_OPERATION is generated by DrawPixels, R eadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3D, TexSubImag e1D, TexSubImage2D,
 TexSubImage3D, GetHistogram, GetMinmax, Convolu tionFilter1D,
 ConvolutionFilter2D, ConvolutionFilter3D, GetCo nvolutionFilter,
 SeparableFilter2D, GetSeparableFilter, ColorTab le, ColorSubTable,
 and GetColorTable if <type> is UNSIGNED_INT_5_9 _9_9_REV_EXT
 and <format> is not RGB.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 1 for the RGB9_E5_EXT format.

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1075

 Add the following entry to table 6.17:

Get Value Type Get Command Value Description Sec. Attribute
----------------------- ------ ------------------ -- ------- -------------------------------------- ---- ---------
TEXTURE_SHARED_SIZE_EXT n x Z+ GetTexLevelParamet er 0 xD texture image i's shared exponent 3.8 -
 field size

New Implementation Dependent State

 None

Appendix

 This source code provides ANSI C routines. It assumes the C "float"
 data type is stored with the IEEE 754 32-bit fl oating-point format.
 Make sure you define __LITTLE_ENDIAN or __BIG_E NDIAN appropriate
 for your target system.

 XXX: code below not tested on big-endian platfo rm...

------------------- start of source code ---------- --------------

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define __LITTLE_ENDIAN 1
#define __BIG_ENDIAN 2

#ifdef _WIN32
#define __BYTE_ORDER __LITTLE_ENDIAN
#endif

#define RGB9E5_EXPONENT_BITS 5
#define RGB9E5_MANTISSA_BITS 9
#define RGB9E5_EXP_BIAS 15
#define RGB9E5_MAX_VALID_BIASED_EXP 31

#define MAX_RGB9E5_EXP (RGB9E5_MAX_VA LID_BIASED_EXP - RGB9E5_EXP_BIAS)
#define RGB9E5_MANTISSA_VALUES (1<<RGB9E5_MAN TISSA_BITS)
#define MAX_RGB9E5_MANTISSA (RGB9E5_MANTIS SA_VALUES-1)
#define MAX_RGB9E5 ((float)MAX_RGB9E5_MANTIS SA)/RGB9E5_MANTISSA_VALUES * (1<<MAX_RGB9E5_EXP))
#define EPSILON_RGB9E5 ((1.0/RGB9E5_MANTIS SA_VALUES) / (1<<RGB9E5_EXP_BIAS))

typedef struct {
#ifdef __BYTE_ORDER
#if __BYTE_ORDER == __BIG_ENDIAN
 unsigned int negative:1;
 unsigned int biasedexponent:8;
 unsigned int mantissa:23;
#elif __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int mantissa:23;
 unsigned int biasedexponent:8;
 unsigned int negative:1;
#endif
#endif
} BitsOfIEEE754;

typedef union {
 unsigned int raw;
 float value;
 BitsOfIEEE754 field;
} float754;

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1076

typedef struct {
#ifdef __BYTE_ORDER
#if __BYTE_ORDER == __BIG_ENDIAN
 unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
 unsigned int b:RGB9E5_MANTISSA_BITS;
 unsigned int g:RGB9E5_MANTISSA_BITS;
 unsigned int r:RGB9E5_MANTISSA_BITS;
#elif __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int r:RGB9E5_MANTISSA_BITS;
 unsigned int g:RGB9E5_MANTISSA_BITS;
 unsigned int b:RGB9E5_MANTISSA_BITS;
 unsigned int biasedexponent:RGB9E5_EXPONENT_BITS;
#endif
#endif
} BitsOfRGB9E5;

typedef union {
 unsigned int raw;
 BitsOfRGB9E5 field;
} rgb9e5;

float ClampRange_for_rgb9e5(float x)
{
 if (x > 0.0) {
 if (x >= MAX_RGB9E5) {
 return MAX_RGB9E5;
 } else {
 return x;
 }
 } else {
 /* NaN gets here too since comparisons with NaN always fail! */
 return 0.0;
 }
}

float MaxOf3(float x, float y, float z)
{
 if (x > y) {
 if (x > z) {
 return x;
 } else {
 return z;
 }
 } else {
 if (y > z) {
 return y;
 } else {
 return z;
 }
 }
}

/* Ok, FloorLog2 is not correct for the denorm and zero values, but we
 are going to do a max of this value with the min imum rgb9e5 exponent
 that will hide these problem cases. */
int FloorLog2(float x)
{
 float754 f;

 f.value = x;
 return (f.field.biasedexponent - 127);
}

int Max(int x, int y)
{
 if (x > y) {
 return x;
 } else {
 return y;
 }
}

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1077

rgb9e5 float3_to_rgb9e5(const float rgb[3])
{
 rgb9e5 retval;
 float maxrgb;
 int rm, gm, bm;
 float rc, gc, bc;
 int exp_shared;
 double denom;

 rc = ClampRange_for_rgb9e5(rgb[0]);
 gc = ClampRange_for_rgb9e5(rgb[1]);
 bc = ClampRange_for_rgb9e5(rgb[2]);

 maxrgb = MaxOf3(rc, gc, bc);
 exp_shared = Max(-RGB9E5_EXP_BIAS-1, FloorLog2(ma xrgb)) + 1 + RGB9E5_EXP_BIAS;
 assert(exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP) ;
 assert(exp_shared >= 0);
 /* This pow function could be replaced by a table . */
 denom = pow(2, exp_shared - RGB9E5_EXP_BIAS - RGB 9E5_MANTISSA_BITS);

 rm = (int) floor(rc / denom + 0.5);
 gm = (int) floor(gc / denom + 0.5);
 bm = (int) floor(bc / denom + 0.5);

 assert(rm <= MAX_RGB9E5_MANTISSA);
 assert(gm <= MAX_RGB9E5_MANTISSA);
 assert(bm <= MAX_RGB9E5_MANTISSA);
 assert(rm >= 0);
 assert(gm >= 0);
 assert(bm >= 0);

 retval.field.r = rm;
 retval.field.g = gm;
 retval.field.b = bm;
 retval.field.biasedexponent = exp_shared;

 return retval;
}

void rgb9e5_to_float3(rgb9e5 v, float retval[3])
{
 int exponent = v.field.biasedexponent - RGB9E5_EX P_BIAS - RGB9E5_MANTISSA_BITS;
 float scale = (float) pow(2, exponent);

 retval[0] = v.field.r * scale;
 retval[1] = v.field.g * scale;
 retval[2] = v.field.b * scale;
}

------------------- end of source code ------------ ------------

Issues

 1) What should this extension be called?

 RESOLVED: EXT_texture_shared_exponent

 The "EXT_texture" part indicates the extens ion is in the texture
 domain and "shared_exponent" indicates the extension is adding
 a new shared exponent formats.

 EXT_texture_rgb9e5 was considered but there 's no precedent for
 extension names to be so explicit (or crypt ic?) about format
 specifics in the extension name.

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1078

 2) There are many possible encodings for a sha red exponent format.
 Which encoding does this extension specify?

 RESOLVED: A single 5-bit exponent stored a s an unsigned
 value biased by 15 and three 9-bit mantissa s for each of 3
 components. There are no sign bits so all three components
 must be non-negative. The fractional manti ssas assume an implied
 0 left of the decimal point because having an implied leading
 1 is inconsistent with sharing the exponent . Neither Infinity
 nor Not-a-Number (NaN) are representable in this shared exponent
 format.

 We chose this format because it closely mat ches the range and
 precision of the s10e5 half-precision float ing-point described
 in the ARB_half_float_pixel and ARB_texture _float specifications.

 3) Why not an 8-bit shared exponent?

 RESOLVED: Greg Ward's RGBE shared exponent encoding uses an
 8-bit exponent (same as a single-precision IEEE value) but we
 believe the rgb9e5 is more generally useful than rgb8e8.

 An 8-bit exponent provides far more range t han is typically
 required for graphics applications. Howeve r, an extra bit
 of precision for each component helps in si tuations where a
 high magnitude component dominates a low ma gnitude component.
 Having an 8-bit shared exponent and 8-bit m antissas are amenable
 to CPUs that facilitate 8-bit sized reads a nd writes over non-byte
 aligned fields, but GPUs do not suffer from this issue.

 Indeed GPUs with s10e5 texture filtering ca n use that same
 filtering hardware for rgb9e5 textures.

 However, future extensions could add other shared exponent formats
 so we name the tokens to indicate the

 4) Should there be an external format and type for rgb9e5?

 RESOLVED: Yes, hence the external format G L_RGB9_E5_EXT and
 type GL_UNSIGNED_INT_5_9_9_9_REV_EXT. This makes it fast to load
 GL_RGB9_E5_EXT textures without any transla tion by the driver.

 5) Why is the exponent bias 15?

 RESOLVED: The best technical choice of 15. Hopefully, this
 discussion sheds insight into the numerics of the shared exponent
 format in general.

 With conventional floating-point formats, t he number corresponding
 to a finite, non-denorm, non-zero floating- point value is

 value = -1^sgn * 2^(exp-bias) * 1.frac

 where sgn is the sign bit (so 1 for sgn neg ative because -1^-1
 == -1 and 0 means positive because -1^0 == +1), exp is an
 (unsigned) BIASED exponent and bias is the format's constant bias
 to subtract to get the unbiased (possibly n egative) exponent;

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1079

 and frac is the fractional portion of the m antissa with the
 "1." indicating an implied leading 1.

 An exp value of zero indicates so-called de normalized values
 (denorms). With conventional floating-poin t formats, the number
 corresponding to a denorm floating-point va lue is

 value = -1^sgn * 2^(exp-bias+1) * 0.fra c

 where the only difference between the denor m and non-denorm case
 is the bias is one greater in the denorm ca se and the implied
 leading digit is a zero instead of a one.

 Ideally, the rgb9e5 shared exponent format would represent
 roughly the same range of finite values as the s10e5 format
 specified by the ARB_texture_float extensio n. The s10e5 format
 has an exponent bias of 15.

 While conventional floating-point formats c leverly use an implied
 leading 1 for non-denorm, finite values, a shared exponent format
 cannot use an implied leading 1 because eac h component may have
 a different magnitude for its most-signific ant binary digit.
 The implied leading 1 assumes we have the f lexibility to adjust
 the mantissa and exponent together to ensur e an implied leading 1.
 That flexibility is not present when the ex ponent is shared.

 So the rgb9e5 format cannot assume an impli ed leading one.
 Instead, an implied leading zero is assumed (much like the
 conventional denorm case).

 The rgb9e5 format eliminate support represe nting negative,
 Infinite, not-a-number (NaN), and denorm va lues.

 We've already discussed how the BIASED zero exponent is used to
 encode denorm values (and zero) with conven tional floating-point
 formats. The largest BIASED exponent (31 f or s10e5, 127 for
 s23e8) indicates Infinity and NaN values. This means these two
 extrema exponent values are "off limits" fo r run-of-the-mill
 values.

 The numbers corresponding to a shared expon ent format value are:

 value_r = 2^(exp-bias) * 0.frac_r
 value_g = 2^(exp-bias) * 0.frac_g
 value_b = 2^(exp-bias) * 0.frac_b

 where there is no sgn since all values are non-negative, exp is
 the (unsigned) BIASED exponent and bias is the format's constant
 bias to subtract to get the unbiased (possi bly negative) exponent;
 and frac_r, frac_g, and frac_b are the frac tional portion of
 the mantissas of the r, g, and b components respectively with
 "0." indicating an implied leading 0.

 There should be no "off limits" exponents f or the shared exponent
 format since there is no requirement for re presenting Infinity
 or NaN values and denorm is not a special c ase. Because of

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1080

 the implied leading zero, any component wit h all zeros for its
 mantissa is zero, no matter the shared expo nent's value.

 So the run-of-the-mill BIASED range of expo nents for s10e5 is
 1 to 30. But the rgb9e5 shared exponent fo rmat consistently
 uses the same rule for all exponents from 0 to 31.

 What exponent bias best allows us to repres ent the range of
 s10e5 with the rgb9e5 format? 15.

 Consider the maximum representable finite s 10e5 magnitude.
 The exponent would be 30 (31 would encode a n Infinite or NaN
 value) and the binary mantissa would be 1 f ollowed by ten
 fractional 1's. Effectively:

 s10e5_max = 1.1111111111 * 2^(30-15)
 = 1.1111111111 * 2^15

 For an rgb9e5 value with a bias of 15, the largest representable
 value is:

 rgb9e5_max = 0.111111111 * 2^(31-15)
 = 0.111111111 * 2^16
 = 1.11111111 * 2^15

 If you ignore two LSBs, these values are ne arly identical.
 The rgb9e5_max value is exactly representab le as an s10e5 value.

 For an rgb9e5 value with a bias of 15, the smallest non-zero
 representable value is:

 rgb9e5_min = 0.000000001 * 2^(0-15)
 rgb9e5_min = 0.000000001 * 2^-15
 rgb9e5_min = 0.0000000001 * 2^-14

 So the s10e5_min and rgb9e5_min values exac tly match (of course,
 this assumes the shared exponent bias is 15 which might not be
 the case if other components demand higher exponents).

 8) Should there be an rgb9e5 framebuffer forma t?

 RESOLVED: No. Rendering to rgb9e5 is bett er left to another
 extension and would require the hardware to convert from a
 (floating-point) RGBA value into an rgb9e5 encoding.

 Interactions with EXT_framebuffer_object ar e specified,
 but the expectation is this is not a render able
 format and glCheckFramebufferStatusEXT woul d return
 GL_FRAMEBUFFER_UNSUPPORTED_EXT.

 An implementation certainly could make this texture internal
 format renderable when used with a framebuf fer object. Note that
 the shared exponent means masked components may be lossy in
 their masking. For example, a very small b ut non-zero value in
 a masked component could get flushed to zer o if a large enough
 value is written into an unmasked component .

NVIDIA OpenGL Extension Specifications EXT_texture_shared_exponent

 1081

 9) Should automatic mipmap generation be suppo rted for rgb9e5
 textures?

 RESOLVED: Yes.

 10) Should non-texture and non-framebuffer comm ands for loading
 pixel data accept the GL_UNSIGNED_INT_5_9_9 _9_REV_EXT type?

 RESOLVED: Yes.

 Once the pixel path has to support the new type/format combination
 of GL_UNSIGNED_INT_5_9_9_9_REV_EXT / GL_RGB for specifying and
 querying texture images, it might as well b e supported for all
 commands that pack and unpack RGB pixel dat a.

 The specification is written such that the glDrawPixels
 type/format parameters are accepted by glRe adPixels,
 glTexGetImage, glTexImage2D, and other comm ands that are specified
 in terms of glDrawPixels.

 11) Should non-texture internal formats (such a s for color tables,
 convolution kernels, histogram bins, and mi n/max tables) accept
 GL_RGB9_E5_EXT format?

 RESOLVED: No.

 That's pointless. No hardware is ever like ly to support
 GL_RGB9_E5_EXT internalformats for anything other than textures
 and maybe color buffers in the future. Thi s format is not
 interesting for color tables, convolution k ernels, etc.

 12) Should a format be supported with sign bits for each component?

 RESOLVED: No.

 An srgb8e5 format with a sign bit per compo nent could be useful
 but is better left to another extension.

 13) The rgb9e5 allows two 32-bit values encoded as rgb9e5 to
 correspond to the exact same 3 components w hen expanded to
 floating-point. Is this a problem?

 RESOLVED: No, there's no problem here.

 An encoder is likely to always pack compone nts so at least
 one mantissa will have an explicit leading one, but there's no
 requirement for that.

 Applications might be able to take advantag e of this by quickly
 dividing all three components by a power-of -two by simply
 subtracting log2 of the power-of-two from t he shared exponent (as
 long as the exponent is greater than zero p rior to the subtract).

 Arguably, the shared exponent format could maintain a slight
 amount of extra precision (one bit per mant issa) if the format
 said if the most significant bits of all th ree mantissas are
 either all one or all zero and the biased s hared exponent was not

EXT_texture_shared_exponent NVIDIA OpenGL Extension Specifications

 1082

 zero, then an implied leading 1 should be a ssumed and the shared
 exponent should be treated as one smaller t han it really is.
 While this would preserve an extra least-si gnificant bit of
 mantissa precision for components of approx imately the same
 magnitude, it would complicate the encoding and decoding of
 shared exponent values.

 14) Can you provide some C code for encoding th ree floating-point
 values into the rgb9e5 format?

 RESOLVED: Sure. See the Appendix.

 15) Should we support a non-REV version of the
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT token?

 RESOLVED: No. The shared exponent is alwa ys the 5 most
 significant bits of the 32 bit word. The f irst (red) mantissa
 is in the least significant 9 bits, followe d by 9 bits for the
 second (green) mantissa, followed by 9 bits for the third (blue)
 mantissa. We don't want to promote differe nt arrangements of
 the bitfields for rgb9e5 values.

 16) Can you use the GL_UNSIGNED_INT_5_9_9_9_REV _EXT format with
 just any format?

 RESOLVED: You can only use the GL_UNSIGNED _INT_5_9_9_9_REV_EXT
 format with GL_RGB. Otherwise, the GL gene rates
 an GL_INVALID_OPERATION error. Conceptuall y,
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT is a 3-comp onent format
 that just happens to have 5 shared bits too . Just as the
 GL_UNSIGNED_BYTE_3_3_2 format just works wi th GL_RGB (or else
 the GL generates an GL_INVALID_OPERATION er ror), so should
 GL_UNSIGNED_INT_5_9_9_9_REV_EXT.

 17) What should GL_TEXTURE_SHARED_SIZE_EXT retu rn when queried with
 GetTexLevelParameter?

 RESOLVED: Return 5 for the RGB9_E5_EXT int ernal format and 0
 for all other existing formats.

 This is a count of the number of bits in th e shared exponent.

 18) What should GL_TEXTURE_RED_SIZE, GL_TEXTURE _GREEN_SIZE, and
 GL_TEXTURE_BLUE_SIZE return when queried wi th GetTexLevelParameter
 for a GL_RGB9_E5_EXT texture?

 RESOLVED: Return 9 for each.

Revision History

 None

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1083

Name

 EXT_texture_sRGB

Name Strings

 GL_EXT_texture_sRGB

Contributors

 Alain Bouchard, Matrox
 Brian Paul, Tungsten Graphics
 Daniel Vogel, Epic Games
 Eric Werness, NVIDIA
 Kiril Vidimce, Pixar
 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3 Graphics
 Jeremy Sandmel, Apple
 Herb Kuta, Quantum3D

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Implemented by NVIDIA's Release 80 driver serie s for GeForce FX
 (NV3x), GeForce 6 and 7 Series (NV4x and G7x), and Quadro FX (NV3xGL,
 NV4xGL, G7xGL).

Version

 Date: January 24, 2007
 Revision: 0.8

Number

 315

Dependencies

 OpenGL 1.1 required

 EXT_texture_compression_s3tc interacts with thi s extension.

 NV_texture_compression_vtc interacts with this extension.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 Conventional texture formats assume a linear co lor space. So for
 a conventional internal texture format such as GL_RGB8, the 256
 discrete values for each 8-bit color component map linearly and
 uniformly to the [0,1] range.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1084

 The sRGB color space is based on typical (non-l inear) monitor
 characteristics expected in a dimly lit office. It has been
 standardized by the International Electrotechni cal Commission (IEC)
 as IEC 61966-2-1. The sRGB color space roughly corresponds to 2.2
 gamma correction.

 This extension adds a few new uncompressed and compressed color
 texture formats with sRGB color components.

Issues

 1) What should this extension be called?

 RESOLVED: EXT_texture_sRGB.

 The "EXT_texture" part indicates the extens ion is in the texture
 domain and "sRGB" indicates the extension i s adding a set of
 sRGB formats. ARB_texture_float is similar ly named where "_float"
 indicates float texture formats are added b y the extension.

 The mixed-case spelling of sRGB is the esta blished usage so
 "_sRGB" is preferred to "_srgb". The "s" s tands for standard
 (color space).

 For token names, we use "SRGB" since token names are uniformly
 capitalized.

 2) Should this extension mandate that sRGB con version be performed
 pre-filtering?

 RESOLVED: Post-filtering sRGB color conver sion is allowed though
 pre-filtering conversion is the preferred a pproach.

 Ideally, sRGB conversion moves from the non -linear sRGB to the
 linear RGB color space. However, implement ations should be
 provided leeway as to whether sRGB conversi on occurs before or
 after texture filtering of RGB components.

 3) Should the alpha component of sRGB texture formats be
 gamma-corrected?

 RESOLVED: No. Alpha is correctly understo od to be a weighting
 factor that is best stored in a linear repr esentation. The alpha
 component should always be stored as a line ar value.

 "SRGB_ALPHA" is used to indicate sRGB forma ts with an alpha
 component. This naming (as opposed to some thing like "SRGBA")
 helps highlight the fact that the alpha com ponent is separate
 and stored with a linear distribution of pr ecision.

 4) Should formats for sRGB luminance values be supported?

 RESOLVED: Yes. Implementations can always support luminance
 and luminance-alpha sRGB formats as an RGB8 or RGBA8 format with
 replicated R, G, and B values.

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1085

 For lack of a better term, "SLUMINANCE" wil l be used within
 token names to indicate sRGB values with id entical red, green,
 and blue components.

 5) Should formats for sRGB intensity values be supported?

 RESOLVED: No. Intensity uses the same val ue for both luminance
 and alpha. Treating a single value as an s RGB luminance value
 and a linear alpha value is undesirable.

 Hardware design is simplified if alpha neve r involves sRGB
 conversions.

 6) Should all component sizes be supported for sRGB components or
 just 8-bit?

 RESOLVED: Just 8-bit. For sRGB values wit h more than 8 bit of
 precision, a linear representation may be e asier to work with
 and adequately represent dim values. Stori ng 5-bit and 6-bit
 values in sRGB form is unnecessary because applications
 sophisticated enough to sRGB to maintain co lor precision will
 demand at least 8-bit precision for sRGB va lues.

 Because hardware tables are required sRGB c onversions, it doesn't
 make sense to burden hardware with conversi ons that are unlikely
 when 8-bit is the norm for sRGB values.

 7) Should color tables, convolution kernels, h istogram table,
 and minmax table entries support sRGB forma ts?

 RESOLVED: No.

 The internalformat for histogram table entr ies determines the bit
 precision of the histogram bin counters so indicating the sRGB
 color space is meaningless in this context. The internalformat
 for minmax table entries simply indicates t he components
 for minmax bounding so indicating the sRGB color space is
 meaningless.

 Convolution filter values are weighting fac tors rather than
 color values needing a color space.

 Color table entries may be colors but the c omponent values are
 typically stored with more than 8 bits alre ady. For example,
 software implementations of the OpenGL colo r table functionality
 typically store colors in floating-point.

 8) Should generic compressed sRGB formats be s upported?

 RESOLVED: Yes. Implementations are free s imply to use
 uncompressed sRGB formats to implement the GL_COMPRESSED_SRGB_*
 formats.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1086

 9) Should S3TC compressed sRGB formats be supp orted?

 RESOLVED: Yes, but only if EXT_texture_com pression_s3tc is also
 advertised. For competitive reasons, we ex pect OpenGL will need
 an S3TC-based block compression format for sRGB data.

 Rather than expose a separate "sRGB_compres sion" extension,
 it makes more sense to specify a dependency between
 EXT_texture_compression_s3tc and this exten sion such that when
 BOTH extensions are exposed, the GL_COMPRES SED_SRGB*_S3TC_DXT*_EXT
 tokens are accepted.

 We avoid explicitly requiring S3TC formats when EXT_texture_sRGB
 is advertised to avoid IP encumbrances.

 10) Should the S3TC decompression algorithm be affected by support
 for sRGB component values?

 RESOLVED: No.

 S3TC involves the linear weighting of two p er-block R5G6B5 colors.
 The sRGB to linear RGB color conversion sho uld occur AFTER the
 linear weighting of the two per-block color s performed during
 texel decompression.

 Also be aware that an sRGB value with 8-bit red, green, and blue
 components must be quantized to a 5, 6, and 5 bits respectively
 to form the two per-block R5G6B5 colors.

 S3TC compressors may wish to account for th e sRGB color space
 as part of the compression algorithm.

 11) Should VTC compressed sRGB formats be suppo rted?

 RESOLVED. Yes, for the same reasons as S3T C.

 12) Should pixel data entering or exiting the O penGL pixel path be
 labeled as sRGB or conventional linear RGB? This would allow
 pixels labeled as sRGB to be converted to a linear RGB color space
 prior to processing by the pixel path which includes operations
 such as convolution, scale, and bias that p resume a linear
 color space. If the destination (say a tex ture with an sRGB
 internal format) was sRGB, then linear RGB components would be
 converted to sRGB prior to being packed int o the texture image.
 This would assume new format parameters to glDrawPixels and
 glReadPixels indicating the source or desti nation format was
 sRGB if a GL_SRGB_EXT or GL_SRGB_ALPHA_EXT format is specified.
 Likewise, a format parameter to glTexImage2 D such as GL_SRGB_EXT
 would indicate the pixel data was already i n an sRGB color space
 where GL_RGB would indicate a linear color space. New state
 would indicate if the framebuffer held sRGB or linear RGB pixels.

 RESOLVED: No.

 The pixel path should be left blind to colo r spaces and provide
 no implicit conversions.

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1087

 Core pixel maps and ARB_imaging provides su fficient color
 tables so that applications interested in m anaging color space
 conversions within the pixel path can do so themselves.

 A 256 entry table outputting floating-point values is sufficient
 to convert sRGB to linear RGB.

 However when converting from linear RGB to sRGB, one must
 be careful to make sure the source linear R GB values are
 specified with more than 8 bits of precisio n and the color
 table to implement the conversion must like wise have more than
 256 entries. A power-of-two table sufficie nt to map values
 to each of the 256 sRGB encodings for an 8- bit sRGB component
 requires at least 4096 entries (a fairly la rge color table).

 Because vertex and fragment programs and sh aders operate in
 floating-point and have sufficient programm ability to implement
 the sRGB to linear RGB and vice versa witho ut resorting to large
 tables.

 13) Does this extension imply filtered results from sRGB texture
 have more than 8 bits of precision?

 RESOLVED: Effectively, yes.

 8-bit components of sRGB texels are convert ed to linear RGB values
 which requires more than 8 bits to avoid lo se of precision.
 This implies the filtering involve more tha n 8 bits of color
 precision per component. Moreover, fragmen t color (whether by
 a fragment program, vertex program, or glTe xEnv modes) should
 operate at precision beyond 8 bits per colo r component.

 The exact precision maintained (and its dis tribution) is left to
 implementations to define but returning at least 12 but more
 likely 16 linear bits per component, post-f iltering, is a
 reasonable expectation for developers.

 This extension assumes fragment coloring is performed

 14) What must be specified as far as how do you convert to and from
 sRGB and linear RGB color spaces?

 RESOLVED: The specification language needs to only supply the
 sRGB to linear RGB conversion (see section 3.8.x below).

 For completeness, the accepted linear RGB t o sRGB conversion
 (the inverse of the function specified in s ection 3.8.x) is as
 follows:

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1088

 Given a linear RGB component, cl, convert i t to an sRGB component,
 cs, in the range [0,1], with this pseudo-co de:

 if (isnan(cl)) {
 /* Map IEEE-754 Not-a-number to zer o. */
 cs = 0.0;
 } else if (cl > 1.0) {
 cs = 1.0;
 } else if (cl < 0.0) {
 cs = 0.0;
 } else if (cl < 0.0031308) {
 cs = 12.92 * cl;
 } else {
 cs = 1.055 * pow(cl, 0.41666) - 0.0 55;
 }

 sRGB components are typically stored as un signed 8-bit
 fixed-point values. If cs is computed wit h the above
 pseudo-code, cs can be converted to a [0,2 55] integer with this
 formula:

 csi = floor(255.0 * cs + 0.5)

 15) Does this extension provide any sort of sRG B framebuffer formats
 or guarantee images rendered with sRGB text ures will "look good"
 when output to a device supporting an sRGB color space?

 RESOLVED: No.

 Whether the displayed framebuffer is displa yed to a monitor that
 faithfully reproduces the sRGB color space is beyond the scope
 of this extension. This involves the gamma correction and color
 calibration of the physical display device.

 With this extension, artists can author con tent in an sRGB color
 space and provide that sRGB content for use as texture imagery
 that can be properly converted to linear RG B and filtered as part
 of texturing in a way that preserves the sR GB distribution of
 precision, but that does NOT mean sRGB pixe ls are output
 to the framebuffer. Indeed, this extension provides texture
 formats that convert sRGB to linear RGB as part of filtering.

 With programmable shading, an application c ould perform a
 linear RGB to sRGB conversion just prior to emitting color
 values from the shader. Even so, OpenGL bl ending (other than
 simple modulation) will perform linear math operations on values
 stored in a non-linear space which is techn ically incorrect for
 sRGB-encoded colors.

 One way to think about these sRGB texture f ormats is that they
 simply provide color components with a dist ribution of values
 distributed to favor precision towards 0 ra ther than evenly
 distributing the precision with conventiona l non-sRGB formats
 such as GL_RGB8.

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1089

 16) How does this extension interact with EXT_f ramebuffer_object?

 RESOLVED: No specific interaction language is necessary but
 there is no provision that pixels written i nto a framebuffer
 object with a texture with an sRGB internal format for its color
 buffer will in anyway convert the output co lor values into an sRGB
 color space. A fragment program or shader could be written to
 convert linear RGB values to sRGB values pr ior to shader output,
 but NO automatic conversion is performed.

 So you can create a texture with an sRGB in ternal format (such
 as GL_SRGB8_ALPHA8_EXT), bind that texture to a framebuffer
 object with glFramebufferTexture2DEXT, and then render into
 that framebuffer. If you then texture with the sRGB texture,
 the texels within the texture are treated a s sRGB values for
 filtering.

 17) Should sRGB be supported with a texture par ameter rather than
 new texture formats?

 RESOLVED: Adding new texture formats is th e right approach.

 Hardware is expected to implements sRGB con versions via hardwired
 look-up tables. Such tables are expensive (when sRGB isn't
 being used, they are basically "wasted gate s") and so we want to
 minimize the number of unique tables that h ardware must support.
 However OpenGL supports various component s izes for RGB and RGBA
 textures.

 Various RGB texture formats have different bit sizes for R, G,
 and B that map to [0,1]. Think about RGB5. It encodes values
 0/15, 1/15, 2/15, ... 14/15, and 15/15. Ex cepting 0/15==0.0
 and 15/15==1.0, those values are different than the values
 for RGB8 which would be 0/255, 1/255, ... 2 54/255, 255/255.
 Technically, you'd need a different sRGB ta ble to toggle between
 RGB4 and sRGB4 than you'd need to toggle be tween RGB8 and sRGB8.
 There are also RGB12 and RGB16 textures whe re it is simply not
 tractable to implement 4096 and 65,536 entr y tables, nor is the
 "real" sRGB conversion math cheap enough to evaluate directly
 at those precisions.

 What this extension shouldn't require is sR GB conversion for
 any component sizes beyond 8-bit. Indeed, it appears the only
 component sizes sRGB users really care abou t are 8-bit components.
 This is because if you have more than 8 bit s per component,
 you typically have enough precision to avoi d the complexity
 created by a non-linear RGB component encod ing. Additionally,
 sRGB users are picky about color reproducti on so fewer than 8
 bits is generally not acceptable to them.

 The problem with making a "toggle" (say con trolled by
 glTexParameter) is that hardware would very likely (indeed
 it's pretty much certain) not implement tog gling between RGB12
 and sRGB12 formats. Recall that OpenGL doe sn't mandate internal
 formats so you can request GL_RGB8 and have the implementation
 actually given you RGB12 or RGB10 or R5G6B5 .

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1090

 It is inappropriate to put in a texture par ameter mode where
 we say "this mode works just with GL_RGB8 a nd GL_RGBA8 and yet
 only when the underlying internal format is actually RGB8 or
 RGBA8". We'd also surely preclude floating -point RGB formats,
 signed RGB formats, new HDR formats, and ce rtain compressed RGB
 formats from being included because such fo rmats don't really
 even make sense for sRGB.

 By adding new formats specifically for the sRGB color space,
 we avoid all these problems.

 We also avoid an awkward precedent where ot her more varied
 color spaces (CYMK, XYZ, and YUV being obvi ous examples) have
 to "toggle" between RGB and RGBA formats. Indeed, already
 extensions for such other color spaces (YUV and CMYK at least)
 set the precedent of introducing new textur e formats.

 18) How is the texture border color handled for sRGB formats?

 RESOLVED: The texture border color is spec ified as four
 floating-point values. Given that the text ure border color can
 be specified at such high precision, it is always treated as a
 linear RGBA value.

 Only texel components are converted from th e sRGB encoding to a
 linear RGB value ahead of texture filtering . The border color
 can be used "as is" without any conversion.

 The implication of this is, for example, th at two textures with
 GL_RGBA8 and GL_SRGB8_ALPHA8_EXT internal f ormats respectively and
 a border color of (0.4, 0.2, 0.9, 0.1) and the GL_CLAMP_TO_BORDER
 wrap mode will both return (0.4, 0.2, 0.9, 0.1) if 100% of the
 border color is sampled.

 By keeping the texture border color specifi ed as a linear
 RGB value at the API level allows developer s to specify the
 high-precision texture border color in a si ngle consistent color
 space without concern for how the sRGB conv ersion is implemented
 in relation to filtering.

 An implementation that does post-filtering sRGB conversion is
 likely to store convert the texture border color to sRGB within
 the driver so it can be filtered with the s RGB values coming
 from texels and then the filtered sRGB valu e is converted to
 linear RGB.

 By maintaining the texture border color alw ays in linear RGB,
 we avoid developers having to know if an im plementation is
 performing the sRGB conversion (ideally) pr e-filtering or (less
 ideally) post-filtering.

 19) How does this extension interact with NV_te xture_expand_normal?

 RESOLVED: sRGB components are not affected by the "expand normal"
 mode even though they are unsigned componen ts because they have
 non-linear precision (similar to floating-p oint).

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1091

 The alpha component of GL_SRGB8_ALPHA8_EXT and other sRGB formats
 with an alpha component is affected by the "expand normal" mode.

 The sRGB formats have unsigned components w ith [0,1] range which
 is the requirement for the NV_texture_expan d_normal extension's
 operation.

 Be warned because sRGB formats distribute t heir precision more
 towards zero, enabling the GL_EXPAND_NORMAL _NV mode with sRGB
 textures will mean there are more represent able negative values
 than positive values. For example, the 8-b it value 128 maps
 roughly to zero when encoded with a GL_RGB8 internal format and
 then remapped with the GL_EXPAND_NORMAL_NV mode. In contrast,
 the sRGB encoded 8-bit value 188 maps rough ly to zero when encoded
 with a GL_SRGB8_ALPHA8 internal format and then remapped with
 GL_EXPAND_NORMAL_NV. Still 0 will map to - 1 and 255 will map
 to +1 in either case.

 20) What values should glGetTexImage return? A re the sRGB values
 returned "as-is" or are they converted to l inear RGB first?

 RESOLVED: sRGB values are returned "as-is" without an
 sRGB-to-linear conversion. Unlike other co mmands that transfer
 pixel data, "No pixel transform operations are performed" on
 the queried texture image.

 21) How does glCopyTex[Sub]Image work with sRGB ? Suppose we're
 rendering to a floating point pbuffer or fr amebuffer object and
 do CopyTexImage. Are the linear framebuffe r values converted
 to sRGB during the copy?

 RESOLVED: No, linear framebuffer values wi ll NOT be automatically
 converted to the sRGB encoding during the c opy. If such a
 conversion is desired, as explained in issu e 12, the red, green,
 and blue pixel map functionality can be use d to implement a
 linear-to-sRGB encoding translation.

 22) Should the new COMPRESSED_SRGB_* formats be listed in an
 implementation's GL_COMPRESSED_TEXTURE_FORM ATS list?

 RESOLVED: No. Section 3.8.1 says formats listed by
 GL_COMPRESSED_TEXTURE_FORMATS are "suitable for general-purpose
 usage." The non-linear distribution of red , green, and
 blue for these sRGB compressed formats make s them not really
 general-purpose.

 23) Could this extension be implemented by hard ware with no special
 hardware support for sRGB but does support native GL_RGB12 or
 GL_RGB16 textures? If so, how?

 RESOLVED. Yes.

 The conversion from the sRGB encoding to li near encoding described
 in section 3.8.x could be performed at text ure specification
 time (after the image has been transformed by the pixel path)
 rather than texture fetch time.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1092

 When glTexImage2D, glTexSubImage2D, glCopyT exImage2D, etc. occur,
 the pixels would be transformed by the pixe l path as normal and
 then when pixels are converted to the inter nal texture format,
 the section 3.8.x conversion is applied to the red, green, and
 blue components (not alpha). The result of this conversion
 can be quantized and stored into the respec tive red, green,
 or blue 12-bit or 16-bit component of the s tored texel.

 This means when a texture fetch occurs, no fetch-time conversion
 is required.

 The advantages of this approach is that sRG B conversion is
 pre-filtering (the ideal) and the hardware is not required to have
 texture fetch hardware to perform the speci al sRGB conversion.

 The disadvantage of this technique is that sRGB textures may
 require more space than required if 8-bit c omponent sRGB components
 are stored in texture memory.

 The ability to implement this extension in this manner provides
 one more justification to avoid a "toggle" texture parameter
 for sRGB conversion or not.

 One caveat to this approach is that glGetTe xImage should
 return the texel values with the sRGB conve rsion from section
 3.8.x "reverse converted". (The section 3. 8.x function is
 reversible.) As specified, the conversion i s performed at fetch
 time so the understanding is that data retu rned by glGetTexImage
 should be the texels prior to the conversio n. If the components
 are stored converted, that means they must be reverse-converted
 when returned by glGetTexImage.

 24) How should mipmap generation work for sRGB textures?

 RESOLVED: The best way to perform mipmap g eneration for sRGB
 textures is by downsampling the sRGB image in a linear color
 space.

 This involves converting the RGB components of sRGB texels
 in a given texture image level to linear RG B space, filtering
 appropriately in that linear RGB space, and then converting the
 linear RGB values to sRGB for storage in th e downsampled texture
 level image.

 (Remember alpha, when present, is linear ev en in sRGB texture
 formats.)

 The OpenGL specification says "No particula r filter algorithm
 is required, though a box filter is recomme nded as the default
 filter" meaning there is no requirement for how even non-sRGB
 mipmaps should be generated. So while the resolution to this
 issue is technically a recommendation, it i s however a strongly
 advised recommendation.

 The rationale for why sRGB textures should be converted to
 linear space prior to filtering and convert ed back to sRGB after
 filtering is clear. If an implementation n aively simply performed

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1093

 linear filtering on (non-linear) sRGB compo nents as if they were
 in a linear space, the result tends to be a subtle darkening of
 the texture images as mipmap generation con tinues recursively.
 This darkening is an inappropriate basis th at the resolved
 "best way" above would avoid.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D, TexImage2D,
 TexImage3D, CopyTexImage1D, CopyTexImage2D:

 SRGB_EXT 0x8C40
 SRGB8_EXT 0x8C41
 SRGB_ALPHA_EXT 0x8C42
 SRGB8_ALPHA8_EXT 0x8C43
 SLUMINANCE_ALPHA_EXT 0x8C44
 SLUMINANCE8_ALPHA8_EXT 0x8C45
 SLUMINANCE_EXT 0x8C46
 SLUMINANCE8_EXT 0x8C47
 COMPRESSED_SRGB_EXT 0x8C48
 COMPRESSED_SRGB_ALPHA_EXT 0x8C49
 COMPRESSED_SLUMINANCE_EXT 0x8C4A
 COMPRESSED_SLUMINANCE_ALPHA_EXT 0x8C4B

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2DARB and the <format> parameter
 of CompressedTexSubImage2DARB:

 COMPRESSED_SRGB_S3TC_DXT1_EXT 0x8C4C
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.8.1, Texture Image Specification:

 Add 4 new rows to Table 3.16 (page 154).

 Sized Base R G B A L I D
 Internal Format Internal Format bit s bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ----
 SRGB8_EXT RGB 8 8 8
 SRGB8_ALPHA8_EXT RGBA 8 8 8 8
 SLUMINANCE_EXT LUMINANCE 8
 SLUMINANCE_ALPHA8_EXT LUMINANCE_ALPHA 8 8

 Add 4 new rows to Table 3.17 (page 155).

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1094

 Compressed Internal Format Base I nternal Format
 ----------------------------------- ------ --------------
 COMPRESSED_SRGB_S3TC_DXT1_EXT RGB
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT RGBA
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT RGBA
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT RGBA

 Add 4 new rows to Table 3.18 (page 155).

 Generic Compressed Internal Format Base In ternal Format
 ---------------------------------- ------- -------------
 COMPRESSED_SRGB_EXT RGB
 COMPRESSED_SRGB_ALPHA_EXT RGBA
 COMPRESSED_SLUMINANCE_EXT LUMINAN CE
 COMPRESSED_SLUMINANCE_ALPHA_EXT LUMINAN CE_ALPHA

 -- Section 3.8.x, sRGB Texture Color Conversion

 Insert this section AFTER section 3.8.14 Textur e Comparison Modes
 and BEFORE section 3.8.15 Texture Application.

 "If the currently bound texture's internal form at is one
 of SRGB_EXT, SRGB8_EXT, SRGB_ALPHA_EXT, SRGB8_A LPHA8_EXT,
 SLUMINANCE_ALPHA_EXT, SLUMINANCE8_ALPHA8_EXT, S LUMINANCE_EXT,
 SLUMINANCE8_EXT, COMPRESSED_SRGB_EXT, COMPRESSED_SRGB_ALPHA_EXT,
 COMPRESSED_SLUMINANCE_EXT COMPRESSED_SLUMINANCE_ALPHA_EXT,
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, the red, g reen, and blue
 components are converted from an sRGB color spa ce to a linear color
 space as part of filtering described in section s 3.8.8 and 3.8.9.
 Any alpha component is left unchanged. Ideally , implementations
 should perform this color conversion on each sa mple prior to filtering
 but implementations are allowed to perform this conversion after
 filtering (though this post-filtering approach is inferior to
 converting from sRGB prior to filtering).

 The conversion from an sRGB encoded component, cs, to a linear
 component, cl, is as follows.

 { cs / 12.92, cs <= 0. 04045
 cl = {
 { ((cs + 0.055)/1.055)^2.4, cs > 0. 04045

 Assume cs is the sRGB component in the range [0 ,1]."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1095

 None

Additions to the OpenGL Shading Language specificat ion

 None

Additions to the GLX Specification

 None

Dependencies on ARB_texture_compression and OpenGL 1.3 or later

 If ARB_texture_compression or OpenGL 1.3 or lat er is NOT supported,
 ignore the new COMPRESSED_* tokens, the additio ns to tables 3.17
 and 3.18, and the errors associated with the Co mpressed* commands.

Dependencies on EXT_texture_compression_s3tc

 If EXT_texture_compression_s3tc is NOT supporte d, ignore the new
 COMPRESSED_*_S3TC_DXT* tokens, the additions to table 3.17, errors
 related to the COMPRESSED_*_S3TC_DXT* tokens, a nd related discussion.

 Add COMPRESSED_SRGB_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, and
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT to token li sts in the section
 3.8.2 specification language added by EXT_textu re_compression_s3tc
 when the internal formats COMPRESSED_RGB_S3TC_D XT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, and
 COMPRESSED_RGBA_S3TC_DXT5_EXT are listed.

Dependencies on NV_texture_compression_vtc

 If NV_texture_compression_vtc IS supported, all ow the following
 tokens to be accepted by the <internalformat> p arameter
 of CompressedTexImage3DARB and the <format> par ameter of
 CompressedTexSubImage3DARB:

 COMPRESSED_SRGB_S3TC_DXT1_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT

GLX Protocol

 None.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 CompressedTexImage2DARB, CompressedTexSubImage2 DARB now accept the
 new tokens as listed in the "New Tokens" sectio n.

 New errors

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications

 1096

 INVALID_OPERATION is generated by CompressedTex Image2DARB if
 if <internalformat> is COMPRESSED_SRGB_S3TC_DXT 1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and <border > is not equal to
 zero.

 INVALID_OPERATION is generated by TexSubImage2D
 CopyTexSubImage2D, or CompressedTexSubImage2D i f INTERNAL_FORMAT is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <xoffset>
 or <yoffset> is not a multiple of four.

 INVALID_ENUM is generated by CompressedTexImage 1DARB if
 <internalformat> is COMPRESSED_SRGB_S3TC_DXT1_E XT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 INVALID_ENUM is generated by CompressedTexSubIm age1DARB if <format> is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 Errors if NV_texture_compression_vtc is NOT sup ported
 --- ------

 INVALID_ENUM is generated by CompressedTexImage 3DARB if
 <internalformat> is COMPRESSED_SRGB_S3TC_DXT1_E XT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 INVALID_ENUM is generated by CompressedTexSubIm age3DARB if <format> is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 Errors if NV_texture_compression_vtc IS support ed
 --- ------

 INVALID_OPERATION is generated by CompressedTex Image3DARB
 if <internalformat> is COMPRESSED_SRGB_S3TC_DXT 1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and <border > is not equal to
 zero.

 INVALID_OPERATION is generated by TexSubImage3D or CopyTexSubImage3D
 if INTERNAL_FORMAT is COMPRESSED_SRGB_S3TC_DXT1 _EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or

NVIDIA OpenGL Extension Specifications EXT_texture_sRGB

 1097

 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <xoffset>
 or <yoffset> is not a multiple of four.

 INVALID_OPERATION is generated by CompressedTex SubImage3D
 if INTERNAL_FORMAT is COMPRESSED_SRGB_S3TC_DXT1 _EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <depth> is not
 a multiple of four or equal to TEXTURE_DEPTH; < xoffset> <yoffset>,
 or <zoffset> is not a multiple of four.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 16 (or 12 if EXT_texture_compression_s3tc is not supported).

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

NVIDIA Implementation Details

 GeForce FX, Quadro FX, and GeForce 6 and 7 Seri es GPUs store
 sRGB texels at 8 bits per component. sRGB conv ersion occurs
 post-filtering.

Revision History

 0.8: Add issue 24 with recommendation for sRGB mipmap generation.

 0.7: Add issue 23 about alternative implementa tion based on
 either GL_RGB12 or GL_RGB16 based on disc ussions with Jeremy
 Sandmel.

 0.6: Add issue 22 about GL_COMPRESSED_TEXTURE_ FORMATS.

 0.5: Fix grammar, add issues 20 and 21 based o n Brian Paul's
 feedback.

 0.4: Update issue 18 based on Matrox feedback.

 0.3: Update NV_texture_expand_normal interacti on.

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1098

Name

 EXT_timer_query

Name Strings

 GL_EXT_timer_query

Contact

 James Jones, NVIDIA Corporation (jajones 'at' n vidia.com)

Contributors

 Axel Mamode, Sony
 Brian Paul, Tungsten Graphics
 Pat Brown, NVIDIA
 Remi Arnaud, Sony

Status

 Shipping (version 1.0)

 Supported by NVIDIA Release 80 drivers.

Version

 Last Modified Date: 11/6/2006
 Revision: 2

Number

 319

Dependencies

 Written based on the wording of the OpenGL 2.0 specification.

 OpenGL 1.5 is required.

 This extension modifies ARB_occlusion_query and NV_occlusion_query.

Overview

 Applications can benefit from accurate timing i nformation in a number of
 different ways. During application development , timing information can
 help identify application or driver bottlenecks . At run time,
 applications can use timing information to dyna mically adjust the amount
 of detail in a scene to achieve constant frame rates. OpenGL
 implementations have historically provided litt le to no useful timing
 information. Applications can get some idea of timing by reading timers
 on the CPU, but these timers are not synchroniz ed with the graphics
 rendering pipeline. Reading a CPU timer does n ot guarantee the completion
 of a potentially large amount of graphics work accumulated before the
 timer is read, and will thus produce wildly ina ccurate results.
 glFinish() can be used to determine when previo us rendering commands have

NVIDIA OpenGL Extension Specifications EXT_timer_query

 1099

 been completed, but will idle the graphics pipe line and adversely affect
 application performance.

 This extension provides a query mechanism that can be used to determine
 the amount of time it takes to fully complete a set of GL commands, and
 without stalling the rendering pipeline. It us es the query object
 mechanisms first introduced in the occlusion qu ery extension, which allow
 time intervals to be polled asynchronously by t he application.

Issues

 What time interval is being measured?

 RESOLVED: The timer starts when all commands prior to BeginQuery() have
 been fully executed. At that point, everythi ng that should be drawn by
 those commands has been written to the frameb uffer. The timer stops
 when all commands prior to EndQuery() have be en fully executed.

 What unit of time will time intervals be return ed in?

 RESOLVED: Nanoseconds (10^-9 seconds). This unit of measurement allows
 for reasonably accurate timing of even small blocks of rendering
 commands. The granularity of the timer is im plementation-dependent. A
 32-bit query counter can express intervals of up to approximately 4
 seconds.

 What should be the minimum number of counter bi ts for timer queries?

 RESOLVED: 30 bits, which will allow timing s ections that take up to 1
 second to render.

 How are counter results of more than 32 bits re turned?

 RESOLVED: Via two new datatypes, int64EXT an d uint64EXT, and their
 corresponding GetQueryObject entry points. T hese types hold integer
 values and have a minimum bit width of 64.

 Should the extension measure total time elapsed between the full
 completion of the BeginQuery and EndQuery comma nds, or just time spent in
 the graphics library?

 RESOLVED: This extension will measure the to tal time elapsed between
 the full completion of these commands. Futur e extensions may implement
 a query to determine time elapsed at differen t stages of the graphics
 pipeline.

 This extension introduces a second query type s upported by
 BeginQuery/EndQuery. Can multiple query types be active simultaneously?

 RESOLVED: Yes; an application may perform an occlusion query and a
 timer query simultaneously. An application c an not perform multiple
 occlusion queries or multiple timer queries s imultaneously. An
 application also can not use the same query o bject for an occlusion
 query and a timer query simultaneously.

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1100

 Do query objects have a query type permanently associated with them?

 RESOLVED: No. A single query object can be used to perform different
 types of queries, but not at the same time.

 Having a fixed type for each query object sim plifies some aspects of the
 implementation -- not having to deal with que ries with different result
 sizes, for example. It would also mean that BeginQuery() with a query
 object of the "wrong" type would result in an INVALID_OPERATION error.

 How predictable/repeatable are the results retu rned by the timer query?

 RESOLVED: In general, the amount of time nee ded to render the same
 primitives should be fairly constant. But th ere may be many other
 system issues (e.g., context switching on the CPU and GPU, virtual
 memory page faults, memory cache behavior on the CPU and GPU) that can
 cause times to vary wildly.

 Note that modern GPUs are generally highly pi pelined, and may be
 processing different primitives in different pipeline stages
 simultaneously. In this extension, the timer s start and stop when the
 BeginQuery/EndQuery commands reach the bottom of the rendering pipeline.
 What that means is that by the time the timer starts, the GL driver on
 the CPU may have started work on GL commands issued after BeginQuery,
 and the higher pipeline stages (e.g., vertex transformation) may have
 started as well.

 What should the new 64 bit integer type be calle d?

 RESOLVED: The new types will be called GLint6 4EXT/GLuint64EXT The new
 command suffixes will be i64 and ui64. These names clearly convey the
 minimum size of the types. These types are s imilar to the C99 standard
 type int_least64_t, but we use names similar to the C99 optional type
 int64_t for simplicity.

New Procedures and Functions

 void GetQueryObjecti64vEXT(uint id, enum pname , int64EXT *params);
 void GetQueryObjectui64vEXT(uint id, enum pnam e, uint64EXT *params);

New Tokens

 Accepted by the <target> parameter of BeginQuer y, EndQuery, and
 GetQueryiv:

 TIME_ELAPSED_EXT 0x88BF

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 (Modify table 2.1, Correspondence of command su ffix letters to GL argument
 types, p. 8) Add two new types and suffixes:

 Letter Corresponding GL Type
 ------ ---------------------
 i64 int64EXT
 ui64 uint64EXT

NVIDIA OpenGL Extension Specifications EXT_timer_query

 1101

 (Modify table 2.2, GL data types, p. 9) Add two new types:

 Minimum
 GL Type Bit Width Description
 --------- --------- --------------------------- ---------
 int64EXT 64 signed 2's complement binar y integer
 uint64EXT 64 unsigned binary integer

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Framebuffer)

 (Replace Section 4.1.7, Occlusion Queries, p.20 4)

 Section 4.1.7, Asynchronous Queries

 Asynchronous queries provide a mechanism to ret urn information about the
 processing of a sequence of GL commands. There are two query types
 supported by the GL. Occlusion queries (sectio n 4.1.7.1) count the number
 of fragments or samples that pass the depth tes t. Timer queries (section
 4.1.12) record the amount of time needed to ful ly process these commands.

 The results of asynchronous queries are not ret urned by the GL immediately
 after the completion of the last command in the set; subsequent commands
 can be processed while the query results are no t complete. When
 available, the query results are stored in an a ssociated query object.
 The commands described in section 6.1.12 provid e mechanisms to determine
 when query results are available and return the actual results of the
 query. The name space for query objects is the unsigned integers, with
 zero reserved by the GL.

 Each type of query supported by the GL has an a ctive query object name.
 If the active query object name for a query typ e is non-zero, the GL is
 currently tracking the information correspondin g to that query type and
 the query results will be written into the corr esponding query object. If
 the active query object for a query type name i s zero, no such information
 is being tracked.

 A query object is created by calling

 void BeginQuery(enum target, uint id);

 with an unused name <id>. <target> indicates t he type of query to be
 performed; valid values of <target> are defined in subsequent sections.
 When a query object is created, the name <id> i s marked as used and
 associated with a new query object.

 BeginQuery sets the active query object name fo r the query type given by
 <target> to <id>. If BeginQuery is called with an <id> of zero, if the
 active query object name for <target> is non-ze ro, or if <id> is the
 active query object name for any query type, th e error INVALID_OPERATION
 is generated.

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1102

 The command

 void EndQuery(enum target);

 marks the end of the sequence of commands to be tracked for the query type
 given by <target>. The active query object for <target> is updated to
 indicate that query results are not available, and the active query object
 name for <target> is reset to zero. When the c ommands issued prior to
 EndQuery have completed and a final query resul t is available, the query
 object active when EndQuery is called is update d by the GL. The query
 object is updated to indicate that the query re sults are available and to
 contain the query result. If the active query object name for <target> is
 zero when EndQuery is called, the error INVALID _OPERATION is generated.

 The command

 void GenQueries(sizei n, uint *ids);

 returns <n> previously unused query object name s in <ids>. These names are
 marked as used, but no object is associated wit h them until the first time
 they are used by BeginQuery.

 Query objects are deleted by calling

 void DeleteQueries(sizei n, const uint *ids);

 <ids> contains <n> names of query objects to be deleted. After a query
 object is deleted, its name is again unused. U nused names in <ids> are
 silently ignored.

 Calling either GenQueries or DeleteQueries whil e any query of any target
 is active causes an INVALID_OPERATION error to be generated.

 Query objects contain two pieces of state: a s ingle bit indicating
 whether a query result is available, and an int eger containing the query
 result value. The number of bits used to repre sent the query result is
 implementation-dependent. In the initial state of a query object, the
 result is available and its value is zero.

 The necessary state for each query type is an u nsigned integer holding the
 active query object name (zero if no query obje ct is active), and any
 state necessary to keep the current results of an asynchronous query in
 progress.

 Section 4.1.7.1, Occlusion Queries

 Occlusion queries use query objects to track th e number of fragments or
 samples that pass the depth test. An occlusion query can be started and
 finished by calling BeginQuery and EndQuery, re spectively, with a <target>
 of SAMPLES_PASSED.

 When an occlusion query starts, the samples-pas sed count maintained by the
 GL is set to zero. When an occlusion query is active, the samples-passed
 count is incremented for each fragment that pas ses the depth test. If the
 value of SAMPLE BUFFERS is 0, then the samples- passed count is incremented
 by 1 for each fragment. If the value of SAMPLE BUFFERS is 1, then the
 samples-passed count is incremented by the numb er of samples whose

NVIDIA OpenGL Extension Specifications EXT_timer_query

 1103

 coverage bit is set. However, implementations, at their discretion, may
 instead increase the samples-passed count by th e value of SAMPLES if any
 sample in the fragment is covered. When an occ lusion query finishes and
 all fragments generated by the commands issued prior to EndQuery have been
 generated, the samples-passed count is written to the corresponding query
 object as the query result value, and the query result for that object is
 marked as available.

 If the samples-passed count overflows, (i.e., e xceeds the value 2^n - 1,
 where n is the number of bits in the samples-pa ssed count), its value
 becomes undefined. It is recommended, but not required, that
 implementations handle this overflow case by sa turating at 2^n - 1 and
 incrementing no further.

 (Add new Section 4.1.12, Timer Queries, p.212)

 Timer queries use query objects (section 4.1.7) to track the amount of
 time needed to fully complete a set of GL comma nds. A timer query can be
 started and finished by calling BeginQuery and EndQuery, respectively,
 with a <target> of TIME_ELAPSED_EXT.

 When BeginQuery and EndQuery are called with a <target> of
 TIME_ELAPSED_EXT, the GL prepares to start and stop the timer used for
 timer queries. The timer is started or stopped when the effects from all
 previous commands on the GL client and server s tate and the framebuffer
 have been fully realized. The BeginQuery and E ndQuery commands may return
 before the timer is actually started or stopped . When the timer query
 timer is finally stopped, the elapsed time (in nanoseconds) is written to
 the corresponding query object as the query res ult value, and the query
 result for that object is marked as available.

 If the elapsed time overflows the number of bit s, <n>, available to hold
 elapsed time, its value becomes undefined. It is recommended, but not
 required, that implementations handle this over flow case by saturating at
 2^n - 1.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 (Replace Section 6.1.12, Occlusion Queries, p. 254)

 Section 6.1.12, Asynchronous Queries

 The command

 boolean IsQuery(uint id);

 returns TRUE if <id> is the name of a query obj ect. If <id> is zero, or if
 <id> is a non-zero value that is not the name o f a query object, IsQuery
 returns FALSE.

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1104

 Information about a query target can be queried with the command

 void GetQueryiv(enum target, enum pname, int *params);

 <target> identifies the query target and can be SAMPLES_PASSED for
 occlusion queries or TIME_ELAPSED_EXT for timer queries.

 If <pname> is CURRENT_QUERY, the name of the cu rrently active query for
 <target>, or zero if no query is active, will b e placed in <params>.

 If <pname> is QUERY_COUNTER_BITS, the implement ation-dependent number of
 bits used to hold the query result for <target> will be placed in params.
 The number of query counter bits may be zero, i n which case the counter
 contains no useful information.

 For occlusion queries (SAMPLES_PASSED), if the number of bits is non-zero,
 the minimum number of bits allowed is a functio n of the implementation's
 maximum viewport dimensions (MAX_VIEWPORT_DIMS) . The counter must be able
 to represent at least two overdraws for every p ixel in the viewport. The
 formula to compute the allowable minimum value (where n is the minimum
 number of bits) is:

 n = min(32, ceil(log_2(maxViewportWidth * max ViewportHeight * 2))).

 For timer queries (TIME_ELAPSED_EXT), if the mi nimum number if bits is
 non-zero, it must be at least 30.

 The state of a query object can be queried with the commands

 void GetQueryObjectiv(uint id, enum pname, in t *params);
 void GetQueryObjectuiv(uint id, enum pname, u int *params);
 void GetQueryObjecti64vEXT(uint id, enum pnam e, int64EXT *params);
 void GetQueryObjectui64vEXT(uint id, enum pna me, uint64EXT *params);
 If <id> is not the name of a query object, or i f the query object named by
 <id> is currently active, then an INVALID_OPERA TION error is generated.

 If <pname> is QUERY_RESULT, then the query obje ct's result value is
 returned as a single integer in <params>. If t he value is so large in
 magnitude that it cannot be represented with th e requested type, then the
 nearest value representable using the requested type is returned. If the
 number of query counter bits for any <target> i s zero, then the result is
 returned as a single integer with a value of 0.

 There may be an indeterminate delay before the above query returns. If
 <pname> is QUERY_RESULT_AVAILABLE, FALSE is ret urned if such a delay would
 be required, TRUE is returned otherwise. It mus t always be true that if
 any query object returns a result available of TRUE, all queries of the
 same type issued prior to that query must also return TRUE.

 Querying the state for any given query object f orces the corresponding
 query to complete within a finite amount of tim e.

 If multiple queries are issued using the same o bject name prior to calling
 GetQueryObject[u]iv, the result and availabilit y information returned will
 always be from the last query issued. The resu lts from any queries before
 the last one will be lost if they are not retri eved before starting a new
 query on the same <target> and <id>.

NVIDIA OpenGL Extension Specifications EXT_timer_query

 1105

GLX Protocol (Modification to the GLX 1.3 Protocol Encoding Specification)

 Add to Section 1.4 (p.2), Common Types

 INT64 A 64-bit signed integer value.

 CARD64 A 64-bit unsigned integer value .

 Two new non-rendering GL commands are added. T hese commands are sent
 seperately (i.e., not as part of a glXRender or glXRenderLarge request),
 using the glXVendorPrivateWithReply request:

 GetQueryObjecti64vEXT
 1 CARD8 opcode (X a ssigned)
 1 1328 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 INT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofINT64 params

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1106

 GetQueryObjectui64vEXT
 1 CARD8 opcode (X a ssigned)
 1 1329 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 CARD64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 CARD64 params

Errors

 All existing errors for query objects apply unc hanged from the
 ARB_occlusion_query spec, except the modificati on below:

 The error INVALID_ENUM is generated if BeginQue ryARB, EndQueryARB, or
 GetQueryivARB is called where <target> is not S AMPLES_PASSED or
 TIME_ELAPSED_EXT.

 The error INVALID_OPERATION is generated if Get QueryObjecti64vEXT or
 GetQueryObjectui64vEXT is called where <id> is not the name of a query
 object.

 The error INVALID_OPERATION is generated if Get QueryObjecti64vEXT or
 GetQueryObjectui64vEXT is called where <id> is the name of a currently
 active query object.

 The error INVALID_ENUM is generated if GetQuery Objecti64vEXT or
 GetQueryObjectui64vEXT is called where <pname> is not QUERY_RESULT or
 QUERY_RESULT_AVAILABLE.

NVIDIA OpenGL Extension Specifications EXT_timer_query

 1107

New State

 (table 6.37, p 298) Update the occlusion query / query object state to
 cover timer queries:

 Get Value Type Get Command Init. Value Description Sec Att ribute
 ---------------------- ---- ---------------- ----------- ------------------------- ----- --- ------
 CURRENT_QUERY 2xZ+ GetQueryiv 0 Active query object name 4.1.7 -
 (occlusion and timer)
 QUERY_RESULT 2xZ+ GetQueryObjectiv 0 Query object result 4.1.7 -
 (samples passed or
 time elapsed)
 QUERY_RESULT_AVAILABLE 2xB GetQueryObjectiv TRUE Query object result 4.1.7 -
 available?

New Implementation Dependent State

 (table 6.34, p. 295) Update the occlusion query / query object state to
 cover timer queries:

 Get Value Type Get Command Minim um Value Description Sec Attr ibute
 -------------------- ---- ----------- ----- -------- -------------------------- ------ ---- -----
 QUERY_COUNTER_BITS 2xZ+ GetQueryiv see 6 .1.12 Asynchronous query counter 6.1.12 -
 bits (occlusion and timer
 queries)

Dependencies on ARB_occlusion_query and NV_occlusio n_query

 If ARB_occlusion_query or NV_occlusion_query is supported, the previous
 spec edits are considered to apply to the nearl y identical language in
 these extension specifications. Note that the functionality provided by
 these extensions is included in OpenGL versions 1.5 and greater.

EXT_timer_query NVIDIA OpenGL Extension Specifications

 1108

Usage Examples

 Here is some rough sample code that demonstrate s the intended usage
 of this extension.

 GLint queries[N];
 GLint available = 0;
 // timer queries can contain more than 32 bits of data, so always
 // query them using the 64 bit types to avoid overflow
 GLuint64EXT timeElapsed = 0;

 // Create a query object.
 glGenQueries(N, queries);

 // Start query 1
 glBeginQuery(GL_TIME_ELAPSED_EXT, queries[0]);

 // Draw object 1

 // End query 1
 glEndQuery(GL_TIME_ELAPSED_EXT);

 ...

 // Start query N
 glBeginQuery(GL_TIME_ELAPSED_EXT, queries[N-1]);

 // Draw object N

 // End query N
 glEndQuery(GL_TIME_ELAPSED_EXT);

 // Wait for all results to become available
 while (!available) {
 glGetQueryObjectiv(queries[N-1], GL_QUERY_RESULT_AVAILABLE, &available);
 }

 for (i = 0; i < N; i++) {
 // See how much time the rendering of object i took in nanoseconds.
 glGetQueryObjectui64vEXT(queries[i], GL_QUERY_RESULT, &timeElapsed);

 // Do something useful with the time. Note that care should be
 // taken to use all significant bits of the result, not just the
 // least significant 32 bits.
 AdjustObjectLODBasedOnDrawTime(i, timeElapsed);
 }

 This example is sub-optimal in that it stalls a t the end of every
 frame to wait for query results. Ideally, the collection of results
 would be delayed one frame to minimize the amou nt of time spent
 waiting for the GPU to finish rendering.

Revision History

 none yet

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1109

Name

 EXT_vertex_array

Name Strings

 GL_EXT_vertex_array

Version

 $Date: 1995/10/03 05:39:58 $ $Revision: 1.16 $ FINAL

Number

 30

Dependencies

 None

Overview

 This extension adds the ability to specify mult iple geometric primitives
 with very few subroutine calls. Instead of cal ling an OpenGL procedure
 to pass each individual vertex, normal, or colo r, separate arrays
 of vertexes, normals, and colors are prespecifi ed, and are used to
 define a sequence of primitives (all of the sam e type) when a single
 call is made to DrawArraysEXT. A stride mechan ism is provided so that
 an application can choose to keep all vertex da ta staggered in a
 single array, or sparsely in separate arrays. Single-array storage
 may optimize performance on some implementation s.

 This extension also supports the rendering of i ndividual array elements,
 each specified as an index into the enabled arr ays.

Issues

 * Should arrays for material parameters be pr ovided? If so, how?

 A: No. Let's leave this to a separate exte nsion, and keep this
 extension lean.

 * Should a FORTRAN interface be specified in this document?

 * It may not be possible to implement GetPoin tervEXT in FORTRAN. If
 not, should we eliminate it from this propo sal?

 A: Leave it in.

 * Should a stride be specified by DrawArraysE XT which, if non-zero,
 would override the strides specified for th e individual arrays?
 This might improve the efficiency of single -array transfers.

 A: No, it's not worth the effort and comple xity.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1110

 * Should entry points for byte vertexes, byte indexes, and byte
 texture coordinates be added in this extens ion?

 A: No, do this in a separate extension, whi ch defines byte support
 for arrays and for the current procedura l interface.

 * Should support for meshes (not strips) of r ectangles be provided?

 A: No. If this is necessary, define a separ ate quad_mesh extension
 that supports both immediate mode and ar rays. (Add QUAD_MESH_EXT
 as an token accepted by Begin and DrawAr raysEXT. Add
 QuadMeshLengthEXT to specify the length of the mesh.)

Reasoning

 * DrawArraysEXT requires that VERTEX_ARRAY_EX T be enabled so that
 future extensions can support evaluation as well as direct
 specification of vertex coordinates.

 * This extension does not support evaluation. It could be extended
 to provide such support by adding arrays of points to be evaluated,
 and by adding enables to indicate that the arrays are to be
 evaluated. I think we may choose to add an array version of
 EvalMesh, rather than extending the operati on of DrawArraysEXT,
 so I'd rather wait on this one.

 * <size> is specified before <type> to match the order of the
 information in immediate mode commands, suc h as Vertex3f.
 (first 3, then f)

 * It seems reasonable to allow attribute valu es to be undefined after
 DrawArraysEXT executes. This avoids implem entation overhead in
 the case where an incomplete primitive is s pecified, and will allow
 optimization on multiprocessor systems. I don't expect this to be
 a burden to programmers.

 * It is not an error to call VertexPointerEXT , NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, TexCoordP ointerEXT,
 or EdgeFlagPointerEXT between the execution of Begin and the
 corresponding execution of End. Because th ese commands will
 typically be implemented on the client side with no protocol,
 testing for between-Begin-End status requir es that the client
 track this state, or that a round trip be m ade. Neither is
 desirable.

 * Arrays are enabled and disabled individuall y, rather than with a
 single mask parameter, for two reasons. Fi rst, we have had trouble
 allocating bits in masks, so eliminating a mask eliminates potential
 trouble down the road. We may eventually r equire a larger number of
 array types than there are bits in a mask. Second, making the
 enables into state eliminates a parameter i n ArrayElementEXT, and
 may allow it to execute more efficiently. Of course this state
 model may result in programming errors, but OpenGL is full of such
 hazards anyway!

 * ArrayElementEXT is provided to support appl ications that construct
 primitives by indexing vertex data, rather than by streaming through

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1111

 arrays of data in first-to-last order. Bec ause each call specifies
 only a single vertex, it is possible for an application to explicitly
 specify per-primitive attributes, such as a single normal per
 individual triangle.

 * The <count> parameters are added to the *Po interEXT commands to
 allow implementations to cache array data, and in particular to
 cache the transformed results of array data that are rendered
 repeatedly by ArrayElementEXT. Implementat ions that do not wish
 to perform such caching can ignore the <cou nt> parameter.

 * The <first> parameter of DrawArraysEXT allo ws a single set of
 arrays to be used repeatedly, possibly impr oving performance.

New Procedures and Functions

 void ArrayElementEXT(int i);

 void DrawArraysEXT(enum mode,
 int first,
 sizei count);

 void VertexPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void NormalPointerEXT(enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void ColorPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void IndexPointerEXT(enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void TexCoordPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void EdgeFlagPointerEXT(sizei stride,
 sizei count,
 const Boolean* pointer) ;

 void GetPointervEXT(enum pname,
 void** params);

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1112

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, and
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv, and
 GetDoublev:

 VERTEX_ARRAY_EXT 0x8074
 NORMAL_ARRAY_EXT 0x8075
 COLOR_ARRAY_EXT 0x8076
 INDEX_ARRAY_EXT 0x8077
 TEXTURE_COORD_ARRAY_EXT 0x8078
 EDGE_FLAG_ARRAY_EXT 0x8079

 Accepted by the <type> parameter of VertexPoint erEXT, NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, and TexCoordP ointerEXT:

 DOUBLE_EXT 0x140A

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_ARRAY_SIZE_EXT 0x807A
 VERTEX_ARRAY_TYPE_EXT 0x807B
 VERTEX_ARRAY_STRIDE_EXT 0x807C
 VERTEX_ARRAY_COUNT_EXT 0x807D
 NORMAL_ARRAY_TYPE_EXT 0x807E
 NORMAL_ARRAY_STRIDE_EXT 0x807F
 NORMAL_ARRAY_COUNT_EXT 0x8080
 COLOR_ARRAY_SIZE_EXT 0x8081
 COLOR_ARRAY_TYPE_EXT 0x8082
 COLOR_ARRAY_STRIDE_EXT 0x8083
 COLOR_ARRAY_COUNT_EXT 0x8084
 INDEX_ARRAY_TYPE_EXT 0x8085
 INDEX_ARRAY_STRIDE_EXT 0x8086
 INDEX_ARRAY_COUNT_EXT 0x8087
 TEXTURE_COORD_ARRAY_SIZE_EXT 0x8088
 TEXTURE_COORD_ARRAY_TYPE_EXT 0x8089
 TEXTURE_COORD_ARRAY_STRIDE_EXT 0x808A
 TEXTURE_COORD_ARRAY_COUNT_EXT 0x808B
 EDGE_FLAG_ARRAY_STRIDE_EXT 0x808C
 EDGE_FLAG_ARRAY_COUNT_EXT 0x808D

 Accepted by the <pname> parameter of GetPointer vEXT:

 VERTEX_ARRAY_POINTER_EXT 0x808E
 NORMAL_ARRAY_POINTER_EXT 0x808F
 COLOR_ARRAY_POINTER_EXT 0x8090
 INDEX_ARRAY_POINTER_EXT 0x8091
 TEXTURE_COORD_ARRAY_POINTER_EXT 0x8092
 EDGE_FLAG_ARRAY_POINTER_EXT 0x8093

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 Array Specification

 Individual array pointers and associated data a re maintained for an
 array of vertexes, an array of normals, an arra y of colors, an array

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1113

 of color indexes, an array of texture coordinat es, and an array of edge
 flags. The data associated with each array spe cify the data type of
 the values in the array, the number of values p er element in the array
 (e.g. vertexes of 2, 3, or 4 coordinates), the byte stride from one
 array element to the next, and the number of el ements (counting from
 the first) that are static. Static elements ma y be modified by the
 application, but once they are modified, the ap plication must explicitly
 respecify the array before using it for any ren dering. When an array is
 specified, the pointer and associated data are saved as client-side
 state, and static elements may be cached by the implementation. Non-
 static (dynamic) elements are never accessed un til ArrayElementEXT or
 DrawArraysEXT is issued.

 VertexPointerEXT specifies the location and dat a format of an array
 of vertex coordinates. <pointer> specifies a p ointer to the first
 coordinate of the first vertex in the array. < type> specifies the data
 type of each coordinate in the array, and must be one of SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types sh ort, int, float, and
 double respectively. <size> specifies the numb er of coordinates per
 vertex, and must be 2, 3, or 4. <stride> speci fies the byte offset
 between pointers to consecutive vertexes. If < stride> is zero, the
 vertex data are understood to be tightly packed in the array. <count>
 specifies the number of vertexes, counting from the first, that are
 static.

 NormalPointerEXT specifies the location and dat a format of an array
 of normals. <pointer> specifies a pointer to t he first coordinate
 of the first normal in the array. <type> speci fies the data type
 of each coordinate in the array, and must be on e of BYTE, SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types by te, short, int, float,
 and double respectively. It is understood that each normal comprises
 three coordinates. <stride> specifies the byte offset between
 pointers to consecutive normals. If <stride> i s zero, the normal
 data are understood to be tightly packed in the array. <count>
 specifies the number of normals, counting from the first, that are
 static.

 ColorPointerEXT specifies the location and data format of an array
 of color components. <pointer> specifies a poi nter to the first
 component of the first color element in the arr ay. <type> specifies the
 data type of each component in the array, and m ust be one of BYTE,
 UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSI GNED_INT, FLOAT, or
 DOUBLE_EXT, implying GL data types byte, ubyte, short, ushort, int,
 uint, float, and double respectively. <size> s pecifies the number of
 components per color, and must be 3 or 4. <str ide> specifies the byte
 offset between pointers to consecutive colors. If <stride> is zero,
 the color data are understood to be tightly pac ked in the array.
 <count> specifies the number of colors, countin g from the first, that
 are static.

 IndexPointerEXT specifies the location and data format of an array
 of color indexes. <pointer> specifies a pointe r to the first index in
 the array. <type> specifies the data type of e ach index in the
 array, and must be one of SHORT, INT, FLOAT, or DOUBLE_EXT, implying
 GL data types short, int, float, and double res pectively. <stride>
 specifies the byte offset between pointers to c onsecutive indexes. If
 <stride> is zero, the index data are understood to be tightly packed

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1114

 in the array. <count> specifies the number of indexes, counting from
 the first, that are static.

 TexCoordPointerEXT specifies the location and d ata format of an array
 of texture coordinates. <pointer> specifies a pointer to the first
 coordinate of the first element in the array. <type> specifies the data
 type of each coordinate in the array, and must be one of SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types sh ort, int, float, and
 double respectively. <size> specifies the numb er of coordinates per
 element, and must be 1, 2, 3, or 4. <stride> s pecifies the byte offset
 between pointers to consecutive elements of coo rdinates. If <stride> is
 zero, the coordinate data are understood to be tightly packed in the
 array. <count> specifies the number of texture coordinate elements,
 counting from the first, that are static.

 EdgeFlagPointerEXT specifies the location and d ata format of an array
 of boolean edge flags. <pointer> specifies a p ointer to the first flag
 in the array. <stride> specifies the byte offs et between pointers to
 consecutive edge flags. If <stride> is zero, t he edge flag data are
 understood to be tightly packed in the array. <count> specifies the
 number of edge flags, counting from the first, that are static.

 The table below summarizes the sizes and data t ypes accepted (or
 understood implicitly) by each of the six point er-specification commands.

 Command Sizes Types
 ------- ----- -----
 VertexPointerEXT 2,3,4 short, int, float, double
 NormalPointerEXT 3 byte, short , int, float, double
 ColorPointerEXT 3,4 byte, short , int, float, double,
 ubyte, usho rt, uint
 IndexPointerEXT 1 short, int, float, double
 TexCoordPointerEXT 1,2,3,4 short, int, float, double
 EdgeFlagPointerEXT 1 boolean

 Rendering the Arrays

 By default all the arrays are disabled, meaning that they will not
 be accessed when either ArrayElementEXT or Draw ArraysEXT is called.
 An individual array is enabled or disabled by c alling Enable or
 Disable with <cap> set to appropriate value, as specified in the
 table below:

 Array Specification Command Enable Toke n
 --------------------------- ----------- -
 VertexPointerEXT VERTEX_ARRA Y_EXT
 NormalPointerEXT NORMAL_ARRA Y_EXT
 ColorPointerEXT COLOR_ARRAY _EXT
 IndexPointerEXT INDEX_ARRAY _EXT
 TexCoordPointerEXT TEXTURE_COO RD_ARRAY_EXT
 EdgeFlagPointerEXT EDGE_FLAG_A RRAY_EXT

 When ArrayElementEXT is called, a single vertex is drawn, using vertex
 and attribute data taken from location <i> of t he enabled arrays. The
 semantics of ArrayElementEXT are defined in the C-code below:

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1115

 void ArrayElementEXT (int i) {
 byte* p;
 if (NORMAL_ARRAY_EXT) {
 if (normal_stride == 0)
 p = (byte*)normal_pointer + i * 3 * sizeof(normal_type);
 else
 p = (byte*)normal_pointer + i * normal_stride;
 Normal3<normal_type>v ((normal_type *)p);
 }
 if (COLOR_ARRAY_EXT) {
 if (color_stride == 0)
 p = (byte*)color_pointer +
 i * color_size * sizeof(col or_type);
 else
 p = (byte*)color_pointer + i * color_stride;
 Color<color_size><color_type>v ((co lor_type*)p);
 }
 if (INDEX_ARRAY_EXT) {
 if (index_stride == 0)
 p = (byte*)index_pointer + i * sizeof(index_type);
 else
 p = (byte*)index_pointer + i * index_stride;
 Index<index_type>v ((index_type*)p) ;
 }
 if (TEXTURE_COORD_ARRAY_EXT) {
 if (texcoord_stride == 0)
 p = (byte*)texcoord_pointer +
 i * texcoord_size * sizeof(texcoord_type);
 else
 p = (byte*)texcoord_pointer + i * texcoord_stride;
 TexCoord<texcoord_size><texcoord_ty pe>v ((texcoord_type*)p);
 }
 if (EDGE_FLAG_ARRAY_EXT) {
 if (edgeflag_stride == 0)
 p = (byte*)edgeflag_pointer + i * sizeof(boolean);
 else
 p = (byte*)edgeflag_pointer + i * edgeflag_stride;
 EdgeFlagv ((boolean*)p);
 }
 if (VERTEX_ARRAY_EXT) {
 if (vertex_stride == 0)
 p = (byte*)vertex_pointer +
 i * vertex_size * sizeof(ve rtex_type);
 else
 p = (byte*)vertex_pointer + i * vertex_stride;
 Vertex<vertex_size><vertex_type>v ((vertex_type*)p);
 }
 }

 ArrayElementEXT executes even if VERTEX_ARRAY_E XT is not enabled. No
 drawing occurs in this case, but the attributes corresponding to
 enabled arrays are modified.

 When DrawArraysEXT is called, <count> sequentia l elements from each
 enabled array are used to construct a sequence of geometric primitives,
 beginning with element <first>. <mode> specifi es what kind of
 primitives are constructed, and how the array e lements are used to

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1116

 construct these primitives. Accepted values fo r <mode> are POINTS,
 LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, T RIANGLE_FAN, TRIANGLES,
 QUAD_STRIP, QUADS, and POLYGON. If VERTEX_ARRA Y_EXT is not enabled, no
 geometric primitives are generated.

 The semantics of DrawArraysEXT are defined in t he C-code below:

 void DrawArraysEXT(enum mode, int first, si zei count) {
 int i;
 if (count < 0)
 /* generate INVALID_VALUE error and abort */
 else {
 Begin (mode);
 for (i=0; i < count; i++)
 ArrayElementEXT(first + i);
 End ();
 }
 }

 The ways in which the execution of DrawArraysEX T differs from the
 semantics indicated in the pseudo-code above ar e:

 1. Vertex attributes that are modified by DrawArraysEXT have an
 unspecified value after DrawArraysEXT r eturns. For example, if
 COLOR_ARRAY_EXT is enabled, the value o f the current color is
 undefined after DrawArraysEXT executes. Attributes that aren't
 modified remain well defined.

 2. Operation of DrawArraysEXT is atomic wi th respect to error
 generation. If an error is generated, no other operations take
 place.

 Although it is not an error to respecify an arr ay between the execution
 of Begin and the corresponding execution of End , the result of such
 respecification is undefined. Static array dat a may be read and cached
 by the implementation at any time. If static a rray data are modified by
 the application, the results of any subsequentl y issued ArrayElementEXT
 or DrawArraysEXT commands are undefined.

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 ArrayElementEXT and DrawArraysEXT are included in display lists.
 When either command is entered into a display l ist, the necessary
 array data (determined by the array pointers an d enables) is also
 entered into the display list. Because the arr ay pointers and
 enables are client side state, their values aff ect display lists
 when the lists are created, not when the lists are executed.

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1117

 Array specification commands VertexPointerEXT, NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, TexCoordPoint erEXT, and
 EdgeFlagPointerEXT specify client side state, a nd are therefore
 not included in display lists. Likewise Enable and Disable, when
 called with <cap> set to VERTEX_ARRAY_EXT, NORM AL_ARRAY_EXT,
 COLOR_ARRAY_EXT, INDEX_ARRAY_EXT, TEXTURE_COORD_ARRAY_EXT, or
 EDGE_FLAG_ARRAY_EXT, are not included in displa y lists.
 GetPointervEXT returns state information, and s o is not included
 in display lists.

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 GetPointervEXT returns in <param> the array poi nter value specified
 by <pname>. Accepted values for <pname> are VE RTEX_ARRAY_POINTER_EXT,
 NORMAL_ARRAY_POINTER_EXT, COLOR_ARRAY_POINTER_EXT,
 INDEX_ARRAY_POINTER_EXT, TEXTURE_COORD_ARRAY_POINTER_EXT,
 and EDGE_FLAG_ARRAY_POINTER_EXT.

 All array data are client side state, and are n ot saved or restored
 by PushAttrib and PopAttrib.

Additions to the GLX Specification

 None

GLX Protocol

 A new rendering command is added; it can be sent to the server as part of a
 glXRender request or as part of a glXRenderLarge request:

 The DrawArraysEXT command consists of three sections, in the following order:
 (1) header information, (2) a list of array information, containing the type
 and size of the array values for each enabled array and (3) a list of vertex
 data. Each element in the list of vertex data contains information for a single
 vertex taken from the enabled arrays.

 DrawArraysEXT
 2 16+(12*m)+(s*n) rendering command length
 2 4116 rendering command opcode
 4 CARD32 n (number of array elements)
 4 CARD32 m (number of enabled arrays)
 4 ENUM mode /* GL_POINTS etc */
 12*m LISTofARRAY_INFO
 s*n LISTofVERTEX_DATA

 Where s = ns + cs + is + ts + es + vs + np + cp + ip + tp + ep + vp. (See
 description below, under VERTEX_DATA.) Note that if an array is disabled
 then no information is sent for it. For example, when the normal array is
 disabled, there is no ARRAY_INFO record for the normal array and ns and np
 are both zero.

 Note that the list of ARRAY_INFO is unordered: since the ARRAY_INFO
 record contains the array type, the arrays in the list may be stored
 in any order. Also, the VERTEX_DATA list is a packed list of vertices.
 For each vertex, data is retrieved from the enabled arrays, and stored
 in the list.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1118

 If the command is encoded in a glXRenderLarge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 20+(12*m)+(s*n) rendering command length
 4 4116 rendering command opcode

 ARRAY_INFO
 4 ENUM data type
 0x1400 i=1 BYTE
 0x1401 i=1 UNSIGNED_BYTE
 0x1402 i=2 SHORT
 0x1403 i=2 UNSIGNED_SHORT
 0x1404 i=4 INT
 0x1405 i=4 UNSIGNED_INT
 0x1406 i=4 FLOAT
 0x140A i=8 DOUBLE_EXT
 4 INT32 j (number of values in array element)
 4 ENUM array type
 0x8074 j=2/3/4 VERTEX_ARRAY_EXT
 0x8075 j=3 NORMAL_ARRAY_EXT
 0x8076 j=3/4 COLOR_ARRAY_EXT
 0x8077 j=1 INDEX_ARRAY_EXT
 0x8078 j=1/2/3/4 TEXTURE_COORD_ARRAY_EXT
 0x8079 j=1 EDGE_FLAG_ARRAY_EXT

 For each array, the size of an array element is i*j. Some arrays
 (e.g., the texture coordinate array) support different data sizes;
 for these arrays, the size, j, is specified when the array is defined.

 VERTEX_DATA
 if the normal array is enabled:

 ns LISTofBYTE normal array element
 np unused, np=pad(ns)

 if the color array is enabled:

 cs LISTofBYTE color array element
 cp unused, cp=pad(cs)

 if the index array is enabled:

 is LISTofBYTE index array element
 ip unused, ip=pad(is)

 if the texture coord array is enabled:

 ts LISTofBYTE texture coord array element
 tp unused, tp=pad(ts)

 if the edge flag array is enabled:

 es LISTofBYTE edge flag array element
 ep unused, ep=pad(es)

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 1119

 if the vertex array is enabled:

 vs LISTofBYTE vertex array element
 vp unused, vp=pad(vs)

 where ns, cs, is, ts, es, vs is the size of the normal, color, index,
 texture, edge and vertex array elements and np, cp, ip, tp, ep, vp is
 the padding for the normal, color, index, texture, edge and vertex array
 elements, respectively.

Errors

 INVALID_OPERATION is generated if DrawArraysEXT is called between the
 execution of Begin and the corresponding execut ion of End.

 INVALID_ENUM is generated if DrawArraysEXT para meter <mode> is not
 POINTS, LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_ STRIP, TRIANGLE_FAN,
 TRIANGLES, QUAD_STRIP, QUADS, or POLYGON.

 INVALID_VALUE is generated if DrawArraysEXT par ameter <count> is
 negative.

 INVALID_VALUE is generated if VertexPointerEXT parameter <size> is not
 2, 3, or 4.

 INVALID_ENUM is generated if VertexPointerEXT p arameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if VertexPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if NormalPointerEXT p arameter <type> is not
 BYTE, SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if NormalPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if ColorPointerEXT p arameter <size> is not
 3 or 4.

 INVALID_ENUM is generated if ColorPointerEXT pa rameter <type> is not
 BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT , UNSIGNED_INT, FLOAT,
 or DOUBLE_EXT.

 INVALID_VALUE is generated if ColorPointerEXT p arameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if IndexPointerEXT pa rameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if IndexPointerEXT p arameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if TexCoordPointerEX T parameter <size> is not
 1, 2, 3, or 4.

 INVALID_ENUM is generated if TexCoordPointerEXT parameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 1120

 INVALID_VALUE is generated if TexCoordPointerEX T parameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if EdgeFlagPointerEX T parameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if GetPointervEXT par ameter <pname> is not
 VERTEX_ARRAY_POINTER_EXT, NORMAL_ARRAY_POINTER_EXT,
 COLOR_ARRAY_POINTER_EXT, INDEX_ARRAY_POINTER_EXT,
 TEXTURE_COORD_ARRAY_POINTER_EXT, or EDGE_FLAG_ARRAY_POINTER_EXT.

New State
 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------
 VERTEX_ARRAY_EXT IsEnabled B False client
 VERTEX_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 VERTEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 VERTEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 VERTEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 VERTEX_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client
 NORMAL_ARRAY_EXT IsEnabled B False client
 NORMAL_ARRAY_TYPE_EXT GetIntegerv Z5 FLOAT client
 NORMAL_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 NORMAL_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 NORMAL_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client
 COLOR_ARRAY_EXT IsEnabled B False client
 COLOR_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 COLOR_ARRAY_TYPE_EXT GetIntegerv Z8 FLOAT client
 COLOR_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 COLOR_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 COLOR_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client
 INDEX_ARRAY_EXT IsEnabled B False client
 INDEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 INDEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 INDEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 INDEX_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client
 TEXTURE_COORD_ARRAY_EXT IsEnabled B False client
 TEXTURE_COORD_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 TEXTURE_COORD_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 TEXTURE_COORD_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 TEXTURE_COORD_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 TEXTURE_COORD_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client
 EDGE_FLAG_ARRAY_EXT IsEnabled B False client
 EDGE_FLAG_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 EDGE_FLAG_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 EDGE_FLAG_ARRAY_POINTER_EXT GetPointerv EXT Z+ 0 client

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1121

Name

 EXT_vertex_weighting

Name Strings

 GL_EXT_vertex_weighting

Notice

 Copyright NVIDIA Corporation, 1999, 2000.

Status

 Shipping (version 1.0)

Version

 NVIDIA Date: May 25, 2000

Number

 188

Dependencies

 None

 Written based on the wording of the OpenGL 1.2 specification but not
 dependent on it.

Overview

 The intent of this extension is to provide a me ans for blending
 geometry based on two slightly differing modelv iew matrices.
 The blending is based on a vertex weighting tha t can change on a
 per-vertex basis. This provides a primitive fo rm of skinning.

 A second modelview matrix transform is introduc ed. When vertex
 weighting is enabled, the incoming vertex objec t coordinates are
 transformed by both the primary and secondary m odelview matrices;
 likewise, the incoming normal coordinates are t ransformed by the
 inverses of both the primary and secondary mode lview matrices.
 The resulting two position coordinates and two normal coordinates
 are blended based on the per-vertex vertex weig ht and then combined
 by addition. The transformed, weighted, and co mbined vertex position
 and normal are then used by OpenGL as the eye-s pace position and
 normal for lighting, texture coordinate, genera tion, clipping,
 and further vertex transformation.

Issues

 Should the extension be written to extend to mo re than two vertex
 weights and modelview matrices?

 RESOLUTION: NO. Supports only one vertex wei ght and two modelview
 matrices. If more than two is useful, that c an be handled with

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 1122

 another extension.

 Should the weighting factor be GLclampf instead of GLfloat?

 RESOLUTION: GLfloat. Though the value of a weighting factors
 outside the range of zero to one (and even we ights that do not add
 to one) is dubious, there is no reason to lim it the implementation
 to values between zero and one.

 Should the weights and modelview matrices be la beled 1 & 2 or 0 & 1?

 RESOLUTION: 0 & 1. This is consistent with the way lights and
 texture units are named in OpenGL. Make GL_M ODELVIEW0_EXT
 be an alias for GL_MODELVIEW. Note that the GL_MODELVIEW0_EXT+1
 will not be GL_MODELVIEW1_EXT as is the case with GL_LIGHT0 and
 GL_LIGHT1.

 Should there be a way to simultaneously Rotate, Translate, Scale,
 LoadMatrix, MultMatrix, etc. the two modelview matrices together?

 RESOLUTION: NO. The application must use Ma trixMode and repeated
 calls to keep the matrices in sync if desired .

 Should the secondary modelview matrix stack be as deep as the primary
 matrix stack or can they be different sizes?

 RESOLUTION: Must be the SAME size. This was tes a lot of memory
 that will be probably never be used (the mode lview matrix stack
 must have at least 32 entries), but memory is cheap.

 The value returned by MAX_MODELVIEW_STACK_DEP TH applies to both
 modelview matrices.

 Should there be any vertex array support for ve rtex weights.

 RESOLUTION: YES.

 Should we have a VertexWeight2fEXT that takes h as two weight values?

 RESOLUTION: NO. The weights are always vw a nd 1-vw.

 What is the "correct" way to blend matrices, pa rticularly when wo is
 not one or the modelview matrix is projective?

 RESOLUTION: While it may not be 100% correct , the extension blends
 the vertices based on transforming the object coordinates by
 both M0 and M1, but the resulting w coordinat e comes from simply
 transforming the object coordinates by M0 and extracting the w.

 Another option would be to simply blend the t wo sets of eye
 coordinates without any special handling of w . This is harder.

 Another option would be to divide by w before blending the two
 sets of eye coordinates. This is awkward bec ause if the weight
 is 1.0 with vertex weighting enabled, the res ult is not the
 same as disabling vertex weighting since EYE_ LINEAR texgen
 is based of of the non-perspective corrected eye coordinates.

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1123

 As specified, the normal weighting and combinat ion is performed on
 unnormalized normals. Would the math work bett er if the normals
 were normalized before weighting and combining?

 RESOLUTION: Vertex weighting of normals is a fter the
 GL_RESCALE_NORMAL step and before the GL_NORM ALIZE step.

 As specified, feedback and selection should app ly vertex weighting
 if enabled. Yuck, that would mean that we need software code for
 vertex weighting.

 RESOLUTION: YES, it should work with feedba ck and selection.

 Sometimes it would be useful to mirror changes in both modelview
 matrices. For example, the viewing transforms are likely to be
 different, just the final modeling transforms w ould be different.
 Should there be an API support for mirroring tr ansformations into
 both matrices?

 RESOLUTION: NO. Such support is likely to c omplicate the
 matrix management in the OpenGL. Application s can do a
 Get matrix from modelview0 and then a LoadMat rix into modelview1
 manually if they need to mirror things.

 I also worry that if we had a mirrored matrix mode, it would
 double the transform concatenation work if us ed naively.

 Many of the changes to the two modelview matric es will be the same.
 For example, the initial view transform loaded into each will be the
 same. Should there be a way to "mirror" change s to both modelview
 matrices?

 RESOLUTION: NO. Mirroring matrix changes wo uld complicate the
 driver's management of matrices. Also, I am worried that naive
 users would mirror all transforms and lead to lots of redundant
 matrix concatenations. The most efficient wa y to handle the
 slight differences between the modelview matr ices is simply
 to GetFloat the primary matrix, LoadMatrix th e values in the
 secondary modelview matrix, and then perform the "extra" transform
 to the secondary modelview matrix.

 Ideally, a glCopyMatrix(GLenum src, GLenum ds t) type OpenGL
 command could make this more efficient. Ther e are similiar cases
 where you want the modelview matrix mirrored in the texture matrix.
 This is not the extension to solve this minor problem.

 The post-vertex weighting normal is unlikely to be normalized.
 Should this extension automatically enable norm alization?

 RESOLUTION: NO. Normalization should operat e as specified.
 The user is responsible for enabling GL_RESCA LE_NORMAL or
 GL_NORMALIZE as needed.

 You could imagine cases where the application only sent
 vertex weights of either zero or one and pre- normalized normals
 so that GL_NORMALIZE would not strictly be re quired.

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 1124

 Note that the vertex weighting of transformed normals occurs
 BEFORE normalize and AFTER rescaling. See th e issue below for
 why this can make a difference.

 How does vertex weighting interact with OpenGL 1.2's GL_RESCALE_NORMAL
 enable?

 RESOLUTION: Vertex weighting of transformed normals occurs
 BEFORE normalize and AFTER rescaling.

 OpenGL 1.2 permits normal rescaling to behave just like normalize
 and because normalize immediately follows res caling, enabling
 rescaling can be implementied by simply alway s enabling normalize.

 Vertex weighting changes this. If one or bot h of the modelview
 matrices has a non-uniform scale, it may be u seful to enable
 rescaling and normalize and this operates dif ferently than
 simply enabling normalize. The difference is that rescaling
 occurs before the normal vertex weighting.

 An implementation that truly treated rescalin g as a normalize
 would support both a pre-weighting normalize and a post-weighting
 normalize. Arguably, this is a good thing.

 For implementations that perform simply resca ling and not a full
 normalize to implement rescaling, the rescali ng factor can be
 concatenated into each particular inverse mod elview matrix.

New Procedures and Functions

 void VertexWeightfEXT(float weight);

 void VertexWeightfvEXT(float *weight);

 void VertexWeightPointerEXT(int size, enum type ,
 sizei stride, void *pointer);

New Tokens

 Accepted by the <target> parameter of Enable:

 VERTEX_WEIGHTING_EXT 0x8509

 Accepted by the <mode> parameter of MatrixMode:

 MODELVIEW0_EXT 0x1700 (al ias to MODELVIEW enumerant)
 MODELVIEW1_EXT 0x850A

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1125

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_WEIGHTING_EXT
 MODELVIEW0_EXT
 MODELVIEW1_EXT
 MODELVIEW0_MATRIX_EXT 0x0BA6 (al ias to MODELVIEW_MATRIX)
 MODELVIEW1_MATRIX_EXT 0x8506
 CURRENT_VERTEX_WEIGHT_EXT 0x850B
 VERTEX_WEIGHT_ARRAY_EXT 0x850C
 VERTEX_WEIGHT_ARRAY_SIZE_EXT 0x850D
 VERTEX_WEIGHT_ARRAY_TYPE_EXT 0x850E
 VERTEX_WEIGHT_ARRAY_STRIDE_EXT 0x850F
 MODELVIEW0_STACK_DEPTH_EXT 0x0BA3 (al ias to MODELVIEW_STACK_DEPTH)
 MODELVIEW1_STACK_DEPTH_EXT 0x8502

 Accepted by the <pname> parameter of GetPointe rv:

 VERTEX_WEIGHT_ARRAY_POINTER_EXT 0x8510

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 -- Section 2.6. 2nd paragraph changed:

 "Each vertex is specified with two, three, or four coordinates.
 In addition, a current normal, current texture coordinates, current
 color, and current vertex weight may be used i n processing each
 vertex."

 -- Section 2.6. New paragraph after the 3rd para graph:

 "A vertex weight is associated with each verte x. When vertex
 weighting is enabled, this weight is used as a blending factor
 to blend the position and normals transformed by the primary and
 secondary modelview matrix transforms. The ve rtex weighting
 functionality takes place completely in the "v ertex / normal
 transformation" stage of Figure 2.2."

 -- Section 2.6.3. First paragraph changed to

 "The only GL commands that are allowed within any Begin/End pairs are
 the commands for specifying vertex coordinates , vertex colors, normal
 coordinates, and texture coordinates (Vertex, Color, VertexWeightEXT,
 Index, Normal, TexCoord)..."

 -- Section 2.7. New paragraph after the 4th para graph:

 "The current vertex weight is set using

 void VertexWeightfEXT(float weight);
 void VertexWeightfvEXT(float *weight);

 This weight is used when vertex weighting is e nabled."

 -- Section 2.7. The last paragraph changes from

 "... and one floating-point value to store the current color index."

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 1126

 to:

 "... one floating-point number to store the ve rtex weight, and one
 floating-point value to store the current colo r index."

 -- Section 2.8. Change 1st paragraph to say:

 "The client may specify up to seven arrays: on e each to store edge
 flags, texture coordinates, colors, color indi ces, vertex weights,
 normals, and vertices. The commands"

 Add to functions listed following first paragr aph:

 void VertexWeightPointerEXT(int size, enum type,
 sizei stride, v oid *pointer);

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ---------------------- ----- -----
 VertexWeightPointerEXT 1 float

 Starting with the second paragraph on p. 23, c hange to add
 VERTEX_WEIGHT_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_COO RD_ARRAY, COLOR_ARRAY,
 INDEX_ARRAY, VERTEX_ARRAY_WEIGHT_EXT, NORMAL_A RRAY, or VERTEX_ARRAY,
 for the edge flag, texture coordinate, color, secondary color,
 color index, normal, or vertex array, respecti vely.

 The ith element of every enabled array is tran sferred to the GL by calling

 void ArrayElement(int i)

 For each enabled array, it is as though the co rresponding command
 from section 2.7 or section 2.6.2 were called with a pointer to
 element i. For the vertex array, the correspon ding command is
 Vertex<size><type>v, where <size> is one of [2 ,3,4], and <type> is
 one of [s,i,f,d], corresponding to array types short, int, float, and
 double respectively. The corresponding command s for the edge flag,
 texture coordinate, color, secondary color, co lor index, and normal
 arrays are EdgeFlagv, TexCoord<size><type>v, C olor<size><type>v,
 Index<type>v, VertexWeightfvEXT, and Normal<ty pe>v, respectively..."

 Change pseudocode on p. 27 to disable vertex w eight array for canned
 interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

 insert the line

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1127

 DisableClientState(VERTEX_WEIGHT_ARRAY_ EXT);

 Substitute "seven" for every occurrence of "si x" in the final
 paragraph on p. 27.

 -- Section 2.10. Change the sentence:

 "The model-view matrix is applied to these coor dinates to yield eye
 coordinates."

 to:

 "The primary modelview matrix is applied to th ese coordinates to
 yield eye coordinates. When vertex weighting is enabled, a secondary
 modelview matrix is also applied to the vertex coordinates, the
 result of the two modelview transformations ar e weighted by its
 respective vertex weighting factor and combine d by addition to yield
 the true eye coordinates. Vertex weighting is enabled or disabled
 using Enable and Disable (see section 2.10.3) with an argument of
 VERTEX_WEIGHTING_EXT."

 Change the 4th paragraph to:

 "If vertex weighting is disabled and a vertex in object coordinates
 is given by (xo yo zo wo)' and the primary m odel-view matrix is
 M0, then the vertex's eye coordinates are foun d as

 (xe ye ze we)' = M0 (xo yo zo wo)'

 If vertex weighting is enabled, then the verte x's eye coordinates
 are found as

 (xe0 ye0 ze0 we0)' = M0 (xo yo zo wo)'

 (xe1 ye1 ze1 we1)' = M1 (xo yo zo wo)'

 (xe,ye,ze)' = vw*(xe0,ye0,ze0)' + (1-vw) * (xe1,ye1,ze1)'

 we = we0

 where M1 is the secondary modelview matrix and vw is the current
 vertex weight."

 -- Section 2.10.2 Change the 1st paragraph to sa y:

 "The projection matrix and the primary and sec ondary modelview
 matrices are set and modified with a variety o f commands. The
 affected matrix is determined by the current m atrix mode. The
 current matrix mode is set with

 void MatrixMode(enum mode);

 which takes one of the four pre-defined consta nts TEXTURE,
 MODELVIEW0, MODELVIEW1, or PROJECTION (note th at MODELVIEW is an
 alias for MODELVIEW0). TEXTURE is described l ater. If the current
 matrix is MODELVIEW0, then matrix operations a pply to the primary

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 1128

 modelview matrix; if MODELVIEW1, then matrix o perations apply to
 the secondary modelview matrix; if PROJECTION, then they apply to
 the projection matrix."

 Change the 9th paragraph to say:

 "There is a stack of matrices for each of the matrix modes. For the
 MODELVIEW0 and MODELVIEW1 modes, the stack is at least 32 (that is,
 there is a stack of at least 32 modelview matr ices). ..."

 Change the last paragraph to say:

 "The state required to implement transformatio ns consists of a
 four-valued integer indicating the current mat rix mode, a stack of
 at least two 4x4 matrices for each of PROJECTI ON and TEXTURE with
 associated stack pointers, and two stacks of a t least 32 4x4 matrices
 with an associated stack pointer for MODELVIEW 0 and MODELVIEW1.
 Initially, there is only one matrix on each st ack, and all matrices
 are set to the identity. The initial matrix m ode is MODELVIEW0."

 -- Section 2.10.3 Change the 2nd and 7th paragra phs to say:

 "For a modelview matrix M, the normal for this matrix is transformed
 to eye coordinates by:

 (nx' ny' nz' q') = (nx ny nz q) * M^-1

 where, if (x y z w)' are the associated vertex coordinates, then

 / 0, w= 0
 |
 q = | -(nx ny nz) (x y z)' (2.1)
 | --------------------, w != 0
 \ w

 Implementations may choose instead to transfor m (x y z)' to eye
 coordinates using

 (nx' ny' nz') = (nx ny nz) * Mu^-1

 Where Mu is the upper leftmost 3x3 matrix take n from M.

 Rescale multiplies the transformed normals by a scale factor

 (nx" ny" nz") = f (nx' ny' nz')

 If rescaling is disabled, then f = 1. If resc aling is enabled, then
 f is computed as (mij denotes the matrix eleme nt in row i and column j
 of M^-1, numbering the topmost row of the matr ix as row 1 and the

leftmost column as column 1

 1
 f = ---------------------------
 sqrt(m31^2 + m32^2 + m33^2)

 Note that if the normals sent to GL were unit length and the model-view
 matrix uniformly scales space, the rescale mak e sthe transformed normals

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1129

 unit length.

 Alternatively, an implementation may chose f a s

 1
 f = ---------------------------
 sqrt(nx'^2 + ny'^2 + nz'^2)

 recomputing f for each normal. This makes all non-zero length
 normals unit length regardless of their input length and the nature
 of the modelview matrix.

 After rescaling, the final transformed normal used in lighting, nf,
 depends on whether vertex weighting is enabled or not.

 When vertex weighting is disabled, nf is compu ted as

 nf = m * (nx"0 ny"0 nz"0)

 where (nx"0 ny"0 nz"0) is the normal transform ed as described
 above using the primary modelview matrix for M .

 If normalization is enabled m=1. Otherwise

 1
 m = ---------------------------- --
 sqrt(nx"0^2 + ny"0^2 + nz"0^ 2)

 However when vertex weighting is enabled, the normal is transformed
 twice as described above, once by the primary modelview matrix and
 again by the secondary modelview matrix, weigh ted using the current
 per-vertex weight, and normalized. So nf is c omputed as

 nf = m * (nx"w ny"w nz"w)

 where nw is the weighting normal computed as

 nw = vw * (nx"0 ny"0 nz"0) + (1-vw) * (nx"1 ny"1 nz"1)

 where (nx"0 ny"0 nz"0) is the normal transform ed as described
 above using the primary modelview matrix for M , and (nx"1 ny"1 nz"1) is
 the normal transformed as described above usin g the secondary modelview
 matrix for M, and vw is the current pver-verte x weight."

 -- Section 2.12. Changes the 3rd paragraph:

 "The coordinates are treated as if they were s pecified in a
 Vertex command. The x, y, z, and w coordinate s are transformed
 by the current primary modelview and perspecti ve matrices. These
 coordinates, along with current values, are us ed to generate a
 color and texture coordinates just as done for a vertex, except
 that vertex weighting is always treated as if it is disabled."

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 1130

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent
 to the server as part of a glXRender request:

 VertexWeightfvEXT
 2 8 rendering command length
 2 4135 rendering command opcode
 4 FLOAT32 weight0

 To support vertex arrays, the DrawArrays render ing command (sent via
 a glXRender or glXRenderLarge request) is amend ed as follows:

 The list of arrays listed for the third element in the ARRAY_INFO
 structure is amended to include:

 0x850c j=1 VERTEX_WE IGHT_ARRAY_EXT

 The VERTEX_DATA description is amended to inclu de:

 If the vertex weight array is enabled:
 ws LISTofBYTE vertex weigh t array element
 wp unused, wp=p ad(ws)

 with the following paragraph amended to read:

 "where ns, cs, is, ts, es, vs, ws is the size o f the normal, color,
 index, texture, edge, vertex, and vertex weight array elements and
 np, cp, ip, tp, ep, vp, wp is the padding for t he normal, color,
 index, texture, edge, vertex, and vertex weight array elements,
 respectively."

Errors

 The current vertex weight can be updated at any time. In particular
 WeightVertexEXT can be called between a call to Begin and the
 corresponding call to End.

 INVALID_VALUE is generated if VertexWeightPoint erEXT parameter <size>
 is not 1.

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 1131

 INVALID_ENUM is generated if VertexWeightPointe rEXT parameter <type>
 is not FLOAT.

 INVALID_VALUE is generated if VertexWeightPoint erEXT parameter <stride>
 is negative.

New State

(table 6.5, p196)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_VERTEX_WEIGHT_EXT F GetFloatv 1 Current 2.8 current
 vertex weight

(table 6.6, p197)
Get Value Type Get Com mand Initial Value Description Sec Attribute
--------- ---- ------- ---- ------------- ----------- --- ---------
VERTEX_WEIGHT_ARRAY_EXT B IsEnab led False Vertex weight enable 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_SIZE_EXT Z+ GetInt egerv 1 Weights per vertex 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_TYPE_EXT Z1 GetInt egerv FLOAT Type of weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_STRIDE_EXT Z GetInt egerv 0 Stride between weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_POINTER_EXT Y GetPoi nterv 0 Pointer to vertex weight array 2.8 vertex-array

(table 6.7, p198)
Get Value Type Get Command Initial Value Description Sec Attri bute
--------- ---- ----------- ------------- ----------- ------ ----- ----
MODELVIEW0_MATRIX_EXT 32*xM4 GetFloatv Identity Primary modelview 2.10.2 -
 stack
MODELVIEW1_MATRIX_EXT 32*xM4 GetFloatv Identity Secondary modelview 2.10.2 -
 stack
MODELVIEW0_STACK_DEPTH_EXT Z+ GetIntegerv 1 Primary modelview 2.10.2 -
 stack depth
MODELVIEW1_STACK_DEPTH_EXT Z+ GetIntegerv 1 Secondary modelview 2.10.2 -
 stack depth
MATRIX_MODE Z4 GetIntegerv MODELVIEW0 Current matrix mode 2.10.2 tran sform
VERTEX_WEIGHTING_EXT B IsEnabled False Vertex weighting 2.10.2 tran sform/enable
 on/off

 NOTE: MODELVIEW_MATRIX is an alias for MODELVI EW0_MATRIX_EXT
 MODELVIEW_STACK_DEPTH is an alias for MO DELVIEW0_STACK_DEPTH_EXT

New Implementation Dependent State

 None

Revision History

 12/16/2000 amended to include GLX protocol for vertex arrays
 5/25/2000 added missing MODELVIEW#_MATRIX token s values

HP_occlusion_test NVIDIA OpenGL Extension Specifications

 1132

GL_HP_occlusion_test - PRELIMINARY

XXX - Not complete yet!!!

Name

 HP_occlusion_test

Name Strings

 GL_HP_occlusion_test

Number

 137

Overview

 This extension defines a mechanism whereby an a pplication can
 determine the non-visibility of some set of geo metry based on
 whether an encompassing set of geometry is non- visible. In general
 this feature does not guarantee that the target geometry is visible
 when the test fails, but is accurate with regar d to non-visibility.

 Occlusion culling allows an application to rend er some geometry and
 at the completion of the rendering to determine if any of the
 geometry could or did modify the depth buffer, ie. a depth buffer
 test succeeded. The idea being that if the app lication renders a
 bounding box of some geometry in this mode and the occlusion test
 failed (ie. the bounding box was depth culled due to the current
 contents of the depth buffer) then the geometry enclosed by the
 bounding box would also be depth culled. Occlu sion culling operates
 independently of the current rendering state (i e. when occlusion
 culling is enabled fragments are generated and the depth and/or
 color buffer may be updated). To prevent updat ing the depth/color
 buffers the application must disable updates to these buffers. As a
 side effect of reading the occlusion result the internal result
 state is cleared, setting it up for a new bound ing box test.

 The expected usage of this feature is :

 - disable updates to color and depth buffer (optional)
 glDepthMask(GL_FALSE)
 glColorMask(GL_FALSE,GL_FALSE,GL_FALSE, GL_FALSE)

 - enable occlusion test
 glEnable(GL_OCCLUSION_TEST_HP)

 - render bounding geometry
 gl rendering calls

 - disable occlusion test
 glDisable(GL_OCCLUSION_TEST_HP)

 - enable updates to color and depth buffer
 glDepthMask(GL_TRUE)
 glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_ TRUE)

NVIDIA OpenGL Extension Specifications HP_occlusion_test

 1133

 - read occlusion test result
 glGetBooleanv(GL_OCCLUSION_TEST_RESULT_ HP, &result)

 - if (result) render internal geometry
 else don't render

 For this extension to be useful the assumption are being made :

 - the time to render the geometry under tes t is much more than
 rendering the encompassing geometry, in cluding reading back
 the test result

 - the application is modelling data that in cludes occluding
 structures (eg. walls, hierarchial ass emblies, ...)

 - the application is structured in such a w ay as to utilize
 bounding boxes for encompassing geometr y

New Procedures and Functions

 none

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 by the <pname> of GetBooleanv, GetIntegerv, Get Floatv, and
 GetDoublev :

 GL_OCCLUSION_TEST_HP 0x8165

 Accepted by the <pname> of GetBooleanv, GetInte gerv, GetFloatv, and
 GetDoublev :

 GL_OCCLUSION_TEST_RESULT_HP 0x8166

New State

 Boolean result of occlusion test, initial value of FALSE. The
 result is set to FALSE as a side effect of read ing it (executing a
 Get call).

Issue

 This extension is superceded by the GL_HP_visib ility_test extension.

 Also see NVIDIA's NV_occlusion_query extension.

IBM_rasterpos_clip NVIDIA OpenGL Extension Specifications

 1134

Name

 IBM_rasterpos_clip

Name Strings

 GL_IBM_rasterpos_clip

Version

 $Id: //depot/main/doc/registry/extensions/IBM/r asterpos_clip.spec#1 $

Number

 110

Dependencies

 None

Overview

 IBM_rasterpos_clip extends the semantics of the RasterPos functions. It
 provides an enable that allows a raster positio n that would normally be
 clipped to be treated as a valid (albeit out-of -viewport) position.

 This extension allows applications to specify g eometry-aligned pixel
 primitives that may be partially off-screen. T hese primitives are
 tested on a pixel-by-pixel basis without being rejected completely
 because of an invalid raster position.

Issues

 Currently, clipping is disabled only in X and Y . If disabling Z
 clipping is required, the behavior needs to be specified.

New Procedures and Functions

 None

New Tokens

 Accepted by the <target> parameter of Enable an d Disable and the <value>
 parameter of IsEnabled, GetBooleanv, GetInteger v, GetFloatv, GetDoublev:

 RASTER_POSITION_UNCLIPPED_IBM 103 010

 The enum is subject to change if this proposal attracts interest from
 other vendors and becomes an EXT extension.

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 In Section 2.12, the behavior of valid bit of t he raster position with
 respect to vertex clipping is defined.

 The transformed coordinates are passed to c lipping as if they
 represented a point. If the "point" is not culled, then the

NVIDIA OpenGL Extension Specifications IBM_rasterpos_clip

 1135

 projection to window coordinates is compute d (section 2.10) and
 saved as the current raster position, and t he valid bit is set. If
 the "point" is culled, ... the valid bit is cleared.

 The specification is modified to read:

 The transformed coordinates are passed to c lipping as if they
 represented a point. If (1) the "point" is not culled, or (2)
 RASTER_POSITION_UNCLIPPED_IBM is enabled an d the "point" is not culled
 except by the x and y components of the cli p volume, then the
 projection to window coordinates is compute d (section 2.10) and saved
 as the current raster position, and the val id bit is set. Otherwise,
 ... the valid bit is cleared.

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None (other than the new Enable target).

Errors

 None

New State

 Get Value Type Get Command Value Sec Attrib
 ----------------------------- ---- ----------- ----- ---- -------
 RASTER_POSITION_UNCLIPPED_IBM B IsEnabled False 2.12 transform/
 enable

New Implementation Dependent State

 None

IBM_texture_mirrored_repeat NVIDIA OpenGL Extension Specifications

 1136

Name

 IBM_texture_mirrored_repeat

Name Strings

 GL_IBM_texture_mirrored_repeat

Version

 $Date: 1999/12/28 01:40:35 $ $Revision: 1.2 $
 IBM Id: texture_mirrored_repeat.spec,v 1.5 1998 /01/16 18:09:31 pbrown Exp

Number

 224

Dependencies

 EXT_texture_3D
 IBM_texture_edge_clamp

Overview

 IBM_texture_mirrored_repeat extends the set of texture wrap modes to
 include a mode (GL_MIRRORED_REPEAT_IBM) that ef fectively uses a texture
 map twice as large at the original image in whi ch the additional half of
 the new image is a mirror image of the original image.

 This new mode relaxes the need to generate imag es whose opposite edges
 match by using the original image to generate a matching "mirror image".

Issues

 * The spec clamps the final (u,v) coordinates to the range [0.5, 2^n-0.5].
 This will produce the same effect as trapping a sample of the border texel
 and using the corresponding edge texel. The ch oice of technique is purely
 an implementation detail.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXT URE_WRAP_T, or
 TEXTURE_WRAP_R_EXT:

 GL_MIRRORED_REPEAT_IBM 0x8370

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None.

NVIDIA OpenGL Extension Specifications IBM_texture_mirrored_repeat

 1137

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 Change to Section 3.8 (Subsection "Texture Wrap M odes")

 If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_W RAP_R_EXT is set to
 MIRRORED_REPEAT_IBM, the s (or t or r) coordina te is converted to:

 s - floor(s), if floor(s) is even , or
 1 - (s - floor(s)), if floor(s) is odd.

 Change to Section 3.8.1, Texture Minification

 Let:
 u(x,y) = 2^n * s(x,y),
 v(x,y) = 2^m * t(x,y), and
 w(x,y) = 2^l * r(x,y).

 If the TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTU RE_WRAP_R_EXT is set to
 either MIRRORED_REPEAT_IBM or CLAMP_TO_EDGE_IBM , the resulting u, v, or
 w coordinates (respectively) are clamped to the range [0.5, 2^n-0.5].

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None.

Errors

 None

Dependencies on EXT_texture3D

 If EXT_texture3D is not implemented, then the r eferences clamping of 3D
 textures in this file are invalid, and referenc es to TEXTURE_WRAP_R_EXT
 should be ignored.

Dependencies on IBM_texture_edge_clamp

 If IBM_texture_edge_clamp is not implemented, t hen the references to
 CLAMP_TO_EDGE_IBM should be ignored.

IBM_texture_mirrored_repeat NVIDIA OpenGL Extension Specifications

 1138

New State

 Only the type information changes for these par ameters:

 Get Value Get Command Typ e Initial Value Attrib
 --------- ----------- --- - ------------- ------
 TEXTURE_WRAP_S GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_T GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z5 REPEAT texture

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications NV_blend_square

 1139

Name

 NV_blend_square

Name Strings

 GL_NV_blend_square

Version

 Date: 8/7/1999 Version: 1.0

Number

 194

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 It is useful to be able to multiply a number by itself in the blending
 stages -- for example, in certain types of spec ular lighting effects
 where a result from a dot product needs to be t aken to a high power.

 This extension provides four additional blendin g factors to permit
 this and other effects: SRC_COLOR and ONE_MINUS _SRC_COLOR for source
 blending factors, and DST_COLOR and ONE_MINUS_D ST_COLOR for destination
 blending factors.

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

NV_blend_square NVIDIA OpenGL Extension Specifications

 1140

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 Two lines are added to each of tables 4.1 and 4 .2:

 Value Blend Facto rs
 ----- ----------- --
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs, Gs, Bs , As) NEW
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As) NEW
 DST_COLOR (Rd, Gd, Bd , Ad)
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad)
 SRC_ALPHA (As, As, As , As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad , Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR (Rc, Gc, Bc , Ac)
 ONE_MINUS_CONSTANT_COLOR (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
 CONSTANT_ALPHA (Ac, Ac, Ac , Ac)
 ONE_MINUS_CONSTANT_ALPHA (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)
 SRC_ALPHA_SATURATE (f, f, f, 1)

 Table 4.1: Values controlling the source bl ending function and the
 source blending values they compute. f = m in(As, 1 - Ad).

 Value Blend Facto rs
 ----- ----------- --
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs, Gs, Bs , As)
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As)
 DST_COLOR (Rd, Gd, Bd , Ad) NEW
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad) NEW
 SRC_ALPHA (As, As, As , As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad , Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc , Ac)
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac , Ac)
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

 Table 4.2: Values controlling the destinati on blending function and
 the destination blending values they comput e.

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

NVIDIA OpenGL Extension Specifications NV_blend_square

 1141

Errors

 None

New State

(table 6.15, page 205)
 Get Value Type Get Command Initial Value Sec Attribute
 ------------------------ ---- ------------ ------------- ----- ---------
 BLEND_SRC Z15 GetIntegerv ONE 4.1.6 color-buffer
 BLEND_DST Z14 GetIntegerv ZERO 4.1.6 color-buffer

NOTE: the only change is that Z13 changes to Z15 an d Z12 changes to Z14

New Implementation Dependent State

 None

NV_conditional_render NVIDIA OpenGL Extension Specifications

 1142

Name

 NV_conditional_render

Name Strings

 GL_NV_conditional_render

Status

 Shipping.

Version

 Last Modified Date: 11/29/2007
 NVIDIA Revision: 2

Number

 Unassigned.

Dependencies

 The extension is written against the OpenGL 2.0 Specification.

 ARB_occlusion_query or OpenGL 1.5 is required.

Overview

 This extension provides support for conditional rendering based on the
 results of an occlusion query. This mechanism allows an application to
 potentially reduce the latency between the comp letion of an occlusion
 query and the rendering commands depending on i ts result. It additionally
 allows the decision of whether to render to be made without application
 intervention.

 This extension defines two new functions, Begin ConditionalRenderNV and
 EndConditionalRenderNV, between which rendering commands may be discarded
 based on the results of an occlusion query. If the specified occlusion
 query returns a non-zero value, rendering comma nds between these calls are
 executed. If the occlusion query returns a val ue of zero, all rendering
 commands between the calls are discarded.

 If the occlusion query results are not availabl e when
 BeginConditionalRenderNV is executed, the <mode > parameter specifies
 whether the GL should wait for the query to com plete or should simply
 render the subsequent geometry unconditionally.

 Additionally, the extension provides a set of " by region" modes, allowing
 for implementations that divide rendering work by screen regions to
 perform the conditional query test on a region- by-region basis without
 checking the query results from other regions. Such a mode is useful for
 cases like split-frame SLI, where a frame is di vided between multiple
 GPUs, each of which has its own occlusion query hardware.

NVIDIA OpenGL Extension Specifications NV_conditional_render

 1143

New Procedures and Functions

 void BeginConditionalRenderNV(uint id, enum mod e);
 void EndConditionalRenderNV(void);

New Tokens

 Accepted by the <mode> parameter of BeginCondit ionalRenderNV:

 QUERY_WAIT_NV 0x8E13
 QUERY_NO_WAIT_NV 0x8E14
 QUERY_BY_REGION_WAIT_NV 0x8E15
 QUERY_BY_REGION_NO_WAIT_NV 0x8E16

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 (Incorporate the spec edits from the EXT_transfo rm_feedback specification
 that move the "Occlusion Queries" Section 4.1.7 -- to between Section 2.11,
 Coordinate Transforms and Section 2.12, Clipping , and rename it to
 "Asynchronous Queries". Insert a new section im mediately after the moved
 "Asynchronous Queries" section. If EXT_transfor m_feedback is incorporated,
 this section should be inserted prior the the "T ransform Feedback"
 section.)

 Section 2.X, Conditional Rendering

 Conditional rendering can be used to discard re ndering commands based on
 the result of an occlusion query. Conditional rendering is started and
 stopped using the commands

 void BeginConditionalRenderNV(uint id, enum mode);
 void EndConditionalRenderNV(void);

 <id> specifies the name of an occlusion query o bject whose results are
 used to determine if the rendering commands are discarded. If the result
 (SAMPLES_PASSED) of the query is zero, all rend ering commands between
 BeginConditionalRenderNV and the corresponding EndConditionalRenderNV
 are discarded. In this case, Begin, End, all v ertex array commands
 performing an implicit Begin and End, DrawPixel s (section 3.6), Bitmap
 (section 3.7), Clear (section 4.2.3), Accum (se ction 4.2.4), CopyPixels
 (section 4.3.3), EvalMesh1, and EvalMesh2 (sect ion 5.1) have no effect.
 The effect of commands setting current vertex s tate (e.g., Color,
 VertexAttrib) is undefined. If the result of t he occlusion query is
 non-zero, such commands are not discarded.

 <mode> specifies how BeginConditionalRenderNV i nterprets the results of
 the occlusion query given by <id>. If <mode> i s QUERY_WAIT_NV, the GL
 waits for the results of the query to be availa ble and then uses the
 results to determine if subsquent rendering com mands are discarded. If
 <mode> is QUERY_NO_WAIT_NV, the GL may choose t o unconditionally execute
 the subsequent rendering commands without waiti ng for the query to
 complete.

 If <mode> is QUERY_BY_REGION_WAIT_NV, the GL wi ll also wait for occlusion
 query results and discard rendering commands if the result of the
 occlusion query is zero. If the query result i s non-zero, subsequent
 rendering commands are executed, but the GL may discard the results of the

NV_conditional_render NVIDIA OpenGL Extension Specifications

 1144

 commands for any region of the framebuffer that did not contribute to the
 sample count in the specified occlusion query. Any such discarding is
 done in an implementation-dependent manner, but the rendering command
 results may not be discarded for any samples th at contributed to the
 occlusion query sample count. If <mode> is QUE RY_BY_REGION_NO_WAIT_NV,
 the GL operates as in QUERY_BY_REGION_WAIT_NV, but may choose to
 unconditionally execute the subsequent renderin g commands without waiting
 for the query to complete.

 If BeginConditionalRenderNV is called while con ditional rendering is in
 progress, or if EndConditionalRenderNV is calle d while conditional
 rendering is not in progress, the error INVALID _OPERATION is generated.
 The error INVALID_VALUE is generated if <id> is not the name of an
 existing query object query. The error INVALID _OPERATION is generated if
 <id> is the name of a query object with a targe t other than
 SAMPLES_PASSED, or <id> is the name of a query currently in progress.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 TBD.

Errors

 INVALID_OPERATION is generated by BeginConditio nalRenderNV if a previous
 BeginConditionalRenderNV command has been execu ted without a
 corresponding EndConditionalRenderNV command.

 INVALID_OPERATION is generated by EndConditiona lRenderNV if no
 corresponding BeginConditionalRenderNV command has been executed.

NVIDIA OpenGL Extension Specifications NV_conditional_render

 1145

 INVALID_VALUE is generated by BeginConditionalR enderNV if <id> is not the
 name of an existing occlusion query object.

 INVALID_OPERATION is generated by BeginConditio nalRenderNV if <id> is the
 name of a query object with a <target> other th an SAMPLES_PASSED.

 INVALID_OPERAITON is generated by BeginConditio nalRenderNV if the query
 identified by <id> is still in progress.

Issues

 (1) How should rendering commands other than "n ormal" Begin/End-style
 geometry be affected by conditional rendering?

 RESOLVED: All rendering commands (DrawPixels , Bitmap, Clear, Accum,
 etc...) are performed conditionally.

 (2) What does NO_WAIT do, and why would anyone care?

 RESOLVED: Hardware OpenGL implementations ar e heavily pipelined. After
 vertices are transformed, they are assembled into primitives and
 rasterized. While a GPU is rasterizing a pri mitive, it may be
 simultaneously transforming the vertices of t he next primitive provided
 to the GL. At the same time, the CPU may be preparing hardware commands
 to process primitives following that one.

 Conditional rendering uses the results of ras terizing one primitive (an
 occlusion query) to determine whether it will process subsequent ones.
 In a pipelined implementation, the initial se t of primitives may not be
 finished drawing by the time the GL needs the occlusion query results.
 Waiting for the query results will leave port ions of the GPU temporarily
 idle. It may be preferable to avoid the idle time by proceeding with a
 conservative assumption that the primitives r endered during the
 occlusion query will hit at least one sample. The NO_WAIT <mode>
 parameter tells the driver move ahead in that case.

 For best performance, applications should att empt to insert some amount
 of non-dependent rendering between an occlusi on query and the
 conditionally-rendered primitives that depend on the query result.

 (3) What does BY_REGION do, and why should anyo ne care?

 RESOLVED: Conditional rendering may be used for a variety of effects.
 Some of these use conditional rendering only for performance. One
 common use would be to draw a bounding box fo r a primitive
 unconditionally with an occlusion query activ e, and then conditionally
 execute a DrawElements call to draw the full (complex) primitive. If
 the bounding box is not visible, any work nee ded to process the full
 primitive can be skipped in the conditional r endering pass.

 In a split-screen SLI implementation, one GPU might draw the top half of
 the scene while a second might draw the botto m half. The results of the
 occlusion query would normally be obtained by combining individual
 occlusion query results from each half of the screen. However, it is
 not necessary to do this for the bounding box algorithm. We could skip
 this synchronization point, and each region c ould instead use only its
 local occlusion query results. If the boundi ng box hits only the bottom

NV_conditional_render NVIDIA OpenGL Extension Specifications

 1146

 half of the screen, the complex primitive nee d not be drawn on the top
 half, because that portion is known not to be visible. The bottom half
 would still be drawn, but the GPU used for th e top half could skip it
 and start drawing the next primitive specifie d. The
 QUERY_BY_REGION_*_NV modes would be useful in that case.

 However, some algorithms may require conditio nal rendering for
 correctness. For example, an application may want to render a
 post-processing effect that should be drawn i f and only if a point is
 visible in the scene. Drawing only half of s uch an effect due to
 BY_REGION tests would not be desirable.

 For QUERY_BY_REGION_NO_WAIT_NV, we expect tha t GL implementations using
 region-based rendering will discard rendering commands in any region
 where query results are available and the reg ion's sample count is zero.
 Rendering would proceed normally in all other regions. The spec
 language doesn't require such behavior, howev er.

 (4) Should the <mode> parameter passed to Begin ConditionalRenderNV be
 specified as a hint instead?

 RESOLVED: The "wait" or "don't wait" portion of the <mode> parameter
 could be a hint. But it doesn't fit nicely w ith the FASTEST or NICEST
 values that are normally passed to Hint. Pro viding this functionality
 via a <mode> parameter to BeginConditionalRen derNV seems to make the
 most sense. Note that the <mode> parameter i s specified such that
 QUERY_NO_WAIT_NV can be implemented as though QUERY_WAIT_NV were
 specified, which makes the "NO_WAIT" part of the mode a hint.

 The "BY_REGION" part is also effectively a hi nt. These modes may be
 implemented as though the equivalent non-BY_R EGION mode were provided.
 Many OpenGL implementations will do all of th eir processing in a single
 region.

 (5) What happens if BeginQuery is called while the specified occlusion
 query is begin used for conditional rendering?

 RESOLVED: An INVALID_OPERATION error is gene rated.

 (6) Should conditional rendering work with any type of query other than
 SAMPLES_PASSED (occlusion)?

 RESOLVED: Not in this extension. The spec c urrently requires that <id>
 be the name of an occlusion query. There mig ht be other query types
 where such an operation would make sense, but there aren't any in the
 current OpenGL spec.

 (7) What is the effect on current state for imm ediate mode attribute calls
 (e.g., Color, VertexAttrib) made during conditi onal rendering if the
 corresponding occlusion query failed?

 RESOLVED: The effect of these calls is undef ined. If subsequent
 primitives depend on a vertex attribute set i nside a conditional
 rendering block, and application should re-se nd the values after
 EndConditionalRenderNV.

NVIDIA OpenGL Extension Specifications NV_conditional_render

 1147

 (8) Should we provide any new query object type s for conditional
 rendering?

 RESOLVED: No. It may be useful to some GL i mplementations to provide
 an occlusion query type that only returns "ze ro" or "non-zero", or to
 provide a query type that is used only for co nditional rendering but
 doesn't have to maintain results that can be returned to the
 application. However, performing conditional rendering using only the
 occlusion query mechanisms already in core Op enGL is sufficient for
 the platforms targeted by this extension.

 (9) What happens if QUERY_BY_REGION_* is used, a nd the application switches
 between windows or FBOs between the occlusion qu ery and conditional
 rendering blocks? The "regions" used for the tw o operations may not be
 identical.

 RESOLVED: The spec language doesn't specifica lly address this issue, and
 implementations may choose to define regions a rbitrarily in this case.

 We strongly recommend that applications using QUERY_BY_REGION_* should
 not change windows or FBO configuration betwee n the occlusion query and
 the dependent rendering.

Usage Example

 GLuint queryID = 0x12345678;

 // Use an occlusion query while rendering the b ounding box of the real
 // object.
 glBeginQuery(GL_SAMPLES_PASSED, queryID);
 drawBoundingBox();
 glEndQuery(GL_SAMPLES_PASSED);

 // Do some unrelated rendering in hope that the query result will be
 // available by the time we call glBeginConditi onalRenderNV.

 // Now conditionally render the real object if any portion of its
 // bounding box is visible.
 glBeginConditionalRenderNV(queryID, GL_QUERY_WA IT_NV);
 drawComplicatedObject();
 glEndConditionalRenderNV();

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 2 11/29/07 ewerness First public release
 1 Internal revisions

NV_copy_depth_to_color NVIDIA OpenGL Extension Specifications

 1148

Name

 NV_copy_depth_to_color

Name Strings

 GL_NV_copy_depth_to_color

Notice

 Copyright NVIDIA Corporation, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.0)

Version

 NVIDIA Date: October 17, 2001 (version 1.0)

Number

 243

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 Requires support for the NV_packed_depth_stenci l extension.

Overview

 Some applications, especially systems for distr ibuted OpenGL
 rendering, would like to have a fast way of cop ying their depth
 buffer into a color buffer; for example, this a llows the depth buffer
 to be scanned out, allowing downstream composit ing operations.

 To do this operation in unextended OpenGL, the app must use
 glReadPixels of GL_DEPTH_COMPONENT data, follow ed by glDrawPixels of
 RGBA data. However, this typically will not pr ovide adequate
 performance.

 This extension provides a way to copy the depth data directly into
 the color buffer, by adding two new options for the "type" parameter
 of glCopyPixels: GL_DEPTH_STENCIL_TO_RGBA_NV an d
 GL_DEPTH_STENCIL_TO_BGRA_NV.

 Typically, OpenGL implementations support many more bits of depth
 precision than color precision per channel. On many PC platforms, it
 is common, for example, to have 24 bits of dept h, 8 bits of stencil,
 and 8 bits of red, green, blue, and alpha.

 In such a framebuffer configuration, the most e ffective way to copy

NVIDIA OpenGL Extension Specifications NV_copy_depth_to_color

 1149

 the data without this extension would be to per form a glReadPixels of
 GL_UNSIGNED_INT_24_8_NV/GL_DEPTH_STENCIL_NV (us ing the existing
 NV_packed_depth_stencil extension), followed by a glDrawPixels of
 GL_UNSIGNED_INT_8_8_8_8/GL_RGBA or GL_BGRA data . This places the
 depth data in the color channels and the stenci l data in the alpha
 channel.

 This extension's new operations concatenates th ese two operations,
 providing a CopyPixels command that does both o f these steps in one.
 This provides a large performance speedup, sinc e no pixel data must
 be transfered across the bus.

Issues

 * Does this spec need a dependency on NV_pack ed_depth_stencil?

 RESOLVED: It doesn't need it, but it does. It makes the spec a
 whole lot easier to write. In theory, this extension can be
 supported without support for NV_packed_dep th_stencil; in
 practice, it is very unlikely that any impl ementation will ever
 support this extension, but not NV_packed_d epth_stencil.

 * Should we support copies to both RGBA and B GRA?

 RESOLVED: Yes. We support this, so there i s no reason not to
 allow users to choose.

 * Should pixel transfer operations, fragment operations, and
 PixelZoom be applied on the new CopyPixels operations?

 RESOLVED: Yes. This is really just a diffe rent source data type
 for a CopyPixels of COLOR data, so, even th ough the typical usage
 case of this extension differs, there is li ttle reason to cripple
 the spec with a nonorthogonality here.

 * What is the interaction with depth testing and stencil testing?

 RESOLVED: They are allowed. This means tha t there are
 read-modify-write hazards with overlapping CopyPixels, but they
 are no worse than with other forms of overl apping CopyPixels; the
 rule remains that (effectively) all source data must be read
 before any fragments are generated.

 That having been said, it is anticipated th at applications would
 turn these off before performing the copy, because they would
 likely impact performance on many implement ations, especially if
 the source and destination regions overlapp ed.

 * Should a mode useful for 16-bit depth buffe rs be supported?

 RESOLVED: No, that seems fairly uninteresti ng.

NV_copy_depth_to_color NVIDIA OpenGL Extension Specifications

 1150

 * What restrictions should apply to the use o f this extension, both
 in terms of the current color buffer format and the current depth
 buffer format?

 RESOLVED: None beyond the requirement that the drawable must have
 both a depth buffer and a stencil buffer. This is similar to the
 behavior chosen in NV_packed_depth_stencil. For example, a
 ReadPixels of DEPTH_STENCIL_NV data is supp orted, even if the
 drawable does not have 24 bits of depth and 8 bits of stencil.
 Although it is not anticipated that this ex tension will be useful
 in other modes, it is specified to work non etheless.

 * What useful things can be done with the ste ncil in the alpha?

 Although it is mostly meaningless to try to blend using the
 stencil, one useful way of using this featu re is to use the alpha
 test. This allows the app to kill certain pixels based on the
 stencil during this operation. The app cou ld clear the color
 buffer first, creating a "background" depth value, and then the
 CopyPixels pass could overwrite that on sel ected pixels.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <type> parameter of CopyPixels:

 DEPTH_STENCIL_TO_RGBA_NV 0x886E
 DEPTH_STENCIL_TO_BGRA_NV 0x886F

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 Update the second, third, and fourth paragraphs of section 4.3.3
 (page 162) to say:

 "<type> is a symbolic constant that must be one of COLOR, STENCIL,
 DEPTH, or DEPTH_STENCIL_NV, indicating that the values to be
 transfered are colors, stencil values, depth va lues, or depth/stencil
 pairs, respectively. The first four arguments h ave the same
 interpretation as the corresponding arguments t o ReadPixels.

 Values are obtained from the framebuffer, conve rted (if appropriate),
 then subjected to the pixel transfer operations described in section
 3.6.5, just as if ReadPixels were called with t he corresponding
 arguments. If the <type> is STENCIL or DEPTH, then it is as if the
 <format> for ReadPixels were STENCIL_INDEX or D EPTH_COMPONENT,

NVIDIA OpenGL Extension Specifications NV_copy_depth_to_color

 1151

 respectively. If the <type> is COLOR, then if the GL is in RGBA
 mode, it is as if the <format> were RGBA, while if the GL is in color
 index mode, it is as if the <format> were COLOR _INDEX. If the <type>
 is any of DEPTH_STENCIL_NV, DEPTH_STENCIL_TO_RG BA_NV, or
 DEPTH_STENCIL_TO_BGRA_NV, it is as if the <form at> were
 DEPTH_STENCIL_NV.

 The groups of elements so obtained are then wri tten to the
 framebuffer just as if DrawPixels had been give n <width> and
 <height>, beginning with final conversion of el ements. The effective
 <format> is the same as that already described, unless <type> is
 DEPTH_STENCIL_TO_RGBA_NV or DEPTH_STENCIL_TO_BG RA_NV. In that case,
 first, the groups of elements are packed into p ixel groups of type
 UNSIGNED_INT_24_8_NV. Then, if <type> is DEPTH _STENCIL_TO_RGBA_NV,
 they are unpacked as if their type was UNSIGNED _INT_8_8_8_8 and
 their format was RGBA, and if <type> is DEPTH_S TENCIL_TO_BGRA_NV,
 they are unpacked as if their type was UNSIGNED _INT_8_8_8_8 and
 their format was BGRA. In either case, the eff ective <format> of the
 pixels to be written to the framebuffer is RGBA ."

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

GLX Protocol

 None.

Errors

 The error INVALID_OPERATION is generated if Cop yPixels is called
 where type is DEPTH_STENCIL_TO_RGBA_NV or DEPTH _STENCIL_TO_BGRA_NV
 and there is not both a depth buffer and a sten cil buffer.

 The error INVALID_OPERATION is generated if Cop yPixels is called
 where type is DEPTH_STENCIL_TO_RGBA_NV or DEPTH _STENCIL_TO_BGRA_NV
 and the GL is in color index mode.

New State

 None.

Revision History

 none yet

NV_depth_buffer_float NVIDIA OpenGL Extension Specifications

 1152

Name

 NV_depth_buffer_float

Name Strings

 GL_NV_depth_buffer_float

Contributors

 Pat Brown
 Mike Strauss

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 8

Number

 334

Dependencies

 OpenGL 2.0 is required.

 ARB_color_buffer_float is required.

 EXT_packed_depth_stencil is required.

 EXT_framebuffer_object is required.

 This extension modifies EXT_depth_bounds_test.

 This extension modifies NV_copy_depth_to_color.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension provides new texture internal fo rmats whose depth
 components are stored as 32-bit floating-point values, rather than the
 normalized unsigned integers used in existing d epth formats.
 Floating-point depth textures support all the f unctionality supported for
 fixed-point depth textures, including shadow ma pping and rendering support
 via EXT_framebuffer_object. Floating-point dep th textures can store
 values outside the range [0,1].

NVIDIA OpenGL Extension Specifications NV_depth_buffer_float

 1153

 By default, OpenGL entry points taking depth va lues implicitly clamp the
 values to the range [0,1]. This extension prov ides new DepthClear,
 DepthRange, and DepthBoundsEXT entry points tha t allow applications to
 specify depth values that are not clamped.

 Additionally, this extension provides new packe d depth/stencil pixel
 formats (see EXT_packed_depth_stencil) that hav e 64-bit pixels consisting
 of a 32-bit floating-point depth value, 8 bits of stencil, and 24 unused
 bites. A packed depth/stencil texture internal format is also provided.

 This extension does not provide support for WGL or GLX pixel formats with
 floating-point depth buffers. The existing (bu t not commonly used)
 WGL_EXT_depth_float extension could be used for this purpose.

New Procedures and Functions

 void DepthRangedNV(double n, double f);
 void ClearDepthdNV(double d);
 void DepthBoundsdNV(double zmin, double zmax);

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D, TexImage2D,
 TexImage3D, CopyTexImage1D, CopyTexImage2D, and RenderbufferStorageEXT,
 and returned in the <data> parameter of GetTexL evelParameter and
 GetRenderbufferParameterivEXT:

 DEPTH_COMPONENT32F_NV 0x8DAB
 DEPTH32F_STENCIL8_NV 0x8DAC

 Accepted by the <type> parameter of DrawPixels, ReadPixels, TexImage1D,
 TexImage2D, TexImage3D, TexSubImage1D, TexSubIm age2D, TexSubImage3D, and
 GetTexImage:

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV 0x8DAD

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BUFFER_FLOAT_MODE_NV 0x8DAF

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.11.1 (Controling the Viewport) , p. 41

 (modify second paragraph) The factor and offset applied to z_d
 encoded by n and f are set using

 void DepthRange(clampd n, clampd f);
 void DepthRangedNV(double n, double f);

 z_w is represented as either fixed-point or flo ating-point
 depending on whether the framebuffer's depth bu ffer uses
 fixed-point or floating-point representation. If the depth buffer
 uses fixed-point representation, we assume that the representation
 used represents each value k/(2^m - 1), where k is in
 {0,1,...,2^m-1}, as k (e.g. 1.0 is represented in binary as a

NV_depth_buffer_float NVIDIA OpenGL Extension Specifications

 1154

 string of all ones). The parameters n and f ar e clamped to [0, 1]
 when using DepthRange, but not when using Depth RangedNV. When n
 and f are applied to z_d, they are clamped to t he range appropriate
 given the depth buffer's representation.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 Modify Section 3.5.5 (Depth Offset), p. 112

 (modify third paragraph) The minimum resolvable difference r is
 an implementation dependent parameter that depe nds on the depth
 buffer representation. It is the smallest diff erence in window
 coordinate z values that is guaranteed to remai n distinct
 throughout polygon rasterization and in the dep th buffer. All
 pairs of fragments generated by the rasterizati on of two polygons
 with otherwise identical vertices, but z_w valu es that differ by r,
 will have distinct depth values.

 For fixed-point depth buffer representations, r is constant
 throughout the range of the entire depth buffer . For
 floating-point depth buffers, there is no singl e minimum resolvable
 difference. In this case, the minimum resolvab le difference for a
 given polygon is dependent on the maximum expon ent, e, in the range
 of z values spanned by the primitive. If n is the number of bits
 in the floating-point mantissa, the minimum res olvable difference,
 r, for the given primitive is defined as

 r = 2^(e - n). (3.11)

 (modify fourth paragraph) The offset value o fo r a polygon is

 o = m * factor + r * units. (3.12)

 m is computed as described above. If the depth buffer uses a
 fixed-point representation, m is a function of depth values in the
 range [0, 1], and o is applied to depth values in the same range.

 (modify last paragraph) For fixed-point depth b uffers, fragment
 depth values are always limited to the range [0 , 1], either by
 clamping after offset addition is performed (pr eferred), or by
 clamping the vertex values used in the rasteriz ation of the
 polygons. Fragment depth values are not clampe d when the depth
 buffer uses a floating-point representation.

 Add a row to table 3.5, p. 128

 type Parameter GL Type Special
 --- -

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV N/A Yes

 Modify Section 3.6.4 (Rasterization of Pixel Re ctangles), p. 128

 (modify second paragraph as updated by EXT_pack ed_depth_stencil)
 ... If the GL is in color index mode and <forma t> is not one of
 COLOR_INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL_EXT,

NVIDIA OpenGL Extension Specifications NV_depth_buffer_float

 1155

 then the error INVALID_OPERATION occurs. If <t ype> is BITMAP and
 <format> is not COLOR_INDEX or STENCIL_INDEX th en the error
 INVALID_ENUM occurs. If <format> is DEPTH_STEN CIL_EXT and <type>
 is not UNSIGNED_INT_24_8_EXT or FLOAT_32_UNSIGN ED_INT_24_8_REV_NV,
 then the error INVALID_ENUM occurs. Some addit ional constraints
 on the combinations of <format> and <type> valu es that are accepted
 are discussed below.

 (modify fifth paragraph of "Unpacking," p 130. as updated by
 EXT_packed_depth_stencil) Calling DrawPixels wi th a <type> of
 UNSIGNED_BYTE_3_3_2, ..., UNSIGNED_INT_2_10_10_ 10_REV, or
 UNSIGNED_INT_24_8_EXT is a special case in whic h all the components
 of each group are packed into a single unsigned byte, unsigned
 short, or unsigned int, depending on the type. If <type> is
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV, the componen ts of each group
 are two 32-bit words. The first word contains the float component.
 The second word contains packed 24-bit and 8-bi t components.

 Add two rows to table 3.8, p. 132

 type Parameter GL Type C omponents Pixel Formats
 --- -------------------

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV N/A 2 DEPTH_STENCIL_EXT

 Add a row to table 3.11, p. 134

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 31 30 29 28 ... 4 3 2 1 0 31 30 29 ... 9 8 7 6 5 ... 2 1 0
 +-------------------------+ +--------------- -----------------+
 | Float Component | | 2nd Component | 1st Component |
 +-------------------------+ +--------------- -----------------+

 (modify last paragraph of "Final Conversion," p . 136) For a depth
 component, an element is processed according to the depth buffer's
 representation. For fixed-point depth buffers, the element is first
 clamped to [0, 1] and then converted to fixed-p oint as if it were a
 window z value (see section 2.11.1, Controling the Viewport).
 Clamping and conversion are not necessary when the depth buffer uses
 a floating-point representation.

 Modify Section 3.8.1 (Texture Image Specificati on), p. 150

 (modify the second paragraph, p. 151, as modifi ed by
 ARB_color_buffer_float) The selected groups are processed exactly
 as for DrawPixels, stopping just before final c onversion. Each R,
 G, B, A, or depth value so generated is clamped based on the
 component type in the <internalFormat>. Fixed- point components
 are clamped to [0, 1]. Floating-point componen ts are clamped to
 the limits of the range representable by their format. 32-bit
 floating-point components are in the standard I EEE float format.
 16-bit floating-point components have 1 sign bi t, 5 exponent bits,
 and 10 mantissa bits. Stencil index values are masked by 2^n-1
 where n is the number of stencil bits in the in ternal format
 resolution (see below). If the base internal f ormat is

NV_depth_buffer_float NVIDIA OpenGL Extension Specifications

 1156

 DEPTH_STENCIL_EXT and <format> is not DEPTH_STE NCIL_EXT, then the
 values of the stencil index texture components are undefined.

 Add two rows to table 3.16, p. 154

 Sized Base R G B A L I D S
 Internal Format InternalFormat bits bits bits bits bits bits bits bits
 --- -------------------------------

 DEPTH_COMPONENT32F_NV DEPTH_COMPONENT f32
 DEPTH32F_STENCIL8_NV DEPTH_STENCIL_EXT f32 8

 Modify Section 3.8.14 (Texture Comparison Modes), p. 185

 (modify second paragraph of "Depth Texture Comp arison Mode," p.
 188) Let D_t be the depth texture value, and R be the interpolated
 texture coordinate. If the texture's internal format indicates a
 fixed-point depth texture, then D_t and R are c lamped to [0, 1],
 otherwise no clamping is performed. The effect ive texture value
 L_t, I_t, or A_t is computed as follows:

 Modify Section 3.11.2 (Shader Execution), p. 19 4

 (modify first paragraph of "Shader Outputs," p, 196, as modified by
 ARB_color_buffer_float) The OpenGL Shading Lang uage specification
 describes the values that may be output by a fr agment shader.
 These are gl_FragColor, gl_FragData[n], and gl_ FragDepth. If
 fragment clamping is enabled, the final fragmen t color values or
 the final fragment data values written by a fra gment shader are
 clamped to the range [0, 1] and then may be con verted to
 fixed-point as described in section 2.14.9. If fragment clamping
 is disabled, the final fragment color values or the final fragment
 data values are not modified. For fixed-point depth buffers the
 final fragment depth written by a fragment shad er is first clamped
 to [0, 1] and then converted to fixed-point as if it were a window
 z value (see section 2.11.1). Clamping and con version are not
 applied for floating-point depth buffers. Note that the depth
 range computation is not applied here.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 (modify third paragraph in the introduction, p. 198, as modified by
 ARB_color_buffer_float) Color buffers consist o f either unsigned
 integer color indices, R, G, B and optionally A unsigned integer
 values, or R, G, B, and optionally A floating-p oint values. Depth
 buffers consist of either unsigned integer valu es of the format
 described in section 2.11.1, or floating-point values. The number
 of bitplanes...

NVIDIA OpenGL Extension Specifications NV_depth_buffer_float

 1157

 Modify Section 4.2.3 (Clearing the Buffers), p. 215

 (modify fourth paragraph)

 The functions

 void ClearDepth(clampd d);
 void ClearDepthdNV(double d);

 are used to set the depth value used when clear ing the depth buffer.
 ClearDepth takes a floating-point value that is clamped to the range
 [0, 1]. ClearDepthdNV takes a floating-point v alue that is not
 clamped. When clearing a fixed-point depth buf fer, the depth clear
 value is clamped to the range [0, 1], and conve rted to fixed-point
 according to the rules for a window z value giv en in section 2.11.1.
 No clamping or conversion are applied when clea ring a floating-point
 depth buffer.

 Modify Section 4.3.1 (Writing to the Stencil Bu ffer), p. 218

 (modify paragraph added by EXT_packed_depth_ste ncil, p. 219)
 If the <format> is DEPTH_STENCIL_EXT, then valu es are taken from
 both the depth buffer and the stencil buffer. If there is no depth
 buffer or if there is no stencil buffer, then t he error
 INVALID_OPERATION occurs. If the <type> parame ter is not
 UNSIGNED_INT_24_8_EXT, or FLOAT_32_UNSIGNED_INT _24_8_NV then the
 error INVALID_ENUM occurs.

 Modify Section 4.3.2 (Reading Pixels), p. 219

 (modify "Conversion of Depth values," p. 222, a s modified by
 EXT_packed_depth_stencil) This step only applie s if <format> is
 DEPTH_COMPONENT or DEPTH_STENCIL_EXT and the d epth buffer uses a
 fixed-point representation. An element taken f rom the depth buffer
 is taken to be a fixed-point value in [0, 1] wi th m bits, where
 m is the number of bits in the depth buffer (se e section 2.11.1).
 No conversion is necessary if <format> is DEPTH _COMPONENT or
 DEPTH_STENCIL_EXT and the depth buffer uses a f loating-point
 representation.

 Add a row to table 4.6, p. 223

 type Parameter Index Mas k
 --- -

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV 2^8-1

 Add a row to table 4.7, p. 224

 type Parameter GL Type C omponent Conversion
 --- -------------------

 FLOAT_32_UNSIGNED_INT_24_8_REV_NV float c = f (depth only)

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

NV_depth_buffer_float NVIDIA OpenGL Extension Specifications

 1158

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify DEPTH_RANGE entry in table 6.9 (Transfor mation State) p. 270

 Init
 Get Value Type Get Command Value Description Sec. Attribute
 ----------- ---- ----------- ----- ------------ ---------- ------ ---------
 DEPTH_RANGE 2xR GetFloatv 0,1 Depth range near & far 2.11.1 viewport

 Modify DEPTH_BOUNDS_EXT entry in table 6.19 (Pi xel Operation) p. 280

 Init
 Get Value Type Get Command Value Descrip tion Sec Attribute
 --------------------- ----------- ----- ------- ----------------- ----- ------------
 DEPTH_BOUNDS_EXT 2xR GetFloatv 0,1 Depth b ounds zmin & zmax 4.1.X depth-buffer

 Modify DEPTH_CLEAR_VALUE entry in table 6.21 (F ramebuffer Control) p. 280

 Init
 Get Value Type Get Command Value Descri ption Sec Attribute
 ----------------- ---- ----------- ---- ------ ------------------ ----- ------------
 DEPTH_CLEAR_VALUE R GetFloatv 1 Depth buffer clear value 4.2.3 depth-buffer

 Add DEPTH_BUFFER_FLOAT_MODE entry to table 6.32 (Implementation Dependent
 Values) p. 293

 Init
 Get Value Type Get Command Value Description Sec Attribute
 ----------------------- ---- ----------- ---- --------------------------- ---- ------------
 DEPTH_BUFFER_FLOAT_MODE B GetBooleanv - True if depth buffer uses a 4 -
 floating-point represnetation

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Dependencies on EXT_depth_bounds_test:

 Modify the definition of DepthBoundsEXT in sect ion 4.1.x Depth
 Bounds Test.

NVIDIA OpenGL Extension Specifications NV_depth_buffer_float

 1159

 Modify section 4.1.x (Depth Bounds Test)

 (modify first paragraph) ...These values are se t with

 void DepthBoundsEXT(clampd zmin, clampd zma x);
 void DepthBoundsdNV(double zmin, double zma x);

 The paramerters to DepthBoundsEXT are clamped t o the range [0, 1].
 No clamping is applied to the parameters of Dep thBoundsdNV. Each
 of zmin and zmax are subject to clamping to the range of the depth
 buffer at the time the depth bounds test is app lied. For
 fixed-point depth buffers, the applied zmin and zmax are clamped to
 [0, 1]. For floating-point depth buffers, the applied zmin and
 zmax are unmodified. If zmin <= Zpixel <= zmax , then the depth
 bounds test passes. Otherwise, the test fails and the fragment is
 discarded. The test is enabled or disabled usi ng Enable or Disable
 using the constant DEPTH_BOUNDS_TEST_EXT. When disabled, it is as
 if the depth bounds test always passes. If zmi n is greater than
 zmax, then the error INVALID_VALUE is generated . The state
 required consists of two floating-point values and a bit indicating
 whether the test is enabled or disabled. In th e initial state,
 zmin and zmax are set to 0.0 and 1.0 respective ly; and the depth
 bounds test is disabled.

Errors

 Modify the following error in the EXT_packed_depth_ stencil
 specification by adding mention of
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 The error INVALID_ENUM is generated if DrawPixe ls or ReadPixels is
 called where format is DEPTH_STENCIL_EXT and ty pe is not
 UNSIGNED_INT_24_8_EXT, or FLOAT_32_UNSIGNED_INT _24_8_REV_NV.

 Modify the following error in the EXT_packed_de pth_stencil
 specification by adding mention of
 FLOAT_32_UNSIGNED_INT_24_8_REV_NV:

 The error INVALID_OPERATION is generated if Dra wPixels or
 ReadPixels is called where type is UNSIGNED_INT _24_8_EXT,
 or FLOAT_32_UNSIGNED_INT_24_8_REV_NV and format is not
 DEPTH_STENCIL_EXT.

 Add the following error to the NV_copy_depth_to _color
 specification:

 The error INVALID_OPERATION is generated if Cop yPixels is called
 where type is DEPTH_STENCIL_TO_RGBA_NV or DEPTH _STENCL_TO_BGRA_NV
 and the depth buffer uses a floating point repr esentation.

New State

 None.

NV_depth_buffer_float NVIDIA OpenGL Extension Specifications

 1160

Issues

 1. Should this extension expose floating-point depth buffers through
 WGL/GLX "pixel formats?"

 RESOLVED: No. The WGL_EXT_depth_float ext ension already provides a
 mechanism for requesting a floating-point d epth buffer.

 2. How does an application access the full ran ge of a floating-point
 depth buffer?

 RESOLVED: New functions have been introduc ed that set existing GL
 state without clamping to the range [0, 1]. These functions are
 DepthRangedNV, ClearDepthdNV, and DepthBoun dsdNV.

 3. Should we add a new state query to determin e if the depth buffer is
 using a floating-point representation?

 RESOLVED: Yes. An application can query DE PTH_FLOAT_MODE_NV to see
 if the depth buffer is using a floating-poi nt representation.

 4. How does polygon offset work with floating- point depth buffers?

 RESOLVED: The third paragraph of section 3 .5.5 (Depth Offset)
 describes the minimum resolvable difference r as "the smallest
 difference in window coordinate z values th at is guaranteed to remain
 distinct throughout polygon rasterization a nd in the depth buffer."
 The polygon offset value o is computed as a function of r. The
 minimum resolvable difference r makes sense for fixed-point depth
 values, and even floating-point depth value s in the range [-1, 1].
 For unclamped floating-point depth values, there is no constant
 minimum resolvable difference -- the minimu m difference necessary to
 change the mantissa of a floating-point val ue by one bit depends on
 the exponent of the value being offset. To remedy this problem, the
 minimum resolvable difference is defined to be relative to the range
 of depth values for the given primitive whe n the depth buffer is
 floating-point.

 5. How does NV_copy_depth_to_color work with fl oating-point depth values?

 RESOLVED: It isn't clear that there is any usefulness to copying the
 data for 32-bit floating-point depth values to a fixed-point color
 buffer. It is even less clear how copying packed data from a
 FLOAT_32_UNSIGNED_24_8_NV depth/stencil buf fer to a fixed-point color
 buffer would be useful or even how it shoul d be implemented. An error
 should be generated if CopyPixels is called where <type> is
 DEPTH_STENCIL_TO_RGBA_NV or DEPTH_STENCIL_T O_BGRA and the depth buffer
 uses a floating-point representation.

 6. Other OpenGL hardware implementations may be capable of supporting
 floating-point depth buffers. Why is this a n NV extension?

 RESOLVED: When rendering to floating-point depth buffers, we expect
 that other implementations may only be capa ble of supporting Z values
 in the range [0,1]. For such implementatio ns, floating-point Z
 buffers do not improve the range of Z value s supported, but do offer

NVIDIA OpenGL Extension Specifications NV_depth_buffer_float

 1161

 increased precision than conventional 24-bi t fixed-point Z buffers,
 particularly around zero.

 This extension was initially proposed as an EXT, but we have changed
 it to an NV extension in the expectation th at an EXT may be offered at
 some point in the not-too-distant future. We expect that the EXT
 could be supported by a larger range of ven dors. NVIDIA would
 continue to support both extensions, where the NV extension could be
 thought of as taking the capability of the EXT version and extending
 it to support Z values outside the range [0 ,1].

Revision History

 None

NV_depth_clamp NVIDIA OpenGL Extension Specifications

 1162

Name

 NV_depth_clamp

Name Strings

 GL_NV_depth_clamp

Notice

 Copyright NVIDIA Corporation, 2001.

Status

 Implemented

Version

 Last Modified Date: $Date: 2002/02/13 $
 NVIDIA Revision: $Revision: #1 $

Number

 260

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

Overview

 Conventional OpenGL clips geometric primitives to a clip volume
 with six faces, two of which are the near and f ar clip planes.
 Clipping to the near and far planes of the clip volume ensures that
 interpolated depth values (after the depth rang e transform) must be
 in the [0,1] range.

 In some rendering applications such as shadow v olumes, it is useful
 to allow line and polygon primitives to be rast erized without
 clipping the primitive to the near or far clip volume planes (side
 clip volume planes clip normally). Without the near and far clip
 planes, rasterization (pixel coverage determina tion) in X and Y
 can proceed normally if we ignore the near and far clip planes.
 The one major issue is that fragments of a pri mitive may extend
 beyond the conventional window space depth rang e for depth values
 (typically the range [0,1]). Rather than disca rding fragments that
 defy the window space depth range (effectively what near and far
 plane clipping accomplish), the depth values ca n be clamped to the
 current depth range.

 This extension provides exactly such functional ity. This
 functionality is useful to obviate the need for near plane capping
 of stenciled shadow volumes. The functionality may also be useful
 for rendering geometry "beyond" the far plane i f an alternative
 algorithm (rather than depth testing) for hidde n surface removal is
 applied to such geometry (specifically, the pai nter's algorithm).
 Similar situations at the near clip plane can b e avoided at the

NVIDIA OpenGL Extension Specifications NV_depth_clamp

 1163

 near clip plane where apparently solid objects can be "seen through"
 if they intersect the near clip plane.

Issues

 Another way to specify this functionality is to describe it in terms
 of generating the equivalent capping geometry t hat would need to be
 drawn at the near or far clip plane to have the same effect as not
 clipping to the near and far clip planes and cl amping interpolated
 depth values outside the window-space depth ran ge. Should the
 functionality be described this way?

 RESOLUTION: No. Describing the functionalit y as capping is
 fairly involved. Eliminating far and near pl ane clipping and
 clamping interpolated depth values to the dep th range is much
 simpler to specify.

 Should depth clamping affect points or just lin e and polygon geometric
 primitives?

 RESOLUTION: All geometric primitives are aff ected by depth
 clamping.

 In the case of points, if you render a point "in front of" the
 near clip plane, it should be rendered with t he zw value min(n,f)
 where n and f are the near and far depth rang e values if depth
 clamping is enabled. Similarly, a point "beh ind" the far clip
 plane should be rendered with the zw value ma x(n,f).

 How should the setting of the raster position f unction when depth
 clamping is enabled?

 RESOLUTION: When setting the raster position , clamp the raster
 position zw to the range [min(n,f),max(n,f)] where n and f are
 the near and far depth range values.

 This rule ensures that the raster position zw will never be outside
 the [0,1] range (because n and far are clampe d to the [0,1] range).
 We specify the raster position to be updated this way because
 otherwise a raster position zw could be speci fied outside the [0,1]
 range when depth clamping is enabled, but the n if depth clamping
 is subsequently disabled, that out-of-range r aster position zw
 could not be written to the depth buffer.

 This semantic can make for some unexpected se mantics that are
 described here. Say that depth clamping is e nabled and the raster
 position is set to point behind the far clip plane such that the
 pre-clamped zw is 2.5. Because depth clampin g is enabled the
 raster position zw is clamped to the current near and far depth
 range values. Say these values are 0.1 and 0 .9. So 2.5 is clamped
 to 0.9.

 Now consider what happens if a bitmap (or ima ge rectangle) is
 rendered with depth testing enabled under var ious situations.
 If depth clamping remains enabled and the dep th range is unchanged,
 the bitmap fragments are generated with a zw of 0.9.

NV_depth_clamp NVIDIA OpenGL Extension Specifications

 1164

 However, if depth range is subsequently set t o 0.2 and 0.8 and
 depth clamping is enabled, the bitmap fragmen ts will have their
 zw depth component clamped to 0.8. But if th e depth range was
 changed to 0.2 and 0.8 but depth range clampe d is disabled, the
 bitmap fragments will have a 0.9 zw depth com ponent since then
 the depth clamping is then not applied.

 What push/pop attrib bits should affect the dep th clamp enable?

 RESOLUTION: GL_ENABLE_BIT and GL_TRANSFORM_B IT.

 How does depth clamping interact with depth rep lace operations (say
 from NV_texture_shader)?

 RESOLUTION: The depth clamp operation occurs as part of the depth
 test so depth clamping occurs AFTER any depth replace operation
 in the pipeline. A depth replace operation c an reassign the
 fragment's zw, but depth clamping if enabled will subsequently
 clamp this new zw.

 Does depth clamping affect read/draw/copy pixel s operations involving
 depth component pixels?

 RESOLUTION: No.

 Does depth clamping occur after polygon offset?

 RESOLUTION: Yes. Depth clamping occurs imme diately before the
 depth test.

 Can fragments with wc<=0 be generated when this extension is supported?

 RESOLUTION: No. The core OpenGL specificati on (section 2.11) is
 worded to allow the possibility of generating fragments where wc<=0.
 These should never be generated when this ext ension is supported.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_CLAMP_NV 0x864F

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 -- Section 2.11 "Clipping"

 Add to the end of the 3rd paragraph:

 "Depth clamping is enabled with the generic Ena ble command and
 disabled with the Disable command. The value o f the argument to
 either command is DEPTH_CLAMP_NV. If depth cla mping is enabled, the

NVIDIA OpenGL Extension Specifications NV_depth_clamp

 1165

 "-wc <= zc <= wc" plane equation are ignored by video volume clipping
 (effectively, there is no near or far plane cli pping)."

 Change the 8th paragraph to indicate that only wc>0 fragments should
 be generated rather than even allowing the posi bility that wc<=0
 fragments may be generated:

 "A line segment or polygon whose vertices have wc values of differing
 signs may generate multiple connected component s after clipping.
 GL implementations are not required to handle t his situation.
 That is, only the portion of the primitive that lies in the region
 of wc>0 should be produced by clipping."

 -- Section 2.12 "Current Raster Position"

 Add to the end of the 4th paragraph:

 "If depth clamping (see section 2.11) is enable d, then raster position
 zw is first clamped as follows. If the raster postition's wc>0,
 then zw is clamped the range [min(n,f),max(n,f)] where n and f are
 the current near and far depth range values (se e section 2.10.1)."

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Framebuffer)

 -- Section 4.1.5 "Depth buffer test"

 Add to the end of the 2nd paragraph:

 "If depth clamping (see section 2.11) is enable d, before the incoming
 fragment's zw is compared, zw must first be cla mped as follows: If the
 fragment's wc>0, then zw is clamped to the rang e [min(n,f),max(n,f)]
 where n and f are the current near and far dept h range values (see
 section 2.10.1)."

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 None

NV_depth_clamp NVIDIA OpenGL Extension Specifications

 1166

Errors

 None

New State

(table 6.7)
Get Value Type Get Command Initial Value D escription Sec Attribute
-------------- ---- ----------- ------------- - ------------- ------ ----------------
DEPTH_CLAMP_NV B IsEnabled False D epth clamping 2.10.2 transform/enable
 o n/off

New Implementation Dependent State

 None

Revision History

 None

NVIDIA OpenGL Extension Specifications NV_evaluators

 1167

Name

 NV_evaluators

Name Strings

 GL_NV_evaluators

Notice

 Copyright NVIDIA Corporation, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: April 13, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_evaluato rs.txt#2 $

Number

 225

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 Assumes support for the ARB_multitexture extens ion.

 NV_vertex_program affects the definition of thi s extension.

Overview

 OpenGL evaluators provide applications with the capability to
 specify polynomial or rational curves and surfa ces using control
 points relative to the Bezier basis. The curve s and surfaces are
 then drawn by evaluating the polynomials provid ed at various values
 for the u parameter of a curve or the (u,v) par ameters of a surface.
 A tensor product formulation is used for the su rfaces.

 For various historical reasons, evaluators have not been
 particularly popular as an interface for drawin g curves and surfaces.
 This extension proposes a new interface for sur faces that provides a
 number of significant enhancements to the funct ionality provided by
 the original OpenGL evaluators.

 Many implementations never optimized evaluators , so applications
 often implemented their own algorithms instead. This extension
 relaxes some restrictions that make it difficul t to optimize
 evaluators.

 Also, new vertex attributes have been added to OpenGL through
 extensions, including multiple sets of texture coordinates, a
 secondary color, a fog coordinate, a vertex wei ght, and others.
 The extensions which added these vertex attribu tes never bothered

NV_evaluators NVIDIA OpenGL Extension Specifications

 1168

 to update the functionality of evaluators, sinc e they were used so
 little in the first place. In turn, evaluators have become more and
 more out of date, making it even less likely th at developers will
 want to use them. Most of the attributes are n ot a big loss, but
 support for multiple sets of texture coordinate s would be absolutely
 essential to developers considering the use of evaluators.

 OpenGL evaluators only support rectangular patc hes, not triangular
 patches. Although triangular patches can be co nverted into
 rectangular patches, direct support for triangu lar patches is likely
 to be more efficient.

 The tessellation algorithm used is too inflexib le for most purposes;
 only the number of rows and columns can be spec ified. Adjacent
 patches must then have identical numbers of row s and columns, or
 severe cracking will occur. Ideally, a number of subdivisions could
 be specified for all four sides of a rectangula r patch and for all
 three of a triangular patch. This extension go es one step further
 and allows those numbers to be specified in flo ating-point, providing
 a mechanism for smoothly changing the level of detail of the surface.

 Meshes evaluated with EvalMesh are required to match up exactly
 with equivalent meshes evaluated with EvalCoord or EvalPoint.
 This makes it difficult or impossible to use op timizations such as
 forward differencing.

 Finally, little attention is given to some of t he difficult problems
 that can arise when multiple patches are drawn. Depending on the
 way evaluators are implemented, and depending o n the orientation of
 edges, numerical accuracy problems can cause cr acks to appear between
 patches with the same boundary control points. This extension makes
 guarantees that an edge shared between two patc hes will match up
 exactly under certain conditions.

Issues

 * Should one-dimensional evaluators be suppor ted?

 RESOLVED: No. This extension is intended f or surfaces only.

 * Should we support triangular patches?

 RESOLVED: Yes. Otherwise, applications wil l have to convert
 them to rectangular patches themselves. We can do this more
 efficiently.

 * What domain should triangular patches be de fined on?

 RESOLVED: (0,0),(1,0),(0,1).

 * What memory layout should we use for triang ular patch control
 points?

 RESOLVED: Both a[i][j], where i+j <= n, and a packed format are
 supported.

NVIDIA OpenGL Extension Specifications NV_evaluators

 1169

 * Is it worth it to have "evaluator objects"?

 RESOLVED: No. We will leave these out for now.

 * Should we support the original evaluators' ability to specify
 a map from an arbitrary (u1,v1) to an arbit rary (u2,v2)?

 RESOLVED: No. Maps will always extend from (0,0) to (1,1)
 and will always be evaluated from (0,0) to (1,1).

 * Should the new interface support an EvalCoo rd-like syntax?

 RESOLVED: No. We are only interested in ev aluating an entire
 mesh at once.

 * Should we support the "mode" parameter to t he existing EvalMesh2,
 which allows the mesh to be tessellated in wireframe or as points?

 RESOLVED: No. We will leave in the paramet er and require that
 it be FILL, though, to leave room for a fut ure extension.

 * Should there be a new interface to specify control points or should
 Map2{fd} be reused?

 RESOLVED: A new interface. There are enoug h changes compared to
 the original evaluators that we can't reuse the old interface
 without causing more problems. For example , the target
 parameter of Map2{fd} is really a cross of target and index
 in MapControlPointsNV, and so it ends up cr eating an excessive
 number of enumerants.

 * How should grids be specified?

 RESOLVED: A MapParameter command. This is better than a new
 MapGrid- style command because it can be ex tended to include
 new parameter types.

 * Should there be any rules about the order o f generation of
 primitives within a single patch?

 RESOLVED: No. The tessellation algorithm i tself is not even
 specified, so it makes no sense to do this. Applications must
 not depend on the order in which the primit ives are drawn.

 * Should the stride for MapControlPointsNV be specified in basic
 machine units (i.e. unsigned bytes) or in f loats/doubles?

 RESOLVED: ubytes. Most of the rest of Open GL (vertex arrays,
 pixel path, etc.) uses ubytes; evaluators a re actually
 inconsistent.

 * How much leeway should implementations be g iven to choose their own
 algorithm for tessellation?

 RESOLVED: The integral tessellation scheme will require a
 specific tessellation of the boundary edges of the patch, but the
 interior tessellation is implementation-spe cific. The fractional

NV_evaluators NVIDIA OpenGL Extension Specifications

 1170

 tessellation scheme will only require a min imum number of segments
 along each edge. In either case, a minimum number of triangles
 for the entire patch is specified.

 * Should there be rules to ensure that the tr iangles will be
 oriented in a consistent fashion?

 RESOLVED: Yes. This is essential for featu res such as backface
 culling to work properly. The rule given e nsures that the
 orientation will be identical to the orient ation used for the
 original evaluators.

 * Should there be a separate MAX_EVAL_ORDER f or rational surfaces?

 RESOLVED: Yes. Rational surfaces require a dditional calculation to
 be done by the implementation, especially i f AUTO_NORMAL is
 enabled. Furthermore, the most useful rati onal surfaces are of low
 order. For example, all the conic sections are quadratic rational
 surfaces.

 * Should there be enables similar to AUTO_NOR MAL that generate
 partials of U (tangents), partials of V, an d/or binormals?

 RESOLVED: No. The application is responsi ble for configuring
 the evaluators appropriately.

 The auto normal functionality is supported because it is fairly
 complicated and was already a core part of OpenGL for evaluators.
 Plus there is already a "normal" vertex att ribute for it to
 automatically generate.

 The partials of U and partials of V are fai rly straightforward
 to evaluate (just take the derivative of th e bivariate polynomial
 in terms of either U or V) plus there is no t a particular vertex
 attribute associated with each of these.

New Procedures and Functions

 void MapControlPointsNV(enum target, uint index , enum type,
 sizei ustride, sizei vs tride,
 int uorder, int vorder,
 boolean packed,
 const void *points)

 void MapParameterivNV(enum target, enum pname, const int *params)
 void MapParameterfvNV(enum target, enum pname, const float *params)

 void GetMapControlPointsNV(enum target, uint in dex, enum type,
 sizei ustride, sizei vstride,
 boolean packed, void *points)

 void GetMapParameterivNV(enum target, enum pnam e, int *params)
 void GetMapParameterfvNV(enum target, enum pnam e, float *params)
 void GetMapAttribParameterivNV(enum target, uin t index, enum pname,
 int *params)
 void GetMapAttribParameterfvNV(enum target, uin t index, enum pname,
 float *params)

NVIDIA OpenGL Extension Specifications NV_evaluators

 1171

 void EvalMapsNV(enum target, enum mode)

New Tokens

 Accepted by the <target> parameter of MapContro lPointsNV,
 MapParameter[if]vNV, GetMapControlPointsNV, Get MapParameter[if]vNV,
 GetMapAttribParameter[if]vNV, and EvalMapsNV:

 EVAL_2D_NV 0x86C 0
 EVAL_TRIANGULAR_2D_NV 0x86C 1

 Accepted by the <pname> parameter of MapParamet er[if]vNV and
 GetMapParameter[if]vNV:

 MAP_TESSELLATION_NV 0x86C 2

 Accepted by the <pname> parameter of GetMapAttr ibParameter[if]vNV:

 MAP_ATTRIB_U_ORDER_NV 0x86C 3
 MAP_ATTRIB_V_ORDER_NV 0x86C 4

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 EVAL_FRACTIONAL_TESSELLATION_NV 0x86C 5

 EVAL_VERTEX_ATTRIB0_NV 0x86C 6
 EVAL_VERTEX_ATTRIB1_NV 0x86C 7
 EVAL_VERTEX_ATTRIB2_NV 0x86C 8
 EVAL_VERTEX_ATTRIB3_NV 0x86C 9
 EVAL_VERTEX_ATTRIB4_NV 0x86C A
 EVAL_VERTEX_ATTRIB5_NV 0x86C B
 EVAL_VERTEX_ATTRIB6_NV 0x86C C
 EVAL_VERTEX_ATTRIB7_NV 0x86C D
 EVAL_VERTEX_ATTRIB8_NV 0x86C E
 EVAL_VERTEX_ATTRIB9_NV 0x86C F
 EVAL_VERTEX_ATTRIB10_NV 0x86D 0
 EVAL_VERTEX_ATTRIB11_NV 0x86D 1
 EVAL_VERTEX_ATTRIB12_NV 0x86D 2
 EVAL_VERTEX_ATTRIB13_NV 0x86D 3
 EVAL_VERTEX_ATTRIB14_NV 0x86D 4
 EVAL_VERTEX_ATTRIB15_NV 0x86D 5

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_MAP_TESSELLATION_NV 0x86D 6
 MAX_RATIONAL_EVAL_ORDER_NV 0x86D 7

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None.

NV_evaluators NVIDIA OpenGL Extension Specifications

 1172

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None.

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None.

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 -- NEW Section 5.7 "General Evaluators"

 "General evaluators are similar to evaluators i n that they can
 be used to evaluate polynomial and rational map pings, but general
 evaluators have several new features that the o riginal evaluators
 do not. First, they support triangular surface s in addition to
 (quadrilateral) tensor product surfaces. Secon d, the tessellation
 can be varied continuously as well as in integr al steps. Finally,
 general evaluators can evaluate all vertex attr ibutes, not just the
 vertex, color, normal, and texture coordinates.

 Several elements of the original evaluators hav e been removed in
 the general evaluators interface. The general evaluators always
 evaluate four components in parallel, whereas t he original evaluators
 might evaluate between 1 and 4 (see the "k" col umn in Table 5.1 on
 page 165). The original evaluators can map on an arbitrary domain
 and can map grids on an arbitrary region, where as the general
 evaluators only use the [0,1] range. Support f or 1D evaluators,
 an EvalCoord-style interface, and the "mode" pa rameter of EvalMesh*
 has also been removed from the general evaluato rs.

 The command

 void MapControlPointsNV(enum target, uint ind ex, enum type,
 sizei ustride, sizei vstride,
 int uorder, int vorde r, boolean packed,
 const void *points);

 specifies control points for a general evaluato r map. target
 is the type of evaluator map and can be either EVAL_2D_NV or
 EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
 register the map will be used to evaluate for; these are the same
 indices used in the GL_NV_vertex_program extens ion. Table X.1
 shows the relationship between these indices an d the conventional
 per-vertex attributes for implementations that do not support
 GL_NV_vertex_program.

NVIDIA OpenGL Extension Specifications NV_evaluators

 1173

Vertex
Attribute Conventional
Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter C ommand Mapping
--------- --------------- ---------------------- ---------------- -----------
-
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoordARB(GL_TE XTURE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoordARB(GL_TE XTURE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoordARB(GL_TE XTURE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoordARB(GL_TE XTURE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoordARB(GL_TE XTURE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoordARB(GL_TE XTURE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoordARB(GL_TE XTURE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoordARB(GL_TE XTURE7_ARB, ...) s,t,r,q

Table X.1: Aliasing of vertex attributes with conv entional per-vertex
parameters.

 type is either FLOAT or DOUBLE. ustride and vs tride are the numbers
 of basic machine units (typically unsigned byte s) between control
 points in the u and v directions. uorder and v order have the same
 meaning they do in the Map2{fd} command. The e rror INVALID_VALUE
 is generated if either uorder or vorder is less than one or greater
 than MAX_EVAL_ORDER. The error INVALID_OPERATI ON is generated if
 target is EVAL_TRIANGULAR_2D_NV and uorder is n ot equal to vorder.

 points is a pointer to an array of control poin ts. If target is
 EVAL_2D_NV, there are uorder*vorder control poi nts in the array,
 and if it is EVAL_TRIANGULAR_2D_NV, there are u order*(uorder+1)/2
 points in the array. If packed is FALSE, contr ol point i,j is
 located

 (ustride)i + (vstride)j

 basic machine units from points. If target is EVAL_2D_NV, i ranges
 from 0 to uorder-1, and j ranges from 0 to vord er-1. If target is
 EVAL_TRIANGULAR_2D_NV, i and j range from 0 to uorder-1, and i+j
 must be less than or equal to uorder-1.

 If packed is TRUE and target is EVAL_2D_NV, con trol point i,j is
 located

 (ustride)(j*uorder + i)

 basic machine units from points. If packed is TRUE and target is
 EVAL_TRIANGULAR_2D_NV, control point i,j is loc ated

 (ustride)(j*uorder + i - j*(j-1)/2)

NV_evaluators NVIDIA OpenGL Extension Specifications

 1174

 basic machine units from points.

 The error INVALID_OPERATION is generated if ind ex is 0, one of the
 control points' fourth components is not equal to 1, and either uorder
 of vorder is greater than MAX_RATIONAL_EVAL_ORD ER_NV.

 The evaluation of a 2D tensor product map is pe rformed in the same
 way as for the original evaluators. The exact coordinates produced
 by the original evaluators may differ from thos e produced by the
 general evaluators, since different algorithms may be used.

 A triangular map may be evaluated as follows. Let Ri,j be the
 4-component vector for control point i,j and n be the degree of the
 patch (i.e. uorder-1). Then:

 \ (n) (n-i) i j n-i-j
 p_t(u,v) = / (i) (j) u v (1-u-v) Ri,j

 i,j >= 0
 i+j <= n

 evaluates the point p_t(u,v) on the triangular patch at parameter
 values (u,v). (The notation on the left indica tes "n choose i" and
 "n minus i choose j", i.e., binomial coefficien ts.)

 The evaluation of any particular attribute can be enabled or disabled
 with Enable and Disable using one of the EVAL_V ERTEX_ATTRIBi_NV
 constants.

 If AUTO_NORMAL is enabled (see section 5.1), an alytically computed
 normals are evaluated as well. The formula for the normal is the same
 as the one in section 5.1, except that the magn itude of the normals is
 undefined. These normals should be renormalize d by enabling NORMALIZE,
 or by normalizing them in a vertex program. Th e w of the normal
 vertex attribute will always be 1.

 The commands

 void MapParameter{if}vNV(enum target, enum pn ame, T params);

 can be used to specify the level of tessellatio n to evaluate,
 where target is EVAL_2D_NV or EVAL_TRIANGULAR_2 D_NV and pname is
 MAP_TESSELLATION_NV. If target is EVAL_2D_NV, params contains the
 four values [nu0,nu1,nv0,nv1], and if it is EVA L_TRIANGULAR_2D_NV,
 params contains the three values [n1,n2,n3]. T he state for each
 target is independent of the other. These valu es are clamped to
 the range [1.0, MAX_MAP_TESSELLATION_NV].

 The use of a fractional tessellation algorithm can be
 enabled or disabled with Enable and Disable usi ng the
 EVAL_FRACTIONAL_TESSELLATION_NV constant. The fractional tessellation
 algorithm allows the tessellation to smoothly m orph without popping
 as the tessellation parameters are varied by sm all amounts.

NVIDIA OpenGL Extension Specifications NV_evaluators

 1175

 The command

 void EvalMapsNV(enum target, enum mode);

 evaluates the currently enabled maps. target i s either EVAL_2D_NV
 or EVAL_TRIANGULAR_2D and specifies which set o f maps to evaluate.
 mode must be FILL. If EVAL_VERTEX_ATTRIB0_NV i s not enabled, the
 error INVALID_OPERATION results.

 If EVAL_FRACTIONAL_TESSELLATION_NV is disabled, tensor product maps
 are evaluated such that the boundaries of the m esh are divided into
 ceil(nu0) segments on the edge from (0,0) to (1 ,0), ceil(nu1) segments
 on the edge from (0,1) to (1,1), ceil(nv0) segm ents on the edge from
 (0,0) to (0,1), and ceil(nv1) segments on the e dge from (1,0) to
 (1,1). These segments must be evaluated at equ al spacings in (u,v)
 parameter space.

 Triangular maps are evaluated such that the bou ndary of the mesh from
 (0,0) to (1,0) has ceil(n1) equally-spaced segm ents, the boundary
 from (1,0) to (0,1) has ceil(n2) equally-spaced segments, and the
 boundary from (0,1) to (0,0) has ceil(n3) equal ly-spaced segments.

 If EVAL_FRACTIONAL_TESSELLATION_NV is enabled, each edge must be
 tessellated with no fewer the number of segment s that would be used in
 the non- fractional case for any values of the tessellation parameters.
 Furthermore, the tessellation of each edge must vary smoothly with the
 parameters; that is, a small change in any or a ll of the parameters
 must cause a small change in the tessellation. Whenever a new vertex
 is introduced into the tessellation, it must be coincident with another
 vertex, and whenever a vertex is removed, it mu st have been coincident
 with a different vertex. The parameter-space p osition of any vertex
 must be a continuous function of the tessellati on parameters.

 The same minimum triangle requirements apply to fractional
 tessellations as to integral tessellations.

 A tensor product patch must always be tessellat ed with no fewer than

 2 * ceil((nu0+nu1)/2) * ceil((nv0+nv1)/2)

 triangles in total.

 A triangular patch must always be tessellated w ith no fewer than

 ceil((n1+n2+n3)/3)^2

 triangles in total.

 If a triangle is formed by evaluating the maps at the three
 coordinates (u1,v1), (u2,v2), and (u3,v3), it m ust be true that

 (u3-u1)*(v2-v1) - (u2-u1)*(v3-v1) >= 0

 to ensure that all triangles in a patch have a consistent
 orientation.

NV_evaluators NVIDIA OpenGL Extension Specifications

 1176

 The current value of any vertex attribute for w hich the evaluation
 of a map is enabled becomes undefined after an EvalMapsNV command.
 If AUTO_NORMAL is enabled, the current normal b ecomes undefined as
 well.

 If AUTO_NORMAL is enabled, the analytically com puted normals take
 precedence over the currently enabled map for v ertex attribute 2
 (the normal).

 To prevent cracks, certain rules must be establ ished for performing
 the evaluations. The goal of these rules is to ensure that no
 matter what order control points are specified in and what the
 tessellation parameters are, so long as the con trol points on any edge
 exactly match the control points of an adjacent edge, and so long as
 the subdivision parameter for that edge is the same for the adjacent
 patch, there will be no cracking artifacts betw een the two patches.
 These requirements are completely independent o f numerical precision.
 In particular, we will require that these share d vertices' positions
 be equal. Furthermore, there must be no cracki ng inside the geometry
 of any patch, and normals must not change in a discontinuous fashion
 so that there are no discontinuities in lightin g or other effects
 that use the normal.

 Let two patches share an edge of equal order (t he order of an edge is
 the order of the patch in that direction for a tensor product patch,
 or the order of the patch for a triangular patc h). Then this edge is
 said to be consistent if all the vertex control points (vertex
 attribute 0) are identical on each edge (althou gh they may be specified
 in the opposite direction, or even in a differe nt coordinate; one may
 an edge in the u direction, and one may be an e dge in the v direction).

 If an edge is consistent, and if each of the tw o patches are
 tessellated with identical tessellation paramet ers for that edge,
 then the vertex coordinates given to vertex pro cessing must be
 exactly equal for each of the vertices.

 The vertex coordinates given to vertex processi ng for the corner
 vertices of any patch must be exactly equal to the values of the
 corner control points of that patch, regardless of the patch's
 order, type, tessellation parameters, the state of the AUTO_NORMAL or
 EVAL_FRACTIONAL_TESSELLATION_NV enables, the co ntrol points, order,
 or enable of any other associated map, or any o ther OpenGL state.

 The vertex coordinates and normals given to ver tex processing for
 any vertex of a patch must be exactly equal eac h time that vertex
 is evaluated during the tessellation of a patch . Since each vertex
 is shared between several triangles in the patc h, any variation in
 these coordinates and normals would result in c racks or lighting
 discontinuities.

 The state required for the general evaluators c onsists of a bit
 indicating whether fractional tessellation is e nabled or disabled, 16
 bits indicating whether the evaluation of each vertex attribute is
 enabled or disabled, four floating-point map te ssellation values for
 tensor product patches, three floating-point ma p tessellation values
 for triangular patches, and a map specification for a tensor product
 patch and a triangular patch for each vertex at tribute. A map

NVIDIA OpenGL Extension Specifications NV_evaluators

 1177

 specification consists of two integers indicati ng the order of the
 map in u and v and a two-dimensional array of v ectors of four
 floating-point values containing the control po ints for that map.
 The initial state of fractional tessellation is disabled. The initial
 state of evaluation of vertex attribute 0 is en abled, and the initial
 state of evaluation for any other vertex attrib ute is disabled. The
 initial value of the tessellation parameters is 1.0. The initial order
 of each map specification is an order of 1 in b oth u and v and a
 single control point of [0,0,0,1]."

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 -- NEW Section 6.1.13 "General Evaluator Queries"

 "The commands

 void GetMapParameterivNV(enum target, enum pn ame, int *params);
 void GetMapParameterfvNV(enum target, enum pn ame, float *params);

 obtain the parameters for a map target. target may be one of
 EVAL_2D_NV or EVAL_TRIANGULAR_2D_NV. pname mus t be MAP_TESSELLATION_NV.
 The map tessellation is placed in params.

 The commands

 void GetMapAttribParameterivNV(enum target, u int index, enum pname,
 int *params);
 void GetMapAttribParameterfvNV(enum target, u int index, enum pname,
 float *params) ;

 obtain parameters for a single map. target may be one of EVAL_2D_NV
 or EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
 register the map is used for evaluating. If pn ame is
 MAP_ATTRIB_U_ORDER_NV, the u order of the map i s placed in params. If
 pname is MAP_ATTRIB_V_ORDER_NV, the v order of the map is placed in
 params.

 The command

 void GetMapControlPointsNV(enum target, uint index, enum type,
 sizei ustride, siz ei vstride, boolean packed,
 void *points);

 obtains the control points of a map. target ma y be one of EVAL_2D_NV
 or EVAL_TRIANGULAR_2D_NV. index is the number of the vertex attribute
 register the map is used for evaluating. type is either FLOAT or
 DOUBLE. ustride and vstride are the numbers of basic machine units
 (typically unsigned bytes) between control poin ts in the u and v
 directions. points is a pointer to an array wh ere the control points
 are to be written. If target is EVAL_2D_NV, th ere are uorder*vorder
 control points in the array, and if it is EVAL_ TRIANGULAR_2D_NV, there
 are uorder*(uorder+1)/2 points in the array. I f packed is FALSE,
 control point i,j is located

 (ustride)i + (vstride)j

 basic machine units from points. If packed is T RUE and target is

NV_evaluators NVIDIA OpenGL Extension Specifications

 1178

 EVAL_2D_NV, control point i,j is located

 (ustride)(j*uorder + i)

 basic machine units from points. If packed is TRUE and target is
 EVAL_TRIANGULAR_2D_NV, control point i,j is loc ated

 (ustride)(j*uorder + i - j*(j-1)/2)

 basic machine units from points. If target is EVAL_2D_NV, i ranges
 from 0 to uorder-1, and j ranges from 0 to vord er-1. If target is
 EVAL_TRIANGULAR_2D_NV, i and j range from 0 to uorder-1, and i+j
 must be less than or equal to uorder-1."

Additions to the GLX Specification

 Nine new GL commands are added.

 The following three rendering commands are sent to the sever
 as part of a glXRender request:

 MapParameterivNV
 2 12+4*n render ing command length
 2 ???? render ing command opcode
 4 ENUM target
 4 ENUM pname
 0x86C2 GL_MAP _TESSELLATION_NV
 n=3 if (ta rget == GL_EVAL_TRIANGULAR_2D_NV)
 n=4 if (ta rget == GL_EVAL_2D_NV)
 else n=0 comman d is erroneous
 4*n LISTofINT32 params

 MapParameterfvNV
 2 12+4*n render ing command length
 2 ???? render ing command opcode
 4 ENUM target
 4 ENUM pname
 0x86C2 GL_MAP _TESSELLATION_NV
 n=3 if (ta rget == GL_EVAL_TRIANGULAR_2D_NV)
 n=4 if (ta rget == GL_EVAL_2D_NV)
 else n=0 comman d is erroneous
 4*n LISTofFLOAT32 params

 EvalMapsNV
 2 12 render ing command length
 2 ???? render ing command opcode
 4 ENUM target
 4 ENUM mode

 The following rendering command is potentially large and can be sent
 in a glXRender or glXRenderLarge request:

 MapControlPointsNV
 2 24+m renderin g command length
 2 ???? renderin g command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 type
 4 INT32 uorder
 4 INT32 vorder
 m (see below) points

 Determine m from the table below; n depends on the target. If the
 target is GL_EVAL_2D_NV, then n = uorder*vo rder. If the target
 is GL_EVAL_TRIANGULAR_2D_NV, then n = uorde r * (uorder+1)/2.
 The points data is packed such that when un packed by the server,

NVIDIA OpenGL Extension Specifications NV_evaluators

 1179

 the value of ustride is 16 for GL_FLOAT typ ed data and 32 for
 GL_DOUBLE typed data.

 type encoding of type type of lists m (bytes)
 --------- ---------------- ------------- ---------
 GL_FLOAT 0x1406 LISTofFLOAT32 n*4
 GL_DOUBLE 0x140A LISTofFLOAT64 n*8

 If the command is encoded in a glXRenderLar ge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 28+m renderin g command length
 4 ???? renderin g command opcode

 The remaining five commands are non-rendering c ommands. These commands
 are sent separately (i.e., not as part of a glX Render or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 GetMapParameterivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetMapParameterfvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NV_evaluators NVIDIA OpenGL Extension Specifications

 1180

 GetMapAttribParameterivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetMapAttribParameterfvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_evaluators

 1181

 GetMapControlPointsNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM type
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m
 4 unused
 4 CARD32 uorder
 4 CARD32 vorder
 12 unused

 if type == 0x1406 (GL_FLOAT) and target == 0x86C0
 (GL_EVAL_2D_NV), m = 4*uorder*vorder an d the packed control
 points follow assuming ustride = 16

 m*4 LISTofFLOAT32 params

 if type == 0x140A (GL_DOUBLE) and targe t == 0x86C0
 (GL_EVAL_2D_NV), m = 4*uorder*vorder an d the packed control
 points follow asssuming ustride = 32

 m*8 LISTofFLOAT64 params

 if type == 0x1406 (GL_FLOAT) and target == 0x86C1
 (GL_EVAL_TRIANGULAR_2D_NV), m = 4*uorde r*(uorder+1)/2 and
 the packed control points follow assumi ng ustride = 16

 m*4 LISTofFLOAT32 params

 if type == 0x140A (GL_DOUBLE) and targe t == 0x86C1
 (GL_EVAL_TRIANGULAR_2D_NV), m = 4*uorde r*(uorder+1)/2 and
 the packed control points follow asssum ing ustride = 32

 m*8 LISTofFLOAT64 params

 otherwise m = 0 and nothing else follow s.

Errors

 The error INVALID_VALUE is generated if MapCont rolPointsNV,
 GetMapControlPointsNV, or GetMapAttribParameter {if}v is called where
 index is greater than 15.

 The error INVALID_VALUE is generated if MapCont rolPointsNV
 or GetMapControlPointsNV is called where ustrid e or vstride is
 negative.

 The error INVALID_VALUE is generated if MapCont rolPointsNV is
 called where uorder or vorder is less than one or greater than
 MAX_EVAL_ORDER.

 The error INVALID_OPERATION is generated if Map ControlPointsNV is
 called where target is EVAL_TRIANGULAR_2D_NV an d uorder is not equal
 to vorder.

 The error INVALID_OPERATION is generated if Map ControlPointsNV is
 called where index is 0, one of the control poi nts' fourth

NV_evaluators NVIDIA OpenGL Extension Specifications

 1182

 components is not equal to 1, and either uorder of vorder is greater
 than MAX_RATIONAL_EVAL_ORDER_NV.

 The error INVALID_OPERATION is generated if Eva lMapsNV is called
 where EVAL_VERTEX_ATTRIB0_NV is disabled.

New State

(add to table 6.22, page 212)

Get Value Type Get C ommand Initial Value Description Sec Attribute
------------------------------- ----------- ----- ------------------- ---------------- ------------ -- ----- ---------
EVAL_FRACTIONAL_TESSELLATION_NV B IsEna bled False fractional 5.7 eval/enable
 tess. enable
EVAL_VERTEX_ATTRIBi_NV Bx16 IsEna bled True if i=0, attrib eval 5.7 eval/enable
 false otherwise enable

EVAL_2D_NV R4x16x8*x8* GetMa pControlPointsNV [0,0,0,1] control poin ts 5.7 -
EVAL_TRIANGULAR_2D_NV R4x16x8*x8* GetMa pControlPoints [0,0,0,1] control poin ts 5.7 -

MAP_TESSELLATION_NV R4,R3 GetMa pParameter*NV all 1.0 level of 5.7 eval
 tessellation

MAP_ATTRIB_U_ORDER_NV Z8*x16x2 GetMa pAttribParameter*NV 1 map order in 5.7 -
 U direction
MAP_ATTRIB_V_ORDER_NV Z8*x16x2 GetMa pAttribParameter*NV 1 map order in 5.7 -
 V direction

New Implementation Dependent State

(add to table 6.24/6.25, page 214)

Get Value Type Get Command M inimum Value Description Sec Attribute
------------------------ ---- ------------ - ------------ ----------- ----- ---------
MAX_MAP_TESSELLATION_NV Z+ GetIntegerv 2 56 maximum level 5.7 -
 of tessellation
MAX_RATIONAL_EVAL_ORDER_NV Z+ GetIntegerv 4 maximum order 5.7 -
 of rational
 surfaces

Revision History

 none yet

NVIDIA OpenGL Extension Specifications NV_fence

 1183

Name

 NV_fence

Name Strings

 GL_NV_fence

Notice

 Copyright NVIDIA Corporation, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Shipping as of June 8, 2000 (version 1.0)
 Shipping as of November, 2003 (version 1.1)

Version

 October 3, 2003 (version 1.1)
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_fence.tx t#13 $

Number

 222

Dependencies

 None

Overview

 The goal of this extension is provide a finer g ranularity of
 synchronizing GL command completion than offere d by standard OpenGL,
 which offers only two mechanisms for synchroniz ation: Flush and Finish.
 Since Flush merely assures the user that the co mmands complete in a
 finite (though undetermined) amount of time, it is, thus, of only
 modest utility. Finish, on the other hand, sta lls CPU execution
 until all pending GL commands have completed. This extension offers
 a middle ground - the ability to "finish" a sub set of the command
 stream, and the ability to determine whether a given command has
 completed or not.

 This extension introduces the concept of a "fen ce" to the OpenGL
 command stream. Once the fence is inserted int o the command stream, it
 can be queried for a given condition - typicall y, its completion.
 Moreover, the application may also request a pa rtial Finish -- that is,
 all commands prior to the fence will be forced to complete until control
 is returned to the calling process. These new mechanisms allow for
 synchronization between the host CPU and the GP U, which may be accessing
 the same resources (typically memory).

NV_fence NVIDIA OpenGL Extension Specifications

 1184

 This extension is useful in conjunction with NV _vertex_array_range
 to determine when vertex information has been p ulled from the
 vertex array range. Once a fence has been test ed TRUE or finished,
 all vertex indices issued before the fence must have been pulled.
 This ensures that the vertex data memory corres ponding to the issued
 vertex indices can be safely modified (assuming no other outstanding
 vertex indices are issued subsequent to the fen ce).

Issues

 Do we need an IsFenceNV command?

 RESOLUTION: Yes. Not sure who would use t his, but it's in there.
 Semantics currently follow the texture obje ct definition --
 that is, calling IsFenceNV before SetFenceN V will return FALSE.

 Are the fences sharable between multiple contex ts?

 RESOLUTION: No.

 Potentially this could change with a subseq uent extension.

 What other conditions will be supported?

 Only ALL_COMPLETED_NV will be supported ini tially. Future extensions
 may wish to implement additional fence cond itions.

 What is the relative performance of the calls?

 Execution of a SetFenceNV is not free, but will not trigger a
 Flush or Finish.

 Is the TestFenceNV call really necessary? How often would this be used
 compared to the FinishFenceNV call (which also flushes to ensure this
 happens in finite time)?

 It is conceivable that a user may use TestF enceNV to decide
 which portion of memory should be used next without stalling
 the CPU. An example of this would be a sce nario where a single
 AGP buffer is used for both static (unchang ed for multiple frames)
 and dynamic (changed every frame) data. If the user has written
 dynamic data to all banks dedicated to dyna mic data, and still
 has more dynamic objects to write, the user would first want to
 check if the first dynamic object has compl eted, before writing
 into the buffer. If the object has not com pleted, instead of
 stalling the CPU with a FinishFenceNV call, it would possibly
 be better to start overwriting static objec ts instead.

 What should happen if TestFenceNV is called for a name before SetFenceNV
 is called?

 We generate an INVALID_OPERATION error, and return TRUE.
 This follows the semantics for texture obje ct names before
 they are bound, in that they acquire their state upon binding.
 We will arbitrarily return TRUE for consist ency.

NVIDIA OpenGL Extension Specifications NV_fence

 1185

 What should happen if FinishFenceNV is called f or a name before
 SetFenceNV is called?

 RESOLUTION: Generate an INVALID_OPERATION error because the
 fence id does not exist yet. SetFenceNV mu st be called to create
 a fence.

 Do we need a mechanism to query which condition a given fence was
 set with?

 RESOLUTION: Yes, use glGetFenceivNV with F ENCE_CONDITION_NV.

 Should we allow these commands to be compiled w ithin display list?
 Which ones? How about within Begin/End pairs?

 RESOLUTION: DeleteFencesNV, FinishFenceNV, GenFencesNV,
 TestFenceNV, and IsFenceNV are executed imm ediately while
 SetFenceNV is compiled. Do not allow any o f these commands
 within Begin/End pairs.

 Can fences be used as a form of performance mon itoring?

 Yes, with some caveats. By setting and tes ting or finishing
 fences, developers can measure the GPU late ncy for completing
 GL operations. For example, developers mig ht do the following:

 start = getCurrentTime();
 updateTextures();
 glSetFenceNV(TEXTURE_LOAD_FENCE, GL_ALL_COMPLETED_NV);
 drawBackground();
 glSetFenceNV(DRAW_BACKGROUND_FENCE, GL_ALL_COMPLETED_NV);
 drawCharacters();
 glSetFenceNV(DRAW_CHARACTERS_FENCE, GL_ALL_COMPLETED_NV);

 glFinishFenceNV(TEXTURE_LOAD_FENCE);
 textureLoadEnd = getCurrentTime();

 glFinishFenceNV(DRAW_BACKGROUND_FENCE);
 drawBackgroundEnd = getCurrentTime();

 glFinishFenceNV(DRAW_CHARACTERS_FENCE);
 drawCharactersEnd = getCurrentTime();

 printf("texture load time = %d\n", textureLoadEnd - start);
 printf("draw background time = %d\n", drawBackgroundEnd - textureLoadEnd);
 printf("draw characters time = %d\n", drawCharacters - drawBackgroundEnd);

 Note that there is a small amount of overhe ad associated with
 inserting each fence into the GL command st ream. Each fence
 causes the GL command stream to momentarily idle (idling the
 entire GPU pipeline). The significance of this idling should
 be small if there are a small number of fen ces and large amount
 of intervening commands.

 If the time between two fences is zero or v ery near zero,
 it probably means that a GPU-CPU synchroniz ation such as a
 glFinish probably occurred. A glFinish is an explicit GPU-CPU
 synchronization, but sometimes implicit GPU -CPU synchronizations
 are performed by the driver.

NV_fence NVIDIA OpenGL Extension Specifications

 1186

 What happens if you set the same fence object t wice?

 The second SetFenceNV clobbers whatever sta tus the fence object
 previously had by forcing the object's stat us to GL_TRUE.
 The completion of the first SetFenceNV's fe nce command placed
 in the command stream is ignored (its compl etion does NOT
 update the fence object's status). The sec ond SetFenceNV sets a
 new fence command in the GL command stream. This second fence
 command will update the fence object's stat us (assuming it is
 not ignored by a subsequent SetFenceNV to t he same fence object).

 What happens to a fence command that is still p ending execution
 when its fence object is deleted?

 The fence command completion is ignored.

New Procedures and Functions

 void GenFencesNV(sizei n, uint *fences);

 void DeleteFencesNV(sizei n, const uint *fences);

 void SetFenceNV(uint fence, enum condition);

 boolean TestFenceNV(uint fence);

 void FinishFenceNV(uint fence);

 boolean IsFenceNV(uint fence);

 void GetFenceivNV(uint fence, enum pname, int * params);

New Tokens

 Accepted by the <condition> parameter of SetFen ceNV:

 ALL_COMPLETED_NV 0x84F2

 Accepted by the <pname> parameter of GetFenceiv NV:

 FENCE_STATUS_NV 0x84F3
 FENCE_CONDITION_NV 0x84F4

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 Add to the end of Section 5.4 "Display Lists"

 "DeleteFencesNV, FinishFenceNV, GenFencesNV, Ge tFenceivNV,
 TestFenceNV, and IsFenceNV are not complied int o display lists but
 are executed immediately."

NVIDIA OpenGL Extension Specifications NV_fence

 1187

 After the discussion of Flush and Finish (Secti on 5.5) add a
 description of the fence operations:

 "5.X Fences

 The command

 void SetFenceNV(uint fence, enum condition);

 creates a fence object named <fence> if one doe s not already exist
 and sets a fence command within the GL command stream. If the named
 fence object already exists, a new fence comman d is set within the GL
 command stream (and any previous pending fence command corresponding
 to the fence object is ignored). Whether or no t a new fence object is
 created, SetFenceNV assigns the named fence obj ect a status of FALSE
 and a condition as set by the condition argumen t. The condition
 argument must be ALL_COMPLETED_NV. Once the fe nce's condition is
 satisfied within the command stream, the corres ponding fence object's
 state is changed to TRUE. For a condition of A LL_COMPLETED_NV,
 this is completion of the fence command and all preceding commands.
 No other state is affected by execution of the fence command.

 A fence's state can be queried by calling the c ommand
 boolean TestFenceNV(uint fence);

 The command

 void FinishFenceNV(uint fence);

 forces all GL commands prior to the fence to sa tisfy the condition
 set within SetFenceNV, which, in this spec, is always completion.
 FinishFenceNV does not return until all effects from these commands
 on GL client and server state and the framebuff er are fully realized.

 The fence must first be created before it can b e used. The command

 void GenFencesNV(sizei n, uint *fences);

 returns n previously unused fence names in fenc es. These names
 are marked as used, for the purposes of GenFenc esNV only, but acquire
 boolean state only when they have been set.

 Fences are deleted by calling

 void DeleteFencesNV(sizei n, const uint *fenc es);

 fences contains n names of fences to be deleted . After a fence is
 deleted, it has no state, and its name is again unused. Unused names
 in fences are silently ignored.

 If the fence passed to TestFenceNV or FinishFen ceNV is not the name
 of a fence, the error INVALID_OPERATION is gene rated. In this case,
 TestFenceNV will return TRUE, for the sake of c onsistency.

 State must be maintained to indicate which fenc e integers are
 currently used or set. In the initial state, n o indices are in use.
 When a fence integer is set, the condition and status of the fence

NV_fence NVIDIA OpenGL Extension Specifications

 1188

 are also maintained. The status is a boolean. The condition is
 the value last set as the condition by SetFence NV.

 Once the status of a fence has been finished (v ia FinishFenceNV)
 or tested and the returned status is TRUE (via either TestFenceNV
 or GetFenceivNV querying the FENCE_STATUS_NV), the status remains
 TRUE until the next SetFenceNV of the fence."

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 Insert new section after Section 6.1.10 "Minmax Query"

 "6.1.11 Fence Query

 The command

 boolean IsFenceNV(uint fence);

 return TRUE if texture is the name of a fence. If fence is not the
 name of a fence, or if an error condition occur s, IsFenceNV returns
 FALSE. A name returned by GenFencesNV, but not yet set via SetFenceNV,
 is not the name of a fence.

 The command

 void GetFenceivNV(uint fence, enum pname, int *params)

 obtains the indicated fence state for the speci fied fence in the array
 params. pname must be either FENCE_STATUS_NV o r FENCE_CONDITION_NV.
 The INVALID_OPERATION error is generated if the named fence does
 not exist."

Additions to the GLX Specification

 None

GLX Protocol

 Seven new GL commands are added.

 The following two rendering commands are sent t o the sever as part
 of a glXRender request:

 SetFenceNV
 2 12 rendering c ommand length
 2 4143 rendering c ommand opcode
 4 CARD32 fence
 4 CARD32 condition

NVIDIA OpenGL Extension Specifications NV_fence

 1189

 The remaining five commands are non-rendering c ommands. These
 commands are sent separately (i.e., not as part of a glXRender or
 glXRenderLarge request), using the glXVendorPri vateWithReply request:

 DeleteFencesNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 1276 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 fences

 GenFencesNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1277 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 fences

 IsFenceNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1278 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused

NV_fence NVIDIA OpenGL Extension Specifications

 1190

 TestFenceNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1279 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 fence
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused

 GetFenceivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1280 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 fence
 4 CARD32 pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 FinishFenceNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1312 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 fence
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 24 unused

NVIDIA OpenGL Extension Specifications NV_fence

 1191

Errors

 INVALID_VALUE is generated if GenFencesNV param eter <n> is negative.

 INVALID_VALUE is generated if DeleteFencesNV pa rameter <n> is negative.

 INVALID_OPERATION is generated if the fence use d in TestFenceNV or
 FinishFenceNV is not the name of a fence.

 INVALID_ENUM is generated if the condition used in SetFenceNV
 is not ALL_COMPLETED_NV.

 INVALID_OPERATION is generated if any of the co mmands defined in
 this extension is executed between the executio n of Begin and the
 corresponding execution of End.

 INVALID_OPERATION is generated if the named fen ce in GetFenceivNV
 does not exist.

 INVALID_VALUE is generated if DeleteFencesNV or GenFencesNV are
 called where n is negative.

New State

Table 6.X. Fence Objects.

Get value Type Get command Initial val ue Description Section Attrib ute
------------------ ---- ------------ ----------- ----------------- --------------- ------- ------ ---
FENCE_STATUS_NV B GetFenceivNV determined by 1st SetFenceNV Fence status 5.X -
FENCE_CONDITION_NV Z1 GetFenceivNV determined by 1st SetFenceNV Fence condition 5.X -

New Implementation Dependent State

 None

GeForce Implementation Details

 This section describes implementation-defined l imits for GeForce:

 SetFenceNV calls are not free. They should be used prudently,
 and a "good number" of commands should be s ent between calls to
 SetFenceNV. Each fence insertion will caus e the GPU's command
 processing to go momentarily idle. Testing or finishing a fence
 may require an one or more somewhat expensi ve uncached reads.

 Do not leave a fence untested or unfinished for an extremely large
 interval of intervening fences. If more th an approximately 2
 billion (specifically 2^31-1) intervening f ences are inserted into
 the GL command stream before a fence is tes ted or finished, said
 fence may indicate an incorrect status. No te that certain GL
 operations involving display lists, compile d vertex arrays, and
 textures may insert fences implicitly for i nternal driver use.

 In practice, this limitation is unlikely to be a practical
 limitation if fences are finished or tested within a few frames
 of their insertion into the GL command stre am.

NV_fence NVIDIA OpenGL Extension Specifications

 1192

Revision History

 November 13, 2000 - GLX enumerant values assign ed

 October 3, 2003 - Changed version to 1.1. glFi nishFenceNV should
 not be compiled into display lists but rather e xecuted immediately
 when called during display list construction. Version 1.0 allowed
 this though it should not have been allowed. C hanged GLX protocol
 so that FinishFenceNV is a non-render request w ith a reply now.
 Thanks to Bob Beretta for noticing this issue.

 Also fix a typo in the GLX protocol specificati on for IsFenceNV so
 the reply is 32 (not 33) bytes.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1193

Name

 NV_float_buffer

Name Strings

 GL_NV_float_buffer
 WGL_NV_float_buffer

Notice

 Copyright NVIDIA Corporation, 2001-2003.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified: $Date: 2003/06/16 $
 NVIDIA Revision: Revision: #16

Number

 281

Dependencies

 Written based on the wording of the OpenGL 1.3 specification and the
 WGL_ARB_pixel_format extension specification.

 The following extensions are required:
 * NV_fragment_program
 * NV_texture_rectangle
 * WGL_ARB_pixel_format
 * WGL_ARB_render_texture
 * WGL_NV_render_texture_rectangle

 EXT_paletted_texture trivially affects the defi nition of this extension.

 SGIX_depth_texture trivially affects the defini tion of this extension.

 NV_texture_shader trivially affects the definit ion of this extension.

 NV_half_float trivially affects the definition of this extension.

Overview

 This extension builds upon NV_fragment_program to provide a framebuffer
 and texture format that allows fragment program s to read and write
 unconstrained floating point data.

 In unextended OpenGL, most computations dealing with color or depth
 buffers are typically constrained to operate on values in the range [0,1].
 Computational results are also typically clampe d to the range [0,1].

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1194

 Color, texture, and depth buffers themselves al so hold values mapped to
 the range [0,1].

 The NV_fragment_program extension provides a ge neral computational model
 that supports floating-point numbers constraine d only by the precision of
 the underlying data types. The quantites compu ted by fragment programs do
 not necessarily correspond in number or in rang e to conventional
 attributes such as RGBA colors or depth values. Because of the range and
 precision constraints imposed by conventional f ixed-point color buffers,
 it may be difficult (if not impossible) to use them to implement certain
 multi-pass algorithms.

 To enhance the extended range and precision ava ilable through fragment
 programs, this extension provides floating-poin t RGBA color buffers that
 can be used instead of conventional fixed-point RGBA color buffers. A
 floating-point RGBA color buffer consists of on e to four floating-point
 components stored in the 16- or 32-bit floating -point formats (fp16 or
 fp32) defined in the NV_half_float and NV_fragm ent_program extensions.

 When a floating-point color buffer is used, the results of fragment
 programs, as written to the "x", "y", "z", and "w" components of the
 o[COLR] or o[COLH] output registers, are writte n directly to the color
 buffer without any clamping or modification. C ertain per-fragment
 operations are bypassed when rendering to float ing-point color buffers.

 A floating-point color buffer can also be used as a texture map, either by
 reading back the contents and then using conven tional TexImage calls, or
 by using the buffer directly via the ARB_render _texture extension.

 This extension has many uses. Some possible us es include:

 (1) Multi-pass algorithms with arbitrary in termediate results that
 don't have to be artifically forced int o the range [0,1]. In
 addition, intermediate results can be w ritten without having to
 worry about out-of-range values.

 (2) Deferred shading algorithms where an ex pensive fragment program is
 executed only after depth testing is fu lly complete. Instead, a
 simple program is executed, which store s the parameters necessary
 to produce a final result. After the e ntire scene is rendered, a
 second pass is executed over the entire frame buffer to execute
 the complex fragment program using the results written to the
 floating-point color buffer in the firs t pass. This will save the
 cost of applying complex fragment progr ams to fragments that will
 not appear in the final image.

 (3) Use floating-point texture maps to eval uate functions with
 arbitrary ranges. Arbitrary functions with a finite domain can be
 approximated using a texture map holdin g sample results and
 piecewise linear approximation.

 There are several significant limitations on th e use of floating-point
 color buffers. First, floating-point color buf fers do not support frame
 buffer blending. Second, floating-point textur e maps do not support
 mipmapping or any texture filtering other than NEAREST. Third,
 floating-point texture maps must be 2D, and mus t use the
 NV_texture_rectangle extension.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1195

Issues

 Should the extension create a separate non-RGBA pixel formats or simply
 extend existing RGBA formats?

 RESOLVED: Extend existing RGBA formats. S ince fragment programs
 generally build on RGBA semantics, it's cle aner to avoid creating a
 separate "XYZW" mode. There are several sp ecial semantics that need
 to be added: clear color state is now not clamped, and ReadPixels
 will clamp to [0,1] only if the source data comes from fixed-point
 color buffers.

 Fragment programs can be written that store data completely unrelated
 to color into a floating-point "RGBA" buffe r.

 Can floating-point color buffers be displayed? If so, how?

 RESOLVED: Not in this extension. Floating -point color buffers can be
 used only as pbuffers. Hardware necessary to display floating-point
 color buffers would be expensive and consum e significant memory
 bandwidth.

 Is it possible to encode more than four distinc t values in a
 floating-point color buffer?

 RESOLVED: Yes. The NV_fragment_program ex tension contains pack and
 unpack instructions (PK2H, PK2US, PK4B, PK4 UB, PK4UBG, UP2H, UP2US,
 UP4B, UP4UB, UP4UBG) that allow fragment pr ograms to encode multiple
 values into a single 32-bit component. In particular, it is possible
 to pack two half-precision floats, two norm alized unsigned shorts, or
 four normalized signed or unsigned bytes in to a single 32-bit
 component.

 A program can use a pack instruction to pac k multiple values into a
 single 32-bit component and then write the resulting component to a
 floating-point color buffer with 32-bit com ponents. On a subsequent
 rendering pass, a program can read back the stored data (using texture
 mapping) and use the equivalent unpack inst ruction to restore the
 original values. The only data lost in thi s process comes from the
 loss of precision or clamping in the packin g operation, where the
 original values are converted to data types with lower precision or a
 smaller data range.

 What happens when rendering to an floating-poin t color buffer if fragment
 program mode is disabled? Or when fragment pro gram mode is enabled, but
 no program is loaded?

 RESOLVED: Fragment programs are required t o use floating-point color
 buffers. An INVALID_OPERATION error is gen erated by any GL command
 that generates fragments if FRAGMENT_PROGRA M_NV is disabled. The same
 behavior already exists for conventional fr ame buffers if
 FRAGMENT_PROGRAM_NV is enabled but the boun d fragment program is
 invalid.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1196

 Should alpha test be supported with floating-po int color buffers?

 RESOLVED: No. It is trivial to implement an alpha test in a fragment
 program using the KIL instruction, which re quires no dedicated frame
 buffer logic.

 Should blending be supported with floating-poin t color buffers?

 RESOLVED: Not in this extension. While bl ending would clearly be
 useful, full-precision floating-point blend ers are expensive. In
 addition, a computational model more genera l than traditional blending
 (with its 1-x operations and clamping) is d esirable. The traditional
 OpenGL blending model would not be the most suitable computational
 model for future blend-enabled floating-poi nt color buffers.

 An alternative to conventional blending (op erating at a coarser
 granularity) is to (1) render a pass into t he color buffer, (2) bind
 the color buffer as a texture rectangle usi ng this extension and
 ARB_render_texture, (3) perform texture loo kups in a fragment program
 using the TEX instruction with f[WPOS].xy a s a 2D texture coordinate,
 and (4) perform the necessary blending betw een the passes using the
 same fragment program.

 Should we provide accumulation buffers for pixe l formats with
 floating-point color buffers?

 RESOLVED: No. Accumulation operations con tents can be achieved using
 fragment programs to perform the accumulati on, which requires no
 dedicated frame buffer logic.

 Should fragment program color results be conver ted to match the format of
 the frame buffer, or should an error result? F or example, what if we
 write to o[COLR] but have a 16-bit frame buffer ?

 RESOLVED: Conversions can be performed sim ply in hardware, so no
 error semantics are required. This mechani sm also allows the same
 programs to be shared between contexts with different pixel formats.

 Applications should be aware that if color components contain packed
 data, a data type mismatch may result in a floating-point data
 conversion that corrupts the packed data.

 How should floating-point color buffers interac t with multisampling? For
 normal color buffers, the multiple samples for each pixel are required to
 be filtered down to a single pixel in the color buffer. Similar filtering
 on floating-point color buffers does not necess arily make sense. Should
 there even be a normal color buffer in this cas e?

 RESOLVED: The initial implementation of th is extension does not
 provide floating-point color buffers that s upport multisampling.

 Multisample fragment operations (e.g., SAMP LE_COVERAGE) are explicitly
 not supported by extension. This extension does not modify the
 portion of the spec where multiple samples are resolved to a single
 color value. So if floating-point color bu ffers were provided, the
 multiple samples are filtered down to a sin gle result value, most
 likely by computing a per-component average value.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1197

 Conventional RGBA primitive antialiasing multip lies coverage by the alpha
 component of the fragment's color, with the ass umption that alpha blending
 will be performed. How does antialiasing work with floating-point color
 buffers?

 RESOLVED: It doesn't. The computed covera ge is not accessible to
 fragment programs and is discarded. Note a lso that conventional
 antialiasing requires alpha blending, which does not work for
 floating-point color buffers.

 What are the semantics for ReadPixels when usin g an floating-point color
 buffer?

 RESOLVED: ReadPixels from a floating-point color buffer works like
 any other RGBA read, except that the final results are not clamped to
 the range [0,1]. This ensures that we can save and restore
 floating-point color buffers using ReadPixe ls/DrawPixels.

 What are the semantics for Bitmap when using an floating-point color
 buffer?

 RESOLVED: Bitmap generates fragments using the current raster
 attributes, which are then passed to fragme nt programs like any other
 fragments. Bitmaps will be drawn using the color of the current
 raster position, whose components are clamp ed to [0,1] when the raster
 position is sent.

 What are the semantics for DrawPixels when usin g a floating-point color
 buffer? How about CopyPixels?

 RESOLVED: DrawPixels generates fragments w ith the originally
 specified color values; components are not clamped to [0,1]. For
 fixed-point color buffers, DrawPixels will generate fragments with
 clamped color components.

 CopyPixels is defined in the spec as a Read Pixels followed by a
 DrawPixels, and will operate similarly.

 This mechanism allows applications to write floating-point data
 directly into a floating-point color buffer without any clamping.
 Since DrawPixels and CopyPixels generate fr agments and fragment
 programs are required to render to floating -point color buffers, a
 fragment program is still required to load a floating-point color
 buffer using DrawPixels.

 What are the semantics for Clear when using an floating-point color
 buffer?

 RESOLVED: Clears work as normal, except th at values outside the range
 [0,1] can be written to the color buffer. The core spec is modified
 so that clear color values are not clamped to [0,1]. Instead, for
 fixed-point color buffers, clear colors are clamped to [0,1] at clear
 time.

 For compatibility with conventional OpenGL, queries of
 CLEAR_COLOR_VALUE will clamp components to [0,1]. A separate

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1198

 FLOAT_CLEAR_COLOR_VALUE_NV query is added t o query unclamped color
 clear values.

 Why don't floating-point textures support filte ring? What can be done to
 achieve texture filtering?

 RESOLVED: Extended OpenGL texture filterin g (including mipmapping and
 support for anisotropic filters) is very co mputationally expensive.
 Even simple linear filtering for floating-p oint textures with large
 components is expensive.

 Linear filters can be implemented in fragme nt programs by doing
 multiple lookups into the same texture. Si nce fragment programs allow
 the use of arbitrary coordinates into arbit rary texture maps, this
 type of operation can be easily done.

 A 1D linear filter can be implemented using an nx1 texture rectangle
 with the following (untested) fragment prog ram, assuming the 1D
 coordinate is in f[TEX0].x:

 ADDR H2.xy, f[TEX0].x, {0.0, 1.0};
 FRCH H3.x, R1.x; # compute the blend factor
 TEX H0, H2.x, TEX0, RECT; # lookup 1 st sample
 TEX H1, H2.y, TEX0, RECT; # lookup 2 nd sample
 LRPH H0, H3.x, H1, H0; # blend

 A 2D linear filter can be implemented simil arly, assuming the 2D
 coordinate is in f[TEX0].xy:

 ADDH H2, f[TEX0].xyxy, {0.0, 0.0, 1.0, 1.0};
 FRCH H3.xy, H2.xyxy; # base wei ghts
 ADDH H3.zw, 1.0, -H3.xyxy; # 1-base w eights
 MULH H3, H3.xzxz, H3.yyww; # bilinear filter weights
 TEX H1, R2.xyxy, TEX0, RECT; # lookup 1 st sample
 MULH H0, H1, H3.x; # blend
 TEX H1, R2.zyzy, TEX0, RECT; # lookup 2 nd sample
 MADH H0, H1, H3.y, H0; # blend
 TEX H0, R2.xwxw, TEX0, RECT; # lookup 3 rd sample
 MADH H0, H1, H3.z, H0; # blend
 TEX H1, R2.zwzw, TEX0, RECT; # lookup 4 th sample
 MADH H0, H1, H3.w, H0; # blend

 Fragment programs can be used to perform mo re-or-less arbitrary
 filtering using similar methods, and the DD X and DDY instructions can
 be used to refine the shape of the filter.

 Why must the NV_texture_rectangle extension be used in order to use
 floating-point texture maps?

 RESOLVED: On many graphics hardware platfo rms, texture maps are
 stored using a special memory encodings des igned to optimize rendering
 performance. In current hardware, conventi onal texture maps usually
 top out at 32 bits per texel. The logic re quired to encode and decode
 128-bit texels (and frame buffer pixels) op timally is substantially
 more complex.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1199

 What happens if you try to use an floating-poin t texture without a
 fragment program?

 RESOLVED: No error is generated, but that texture is effectively
 disabled. This is similar to the behavior if an application tried to
 use a normal texture having an inconsistent set of mipmaps.

 How does NV_float_buffer interact with the Open GL 1.2 imaging subset?

 RESOLVED: The imaging subset as specified should work properly with
 floating-point color buffers, but is not mo dified by this extension.
 There are imaging operations (e.g., color t ables, histograms) that
 expect the components they operate on to be in the range [0,1], and
 this extension makes no attempt to extend s uch functionality.

 How does NV_float_buffer interact with SGIS_gen erate_mipmap?

 RESOLVED: Since this extension supports on ly texture rectangles
 (which have no mipmaps), this issue is moot .

 In the general case, mipmaps should be gene rated using an appropriate
 downsample filter, where floating-point com ponent values are averaged.
 Components should not be clamped during any such mipmap generation.

 What is the deal with the names of the clear co lor query tokens?

 RESOLVED: The "normal" OpenGL clear color (clamped to [0,1]) is
 queried using the token COLOR_CLEAR_VALUE. This extension provides a
 new query for unclamped values, using the t oken
 FLOAT_CLEAR_COLOR_VALUE_NV. Notice that "C LEAR" and "COLOR" are
 reversed due to a mistake made when the spe c was first written. This
 spec lists the core query token, and origin ally had "CLEAR" and
 "COLOR" reversed there, too.

 Then again, the core specification is incon sistent since the queried
 state is set by calling glClearColor(), wit h "Clear" before "Color".

 What performance issues exist with this functio nality?

 See the "NV3x Implementation Issues" sectio n of the
 specification.

 How should the texture border color (values) be handled for float
 textures?

 RESOLVED: Clamp the texture border color (values) to [0,1]
 when sampling a float texture's border. In core OpenGL 1.0, the
 texture border color components are clamped to the range [01,].
 The NV_texture_shader extension added suppo rt for signed texture
 components. We decided to provide GL_TEXTU RE_BORDER_VALUES as
 a way of specifying a version of the textur e border color whose
 components were not clamped to [0,1] when s et. This was to
 provide a way of specifying negative textur e border components.

 In practice, that has not proven particular ly useful. No real
 applications are known to have specified ne gative texture border
 values components.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1200

 Ideally, the unclamped GL_TEXTURE_BORDER_VA LUES state could
 provide an unclamped (unmassaged) set of fl oating-point color
 components for the texture border color. T his requires an
 additional 96 bits of state per texture uni t to support this,
 and based on the experience with NV_texture _shader's support for
 texture border values outside the [0,1] ran ge, it is simply not
 worth it.

 For compatibility with the NV_texture_shade r extension, we
 provide language saying that floating-point textures clamp
 the components of the TEXTURE_BORDER_VALUES vector [0,1] when
 sampling the border color.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D and
 CopyTexImage2D:

 FLOAT_R_NV 0x8880
 FLOAT_RG_NV 0x8881
 FLOAT_RGB_NV 0x8882
 FLOAT_RGBA_NV 0x8883
 FLOAT_R16_NV 0x8884
 FLOAT_R32_NV 0x8885
 FLOAT_RG16_NV 0x8886
 FLOAT_RG32_NV 0x8887
 FLOAT_RGB16_NV 0x8888
 FLOAT_RGB32_NV 0x8889
 FLOAT_RGBA16_NV 0x888A
 FLOAT_RGBA32_NV 0x888B

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_FLOAT_COMPONENTS_NV 0x888C

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 FLOAT_CLEAR_COLOR_VALUE_NV 0x888D
 FLOAT_RGBA_MODE_NV 0x888E

 Accepted in the <piAttributes> array of wglGetP ixelFormatAttribivARB and
 wglGetPixelFormatAttribfvARB and in the <piAttr ibIList> and
 <pfAttribFList> arrays of wglChoosePixelFormatA RB:

 WGL_FLOAT_COMPONENTS_NV 0x20B0
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV 0x20B1
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV 0x20B2
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV 0x20B3
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV 0x20B4

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1201

 Accepted in the <piAttribIList> array of wglCre atePbufferARB and returned
 in the <value> parameter of wglQueryPbufferARB when <iAttribute> is
 WGL_TEXTURE_FORMAT_ARB:

 WGL_TEXTURE_FLOAT_R_NV 0x20B5
 WGL_TEXTURE_FLOAT_RG_NV 0x20B6
 WGL_TEXTURE_FLOAT_RGB_NV 0x20B7
 WGL_TEXTURE_FLOAT_RGBA_NV 0x20B8

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (modify first paragraph of "Final Conversion", p. 102) ... For RGBA
 components, the final conversion depends on the format of the color
 buffer. If the components of the color buffer are fixed-point, each
 element is clamped to [0,1] and converted to fi xed-point according to the
 rules given in section 2.13.9 (Final Color Proc essing). If the components
 of the color buffer are floating-point, the ele ments are not modified.

 Modify Section 3.8.1, Texture Image Specificati on (p. 116)

 (modify last paragaph, p. 116) The selected gro ups are processed exactly
 as for DrawPixels stopping just before final co nversion. For textures
 with fixed-point RGBA internal formats, each R, G, B, A component is
 clamped to [0,1].

 (modify first paragraph, p. 117) Components are then selected from the
 resulting pixel groups to obtain a texture with the base internal format
 specified by (or derived from) <internalformat> . Table 3.15 summarizes
 the mapping of pixel group values to texture co mponents, ...

 (add to end of first paragraph, p. 117) Specify ing a value of <format>
 incompatible with <internalformat> produces the error INVALID_OPERATION.
 A pixel format and texture internal format are compatible if the pixel
 format can generate a pixel group of the type l isted in the "Pixel Group
 Type" column of Table 3.15 in the row correspon ding to the base internal
 format.

 (add between first and second paragraphs, p.117) Textures with a base
 internal format of FLOAT_R_NV, FLOAT_RG_NV, FLO AT_RGB_NV, and
 FLOAT_RGBA_NV are known as floating-point textu res. Floating-point
 textures are only supported for the TEXTURE_REC TANGLE_NV target.
 Specifying an floating-point texture with any o ther target will produce an
 INVALID_OPERATION error.

 (modify last paragraph, p. 117) The internal co mponent resolution is the
 number of bits allocated to each component in a texture image. If
 internalformat is specified as a base internal format, the GL stores the
 resulting texture with internal component resol utions of its own choosing.
 If a sized internal format is specified, the me mory allocation per texture
 component is assigned by the GL to match the al locations listed in Table
 3.16 as closely as possible. ...

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1202

 (modify Table 3.15, p. 118 -- Respecify this ta ble with all extensions
 relevant to texture formats supported by NVIDIA . For this extension, add
 four base internal formats.)

 Base Internal Pixel Compon ent Internal
 Format Group Type Values Components
 --------------------- ---------- ------ --- ---------------
 ALPHA RGBA A A
 LUMINANCE RGBA R L
 LUMINANCE_ALPHA RGBA R,A L,A
 INTENSITY RGBA R I
 RGB RGBA R,G,B R,G,B
 RGBA RGBA R,G,B, A R,G,B,A
 * COLOR_INDEX CI CI CI
 * DEPTH_COMPONENT DEPTH DEPTH DEPTH
 * HILO_NV HILO HI,LO HI,LO
 * DSDT_NV TEXOFF DS,DT DS,DT
 * DSDT_MAG_NV TEXOFF DS,DT, MAG DS,DT,MAG
 * DSDT_MAG_INTENSITY_NV TEXOFF
 or RGBA DS,DT, MAG,VIB DS,DT,MAG,I
 FLOAT_R_NV RGBA R R (float)
 FLOAT_RG_NV RGBA R,G R,G (float)
 FLOAT_RGB_NV RGBA R,G,B R,G,B (float)
 FLOAT_RGBA_NV RGBA R,G,B, A R,G,B,A (float)

 Table 3.15: Conversion from pixel groups t o internal texture
 components. "Pixel Group Type" defines the type of pixel group
 required for the specified internal format. All internal components
 are stored as unsigned-fixed point numbers, except for DS/DT (signed
 fixed-point numbers) and floating-point R,G ,B,A (signed floating-point
 numbers). See Section 3.8.12 for a descrip tion of texture components
 R, G, B, A, L, and I. See NV_texture_shade r spec (Section 3.8.13) for
 a description of texture components HI, LO, DS, DT, and MAG.

 * - indicates formats found in other extens ion specs: COLOR_INDEX in
 EXT_paletted texture; DEPTH_COMPONENT i n SGIX_depth_texture; and
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG _INTENSITY_NV in
 NV_texture_shader.

 (modify Table 3.16, p. 119 -- Respecify this ta ble with all extensions
 relevant to sized texture internal formats supp orted by NVIDIA. For this
 extension, add eight sized internal formats.)

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1203

 Sized Base
 Int. Format Int. Format Component Name / Type-Size
 ------------------- --------------- ---------------------------
 ALPHA4 ALPHA A/U4
 ALPHA8 ALPHA A/U8
 ALPHA12 ALPHA A/U12
 ALPHA16 ALPHA A/U16
 LUMINANCE4 LUMINANCE L/U4
 LUMINANCE8 LUMINANCE L/U8
 LUMINANCE12 LUMINANCE L/U12
 LUMINANCE16 LUMINANCE L/U16
 LUMINANCE4_ALPHA4 LUMINANCE_ALPHA A/U4 L/U4
 LUMINANCE6_ALPHA2 LUMINANCE_ALPHA A/U2 L/U6
 LUMINANCE8_ALPHA8 LUMINANCE_ALPHA A/U8 L/U8
 LUMINANCE12_ALPHA4 LUMINANCE_ALPHA A/U4 L/U12
 LUMINANCE12_ALPHA12 LUMINANCE_ALPHA A/U12 L/U12
 LUMINANCE16_ALPHA16 LUMINANCE_ALPHA A/U16 L/U16
 INTENSITY4 INTENSITY I/U4
 INTENSITY8 INTENSITY I/U8
 INTENSITY12 INTENSITY I/U12
 INTENSITY16 INTENSITY I/U16
 R3_G3_B2 RGB R/U3 G/U3 B/U2
 RGB4 RGB R/U4 G/U4 B/U4
 RGB5 RGB R/U5 G/U5 B/U5
 RGB8 RGB R/U8 G/U8 B/U8
 RGB10 RGB R/U10 G/U10 B/10
 RGB12 RGB R/U12 G/U12 B/U12
 RGB16 RGB R/U16 G/U16 B/U16
 RGBA2 RGBA R/U2 G/U2 B/U2 A/U2
 RGBA4 RGBA R/U4 G/U4 B/U4 A/U4
 RGB5_A1 RGBA R/U5 G/U5 B/U5 A/U1
 RGBA8 RGBA R/U8 G/U8 B/U8 A/U8
 RGB10_A2 RGBA R/U10 G/U10 B/U10 A/U2
 RGBA12 RGBA R/U12 G/U12 B/U12 A/U12
 RGBA16 RGBA R/U16 G/U16 B/U16 A/U16
 * COLOR_INDEX1_EXT COLOR_INDEX CI/U1
 * COLOR_INDEX2_EXT COLOR_INDEX CI/U2
 * COLOR_INDEX4_EXT COLOR_INDEX CI/U4
 * COLOR_INDEX8_EXT COLOR_INDEX CI/U8
 * COLOR_INDEX16_EXT COLOR_INDEX CI/U16
 * DEPTH_COMPONENT16_SGIX DEPTH_COMPONENT Z/U16
 * DEPTH_COMPONENT24_SGIX DEPTH_COMPONENT Z/U24
 * DEPTH_COMPONENT32_SGIX DEPTH_COMPONENT Z/U32
 * HILO16_NV HILO HI/U16 LO/U16
 * SIGNED_HILO16_NV HILO HI/S16 LO/S16
 * SIGNED_RGBA8_NV RGBA R/S8 G/S8 B/S8 A/S8
 * SIGNED_RGB8_
 UNSIGNED_ALPHA8_NV RGBA R/S8 G/S8 B/S8 A/U8
 * SIGNED_RGB8_NV RGB R/S8 G/S8 B/S8
 * SIGNED_LUMINANCE8_NV LUMINANCE L/S8
 * SIGNED_LUMINANCE8_
 ALPHA8_NV LUMINANCE_ALPHA L/S8 A/S8
 * SIGNED_ALPHA8_NV ALPHA A/S8
 * SIGNED_INTENSITY8_NV INTENSITY I/S8
 * DSDT8_NV DSDT_NV DS/S8 DT/S8
 * DSDT8_MAG8_NV DSDT_MAG_NV DS/S8 DT/S8 MAG/U8
 * DSDT8_MAG8_ DSDT_MAG_
 INTENSITY8_NV INTENSITY_NV DS/S8 DT/S8 MAG/U8 I/U8
 FLOAT_R16_NV FLOAT_R_NV R/F16
 FLOAT_R32_NV FLOAT_R_NV R/F32
 FLOAT_RG16_NV FLOAT_RG_NV R/F16 G/F16
 FLOAT_RG32_NV FLOAT_RG_NV R/F32 G/F32
 FLOAT_RGB16_NV FLOAT_RGB_NV R/F16 G/F16 B/F16
 FLOAT_RGB32_NV FLOAT_RGB_NV R/F32 G/F32 B/F32
 FLOAT_RGBA16_NV FLOAT_RGBA_NV R/F16 G/F16 B/F16 A/F16
 FLOAT_RGBA32_NV FLOAT_RGBA_NV R/F32 G/F32 B/F32 A/F32

 Table 3.16: Sized Internal Formats. Descr ibes the correspondence of
 sized internal formats to base internal for mats, and desired component
 resolutions. Component resolution descript ions are of the form
 "<NAME>/<TYPE><SIZE>", where NAME specifies the component name in
 Table 3.15, TYPE is "U" for unsigned fixed- point, "S" for signed
 fixed-point, and "F" for unsigned floating- point. <SIZE> is the
 number of requested bits per component.

 * - indicates formats found in other extens ion specs: COLOR_INDEX in
 EXT_paletted texture; DEPTH_COMPONENT i n SGIX_depth_texture; and
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG _INTENSITY_NV in
 NV_texture_shader.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1204

 Modify Section 3.8,7, Minification (p. 141)

 Change the last paragraph (as modified by the N V_texture_shader
 extension) to read (only the last sentence chan ges from the
 NV_texture_shader version):

 "If any of the selected tauijk, tauij, or taui in the above equations
 refer to a border texel with i < -bs, j < bs, k < -bs, i >= ws-bs, j
 >= hs-bs, or k >= ds-bs, then the border values given by the current
 setting of TEXTURE_BORDER_VALUES is used instea d of the unspecified
 value or values. If the texture contains color components, the
 components of the TEXTURE_BORDER_VALUES vector are interpreted as
 an RGBA color to match the texture's internal f ormat in a manner
 consistent with table 3.15. If the texture con tains HILO components,
 the first and second components of the TEXTURE_ BORDER_VALUES vector
 are interpreted as the hi and lo components res pectively. If the
 texture contains texture offset group component s, the first, second,
 third, and fourth components of the TEXTURE_BOR DER_VALUES vector
 are interpreted as ds, dt, mag, and vib compone nts respectively.
 Additionally, the texture border values are cla mped appropriately
 depending on the signedness of each particular component. Unsigned
 components and components of floating-point tex tures are clamped to
 [0,1]; signed components (not including floatin g-point textures)
 are clamped to [-1,1]."

 (Add after the last paragraph in the section) F loating-point textures
 (those with a base internal format of FLOAT_R_N V, FLOAT_RG_NV,
 FLOAT_RGB_NV, or FLOAT_RGBA_NV) do not support texture filters other than
 NEAREST. For such textures, NEAREST filtering is applied regardless of
 the setting of TEXTURE_MIN_FILTER.

 Modify Section 3.8.8, Magnification (p. 141)

 (Add after the last paragraph in the section) F loating-point textures
 (those with a base internal format of FLOAT_R_N V, FLOAT_RG_NV,
 FLOAT_RGB_NV, or FLOAT_RGBA_NV) do not support texture filters other than
 NEAREST. For such textures, NEAREST filtering is applied regardless of
 the setting of TEXTURE_MAG_FILTER.

 Modify Section 3.8.13, Texture Environments and Texture Functions (p. 147)

 (Add paragraph after discussion of all the valu es used in the
 miscellaneous tables in this section.) If the b ase internal format is
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG_INTENSI TY_NV, FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV, th e texture lookup results
 are not supported using conventional OpenGL tex ture functions. In this
 case, the corresponding texture function is NON E (Cv = Cf, Av = Af), and
 it is as though texture mapping were disabled f or that texture unit.

 Modify Section 3.11, Antialiasing Application (p. 155)

 Finally, if antialiasing is enabled for the pri mitive from which a
 rasterized fragment was produced, then the comp uted coverage value may be
 applied to the fragment. In RGBA mode with fix ed-point frame buffers, the
 value is multiplied by the fragment's alpha (A) value to yield a final
 alpha value. In RGBA mode with floating-point frame buffers, the coverage

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1205

 value is simply discarded. In color index mode , the value is used to set
 the low order bits of the color index value as described in section 3.2.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Chapter 4 Introduction (p. 156)

 (replace next-to-last paragraph)

 The GL provides three types of color buffers: color index, fixed-point
 RGBA, or floating-point RGBA. Color index buff ers consist of unsigned
 integer color indices. Fixed-point RGBA buffer s consist of R, G, B, and
 optionally, A unsigned integer values. Floatin g-point RGBA buffers
 consist of R, and optionally, G, B, and A float ing-point component values,
 corresponding to the X, Y, Z, and W outputs, re spectively, of a fragment
 program. The number of bitplanes in each of th e color buffers, the depth
 buffer, ...

 Modify Section 4.1.3, Multisample Fragment Oper ations (p. 158)

 This step applies only for fixed-point RGBA col or buffers. Otherwise,
 proceed to the next step. ...

 Modify Section 4.1.4, Alpha Test (p. 159)

 This step applies only for fixed-point RGBA col or buffers. Otherwise,
 proceed to the next step. ...

 Modify Section 4.1.7, Blending (p. 161)

 (modify second paragraph)

 This blending is dependent on the incoming frag ment's alpha value and that
 of the corresponding currently stored pixel. B lending applies only for
 fixed-point RGBA color buffers; otherwise, it i s bypassed. ...

 Modify Section 4.1.8, Dithering (p. 165)

 Dithering selects between two color values or i ndices. Dithering does not
 apply to floating-point RGBA color buffers. ...

 Modify Section 4.1.9, Logical Operation (p. 165)

 Finally, a logical operation is applied between the incoming fragment's
 color or index values and the color or index va lues stored at the
 corresponding location in the frame buffer. Lo gical operations do not
 apply to floating-point color buffers. ...

 Modify Section 4.2.3, Clearing the Buffers (p. 171)

 ...

 void ClearColor(float r, float g, float b, float a);

 sets the clear value for RGBA color buffers. W hen a fixed-point color
 buffer is cleared, the effective clear color is derived by clamping each

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1206

 component to [0,1] and converting to fixed-poin t according to the rules in
 section 2.13.9. When a floating-point color bu ffer is cleared, the
 components of the clear value are used directly without being clamped.

 Modify Section 4.2.4, The Accumulation Buffer (p. 172)

 (modify last paragraph) ... If there is no accu mulation buffer, or if
 color buffer is not fixed-point RGBA, Accum gen erates the error
 INVALID_OPERATION.

 Modify Section 4.3.2, Reading Pixels

 (modify "Conversion of RGBA Values", p. 176) Th is step applies only if the
 GL is in RGBA mode, and then only if format is neither STENCIL INDEX nor
 DEPTH COMPONENT. The R, G, B, and A values for m a group of elements. If
 the color buffer has fixed-point format, each e lement is taken to be a
 fixed-point value in [0,1] with m bits, where m is the number of bits in
 the corresponding color component of the select ed buffer (see section
 2.13.9).

 (add to end of "Final Conversion", p. 177) ... For an RGBA color,
 components are clamped depending on the data ty pe of the buffer being
 read. For fixed-point buffers, each component is clamped to [0.1]. For
 floating-point buffers, if <type> is not FLOAT or HALF_FLOAT_NV, each
 component is clamped to [0,1] if <type> is unsi gned or [-1,1] if <type> is
 signed and then converted according to Table 4. 7.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 Modify Section 6.1.4, Texture Queries (p. 200)

 Modify Table 6.1 (add new rows, corresponding t o new internal formats,
 p. 202)

 Base Internal Format R G B A
 -------------------- --- --- --- ---
 FLOAT_R_NV R 0 0 1
 FLOAT_RG_NV R G 0 1
 FLOAT_RGB_NV R G B 1
 FLOAT_RGBA_NV R G B A

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the WGL Specification

 First, close your eyes and pretend that a WGL s pecification actually
 existed. Maybe if we all concentrate hard enou gh, one will magically
 appear.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1207

 Modify/add to the description of <piAttributes> in
 wglGetPixelFormatAttribivARB and <pfAttributes> in
 wglGetPixelFormatAttribfvARB:

 WGL_FLOAT_COMPONENTS_NV
 True if the R, G, B, and A components of ea ch color buffer are
 represented as (unclamped) floating-point n umbers.

 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV
 True if the pixel format describes a floati ng-point color that can be
 bound to a texture rectangle with internal formats of FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV , respectively. Currently
 only pbuffers can be bound as textures so t his attribute will only be
 TRUE if WGL_DRAW_TO_PBUFFER is also TRUE. Additionally,
 floating-point color buffers can not be bou nd to texture targets other
 than TEXTURE_RECTANGLE_NV.

 Add new table entries for pixel format attribut e matching in
 wglChoosePixelFormatARB.

 Attribute Type Ma tch Criteria
 ------------------------- ------- -- ------------
 WGL_FLOAT_COMPONENTS_NV boolean ex act
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_R_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RG_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RGB_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RGBA_NV

 (In the wglCreatePbufferARB section, modify the attribute list)

 WGL_TEXTURE_FORMAT_ARB

 This attribute indicates the base internal format of the texture that
 will be created when a color buffer of a pb uffer is bound to a texture
 map. It can be set to WGL_TEXTURE_RGB_ARB (indicating an internal
 format of RGB), WGL_TEXTURE_RGBA_ARB (indic ating a base internal
 format of RGBA), WGL_TEXTURE_FLOAT_R_NV (in dicating a base internal
 format of FLOAT_R_NV), WGL_TEXTURE_FLOAT_RG _NV (indicating a base
 internal format of FLOAT_RG_NV), WGL_TEXTUR E_FLOAT_RGB_NV (indicating
 a base internal format of FLOAT_RGB_NV), WG L_TEXTURE_FLOAT_RGBA_NV
 (indicating a base internal format of FLOAT _RGBA_NV), or
 WGL_NO_TEXTURE_ARB. The default value is WG L_NO_TEXTURE_ARB.

 (In the wglCreatePbufferARB section, modify the discussion of what happens
 to the depth/stencil/accum buffers when switchi ng between mipmap levels or
 cube map faces.)

 For pbuffers with a texture format of WGL_TEXTU RE_RGB_ARB,
 WGL_TEXTURE_RGBA_ARB, WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_FLOAT_RG_NV,

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1208

 WGL_TEXTURE_FLOAT_RGB_NV, or WGL_TEXTURE_FLOAT_RGBA_NV, there will be a
 separate set of color buffers for each mipmap l evel and cube map face in
 the pbuffer. Otherwise, the WGL implementation is free to share a single
 set of color, auxillary, and accumulation buffe rs between levels or faces.

 (In the wglCreatePbufferARB section, modify the error list)

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_R_ NV,
 WGL_TEXTURE_FLOAT_RG _NV,
 WGL_TEXTURE_FLOAT_RG B_NV, or
 WGL_TEXTURE_FLOAT_RG BA_NV, and
 WGL_TEXTURE_TARGET_A RB is not
 WGL_TEXTURE_RECTANGL E_NV.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_R_ NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_R_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG _NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RG_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG B_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RGB_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG BA_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RGBA_NV
 attribute is not set in the pixel format.

 Modify wglBindTexImageARB:

 ...

 The pbuffer attribute WGL_TEXTURE_FORMAT_AR B determines the base
 internal format of the texture. The format- specific component sizes
 are also determined by pbuffer attributes a s shown in the table below.
 The component sizes are dependent on the fo rmat of the texture.

 Component Size Fo rmat
 --------- ------------------------ -- --------------------------
 R WGL_RED_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1209

 G WGL_GREEN_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA
 B WGL_BLUE_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA
 A WGL_ALPHA_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA

Additions to the AGL/GLX Specification

 None.

Dependencies on EXT_paletted_texture, SGIX_depth_te xture, and NV_texture_shader

 If any of these extensions are not supported, t he rows in Tables 3.15 and
 3.16 corresponding to texture formats defined b y the unsupported extension
 should be removed.

 If NV_texture_shader is not supported, ignore t he amended
 paragraph from the NV_texture_shader specificia ton describing
 TEXTURE_BORDER_VALUES clamping in favor of the original OpenGL
 specification language.

Dependencies on NV_half_float

 If GL_NV_half_float is not supported, all refer ences to HALF_FLOAT_NV
 should be deleted.

GLX Protocol

 None.

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap, CopyPixels,
 or a command that performs an explicit Begin if the color buffer has a
 floating-point RGBA format and FRAGMENT_PROGRAM _NV is disabled.

 INVALID_OPERATION is generated by TexImage3D, T exImage2D, TexImage1D,
 TexSubImage3D, TexSubImage2D, or TexSubImage1D if the pixel group type
 corresponding to <format> is not compatible wit h the base internal format
 of the texture.

 INVALID_OPERATION is generated by TexImage3D, T exImage1D, or
 CopyTexImage1D if the base internal format corr esponding to
 <internalformat> is FLOAT_R_NV, FLOAT_RG_NV, FL OAT_RGB_NV, or
 FLOAT_RGBA_NV.

 INVALID_OPERATION is generated by TexImage2D or CopyTexImage2D if the base
 internal format corresponding to <internalforma t> is FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV and <target> is not
 TEXTURE_RECTANGLE_NV.

 INVALID_OPERATION is generated by Accum if the color buffer has a color
 index or floating-point RGBA format.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 1210

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_FLOAT_RG_NV,
 WGL_TEXTURE_FLOAT_RGB_NV, or WGL_TEXTURE_FLOAT_RGBA_NV, and
 WGL_TEXTURE_TARGET_ARB is not WGL_TEXTURE_RECTA NGLE_NV.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV attrib ute is not set in the pixel
 format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RG_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV attri bute is not set in the
 pixel format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RGB_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV attr ibute is not set in the
 pixel format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RGBA_NV,
 WGL_TEXTURE_TARGET_ARB is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV attribute is not set in the
 pixel format.

New State

(Modify Table 6.15, Texture Objects (cont.), p. 223)

 Init.
Get Value Type Get Command Value Description Sec. Attribute
--------------------------- ----- ------------ ----- --------------------- ----- ------------
TEXTURE_FLOAT_COMPONENTS_NV n x B GetTexLevel- 0 True if texture holds 3.8 -
 unclamped floating-
 point values

(Modify Table 6.19, Framebuffer Control, p. 227)

 I nit.
Get Value Type Get Command V alue Description Sec. Attribut e
-------------------------- ---- ----------- - ------ ------------------------ ----- -------- ----
COLOR_CLEAR_VALUE C GetFloatv 0 ,0,0,0 Color buffer clear value 4.2.3 color-bu ffer
 (RGBA mode), each value
 clamped to [0,1].
FLOAT_CLEAR_COLOR_VALUE_NV 4xR GetFloatv 0 ,0,0,0 Color buffer clear value 4.2.3 color-bu ffer
 (RGBA mode), each value
 unclamped.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 1211

New Implementation Dependent State

(Modify Table 6.28, Implementation Dependent Values , p. 236)

 Init.
Get Value Type Get Command Value Description Sec. Attribute
------------------ ---- ----------- ----- --------------------- ---- ---------
FLOAT_RGBA_MODE_NV B GetBooleanv - True if color buffers 4 -
 store floating-point
 data

NV3x Implementation Details

 NV3x GPUs (GeForce FX, etc.) support hardware a cceleration for float
 textures with two or more components only when the repeat mode state
 (S and T) is GL_CLAMP_TO_EDGE. If you use eith er the GL_CLAMP or
 GL_CLAMP_TO_BORDER repeat modes with a float te xture with two or
 more components, the software rasterizer is use d.

 However, if you use a single-component float te xture (GL_FLOAT_R_NV,
 etc.), all clamping repeat modes (GL_CLAMP, GL_ CLAMP_TO_EDGE, and
 GL_CLAMP_TO_BORDER) are available with full har dware acceleration.

 The two-, three-, and four-component texture fo rmats all use the
 same amount of texture memory storage (128 bits per texel for the
 GL_FLOAT_x32 formats, and 64 bits per texel for the GL_FLOAT_x16
 formats). Future GPUs will likely store two an d three component
 float textures more efficiently.

 The GL_FLOAT_R32_NV and GL_FLOAT_R16_NV texture formats each use 32
 bits per texel. Future GPUs will likely store GL_FLOAT_R16_NV more
 efficiently.

 NVIDIA treats the unsized internal formats GL_F LOAT_R_NV,
 GL_FLOAT_RGBA_NV, etc. the same as GL_FLOAT_R32 _NV,
 GL_FLOAT_RGBA32_NV, etc.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- ---------------------- ----------------------
 16 06/16/03 pbrown Corrected the usage of WGL_TEXTURE_FLOAT_R_NV and
 related enums in the l ist of enumerants.

 15 01/23/03 mjk Document texture borde r color (values) behavior
 for float textures. S ee issue.

 14 01/20/03 mjk Added NV3x Implementat ion Details section.

NV_fog_distance NVIDIA OpenGL Extension Specifications

1212

Name

 NV_fog_distance

Name Strings

 GL_NV_fog_distance

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.0)

Version

 NVIDIA Date: January 18, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_fog_dist ance.txt#14 $

Number

 192

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 Ideally, the fog distance (used to compute the fog factor as
 described in Section 3.10) should be computed a s the per-fragment
 Euclidean distance to the fragment center from the eye. In practice,
 implementations "may choose to approximate the eye-coordinate
 distance from the eye to each fragment center b y abs(ze). Further,
 [the fog factor] f need not be computed at each fragment, but may
 be computed at each vertex and interpolated as other data are."

 This extension provides the application specifi c control over how
 OpenGL computes the distance used in computing the fog factor.

 The extension supports three fog distance modes : "eye plane absolute",
 where the fog distance is the absolute planar d istance from the eye
 plane (i.e., OpenGL's standard implementation a llowance as cited above);
 "eye plane", where the fog distance is the sign ed planar distance
 from the eye plane; and "eye radial", where the fog distance is
 computed as a Euclidean distance. In the case of the eye radial
 fog distance mode, the distance may be computed per-vertex and then
 interpolated per-fragment.

 The intent of this extension is to provide appl ications with better

NVIDIA OpenGL Extension Specifications NV_fog_distance

 1213

 control over the tradeoff between performance a nd fog quality.
 The "eye planar" modes (signed or absolute) are straightforward
 to implement with good performance, but scenes are consistently
 under-fogged at the edges of the field of view. The "eye radial"
 mode can provide for more accurate fog at the e dges of the field of
 view, but this assumes that either the eye radi al fog distance is
 computed per-fragment, or if the fog distance i s computed per-vertex
 and then interpolated per-fragment, then the sc ene must be
 sufficiently tessellated.

Issues

 What should the default state be?

 IMPLEMENTATION DEPENDENT.

 The EYE_PLANE_ABSOLUTE_NV mode is the most co nsistent with the way
 most current OpenGL implementations are imple mented without this
 extension, but because this extension provide s specific control
 over a capability that core OpenGL is intenti onally lax about,
 the default fog distance mode is left impleme ntation dependent.
 We would not want a future OpenGL implementat ion that supports
 fast EYE_RADIAL_NV fog distance to be stuck u sing something less.

 Advice: If an implementation can provide fas t per-pixel EYE_RADIAL_NV
 support, then EYE_RADIAL_NV is the ideal defa ult, but if not, then
 EYE_PLANE_ABSOLUTE_NV is the most reasonable default mode.

 How does this extension interact with the EXT_f og_coord extension?

 If FOG_COORDINATE_SOURCE_EXT is set to FOG_CO ORDINATE_EXT,
 then the fog distance mode is ignored. Howev er, the fog
 distance mode is used when the FOG_COORDINATE _SOURCE_EXT is
 set to FRAGMENT_DEPTH_EXT. Essentially, when the EXT_fog_coord
 functionality is enabled, the fog distance is supplied by the
 user-supplied fog-coordinate so no automatic fog distance computation
 is performed.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of Fogf, Fog i, Fogfv, Fogiv,
 GetBooleanv, GetIntegerv, GetFloatv, and GetDou blev:

 FOG_DISTANCE_MODE_NV 0x855A

 When the <pname> parameter of Fogf, Fogi, Foggv , and Fogiv, is
 FOG_DISTANCE_MODE_NV, then the value of <param> or the value pointed
 to by <params> may be:

 EYE_RADIAL_NV 0x855B
 EYE_PLANE
 EYE_PLANE_ABSOLUTE_NV 0x855C

NV_fog_distance NVIDIA OpenGL Extension Specifications

 1214

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.10 "Fog"

 Add to the end of the 3rd paragraph:

 "If pname is FOG_DISTANCE_MODE_NV, then param must be, or params
 must point to an integer that is one of the sy mbolic constants
 EYE_PLANE_ABSOLUTE_NV, EYE_PLANE, or EYE_RADIA L_NV and this symbolic
 constant determines how the fog distance shoul d be computed."

 Replace the 4th paragraph beginning "An implem entation may choose
 to approximate ..." with:

 "When the fog distance mode is EYE_PLANE_ABSOL UTE_NV, the fog
 distance z is approximated by abs(ze) [where z e is the Z component
 of the fragment's eye position]. When the fog distance mode is
 EYE_PLANE, the fog distance z is approximated by ze. When the
 fog distance mode is EYE_RADIAL_NV, the fog di stance z is computed
 as the Euclidean distance from the center of t he fragment in eye
 coordinates to the eye position. Specifically :

 z = sqrt(xe*xe + ye*ye + ze*ze);

 In the EYE_RADIAL_NV fog distance mode, the Eu clidean distance
 is permitted to be computed per-vertex, and th en interpolated
 per-fragment."

 Change the last paragraph to read:

 "The state required for fog consists of a thre e valued integer to
 select the fog equation, a three valued intege r to select the fog
 distance mode, three floating-point values d, e, and s, and RGBA fog
 color and a fog color index, and a single bit to indicate whether
 or not fog is enabled. In the initial state, fog is disabled,
 FOG_MODE is EXP, FOG_DISTANCE_NV is implementa tion defined, d =
 1.0, e = 1.0, and s = 0.0; Cf = (0,0,0,0) and if = 0."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

NVIDIA OpenGL Extension Specifications NV_fog_distance

 1215

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when Fog is called w ith a <pname> of
 FOG_DISTANCE_MODE_NV and the value of <param> or what is pointed
 to by <params> is not one of EYE_PLANE_ABSOLUT E_NV, EYE_PLANE,
 or EYE_RADIAL_NV.

New State

(table 6.8, p198) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------- ---- ----------- ------- -------- ----------- ----- ---------
FOG_DISTANCE_MODE_NV Z3 GetIntegerv impleme ntation Determines how 3.10 fog
 depende nt fog distance
 is computed

New Implementation State

 None

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1216

Name

 NV_fragment_program

Name Strings

 GL_NV_fragment_program

Notice

 Copyright NVIDIA Corporation, 2001-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/05/12 $
 NVIDIA Revision: 70

Number

 282

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification and
 requires OpenGL 1.2.1.

 Requires support for the ARB_multitexture exten sion with at least
 two texture units.

 NV_vertex_program affects the definition of thi s extension. The only
 dependency is that both extensions use the same mechanisms for defining
 and binding programs.

 NV_texture_shader trivially affects the definit ion of this extension.

 NV_texture_rectangle trivially affects the defi nition of this extension.

 ARB_texture_cube_map trivially affects the defi nition of this extension.

 EXT_fog_coord trivially affects the definition of this extension.

 NV_depth_clamp affects the definition of this e xtension.

 ARB_depth_texture and SGIX_depth_texture affect the definition of this
 extension.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1217

 NV_float_buffer affects the definition of this extension.

 ARB_vertex_program affects the definition of th is extension.

 ARB_fragment_program affects the definition of this extension.

Overview

 OpenGL mandates a certain set of configurable p er-fragment computations
 defining texture lookup, texture environment, c olor sum, and fog
 operations. Each of these areas provide a usef ul but limited set of fixed
 operations. For example, unextended OpenGL 1.2 .1 provides only four
 texture environment modes, color sum, and three fog modes. Many OpenGL
 extensions have either improved existing functi onality or introduced new
 configurable fragment operations. While these extensions have enabled new
 and interesting rendering effects, the set of e ffects is limited by the
 set of special modes introduced by the extensio n. This lack of
 flexibility is in contrast to the high-level of programmability of
 general-purpose CPUs and other (frequently soft ware-based) shading
 languages. The purpose of this extension is to expose to the OpenGL
 application writer an unprecedented degree of p rogrammability in the
 computation of final fragment colors and depth values.

 This extension provides a mechanism for definin g fragment program
 instruction sequences for application-defined f ragment programs. When in
 fragment program mode, a program is executed ea ch time a fragment is
 produced by rasterization. The inputs for the program are the attributes
 (position, colors, texture coordinates) associa ted with the fragment and a
 set of constant registers. A fragment program can perform mathematical
 computations and texture lookups using arbitrar y texture coordinates. The
 results of a fragment program are new color and depth values for the
 fragment.

 This extension defines a programming model incl uding a 4-component vector
 instruction set, 16- and 32-bit floating-point data types, and a
 relatively large set of temporary registers. T he programming model also
 includes a condition code vector which can be u sed to mask register writes
 at run-time or kill fragments altogether. The syntax, program
 instructions, and general semantics are similar to those in the
 NV_vertex_program and NV_vertex_program2 extens ions, which provide for the
 execution of an arbitrary program each time the GL receives a vertex.

 The fragment program execution environment is d esigned for efficient
 hardware implementation and to support a wide v ariety of programs. By
 design, the entire set of existing fragment pro grams defined by existing
 OpenGL per-fragment computation extensions can be implemented using the
 extension's programming model.

 The fragment program execution environment acce sses textures via
 arbitrarily computed texture coordinates. As s uch, there is no necessary
 correspondence between the texture coordinates and texture maps previously
 lumped into a single "texture unit". This exte nsion separates the notion
 of "texture coordinate sets" and "texture image units" (texture maps and
 associated parameters), allowing implementation s with a different number
 of each. The initial implementation of this ex tension will support 8
 texture coordinate sets and 16 texture image un its.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1218

Issues

 What limitations exist in this extension?

 RESOLVED: Very few. Programs can not exce ed a maximum program length
 (which is no less than 1024 instructions), and can use no more than
 32-64 temporary registers. Programs can no t access more than one
 fragment attribute or program parameter (co nstant) per instruction,
 but can work around this restriction using temporaries. The number of
 textures that can be used by a program is l imited to the number of
 texture image units provided by the impleme ntation (16 in the initial
 implementation of this extension).

 These limits are fairly high. Additionally , there is no limit on the
 total number of texture lookups that can be performed by a program.
 There is no limit on the length of a textur e dependency chain -- one
 can write a program that performs over 1000 consecutive dependent
 texture lookups. There is no restrictions on dependencies between
 texture mapping instructions and arithmetic instructions. Texture
 lookups can be performed using arbitrarily computed texture
 coordinates. Applications can carry out th eir calculations with full
 32-bit single precision, although two lower -precision modes are also
 available.

 How does texture mapping work with fragment pro grams?

 RESOLVED: This extension provides three in structions used to perform
 texture lookups.

 The "TEX" instruction performs a lookup wit h the (s,t,r) values taken
 from an interpolated texture coordinate, an arbitrarily computed
 vector, or even a program constant. The "T XP" instruction performs a
 similar lookup, except that it uses the fou rth component of the source
 vector to performs a perspective divide, us ing (s/q, t/q, r/q). In
 both cases, the GL will automatically compu te partial derivatives used
 for filter and LOD selection.

 The "TXD" instruction operates like "TEX", except that it allows the
 program to explicitly specify two additiona l vectors containing the
 partial derivatives of the texture coordina te with respect to x and y
 window coordinates.

 All three instructions write a filtered tex el value to a temporary or
 output register. Other than the computatio n of texture coordinates
 and partial derivatives, texture lookups no t performed any differently
 in fragment program mode. In particular, a ny applicable LOD biases,
 wrap modes, minification and magnification filters, and anisotropic
 filtering controls are still applied in fra gment program mode.

 The results of the texture lookup are avail able to be used arbitrarily
 by subsequent fragment program instructions . Fragment programs are
 allowed to access any texture map arbitrari ly many times.

 Can fragment programs be used to compute depth values?

 RESOLVED: Yes. A fragment program can pe rform arbitrary
 computations to compute a final value for the fragment, which it

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1219

 should write to the "z" component of the o [DEPR] register. The "z"
 value written should be in the range [0,1] , regardless of the size of
 the depth buffer.

 To assist in the computation of the final Z value, a fragment program
 can access the interpolated depth of the f ragment (prior to any
 displacement) by reading the "z" component of the f[WPOS] attribute
 register.

 How should near and far plane clipping work in fragment program mode if
 the current fragment program computes a depth v alue?

 RESOLVED: Geometric clipping to the near a nd far clip plane should be
 disabled. Clipping should be done based on the depth values computed
 per-fragment. The rationale is that per-fr agment depth displacement
 operations may effectively move portions of a primitive initially
 outside the clip volume inside, and vice ve rsa.

 Note that under the NV_depth_clamp extensio n, geometric clipping to
 the near and far clip planes is also disabl ed, and the fragment depth
 values are clamped to the depth range. If depth clamp mode is enabled
 when using a fragment program that computes a depth value, the
 computed depth value will be clamped to the depth range.

 Should fragment programs be allowed to use mult iple precisions for
 operands and operations?

 RESOLVED: Yes. Low-precision operands are generally adequate for
 representing colors. Allowing low-precisio n registers also allows for
 a larger number of temporary registers (at lower precision).
 Low-precision operations also provide the o pportunity for a higher
 level of performance.

 Applications are free to use only high-prec ision operations or mix
 high- and low-precision operations as neces sary.

 What levels of precision are supported in arith metic operations?

 RESOLVED: Arithmetic operations can be per formed at three different
 precisions. 32-bit floating point precisio n (fp32) uses the IEEE
 single-precision standard with a sign bit, 8 exponent bits, and 23
 mantissa bits. 16-bit floating-point preci sion (fp16) uses a similar
 floating-point representation, but with 5 e xponent bits and 10
 mantissa bits. Additionally, many arithmet ic operations can also be
 carried out at 12-bit fixed point precision (fx12), where values in
 the range [-2,+2) are represented as signed values with 10 fraction
 bits.

 How should the precision with which operations are carried out be
 specified? Should we infer the precision from the types of the operands
 or result vectors? Or should it be an attribut e of the instruction?

 RESOLVED: Applications can optionally spec ify the precision of
 individual instructions by adding a suffix of "R", "H", and "X" to
 instruction names to select fp32, fp16, and fx12 precision,
 respectively.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1220

 By default, instructions will be carried ou t using the precision of
 the destination register. Always inferring the precision from the
 operands has a number of issues. First, th ere are a number of
 operations (e.g., TEX/TXP/TXD) where result type has little to no
 correspondance to the type of the operands. In these cases, precision
 suffixes are not supported. Second, one co uld have instructions
 automatically cast operands and compute res ults using the type of the
 highest precision operand or result. This behavior would be
 problematic since all fragment attribute re gisters and program
 parameters are kept at full precision, but full precision may not be
 needed by the operation.

 The choice of precision level allows progra ms to trade off precision
 for potentially higher performance. Giving the program explicit
 control over the precision also allows it t o dictate precision
 explicitly and eliminate any uncertainty ov er type casting.

 For instructions whose specified precision is d ifferent than the precision
 of the operands or the result registers, how ar e the operations performed?
 How are the condition codes updated?

 RESOLVED: Operations are performed with op erands and results at the
 precision specified by the instruction. Af ter the operation is
 complete, the result is converted to the pr ecision of the destination
 register, after which the condition code is generated.

 In an alternate approach, the condition cod e could be generated from
 the result. However, in some cases, the re gister contents would not
 match the condition code. In such cases, i t may not be reliable to
 use the condition code to prevent division by zero or other special
 cases.

 How does this extension interact with the ARB_m ultisample extension? In
 the ARB_multisample extension, each fragment ha s multiple depth values.
 In this extension, a single interpolated depth value may be modified by a
 fragment program.

 RESOLVED: The depth values for the extra s amples are generated by
 computing partials of the computed depth va lue and using these
 partials to derive the depth values for eac h of the extra samples.

 How does this extension interact with polygon o ffset? Both extensions
 modify fragment depth values.

 RESOLVED: As in the base OpenGL spec, the depth offset generated by
 polygon offset is added during polygon rast erization. The depth value
 provided to programs in f[WPOS].z already i ncludes polygon offset, if
 enabled. If the depth value is replaced by a fragment program, the
 polygon offset value will NOT be recomputed and added back after
 program execution.

 This is probably not desirable for fragment programs that modify depth
 values since the partials used to generate the offset may not match
 the partials of the computed depth value. Polygon offset for filled
 polygons can be approximated in a fragment program using the depth
 partials obtained by the DDX and DDY instru ctions. This will not work
 properly for line- and point-mode polygons, since the partials used

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1221

 for offset are computed over the polygon, w hile the partials resulting
 from the DDX and DDY instructions are compu ted along the line (or are
 zero for point-mode polygons). In addition , separate treatment of
 points, line segments, and polygons is not possible in a fragment
 program.

 Should depth component replacement be an proper ty of the fragment program
 or a separate enable?

 RESOLVED: It should be a program property. Using the output register
 notation simplifies matters: depth compone nts are replaced if and
 only if the DEPR register is written to. T his alleviates the
 application and driver burden of maintainin g separate state.

 How does this extension affect the handling of q texture coordinates in
 the OpenGL spec?

 RESOLVED: Fragment programs are allowed to access an associated q
 texture coordinate, so this attribute must be produced by
 rasterization. In unextended OpenGL 1.2, t he q coordinate is
 eliminated in the rasterization portions of the spec after dividing
 each of s, t, and r by it. This extension updates the specification
 to pass q coordinates through at least to c onventional texture
 mapping. When fragment program mode are di sabled, q coordinates will
 be eliminated there in an identical manner. This modification has the
 added benefit of simplifying the equations used for attribute
 interpolation.

 How should clip w coordinates be handled by thi s extension?

 RESOLVED: Fragment programs are allowed to access the reciprocal of
 the clip w coordinate, so this attribute mu st be produced by
 rasterization. The OpenGL 1.2 spec doesn't explictly enumerate the
 attributes associated with the fragment, bu t we add treatment of the w
 clip coordinate in the appropriate location s.

 The reciprocal of the clip w coordinate in traditional graphics
 hardware is produced by screen-space linear interpolation of the
 reciprocals of the clip w coordinates of th e vertices. However, this
 spec says the clip w coordinate is produced by perspective-correct
 interpolation of the (non-reciprocated) cli p w vertex coordinates.
 These two formulations turn out to be equiv alent, and the latter is
 more convenient since the core OpenGL spec already contains formulas
 for perspective-correct interpolation of ve rtex attributes.

 What is produced by the TEX/TXP/TXD instruction s if the requested texture
 image is inconsistent?

 RESOLVED: The result vector is specified t o be (0,0,0,0). This
 behavior is consistent with the NV_texture_ shader extension. Note
 that like in NV_texture_shader, these instr uctions ignore the standard
 hierarchy of texture enables and programs c an access textures that are
 not specifically "enabled".

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1222

 Should a minimum precision be specified for cer tain fragment attribute
 registers (in particular COL0, COL1) that may n ot be generated with full
 fp32 precision?

 RESOLVED: No. It is expected that the pre cision of COL0/COL1 should
 generally be at least as high as that of th e frame buffer.

 Fragment color components (f[COL0] and f[COL1]) are generally
 low-precision fixed-point values in the range [0,1]. Is it possible to
 pass unclamped or high-precision color componen ts to fragment programs?

 RESOLVED: Yes, although you can't exactly call them "colors".
 High-precision per-vertex color values can be written into any unused
 texture coordinate set, either via a MultiT exCoord call or using a
 vertex program. These "texture coordinates " will be interpolated
 during rasterization, and can be used arbit rarily by a fragment
 program.

 In particular, there is no requirement that per-fragment attributes
 called "texture coordinates" be used for te xture mapping.

 Should this specification guarantee that tempor ary registers are
 initialized to zero?

 RESOLVED: Yes. This will allow for the mo dular construction of
 programs that accumulate results in registe rs. For example,
 per-fragment lighting may use MAD instructi ons to accumulate color
 contributions at each light. Without zero- initialization, the program
 would require an explicit MOV instruction t o load 0 or the use of the
 MUL instruction for the first light.

 Should this specification support Unicode progr am strings?

 RESOLVED: Not necessary.

 Programs defined by NV_vertex_program begin wit h "!!VP1.0". Should
 fragment programs have a similar identifier?

 RESOLVED: Yes, "!!FP1.0", identifying the first revision of this
 fragment program language.

 Should per-fragment attributes have equivalent integer names in the
 program language, as per-vertex attributes do i n NV_vertex_program?

 RESOLVED: No. In NV_vertex_program, "gene ric" vertex attributes
 could be specified directly by an applicati on using only an attribute
 number. Those numbers may have no necessar y correlation with the
 conventional attribute names, although conv entional vertex attributes
 are mapped to attribute numbers. However, conventional attributes are
 the only outputs of vertex programs and of rasterization. Therefore,
 there is no need for a similar input-by-num ber functionality for
 fragment programs.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1223

 Should we provide the ability to issue instruct ions that do not update
 temporary or output registers?

 RESOLVED: Yes. Programs may issue instruc tions whose only purpose is
 to update the condition code register, and requiring such instructions
 to write to a temporary may require the use of an additional temporary
 and/or defeat possible program optimization s. We accomplish this by
 adding two write-only temporary pseudo-regi sters ("RC" and "HC") that
 can be specified as destination registers.

 Do the packing and unpacking instructions in th is extension make any
 sense?

 RESOLVED: Yes. They are useful for packin g and unpacking multiple
 components in a single channel of a floatin g-point frame buffer. For
 example, a 128-bit "RGBA" frame buffer coul d pack 16 8-bit quantities
 or 8 16-bit quantities, all of which could be used in later
 rasterization passes. See the NV_float_buf fer extension for more
 information.

 Should we provide a method for specifying an fp 16 depth component output
 value?

 RESOLVED: No. There is no good reason for supporting half-precision
 Z outputs. Even with 16-bit Z buffers, the 10-bit mantissa of the
 half-precision float is rather limiting. T here would effectively be
 only 11 good bits in the back half of the Z buffer.

 Should RequestResidentProgramsNV (or a new equi valent function) take a
 target? Dealing with working sets of different program types is a bit
 messy. Should we document some limitation if w e get programs of different
 types?

 RESOLVED: In retrospect, it may have been a good idea to attach a
 target to this command, but there isn't a g ood reason to mess with
 something that already works for vertex pro grams. The driver is
 responsible for ensuring consistent results when the program types
 specified are mixed.

 What happens on data type conversions where the original value is not
 exactly representable in the new data type, eit her due to overflow or
 insufficient precision in the destination type?

 RESOLVED: In case of overflow, the origina l value is clamped to the
 +/-INF (fp16 or fp32) or the nearest repres entable value (fx12). In
 case of imprecision, the conversion is eith er to round or truncate to
 the nearest representable value.

 Should this extension support IEEE-style denorm s? For 32-bit IEEE
 floating point, denorms are numbers smaller in absolute value than 2^-126.
 For 16-bit floats used by this extension, denor ms are numbers smaller in
 absolute value than 2^-14.

 RESOLVED: For 32-bit data types, hardware support for denorms was
 considered too expensive relative to the be nefit provided.
 Computational results that would otherwise produce denorms are flushed
 to zero. For 16-bit data types, hardware d enorm support will be

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1224

 present. The expense of hardware denorm su pport is lower and the
 potential precision benefit is greater for 16-bit data types.

 OpenGL provides a hierarchy of texture enables. The texture lookup
 operations in NV_texture_shader effectively ove rride the texture enable
 hierarchy and select a specific texture to enab le. What should be done by
 this extension?

 RESOLVED: This extension will build upon N V_texture_shader and reduce
 the driver overhead of validating the textu re enables. Texture
 lookups can be specified by instructions li ke "TEX H0, f[TEX2], TEX2,
 3D", which would indicate to use texture co ordinate set number 2 to do
 a lookup in the texture object bound to the TEXTURE_3D target in
 texture image unit 2.

 Each texture unit can have only one "active " target. Programs are not
 allowed to reference different texture targ ets in the same texture
 image unit. In the example above, any othe r texture instructions
 using texture image unit 2 must specify the 3D texture target.

 What is the interaction with NV_register_combin ers?

 RESOLVED: Register combiners are not avail able when fragment programs
 are enabled.

 Previous version of this specification supp orted the notion of
 combiner programs, where the result of frag ment program execution was
 a set of four "texture lookup" values that fed the register combiners.

 For convenience, should we include pseudo-instr uctions not present in the
 hardware instruction set that are trivially imp lementable? For example,
 absolute value and subtract instructions could fall in this category. An
 "ABS R1,R0" instruction would be equivalent to "MAX R1,R0,-R0", and a "SUB
 R2,R0,R1" would be equivalent to "ADD R2,R0,-R1 "

 RESOLVED: In general, yes. A SUB instruct ion is provided for
 convenience. This extension does not provi de a separate ABS
 instruction because it supports absolute va lue operations of each
 operand.

 Should there be a '+' in the <optionalSign> por tion of the grammar? There
 isn't one in the GL_NV_vertex_program spec.

 RESOLVED: Yes, for orthogonality/readabili ty. A '+' obviously adds
 no functionality. In NV_vertex_program, an <optionalSign> of "-" was
 always a negation operator. However, in fr agment programs, it can
 also be used as a sign for a constant value .

 Can the same fragment attribute register, progr am parameter register, or
 constants be used for multiple operands in the same instruction? If so,
 can it be used with different swizzle patterns?

 RESOLVED: Yes and yes.

 This extension allows different limits for the number of texture
 coordinate sets and the number of texture image units (i.e., texture maps
 and associated data). The state in ActiveTextu reARB affects both

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1225

 coordinate sets (TexGen, matrix operations) and image units (TexParameter,
 TexEnv). How should we deal with this?

 RESOLVED: Continue to use ActiveTextureARB and emit an
 INVALID_OPERATION if the active texture ref ers to an unsupported
 coordinate set/image unit. Other options i ncluded creating dummy
 (unusable) state for unsupported coordinate sets/image units and
 continue to use ActiveTextureARB normally, or creating separate state
 and state-setting commands for coordinate s ets and image units.
 Separate state is the cleanest solution, bu t would add more calls and
 potentially cause more programmer confusion . Dummy state would avoid
 additional error checks, but the demands of dummy state could grow if
 the number of texture image units and textu re coordinate sets
 increases.

 The current OpenGL spec is vague as to what state is affected by the
 active texture selector and has no distinat ion between
 coordinate-related and image-related state. The state tables could
 use a good clean-up in this area.

 The LRP instruction is defined so that the resu lt of "LRP R0, R0, R1, R2"
 is R0*R1+(1-R0)*R2. There are conflicting prec edents here. The
 definition here matches the "lrp" instruction i n the DirectX 8.0 pixel
 shader language. However, an equivalent Render Man lerp operation would
 yield a result of (1-R0)*R1+R0*R2. Which order ing should be implemented?

 RESOLVED: NVIDIA hardware implements the f ormer operand ordering, and
 there is no good reason to specify a differ ent ordering. To convert a
 "LRP" using the latter ordering to NV_fragm ent_program, swap the third
 and fourth arguments.

 Should this extension provide tracking of matri ces or any other state,
 similar to that provided in NV_vertex_program?

 RESOLVED: No.

 Should this extension provide global program pa rameters -- values shared
 between multiple fragment programs?

 RESOLVED: No.

 Should this extension provide program parameter s specific to a program?
 If so, how?

 RESOLVED: Yes. These parameters will be c alled "local parameters".
 This extension will provide both named and numbered local parameters.
 Local parameters can be managed by the driv er and eliminate the need
 for applications to manage a global name sp ace.

 Named local parameters work much like stand ard variable names in most
 programming languages. They are created us ing the "DECLARE"
 instruction within the fragment program its elf. For example:

 DECLARE color = {1,0,0,1};

 Named local parameters are used simply by r eferencing the variable
 name. They do not require the array syntax like the global parameters

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1226

 in the NV_vertex_program extension. They c an be updated using the
 commands ProgramNamedParameter4[f,fv]NV.

 Numbered local parameters are not declared. They are used by simply
 referencing an element of an array called " p". For example,

 MOV R0, p[12];

 loads the value of numbered local parameter 12 into register R0.
 Numbered local parameters can be updated us ing the commands
 ProgramLocalParameter4[d,dv,f,fv]ARB.

 The numbered local parameter APIs were adde d to this extension late in
 its development, and are provided for compa tibility with the
 ARB_vertex_program extension, and what will likely be supported in
 ARB_fragment_program as well. Providing th is mechanism allows
 programs to use the same mechanisms to set local parameters in both
 extension.

 Why are the APIs for setting named and numbered local parameters
 different?

 RESOLVED: The named parameter API was crea ted prior to
 ARB_vertex_program (and the possible future ARB_fragment_program) and
 uses conventions borrowed from NV_vertex_pr ogram. A slightly
 different API was chosen during the ARB sta ndardization process; see
 the ARB_vertex_program specification for mo re details.

 The named parameter API takes a program ID and a parameter name, and
 sets the parameter for the program with the specified ID. The
 specified program does not need to be bound (via BindProgramNV) in
 order to modify the values of its named par ameters. The numbered
 parameter API takes a program target enum (FRAGMENT_PROGRAM_NV) and a
 parameter number and modifies the correspon ding numbered parameter of
 the currently bound program.

 What should be the initial value of uninitializ ed local parameters?

 RESOLVED: (0,0,0,0). This choice is somew hat arbitrary, but matches
 previous extensions (e.g., NV_vertex_progra m).

 Should this extension support program parameter arrays?

 RESOLVED: No hardware support is present. Note that from the point
 of view of a fragment program, a texture ma p can be used as a 1-, 2-,
 or 3-dimensional array of constants.

 Should this extension provide support constants in fragment programs? If
 so, how?

 RESOLVED: Yes. Scalar or vector constants can be defined inline
 (e.g., "1.0" or "{1,2,3,4}"). In addition, named constants are
 supported using the "DEFINE" instruction, w hich allow programmers to
 change the values of constants used in mult iple instructions simply be
 changing the value assigned to the named co nstant.

 Note that because this extension uses progr am strings, the

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1227

 floating-point value of any constants gener ated on the fly must be
 printed to the program string. An alternat e method that avoids the
 need to print constants is to declare a nam ed local program parameter
 and initialize it with the ProgramNamedPara meter4[f,fv]() calls.

 Should named constants be allowed to be redefin ed?

 RESOLVED: No. If you want to redefine the values of constants, you
 can create an equivalent named program para meter by changing the
 "DEFINE" keyword to "DECLARE".

 Should functions used to update or query named local parameters take a
 zero-terminated string (as with most strings in the C programming
 language), or should they require an explicit s tring length? If the
 former, should we create a version of LoadProgr amNV that does not require
 a string length.

 RESOLVED: Stick with explicit string lengt h. Strings that are
 defined as constants can have the length co mputed at compile-time.
 Strings read from files will have the lengt h known in advance.
 Programs to build strings at run-time also likely keep the length
 up-to-date. Passing an explicit length sav es time, since the driver
 doesn't have to do a strlen().

 What is the deal with the alpha of the secondar y color?

 RESOLVED: In unextended OpenGL 1.2, the al pha component of the
 secondary color is forced to 0.0. In the E XT_secondary_color
 extension, the alpha of the per-vertex seco ndary colors is defined to
 be 0.0. NV_vertex_program allows vertex pr ograms to produce a
 per-vertex alpha component, but it is force d to zero for the purposes
 of the color sum. In the NV_register_combi ners extension, the alpha
 component of the secondary color is undefin ed. What a mess.

 In this extension, the alpha of the seconda ry color is well-defined
 and can be used normally. When in vertex p rogram mode

 Why are fragment program instructions involving f[FOGC] or f[TEX0] through
 f[TEX7] automatically carried out at full preci sion?

 RESOLVED: This is an artifact of the metho d that these interpolants
 are generated the NVIDIA graphics hardware. If such instructions
 absolutely must be carried out at lower pre cision, the requirement can
 be met by first loading the interpolants in to a temporary register.

 With a different number of texture coordinate s ets and texture image
 units, how many copies of each kind of texture state are there?

 RESOLVED: The intention is that texture st ate be broken into three
 groups. (1) There are MAX_TEXTURE_COORDS_N V copies of texture
 coordinate set state, which includes curren t texture coordinates,
 TexGen state, and texture matrices. (2) Th ere are
 MAX_TEXTURE_IMAGE_UNITS_NV copies of textur e image unit state, which
 include texture maps, texture parameters, L OD bias parameters. (3)
 There are MAX_TEXTURE_UNITS_ARB copies of l egacy OpenGL texture unit
 state (e.g., texture enables, TexEnv blendi ng state), all of which are
 unused when in fragment program mode.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1228

 It is not necessary that MAX_TEXTURE_UNITS_ ARB be equal to the minimum
 of MAX_TEXTURE_COORDS_NV and MAX_TEXTURE_IM AGE_UNITS --
 implementations may choose not to extend fi xed-function OpenGL texture
 mapping modes beyond a certain point.

 The GLX protocol for LoadProgramNV (and Program NamedParameterNV) may end
 up with programs >64KB. This will overflow the limits of the GLX Render
 protocol, resulting in the need to use RenderLa rge path. This is an issue
 with vertex programs, also.

 RESOLVED: Yes, it is.

 Should textures used by fragment programs be de clared? For example,
 "TEXTURE TEX3, 2D", indicating that the 2D text ure should be used for all
 accesses to texture unit 3. The dimension coul d be dropped from the TEX
 family of instructions, and some of the compile -time error checking could
 be dropped.

 RESOLVED: Maybe it should be, but for bett er or worse, it isn't.

 It is not all that uncommon to have negative q values with projective
 texture mapping, but results are undefined if a ny q values are negative in
 this specification. Why?

 RESOLVED: This restriction carries on a si milar one in the initial
 OpenGL specification. The motivation for t his restriction is that
 when interpolating, it is possible for a fr agment to have an
 interpolated q coordinate at or near 0.0. Since the texture
 coordinates used for projective texture map ping are s/q, t/q, and r/q,
 this will result in a divide-by-zero error or suffer from significant
 numerical instability. Results will be ina ccurate for such fragments.

 Other than the numerical stability issue ab ove, NVIDIA hardware should
 have no problems with negative q coordinate s.

 Should programs that replace depth have their o wn special program type,
 Such as "!!FPD1.0" and "!!FPDC1.0"?

 RESOLVED: No. If a program has an instruc tion that writes to
 o[DEPR], the final fragment depth value is taken from o[DEPR].z.
 Otherwise, the fragment's original depth va lue is used.

 What fx12 value should NaN map to?

 RESOLVED: For the lack of any better choic e, 0.0.

 How are special-case encodings (-INF, +INF, -0. 0, +0.0, NaN) handled for
 arithmetic and comparison operations?

 RESOLVED: The special cases for all floati ng-point operations are
 designed to match the IEEE specification fo r floating-point numbers as
 closely as possible. The results produced by special cases should be
 enumerated in the sections of this spec des cribing the operations.
 There are some cases where the implemented fragment program behavior
 does not match IEEE conventions, and these cases should be noted in
 this specification.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1229

 How can condition codes be used to mask out reg ister writes? How about
 killing fragments? What other things can you d o?

 RESOLVED: The following example computes a component wise |R1-R2|:

 SUBC R0, R1, R2; # "C" suffix means update condition code
 MOV R0 (LT), -R0; # Conditional write mask in parentheses

 The first instruction computes a component- wise difference between R1
 and R2, storing R1-R2 in register R0. The "C" suffix in the
 instruction means to update the condition c ode based on the sign of
 the result vector components. The second i nstruction inverts the sign
 of the components of R0. However the "(LT) " portion says that the
 destination register should be updated only if the corresponding
 condition code component is LT (negative). This means that only those
 components of R0

 To kill a fragment if the red (x) component of a texture lookup
 returns zero:

 TEXC R0, f[TEX0], TEX0, 2D;
 KIL EQ.x;

 To kill based on the green (y) component, u se "EQ.y" instead. To kill
 if any of the four components is zero, use "EQ.xyzw" or just "EQ".

 Fragment programs do not support boolean ex pressions. These can
 generally be achieved using conditional wri te mask.

 To evaluate the expression "(R0.x == 0) && (R1.x == 0)":

 MOVC RC.x, R0.x;
 MOVC RC.x (EQ), R1.x;

 To evaluate the expression "(R0.x == 0) || (R1.x == 0)":

 MOVC RC.x, R0.x;
 MOVC RC.x (NE), R1.x;

 In both cases, the x component of the condi tion code will contain "EQ"
 if and only if the condition is TRUE.

 How can fragment programs be used to implement non-standard texture
 filtering modes?

 RESOLVED: As one example, consider a case where you want to do linear
 filtering in a 2D texture map, but only hor izontally. To achieve
 this, first set the texture filtering mode to NEAREST. For a 16 x n
 texture, you might do something like:

 DEFINE halfTexel = { 0.03125, 0 }; # 1/ 32 (1/2 a texel)
 ADD R0, f[TEX0], -halfTexel; # co ords of left sample
 ADD R1, f[TEX0], +halfTexel; # co ords of right sample
 TEX R0, R0, TEX0, 2D; # lo okup left sample
 TEX R1, R1, TEX0, 2D; # lo okup right sample
 MUL R2.x, R0.x, 16; # sc ale X coords to texels

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1230

 FRC R2.x, R2.x; # ge t fraction, filter weight
 LRP R0, R2, R1, R0; # bl end samples based on weight

 There are plenty of other interesting thing s that can be done.

 Should this specification provide more examples ?

 RESOLVED: Yes, it should.

 Is the OpenGL ARB working on a multi-vendor sta ndard for fragment
 programmability? Will there be an ARB_fragment _program extension? If so,
 how will this extension interact with the ARB s tandard?

 RESOLVED: Yes, as of July 2002, there was a multi-vendor working
 group and a draft specification. The ARB e xtension is expected to
 have several features not present in this e xtension, such as state
 tracking and global parameters (called "pro gram environment
 parameters"). It will also likely lack cer tain features found in this
 extension.

 Why does the HEMI mapping apply to the third co mponent of signed HILO
 textures, but not to unsigned HILO textures?

 RESOLVED: This behavior matches the behavi or of NV_texture_shader
 (e.g., the DOT_PRODUCT_NV mode). The HEMI mapping will construct the
 third component of a unit vector whose firs t two components are
 encoded in the HILO texture.

New Procedures and Functions

 void ProgramNamedParameter4fNV(uint id, sizei l en, const ubyte *name,
 float x, float y , float z, float w);
 void ProgramNamedParameter4dNV(uint id, sizei l en, const ubyte *name,
 double x, double y, double z, double w);
 void ProgramNamedParameter4fvNV(uint id, sizei len, const ubyte *name,
 const float v[]);
 void ProgramNamedParameter4dvNV(uint id, sizei len, const ubyte *name,
 const double v[]);
 void GetProgramNamedParameterfvNV(uint id, size i len, const ubyte *name,
 float *params);
 void GetProgramNamedParameterdvNV(uint id, size i len, const ubyte *name,
 double *param s);

 void ProgramLocalParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramLocalParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, u int index,
 const float *p arams);
 void GetProgramLocalParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramLocalParameterfvARB(enum target, uint index,
 float *param s);

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1231

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, by the
 <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev,
 and by the <target> parameter of BindProgramNV, LoadProgramNV,
 ProgramLocalParameter4dARB, ProgramLocalParamet er4dvARB,
 ProgramLocalParameter4fARB, ProgramLocalParamet er4fvARB,
 GetProgramLocalParameterdvARB, and GetProgramLo calParameterfvARB:

 FRAGMENT_PROGRAM_NV 0x8870

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_TEXTURE_COORDS_NV 0x8871
 MAX_TEXTURE_IMAGE_UNITS_NV 0x8872
 FRAGMENT_PROGRAM_BINDING_NV 0x8873
 MAX_FRAGMENT_PROGRAM_LOCAL_PARAMETERS_NV 0x8868

 Accepted by the <name> parameter of GetString:

 PROGRAM_ERROR_STRING_NV 0x8874

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 Modify Section 2.11, Clipping (p.39)

 (replace the first paragraph of the section, p. 39) Primitives are clipped
 to the clip volume. In clip coordinates, the v iew volume is defined by

 -w_c <= x_c <= w_c,
 -w_c <= y_c <= w_c, and
 -w_c <= z_c <= w_c.

 Clipping to the near and far clip planes is ign ored if fragment program
 mode (section 3.11) or texture shaders (see NV_ texture_shader
 specification) are enabled, if the current frag ment program or texture
 shader computes per-fragment depth values. In this case, the view volume
 is defined by:

 -w_c <= x_c <= w_c and
 -w_c <= y_c <= w_c.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Chapter 3 introduction (p. 57)

 (p.57, modify 1st paragraph) ... Figure 3.1 dia grams the rasterization
 process. The color value assigned to a fragmen t is initially determined
 by the rasterization operations (Sections 3.3 t hrough 3.7) and modified by
 either the execution of the texturing, color su m, and fog operations as
 defined in Sections 3.8, 3.9, and 3.10, or of a fragment program defined
 in Section 3.11. The final depth value is init ially determined by the
 rasterization operations and may be modified by a fragment program.

 note: Antialiasing Application is renumbered f rom Section 3.11 to Section

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1232

 3.12.

 Modify Figure 3.1 (p.58)

 Primitive Assembly
 |
 +-----------+-----------+-----------+ -----------+
 | | | | |
 | | | Pixe l |
 Point Line Polygon Rect angle Bitmap
 Raster- Raster- Raster- Rast er- Raster-
 ization ization ization izat ion ization
 | | | | |
 +-----------+-----------+-----------+ -----------+
 |
 |
 +-----------------+------------ -----+
 | | |
 Conventional Texture Fragment
 Texture Fetch Shaders Programs
 | | |
 | +--------------+ |
 | | |
 TEXTURE_ o o |
 SHADER_NV |
 enable o |
 | |
 +-------------+ |
 | | |
 Conventional Register |
 TexEnv Combiners |
 | | |
 Color Sum | |
 | | |
 Fog | |
 | | |
 | +----------+ |
 | | |
 REGISTER_ o o |
 COMBINERS_ |
 NV enable o |
 | |
 +-----------------+ +--------- -----+
 | |
 FRAGMENT_ o o
 PROGRAM_
 NV enable o
 |
 |
 Coverage
 Application
 |
 v
 to fragment processing

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1233

 Modify Section 3.3, Points (p.61)

 All fragments produced in rasterizing a non-ant ialiased point are assigned
 the same associated data, which are those of th e vertex cooresponding to
 the point. (delete reference to divide by q).

 If anitialiasing is enabled, then ... The data associated with each
 fragment are otherwise the data associated with the point being
 rasterized. (delete reference to divide by q)

 Modify Section 3.4.1, Basic Line Segment Raster ization (p.66)

 (Note that t=0 at p_a and t=1 at p_b). The val ue of an associated datum f
 from the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
 index (in color index mode), the s, t, r, or q texture coordinate, or the
 clip w coordinate (the depth value, window z, m ust be found using equation
 3.3, below), is found as

 f = (1-t) * f_a / w_a + t * f_b / w_b (3.2)

 (1-t) / w_a + t / w_b

 where f_a and f_b are the data associated with the starting and ending
 endpoints of the segment, respectively; w_a and w_b are the clip
 w coordinates of the starting and ending endpoi nts of the segments
 respectively. Note that linear interpolation w ould use

 f = (1-t) * f_a + t * f_b. (3.3)

 ... A GL implementation may choose to approxima te equation 3.2 with 3.3,
 but this will normally lead to unacceptable dis tortion effects when
 interpolating texture coordinates or clip w coo rdinates.

 Modify Section 3.5.1, Basic Polygon Rasterizati on (p.71)

 Denote a datum at p_a, p_b, or p_c ... is given by

 f = a * f_a / w_a + b * f_b / w_b + c * f_c / w_c (3.4)
 --- ----
 a / w_a + b / w_b + c / w_c

 where w_a, w_b, and w_c are the clip w coordina tes of p_a, p_b, and p_c,
 respectively. a, b, and c are the barycentric coordinates of the fragment
 for which the data are produced. a, b, and c mu st correspond precisely to
 the exact coordinates ... at the fragment's cen ter.

 Just as with line segment rasterization, equati on 3.4 may be approximated
 by

 f = a * f_a + b * f_b + c * f_c; (3.5)

 this may yield ... for texture coordinates or c lip w coordinates.

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p.100)

 A fragment arising from a group ... are given b y those associated with the
 current raster position. (delete reference to divide by q)

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1234

 Modify Section 3.7, Bitmaps (p.111)

 Otherwise, a rectangular array ... The associat ed data for each fragment
 are those associated with the current raster po sition. (delete reference
 to divide by q) Once the fragments have been p roduced ...

 Modify Section 3.8, Texturing (p.112)

 ... an image at the location indicated by a fra gment's texture coordinates
 to modify the fragments primary RGBA color. Te xturing does not affect the
 secondary color.

 Texturing is specified only for RGBA mode; its use in color index mode is
 undefined.

 Except when in fragment program mode (Section 3 .11), the (s,t,r) texture
 coordinates used for texturing are the values s /q, t/q, and r/q,
 respectively, where s, t, r, and q are the text ure coordinates associated
 with the fragment. When in fragment program mo de, the (s,t,r) texture
 coordinates are specified by the program. If q is less than or equal to
 zero, the results of texturing are undefined.

 Add new Section 3.11, Fragment Programs (p.140)

 Fragment program mode is enabled and disabled w ith the Enable and Disable
 commands using the symbolic constant FRAGMENT_P ROGRAM_NV. When fragment
 program mode is enabled, standard and extended texturing, color sum, and
 fog application stages are ignored and a genera l purpose program is
 executed instead.

 A fragment program is a sequence of instruction s that execute on a
 per-fragment basis. In fragment program mode, the currently bound
 fragment program is executed as each fragment i s generated by the
 rasterization operations. Fragment programs ex ecute a finite fixed
 sequence of instructions with no branching or l ooping, and operate
 independently from the processing of other frag ments. Fragment programs
 are used to compute new color values to be asso ciated with each fragment,
 and can optionally compute a new depth value fo r each fragment as well.

 Fragment program mode is not available in color index mode and is
 considered disabled, regardless of the state of FRAGMENT_PROGRAM_NV. When
 fragment program mode is enabled, texture shade rs and register combiners
 (NV_texture_shader and NV_register_combiners ex tension) are disabled,
 regardless of the state of TEXTURE_SHADER_NV an d REGISTER_COMBINERS_NV.

 Section 3.11.1, Fragment Program Registers

 Fragment programs operate on a set of program r egisters. Each program
 register is a 4-component vector, whose compone nts are referred to as "x",
 "y", "z", and "w" respectively. The components of a fragment register are
 always referred to in this manner, regardless o f the meaning of their
 contents.

 The four components of each fragment program re gister have one of two
 different representations: 32-bit floating-poi nt (fp32) or 16-bit
 floating-point (fp16). More details on these r epresentations can be found

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1235

 in Section 3.11.4.1.

 There are several different classes of program registers. Attribute
 registers (Table X.1) correspond to the fragmen t's associated data
 produced by rasterization. Temporary registers (Table X.2) hold
 intermediate results generated by the fragment program. Output registers
 (Table X.3) hold the final results of a fragmen t program. The single
 condition code register is used to mask writes to other registers or to
 determine if a fragment should be discarded.

 Section 3.11.1.1, Fragment Program Attribute Re gisters

 The fragment program attribute registers (Table X.1) hold the location of
 the fragment and the data associated with the f ragment produced by
 rasterization.

 Fragment Attribute Component
 Register Name Description Interpretation
 -------------- ------------------------------ ----- --------------
 f[WPOS] Position of the fragment cente r. (x,y,z,1/w)
 f[COL0] Interpolated primary color (r,g,b,a)
 f[COL1] Interpolated secondary color (r,g,b,a)
 f[FOGC] Interpolated fog distance/coor d (z,0,0,0)
 f[TEX0] Texture coordinate (unit 0) (s,t,r,q)
 f[TEX1] Texture coordinate (unit 1) (s,t,r,q)
 f[TEX2] Texture coordinate (unit 2) (s,t,r,q)
 f[TEX3] Texture coordinate (unit 3) (s,t,r,q)
 f[TEX4] Texture coordinate (unit 4) (s,t,r,q)
 f[TEX5] Texture coordinate (unit 5) (s,t,r,q)
 f[TEX6] Texture coordinate (unit 6) (s,t,r,q)
 f[TEX7] Texture coordinate (unit 7) (s,t,r,q)

 Table X.1: Fragment Attribute Registers. The component interpretation
 column describes the mapping of attribute value s to register components.
 For example, the "x" component of f[COL0] holds the red color component,
 and the "x" component of f[TEX0] holds the "s" texture coordinate for
 texture unit 0. The entries "0" and "1" indica te that the attribute
 register components hold the constants 0 and 1, respectively.

 f[WPOS].x and f[WPOS].y hold the (x,y) window c oordinates of the fragment
 center, and relative to the lower left corner o f the window. f[WPOS].z
 holds the associated z window coordinate, norma lly in the range [0,1].
 f[WPOS].w holds the reciprocal of the associate d clip w coordinate.

 f[COL0] and f[COL1] hold the associated RGBA pr imary and secondary colors
 of the fragment, respectively.

 f[FOGC] holds the associated eye distance or fo g coordinate normally used
 for fog computations.

 f[TEX0] through f[TEX7] hold the associated tex ture coordinates for
 texture coordinate sets 0 through 7, respective ly.

 All attribute register components are treated a s 32-bit floats. However,
 the components of primary and secondary colors (f[COL0] and f[COL1]) may
 be generated with reduced precision.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1236

 The contents of the fragment attribute register s may not be modified by a
 fragment program. In addition, each fragment p rogram instruction can use
 at most one unique attribute register.

 Section 3.11.1.2, Fragment Program Temporary Re gisters

 The fragment temporary registers (Table X.2) ho ld intermediate values used
 during the execution of a fragment program. Th ere are 96 temporary
 register names, but not all can be used simulta neously.

 Fragment Temporary
 Register Name Description
 ------------------ --------------------------- --------------------------
 R0-R31 Four 32-bit (fp32) floating point values (s.e8.m23)
 H0-H63 Four 16-bit (fp16) floating point values (s.e5.m10)

 Table X.2: Fragment Temporary Registers.

 In addition to the normal temporary registers, there are two temporary
 pseudo-registers, "RC" and "HC". RC and HC are treated as unnumbered,
 write-only temporary registers. The components of RC have an fp32 data
 type; the components of HC have an fp16 data ty pe. The sole purpose of
 these registers is to permit instructions to mo dify the condition code
 register (section 3.11.1.4) without overwriting the values in any
 temporary register.

 Fragment program instructions can read and writ e temporary registers.
 There is no restriction on the number of tempor ary registers that can be
 accessed by any given instruction.

 All temporary registers are initialized to (0,0 ,0,0) each time a fragment
 program executes.

 Section 3.11.1.3, Fragment Program Output Regis ters

 The fragment program output registers hold the final results of the
 fragment program. The possible final results o f a fragment program are an
 RGBA fragment color, a fragment depth value, an d up to four texture values
 used by the NV_register_combiners extension.

 Output
 Register Name Description
 ------------- ---------------------------- ---------------------------
 o[COLR] Final RGBA fragment color, f p32 format (color programs)
 o[COLH] Final RGBA fragment color, f p16 format (color programs)
 o[TEX0] TEXTURE0 output, fp16 format (combiner programs)
 o[TEX1] TEXTURE1 output, fp16 format (combiner programs)
 o[TEX2] TEXTURE2 output, fp16 format (combiner programs)
 o[TEX3] TEXTURE3 output, fp16 format (combiner programs)
 o[DEPR] Final fragment depth value, fp32 format

 Table X.3: Fragment Program Output Registers.

 o[COLR] and o[COLH] are used by color fragment programs to specify the
 color of a fragment. These two registers are i dentical, except for the
 associated data type of the components. The R, G, B, and A components of
 the fragment color are taken from the x, y, z, and w components

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1237

 respectively of the o[COLR] or o[COLH]. A frag ment program will fail to
 load if it writes to both o[COLR] and o[COLH].

 o[TEX0], o[TEX1], o[TEX2], and o[TEX3] are used by combiner fragment
 programs to generate the initial texture regist er values for the register
 combiners. After a combiner fragment program i s executed, register
 combiner operations are performed and can use t hese computed values. The
 R, G, B, and A components of the combiner regis ters are taken from the x,
 y, z, and w components of the corresponding out put registers.

 o[DEPR] can be used to replace the associated d epth value of a fragment.
 The new depth value is taken from the z compone nt of o[DEPR]. If a
 fragment program does not write to o[DEPR], the associated depth value is
 unmodified.

 A fragment program will fail to load if it does not write to at least one
 output register. A color fragment program will fail to load if it writes
 to o[TEX0], o[TEX1], o[TEX2], or o[TEX3]. A co mbiner fragment program
 will fail to load if it writes to o[COLR] or o[COLH], or if it does not
 write to any of o[TEX0], o[TEX1], o[TEX2], or o [TEX3].

 The fragment program output registers may not b e read by a fragment
 program, but may be written to multiple times.

 The values of all fragment program output regis ters are initially
 undefined.

 Section 3.11.1.4, Fragment Program Condition Co de Register

 The condition code register (CC) is a single fo ur-component vector. Each
 component of this register is one of four enume rated values: GT (greater
 than), EQ (equal), LT (less than), or UN (unord ered). The condition code
 register can be used to mask writes to fragment data register components
 or to terminate processing of a fragment altoge ther (via the KIL
 instruction).

 Most fragment program instructions can optional ly update the condition
 code register. When a fragment program instruc tion updates the condition
 code register, a condition code component is se t to LT if the
 corresponding component of the result vector is less than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN (not
 a number).

 The condition code register is initialized to a vector of EQ values each
 time a fragment program executes.

 Section 3.11.2, Fragment Program Parameters

 In addition to using the registers defined in S ection 3.11.1, fragment
 programs may also use fragment program paramete rs in their computation.
 Fragment program parameters are constant during the execution of fragment
 programs, but some parameters may be modified o utside the execution of a
 fragment program.

 There are five different types of program param eters: embedded scalar
 constants, embedded vector constants, named con stants, named local
 parameters, and numbered local parameters.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1238

 Embedded scalar constants are written as standa rd floating-point numbers
 with an optional sign designator ("+" or "-") a nd optional scientific
 notation (e.g., "E+06", meaning "times 10^6").

 Embedded vector constants are written as a comm a-separated array of one to
 four scalar constants, surrounded by braces (li ke a C/C++ array
 initializer). Vector constants are always trea ted as 4-component vectors:
 constants with fewer than four components are e xpanded to 4-components by
 filling missing y and z components with 0.0 and missing w components with
 1.0. Thus, the vector constant "{2}" is equiva lent to "{2,0,0,1}",
 "{3,4}" is equivalent to "{3,4,0,1}", and "{5,6 ,7}" is equivalent to
 "{5,6,7,1}".

 Named constants allow fragment program instruct ions to define scalar or
 vector constants that can be referenced by name . Named constants are
 created using the DEFINE instruction:

 DEFINE pi = 3.1415926535;
 DEFINE color = {0.2, 0.5, 0.8, 1.0};

 The DEFINE instruction associates a constant na me with a scalar or vector
 constant value. Subsequent fragment program in structions that use the
 constant name are equivalent to those using the corresponding constant
 value.

 Named local parameters are similar to named vec tor constants, but their
 values can be modified after the program is loa ded. Local parameters are
 created using the DECLARE instruction:

 DECLARE fog_color1;
 DECLARE fog_color2 = {0.3, 0.6, 0.9, 0.1};

 The DECLARE instruction creates a 4-component v ector associated with the
 local parameter name. Subsequent fragment prog ram instructions
 referencing the local parameter name are proces sed as though the current
 value of the local parameter vector were specif ied instead of the
 parameter name. A DECLARE instruction can opti onally specify an initial
 value for the local parameter, which can be eit her a scalar or vector
 constant. Scalar constants are expanded to 4-c omponent vectors by
 replicating the scalar value in each component. The initial value of
 local parameters not initialized by the program is (0,0,0,0).

 A named local parameter for a specific program can be updated using the
 calls ProgramNamedParameter4fNV or ProgramNamed Parameter4fvNV (section
 5.7). Named local parameters are accessible on ly by the program in which
 they are defined. Modifying a local parameter affects the only the
 associated program and does not affect local pa rameters with the same name
 that are found in any other fragment program.

 Numbered local parameters are similar to named local parameters, except
 that they are referred to by number and are not declared in fragment
 programs. Each fragment program object has an array of four-component
 floating-point vectors that can be used by the program. The number of
 vectors is given by the implementation-dependen t constant
 MAX_FRAGMENT_PROGRAM_LOCAL_PARAMETERS_NV, and must be at least 64. A
 numbered local parameter is accessed by a fragm ent program as members of

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1239

 an array called "p". For example, the instruct ion

 MOV R0, p[31];

 copies the contents of numbered local parameter 31 into temporary register
 R0.

 Constant and local parameter names can be arbit rary strings consisting of
 letters (upper or lower-case), numbers, undersc ores ("_"), and dollar
 signs ("$"). Keywords defined in the grammar (including instruction
 names) can not be used as constant names, nor c an strings that start with
 numbers, or strings that specify valid temporar y register or texture
 numbers (e.g., "R0"-"R31", "H0"-"H63"", "TEX0"- "TEX15"). A fragment
 program will fail to load if a DEFINE or DECLAR E instruction specifies an
 invalid constant or local parameter name.

 A fragment program will fail to load if an inst ruction contains a named
 parameter not specified in a previous DEFINE or DECLARE instruction. A
 fragment program will also fail to load if a DE FINE or DECLARE instruction
 attempts to re-define a named parameter specifi ed in a previous DEFINE or
 DECLARE instruction.

 The contents of the fragment program parameters may not be modified by a
 fragment program. In addition, each fragment p rogram instruction can
 normally use at most one unique program paramet er. The only exception to
 this rule is if all program parameter reference s specify named or embedded
 constants that taken together contain no more t han four unique scalar
 values. For such instructions, the GL will aut omatically generate an
 equivalent instruction that references a single merged vector constant.
 This merging allows programs to specify instruc tions like the following:

 Instruction Equivalent Instruc tion
 --------------------- ------------------ ---------------------
 MAD R0, R1, 2, -1; MAD R0, R1, {2,-1, 0,0}.x, {2,-1,0,0}.y;
 ADD R0, {1,2,3,4}, 4; ADD R0, {1,2,3,4}. xyzw, {1,2,3,4}.w;

 Before counting the number of unique values, an y named constants are first
 converted to the equivalent embedded constants. When generating a
 combined vector constant, the GL does not perfo rm swizzling, component
 selection, negation, or absolute value operatio ns. The following
 instructions are invalid, as they contain more than four unique scalar
 values.

 Invalid Instructions

 ADD R0, {1,2,3,4}, -4;
 ADD R0, {1,2,3,4}, |-4|;
 ADD R0, {1,2,3,4}, -{-1,-2,-3,-4};
 ADD R0, {1,2,3,4}, {4,5,6,7}.x;

 Section 3.11.3, Fragment Program Specification

 Fragment programs are specified as an array of ubytes. The array is a
 string of ASCII characters encoding the program . The command
 LoadProgramNV loads a fragment program when the target parameter is
 FRAGMENT_PROGRAM_NV. The command BindProgramNV enables a fragment program
 for execution.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1240

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array. Fragment programs are case-sens itive -- upper and lower
 case letters are treated differently. The prop er choice of case can be
 inferred from the grammar.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for fragment programs. The set of va lid tokens can be inferred
 from the grammar. The token "" represents an e mpty string and is used to
 indicate optional rules. A program is invalid if it contains any
 undefined tokens or characters.

 <program> ::= <progPrefix> <instru ctionSequence> "END"

 <progPrefix> ::= <colorProgPrefix>
 | <combinerProgPrefix>

 <colorProgPrefix> ::= "!!FP1.0"

 <combinerProgPrefix> ::= "!!FCP1.0"

 <instructionSequence> ::= <instructionSequence > <instructionStatement>
 | <instructionStatemen t>

 <instructionStatement> ::= <instruction> ";"
 | <constantDefinition> ";"
 | <localDeclaration> " ;"

 <instruction> ::= <VECTORop-instructio n>
 | <SCALARop-instructio n>
 | <BINSCop-instruction >
 | <BINop-instruction>
 | <TRIop-instruction>
 | <KILop-instruction>
 | <TEXop-instruction>
 | <TXDop-instruction>

 <VECTORop-instruction> ::= <VECTORop> <maskedDs tReg> ","
 <vectorSrc>

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1241

 <VECTORop> ::= "DDX" | "DDX_SAT"
 | "DDXR" | "DDXR_SAT"
 | "DDXH" | "DDXH_SAT"
 | "DDXC" | "DDXC_SAT"
 | "DDXRC" | "DDXRC_SAT "
 | "DDXHC" | "DDXHC_SAT "
 | "DDY" | "DDY_SAT"
 | "DDYR" | "DDYR_SAT"
 | "DDYH" | "DDYH_SAT"
 | "DDYC" | "DDYC_SAT"
 | "DDYRC" | "DDYRC_SAT "
 | "DDYHC" | "DDYHC_SAT "
 | "FLR" | "FLR_SAT"
 | "FLRR" | "FLRR_SAT"
 | "FLRH" | "FLRH_SAT"
 | "FLRX" | "FLRX_SAT"
 | "FLRC" | "FLRC_SAT"
 | "FLRRC" | "FLRRC_SAT "
 | "FLRHC" | "FLRHC_SAT "
 | "FLRXC" | "FLRXC_SAT "
 | "FRC" | "FRC_SAT"
 | "FRCR" | "FRCR_SAT"
 | "FRCH" | "FRCH_SAT"
 | "FRCX" | "FRCX_SAT"
 | "FRCC" | "FRCC_SAT"
 | "FRCRC" | "FRCRC_SAT "
 | "FRCHC" | "FRCHC_SAT "
 | "FRCXC" | "FRCXC_SAT "
 | "LIT" | "LIT_SAT"
 | "LITR" | "LITR_SAT"
 | "LITH" | "LITH_SAT"
 | "LITC" | "LITC_SAT"
 | "LITRC" | "LITRC_SAT "
 | "LITHC" | "LITHC_SAT "
 | "MOV" | "MOV_SAT"
 | "MOVR" | "MOVR_SAT"
 | "MOVH" | "MOVH_SAT"
 | "MOVX" | "MOVX_SAT"
 | "MOVC" | "MOVC_SAT"
 | "MOVRC" | "MOVRC_SAT "
 | "MOVHC" | "MOVHC_SAT "
 | "MOVXC" | "MOVXC_SAT "
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"

 <SCALARop-instruction> ::= <SCALARop> <maskedDs tReg> ","
 <scalarSrc>

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1242

 <SCALARop> ::= "COS" | "COS_SAT "
 | "COSR" | "COSR_SA T"
 | "COSH" | "COSH_SA T"
 | "COSC" | "COSC_SA T"
 | "COSRC" | "COSRC_S AT"
 | "COSHC" | "COSHC_S AT"
 | "EX2" | "EX2_SAT "
 | "EX2R" | "EX2R_SA T"
 | "EX2H" | "EX2H_SA T"
 | "EX2C" | "EX2C_SA T"
 | "EX2RC" | "EX2RC_S AT"
 | "EX2HC" | "EX2HC_S AT"
 | "LG2" | "LG2_SAT "
 | "LG2R" | "LG2R_SA T"
 | "LG2H" | "LG2H_SA T"
 | "LG2C" | "LG2C_SA T"
 | "LG2RC" | "LG2RC_S AT"
 | "LG2HC" | "LG2HC_S AT"
 | "RCP" | "RCP_SAT "
 | "RCPR" | "RCPR_SA T"
 | "RCPH" | "RCPH_SA T"
 | "RCPC" | "RCPC_SA T"
 | "RCPRC" | "RCPRC_S AT"
 | "RCPHC" | "RCPHC_S AT"
 | "RSQ" | "RSQ_SAT "
 | "RSQR" | "RSQR_SA T"
 | "RSQH" | "RSQH_SA T"
 | "RSQC" | "RSQC_SA T"
 | "RSQRC" | "RSQRC_S AT"
 | "RSQHC" | "RSQHC_S AT"
 | "SIN" | "SIN_SAT "
 | "SINR" | "SINR_SA T"
 | "SINH" | "SINH_SA T"
 | "SINC" | "SINC_SA T"
 | "SINRC" | "SINRC_S AT"
 | "SINHC" | "SINHC_S AT"
 | "UP2H" | "UP2H_SA T"
 | "UP2HC" | "UP2HC_S AT"
 | "UP2US" | "UP2US_S AT"
 | "UP2USC" | "UP2USC_ SAT"
 | "UP4B" | "UP4B_SA T"
 | "UP4BC" | "UP4BC_S AT"
 | "UP4UB" | "UP4UB_S AT"
 | "UP4UBC" | "UP4UBC_ SAT"

 <BINSCop-instruction> ::= <BINSCop> <maskedDst Reg> ","
 <scalarSrc> "," <sca larSrc>

 <BINSCop> ::= "POW" | "POW_SAT"
 | "POWR" | "POWR_SAT"
 | "POWH" | "POWH_SAT"
 | "POWC" | "POWC_SAT"
 | "POWRC" | "POWRC_SAT "
 | "POWHC" | "POWHC_SAT "

 <BINop-instruction> ::= <BINop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc>

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1243

 <BINop> ::= "ADD" | "ADD_SAT"
 | "ADDR" | "ADDR_SAT"
 | "ADDH" | "ADDH_SAT"
 | "ADDX" | "ADDX_SAT"
 | "ADDC" | "ADDC_SAT"
 | "ADDRC" | "ADDRC_SAT "
 | "ADDHC" | "ADDHC_SAT "
 | "ADDXC" | "ADDXC_SAT "
 | "DP3" | "DP3_SAT"
 | "DP3R" | "DP3R_SAT"
 | "DP3H" | "DP3H_SAT"
 | "DP3X" | "DP3X_SAT"
 | "DP3C" | "DP3C_SAT"
 | "DP3RC" | "DP3RC_SAT "
 | "DP3HC" | "DP3HC_SAT "
 | "DP3XC" | "DP3XC_SAT "
 | "DP4" | "DP4_SAT"
 | "DP4R" | "DP4R_SAT"
 | "DP4H" | "DP4H_SAT"
 | "DP4X" | "DP4X_SAT"
 | "DP4C" | "DP4C_SAT"
 | "DP4RC" | "DP4RC_SAT "
 | "DP4HC" | "DP4HC_SAT "
 | "DP4XC" | "DP4XC_SAT "
 | "DST" | "DST_SAT"
 | "DSTR" | "DSTR_SAT"
 | "DSTH" | "DSTH_SAT"
 | "DSTC" | "DSTC_SAT"
 | "DSTRC" | "DSTRC_SAT "
 | "DSTHC" | "DSTHC_SAT "
 | "MAX" | "MAX_SAT"
 | "MAXR" | "MAXR_SAT"
 | "MAXH" | "MAXH_SAT"
 | "MAXX" | "MAXX_SAT"
 | "MAXC" | "MAXC_SAT"
 | "MAXRC" | "MAXRC_SAT "
 | "MAXHC" | "MAXHC_SAT "
 | "MAXXC" | "MAXXC_SAT "
 | "MIN" | "MIN_SAT"
 | "MINR" | "MINR_SAT"
 | "MINH" | "MINH_SAT"
 | "MINX" | "MINX_SAT"
 | "MINC" | "MINC_SAT"
 | "MINRC" | "MINRC_SAT "
 | "MINHC" | "MINHC_SAT "
 | "MINXC" | "MINXC_SAT "
 | "MUL" | "MUL_SAT"
 | "MULR" | "MULR_SAT"
 | "MULH" | "MULH_SAT"
 | "MULX" | "MULX_SAT"
 | "MULC" | "MULC_SAT"
 | "MULRC" | "MULRC_SAT "
 | "MULHC" | "MULHC_SAT "
 | "MULXC" | "MULXC_SAT "
 | "RFL" | "RFL_SAT"
 | "RFLR" | "RFLR_SAT"

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1244

 | "RFLH" | "RFLH_SAT"
 | "RFLC" | "RFLC_SAT"
 | "RFLRC" | "RFLRC_SAT "
 | "RFLHC" | "RFLHC_SAT "
 | "SEQ" | "SEQ_SAT"
 | "SEQR" | "SEQR_SAT"
 | "SEQH" | "SEQH_SAT"
 | "SEQX" | "SEQX_SAT"
 | "SEQC" | "SEQC_SAT"
 | "SEQRC" | "SEQRC_SAT "
 | "SEQHC" | "SEQHC_SAT "
 | "SEQXC" | "SEQXC_SAT "
 | "SFL" | "SFL_SAT"
 | "SFLR" | "SFLR_SAT"
 | "SFLH" | "SFLH_SAT"
 | "SFLX" | "SFLX_SAT"
 | "SFLC" | "SFLC_SAT"
 | "SFLRC" | "SFLRC_SAT "
 | "SFLHC" | "SFLHC_SAT "
 | "SFLXC" | "SFLXC_SAT "
 | "SGE" | "SGE_SAT"
 | "SGER" | "SGER_SAT"
 | "SGEH" | "SGEH_SAT"
 | "SGEX" | "SGEX_SAT"
 | "SGEC" | "SGEC_SAT"
 | "SGERC" | "SGERC_SAT "
 | "SGEHC" | "SGEHC_SAT "
 | "SGEXC" | "SGEXC_SAT "
 | "SGT" | "SGT_SAT"
 | "SGTR" | "SGTR_SAT"
 | "SGTH" | "SGTH_SAT"
 | "SGTX" | "SGTX_SAT"
 | "SGTC" | "SGTC_SAT"
 | "SGTRC" | "SGTRC_SAT "
 | "SGTHC" | "SGTHC_SAT "
 | "SGTXC" | "SGTXC_SAT "
 | "SLE" | "SLE_SAT"
 | "SLER" | "SLER_SAT"
 | "SLEH" | "SLEH_SAT"
 | "SLEX" | "SLEX_SAT"
 | "SLEC" | "SLEC_SAT"
 | "SLERC" | "SLERC_SAT "
 | "SLEHC" | "SLEHC_SAT "
 | "SLEXC" | "SLEXC_SAT "
 | "SLT" | "SLT_SAT"
 | "SLTR" | "SLTR_SAT"
 | "SLTH" | "SLTH_SAT"
 | "SLTX" | "SLTX_SAT"
 | "SLTC" | "SLTC_SAT"
 | "SLTRC" | "SLTRC_SAT "
 | "SLTHC" | "SLTHC_SAT "
 | "SLTXC" | "SLTXC_SAT "
 | "SNE" | "SNE_SAT"
 | "SNER" | "SNER_SAT"
 | "SNEH" | "SNEH_SAT"
 | "SNEX" | "SNEX_SAT"
 | "SNEC" | "SNEC_SAT"

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1245

 | "SNERC" | "SNERC_SAT "
 | "SNEHC" | "SNEHC_SAT "
 | "SNEXC" | "SNEXC_SAT "
 | "STR" | "STR_SAT"
 | "STRR" | "STRR_SAT"
 | "STRH" | "STRH_SAT"
 | "STRX" | "STRX_SAT"
 | "STRC" | "STRC_SAT"
 | "STRRC" | "STRRC_SAT "
 | "STRHC" | "STRHC_SAT "
 | "STRXC" | "STRXC_SAT "
 | "SUB" | "SUB_SAT"
 | "SUBR" | "SUBR_SAT"
 | "SUBH" | "SUBH_SAT"
 | "SUBX" | "SUBX_SAT"
 | "SUBC" | "SUBC_SAT"
 | "SUBRC" | "SUBRC_SAT "
 | "SUBHC" | "SUBHC_SAT "
 | "SUBXC" | "SUBXC_SAT "

 <TRIop-instruction> ::= <TRIop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc> ","
 <vectorSrc>

 <TRIop> ::= "MAD" | "MAD_SAT"
 | "MADR" | "MADR_SAT"
 | "MADH" | "MADH_SAT"
 | "MADX" | "MADX_SAT"
 | "MADC" | "MADC_SAT"
 | "MADRC" | "MADRC_SAT "
 | "MADHC" | "MADHC_SAT "
 | "MADXC" | "MADXC_SAT "
 | "LRP" | "LRP_SAT"
 | "LRPR" | "LRPR_SAT"
 | "LRPH" | "LRPH_SAT"
 | "LRPX" | "LRPX_SAT"
 | "LRPC" | "LRPC_SAT"
 | "LRPRC" | "LRPRC_SAT "
 | "LRPHC" | "LRPHC_SAT "
 | "LRPXC" | "LRPXC_SAT "
 | "X2D" | "X2D_SAT"
 | "X2DR" | "X2DR_SAT"
 | "X2DH" | "X2DH_SAT"
 | "X2DC" | "X2DC_SAT"
 | "X2DRC" | "X2DRC_SAT "
 | "X2DHC" | "X2DHC_SAT "

 <KILop-instruction> ::= <KILop> <ccMask>

 <KILop> ::= "KIL"

 <TEXop-instruction> ::= <TEXop> <maskedDstRe g> ","
 <vectorSrc> "," <tex ImageId>

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1246

 <TEXop> ::= "TEX" | "TEX_SAT"
 | "TEXC" | "TEXC_SAT"
 | "TXP" | "TXP_SAT"
 | "TXPC" | "TXPC_SAT"

 <TXDop-instruction> ::= <TXDop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc> ","
 <vectorSrc> "," <tex ImageId>

 <TXDop> ::= "TXD" | "TXD_SAT"
 | "TXDC" | "TXDC_SAT"

 <scalarSrc> ::= <absScalarSrc>
 | <baseScalarSrc>

 <absScalarSrc> ::= <negate> "|" <baseSc alarSrc> "|"

 <baseScalarSrc> ::= <signedScalarConstan t>
 | <negate> <namedScala rConstant>
 | <negate> <vectorCons tant> <scalarSuffix>
 | <negate> <namedLocal Parameter> <scalarSuffix>
 | <negate> <numberedLo cal> <scalarSuffix>
 | <negate> <srcRegiste r> <scalarSuffix>

 <vectorSrc> ::= <absVectorSrc>
 | <baseVectorSrc>

 <absVectorSrc> ::= <negate> "|" <baseVe ctorSrc> "|"

 <baseVectorSrc> ::= <signedScalarConstan t>
 | <negate> <namedScala rConstant>
 | <negate> <vectorCons tant> <scalarSuffix>
 | <negate> <vectorCons tant> <swizzleSuffix>
 | <negate> <namedLocal Parameter> <scalarSuffix>
 | <negate> <namedLocal Parameter> <swizzleSuffix>
 | <negate> <numberedLo cal> <scalarSuffix>
 | <negate> <numberedLo cal> <swizzleSuffix>
 | <negate> <srcRegiste r> <scalarSuffix>
 | <negate> <srcRegiste r> <swizzleSuffix>

 <maskedDstReg> ::= <dstRegister> <optio nalWriteMask>
 <optionalCCMask>

 <dstRegister> ::= <fragTempReg>
 | <fragOutputReg>
 | "RC"
 | "HC"

 <optionalCCMask> ::= "(" <ccMask> ")"
 | ""

 <ccMask> ::= <ccMaskRule> <swizzl eSuffix>
 | <ccMaskRule> <scalar Suffix>

 <ccMaskRule> ::= "EQ" | "GE" | "GT" | "LE" | "LT" | "NE" |
 "TR" | "FL"

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1247

 <optionalWriteMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <srcRegister> ::= <fragAttribReg>
 | <fragTempReg>

 <fragAttribReg> ::= "f" "[" <fragAttribR egId> "]"

 <fragAttribRegId> ::= "WPOS" | "COL0" | "C OL1" | "FOGC" | "TEX0"
 | "TEX1" | "TEX2" | "T EX3" | "TEX4" | "TEX5"
 | "TEX6" | "TEX7"

 <fragTempReg> ::= <fragF32Reg>
 | <fragF16Reg>

 <fragF32Reg> ::= "R0" | "R1" | "R2" | "R3"
 | "R4" | "R5" | "R6" | "R7"
 | "R8" | "R9" | "R10 " | "R11"
 | "R12" | "R13" | "R14 " | "R15"
 | "R16" | "R17" | "R18 " | "R19"
 | "R20" | "R21" | "R22 " | "R23"
 | "R24" | "R25" | "R26 " | "R27"
 | "R28" | "R29" | "R30 " | "R31"

 <fragF16Reg> ::= "H0" | "H1" | "H2" | "H3"
 | "H4" | "H5" | "H6" | "H7"
 | "H8" | "H9" | "H10 " | "H11"
 | "H12" | "H13" | "H14 " | "H15"
 | "H16" | "H17" | "H18 " | "H19"
 | "H20" | "H21" | "H22 " | "H23"
 | "H24" | "H25" | "H26 " | "H27"
 | "H28" | "H29" | "H30 " | "H31"
 | "H32" | "H33" | "H34 " | "H35"
 | "H36" | "H37" | "H38 " | "H39"
 | "H40" | "H41" | "H42 " | "H43"
 | "H44" | "H45" | "H46 " | "H47"
 | "H48" | "H49" | "H50 " | "H51"
 | "H52" | "H53" | "H54 " | "H55"
 | "H56" | "H57" | "H58 " | "H59"
 | "H60" | "H61" | "H62 " | "H63"

 <fragOutputReg> ::= "o" "[" <fragOutputR egName> "]"

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1248

 <fragOutputRegName> ::= "COLR" | "COLH" | "D EPR" | "TEX0" | "TEX1"
 | "TEX2" | "TEX3"

 <numberedLocal> ::= "p" "[" <localNumber > "]"

 <localNumber> ::= <integer> from 0 to
 MAX_FRAGMENT_PROGRAM _LOCAL_PARAMETERS_NV - 1

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x" | "y" | "z" | "w "

 <texImageId> ::= <texImageUnit> "," < texImageTarget>

 <texImageUnit> ::= "TEX0" | "TEX1" | "TEX2" | "TEX3"
 | "TEX4" | "TEX5" | "TEX6" | "TEX7"
 | "TEX8" | "TEX9" | "TEX10" | "TEX11"
 | "TEX12" | "TEX13" | "TEX14" | "TEX15"

 <texImageTarget> ::= "1D" | "2D" | "3D" | "CUBE" | "RECT"

 <constantDefinition> ::= "DEFINE" <namedVecto rConstant> "="
 <vectorConstant>
 | "DEFINE" <namedScala rConstant> "="
 <scalarConstant>

 <localDeclaration> ::= "DECLARE" <namedLoca lParameter>
 <optionalLocalValue>

 <optionalLocalValue> ::= ""
 | "=" <vectorConstant>
 | "=" <scalarConstant>

 <vectorConstant> ::= {" <vectorConstantLi st> "}"
 | <namedVectorConstant >

 <vectorConstantList> ::= <scalarConstant>
 | <scalarConstant> "," <scalarConstant>
 | <scalarConstant> "," <scalarConstant> ","
 <scalarConstant>
 | <scalarConstant> "," <scalarConstant> ","
 <scalarConstant> "," <scalarConstant>

 <scalarConstant> ::= <signedScalarConstan t>
 | <namedScalarConstant >

 <signedScalarConstant> ::= <optionalSign> <floa tConstant>

 <namedScalarConstant> ::= <identifier> ((na me of a scalar constant
 in a DEFINE instruction))

 <namedVectorConstant> ::= <identifier> ((na me of a vector constant
 in a DEFINE instruction))

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1249

 <namedLocalParameter> ::= <identifier> ((na me of a local parameter
 in a DECLARE instruction))

 <negate> ::= "-" | "+" | ""

 <optionalSign> ::= "-" | "+" | ""

 <identifier> ::= see text below

 <floatConstant> ::= see text below

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z", "_", and "$") and digits ("0" through "9);
 the first character must be a letter. The unde rscore ("_") and dollar
 sign ("$") count as a letters. Upper and lower case letters are different
 (names are case-sensitive).

 The <floatConstant> rule matches a floating-poi nt constant consisting
 of an integer part, a decimal point, a fraction part, an "e" or
 "E", and an optionally signed integer exponent. The integer and
 fraction parts both consist of a sequence of on or more digits ("0"
 through "9"). Either the integer part or the f raction parts (not
 both) may be missing; either the decimal point or the "e" (or "E")
 and the exponent (not both) may be missing.

 A fragment program fails to load if it contains more than 1024 executable
 instructions. Executable instructions are thos e matching the
 <instruction> rule in the grammar, and do not i nclude DEFINE or DECLARE
 instructions.

 A fragment program fails to load if its total t emporary and output
 register count exceeds 64. Each fp32 temporary or output register used by
 the program (R0-R31, o[COLR], and o[DEPR]) coun ts as two registers; each
 fp16 temporary or output register used by the p rogram (H0-H63 and o[COLH])
 count as a single register. For combiner progr ams, o[TEX0], o[TEX1],
 o[TEX2], and o[TEX3] are counted as one registe r each, whether or not they
 are used by the program.

 A fragment program fails to load if any instruc tion sources more than one
 unique fragment attribute register. Instructio ns sourcing the same
 attribute register multiple times are acceptabl e.

 A fragment program fails to load if any instruc tion sources more than one
 unique program parameter register. Instruction s sourcing the same program
 parameter multiple times are acceptable.

 A fragment program fails to load if multiple te xture lookup instructions
 reference different targets for the same textur e image unit.

 A color fragment program (indicated by the "!!F P1.0" prefix) fails to load
 if it writes to any of the o[TEX0], o[TEX1], o[TEX2], or o[TEX3] output
 registers, or if it writes to both the o[COLR] and o[COLH] output
 registers.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1250

 A combiner fragment program (indicated by the " !!FCP1.0" prefix) fails to
 load if it fails to write to any of the o[TEX0] , o[TEX1], o[TEX2], or
 o[TEX3] output registers, or if it writes to ei ther the o[COLR] or the
 o[COLH] output register.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a fragment
 program fails to load because it is not syntact ically correct or for one
 of the semantic restrictions listed above.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a program is
 loaded for id when id is currently loaded with a program of a different
 target.

 A successfully loaded fragment program is parse d into a sequence of
 instructions. Each instruction is identified b y its tokenized name. The
 operation of these instructions when executed i s defined in Sections
 3.11.4 and 3.11.5.

 Section 3.11.4, Fragment Program Operation

 There are forty-five fragment program instructi ons. Fragment program
 instructions may have up to eight variants, inc luding a suffix of "R",
 "H", or "X" to specify arithmetic precision (se ction 3.11.4.2), a suffix
 of "C" to allow an update of the condition code register (section
 3.11.4.4), and a suffix of "_SAT" to clamp the result vector components to
 the range [0,1] (section 3.11.4.4). For exampl e, the sixteen forms of the
 "ADD" instruction are "ADD", "ADDR", "ADDH", "A DDX", "ADDC", "ADDRC",
 "ADDHC", "ADDXC", "ADD_SAT", "ADDR_SAT", "ADDH_ SAT", "ADDX_SAT",
 "ADDC_SAT", "ADDRC_SAT", "ADDHC_SAT", and "ADDX C_SAT".

 Some mathematical instructions that support pre cision suffixes, typically
 those that involve complicated floating-point c omputations, do not support
 the "X" precision suffix.

 The fragment program instructions and their res pective input and output
 parameters are summarized in Table X.4.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1251

 Instruction Inputs Output Descrip tion
 ----------------- ------ ------ ------- -------------------------
 ADD[RHX][C][_SAT] v,v v add
 COS[RH][C][_SAT] s ssss cosine
 DDX[RH][C][_SAT] v v derivat ive relative to x
 DDY[RH][C][_SAT] v v derivat ive relative to y
 DP3[RHX][C][_SAT] v,v ssss 3-compo nent dot product
 DP4[RHX][C][_SAT] v,v ssss 4-compo nent dot product
 DST[RH][C][_SAT] v,v v distanc e vector
 EX2[RH][C][_SAT] s ssss exponen tial base 2
 FLR[RHX][C][_SAT] v v floor
 FRC[RHX][C][_SAT] v v fractio n
 KIL none none conditi onally discard fragment
 LG2[RH][C][_SAT] s ssss logarit hm base 2
 LIT[RH][C][_SAT] v v compute light coefficients
 LRP[RHX][C][_SAT] v,v,v v linear interpolation
 MAD[RHX][C][_SAT] v,v,v v multipl y and add
 MAX[RHX][C][_SAT] v,v v maximum
 MIN[RHX][C][_SAT] v,v v minimum
 MOV[RHX][C][_SAT] v v move
 MUL[RHX][C][_SAT] v,v v multipl y
 PK2H v ssss pack tw o 16-bit floats
 PK2US v ssss pack tw o unsigned 16-bit scalars
 PK4B v ssss pack fo ur signed 8-bit scalars
 PK4UB v ssss pack fo ur unsigned 8-bit scalars
 POW[RH][C][_SAT] s,s ssss exponen tiation (x^y)
 RCP[RH][C][_SAT] s ssss recipro cal
 RFL[RH][C][_SAT] v,v v reflect ion vector
 RSQ[RH][C][_SAT] s ssss recipro cal square root
 SEQ[RHX][C][_SAT] v,v v set on equal
 SFL[RHX][C][_SAT] v,v v set on false
 SGE[RHX][C][_SAT] v,v v set on greater than or equal
 SGT[RHX][C][_SAT] v,v v set on greater than
 SIN[RH][C][_SAT] s ssss sine
 SLE[RHX][C][_SAT] v,v v set on less than or equal
 SLT[RHX][C][_SAT] v,v v set on less than
 SNE[RHX][C][_SAT] v,v v set on not equal
 STR[RHX][C][_SAT] v,v v set on true
 SUB[RHX][C][_SAT] v,v v subtrac t
 TEX[C][_SAT] v v texture lookup
 TXD[C][_SAT] v,v,v v texture lookup w/partials
 TXP[C][_SAT] v v project ive texture lookup
 UP2H[C][_SAT] s v unpack two 16-bit floats
 UP2US[C][_SAT] s v unpack two unsigned 16-bit scalars
 UP4B[C][_SAT] s v unpack four signed 8-bit scalars
 UP4UB[C][_SAT] s v unpack four unsigned 8-bit scalars
 X2D[RH][C][_SAT] v,v,v v 2D coor dinate transformation

 Table X.4: Summary of fragment program instruc tions. "[RHX]" indicates
 an optional arithmetic precision suffix. "[C]" indicates an optional
 condition code update suffix. "[_SAT]" indicat es an optional clamp of
 result vector components to [0,1]. "v" indicat es a 4-component vector
 input or output, "s" indicates a scalar input, and "ssss" indicates a
 scalar output replicated across a 4-component v ector.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1252

 Section 3.11.4.1: Fragment Program Storage Pre cision

 Registers in fragment program are stored in two different representations:
 16-bit floating-point (fp16) and 32-bit floatin g-point (fp32). There is
 an additional 12-bit fixed-point representation (fx12) used only as an
 internal representation for instructions with t he "X" precision qualifier.

 In the 32-bit float (fp32) representation, each component is represented
 in floating-point with eight exponent and twent y-three mantissa bits, as
 in the standard IEEE single-precision format. If S represents the sign (0
 or 1), E represents the exponent in the range [0,255], and M represents
 the mantissa in the range [0,2^23-1], then an f p32 float is decoded as:

 (-1)^S * 0.0, if E == 0,
 (-1)^S * 2^(E-127) * (1 + M/2^23), if 0 < E < 255,
 (-1)^S * INF, if E == 255 and M == 0,
 NaN, if E == 255 and M != 0.

 INF (Infinity) is a special representation indi cating numerical overflow.
 NaN (Not a Number) is a special representation indicating the result of
 illegal arithmetic operations, such as division by zero. Note that all
 normal fp32 values, zero, and INF have an assoc iated sign. -0.0 and +0.0
 are considered equivalent for the purposes of c omparisons.

 This representation is identical to the IEEE si ngle-precision
 floating-point standard, except that no special representation is provided
 for denorms -- numbers in the range (-2^-126, + 2^-126). All such numbers
 are flushed to zero.

 In a 16-bit float (fp16) register, each compone nt is represented
 similarly, except with only five exponent and t en mantissa bits. If S
 represents the sign (0 or 1), E represents the exponent in the range
 [0,31], and M represents the mantissa in the ra nge [0,2^10-1], then an
 fp32 float is decoded as:

 (-1)^S * 0.0, if E == 0 and M == 0,
 (-1)^S * 2^-14 * M/2^10 if E == 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0.

 One important difference is that the fp16 repre sentation, unlike fp32,
 supports denorms to maximize the limited precis ion of the 16-bit floating
 point encodings.

 In the 12-bit fixed-point (fx12) format, number s are represented as signed
 12-bit two's complement integers with 10 fracti on bits. The range of
 representable values is [-2048/1024, +2047/1024].

 Section 3.11.4.2: Fragment Program Operation P recision

 Fragment program instructions frequently perfor m mathematical operations.
 Such operations may be performed at one of thre e different precisions.
 Fragment programs can specify the precision of each instruction by using
 the precision suffix. If an instruction has a suffix of "R", calculations
 are carried out with 32-bit floating point oper ands and results. If an
 instruction has a suffix of "H", calculations a re carried out using 16-bit

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1253

 floating point operands and results. If an ins truction has a suffix of
 "X", calculations are carried out using 12-bit fixed point operands and
 results. For example, the instruction "MULR" p erforms a 32-bit
 floating-point multiply, "MULH" performs a 16-b it floating-point multiply,
 and "MULX" performs a 12-bit fixed-point multip ly. If no precision suffix
 is specified, calculations are carried out usin g the precision of the
 temporary register receiving the result.

 Fragment program instructions may source regist ers or constants whose
 precisions differ from the precision specified with the instruction.
 Instructions may also generate intermediate res ults with a different
 precision than that of the destination register . In these cases, the
 values sourced are converted to the precision s pecified by the
 instruction.

 When converting to fx12 format, -INF and any va lues less than -2048/1024
 become -2048/1024. +INF, and any values greate r than +2047/1024 become
 +2047/1024. NaN becomes 0.

 When converting to fp16 format, any values less than or equal to -2^16 are
 converted to -INF. Any values greater than or equal to +2^16 are
 converted to +INF. -INF, +INF, NaN, -0.0, and +0.0 are unchanged. Any
 other values that are not exactly representable in fp16 format are
 converted to one of the two nearest representab le values.

 When converting to fp32 format, any values less than or equal to -2^128
 are converted to -INF. Any values greater than or equal to +2^128 are
 converted to +INF. -INF, +INF, NaN, -0.0, and +0.0 are unchanged. Any
 other values that are not exactly representable in fp32 format are
 converted to one of the two nearest representab le values.

 Fragment program instructions using the fragmen t attribute registers
 f[FOGC] or f[TEX0] through f[TEX7] will be carr ied out at full fp32
 precision, regardless of the precision specifie d by the instruction.

 Section 3.11.4.3: Fragment Program Operands

 Except for KIL, fragment program instructions o perate on either vector or
 scalar operands, indicated in the grammar (see section 3.11.3) by the
 rules <vectorSrc> and <scalarSrc> respectively.

 The basic set of scalar operands is defined by the grammar rule
 <baseScalarSrc>. Scalar operands can be scalar constants (embedded or
 named), or single components of vector constant s, local parameters, or
 registers allowed by the <srcRegister> rule. A vector component is
 selected by the <scalarSuffix> rule, where the characters "x", "y", "z",
 and "w" select the x, y, z, and w components, r espectively, of the vector.

 The basic set of vector operands is defined by the grammar rule
 <baseVectorSrc>. Vector operands can include v ector constants, local
 parameters, or registers allowed by the <srcReg ister> rule.

 Basic vector operands can be swizzled according to the <swizzleSuffix>
 rule. In its most general form, the <swizzleSu ffix> rule matches the
 pattern ".????" where each question mark is one of "x", "y", "z", or "w".
 For such patterns, the x, y, z, and w component s of the operand are taken
 from the vector components named by the first, second, third, and fourth

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1254

 character of the pattern, respectively. For ex ample, if the swizzle
 suffix is ".yzzx" and the specified source cont ains {2,8,9,0}, the
 swizzled operand used by the instruction is {8, 9,9,2}. If the
 <swizzleSuffix> rule matches "", it is treated as though it were ".xyzw".

 Operands can optionally be negated according to the <negate> rule in
 <baseScalarSrc> or <baseVectorSrc>. If the <ne gate> matches "-", each
 value is negated.

 The absolute value of operands can be taken if the <vectorSrc> or
 <scalarSrc> rules match <absScalarSrc> or <absV ectorSrc>. In this case,
 the absolute value of each component is taken. In addition, if the
 <negate> rule in <absScalarSrc> or <absVectorSr c> matches "-", the result
 is then negated.

 Instructions requiring vector operands can also use scalar operands in the
 case where the <vectorSrc> rule matches <scalar Src>. In such cases, a
 4-component vector is produced by replicating t he scalar.

 After operands are loaded, they are converted t o a data type corresponding
 to the operation precision specified in the fra gment program instruction.

 The following pseudo-code spells out the operan d generation process.
 "SrcT" and "InstT" refer to the data types of t he specified register or
 constant and the instruction, respectively. "V ecSrcT" and "VecInstT"
 refer to 4-component vectors of the correspondi ng type. "absolute" is
 TRUE if the operand matches the <absScalarSrc> or <absVectorSrc> rules,
 and FALSE otherwise. "negateBase" is TRUE if t he <negate> rule in
 <baseScalarSrc> or <baseVectorSrc> matches "-" and FALSE otherwise.
 "negateAbs" is TRUE if the <negate> rule in <ab sScalarSrc> or
 <absVectorSrc> matches "-" and FALSE otherwise. The ".c***", ".*c**",
 ".**c*", ".***c" modifiers refer to the x, y, z , and w components obtained
 by the swizzle operation. TypeConvert() is ass umed to convert a scalar of
 type SrcT to a scalar of type InstT using the t ype conversion process
 specified above.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1255

 VecInstT VectorLoad(VecSrcT source)
 {
 VecSrcT srcVal;
 VecInstT convertedVal;

 srcVal.x = source.c***;
 srcVal.y = source.*c**;
 srcVal.z = source.**c*;
 srcVal.w = source.***c;
 if (negateBase) {
 srcVal.x = -srcVal.x;
 srcVal.y = -srcVal.y;
 srcVal.z = -srcVal.z;
 srcVal.w = -srcVal.w;
 }
 if (absolute) {
 srcVal.x = abs(srcVal.x);
 srcVal.y = abs(srcVal.y);
 srcVal.z = abs(srcVal.z);
 srcVal.w = abs(srcVal.w);
 }
 if (negateAbs) {
 srcVal.x = -srcVal.x;
 srcVal.y = -srcVal.y;
 srcVal.z = -srcVal.z;
 srcVal.w = -srcVal.w;
 }

 convertedVal.x = TypeConvert(srcVal.x);
 convertedVal.y = TypeConvert(srcVal.y);
 convertedVal.z = TypeConvert(srcVal.z);
 convertedVal.w = TypeConvert(srcVal.w);
 return convertedVal;
 }

 InstT ScalarLoad(VecSrcT source)
 {
 SrcT srcVal;
 InstT convertedVal;

 srcVal = source.c***;
 if (negateBase) {
 srcVal = -srcVal;
 }
 if (absolute) {
 srcVal = abs(srcVal);
 }
 if (negateAbs) {
 srcVal = -srcVal;
 }

 convertedVal = TypeConvert(srcVal);
 return convertedVal;
 }

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1256

 Section 3.11.4.4, Fragment Program Destination Register Update

 Each fragment program instruction, except for K IL, writes a 4-component
 result vector to a single temporary or output r egister.

 The four components of the result vector are fi rst optionally clamped to
 the range [0,1]. The components will be clampe d if and only if the result
 clamp suffix "_SAT" is present in the instructi on name. The instruction
 "ADD_SAT" will clamp the results to [0,1]; the otherwise equivalent
 instruction "ADD" will not.

 Since the instruction may be carried out at a d ifferent precision than the
 destination register, the components of the res ults vector are then
 converted to the data type corresponding to des tination register.

 Writes to individual components of the temporar y register are controlled
 by two sets of enables: individual component wr ite masks specified as part
 of the instruction and the optional condition c ode mask.

 The component write mask is specified by the <o ptionalWriteMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "", all
 components are enabled. Otherwise, the optiona l mask names the individual
 components to enable. The characters "x", "y", "z", and "w" match the x,
 y, z, and w components respectively. For examp le, an optional mask of
 ".xzw" indicates that the x, z, and w component s should be enabled for
 writing but the y component should not. The gr ammar requires that the
 destination register mask components must be li sted in "xyzw" order.

 The optional condition code mask is specified b y the <optionalCCMask> rule
 found in the <maskedDstReg> rule. If <optional CCMask> matches "", all
 components are enabled. Otherwise, the conditi on code register is loaded
 and swizzled according to the swizzling specifi ed by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to the
 rule given by <ccMaskRule>. <ccMaskRule> may h ave the values "EQ", "NE",
 "LT", "GE", LE", or "GT", which mean to enable writes if the corresponding
 condition code field evaluates to equal, not eq ual, less than, greater
 than or equal, less than or equal, or greater t han, respectively.
 Comparisons involving condition codes of "UN" (unordered) evaluate to true
 for "NE" and false otherwise. For example, if the condition code is
 (GT,LT,EQ,GT) and the condition code mask is "(NE.zyxw)", the swizzle
 operation will load (EQ,LT,GT,GT) and the mask will thus will enable
 writes on the y, z, and w components. In addit ion, "TR" always enables
 writes and "FL" always disables writes, regardl ess of the condition code.

 Each component of the destination register is u pdated with the result of
 the fragment program if and only if the compone nt is enabled for writes by
 both the component write mask and the optional condition code mask.
 Otherwise, the component of the destination reg ister remains unchanged.

 A fragment program instruction can also optiona lly update the condition
 code register. The condition code is updated i f the condition code
 register update suffix "C" is present in the in struction name. The
 instruction "ADDC" will update the condition co de; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates are
 enabled, each component of the destination regi ster enabled for writes is
 compared to zero. The corresponding component of the condition code is
 set to "LT", "EQ", or "GT", if the written comp onent is less than, equal

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1257

 to, or greater than zero, respectively. Condit ion code components are set
 to "UN" if the written component is NaN. Note that values of -0.0 and
 +0.0 both evaluate to "EQ". If a component of the destination register is
 not enabled for writes, the corresponding condi tion code component is
 unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN)
 MOVC R0, R1;
 MOVC R0.xyz, R1.yzwx;
 MOVC R0 (NE), R1.zywx;

 the first instruction writes (-2,0,2,NaN) to R0 and updates the condition
 code to (LT,EQ,GT,UN). The second instruction, writes to the "w"
 component of R0 and the condition code are disa bled, so R0 ends up with
 (0,2,NaN,NaN) and the condition code ends up wi th (EQ,GT,UN,UN). In the
 third instruction, the condition code mask disa bles writes to the x
 component (its condition code field is "EQ"), s o R0 ends up with
 (0,NaN,-2,0) and the condition code ends up wit h (EQ,UN,LT,EQ).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the exa mple, "ccMaskRule" refers
 to the condition code mask rule given by <ccMas kRule> (or "" if no rule is
 specified), "instrmask" refers to the component write mask given by the
 <optionalWriteMask> rule, "updatecc" is TRUE if condition code updates are
 enabled, and "clamp01" is TRUE if [0,1] result clamping is enabled.
 "destination" and "cc" refer to the register se lected by <dstRegister> and
 the condition code, respectively.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }

 enum GenerateCC(DstT value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1258

 void UpdateDestination(VecDstT destination, V ecInstT result)
 {
 // Load the original destination register and condition code.
 VecDstT resultDst;
 VecDstT merged;
 VecCC mergedCC;

 // Clamp the result vector components to [0,1], if requested.
 if (clamp01) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Convert the result to the type of the destination register.
 resultDst.x = TypeConvert(result.x);
 resultDst.y = TypeConvert(result.y);
 resultDst.z = TypeConvert(result.z);
 resultDst.w = TypeConvert(result.w);

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and result code.
 destination = merged;
 cc = mergedCC;
 }

 Section 3.11.5, Fragment Program Instruction Se t

 The following sections describe the instruction set available to fragment
 programs.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1259

 Section 3.11.5.1, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following special-case rules apply to addit ion:

 1. "A+B" is always equivalent to "B+A".
 2. NaN + <x> = NaN, for all <x>.
 3. +INF + <x> = +INF, for all <x> except NaN and -INF.
 4. -INF + <x> = -INF, for all <x> except NaN and +INF.
 5. +INF + -INF = NaN.
 6. -0.0 + <x> = <x>, for all <x>.
 7. +0.0 + <x> = <x>, for all <x> except -0.0.

 Section 3.11.5.2, COS: Cosine

 The COS instruction approximates the cosine of the angle specified by the
 scalar operand and replicates the approximation to all four components of
 the result vector. The angle is specified in r adians and does not have to
 be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 The approximation function ApproxCosine is accu rate to at least 22 bits
 with an angle in the range [0,2*PI].

 | ApproxCosine(x) - cos(x) | < 1.0 / 2^22, if 0.0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxCosine(NaN) = NaN.
 2. ApproxCosine(+/-INF) = NaN.
 3. ApproxCosine(+/-0.0) = +1.0.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1260

 Section 3.11.5.3, DDX: Derivative Relative to X

 The DDX instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the X window coordinate
 to yield a result vector. The partial derivati ve is evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives.

 For components with partial derivatives that ov erflow (including +/-INF
 inputs), the resulting partials may be encoded as large floating-point
 numbers instead of +/-INF.

 Section 3.11.5.4, DDY: Derivative Relative to Y

 The DDY instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the Y window coordinate
 to yield a result vector. The partial derivati ve is evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives.

 For components with partial derivatives that ov erflow (including +/-INF
 inputs), the resulting partials may be encoded as large floating-point
 numbers instead of +/-INF.

 Section 3.11.5.5, DP3: 3-Component Dot Produc t

 The DP3 instruction computes a three component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1261

 Section 3.11.5.6, DP4: 4-Component Dot Produc t

 The DP4 instruction computes a four component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);

 Section 3.11.5.7, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DOT3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-fragment light attenuation
 calculations: a DOT3 operation involving the d istance vector and an
 attenuation constants vector will yield the att enuation factor.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1262

 Section 3.11.5.8, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | Approx2ToX(x) - 2^x | < 1.0 / 2^22, if 0.0 <= x < 1.0,

 and, in general,

 | Approx2ToX(x) - 2^x | < (1.0 / 2^22) * (2^f loor(x)).

 The following special-case rules apply to expon ential approximation:

 1. Approx2ToX(NaN) = NaN.
 2. Approx2ToX(-INF) = +0.0.
 3. Approx2ToX(+INF) = +INF.
 4. Approx2ToX(+/-0.0) = +1.0.

 Section 3.11.5.9, FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is defined as
 the largest integer less than or equal to the v alue. The floor of 2.3 is
 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1263

 Section 3.11.5.10, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.00, 1.00).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = tmp.x - floor(tmp.x);
 result.y = tmp.y - floor(tmp.y);
 result.z = tmp.z - floor(tmp.z);
 result.w = tmp.w - floor(tmp.w);

 The following special-case rules, which can be derived from the rules for
 FLR and ADD apply to fraction computation:

 1. fraction(NaN) = NaN.
 2. fraction(+/-INF) = NaN.
 3. fraction(+/-0.0) = +0.0.

 Section 3.11.5.11, KIL: Conditionally Discard Fragment

 The KIL instruction is unlike any other instruc tion in the instruction
 set. This instruction evaluates components of a swizzled condition code
 using a test expression identical to that used to evaluate condition code
 write masks (Section 3.11.4.4). If any conditi on code component evaluates
 to TRUE, the fragment is discarded. Otherwise, the instruction has no
 effect. The condition code components are spec ified, swizzled, and
 evaluated in the same manner as the condition c ode write mask.

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c)) {
 // Discard the fragment.
 } else {
 // Do nothing.
 }

 If the fragment is discarded, it is treated as though it were not produced
 by rasterization. In particular, none of the p er-fragment operations
 (such as stencil tests, blends, stencil, depth, or color buffer writes)
 are performed on the fragment.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1264

 Section 3.11.5.12, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxLog2(x) - log_2(x) | < 1.0 / 2^22.

 The following special-case rules apply to logar ithm approximation:

 1. ApproxLog2(NaN) = NaN.
 2. ApproxLog2(+INF) = +INF.
 3. ApproxLog2(+/-0.0) = -INF.
 4. ApproxLog2(x) = NaN, -INF < x < -0.0.
 5. ApproxLog2(-INF) = NaN.

 Section 3.11.5.13, LIT: Compute Light Coeffic ients

 The LIT instruction accelerates per-fragment li ghting by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the operan d is assumed to hold a
 diffuse dot product (n dot VP_pli, as in the ve rtex lighting equations in
 Section 2.13.1). The "y" component of the oper and is assumed to hold a
 specular dot product (n dot h_i). The "w" comp onent of the operand is
 assumed to hold the specular exponent of the ma terial (s_rm).

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

 tmp = VectorLoad(op0);
 if (t.x < 0) t.x = 0;
 if (t.y < 0) t.y = 0;
 result.x = 1.0;
 result.y = t.x;
 result.z = (t.x > 0) ? ApproxPower(t.y, t.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation used to comput e result.z are identical to
 that used in the POW instruction, including err ors and the processing of
 any special cases.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1265

 Section 3.11.5.14, LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation to
 yield a result vector. It interpolates between the components of the
 second and third operands, using the first oper and as a weight.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 Section 3.11.5.15, MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 Section 3.11.5.16, MAX: maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = max(tmp0.x, tmp1.x);
 result.y = max(tmp0.y, tmp1.y);
 result.z = max(tmp0.z, tmp1.z);
 result.w = max(tmp0.w, tmp1.w);

 The following special cases apply to the maximu m operation:

 1. max(A,B) is always equivalent to max(B,A).
 2. max(NaN, <x>) == NaN, for all <x>.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1266

 Section 3.11.5.17, MIN: minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = min(tmp0.x, tmp1.x);
 result.y = min(tmp0.y, tmp1.y);
 result.z = min(tmp0.z, tmp1.z);
 result.w = min(tmp0.w, tmp1.w);

 The following special cases apply to the minimu m operation:

 1. min(A,B) is always equivalent to min(B,A).
 2. min(NaN, <x>) == NaN, for all <x>.

 Section 3.11.5.18, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

 Section 3.11.5.19, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following special-case rules apply to multi plication:

 1. "A*B" is always equivalent to "B*A".
 2. NaN * <x> = NaN, for all <x>.
 3. +/-0.0 * +/-INF = NaN.
 4. +/-0.0 * <x> = +/-0.0, for all <x> except -INF, +INF, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 5. +/-INF * <x> = +/-INF, for all <x> except -0.0, +0.0, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 6. +1.0 * <x> = <x>, for all <x>.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1267

 Section 3.11.5.20, PK2H: Pack Two 16-bit Floa ts

 The PK2H instruction converts the "x" and "y" c omponents of the single
 operand into 16-bit floating-point format, pack s the bit representation of
 these two floats into a 32-bit value, and repli cates that value to all
 four components of the result vector. The PK2H instruction can be
 reversed by the UP2H instruction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

 Section 3.11.5.21, PK2US: Pack Two Unsigned 1 6-bit Scalars

 The PK2US instruction converts the "x" and "y" components of the single
 operand into a packed pair of 16-bit unsigned s calars. The scalars are
 represented in a bit pattern where all '0' bits corresponds to 0.0 and all
 '1' bits corresponds to 1.0. The bit represent ations of the two converted
 components are packed into a 32-bit value, and that value is replicated to
 all four components of the result vector. The PK2US instruction can be
 reversed by the UP2US instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1268

 Section 3.11.5.22, PK4B: Pack Four Signed 8-b it Scalars

 The PK4B instruction converts the four componen ts of the single operand
 into 8-bit signed quantities. The signed quant ities are represented in a
 bit pattern where all '0' bits corresponds to - 128/127 and all '1' bits
 corresponds to +127/127. The bit representatio ns of the four converted
 components are packed into a 32-bit value, and that value is replicated to
 all four components of the result vector. The PK4B instruction can be
 reversed by the UP4B instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1269

 Section 3.11.5.23, PK4UB: Pack Four Unsigned 8-bit Scalars

 The PK4UB instruction converts the four compone nts of the single operand
 into a packed grouping of 8-bit unsigned scalar s. The scalars are
 represented in a bit pattern where all '0' bits corresponds to 0.0 and all
 '1' bits corresponds to 1.0. The bit represent ations of the four
 converted components are packed into a 32-bit v alue, and that value is
 replicated to all four components of the result vector. The PK4UB
 instruction can be reversed by the UP4UB instru ction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1270

 Section 3.11.5.24, POW: Exponentiation

 The POW instruction approximates the value of t he first scalar operand
 raised to the power of the second scalar operan d and replicates it to all
 four components of the result vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function is de fined in terms of the base
 2 exponentiation and logarithm approximation op erations in the EX2 and LG2
 instructions, including errors and the processi ng of any special cases.
 In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 The following special-case rules, which can be derived from the rules in
 the LG2, MUL, and EX2 instructions, apply to ex ponentiation:

 1. ApproxPower(<x>, <y>) = NaN, if x < -0.0,
 2. ApproxPower(<x>, <y>) = NaN, if x or y is NaN.
 3. ApproxPower(+/-0.0, +/-0.0) = NaN.
 4. ApproxPower(+INF, +/-0.0) = NaN.
 5. ApproxPower(+1.0, +/-INF) = NaN.
 6. ApproxPower(+/-0.0, <x>) = +0.0, if x > +0 .0.
 7. ApproxPower(+/-0.0, <x>) = +INF, if x < -0 .0.
 8. ApproxPower(+1.0, <x>) = +1.0, if -INF < x < +INF.
 9. ApproxPower(+INF, <x>) = +INF, if x > +0.0 .
 10. ApproxPower(+INF, <x>) = +INF, if x < -0. 0.
 11. ApproxPower(<x>, +/-0.0) = +1.0, if +0.0 < x < +INF.
 12. ApproxPower(<x>, +1.0) ~= <x>, if x >= +0 .0.
 13. ApproxPower(<x>, +INF) = +0.0, if -0.0 <= x < +1.0,
 +INF, if x > +1. 0,
 14. ApproxPower(<x>, -INF) = +INF, if -0.0 <= x < +1.0,
 +0.0, if x > +1. 0,

 Note that 0^0 is defined here as NaN, since App roxLog2(0) = -INF, and
 0*(-INF) = NaN. In many other applications, in cluding the standard C
 pow() function, 0^0 is defined as 1.0. This be havior can be emulated
 using additional instructions in much that same way that the pow()
 function is implemented on many CPUs.

 Note that a logarithm is involved even if the e xponent is an integer.
 This means that any exponentiating with a negat ive base will produce NaN.
 In constrast, it is possible in a "normal" math ematical formulation to
 raise negative numbers to integral powers (e.g. , (-3)^2== 9, and
 (-0.5)^-2==4).

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1271

 Section 3.11.5.25, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ApproxReciprocal(NaN) = NaN.
 2. ApproxReciprocal(+INF) = +0.0.
 3. ApproxReciprocal(-INF) = -0.0.
 4. ApproxReciprocal(+0.0) = +INF.
 5. ApproxReciprocal(-0.0) = -INF.

 Section 3.11.5.26, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector operand
 (the "direction" vector) about the vector speci fied by the first vector
 operand (the "axis" vector). Both operands are treated as 3D vectors (the
 w components are ignored). The result vector i s another 3D vector (the
 "reflected direction" vector). The length of t he result vector, ignoring
 rounding errors, should equal that of the secon d operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y +
 axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 A fragment program will fail to load if the w c omponent of the result is
 enabled in the component write mask (see the <o ptionalWriteMask> rule in
 the grammar).

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1272

 Section 3.11.5.27, RSQ: Reciprocal Square Roo t

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxRSQRT(x) - (1/x) | < 1.0 / 2^22, if 1 .0 <= x < 4.0.

 The following special-case rules apply to recip rocal square roots:

 1. ApproxRSQRT(NaN) = NaN.
 2. ApproxRSQRT(+INF) = +0.0.
 3. ApproxRSQRT(-INF) = NaN.
 4. ApproxRSQRT(+0.0) = +INF.
 5. ApproxRSQRT(-0.0) = -INF.
 6. ApproxRSQRT(x) = NaN, if -INF < x < -0.0.

 Section 3.11.5.28, SEQ: Set on Equal To

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SEQ:

 1. (<x> == <y>) and (<y> == <x>) always produ ce the same result.
 1. (NaN == <x>) is FALSE for all <x>, includi ng NaN.
 2. (+INF == +INF) and (-INF == -INF) are TRUE .
 3. (-0.0 == +0.0) and (+0.0 == -0.0) are TRUE .

 Section 3.11.5.29, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to
 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1273

 Section 3.11.5.30, SGE: Set on Greater Than o r Equal

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than or equal that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SGE:

 1. (NaN >= <x>) and (<x> >= NaN) are FALSE fo r all <x>.
 2. (+INF >= +INF) and (-INF >= -INF) are TRUE .
 3. (-0.0 >= +0.0) and (+0.0 >= -0.0) are TRUE .

 Section 3.11.5.31, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than that of the second, and
 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SGT:

 1. (NaN > <x>) and (<x> > NaN) are FALSE for all <x>.
 2. (-0.0 > +0.0) and (+0.0 > -0.0) are FALSE.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1274

 Section 3.11.5.32, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by the
 scalar operand and replicates it to all four co mponents of the result
 vector. The angle is specified in radians and does not have to be in the
 range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 The approximation function is accurate to at le ast 22 bits with an angle
 in the range [0,2*PI].

 | ApproxSine(x) - sin(x) | < 1.0 / 2^22, if 0 .0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxSine(NaN) = NaN.
 2. ApproxSine(+/-INF) = NaN.
 3. ApproxSine(+/-0.0) = +/-0.0. The sign of the result is equal to the
 sign of the single operand.

 Section 3.11.5.33, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than or equal to that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SLE:

 1. (NaN <= <x>) and (<x> <= NaN) are FALSE fo r all <x>.
 2. (+INF <= +INF) and (-INF <= -INF) are TRUE .
 3. (-0.0 <= +0.0) and (+0.0 <= -0.0) are TRUE .

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1275

 Section 3.11.5.34, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than tha t of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SLT:

 1. (NaN < <x>) and (<x> < NaN) are FALSE for all <x>.
 2. (-0.0 < +0.0) and (+0.0 < -0.0) are FALSE.

 Section 3.11.5.35, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is not equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SNE:

 1. (<x> != <y>) and (<y> != <x>) always produ ce the same result.
 2. (NaN != <x>) is TRUE for all <x>, includin g NaN.
 3. (+INF != +INF) and (-INF != -INF) are FALS E.
 4. (-0.0 != +0.0) and (+0.0 != -0.0) are TRUE .

 Section 3.11.5.36, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1276

 Section 3.11.5.37, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 The SUB instruction is completely equivalent to an identical ADD
 instruction in which the negate operator on the second operand is
 reversed:

 1. "SUB R0, R1, R2" is equivalent to "ADD R0, R1, -R2".
 2. "SUB R0, R1, -R2" is equivalent to "ADD R0 , R1, R2".
 3. "SUB R0, R1, |R2|" is equivalent to "ADD R 0, R1, -|R2|".
 4. "SUB R0, R1, -|R2|" is equivalent to "ADD R0, R1, |R2|".

 Section 3.11.5.38, TEX: Texture Lookup

 The TEX instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 The (s,t,r) texture coordinates used for the lo okup are the x, y, and z
 components of the single operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng an implementation
 dependent method to derive ds/dx, ds/dy, dt/dx, dt/dy, dr/dx, and dr/dy.
 The mapping of filtered texture components to t he components of the result
 vector is dependent on the base internal format of the texture and is
 specified in Table X.5.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1277

 Result Vector Comp onents
 Base Internal Format X Y Z W
 -------------------- ----- ----- ----- -----
 ALPHA 0.0 0.0 0.0 At
 LUMINANCE Lt Lt Lt 1.0
 LUMINANCE_ALPHA Lt Lt Lt At
 INTENSITY It It It It
 RGB Rt Gt Bt 1.0
 RGBA Rt Gt Bt At
 HILO_NV (signed) HIt LOt HEMI 1.0
 HILO_NV (unsigned) HIt LOt 1.0 1.0
 DSDT_NV DSt DTt 0.0 1.0
 DSDT_MAG_NV DSt DTt MAGt 1.0
 DSDT_MAG_INTENSITY_NV DSt DTt MAGt It
 FLOAT_R_NV Rt 0.0 0.0 1.0
 FLOAT_RG_NV Rt Gt 0.0 1.0
 FLOAT_RGB_NV Rt Gt Bt 1.0
 FLOAT_RGBA_NV Rt Gt Bt At

 Table X.5: Mapping of filtered texel compone nts to result vector
 components for the TEX instruction. 0.0 and 1.0 indicate that the
 corresponding constant value is written to th e result vector.
 DEPTH_COMPONENT textures are treated as ALPHA , LUMINANCE, or INTENSITY,
 as specified in the texture's depth texture m ode.

 For HILO_NV textures with signed components, "HEMI" is defined as
 sqrt(MAX(0, 1-(HIt^2+LOt^2))).

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

 Section 3.11.5.39, TXD: Texture Lookup with De rivatives

 The TXD instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 The (s,t,r) texture coordinates used for the lo okup are the x, y, and z
 components of the first operand. The partial d erivatives in the X
 direction (ds/dx, dt/dx, dr/dx) are specified b y the x, y, and z
 components of the second operand. The partial derivatives in the Y
 direction (ds/dy, dt/dy, dr/dy) are specified b y the x, y, and z
 components of the third operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng the specified partial
 derivatives. The mapping of filtered texture c omponents to the components

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1278

 of the result vector is dependent on the base i nternal format of the
 texture and is specified in Table X.5.

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

 Section 3.11.5.40, TXP: Projective Texture Loo kup

 The TXP instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 For cube map textures, the (s,t,r) texture coor dinates used for the lookup
 are given by x, y, and z, respectively. For al l other textures, the
 (s,t,r) texture coordinates used for the lookup are given by x/w, y/w, and
 z/w, respectively, where x, y, z, and w are the corresponding components
 of the operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng an implementation
 dependent method to derive ds/dx, ds/dy, dt/dx, dt/dy, dr/dx, and dr/dy.
 The mapping of filtered texture components to t he components of the result
 vector is dependent on the base internal format of the texture and is
 specified in Table X.5.

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1279

 Section 3.11.5.41, UP2H: Unpack Two 16-Bit Fl oats

 The UP2H instruction unpacks two 16-bit floats stored together in a 32-bit
 scalar operand. The first 16-bit float (stored in the 16 least
 significant bits) is written into the "x" and " z" components of the result
 vector; the second is written into the "y" and "w" components of the
 result vector.

 This operation undoes the type conversion and p acking performed by the
 PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

 Section 3.11.5.42, UP2US: Unpack Two Unsigned 16-Bit Scalars

 The UP2US instruction unpacks two 16-bit unsign ed values packed together
 in a 32-bit scalar operand. The unsigned quant ities are encoded where a
 bit pattern of all '0' bits corresponds to 0.0 and a pattern of all '1'
 bits corresponds to 1.0. The "x" and "z" compo nents of the result vector
 are obtained from the 16 least significant bits of the operand; the "y"
 and "w" components are obtained from the 16 mos t significant bits.

 This operation undoes the type conversion and p acking performed by the
 PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1280

 Section 3.11.5.43, UP4B: Unpack Four Signed 8 -Bit Values

 The UP4B instruction unpacks four 8-bit signed values packed together in a
 32-bit scalar operand. The signed quantities a re encoded where a bit
 pattern of all '0' bits corresponds to -128/127 and a pattern of all '1'
 bits corresponds to +127/127. The "x" componen t of the result vector is
 the converted value corresponding to the 8 leas t significant bits of the
 operand; the "w" component corresponds to the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by the
 PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

 Section 3.11.5.44, UP4UB: Unpack Four Unsigne d 8-Bit Scalars

 The UP4UB instruction unpacks four 8-bit unsign ed values packed together
 in a 32-bit scalar operand. The unsigned quant ities are encoded where a
 bit pattern of all '0' bits corresponds to 0.0 and a pattern of all '1'
 bits corresponds to 1.0. The "x" component of the result vector is
 obtained from the 8 least significant bits of t he operand; the "w"
 component is obtained from the 8 most significa nt bits.

 This operation undoes the type conversion and p acking performed by the
 PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1281

 Section 3.11.5.45, X2D: 2D Coordinate Transfo rmation

 The X2D instruction multiplies the 2D offset ve ctor specified by the "x"
 and "y" components of the second vector operand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds the
 transformed offset vector to the 2D vector spec ified by the "x" and "y"
 components of the first vector operand. The fi rst component of the sum is
 written to the "x" and "z" components of the re sult; the second component
 is written to the "y" and "w" components of the result.

 The X2D instruction can be used to displace tex ture coordinates in the
 same manner as the OFFSET_TEXTURE_2D_NV mode in the GL_NV_texture_shader
 extension.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

 Section 3.11.6, Fragment Program Outputs

 Upon completion of fragment program execution, the output registers are
 used to replace the fragment's associated data.

 For color fragment programs, the RGBA color of the fragment is taken from
 the output register (COLR or COLH). The R, G, B, and A color components
 are extracted from the "x", "y", "z", and "w" c omponents, respectively, of
 the output register and are clamped to the rang e [0,1].

 For combiner fragment programs, register combin er operations (as described
 in the NV_register_combiners specification) are then performed, regardless
 of the state of the REGISTER_COMBINERS_NV enabl e. The RGBA texture colors
 corresponding the TEXTURE0_ARB, TEXTURE1_ARB, T EXTURE2_ARB, and
 TEXTURE3_ARB combiner registers are taken from the TEX0, TEX1, TEX2, and
 TEX3 output registers, respectively. Any compo nents of the TEX0, TEX1,
 TEX2, or TEX3 output registers that are not wri tten to by the fragment
 program are undefined. The R, G, B, and A text ure color components are
 extracted from the "x", "y", "z", and "w" outpu t register components,
 respectively, and are clamped to the range [-1, 1].

 If the DEPR output register is written by the f ragment program, the depth
 value of the fragment is taken from the z compo nent of the DEPR output
 register. If depth clamping is enabled, the de pth value is clamped to the
 range [min(n,f), max(n,f)], where n and f are t he near and far depth range
 values. If depth clamping is disabled, the fra gment is discarded if its
 depth value is outside the range [min(n,f), max (n,f)].

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1282

 Section 3.11.7, Required Fragment Program State

 The state required for managing fragment progra ms consists of:

 a bit indicating whether or not fragment prog ram mode is enabled;

 an unsigned integer naming the currently boun d fragment program

 and the state that must be maintained to indi cate which integers are
 currently in use as fragment program names.

 Fragment program mode is initially disabled. T he initial state of all 128
 fragment program parameter registers is (0,0,0, 0). The initial currently
 bound fragment program is zero.

 Each fragment program object consists of:

 an enumerant given the program target (FRAGME NT_PROGRAM_NV);

 a boolean indicating whether the program is r esident;

 an array of type ubyte containing the program string;

 an integer representing the length of the pro gram string array;

 one four-component floating-point vector for each named local
 parameter in the program;

 and a set of MAX_FRAGMENT_PROGRAM_LOCAL_PARAM ETERS_NV four-component
 floating-point vectors to hold numbered local parameters, each initially
 set to (0,0,0,0).

 Initially, no program objects exist.

 Additionally, the state required during the exe cution of a fragment
 program consists of: twelve 4-component floati ng-point fragment attribute
 registers, thirty-two 128-bit physical temporar y registers, and a single
 4-component condition code, whose components ha ve one of four values (LT,
 EQ, GT, or UN).

 Each time a fragment program is executed, the f ragment attribute registers
 are initialized with the fragment's location an d associated data, all
 temporary register components are initialized t o zero, and all condition
 code components are initialized to EQ.

 Renumber Section 3.11 to Section 3.12, Antialia sing Application (p.140).
 No changes to the text of the section.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Framebuffer)

 None

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1283

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 Add new section 5.7, Programs (after "Flush and Finish")

 Programs are specified as an array of ubytes us ed to control the operation
 of portions of the GL. The array is a string o f ASCII characters encoding
 the program.

 The command

 LoadProgramNV(enum target, uint id, sizei len , const ubyte *program);

 loads a program. The target parameter specifie s the type of program
 loaded and can be VERTEX_PROGRAM_NV, VERTEX_STA TE_PROGRAM_NV, or
 FRAGMENT_PROGRAM_NV. VERTEX_PROGRAM_NV specifi es a program to be executed
 in vertex program mode as each vertex is specif ied. VERTEX_STATE_PROGRAM
 specifies a program to be run manually to updat e vertex state.
 FRAGMENT_PROGRAM specifies a program to be exec uted in fragment program
 mode as each fragment is rasterized.

 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs i s the set of positive
 integers (zero is reserved). The error INVALID _VALUE is generated by
 LoadProgramNV if a program is loaded with an id of zero. The error
 INVALID_OPERATION is generated by LoadProgramNV or if a program is loaded
 for an id that is currently loaded with a progr am of a different program
 target. program is a pointer to an array of ub ytes that represents the
 program being loaded. The length of the array in ubytes is indicated by
 len.

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array. Tokens are processed in a case- sensitive manner: upper
 and lower-case letters are not considered equiv alent.

 Each program target has a corresponding Backus- Naur Form (BNF) grammar
 specifying the syntactically valid sequences fo r programs of the specified
 type. The set of valid tokens can be inferred from the grammar. The
 token "" represents an empty string and is used to indicate optional
 rules. A program is invalid if it contains any undefined tokens or
 characters.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a program
 fails to load because it is not syntactically c orrect or fails to satisfy
 all of the semantic restrictions corresponding to the program target.

 A successfully loaded program is parsed into a sequence of instructions.
 Each instruction is identified by its tokenized name. The operation of
 these instructions is specific to the program t arget and is defined
 elsewhere.

 A successfully loaded program replaces the prog ram previously assigned to
 the name specified by id. If the OUT_OF_MEMORY error is generated by
 LoadProgramNV, no change is made to the previou s contents of the named
 program.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1284

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte offset
 into the program string most recently passed to LoadProgramNV indicating
 the position of the first error, if any, in the program. If the program
 fails to load because of a semantic restriction that cannot be determined
 until the program is fully scanned, the error p osition will be len, the
 length of the program. If the program loads su ccessfully, the value of
 PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

 For targets whose programs are executed automat ically (e.g., vertex and
 fragment programs), there must be a current pro gram. The current vertex
 program is executed automatically in vertex pro gram mode as vertices are
 specified. The current fragment program is exe cuted automatically in
 fragment program mode as fragments are generate d by rasterization.
 Current programs for a program target are updat ed by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV or FRAGM ENT_PROGRAM_NV. The error
 INVALID_OPERATION is generated by BindProgramNV if id names a program that
 has a type different than target (for example, if id names a vertex state
 program as described in section 2.14.4).

 Binding to a nonexistent program id does not ge nerate an error. In
 particular, binding to program id zero does not generate an error.
 However, because program zero cannot be loaded, program zero is always
 nonexistent. If a program id is successfully l oaded with a new vertex
 program and id is also the currently bound vert ex program, the new program
 is considered the currently bound vertex progra m.

 The INVALID_OPERATION error is generated when b oth vertex program mode is
 enabled and Begin is called (or when a command that performs an implicit
 Begin is called) if the current vertex program is nonexistent or not
 valid. A vertex program may not be valid for r easons explained in section
 2.14.5.

 The INVALID_OPERATION error is generated when b oth fragment program mode
 is enabled and Begin, another GL command that p erforms an implicit Begin,
 or any other GL command that generates fragment s is called, if the current
 fragment program is nonexistent or not valid. A fragment program may be
 invalid for reasons explained in Section 3.11.3 .

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *id s);

 ids contains n names of programs to be deleted. After a program is
 deleted, it becomes nonexistent, and its name i s again unused. If a
 program that is currently bound is deleted, it is as though BindProgramNV
 has been executed with the same target as the d eleted program and program
 zero. Unused names in ids are silently ignored , as is the value zero.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1285

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n currently unused program names in ids . These names are marked
 as used, for the purposes of GenProgramsNV only , but they become existent
 programs only when the are first loaded using L oadProgramNV.

 An implementation may choose to establish a wor king set of programs on
 which binding and/or manual execution are perfo rmed with higher
 performance. A program that is currently part of this working set is said
 to be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *reside nces);

 returns TRUE if all of the n programs named in ids are resident, or if the
 implementation does not distinguish a working s et. If at least one of the
 programs named in ids is not resident, then FAL SE is returned, and the
 residence of each program is returned in reside nces. Otherwise the
 contents of residences are not changed. If any of the names in ids are
 nonexistent or zero, FALSE is returned, the err or INVALID_VALUE is
 generated, and the contents of residences are i ndeterminate. The
 residence status of a single named program can also be queried by calling
 GetProgramivNV (Section 6.1.13) with id set to the name of the program and
 pname set to PROGRAM_RESIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is currently
 resident, not whether it could not be made resi dent. An implementation
 may choose to make a program resident only on f irst use, for example. The
 client may guide the GL implementation in deter mining which programs
 should be resident by requesting a set of progr ams to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids shoul d be made resident.
 While all the programs are not guaranteed to be come resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher prior ity for residency
 should be given to programs listed earlier in t he ids array.
 RequestResidentProgramsNV silently ignores atte mpts to make resident
 nonexistent program names or zero. ArePrograms ResidentNV can be
 called after RequestResidentProgramsNV to deter mine which programs
 actually became resident.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1286

 The commands

 void ProgramNamedParameter4fNV(uint id, sizei len, const ubyte *name,
 float x, float y, float z, float w);
 void ProgramNamedParameter4dNV(uint id, sizei len, const ubyte *name,
 double x, doub le y, double z, double w);
 void ProgramNamedParameter4fvNV(uint id, size i len, const ubyte *name,
 const float v []);
 void ProgramNamedParameter4dvNV(uint id, size i len, const ubyte *name,
 const double v[]);

 specify a new value for the named program local parameter <name> belonging
 to the fragment program specified by <id>. <na me> is a pointer to an
 array of ubytes holding the parameter name. <l en> specifies the number of
 ubytes in the array given by <name>. The new x , y, z, and w components of
 the named local parameter are given by x, y, z, and w, respectively, for
 ProgramNamedParameter4fNV and ProgramNamedParam eter4dNV, and by v[0],
 v[1], v[2], and v[3], respectively, for Program NamedParameter4fvNV and
 ProgramNamedParameter4dvNV. The error INVALID_ OPERATION is generated if
 <id> specifies a nonexistent program or a progr am whose type does not
 suport named local parameters. The error INVAL ID_VALUE error is generated
 if <name> does not specify the name of a local parameter in the program
 corresponding to <id>. The error INVALID_VALUE is also generated if <len>
 is zero.

 The commands

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 update the values of the numbered program local parameter <index>
 belonging to the program object currently bound to <target>. For
 ProgramLocalParameter4fARB and ProgramLocalPara meter4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>, <z>,
 and <w>, respectively. For ProgramLocalParamet er4fvARB and
 ProgramLocalParameter4dvARB, the four component s of the parameter are
 updated with the array of four values pointed t o by <params>. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 number of numbered program local parameters sup ported by <target>.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 Modify Section 6.1.11, Pointer and String Queri es (p. 206)

 (modify last paragraph, p. 206) ... The possibl e values for <name> are
 VENDOR, RENDERER, VERSION, EXTENSIONS, and PROG RAM_ERROR_STRING_NV.

 (add after last paragraph of section, p. 207) Q ueries of
 PROGRAM_ERROR_STRING_NV return a pointer to an implementation-dependent
 program load error string. If the last call to LoadProgramNV failed to

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1287

 load a program, the returned string describes a reason that the program
 failed to load. Otherwise, a pointer to an emp ty string (containing only
 a terminator) is returned.

 Rename and modify Section 6.1.13, Vertex and Fr agment Program Queries
 (from GL_NV_fragment_program). Portions of thi s section pertaining to
 fragment programs are copied verbatim.

 (insert after discussion of GetProgramParameter [fd]vNV)

 The commands

 void GetProgramNamedParameterfvNV(uint id, si zei len,
 const ubyte *name, float *params);
 void GetProgramNamedParameterdvNV(uint id, si zei len,
 const ubyte *name, double *params);

 obtain the current program named local paramete r value for the parameter
 named <name> belonging to the program given by <id>. <name> is a pointer
 to an array of ubytes holding the parameter nam e. <len> specifies the
 number of ubytes in the array given by <name>. The error
 INVALID_OPERATION is generated if <id> specifie s a nonexistent program or
 a program whose type does not suport named loca l parameters. The error
 INVALID_VALUE is generated if <name> does not s pecify the name of a local
 parameter in the program corresponding to <id>. The error INVALID_VALUE
 is also generated if <len> is zero. Each named program local parameter is
 an array of four values.

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);

 obtain the current value for the numbered progr am local parameter <index>
 belonging to the program object currently bound to <target>, and places
 the information in the array <params>. The err or INVALID_ENUM is
 generated if <target> specifies a nonexistent p rogram target or a program
 target that does not support numbered program l ocal parameters. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 implementation-dependent number of supported nu mbered program local
 parameters for the program target.

 When the program target type is FRAGMENT_PROGRA M_NV, each numbered program
 local parameter returned is an array of four va lues. ...

 The command

 void GetProgramivNV(uint id, enum pname, int *params);

 obtains program state named by pname for the pr ogram named id in the array
 params. pname must be one of PROGRAM_TARGET_NV , PROGRAM_LENGTH_NV, or
 PROGRAM_RESIDENT_NV. The error INVALID_OPERATI ON is generated if the
 program named id does not exist.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1288

 The command

 void GetProgramStringNV(uint id, enum pname,
 ubyte *program);

 obtains the program string for program id. pna me must be
 PROGRAM_STRING_NV. n ubytes are returned into the array program
 where n is the length of the program in ubytes. GetProgramivNV with
 PROGRAM_LENGTH_NV can be used to query the leng th of a program's
 string. The INVALID_OPERATION error is generat ed if the program
 named id does not exist.

 ...

 The command

 boolean IsProgramNV(uint id);

 returns TRUE if program is the name of a progra m object. If program
 is zero or is a non-zero value that is not the name of a program
 object, or if an error condition occurs, IsProg ramNV returns FALSE.
 A name returned by GenProgramsNV but not yet lo aded with a program
 is not the name of a program object."

Additions to Appendix F of the OpenGL 1.2.1 Specifi cation (ARB Extensions)

 Modify Section F.2.3 (Changes to Section 2.6), p.240

 (modify last paragraph on p.240) ... Multiple s ets of texture coordinates
 may be used to specify how multiple texture ima ges are mapped onto a
 primitive. The number of texture coordinate se ts supported is
 implementation dependent, but must be at least 1. The number of texture
 coordinate sets supported may be queried with t he state
 MAX_TEXTURE_COORDS_NV.

 Modify Section F.2.4 (Changes to Section 2.7), p.241

 (modify the last paragraph on p.241, carrying o ver to p.243)
 Implementations may support more than one set o f texture coordinates. The
 commands

 void MultiTexCoord{1234}{sifd}ARB(enum text ure, T coords)
 void MultiTexCoord{1234}{sifd}vARB(enum tex ture, T coords)

 take the coordinate set to be modified as the < texture> parameter.
 <texture> is a symbolic constant of the form TE XTUREi_ARB, indicating that
 texture coordinate set i is to be modified. Th e constants obey
 TEXTUREi_ARB = TEXTURE0_ARB + i (i is in the ra nge 0 to k-1, where k is
 the implementation dependent number of texture units defined by
 MAX_TEXTURE_COORDS_NV).

 Modify Section F.2.5 (Changes to Section 2.8), p.243

 (modify first and second paragraphs of section) ... The client may specify
 up to 5 plus the value of MAX_TEXTURE_COORDS_NV arrays; one each to store
 vertex coordinates...

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1289

 In implementations which support more than one texture coordinate set, the
 command

 void ClientActiveTextureARB(enum texture)

 is used to select the vertex array client state parameters to be modified
 by the TexCoordPointer command and the array af fected by EnableClientState
 and DisableClientState with the parameter TEXTU RE_COORD_ARRAY. This
 command sets the state variable CLIENT_ACTIVE_T EXTURE_ARB. Each texture
 coordinate set has a client state vector which is selected when this
 command is invoked. This state vector also inc ludes the vertex array
 state. This command also selects the texture c oordinate set state used
 for queries of client state.

 (modify first paragraph on p.244) If the number of supported texture
 coordinate sets (the value of MAX_TEXTURE_COORD S_NV) is k, ...

 Modify Section F.2.6 (Changes to Section 2.10.2), p.244

 (modify first paragraph) For each texture coor dinate set, a 4x4 matrix is
 applied to the corresponding texture coordinate s...

 (replace second and third paragraphs) The comma nd

 void ActiveTextureARB(enum texture);

 specifies the active texture unit selector, ACT IVE_TEXTURE_ARB. Each
 texture unit contains up to two distinct sub-un its: a texture coordinate
 processing unit (consisting of a texture matrix stack and texture
 coordinate generation state) and a texture imag e unit (consisting of all
 the texture state defined in Section 3.8). In implementations with a
 different number of supported texture coordinat e sets and texture image
 units, some texture units may consist of only o ne of the two sub-units.

 The active texture unit selector specifies the texture unit accessed by
 commands involving texture coordinate processin g. Such commands include
 those accessing the current matrix stack (if MA TRIX_MODE is TEXTURE),
 TexGen (Section 2.10.4), Enable/Disable (if any texture coordinate
 generation enum is selected), as well as querie s of the current texture
 coordinates and current raster texture coordina tes. If the texture unit
 number corresponding to the current value of AC TIVE_TEXTURE_ARB is greater
 than or equal to the implementation dependent c onstant
 MAX_TEXTURE_COORD_SETS_NV, the error INVALID_OP ERATION is generated by any
 such command.

 The active texture unit selector also selects t he texture unit accessed by
 commands involving texture image processing (Se ction 3.8). Such commands
 include all variants of TexEnv, TexParameter, a nd TexImage commands,
 BindTexture, Enable/Disable for any texture tar get (e.g., TEXTURE_2D), and
 queries of all such state. If the texture unit number corresponding to
 the current value of ACTIVE_TEXTURE_ARB is grea ter than or equal to the
 implementation dependent constant MAX_TEXTURE_I MAGE_UNITS_NV, the error
 INVALID_OPERATION is generated by any such comm and.

 ActiveTextureARB generates the error INVALID_EN UM if an invalid <texture>
 is specified. <texture> is a symbolic constant of the form TEXTUREi_ARB,
 indicating that texture unit i is to be modifie d. The constants obey

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1290

 TEXTUREi_ARB = TEXTURE0_ARB + i (i is in the ra nge 0 to k-1, where k is
 the larger of the MAX_TEXTURE_COORDS_NV and MAX _TEXTURE_IMAGE_UNITS_NV).
 For compatibility with old OpenGL specification s, the implementation
 dependent constant MAX_TEXTURE_UNITS_ARB specif ies the number of
 conventional texture units supported by the imp lementation. Its value
 must be no larger than the minimum of MAX_TEXTU RE_COORDS_NV and
 MAX_TEXTURE_IMAGE_UNITS_NV.

 Modify Section F.2.12 (Changes to Section 3.8.1 0), p.249

 (modify next-to-last paragraph) Texturing is en abled and disabled
 individually for each texture unit. If texturi ng is disabled for one of
 the units, then the fragment resulting from the previous unit is passed
 unaltered to the following unit. Individual te xture units beyond those
 specified by MAX_TEXTURE_UNITS_ARB may be incom plete and are always
 treated as disabled.

 Modify Section F.2.15 (Changes to Section 6.1.2), p.251

 (add to end of paragraph) Queries of texture st ate variables corresponding
 to texture coordinate processing unit (namely, TexGen state and enables,
 and matrices) will produce an INVALID_OPERATION error if the value of
 ACTIVE_TEXTURE_ARB is greater than or equal to MAX_TEXTURE_COORDS_NV. All
 other texture state queries will result in an I NVALID_OPERATION error if
 the value of ACTIVE_TEXTURE_ARB is greater than or equal to
 MAX_TEXTURE_IMAGE_UNITS_NV.

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

Dependencies on GL_NV_vertex_program

 If NV_vertex_program is supported, the descript ion of LoadProgramNV in
 Section 2.14.1.7 (up to the BNF description of vertex programs) is
 deleted, as it is replaced by the contents of S ection 5.7 in this
 specification. The general error descriptions in Section 2.14.1.7 common
 to Section 5.7 (like INVALID_OPERATION if the p rogram fails to compile)
 should also be deleted. Section 2.14.1.8 shoul d also be deleted. Section
 6.1.13 is modified by this specification as des cribed above.

Dependencies on NV_register_combiners

 If NV_register_combiners is not supported, comb iner programs are not
 supported, the TEX0, TEX1, TEX2, and TEX3 outpu t registers are eliminated,
 and all references to both in this extension ar e deleted.

Dependencies on NV_texture_shader

 If NV_texture_shader is not supported, the comm ent about texture shaders
 being disabled in fragment program mode is not applicable.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1291

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, the r eferences to "RECT" in the
 <texImageTarget> grammar rule and TEXTURE_RECTA NGLE_NV are not applicable.

Dependencies on ARB_texture_cube_map

 If NV_texture_rectangle is not supported, the r eferences to "CUBE" in the
 <texImageTarget> grammar rule and TEXTURE_CUBE_ MAP_ARB are not applicable.

Dependencies on EXT_fog_coord

 If EXT_fog_coord is not supported, references t o "fog coordinate" in the
 definition of the "FOGC" fragment attribute reg ister should be removed.

Dependencies on NV_depth_clamp

 If NV_depth_clamp is not supported, section 3.1 1.6 is modified to remove
 discussion of the depth clamp enable and instea d indicate that fragments
 with depth values outside [min(n,f), max(n,f)] are always discarded.

Dependencies on ARB_depth_texture and SGIX_depth_te xture

 If ARB_depth_texture is not supported, but SGIX _depth_texture is
 supported, the discussion of Table X.5 is modif ied to indicate that
 DEPTH_COMPONENT textures are treated as LUMINAN CE.

 If neither extension is supported, the discussi on of DEPTH_COMPONENT
 textures in Table X.5 should be removed.

Dependencies on NV_float_buffer

 If NV_float_buffer is not supported, references to FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, and FLOAT_RGBA_NV in ternal texture formats in
 Table X.5 should be removed.

Dependencies on ARB_vertex_program

 This extension does not have any explicit depen dencies, but the APIs for
 setting and querying numbered local parameters (ProgramLocalParameter*ARB
 and GetProgramLocalParameter*ARB) were taken di rectly from this extension,

GLX Protocol

 Most of the GLX protocol needed to implement th is extension is described
 in the GL_NV_vertex_program extension specifica tion and will not be
 repeated here.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1292

 The following two rendering commands are potent ially large, and hence can
 be sent in a glXRender or glXRenderLarge reques t.

 ProgramNamedParameter4fvNV
 2 28+len+p rendering c ommand length
 2 4218 rendering c ommand opcode
 4 CARD32 id
 4 CARD32 len
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]
 len LISTofCARD8 name
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 32+len+p rendering c ommand length
 4 4218 rendering c ommand opcode

 ProgramNamedParameter4dvNV
 2 44+len+p rendering c ommand length
 2 4219 rendering c ommand opcode
 4 CARD32 id
 4 CARD32 len
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]
 len LISTofCARD8 name
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 48+len+p rendering c ommand length
 4 4219 rendering c ommand opcode

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1293

 The remaining two commands are non-rendering co mmands. These commands are
 sent separately (i.e., not as part of a glXRend er or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 GetProgramNamedParameter4fvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+(len+p)/4 request len gth
 4 1310 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 len
 len LISTofCARD8 name
 p unused, p=p ad(len)
 =>

 If the command succeeds, 4 floats are sen t in the reply:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 4 reply lengt h
 24 unused
 16 LISTofFLOAT32 params

 Otherwise, an empty reply is sent, indica ting that a GL error
 occured:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 24 unused

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1294

 GetProgramNamedParameter4dvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+(len+p)/4 request len gth
 4 1311 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 len
 len LISTofCARD8 name
 p unused, p=p ad(len)
 =>

 If the command succeeds, 4 doubles are se nt in the reply:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 8 reply lengt h
 24 unused
 32 LISTofFLOAT64 params

 Otherwise, an empty reply is sent, indica ting that a GL error
 occured:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 24 unused

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap, CopyPixels,
 or a command that performs an explicit Begin if FRAGMENT_PROGRAM_NV is
 enabled and the currently bound fragment progra m does not exist.

 INVALID_OPERATION is generated by ProgramNamedP arameter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <id> specifies a nonexistent program or a
 program whose type does not suport local parame ters.

 INVALID_VALUE is generated by ProgramNamedParam eter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <len> is zero.

 INVALID_VALUE is generated by ProgramNamedParam eter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <name> does not specify the name of a
 local parameter in the program corresponding to <id>.

 INVALID_OPERATION is generated by any command a ccessing texture coordinate
 processing state if the texture unit number cor responding to the current
 value of ACTIVE_TEXTURE_ARB is greater than or equal to the implementation
 dependent constant MAX_TEXTURE_COORD_SETS_NV.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 1295

 INVALID_OPERATION is generated by any command a ccessing texture image
 processing state if the texture unit number cor responding to the current
 value of ACTIVE_TEXTURE_ARB is greater than or equal to the implementation
 dependent constant MAX_TEXTURE_IMAGE_UNITS_NV.

 (The following are error descriptions copied fr om GL_NV_vertex_program
 that apply to this extension as well. These m odifications do not affect
 the behavior of that extension.)

 INVALID_VALUE is generated by LoadProgramNV if id is zero.

 INVALID_OPERATION is generated by LoadProgramNV if the program
 corresponding to id is currently loaded but has a program type different
 from that given by target.

 INVALID_OPERATION is generated by LoadProgramNV if the program specified
 is syntactically incorrect for the program type specified by target. The
 value of PROGRAM_ERROR_POSITION_NV is still upd ated when this error is
 generated.

 INVALID_OPERATION is generated by LoadProgramNV if the problem specified
 fails to conform to any of the semantic restric tions imposed on programs
 of the type specified by target. The value of PROGRAM_ERROR_POSITION_NV
 is still updated when this error is generated.

 INVALID_OPERATION is generated by BindProgramNV if target does not match
 the type of the program named by id.

 INVALID_VALUE is generated by AreProgramsReside ntNV if any of the queried
 programs are zero or do not exist.

 INVALID_OPERATION is generated by GetProgramivN V or GetProgramStringNV if
 the program named id does not exist.

New State

Get Value Type Get Comman d Initial Value Description S ection Attribute
--------------------------------- ---- ---------- ------------- ------------- ------------------ - ------- ------------
FRAGMENT_PROGRAM_NV B IsEnabled FALSE fragment program 3 .11 enable
 mode enable
FRAGMENT_PROGRAM_BINDING_NV Z+ GetInteger v 0 bound fragment 5 .7 -
 program

Table X.6. New State Introduced by NV_fragment_pro gram.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 1296

Get Value Type Get Command Initial Value Description Section A ttribute
------------------------- ------ ---------------- -- ------------- ------------------ -------- - --------
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 program error 5.7 -
 position
PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV False program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramString NV "" program string 6.1.13 -
- nxR4 GetProgramNamed- (0,0,0,0) named program local 5.7 -
 ParameterNV parameter value
- 64+xR4 GetProgramLocal- (0,0,0,0) numbered program 5.7 -
 ParameterARB local parameter

Table X.7. Program Object State common to NV_verte x_program and
NV_fragment_program.

Get Value Type Get Command Initial Value D escription Section Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12xR4 - fragment data f ragment attribute
 r egisters 3.11.1.1 -
- 16xR4 - (0,0,0,0) f p32 temporary registers 3.11.1.2 -
- 32xR4 - (0,0,0,0) f p16 temporary registers 3.11.1.2 -
 (Z_4)4 - (EQ,EQ,EQ,EQ) c ondition code register 3.11.1.4 -
 a ddress register

Table X.8. Fragment Program Per-Fragment Execution State.

New Implementation Dependent State

 Mi nimum
Get Value Type Get Command V alue Description Section Attribute
--------- ---- ----------- -- ----- ----------------- ------- ---------
MAX_TEXTURE_COORDS_NV Z+ GetIntegerv 2 number of texture 2.6 -
 coordinate sets
 supported
MAX_TEXTURE_IMAGE_UNITS_NV Z+ GetIntegerv 2 number of texture 2.10.2 -
 image units
 supported
MAX_FRAGMENT_PROGRAM_ Z+ GetIntegerv 64 number of numbered 3.11.7 -
 LOCAL_PARAMETERS_NV local parameters
 supported

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1297

Name

 NV_fragment_program_option

Name Strings

 GL_NV_fragment_program_option

Status

 Shipping.

Version

 Last Modified: 05/27/2005
 NVIDIA Revision: 4

Number

 303

Dependencies

 ARB_fragment_program is required.

Overview

 This extension provides additional fragment pro gram functionality
 to extend the standard ARB_fragment_program lan guage and execution
 environment. ARB programs wishing to use this added functionality
 need only add:

 OPTION NV_fragment_program;

 to the beginning of their fragment programs.

 The functionality provided by this extension, w hich is roughly
 equivalent to that provided by the NV_fragment_ program extension,
 includes:

 * increased control over precision in arithme tic computations and
 storage,

 * data-dependent conditional writemasks,

 * an absolute value operator on scalar and sw izzled operand loads,

 * instructions to compute partial derivatives , and perform texture
 lookups using specified partial derivatives ,

 * fully orthogonal "set on" instructions,

 * instructions to compute reflection vector a nd perform a 2D
 coordinate transform, and

 * instructions to pack and unpack multiple qu antities into a single
 component.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1298

Issues

 Why is this a separate extension, rather than j ust an additional
 feature of NV_fragment_program?

 RESOLVED: The NV_fragment_program specificat ion was complete
 (with a published implementation) prior to th e completion of
 ARB_fragment_program. Future NVIDIA fragment program extensions
 should contain extensions to the ARB_fragment _program execution
 environment as a standard feature.

 Should a similar option be provided to expose A RB_fragment_program
 features not found in NV_fragment_program (e.g. , state bindings,
 certain "macro" instructions) under the NV_frag ment_program
 interface?

 RESOLVED: No. Why not just write an ARB pro gram?

 The ARB_fragment_program spec has a minor gramm ar bug that requires
 that inline scalar constants used as scalar ope rands include a
 component selector. In other words, you have t o say "11.0.x" to
 use the constant "11.0". What should we do her e?

 RESOLVED: The NV_fragment_program_option gra mmar will correct
 this problem, which should be fixed in future revisions to the
 ARB language.

New Procedures and Functions

 None.

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Section 3.11.2 of ARB_fragment_program (Fragment Program
 Grammar and Restrictions):

 (mostly add to existing grammar rules, modify a few existing grammar
 rules -- changes marked with "***")

 <optionName> ::= "NV_fragment_progra m"

 <TexInstruction> ::= <TXDop_instruction>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1299

 <VECTORop> ::= "DDX"
 | "DDY"
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"

 <SCALARop> ::= "UP2H"
 | "UP2US"
 | "UP4B"
 | "UP4UB"

 <BINop> ::= "RFL"
 | "SEQ"
 | "SFL"
 | "SGT"
 | "SLE"
 | "SNE"
 | "STR"

 <TRIop> ::= "X2D"

 <TXDop_instruction> ::= <TXDop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV> ","
 <texTarget>

 <TXDop> ::= "TXD"

 <killCond> ::= <ccTest>

 <instOperandV> ::= <instOperandAbsV>

 <instOperandAbsV> ::= <optSign> "|" <inst OperandBaseV> "|"

 <instOperandS> ::= <instOperandAbsS>

 <instOperandAbsS> ::= <optSign> "|" <inst OperandBaseS> "|"

 <instResult> ::= <instResultCC>

 <instResultCC> ::= <instResultBase> <c cMask>

 <TEMP_statement> ::= <varSize> "TEMP" <v arNameList>

 <OUTPUT_statement> ::= <varSize> "OUTPUT" <establishName> "="
 <resultUseD>

 <varSize> ::= "SHORT"
 | "LONG"

 <paramUseV> ::= <constantScalar>
 (*** instead of < constantScalar>
 <swizzleSuff ix>)

 <paramUseS> ::= <constantScalar>
 (*** instead of < constantScalar>
 <scalarSuffi x>)

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1300

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"
 | "TR"
 | "FL"

 (modify language describing reserved keywords) The following strings
 are reserved keywords and may not be used as id entifiers:

 ALIAS, ATTRIB, END, OPTION, OUTPUT, PARAM, TEMP, fragment,
 program, result, state, and texture.

 Additionally, all the instruction names (and va riants) listed in
 Table X.5 are reserved.

 Modify Section 3.11.3.3, Fragment Program Tempo raries

 (replace second paragraph) Fragment program tem porary variables
 can be declared explicitly using the <TEMP_stat ement> grammar
 rule. Each such statement can declare one or m ore temporaries.
 Temporary declaration can optionally specify a variable size,
 using the <varSize> grammar rule. Variables de clared as "SHORT"
 will represented with at least 16 bits per comp onent (5 bits of
 exponent, 10 bits of mantissa). Variables decl ared as "LONG" will be
 represented with at least 32 bits per component (8 bits of exponent,
 23 bits of mantissa). Fragment program tempora ry variables can not
 be declared implicitly.

 Modify Section 3.11.3.4, Fragment Program Resul ts

 (replace second paragraph) Fragment program res ult variables
 can be declared explicitly using the <OUTPUT_st atement> grammar
 rule, or implicitly using the <resultBinding> g rammar rule in an
 executable instruction. Explicit result variab le declaration can
 optionally specify a variable size, using the < varSize> grammar rule.
 Variables declared as "SHORT" will represented with at least 16
 bits per component (5 bits of exponent, 10 bits of mantissa).
 Variables declared as "LONG" will be represente d with at least
 32 bits per component (8 bits of exponent, 23 b its of mantissa).
 Each fragment program result variable is bound to a fragment attribute
 used in subsequent back-end processing. The se t of fragment program
 result variable bindings is given in Table X.3.

 (add to the end of a section) A fragment progra m will fail to load if
 contains instructions writing to variables boun d to the same result,
 but declared with different sizes.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1301

 Add New Section 3.11.3.X, Condition Code Regist er (insert after
 Section 3.11.3.4, Fragment Program Results)

 The fragment program condition code register is a single
 four-component vector. Each component of this register is one of four
 enumerated values: GT (greater than), EQ (equal), LT (less than),
 or UN (unordered). The condition code register can be used to mask
 writes to registers and to evaluate conditional branches.

 Most fragment program instructions can optional ly update the condition
 code register. When a fragment program instruc tion updates the
 condition code register, a condition code compo nent is set to LT if
 the corresponding component of the result is le ss than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN
 (not a number).

 The condition code register is initialized to a vector of EQ values
 each time a fragment program executes.

 Modify Section 3.11.4, Fragment Program Executi on Environment

 (modify instruction table) There are fifty-two fragment program
 instructions. Fragment program instructions ma y have up to sixteen
 variants, including a suffix of "R", "H", or "X " to specify arithmetic
 precision (section 3.11.4.X), a suffix of "C" t o allow an update
 of the condition code register (section 3.11.3. X), and a suffix of
 "_SAT" to clamp the result vector components to the range [0,1]
 (section 3.11.4.3). For example, the sixteen f orms of the "ADD"
 instruction are "ADD", "ADDR", "ADDH", "ADDX", "ADDC", "ADDRC",
 "ADDHC", "ADDXC", "ADD_SAT", "ADDR_SAT", "ADDH_ SAT", "ADDX_SAT",
 "ADDC_SAT", "ADDRC_SAT", "ADDHC_SAT", and "ADDX C_SAT".The instructions
 and their respective input and output parameter s are summarized in
 Table X.5.

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 ABS X X X X X v v absolute value
 ADD X X X X X v,v v add
 CMP - - - - X v,v,v v compare
 COS X X - X X s ssss cosine w ith reduction to [-PI,PI]
 DDX X X - X X v v partial derivative relative to X
 DDY X X - X X v v partial derivative relative to Y
 DP3 X X X X X v,v ssss 3-compon ent dot product
 DP4 X X X X X v,v ssss 4-compon ent dot product
 DPH X X X X X v,v ssss homogene ous dot product
 DST X X - X X v,v v distance vector
 EX2 X X - X X s ssss exponent ial base 2
 FLR X X X X X v v floor
 FRC X X X X X v v fraction
 KIL - - - - - v or c - kill fra gment
 LG2 X X - X X s ssss logarith m base 2
 LIT X X - X X v v compute light coefficients
 LRP X X X X X v,v,v v linear i nterpolation
 MAD X X X X X v,v,v v multiply and add
 MAX X X X X X v,v v maximum
 MIN X X X X X v,v v minimum

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1302

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 MOV X X X X X v v move
 MUL X X X X X v,v v multiply
 PK2H - - - - - v ssss pack two 16-bit floats
 PK2US - - - - - v ssss pack two unsigned 16-bit scalars
 PK4B - - - - - v ssss pack fou r signed 8-bit scalars
 PK4UB - - - - - v ssss pack fou r unsigned 8-bit scalars
 POW X X - X X s,s ssss exponent iate
 RCP X X - X X s ssss reciproc al
 RFL X X - X X v,v v reflecti on vector
 RSQ X X - X X s ssss reciproc al square root
 SCS - - - - X s ss-- sine/cos ine without reduction
 SEQ X X X X X v,v v set on e qual
 SFL X X X X X v,v v set on f alse
 SGE X X X X X v,v v set on g reater than or equal
 SGT X X X X X v,v v set on g reater than
 SIN X X - X X s ssss sine wit h reduction to [-PI,PI]
 SLE X X X X X v,v v set on l ess than or equal
 SLT X X X X X v,v v set on l ess than
 SNE X X X X X v,v v set on n ot equal
 STR X X X X X v,v v set on t rue
 SUB X X X X X v,v v subtract
 SWZ - - - - X v v extended swizzle
 TEX - - - X X v v texture sample
 TXB - - - X X v v texture sample with bias
 TXD - - - X X v,v,v v texture sample w/partials
 TXP - - - X X v v texture sample with projection
 UP2H - - - X X s v unpack t wo 16-bit floats
 UP2US - - - X X s v unpack t wo unsigned 16-bit scalars
 UP4B - - - X X s v unpack f our signed 8-bit scalars
 UP4UB - - - X X s v unpack f our unsigned 8-bit scalars
 X2D X X - X X v,v,v v 2D coord inate transformation
 XPD - - - - X v,v v cross pr oduct

 Table X.5: Summary of fragment program instr uctions. The columns
 "R", "H", "X", "C", and "S" indicate whether the "R", "H", or "X"
 precision modifiers, the C condition code upd ate modifier, and the
 "_SAT" saturation modifier, respectively, are supported for the
 opcode. In the input/output columns, "v" ind icates a floating-point
 vector input or output, "s" indicates a float ing-point scalar
 input, "ssss" indicates a scalar output repli cated across a
 4-component result vector, "ss--" indicates t wo scalar outputs in
 the first two components, and "c" indicates a condition code test.
 Instructions describe as "texture sample" als o specify a texture
 image unit identifier and a texture target.

 Modify Section 3.11.4.1, Fragment Program Opera nds

 (add prior to the discussion of negation) A com ponent-wise absolute
 value operation can optionally performed on the operand if the operand
 is surrounded with two "|" characters. For exa mple, "|src|" indicates
 that a component-wise absolute value operation should be performed on
 the variable named "src". In terms of the gram mar, this operation
 is performed if the <instOperandV> or <instOper andS> grammar rules
 match <instOperandAbsV> or <instOperandAbsS>, r espectively.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1303

 (modify operand load pseudo-code) The following pseudo-code spells
 out the operand generation process. In the exa mple, "float" is a
 floating-point scalar type, while "floatVec" is a four-component
 vector. "source" refers to the register used f or the operand,
 matching the <srcReg> rule. "abs" is TRUE if a n absolute value
 operation should be performed on the operand (< instOperandAbsV> or
 <instOperandAbsS> rules) "negate" is TRUE if th e <optionalSign> rule
 in <scalarSrcReg> or <swizzleSrcReg> matches "- " and FALSE otherwise.
 The ".c***", ".*c**", ".**c*", ".***c" modifier s refer to the x,
 y, z, and w components obtained by the swizzle operation; the ".c"
 modifier refers to the single component selecte d for a scalar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (abs) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (abs) {
 operand = abs(operand);
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 Add New Section 3.11.4.X, Fragment Program Oper ation Precision
 (insert after Section 3.11.4,2, Fragment Progra m Parameter Arrays)

 Fragment program implementations may be able to perform instructions
 with different levels of arithmetic precision. The "R", "H", and
 "X" opcode precision modifiers (Section 3.11.4) specify the minimum

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1304

 precision used to perform arithmetic operations . Instructions with
 an "R" precision modifiers will be carried out at no less than
 IEEE single-precision floating-point (8 bits of exponent, 23 bits
 of mantissa). Instructions with an "H" precisi on modifier will
 be carried out at no less than 16-bit floating- point precision (5
 bits of exponent, 10 bits of mantissa). Instru ctions with an "X"
 precision modifier will be carried out at no le ss than signed 12-bit
 fixed-point precision (two's complement with 10 fraction bits).

 If the result of a computation overflows the ra nge of numbers
 supported by the instruction precision, the res ult will be +/-INF
 (infinity) for "R" and "H" precision, or -2048/ 1024 or +2047/1024 for
 "X" precision.

 If no precision modifier is specified, the inst ruction will be carried
 out with at least as much precision as the dest ination variable.

 Rewrite Section 3.11.4.3, Fragment Program Des tination Register
 Update

 Most fragment program instructions write a 4-co mponent result vector
 to a single temporary or fragment result regist er. Writes to
 individual components of the destination regist er are controlled
 by individual component write masks specified a s part of the
 instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s, respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order.

 The condition code write mask is specified by t he <ccMask> rule found
 in the <instResultCC> rule. The condition code register is loaded and
 swizzled according to the swizzle codes specifi ed by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to
 the rule given by <ccMaskRule>. <ccMaskRule> m ay have the values
 "EQ", "NE", "LT", "GE", LE", or "GT", which mea n to enable writes
 if the corresponding condition code field evalu ates to equal,
 not equal, less than, greater than or equal, le ss than or equal,
 or greater than, respectively. Comparisons inv olving condition
 codes of "UN" (unordered) evaluate to true for "NE" and false
 otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the fragment program instruction if and only if the component is
 enabled for writes by both the component write mask and the condition

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1305

 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A fragment program instruction can also optiona lly update the
 condition code register. The condition code is updated if
 the condition code register update suffix "C" i s present in the
 instruction. The instruction "ADDC" will updat e the condition code;
 the otherwise equivalent instruction "ADD" will not. If condition
 code updates are enabled, each component of the destination register
 enabled for writes is compared to zero. The co rresponding component
 of the condition code is set to "LT", "EQ", or "GT", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"
 refers to the component write mask given by the <optWriteMask>
 rule. "ccMaskRule" refers to the condition cod e mask rule given
 by <ccMask> and "updatecc" is TRUE if and only if condition code
 updates are enabled. "result", "destination", and "cc" refer to
 the result vector, the register selected by <ds tRegister> and the
 condition code, respectively. Condition codes do not exist in the
 VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1306

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 Add to Section 3.11.4.5 of ARB_fragment_program (Fragment Program
 Options):

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1307

 Section 3.11.4.5.3, NV_fragment_program Option

 If a fragment program specifies the "NV_fragmen t_program" option,
 the grammar will be extended to support the fea tures found in the
 NV_fragment_program extension not present in th e ARB_fragment_program
 extension, including:

 * the availability of the following instructi ons:

 - DDX (partial derivative relative to X),
 - DDY (partial derivative relative to Y),
 - PK2H (pack as two half floats),
 - PK2US (pack as two unsigned shorts),
 - PK4B (pack as four signed bytes),
 - PK4UB (pack as four unsigned bytes),
 - RFL (reflection vector),
 - SEQ (set on equal to),
 - SFL (set on false),
 - SGT (set on greater than),
 - SLE (set on less than or equal to),
 - SNE (set on not equal to),
 - STR (set on true),
 - TXD (texture lookup with computed parti al derivatives),
 - UP2H (unpack two half floats),
 - UP2US (unpack two unsigned shorts),
 - UP4B (unpack four signed bytes),
 - UP4UB (unpack four unsigned bytes), and
 - X2D (2D coordinate transformation),

 * opcode precision suffixes "R", "H", and "X" , to specify
 the precision of arithmetic operations ("R" specifies 32-bit
 floating-point computations, "H" specifies 16-bit floating-point
 computations, and "X" specifies 12-bit sign ed fixed-point
 computations with 10 fraction bits),

 * the availability of the "SHORT" and "LONG" variable precision
 keywords to control the size of a variable' s components,

 * a four-component condition code register to hold the sign of
 result vector components (useful for compar isons),

 * a condition code update opcode suffix "C", where the results of
 the instruction are used to update the cond ition code register,

 * a condition code write mask operator, where the condition code
 register is swizzled and tested, and the te st results are used
 to mask register writes,

 * an absolute value operator on scalar and sw izzled source inputs

 The added functionality is identical to that pr ovided by the
 NV_fragment_program extension specification.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1308

 Modify Section 3.11.5, Fragment Program ALU In struction Set

 Section 3.11.5.30, DDX: Derivative Relative t o X

 The DDX instruction computes approximate partia l derivatives of the
 four components of the single operand with resp ect to the X window
 coordinate to yield a result vector. The parti al derivatives are
 evaluated at the center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may
 not yield accurate second derivatives.

 Section 3.11.5.31, DDY: Derivative Relative t o Y

 The DDY instruction computes approximate partia l derivatives of the
 four components of the single operand with resp ect to the Y window
 coordinate to yield a result vector. The parti al derivatives are
 evaluated at the center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may
 not yield accurate second derivatives.

 Section 3.11.5.32, PK2H: Pack Two 16-bit Floa ts

 The PK2H instruction converts the "x" and "y" c omponents of
 the single operand into 16-bit floating-point f ormat, packs the
 bit representation of these two floats into a 3 2-bit value, and
 replicates that value to all four components of the result vector.
 The PK2H instruction can be reversed by the UP2 H instruction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 A fragment program will fail to load if it cont ains a PK2H instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.33, PK2US: Pack Two Unsigned 1 6-bit Scalars

 The PK2US instruction converts the "x" and "y" components of the
 single operand into a packed pair of 16-bit uns igned scalars.
 The scalars are represented in a bit pattern wh ere all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the two converted components are packed into a
 32-bit value, and that value is replicated to a ll four components

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1309

 of the result vector. The PK2US instruction ca n be reversed by the
 UP2US instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 A fragment program will fail to load if it cont ains a PK2S instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.34, PK4B: Pack Four Signed 8-b it Scalars

 The PK4B instruction converts the four componen ts of the single
 operand into 8-bit signed quantities. The sign ed quantities
 are represented in a bit pattern where all '0' bits corresponds
 to -128/127 and all '1' bits corresponds to +12 7/127. The bit
 representations of the four converted component s are packed into a
 32-bit value, and that value is replicated to a ll four components
 of the result vector. The PK4B instruction can be reversed by the
 UP4B instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 A fragment program will fail to load if it cont ains a PK4B instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.35, PK4UB: Pack Four Unsigned 8-bit Scalars

 The PK4UB instruction converts the four compone nts of the single
 operand into a packed grouping of 8-bit unsigne d scalars. The scalars
 are represented in a bit pattern where all '0' bits corresponds to

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1310

 0.0 and all '1' bits corresponds to 1.0. The b it representations
 of the four converted components are packed int o a 32-bit value, and
 that value is replicated to all four components of the result vector.
 The PK4UB instruction can be reversed by the UP 4UB instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 A fragment program will fail to load if it cont ains a PK4UB
 instruction that writes its results to a variab le declared as
 "SHORT".

 Section 3.11.5.36, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector
 operand (the "direction" vector) about the vect or specified by the
 first vector operand (the "axis" vector). Both operands are treated
 as 3D vectors (the w components are ignored). The result vector is
 another 3D vector (the "reflected direction" ve ctor). The length
 of the result vector, ignoring rounding errors, should equal that
 of the second operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y +
 axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 A fragment program will fail to load if the w c omponent of the result
 is enabled in the component write mask.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1311

 Section 3.11.5.37, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is equal to that of
 the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.38, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 Section 3.11.5.39, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operands i s greater than that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.40, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is less than or equal
 to that of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1312

 Section 3.11.5.41, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is not equal to that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.42, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

 Section 3.11.5.43, UP2H: Unpack Two 16-Bit Fl oats

 The UP2H instruction unpacks two 16-bit floats stored together in
 a 32-bit scalar operand. The first 16-bit floa t (stored in the 16
 least significant bits) is written into the "x" and "z" components
 of the result vector; the second is written int o the "y" and "w"
 components of the result vector.

 This operation undoes the type conversion and p acking performed by
 the PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 A fragment program will fail to load if it cont ains a UP2H instruction
 whose operand is a variable declared as "SHORT" .

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1313

 Section 3.11.5.44, UP2US: Unpack Two Unsigned 16-Bit Scalars

 The UP2US instruction unpacks two 16-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and
 a pattern of all '1' bits corresponds to 1.0. The "x" and "z"
 components of the result vector are obtained fr om the 16 least
 significant bits of the operand; the "y" and "w " components are
 obtained from the 16 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 A fragment program will fail to load if it cont ains a UP2S instruction
 whose operand is a variable declared as "SHORT" .

 Section 3.11.5.45, UP4B: Unpack Four Signed 8 -Bit Values

 The UP4B instruction unpacks four 8-bit signed values packed together
 in a 32-bit scalar operand. The signed quantit ies are encoded where
 a bit pattern of all '0' bits corresponds to -1 28/127 and a pattern
 of all '1' bits corresponds to +127/127. The " x" component of the
 result vector is the converted value correspond ing to the 8 least
 significant bits of the operand; the "w" compon ent corresponds to
 the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 A fragment program will fail to load if it cont ains a UP4B instruction
 whose operand is a variable declared as "SHORT" .

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1314

 Section 3.11.5.46, UP4UB: Unpack Four Unsigne d 8-Bit Scalars

 The UP4UB instruction unpacks four 8-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and a
 pattern of all '1' bits corresponds to 1.0. Th e "x" component of the
 result vector is obtained from the 8 least sign ificant bits of the
 operand; the "w" component is obtained from the 8 most significant
 bits.

 This operation undoes the type conversion and p acking performed by
 the PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 A fragment program will fail to load if it cont ains a UP4UB
 instruction whose operand is a variable declare d as "SHORT".

 Section 3.11.5.47, X2D: 2D Coordinate Transfo rmation

 The X2D instruction multiplies the 2D offset ve ctor specified by the
 "x" and "y" components of the second vector ope rand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds
 the transformed offset vector to the 2D vector specified by the "x"
 and "y" components of the first vector operand. The first component
 of the sum is written to the "x" and "z" compon ents of the result;
 the second component is written to the "y" and "w" components of
 the result.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1315

 Modify Section, 3.11.6.4 KIL: Kill fragment

 Rather than mapping a coordinate set to a color , this function
 prevents a fragment from receiving any future p rocessing. If any
 component of its source vector is negative, the processing of this
 fragment will be discontinued and no further ou tputs to this fragment
 will occur. Subsequent stages of the GL pipeli ne will be skipped
 for this fragment.

 A KIL instruction may be specified using either a vector operand
 or a condition code test. If a vector operand is specified, the
 following is performed:

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 If a condition code is specified, the following is performed:

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c))
 {
 exit;
 }

 Add Section 3.11.6.5, TXD: Texture Lookup with Derivatives

 The TXD instruction takes the first three compo nents of its first
 vector operand and maps them to s, t, and r. T hese coordinates are
 used to sample from the specified texture targe t on the specified
 texture image unit in a manner consistent with its parameters.

 The level of detail is computed as specified in section 3.8.
 In this calculation, ds/dx, dt/dx, and dr/dx ar e given by the x,
 y, and z components, respectively, of the secon d vector operand.
 ds/dy, dt/dy, and dr/dy are given by the x, y, and z components of
 the third vector operand.

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special
Functions)

 None.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1316

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_fragment_program

 This specification is based on a modified versi on of the grammar
 published in the ARB_fragment_program specifica tion. This modified
 grammar (see below) includes a few structural c hanges to better
 accommodate new functionality from this and oth er extensions,
 but should be functionally equivalent to the AR B_fragment_program
 grammar.

 <program> ::= <optionSequence> <s tatementSequence> "END"

 <optionSequence> ::= <optionSequence> <o ption>
 | /* empty */

 <option> ::= "OPTION" <optionNam e> ";"

 <optionName> ::= "ARB_fog_exp"
 | "ARB_fog_exp2"
 | "ARB_fog_linear"
 | "ARB_precision_hint _fastest"
 | "ARB_precision_hint _nicest"

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZop_instruction>

 <TexInstruction> ::= <TEXop_instruction>
 | <KILop_instruction>

 <VECTORop_instruction> ::= <VECTORop> <instRes ult> "," <instOperandV>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1317

 <VECTORop> ::= "ABS"
 | "FLR"
 | "FRC"
 | "LIT"
 | "MOV"

 <SCALARop_instruction> ::= <SCALARop> <instRes ult> "," <instOperandS>

 <SCALARop> ::= "COS"
 | "EX2"
 | "LG2"
 | "RCP"
 | "RSQ"
 | "SCS"
 | "SIN"

 <BINSCop_instruction> ::= <BINSCop> <instResu lt> "," <instOperandS> ","
 <instOperandS>

 <BINSCop> ::= "POW"

 <BINop_instruction> ::= <BINop> <instResult > "," <instOperandV> ","
 <instOperandV>

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | "SUB"
 | "XPD"

 <TRIop_instruction> ::= <TRIop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV>

 <TRIop> ::= "CMP"
 | "MAD"
 | "LRP"

 <SWZop_instruction> ::= <SWZop> <instResult > "," <instOperandVNS> ","
 <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <TEXop_instruction> ::= <TEXop> <instResult > "," <instOperandV> ","
 <texTarget>

 <TEXop> ::= "TEX"
 | "TXP"
 | "TXB"

 <KILop_instruction> ::= <KILop> <killCond>

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1318

 <KILop> ::= "KIL"

 <texTarget> ::= <texImageUnit> "," <texTargetType>

 <texImageUnit> ::= "texture" <optTexIm ageUnitNum>

 <optTexImageUnitNum> ::= /* empty */
 | "[" <texImageUnitNu m> "]"

 <texImageUnitNum> ::= <integer>
 /*[0,MAX_TEXTURE_IM AGE_UNITS_ARB-1]*/

 <texTargetType> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <killCond> ::= <instOperandV>

 <instOperandV> ::= <instOperandBaseV>

 <instOperandBaseV> ::= <optSign> <attribUs eV>
 | <optSign> <tempUseV >
 | <optSign> <paramUse V>

 <instOperandS> ::= <instOperandBaseS>

 <instOperandBaseS> ::= <optSign> <attribUs eS>
 | <optSign> <tempUseS >
 | <optSign> <paramUse S>

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>

 <instResult> ::= <instResultBase>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> "[" <optArraySize> "]"
 <paramMultipleInit>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1319

 <optArraySize> ::= /* empty */
 | <integer> /* [1,MAX _PROGRAM_PARAMETERS_ARB]*/

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <establishedName> ::= <tempVarName>
 | <addrVarName>
 | <attribVarName>
 | <paramArrayVarName>
 | <paramSingleVarName >
 | <resultVarName>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <establishName> ::= <identifier>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribBasic> ::= "fragment" "." <att ribFragBasic>

 <attribFragBasic> ::= "texcoord" <optTexC oordNum>
 | "fogcoord"
 | "position"

 <attribColor> ::= "fragment" "." "col or"

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1320

 <paramUseV> ::= <paramSingleVarName > <swizzleSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar> <s wizzleSuffix>

 <paramUseS> ::= <paramSingleVarName > <scalarSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar> <s calarSuffix>

 <paramUseVNS> ::= <paramSingleVarName >
 | <paramArrayVarName> "[" <arrayMem> "]"
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exEnvItem>
 | "state" "." <stateD epthItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" "[" <stateL ightNumber> "]" "."
 <stateLightProperty >

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1321

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <state LModProperty>

 <stateLModProperty> ::= "." "ambient"
 | "." "scenecolor"
 | "." <faceType> "." "scenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <st ateLightNumber> "]" "."
 <stateLProdProperty >
 | "lightprod" "[" <st ateLightNumber> "]" "."
 <faceType> "." <sta teLProdProperty>

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> /* [0,MAX _LIGHTS-1] */

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> ".." <stateMatrixRowNum>
 "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> ".."
 <stateMatrixRowNum> "]"

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> "]"

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1322

 <stateMatrixName> ::= "modelview" <stateO ptModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCo ordNum>
 | "palette" "[" <stat ePaletteMatNum> "]"
 | "program" "[" <stat eProgramMatNum> "]"

 <stateMatrixRowNum> ::= <integer> /* [0,3] */

 <stateOptModMatNum> ::= /* empty */
 | "[" <stateModMatNum > "]"

 <stateModMatNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1]*/

 <statePaletteMatNum> ::= <integer> /*[0,MAX_ PALETTE_MATRICES_ARB-1]*/

 <stateProgramMatNum> ::= <integer> /*[0,MAX_ PROGRAM_MATRICES_ARB-1]*/

 <stateTexEnvItem> ::= "texenv" <optLegacy TexUnitNum> "."
 <stateTexEnvPropert y>

 <stateTexEnvProperty> ::= "color"

 <stateDepthItem> ::= "depth" "." <stateD epthProperty>

 <stateDepthProperty> ::= "range"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" "[" <progEnvParamNums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> " .." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env" "[" <progEnvParamNum> "]"

 <progLocalParams> ::= "program" "." "loca l" "[" <progLocalParamNums>
 "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "loca l" "[" <progLocalParamNum>
 "]"

 <progEnvParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_EN V_PARAMETERS_ARB-1]*/

 <progLocalParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_LO CAL_PARAMETERS_ARB-1]*/

 <constantVector> ::= "{" <constantVector List> "}"

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1323

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>

 <floatConstant> ::= <float>

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>

 <resultUseD> ::= <resultBasic>

 <resultBasic> ::= "result" "." <resul tFragBasic>

 <resultFragBasic> ::= "color" <resultOptC olorNum>
 | "depth"

 <resultOptColorNum> ::= /* empty */

 <arrayMem> ::= <arrayMemAbs>

 <arrayMemAbs> ::= <integer>

 <optWriteMask> ::= /* empty */
 | <xyzwMask>
 | <rgbaMask>

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1324

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xy zwComponent>
 | "." <rgbaComponent> <rgbaComponent>
 <rgbaComponent> <rg baComponent>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>
 | <optSign> <rgbaExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= <rgbaComponent>

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 1325

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <rgbaComponent> ::= "r"
 | "g"
 | "b"
 | "a"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <optTexCoordNum> ::= /* empty */
 | "[" <texCoordNum> "]"

 <texCoordNum> ::= <integer> /*[0,MAX_ TEXTURE_COORDS_ARB-1]*/

 <optLegacyTexUnitNum> ::= /* empty */
 | "[" <legacyTexUnitN um> "]"

 <legacyTexUnitNum> ::= <integer> /*[0,MAX_ TEXTURE_UNITS-1]*/

 The <integer>, <float>, and <identifier> gramma r rules match
 integer constants, floating point constants, an d identifier names
 as described in the ARB_vertex_program specific ation. The <float>
 grammar rule here is identical to the <floatCon stant> grammar rule
 in ARB_vertex_program.

 The grammar rules <tempVarName>, <addrVarName>, <attribVarName>,
 <paramArrayVarName>, <paramSingleVarName>, <res ultVarName> refer
 to the names of temporary, address register, at tribute, program
 parameter array, program parameter, and result variables declared
 in the program text.

GLX Protocol

 None.

Errors

 None.

New State

 None.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 1326

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 4 05/27/05 pbrown Removed required NV_fr agment_program dependency;
 that extension actuall y isn't needed although the
 functionality it provi des obviously is.

 3 07/08/04 pbrown Fixed entries for KIL and RFL in the opcode
 table.

 2 05/16/04 pbrown Documented terminals i n modified fragment
 program grammar.

 1 -------- pbrown Internal pre-release r evisions.

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1327

Name

 NV_fragment_program2

Name Strings

 GL_NV_fragment_program2

Status

 Shipping.

Version

 Last Modified: 08/04/2004
 NVIDIA Revision: 8

Number

 304

Dependencies

 ARB_fragment_program is required.
 NV_fragment_program_option is required.

Overview

 This extension, like the NV_fragment_program_op tion extension, provides
 additional fragment program functionality to ex tend the standard
 ARB_fragment_program language and execution env ironment. ARB programs
 wishing to use this added functionality need on ly add:

 OPTION NV_fragment_program2;

 to the beginning of their fragment programs.

 New functionality provided by this extension, a bove and beyond that
 already provided by the NV_fragment_program_opt ion extension, includes:

 * structured branching support, including dat a-dependent IF tests, loops
 supporting a fixed number of iterations, an d a data-dependent loop
 exit instruction (BRK),

 * subroutine calls,

 * instructions to perform vector normalizatio n, divide vector components
 by a scalar, and perform two-component dot products (with or without a
 scalar add),

 * an instruction to perform a texture lookup with an explicit LOD,

 * a loop index register for indirect access i nto the texture coordinate
 attribute array, and

 * a facing attribute that indicates whether t he fragment is generated
 from a front- or back-facing primitive.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1328

Issues

 * Should this extension expose projective forms of the LOD-modifying
 texture instructions?

 RESOLVED: No. The user can manually add a D IV instruction to achieve
 the same effect.

 * Should this extension expose precision explic itly?

 RESOLVED: Only for storage using the SHORT TEMP and LONG TEMP syntax
 (similar to NV_fragment_program_option).

 * How are resources (such as registers and cond ition codes) scoped?

 RESOLVED: All resources are globally scoped . This means that if, for
 instance, a subroutine modifies a condition code, that modification
 effects both the caller and the callee.

 * How is the scope determined for instructions required to be within a
 specific loop construct?

 RESOLVED: The scope is determined staticall y at compile time. This means
 that calling BRK and using A0 from a subrou tine called within a loop is
 a compile error.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_EXEC_INSTRUCTIONS_NV 0x88F4
 MAX_PROGRAM_CALL_DEPTH_NV 0x88F5
 MAX_PROGRAM_IF_DEPTH_NV 0x88F6
 MAX_PROGRAM_LOOP_DEPTH_NV 0x88F7
 MAX_PROGRAM_LOOP_COUNT_NV 0x88F8

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Section 3.11 of ARB_fragment_program (Fr agment Program):

 Delete the sentence referring to the lack of br anching or looping.

 Modify Section 3.11.2 of ARB_fragment_program (Fragment Program Grammar
 and Restrictions):

 (mostly add to existing grammar rules, as exten ded by
 NV_fragment_program_option)

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1329

 <optionName> ::= "NV_fragment_progra m2"

 <statement> ::= <branchLabel> ":"

 <instruction> ::= <FlowInstruction>

 <ALUInstruction> ::= <VECSCAop_instructi on>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>
 | <IFop_instruction>
 | <LOOPop_instruction >
 | <ENDFLOWop_instruct ion>

 <VECTORop> ::= "NRM"

 <VECSCAop_instruction> ::= <VECSCAop> <instRes ult> "," <instOperandV> ","
 <instOperandS>

 <VECSCAop> ::= "DIV"

 <BINop> ::= "DP2"

 <TRIop> ::= "DP2A"

 <TEXop> ::= "TXL"

 <BRAop_instruction> ::= <BRAop> <branchLabe l> <optBranchCond>

 <BRAop> ::= "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <optBran chCond>

 <FLOWCCop> ::= "RET"
 | "BRK"

 <IFop_instruction> ::= <IFop> <ccTest>

 <IFop> ::= "IF"

 <LOOPop_instruction> ::= <LOOPop> <instOpera ndV>

 <LOOPop> ::= "LOOP"
 | "REP"

 <ENDFLOWop_instruction> ::= <ENDFLOWop>

 <ENDFLOWop> ::= "ELSE"
 | "ENDIF"
 | "ENDLOOP"
 | "ENDREP"

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <branchLabel> ::= <identifier>

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1330

 <attribFragBasic> ::= "texcoord" "[" <arr ayMemRel> "]"
 | "facing"

 <arrayMemRel> ::= <addrUseS> <arrayMe mRelOffset>

 <arrayMemRelOffset> ::= /* empty */
 | "+" <addrRegPosOffs et>

 <addrRegPosOffset> ::= <integer> from 0 to 9

 <addrUseS> ::= <addrVarName> <scal arAddrSuffix>

 <scalarAddrSuffix> ::= "." <addrComponent>

 <addrComponent> ::= "x"

 Note: This extension provides a pre-defined ad dress register (A0) that
 matches the <addrVarName> grammar rule and can be used as a loop counter
 (Section 3.11.3.Y). It is not possible to decl are additional address
 register variables.

 Modify Section 3.11.3.1, Fragment Attributes

 (add new bindings to binding table)

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 ...
 fragment.texcoord[A0.x+n] (s,t,r,q) index ed texture coordinate
 fragment.facing (f,0,0,1) fragm ent facing

 If a fragment attribute binding matches "fragme nt.texcoord[A0.x+n]", a
 texture coordinate number <c> is computed by ad ding the current value of
 the "A0.x" address register (the loop index -- Section 3.11.3.Y) and <n>.
 The "x", "y", "z", and "w" components of the fr agment attribute variable
 are filled with the "s", "t", "r", and "q" comp onents, respectively, of
 the fragment texture coordinates for texture co ordinate set <c>. If <c>
 is negative or greater than or equal to MAX_TEX TURE_COORDS_ARB, the
 fragment attribute variable is undefined.

 If a fragment attribute binding matches "fragme nt.facing", the "x"
 component of the fragment attribute variable is filled with +1.0 or -1.0,
 depending on the orientation of the primitive p roducing the fragment. If
 the fragment is generated by a back-facing poly gon (including point- and
 line-mode polygons), the facing is -1.0; otherw ise, the facing is +1.0.
 The "y", "z", and "w" coordinates are filled wi th 0, 0, and 1,
 respectively.

 Add New Section 3.11.3.Y, Fragment Program Addr ess Register (insert after
 Section 3.11.3.X, Condition Code Register)

 Fragment program address register variables are a set of four-component
 signed integer vectors where only the "x" compo nent of the address
 registers is currently accessible. Address reg isters are used as indices
 when performing relative addressing in the "fra gment.texcoord" attribute
 array (section 3.11.3.1).

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1331

 Fragment program address registers can not be d eclared in a fragment
 program. There is only a single built-in addre ss register, "A0.x" (loop
 index), which is available inside LOOP/ENDLOOP blocks. A fragment program
 that accesses A0.x outside a LOOP/ENDLOOP block will fail to load.

 A0.x is initialized in by the LOOP instruction and updated by the ENDLOOP
 instruction. When LOOP blocks are nested, each block has its own value
 for A0.x, but only the A0.x value for the inner most block can be used. The
 value of A0.x is clamped to be greater than or equal to 0.

 Modify Section 3.11.4, Fragment Program Executi on Environment

 (modify instruction table) There are sixty-seve n fragment program
 instructions....

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 ABS X X X X X v v absolute value
 ADD X X X X X v,v v add
 BRK - - - - - c - break ou t of loop instruction
 CAL - - - - - c - subrouti ne call
 CMP - - - X X v,v,v v compare
 COS X X - X X s ssss cosine w ith reduction to [-PI,PI]
 DDX X X - X X v v partial derivative relative to X
 DDY X X - X X v v partial derivative relative to Y
 DIV X X - X X v,s v divide v ector components by scalar
 DP2 X X X X X v,v ssss 2-compon ent dot product
 DP2A X X X X X v,v,v ssss 2-comp. dot product w/scalar add
 DP3 X X X X X v,v ssss 3-compon ent dot product
 DP4 X X X X X v,v ssss 4-compon ent dot product
 DPH X X X X X v,v ssss homogene ous dot product
 DST X X - X X v,v v distance vector
 ELSE - - - - - - - start if test else block
 ENDIF - - - - - - - end if t est block
 ENDLOOP - - - - - - - end of l oop block
 ENDREP - - - - - - - end of r epeat block
 EX2 X X - X X s ssss exponent ial base 2
 FLR X X X X X v v floor
 FRC X X X X X v v fraction
 IF - - - - - c - start of if test block
 KIL - - - - - v or c - kill fra gment
 LG2 X X - X X s ssss logarith m base 2
 LIT X X - X X v v compute light coefficients
 LOOP - - - - - v - start of loop block
 LRP X X X X X v,v,v v linear i nterpolation
 MAD X X X X X v,v,v v multiply and add
 MAX X X X X X v,v v maximum
 MIN X X X X X v,v v minimum
 MOV X X X X X v v move
 MUL X X X X X v,v v multiply
 NRM X X - X X v v normaliz e 3-component vector
 PK2H - - - - - v ssss pack two 16-bit floats
 PK2US - - - - - v ssss pack two unsigned 16-bit scalars
 PK4B - - - - - v ssss pack fou r signed 8-bit scalars
 PK4UB - - - - - v ssss pack fou r unsigned 8-bit scalars

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1332

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 POW X X - X X s,s ssss exponent iate
 RCP X X - X X s ssss reciproc al
 REP - - - - - v - start of repeat block
 RET - - - - - c - subrouti ne return
 RFL X X - X X v,v v reflecti on vector
 RSQ X X - X X s ssss reciproc al square root
 SCS X X - X X s ss-- sine/cos ine without reduction
 SEQ X X X X X v,v v set on e qual
 SFL X X X X X v,v v set on f alse
 SGE X X X X X v,v v set on g reater than or equal
 SGT X X X X X v,v v set on g reater than
 SIN X X - X X s ssss sine wit h reduction to [-PI,PI]
 SLE X X X X X v,v v set on l ess than or equal
 SLT X X X X X v,v v set on l ess than
 SNE X X X X X v,v v set on n ot equal
 STR X X X X X v,v v set on t rue
 SUB X X X X X v,v v subtract
 SWZ X X - X X v v extended swizzle
 TEX - - - X X v v texture sample
 TXB - - - X X v v texture sample with bias
 TXD - - - X X v,v,v v texture sample w/partials
 TXL - - - X X v v texture same w/explicit LOD
 TXP - - - X X v v texture sample with projection
 UP2H - - - X X s v unpack t wo 16-bit floats
 UP2US - - - X X s v unpack t wo unsigned 16-bit scalars
 UP4B - - - X X s v unpack f our signed 8-bit scalars
 UP4UB - - - X X s v unpack f our unsigned 8-bit scalars
 X2D X X - X X v,v,v v 2D coord inate transformation
 XPD X X - X X v,v v cross pr oduct

 Table X.5: Summary of fragment program instr uctions. The columns "R",
 "H", "X", "C", and "S" indicate whether the " R", "H", or "X" precision
 modifiers, the C condition code update modifi er, and the "_SAT"/"_SSAT"
 saturation modifiers, respectively, are suppo rted for the opcode. In
 the input/output columns, "v" indicates a flo ating-point vector input or
 output, "s" indicates a floating-point scalar input, "ssss" indicates a
 scalar output replicated across a 4-component result vector, "ss--"
 indicates two scalar outputs in the first two components, and "c"
 indicates a condition code test. Instruction s describe as "texture
 sample" also specify a texture image unit ide ntifier and a texture
 target.

 Modify Section 3.11.4.3, Fragment Program Desti nation Register Update

 (modify saturation discussion) If the instructi on opcode has the "_SAT"
 suffix, requesting saturated result vectors, ea ch component of the result
 vector is clamped to the range [0,1] before upd ating the destination
 register. If the instruction opcode has the "_ SSAT" suffix, requesting
 signed saturation, each component of the result vector is clamped to the
 range [-1,1] before updating the destination re gister.

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1333

 Add Section 3.11.4.X, Fragment Program Branching (before Section 3.11.4.4,
 Fragment Program Result Processing)

 Fragment programs support a limited model of br anching. Fragment programs
 can specify one of several types of instruction blocks: IF/ELSE/ENDIF
 blocks, LOOP/ENDLOOP blocks, and REP/ENDREP blo cks. Examples include the
 following:

 LOOP {5, 0, 1}; # 5 iterations with loop index at 0,1,2,3,4
 ADD R0, R0, R1;
 ENDLOOP;

 REP repCount;
 ADD R0, R0, R1;
 ENDREP;

 MOVC CC, R0;
 IF GT.x;
 MOV R0, R1; # executes if R0.x > 0
 ELSE;
 MOV R0, R2; # executes if R0.x <= 0
 ENDIF;

 Instruction blocks may be nested -- for example , a LOOP block may be
 contained inside an IF/ELSE/ENDIF block. In al l cases, each instruction
 block must be terminated with the appropriate i nstruction (ENDIF for IF,
 ENDLOOP for LOOP, ENDREP for REP). Nested inst ruction blocks must be
 wholly contained within a block -- if a LOOP in struction is found between
 an IF and ELSE instruction, the ENDLOOP must al so be present between the
 IF and ELSE. A fragment program will fail to l oad if any instruction
 block is terminated by an incorrect instruction or is not terminated
 before the block containing it.

 IF/ELSE/ENDIF blocks evaluate a condition to de termine which instructions
 to execute. If the condition is true, all inst ructions between the IF and
 ELSE are executed. If the condition is false, all instructions between
 the ELSE and ENDIF are executed. The ELSE inst ruction is optional. If
 the ELSE is omitted, all instructions between t he IF and ENDIF are
 executed if the condition is true, or skipped i f the condition is false.
 A limited amount of nesting is supported -- a f ragment program will fail
 to load if an IF instruction is nested inside M AX_PROGRAM_IF_DEPTH_NV or
 more IF/ELSE/ENDIF blocks.

 The condition of an IF test is specified by the <ccTest> grammar rule and
 may depend on the contents of the condition cod e register. Branch
 conditions are evaluated by evaluating a condit ion code write mask in
 exactly the same manner as done for register wr ites (section 2.14.2.2).
 If any of the four components of the condition code write mask are
 enabled, the branch is taken and execution cont inues with the instruction
 following the label specified in the instructio n. Otherwise, the
 instruction is ignored and fragment program exe cution continues with the
 next instruction. In the following example cod e,

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 CAL label1 (LT.xyzw); # call taken
 CAL label2 (LT.wyzw); # call not taken

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1334

 the first CAL instruction loads a condition cod e of (LT,EQ,GT,UN) while
 the second CAL instruction loads a condition co de of (UN,EQ,GT,UN). The
 first call will be made because the "x" compone nt evaluates to LT; the
 second call will not be made because no compone nt evaluates to LT.

 LOOP/ENDLOOP and REP/ENDREP blocks involve a lo op counter that indicates
 the number of times the instructions between th e LOOP/REP and
 ENDLOOP/ENDREP are executed. Looping blocks ha ve a number of significant
 limitations. First, the loop counter can not b e computed at run time; it
 must be specified as a program parameter. Seco nd, the number of loop
 iterations is limited to the value MAX_PROGRAM_ LOOP_COUNT_NV, which must
 be at least 255. Third, only a limited amount of nesting is supported --
 a fragment program will fail to load if a LOOP or REP instruction is
 nested inside MAX_PROGRAM_LOOP_DEPTH_NV or more LOOP/ENDLOOP or REP/ENDREP
 blocks.

 The BRK instruction is available to terminate a loop block early. A BRK
 instruction can be conditional; the condition i s evaluated in the same
 manner as the condition of an IF instruction, a nd the loop is terminated
 if the condition is true. A fragment program w ill fail to load if it
 contains a BRK instruction that is not nested i nside a LOOP/ENDLOOP or
 REP/ENDREP block.

 Fragment programs can contain one or more instr uction labels, matching the
 grammar rule <branchLabel>. An instruction lab el can be referred to
 explicitly in subroutine call (CAL) instruction s. Instruction labels can
 be used at any point in the body of a program, and can be used in
 instructions before being defined in the progra m string. Instruction
 labels can be defined anywhere in the program, except inside an
 IF/ELSE/ENDIF, LOOP/ENDLOOP, or REP/ENDREP inst ruction block. A fragment
 program will fail to load if it contains an ins truction label inside an
 instruction block.

 Fragment programs can also specify subroutine c alls. When a subroutine
 call (CAL) instruction is executed, a reference to the instruction
 immediately following the CAL instruction is pu shed onto the call stack.
 When a subroutine return (RET) instruction is e xecuted, an instruction
 reference is popped off the call stack and prog ram execution continues
 with the popped instruction. A fragment progra m will terminate if a CAL
 instruction is executed with MAX_PROGRAM_CALL_D EPTH_NV entries already in
 the call stack or if a RET instruction is execu ted with an empty call
 stack. Subroutine calls may be conditional; th e condition is specified by
 the <optBranchCond> grammar rule and evaluated in the same way as the
 condition of the IF instruction. If no conditi on is specified, it is as
 though "(TR)" were specified -- the branch is u nconditional.

 If a fragment program has an instruction label "main", program execution
 begins with the instruction immediately followi ng the instruction label.
 Otherwise, program execution begins with the fi rst instruction of the
 program. Instructions will be executed sequent ially in the order
 specified in the program, although branch instr uctions will affect the
 instruction execution order, as described above . A fragment program will
 terminate after executing a RET instruction wit h an empty call stack. A
 fragment program will also terminate after exec uting the last instruction
 in the program, unless that instruction was a t aken branch.

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1335

 A fragment program will fail to load if an inst ruction refers to a label
 that is not defined in the program string.

 A fragment program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally, a fragment
 program will terminate abnormally after executi ng
 MAX_PROGRAM_EXEC_INSTRUCTIONS instructions to p revent hangs caused by
 infinite loops in the program.

 When a fragment program terminates, normally or abnormally, it will emit a
 fragment whose attributes are taken from the fi nal values of the fragment
 program result variables (section 3.11.3.4).

 Add to Section 3.11.4.5 of ARB_fragment_program (Fragment Program
 Options):

 Section 3.11.4.5.3, NV_fragment_program2 Option

 If a fragment program specifies the "NV_fragmen t_program2" option, the
 ARB_fragment_program grammar and execution envi ronment are extended to
 take advantage of all the features of the "NV_f ragment_program" option,
 plus the following features:

 * structured branching support, including dat a-dependent IF tests, loops
 supporting a fixed number of iterations, an d a data-dependent loop
 exit instruction (BRK),

 * subroutine calls,

 * several new instructions:

 * NRM -- vector normalization
 * DIV -- divide vector components by a scal ar
 * DP2 -- two-component dot product
 * DP2A -- two-component dot product with sc alar add
 * TXL -- texture lookup with explicit LOD s pecified
 * IF/ELSE/ENDIF -- conditional execution bl ocks
 * REP/ENDREP -- loop block
 * LOOP/ENDLOOP -- loop block using index re gister
 * BRK -- break out of loop block
 * CAL -- subroutine call
 * RET -- subroutine return

 * a loop index register inside LOOP/ENDLOOP b locks that can be used for
 indirect access into the texture coordinate attribute array, and

 * a facing attribute that indicates whether t he fragment is generated
 from a front- or back-facing primitive.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1336

 Modify Section 3.11.5, Fragment Program ALU In struction Set

 Section 3.11.5.48, DIV: Divide (Vector Compone nts by Scalar)

 The DIV instruction divides each component of t he first vector operand by
 the second scalar operand to produce a 4-compon ent result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x / tmp1;
 result.y = tmp0.y / tmp1;
 result.z = tmp0.z / tmp1;
 result.w = tmp0.w / tmp1;

 This instruction may not produce results identi cal to a RCP/MUL
 instruction sequence.

 Section 3.11.5.49, DP2: 2-Component Dot Produc t

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components) and r eplicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 Section 3.11.5.50, DP2A: 2-Component Dot Produ ct w/Scalar Add

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components), adds the x component of the
 third operand, and replicates the result to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + tmp2.x;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1337

 Section 3.11.5.51, NRM: 3-Component Vector Nor malize

 The NRM instruction normalizes the vector given by the x, y, and z
 components of the vector operand to produce the x, y, and z components of
 the result vector. The w component of the resu lt is undefined.

 tmp = VectorLoad(op0);
 scale = ApproxRSQ(tmp.x * tmp.x + tmp.y * tmp .y + tmp.z * tmp.z);
 result.x = tmp.x * scale;
 result.y = tmp.y * scale;
 result.z = tmp.z * scale;
 result.w = undefined;

 Note that the normalization uses an approximate scale and may be carried
 at lower precision than a corresponding sequenc e of DP3, RSQ, and MUL
 instructions.

 Add Section 3.11.6.6, TXL: Texture Lookup with Explicit LOD

 The TXL instruction takes the x, y, and z compo nents of the vector operand
 and maps them to s, t, and r, respectively. Th ese coordinates are used to
 sample from the specified texture target on the specified texture image
 unit in a manner consistent with its parameters .

 The level of detail is computed as specified in section 3.8.8, except that
 rho(x,y) is given by 2^w, where w is the w comp onent of the vector
 operand.

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

 Add Section 3.11.X, Fragment Program Flow Control I nstruction Set
 (immediately after Section 3.11.6, Fragment Pro gram Texture Instruction
 Set)

 3.11.X.1, BRK: Break

 The BRK instruction conditionally transfers con trol to the instruction
 immediately following the next ENDLOOP or ENDRE P instruction. A BRK
 instruction has no effect if the condition code test evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at instruction following the next ENDLOOP or
 ENDREP;
 }

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1338

 3.11.X.2, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. A CAL instruction has
 no effect if the condition code test evaluates to FALSE.

 When executed, the CAL instruction pushes a ref erence to the instruction
 immediately following the CAL instruction onto the call stack. When a
 matching RET instruction is executed, execution will continue at that
 instruction after executing the matching RET in struction.

 Implementations may have a limited call stack. If the number of CAL
 instructions that have been performed without r eturning is
 MAX_PROGRAM_CALL_DEPTH_NV, a CAL instruction wi ll cause the call stack to
 overflow and the fragment program to terminate.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {

 // Check for call stack overflow.
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 terminate fragment program;
 }

 push instruction following the CAL instruct ion on the call stack;
 continue execution at instruction following <branchLabel>;
 }

 3.11.X.3, ELSE: Beginning of ELSE Block

 The ELSE instruction signifies the end of the " execute if true" portion of
 an IF/ELSE/ENDIF block.

 If the condition evaluated at the IF statement was TRUE, when a program
 reaches the ELSE statement, it has completed th e entire "execute if true"
 portion of the IF/ELSE/ENDIF block. Execution will continue at the
 corresponding ENDIF instruction.

 If the condition evaluated at the IF statement was FALSE, program
 execution would skip over the entire "execute i f true" portion of the
 IF/ELSE/ENDIF block, including the ELSE instruc tion.

 3.11.X.4, ENDIF: End of IF/ELSE Block

 The ENDIF instruction signifies the end of an I F/ELSE/ENDIF block. It has
 no other effect on program execution.

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1339

 3.11.X.5, ENDLOOP: End of LOOP Block

 The ENDLOOP instruction specifies the end of a LOOP block. When an
 ENDLOOP instruction executes, the loop count is decremented and the loop
 index increment value is added to the loop inde x (A0.x). If the
 decremented loop count is greater than zero, ex ecution continues at the
 top of the LOOP block.

 LoopCount--;
 LoopIndex += LoopIncr;
 if (LoopCount > 0) {
 continue execution at instruction following corresponding LOOP
 instruction;
 }

 3.11.X.6, ENDREP: End of REP Block

 The ENDREP instruction specifies the end of a R EP block. When an ENDREP
 instruction executes, the loop count is decreme nted. If the decremented
 loop count is greater than zero, execution cont inues at the top of the REP
 block.

 LoopCount--;
 if (LoopCount > 0) {
 continue execution at instruction following corresponding LOOP
 instruction;
 }

 3.11.X.7, IF: Beginning of IF Block

 The IF instruction conditionally transfers cont rol to the instruction
 immediately following the corresponding ELSE in struction (if present) or
 ENDIF instruction (if no ELSE is present).

 Implementations may have a limited ability to n est IF blocks at run time.
 If the number of IF/ENDIF blocks that are curre ntly active is
 MAX_PROGRAM_IF_DEPTH_NV, an IF instruction will cause the fragment program
 to terminate. If an IF instruction is executed inside a subroutine, any
 active IF/ENDIF blocks in the calling code coun t against this limit.

 if (IF block nested too deeply) {
 terminate fragment program;
 }

 // Evaluate the condition. If the condition is true, continue at the
 // next instruction. Otherwise, continue at the
 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next instruction;
 } else if (IF block contains an ELSE statemen t) {
 continue execution at instruction following corresponding ELSE;
 } else {
 continue execution at instruction following corresponding ENDIF;
 }

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1340

 3.11.X.8, LOOP: Beginning of LOOP Block

 The LOOP instruction begins a LOOP block. The x, y, and z components of
 the single vector operand specify the initial v alues for the loop count,
 loop index, and loop index increment, respectiv ely.

 The loop count indicates the number of times th e instructions between the
 LOOP and corresponding ENDLOOP instruction will be executed. If the
 initial value of the loop count is not positive , the entire block is
 skipped and execution continues at the correspo nding ENDLOOP instruction.

 The loop index (A0.x) can be used for indirect addressing in the set of
 texture coordinate fragment attributes. A frag ment program can only use
 the loop index of the current LOOP block; loop indices for containing LOOP
 blocks are not available.

 Implementations may have a limited ability to n est LOOP and REP blocks at
 run time. If the number of LOOP/ENDLOOP and RE P/ENDREP blocks that have
 not completed is MAX_PROGRAM_LOOP_DEPTH_NV, a L OOP instruction will cause
 the fragment program to terminate. If a LOOP i nstruction is executed
 inside a subroutine, any active LOOP/ENDLOOP or REP/ENDREP blocks in the
 calling code count against this limit.

 if (LOOP block nested too deeply) {
 terminate fragment program;
 }

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(op0.x);
 LoopIndex = floor(op0.y);
 LoopIncr = floor(op0.z);
 if (LoopCount <= 0) {
 continue execution at the corresponding END LOOP;
 }

 LOOP blocks do not support fully general branch ing -- a fragment program
 will fail to load if the vector operand is not a program parameter.

 3.11.X.9, REP: Beginning of REP Block

 The REP instruction begins a REP block. The x component of the single
 vector operand specifies the initial value for the loop count. REP blocks
 are completely identical to LOOP blocks except that they don't use the
 loop index at all.

 The loop count indicates the number of times th e instructions between the
 REP and corresponding ENDREP instruction will b e executed. If the initial
 value of the loop count is not positive, the en tire block is skipped and
 execution continues at the instruction followin g the corresponding ENDREP
 instruction.

 Implementations may have a limited ability to n est LOOP and REP blocks at
 run time. If the number of LOOP/ENDLOOP and RE P/ENDREP blocks that have
 not completed is MAX_PROGRAM_LOOP_DEPTH_NV, a R EP instruction will cause
 the fragment program to terminate. If a REP in struction is executed
 inside a subroutine, any active LOOP/ENDLOOP or REP/ENDREP blocks in the

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1341

 calling code count against this limit.

 if (REP block nested too deeply) {
 terminate fragment program;
 }

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(op0.x);
 if (LoopCount <= 0) {
 continue execution at the corresponding END REP;
 }

 REP blocks do not support fully general branchi ng -- a fragment program
 will fail to load if the vector operand is not a program parameter.

 3.11.X.10, RET: Subroutine Return

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction. A RET instruction has no effe ct if the condition code
 test evaluates to FALSE.

 When executed, the RET instruction pops a refer ence to the instruction
 immediately following the corresponding CAL ins truction onto the call
 stack and continues execution at that instructi on.

 If a RET instruction is issued when the call st ack is empty, the fragment
 program is terminated.

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {

 if (callStackDepth <= 0) {
 terminate fragment program;
 }

 pop instruction following the CAL instructi on off the call stack;
 continue execution at that instruction;
 }

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications

 1342

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_fragment_program

 ARB_fragment_program is required.

 This specification and NV_fragment_program_opti on are based on a modified
 version of the grammar published in the ARB_fra gment_program
 specification. This modified grammar includes a few structural changes to
 better accommodate new functionality from this and other extensions, but
 should be functionally equivalent to the ARB_fr agment_program grammar.
 See NV_fragment_program_option for details on t he base grammar.

Dependencies on NV_fragment_program2_option

 NV_fragment_program_option is required.

 If the NV_fragment_program2 program option is s pecified, all the
 functionality described in both this extension and the
 NV_fragment_program_option specification is ava ilable.

GLX Protocol

 None.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Min
Get Value Type Get Co mmand Value Description Sec At trib
----------------------------------- ---- ------ --------- ------ ----------------- -------- -- ----
MAX_PROGRAM_EXEC_INSTRUCTIONS_NV Z+ GetPro gramivARB 65536 maximum program 3.11.4.X -
 execution inst-
 ruction count
MAX_PROGRAM_CALL_DEPTH_NV Z+ GetPro gramivARB 4 maximum program 3.11.4.X -
 call stack depth
MAX_PROGRAM_IF_DEPTH_NV Z+ GetPro gramivARB 48 maximum program 3.11.4.X -
 if nesting
MAX_PROGRAM_LOOP_DEPTH_NV Z+ GetPro gramivARB 4 maximum program 3.11.4.X -
 loop nesting
MAX_PROGRAM_LOOP_COUNT_NV Z+ GetPro gramivARB 255 maximum program 3.11.4.X -
 initial loop count

 (add to Table X.10. New Implementation-Depende nt Values Introduced by
 ARB_fragment_program. Values queried by GetPr ogramivARB require a <pname>
 of FRAGMENT_PROGRAM_ARB.)

NVIDIA OpenGL Extension Specifications NV_fragment_program2

 1343

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 8 08/04/04 pbrown Fixed two typos in the TXL instruction.

 7 07/08/04 pbrown Fixed entries for KIL and RFL in the opcode
 table.

 6 05/16/04 pbrown Documented that "A0" i s a pre-defined address
 register variable for the purposes of the
 grammar, and that no o ther address register
 variables can be decla red.

 5 -------- pbrown Internal pre-release r evisions.

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1344

Name

 NV_fragment_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2007
 NVIDIA Revision: 4

Number

 335

Dependencies

 OpenGL 1.1 is required.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 ATI_draw_buffers and ARB_draw_buffers trivially affects the definition of
 this specification.

 ARB_fragment_program_shadow trivially affects t he definition of this
 specification.

 NV_primitive_restart trivially affects the defi nition of this extension.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension builds on the common assembly in struction set
 infrastructure provided by NV_gpu_program4, add ing fragment
 program-specific features.

 This extension provides interpolation modifiers to fragment program
 attributes allowing programs to specify that sp ecified attributes be
 flat-shaded (constant over a primitive), centro id-sampled (multisample
 rendering), or interpolated linearly in screen space. The set of input
 and output bindings provided includes all bindi ngs supported by
 ARB_fragment_program. Additional input binding s are provided to determine
 whether fragments were generated by front- or b ack-facing primitives
 ("fragment.facing"), to identify the individual primitive used to generate
 the fragment ("primitive.id"), and to determine distances to user clip

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1345

 planes ("fragment.clip[n]"). Additionally gene ric input attributes allow
 a fragment program to receive a greater number of attributes from previous
 pipeline stages than possible using only the pr e-defined fixed-function
 attributes.

 By and large, programs written to ARB_fragment_ program can be ported
 directly by simply changing the program header from "!!ARBfp1.0" to
 "!!NVfp4.0", and then modifying instructions to take advantage of the
 expanded feature set. There are a small number of areas where this
 extension is not a functional superset of previ ous fragment program
 extensions, which are documented in the NV_gpu_ program4 specification.

New Procedures and Functions

 None.

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.X, GPU Programs

 (insert after second paragraph)

 Fragment Programs

 Fragment programs are used to compute the trans formed attributes of a
 fragment, in lieu of the set of fixed-function operations described in
 sections 3.8 through 3.10. Fragment programs a re run on a single fragment
 at a time, and the state of neighboring fragmen ts is not explicitly
 available. (In practice, fragment programs may be run on a block of
 fragments, and neighboring fragments' attribute s may be used for texture
 LOD calculations or partial derivative approxim ation.) The inputs
 available to a fragment program are the interpo lated attributes of a
 fragment, which include (among other things) wi ndow-space position,
 primary and secondary colors, and texture coord inates. The results of the
 program are one (or more) colors and possibly a new window Z coordinate.
 A fragment program can not modify the (X,Y) loc ation of the fragment.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Fragment programs are required to begin with th e header string
 "!!NVfp4.0". This header string identifies the subsequent program body as
 being a fragment program and indicates that it should be parsed according
 to the base NV_gpu_program4 grammar plus the ad ditions below. Program
 string parsing begins with the character immedi ately following the header
 string.

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1346

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <instruction> ::= <SpecialInstruction >

 <varModifier> ::= <interpModifier>

 <SpecialInstruction> ::= "KIL" <opModifiers> <killCond>
 | "DDX" <opModifiers> <instResult> ","
 <instOperandV>
 | "DDY" <opModifiers> <instResult> ","
 <instOperandV>

 <killCond> ::= <instOperandV>

 <interpModifier> ::= "FLAT"
 | "CENTROID"
 | "NOPERSPECTIVE"

 <attribBasic> ::= <fragPrefix> "fogco ord"
 | <fragPrefix> "posit ion"
 | <fragPrefix> "facin g"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribClip> <array MemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | "primitive" "." "id "

 <attribColor> ::= <fragPrefix> "color "

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribClip> <array Range>
 | <attribGeneric> <ar rayRange>

 <attribTexCoord> ::= <fragPrefix> "texco ord"

 <attribClip> ::= <fragPrefix> "clip"

 <attribGeneric> ::= <fragPrefix> "attri b"

 <fragPrefix> ::= "fragment" "."

 <resultBasic> ::= <resPrefix> "color" <resultOptColorNum>
 | <resPrefix> "depth"

 <resultOptColorNum> ::= /* empty */

 <resPrefix> ::= "result" "."

 (add the following subsection to section 2.X.3. 1, Program Variable Types)

 Explicitly declared fragment program attribute variables may have one or
 more interpolation modifiers that control how p er-fragment values are
 computed.

 An attribute variable declared as "FLAT" will b e flat-shaded. For such
 variables, the value of the attribute will be c onstant over an entire
 primitive and will taken from the provoking ver tex of the primitive, as
 described in Section 2.14.7. If "FLAT" is not specified, attributes will

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1347

 be interpolated as described in Chapter 3, with the exception that
 attribute variables bound to colors will still be flat-shaded if the shade
 model (section 2.14.7) is FLAT. If an attribut e variable declared as
 "FLAT" corresponds to a texture coordinate repl aced by a point sprite
 (s,t) value (section 3.3.1), the value of the a ttribute is undefined.

 An attribute variable declared as "CENTROID" wi ll be interpolated using a
 point on or inside the primitive, if possible, when doing multisample line
 or polygon rasterization (sections 3.4.4 and 3. 5.6). This method can
 avoid artifacts during multisample rasterizatio n when some samples of a
 pixel are covered, but the sample location used is outside the primitive.
 Note that when centroid sampling, the sample po ints used to generate
 attribute values for adjacent pixels may not be evenly spaced, which can
 lead to artifacts when evaluating partial deriv atives or performing
 texture LOD calculations needed for mipmapping. If "CENTROID" is not
 specified, attributes may be sampled anywhere i nside the pixel as
 permitted by the specification, including at po ints outside the primitive.

 An attribute variable declared as "NOPERSPECTIV E" will be interpolated
 using a method that is linear in screen space, as described in equation
 3.7 and the appoximation that follows equation 3.8. If "NOPERSPECTIVE" is
 not specified, attributes must be interpolated with perspective
 correction, as described in equations 3.6 and 3 .8. When clipping lines or
 polygons, an alternate method is used to comput e the attributes of
 vertices introduced by clipping when they are s pecified as "NOPERSPECTIVE"
 (section 2.14.8).

 Implicitly declared attribute variables (bindin gs used directly in a
 program instruction) will inherit the interpola tion modifiers of any
 explicitly declared attribute variable using th e same binding. If no such
 variable exists, default interpolation modes wi ll be used.

 For fragments generated by point primitives, Dr awPixels, and Bitmap,
 interpolation modifiers have no effect.

 Implementations are not required to support ari thmetic interpolation of
 integer values written by a previous pipeline s tage. Integer fragment
 program attribute variables must be flat-shaded ; a program will fail to
 load if it declares a variable with the "INT" o r "UINT" data type
 modifiers without the "FLAT" interpolation modi fier.

 There are several additional limitations on the use of interpolation
 modifiers. A fragment program will fail to loa d:

 * if an interpolation modifier is specified w hen declaring a
 non-attribute variable,

 * if the same interpolation modifier is speci fied more than once in a
 single declaration (e.g., "CENTROID CENTROI D ATTRIB"),

 * if the "FLAT" modifier is used together wit h either "CENTROID" or
 "NOPERSPECTIVE" in a single declaration,

 * if any interpolation modifier is specified when declaring a variable
 bound to a fragment's position, face direct ion, fog coordinate, or any
 interpolated clip distance,

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1348

 * if multiple attribute variables with differ ent interpolation modifiers
 are bound to the same fragment attribute, o r

 * if one variable is bound to the fragment's primary color and a second
 variable with different interpolation modif iers is bound the the
 fragment's secondary color.

 (add the following subsection to section 2.X.3. 2, Program Attribute
 Variables)

 Fragment program attribute variables describe t he attributes of a fragment
 produced during rasterization. The set of avai lable bindings is
 enumerated in Table X.X.

 Most attributes correspond to per-vertex attrib utes that are interpolated
 over a primitive; such attributes are subject t o the interpolation
 modifiers described in section 2.X.3.1. The fr agment's position, facing,
 and primitive IDs are the exceptions, and are g enerated specially during
 rasterization. Since two-sided color selection occurs prior to
 rasterization, there are no distinct "front" or "back" colors available to
 fragment programs. A single set of colors is a vailable, which corresponds
 to interpolated front or back vertex colors.

 If geometry programs are enabled, attributes wi ll be obtained by
 interpolating per-vertex outputs written by the geometry program. If
 geometry programs are disabled, but vertex prog rams are enabled,
 attributes will be obtained by interpolating pe r-vertex outputs written by
 the vertex program. In either case, the fragme nt program attributes
 should be read using the same component data ty pe used to write the vertex
 output attributes in the geometry or vertex pro gram. The value of any
 attribute corresponding to a vertex output not written by the geometry or
 vertex program is undefined.

 If neither geometry nor vertex programs are use d, attributes will be
 obtained by interpolating per-vertex values com puted by fixed-function
 vertex processing. All interpolated fragment a ttributes should be read as
 floating-point values.

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1349

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 fragment.color (r,g,b,a) prima ry color
 fragment.color.primary (r,g,b,a) prima ry color
 fragment.color.secondary (r,g,b,a) secon dary color
 fragment.texcoord (s,t,r,q) textu re coordinate, unit 0
 fragment.texcoord[n] (s,t,r,q) textu re coordinate, unit n
 fragment.fogcoord (f,-,-,-) fog d istance/coordinate
 * fragment.clip[n] (c,-,-,-) inter polated clip distance n
 fragment.attrib[n] (x,y,z,w) gener ic interpolant n
 fragment.texcoord[n..o] (s,t,r,q) textu re coordinates n thru o
 * fragment.clip[n..o] (c,-,-,-) clip distances n thru o
 fragment.attrib[n..o] (x,y,z,w) gener ic interpolants n thru o
 * fragment.position (x,y,z,1/w) windo w position
 * fragment.facing (f,-,-,-) fragm ent facing
 * primitive.id (id,-,-,-) primi tive number

 Table X.X: Fragment Attribute Bindings. The "Components" co lumn
 indicates the mapping of the state in the "Un derlying State" column.
 Bindings containing "[n]" require an integer value of <n> to select an
 individual item. Interpolation modifiers are not supported on variables
 that use bindings labeled with "*".

 If a fragment attribute binding matches "fragme nt.color" or
 "fragment.color.primary", the "x", "y", "z", an d "w" components of the
 fragment attribute variable are filled with the "r", "g", "b", and "a"
 components, respectively, of the fragment's pri mary color.

 If a fragment attribute binding matches "fragme nt.color.secondary", the
 "x", "y", "z", and "w" components of the fragme nt attribute variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of the
 fragment's secondary color.

 If a fragment attribute binding matches "fragme nt.texcoord" or
 "fragment.texcoord[n]", the "x", "y", "z", and "w" components of the
 fragment attribute variable are filled with the "s", "t", "r", and "q"
 components, respectively, of the fragment textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is used.

 If a fragment attribute binding matches "fragme nt.fogcoord", the "x"
 component of the fragment attribute variable is filled with either the
 fragment eye distance or the fog coordinate, de pending on whether the fog
 source is set to FRAGMENT_DEPTH_EXT or FOG_COOR DINATE_EXT, respectively.
 The "y", "z", and "w" coordinates are undefined .

 If a fragment attribute binding matches "fragme nt.clip[n]", the "x"
 component of the fragment attribute variable is filled with the
 interpolated value of clip distance <n>, as wri tten by the vertex or
 geometry program. The "y", "z", and "w" compon ents of the variable are
 undefined. If fixed-function vertex processing or position-invariant
 vertex programs are used with geometry programs disabled, clip distances
 are obtained by interpolating the per-clip plan e dot product:

 (p_1' p_2' p_3' p_4') dot (x_e y_e z_e w_e),

 for clip plane <n> as described in section 2.12 . The clip distance for
 clip plane <n> is undefined if clip plane <n> i s disabled.

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1350

 If a fragment attribute binding matches "fragme nt.attrib[n]", the "x",
 "y", "z", and "w" components of the fragment at tribute variable are filled
 with the "x", "y", "z", and "w" components of g eneric interpolant <n>.
 All generic interpolants will be undefined when used with fixed-function
 vertex processing with no geometry program enab led.

 If a fragment attribute binding matches "fragme nt.texcoord[n..o]",
 "fragment.clip[n..o]", or "fragment.attrib[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinate bi ndings, it is as though the
 sequence "fragment.texcoord[n], fragment.texcoo rd[n+1],
 ... fragment.texcoord[o]" were specfied. These bindings are available
 only in explicit declarations of array variable s. A program will fail to
 load if <n> is greater than <o>.

 If a fragment attribute binding matches "fragme nt.position", the "x" and
 "y" components of the fragment attribute variab le are filled with the
 floating-point (x,y) window coordinates of the fragment center, relative
 to the lower left corner of the window. The "z " component is filled with
 the fragment's z window coordinate. If z windo w coordinates are
 represented internally by the GL as fixed-point values, the z window
 coordinate undergoes an implied conversion to f loating point. This
 conversion must leave the values 0 and 1 invari ant. The "w" component is
 filled with the reciprocal of the fragment's cl ip w coordinate.

 If a fragment attribute binding matches "fragme nt.facing", the "x"
 component of the fragment attribute variable is filled with +1.0 or -1.0,
 depending on the orientation of the primitive p roducing the fragment. If
 the fragment is generated by a back-facing poly gon (including point- and
 line-mode polygons), the facing is -1.0; otherw ise, the facing is +1.0.
 The "y", "z", and "w" coordinates are undefined .

 If a fragment attribute binding matches "primit ive.id", the "x" component
 of the fragment attribute variable is filled wi th a single integer. If a
 geometry program is active, this value is obtai ned by taking the primitive
 ID value emitted by the geometry program for th e provoking vertex. If no
 geometry program is active, the value is the nu mber of primitives
 processed by the rasterizer since the last time Begin was called (directly
 or indirectly via vertex array functions). The first primitive generated
 after a Begin is numbered zero, and the primiti ve ID counter is
 incremented after every individual point, line, or polygon primitive is
 processed. For polygons drawn in point or line mode, the primitive ID
 counter is incremented only once, even though m ultiple points or lines may
 be drawn. For QUADS and QUAD_STRIP primitives that are decomposed into
 triangles, the primitive ID is incremented afte r each complete quad is
 processed. For POLYGON primitives, the primiti ve ID counter is zero. The
 primitive ID is zero for fragments generated by DrawPixels or Bitmap.
 Restarting a primitive topology using the primi tive restart index has no
 effect on the primitive ID counter. The "y", " z", and "w" components of
 the variable are always undefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Fragment programs produce final fragment values , and the set of result
 variables available to such programs correspond to the final attributes of
 a fragment. Fragment program result variables may not be declared as
 arrays.

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1351

 The set of allowable result variable bindings i s given in Table X.X.

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.color (r,g,b,a) co lor
 result.color[n] (r,g,b,a) co lor output n
 result.depth (*,*,d,*) de pth coordinate

 Table X.X: Fragment Result Variable Bindings.
 Components labeled "*" are unused.

 If a result variable binding matches "result.co lor", updates to the "x",
 "y", "z", and "w" components of the result vari able modify the "r", "g",
 "b", and "a" components, respectively, of the f ragment's output color.

 If a result variable binding matches "result.co lor[n]" and the
 ARB_draw_buffers program option is specified, u pdates to the "x", "y",
 "z", and "w" components of the color result var iable modify the "r", "g",
 "b", and "a" components, respectively, of the f ragment output color
 numbered <n>. If the ARB_draw_buffers program option is not specified,
 the "result.color[n]" binding is unavailable.

 If a result variable binding matches "result.de pth", updates to the "z"
 component of the result variable modify the fra gment's output depth value.
 If the "result.depth" binding is not in used in a variable written to by
 any instruction in the fragment program, the in terpolated depth value
 produced by rasterization is used as if fragmen t program mode is not
 enabled. Otherwise, the value written by the f ragment program is used,
 and the fragment's final depth value is undefin ed if the program did not
 end up writing a depth value due to flow contro l or write masks. Writes
 to any component of depth other than the "z" co mponent have no effect.

 (modify Table X.13 in section 2.X.4, Program In structions, to include the
 following.)

 Modifiers
 Instruction F I C S H D Inputs Out Descri ption
 ----------- - - - - - - ---------- --- ------ --------------------------
 DDX X - X X X F v v partia l derivative relative to X
 DDY X - X X X F v v partia l derivative relative to Y
 KIL X X - - X F vc - kill f ragment

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Fragment Program Options

 + Fixed-Function Fog Emulation (ARB_fog_exp, AR B_fog_exp2, ARB_fog_linear)

 If a fragment program specifies one of the opti ons "ARB_fog_exp",
 "ARB_fog_exp2", or "ARB_fog_linear", the progra m will apply fog to the
 program's final color using a fog mode of EXP, EXP2, or LINEAR,
 respectively, as described in section 3.10.

 When a fog option is specified in a fragment pr ogram, semantic
 restrictions are added to indicate that a fragm ent program will fail to
 load if the number of temporaries it contains e xceeds the

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1352

 implementation-dependent limit minus 1, if the number of attributes it
 contains exceeds the implementation-dependent l imit minus 1, or if the
 number of parameters it contains exceeds the im plementation-dependent
 limit minus 2.

 Additionally, when the ARB_fog_exp option is sp ecified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit minus
 3. When the ARB_fog_exp2 option is specified i n a fragment program, a
 semantic restriction is added to indicate that a fragment program will
 fail to load if the number of instructions or A LU instructions it contains
 exceeds the implementation-dependent limit minu s 4. When the
 ARB_fog_linear option is specified in a fragmen t program, a semantic
 restriction is added to indicate that a fragmen t program will fail to load
 if the number of instructions or ALU instructio ns it contains exceeds the
 implementation-dependent limit minus 2.

 Only one fog application option may be specifie d by any given fragment
 program. A fragment program that specifies mor e than one of the program
 options "ARB_fog_exp", "ARB_fog_exp2", and "ARB _fog_linear", will fail to
 load.

 + Precision Hints (ARB_precision_hint_fastest, ARB_precision_hint_nicest)

 Fragment program computations are carried out a t an implementation-
 dependent precision. However, some implementat ions may be able to perform
 fragment program computations at more than one precision, and may be able
 to trade off computation precision for performa nce.

 If a fragment program specifies the "ARB_precis ion_hint_fastest" program
 option, implementations should select precision to minimize program
 execution time, with possibly reduced precision . If a fragment program
 specifies the "ARB_precision_hint_nicest" progr am option, implementations
 should maximize the precision, with possibly in creased execution time.

 Only one precision control option may be specif ied by any given fragment
 program. A fragment program that specifies bot h the
 "ARB_precision_hint_fastest" and "ARB_precision _hint_nicest" program
 options will fail to load.

 + Multiple Color Outputs (ARB_draw_buffers, ATI _draw_buffers)

 If a fragment program specifies the "ARB_draw_b uffers" or
 "ATI_draw_buffers" option, it will generate mul tiple output colors, and
 the result binding "result.color[n]" is allowed , as described in section
 2.X.3.5. If this option is not specified, a fr agment program that
 attempts to bind "result.color[n]" will fail to load, and only
 "result.color" will be allowed.

 The multiple color outputs will typically be wr itten to an ordered list of
 draw buffers in the manner described in the ARB _draw_buffers extension
 specification.

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1353

 + Fragment Program Shadows (ARB_fragment_progra m_shadow)

 The ARB_fragment_program_shadow option introduc ed a set of "SHADOW"
 texture targets and made the results of depth t exture lookups undefined
 unless the texture format and compare mode were consistent with the target
 provided in the fragment program instruction. This behavior is enabled by
 default in NV_gpu_program4; specifying the opti on is not illegal but has
 no additional effect.

 (add the following subsection to section 2.X.8, Program Instruction Set.)

 Section 2.X.8.Z, DDX: Partial Derivative Relat ive to X

 The DDX instruction computes approximate partia l derivatives of the four
 components of the single floating-point vector operand with respect to the
 X window coordinate to yield a result vector. The partial derivatives are
 evaluated at the sample location of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives. Note also t hat the sample locations
 for attributes declared with the CENTROID inter polation modifier may not
 be evenly spaced, which can lead to artifacts i n derivative calculations.

 DDX supports only floating-point data type modi fiers and is available only
 to fragment programs.

 Section 2.X.8.Z, DDY: Partial Derivative Relat ive to Y

 The DDY instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the Y window coordinate
 to yield a result vector. The partial derivati ves are evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives. Note also t hat the sample locations
 for attributes declared with the CENTROID inter polation modifier may not
 be evenly spaced, which can lead to artifacts i n derivative calculations.

 DDY supports only floating-point data type modi fiers and is available only
 to fragment programs.

 Section 2.X.8.Z, KIL: Kill Fragment

 The KIL instruction evaluates a condition and k ills a fragment if the test
 passes. A fragment killed by the KIL instructi on is discarded, and will
 not be seen by subsequent stages of the pipelin e.

 A KIL instruction may be specified using either a floating-point vector
 operand or a condition code test.

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1354

 If a floating-point vector is provided, the fra gment is discarded if any
 of its components are negative:

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 If a condition code test is provided, the fragm ent is discarded if any
 component of the test passes:

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c))
 {
 exit;
 }

 KIL supports no data type modifiers. If a vect or operand is provided, it
 must have floating-point components.

 KIL is available only to fragment programs.

 Replace Section 2.14.8, and rename it to "Verte x Attribute Clipping"
 (p. 70).

 After lighting, clamping or masking and possibl e flatshading, vertex
 attributes, including colors, texture and fog c oordinates, shader varying
 variables, and point sizes computed on a per ve rtex basis, are clipped.
 Those attributes associated with a vertex that lies within the clip volume
 are unaffected by clipping. If a primitive is clipped, however, the
 attributes assigned to vertices produced by cli pping are produced by
 interpolating attributes along the clipped edge .

 Let the attributes assigned to the two vertices P_1 and P_2 of an
 unclipped edge be a_1 and a_2. The value of t (section 2.12) for a
 clipped point P is used to obtain the attribute associated with P as

 a = t * a_1 + (1-t) * a_2

 unless the attribute is specified to be interpo lated without perspective
 correction in a fragment program. In that case , the attribute associated
 with P is

 a = t' * a_1 + (1-t') * a_2

 where

 t' = (t * w_1) / (t * w_1 + (1-t) * w_2)

 and w_1 and w_2 are the w clip coordinates of P _1 and P_2,
 respectively. If w_1 or w_2 is either zero or n egative, the value of the
 associated attribute is undefined.

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1355

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

Dependencies on ARB_draw_buffers and ATI_draw_buffe rs

 If neither ARB_draw_buffers nor ATI_draw_buffer s is supported, then the
 discussion of the ARB_draw_buffers option in se ction 2.X.5.Y should be
 removed, as well as the result bindings of the form "result.color[n]" and
 "result.color[n..o]".

Dependencies on ARB_fragment_program_shadow

 If ARB_fragment_program_shadow is not supported , then the discussion of
 the ARB_fragment_program_shadow option in secti on 2.X.5.Y should be
 removed.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count. If NV_primitive_restart is no t supported, references to
 that extension in the discussion of the "primit ive.id" attribute should be
 removed.

Errors

 None

New State

 None

New Implementation Dependent State

 None

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1356

Issues

 (1) How should special interpolation controls b e specified?

 RESOLVED: As a special modifier to fragment program attribute variable
 declarations. It was decided that the fragme nt program was the most
 natural place to put the control. This would n't require making a large
 number of related state changes controlling i nterpolation whenever the
 fragment program used. The final mechanism u sing special interpolation
 modifiers was chosen because it fit well with the other variable
 modifiers (for data storage size and data typ e) provided by
 NV_gpu_program4. Examples:

 FLAT ATTRIB texcoords[4] = { fragment.t excoord[0..3] };
 CENTROID ATTRIB texcoord4 = fragment.te xcoord[4];
 CENTROID NOPERSPECTIVE ATTRIB
 attribs[3] = { fragment.attrib[0..2] };

 There were a variety of options considered, i ncluding:

 * special declarations in vertex or geometr y programs to specify the
 interpolation type,

 * special declarations in the fragment prog ram to specify one or more
 interpolation type modifiers per binding, such as:

 INTERPOLATE fragment.texcoord[0..3], FL AT;
 INTERPOLATE fragment.texcoord[4], CENTR OID;
 INTERPOLATE fragment.attrib[0..2], CENT ROID, NOPERSPECTIVE;

 * fixed-function state specifying the inter polation mode

 glInterpolateAttribNV(GL_TEXTURE0, GL_F LAT);
 glInterpolateAttribNV(GL_GENERIC_ATTRIB 0, GL_CENTROID_NV);

 Recent updates to GLSL provide similar functi onality (for centroid) with
 a similar approach, using a modifier on varyi ng variable declarations.

 (2) How should perspective-incorrect interpolat ion (linear in screen
 space) and clipping interact?

 RESOLVED: Primitives with attributes specifi ed to be
 perspective-incorrect should be clipped so th at the vertices introduced
 by clipping should have attribute values cons istent with the
 interpolation mode. We do not want to have l arge color shifts
 introduced by clipping a perspective-incorrec t attribute. For example,
 a primitive that approaches, but doesn't cros s, a frustum clip plane
 should look pretty much identical to a simila r primitive that just
 barely crosses the clip plane.

 Clipping perspective-incorrect interpolants t hat cross the W==0 plane is
 very challenging. The attribute clipping equ ation provided in the spec
 effectively projects all the original vertice s to screen space while
 ignoring the X and Y frustum clip plane. As W approaches zero, the
 projected X/Y window coordinates become extre mely large. When clipping
 an edge with one vertex inside the frustum an d the other out near
 infinity (after projection, due to W approach ing zero), the interpolated

NVIDIA OpenGL Extension Specifications NV_fragment_program4

 1357

 attribute for the entire visible portion of t he edge should almost
 exactly match the attribute value of the visi ble vertex.

 If an outlying vertex approaches and then goe s past W==0, it can be said
 to go "to infinity and beyond" in screen spac e. The correct answer for
 screen-linear interpolation is no longer obvi ous, at least to the author
 of this specification. Rather than trying to figure out what the
 "right" answer is or if one even exists, the results of clipping such
 edges is specified as undefined.

 (3) If a shader wants to use interpolation modi fiers without using
 declared variables, is that possible?

 RESOLVED: Yes. If "dummy" variables are dec lared, all interpolants
 bound to that variable will get the variable' s interpolation modifiers.
 In the following program:

 FLAT ATTRIB tc02[3] = { fragment.texcoord[0 ..2] };
 MOV R0, fragment.texcoord[1];
 MOV R1, fragment.texcoord[3];

 The variable R0 will get texture coordinate s et 1, which will be
 flat-shaded due to the declaration of "tc02". The variable R1 will get
 texture coordinate set 3, which will be smoot h shaded (default).

 (4) Is it possible to read the same attribute w ith different interpolation
 modifiers?

 RESOLVED: No. A program that tries to do th at will fail to compile.

 (5) Why can't fragment program results be decla red as arrays?

 RESOLVED: This is a limitation of the progra mming model. If an
 implementation needs to do run-time indexing of fragment program result
 variables (effectively writing to "result.col or[A0.x]"), code such as
 the following can be used:

 TEMP colors[4];
 ...
 MOV colors[A0.x], R1;
 MOV colors[3], 12.3;
 ...
 # end of the program
 MOV result.color[0], colors[0];
 MOV result.color[1], colors[1];
 MOV result.color[2], colors[2];
 MOV result.color[3], colors[3];

 (6) Do clip distances require that the correspo nding clip planes be
 enabled to be read by a fragment program?

 RESOLVED: No.

 (7) How do primitive IDs work with fragment pro grams?

 RESOLVED: If a geometry program is enabled, the primitive ID is
 consumed by the geometry program and is not a utomatically available to

NV_fragment_program4 NVIDIA OpenGL Extension Specifications

 1358

 the fragment program. If the fragment progra m needs a primitive ID in
 this case, the geometry program can write out a primitive ID using the
 "result.primid" binding, and the fragment pro gram will see the primitive
 ID written for the provoking vertex.

 If no geometry program is enabled, the primit ive ID is automatically
 available, and specifies the number of primit ives (points, lines, or
 triangles) processed by since the last explic it or implicit Begin call.

 (8) What is the primitive ID for non-geometry c ommands that generate
 fragments, such as DrawPixels, Bitmap, and Copy Pixels.

 RESOLVED: Zero.

 (9) How does the FLAT interpolation modifier in teract with point sprite
 coordinate replacement?

 RESOLVED: The value of such attributes are u ndefined. Specifying these
 two operations together is self-contradictory -- FLAT asks for an
 interpolant that is constant over a primitive , and point sprite
 coordinate interpolation asks for an interpol ant that is non-constant
 over a point sprite.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 4 11/06/07 pbrown Documented interactio n between the FLAT
 interpolation modifie r and point sprite
 coordinate replacemen t.

 1-3 pbrown Internal spec develop ment.

NVIDIA OpenGL Extension Specifications NV_framebuffer_multisample_coverage

 1359

Name

 NV_framebuffer_multisample_coverage

Name Strings

 GL_NV_framebuffer_multisample_coverage

Contact

 Mike Strauss, NVIDIA Corporation (mstrauss 'at' nvidia.com)

Status

 Shipping in NVIDIA Release 95 drivers (November 2006)

 Functionaltiy supported by GeForce 8800

Version

 Last Modified Date: November 6, 2006
 Revision #5

Number

 336

Dependencies

 Requires GL_EXT_framebuffer_object.

 Requires GL_EXT_framebuffer_blit.

 Requires GL_EXT_framebuffer_multisample.

 Written based on the wording of the OpenGL 1.5 specification.

Overview

 This extension extends the EXT_framebuffer_mult isample
 specification by providing a new function,
 RenderBufferStorageMultisampleCoverageNV, that distinguishes
 between color samples and coverage samples.

 EXT_framebuffer_multisample introduced the func tion
 RenderbufferStorageMultisampleEXT as a method o f defining the
 storage parameters for a multisample render buf fer. This function
 takes a <samples> parameter. Using rules provi ded by the
 specification, the <samples> parameter is resol ved to an actual
 number of samples that is supported by the unde rlying hardware.
 EXT_framebuffer_multisample does not specify wh ether <samples>
 refers to coverage samples or color samples.

 This extension adds the function
 RenderbufferStorageMultisamplCoverageNV, which takes a
 <coverageSamples> parameter as well as a <color Samples> parameter.

NV_framebuffer_multisample_coverage NVIDIA OpenGL Extension Specifications

 1360

 These two parameters give developers more fine grained control over
 the quality of multisampled images.

New Procedures and Functions

 void RenderbufferStorageMultisampleCoverageNV(
 enum target, sizei coverageSamples,
 sizei colorSamples, enum internalforma t,
 sizei width, sizei height);

New Tokens

 Accepted by the <pname> parameter of GetRenderb ufferParameterivEXT:

 RENDERBUFFER_COVERAGE_SAMPLES_NV 0x 8CAB
 RENDERBUFFER_COLOR_SAMPLES_NV 0x 8E10

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modification to 4.4.2.1 (Renderbuffer Objects)

 Add, just above the definition of RenderbufferS torageMultisampleEXT:

 "The command

 void RenderbufferStorageMultisampleCoverage NV(
 enum target, sizei coverageSamples,
 sizei colorSamples, enum internalformat ,
 sizei width, sizei height);

 establishes the data storage, format, dimension s, number of coverage
 samples, and number of color samples of a rende rbuffer object's
 image. <target> must be RENDERBUFFER_EXT. <in ternalformat> must be
 RGB, RGBA, DEPTH_COMPONENT, STENCIL_INDEX, or o ne of the internal
 formats from table 3.16 or table 2.nnn that has a base internal
 format of RGB, RGBA, DEPTH_COMPONENT, or STENCI L_INDEX. <width>
 and <height> are the dimensions in pixels of th e renderbuffer. If
 either <width> or <height> is greater than
 MAX_RENDERBUFFER_SIZE_EXT, the error INVALID_VA LUE is generated. If
 the GL is unable to create a data store of the requested size, the
 error OUT_OF_MEMORY is generated.

 Upon success, RenderbufferStorageMultisampleCov erageNV deletes any
 existing data store for the renderbuffer image and the contents of
 the data store after calling
 RenderbufferStorageMultisampleCoverageNV are un defined.
 RENDERBUFFER_WIDTH_EXT is set to <width>, RENDE RBUFFER_HEIGHT_EXT

NVIDIA OpenGL Extension Specifications NV_framebuffer_multisample_coverage

 1361

 is set to <height>, and RENDERBUFFER_INTERNAL_F ORMAT_EXT is set to
 <internalformat>.

 If <coverageSamples> is zero, then RENDERBUFFER _COVERAGE_SAMPLES_NV
 is set to zero. Otherwise <coverageSamples> re presents a request
 for a desired minimum number of coverage sample s. Since different
 implementations may support different coverage sample counts for
 multisampled rendering, the actual number of co verage samples
 allocated for the renderbuffer image is impleme ntation dependent.
 However, the resulting value for RENDERBUFFER_C OVERAGE_SAMPLES_NV is
 guaranteed to be greater than or equal to <cove rageSamples> and no
 more than the next larger coverage sample count supported by the
 implementation.

 If <colorSamples> is zero then RENDERBUFFER_COL OR_SAMPLES_NV is set
 to zero. Otherwise, <colorSamples> represents a request for a
 desired minimum number of colors samples. Sinc e different
 implementations may support different color sam ple counts for
 multisampled rendering, the actual number of co lor samples
 allocated for the renderbuffer image is impleme ntation dependent.
 Furthermore, a given implementation may support different color
 sample counts for each supported coverage sampl e count. The
 resulting value for RENDERBUFFER_COLOR_SAMPLES_ NV is determined
 after resolving the value for RENDERBUFFER_COVE RAGE_SAMPLES_NV.
 If the requested color sample count exceeds the maximum number of
 color samples supported by the implementation g iven the value of
 RENDERBUFFER_COVERAGE_SAMPLES_NV, the implement ation will set
 RENDERBUFFER_COLOR_SAMPLES_NV to the highest su pported value.
 Otherwise, the resulting value for RENDERBUFFER _COLOR_SAMPLES_NV is
 guaranteed to be greater than or equal to <colo rSamples> and no
 more than the next larger color sample count su pported by the
 implementation given the value of RENDERBUFFER_ COVERAGE_SAMPLES_NV.

 If <colorSamples> is greater than <coverageSamp les>, the error
 INVALID_VALUE is generated.

 If <coverageSamples> or <colorSamples> is great er than
 MAX_SAMPLES_EXT, the error INVALID_VALUE is gen erated.

 If <coverageSamples> is greater than zero, and <colorSamples> is
 zero, RENDERBUFFER_COLOR_SAMPLES_NV is set to a n implementation
 dependent value based on RENDERBUFFER_COVERAGE_ SAMPLES_NV.

 Modify the definition of RenderbufferStorageMul tisampleEXT as
 follows:

 "The command

 void RenderbufferStorageMultisampleEXT(
 enum target, sizei samples,
 enum internalformat,
 sizei width, sizei height);

 is equivalent to calling

 RenderbufferStorageMultisamplesCoverageNv(t arget, samples, 0,
 internalforamt, width, height).

NV_framebuffer_multisample_coverage NVIDIA OpenGL Extension Specifications

 1362

 Modification to 4.4.4.2 (Framebuffer Completene ss)

 Modify the RENDERBUFFER_SAMPLES_EXT entry in th e bullet list:

 * The value of RENDERBUFFER_COVERAGE_SAMPLES_NV is the same for all
 attached images.
 { FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

 Add an entry to the bullet list:

 * The value of RENDERBUFFER_COLOR_SAMPLES_NV is the same for all
 attached images.
 { FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT }

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Errors

 The error INVALID_OPERATION is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <colorSamples> is greater than <coverageSamples>

 The error INVALID_VALUE is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <coverageSamples> is greater than MAX_SAMPLES_EX T.

 The error INVALID_VALUE is generated if
 RenderbufferStorageMultisampleCoverageNV is call ed and
 <colorSamples> is greater than MAX_SAMPLES_EXT.

New State

(add to table 8.nnn, "Renderbuffers (state per rend erbuffer object)")

 Initial
Get Value Type Get Command Value Description S ection Attribute
-------------------------------- ---- ----------- ------------------ ------- ------------------- - ----------- ---------
RENDERBUFFER_COVERAGE_SAMPLES_NV Z+ GetRenderbufferParameterivEXT 0 Number of coverage 4 .4.2.1 -
 samples used by the
 renderbuffer
RENDERBUFFER_COLOR_SAMPLES_NV Z+ GetRenderbu fferParameterivEXT 0 Number of color 4 .4.2.1 -
 samples used by the
 renderbuffer

NVIDIA OpenGL Extension Specifications NV_framebuffer_multisample_coverage

 1363

(modify RENDERBUFFER_SAMPLES_EXT entry in table 8.n nn)

 Initial
 Get Value Type Get Command Value Description Sectio n Attribute
 ------------------------ ---- --------------- -------------- ------ ------------------- ------ ------ ---------
 RENDERBUFFER_SAMPLES_EXT Z+ GetRenderbuffer ParameterivEXT 0 Alias for 4.4.2. 1 -
 RENDERBUFFER_-
 COVERAGE_SAMPLES_NV

New Implementation Dependent State

 None

Issues

 (1) How should RenderbufferStorageMultisampleE XT be layered on top
 of RenderbufferStorageMultisampleCoverageN V?

 RESOLVED. NVIDIA will expose this extensi on at the same time
 that EXT_framebuffer_multisample is expose d, so there will not
 be any issues with backward compatibility. However, some
 developers choose not to use vendor specif ic extensions. These
 developers should be able to make use of c urrent and future
 hardware that differentiates between color and coverage
 samples. Since color samples are a subset of coverage samples,
 the <samples> parameter to RenderbufferSto rageMultisampleEXT
 should be treated as a request for coverag e samples. The
 implementation is free to choose the numbe r of color samples
 used by the renderbuffer.

 (2) <coverageSamples> is rounded up to the nex t highest
 number of samples supported by the impleme ntation. How
 should <colorSamples> be rounded given tha t an implementation
 may not support all combinations of <cover ageSamples> and
 <colorSamples>?

 RESOLVED: It is a requirement that <cover ageSamples> be
 compatible with the <samples> parameter to
 RenderbufferStorageMultisampleEXT. While it is desirable for
 <colorSamples> to resolve the same way as <coverageSamples>,
 this may not always be possible. An imple mentation may support
 a different maximum number of color sample s for each coverage
 sample count. It would be confusing to se t an error when
 <colorSamples> exceeds the maximum support ed number of color
 samples for a given coverage sample count, because there
 is no mechanism to query or predict this b ehavior. Therefore,
 the implementation should round <colorSamp les> down when it
 exceeds the maximum number of color sample s supported with the
 given coverage sample count. Otherwise, < colorSamples> is
 rounded up to the next highest number of c olor samples
 supported by the implementation.

 (3) Should a new query function be added so th at an application can
 determine the maximum number of color samp les supported with a
 given value of <coverageSamples>?

 UNRESOLVED. Such a query would have to ev aluate
 <coverageSamples>, and resolve it to an im plementation

NV_framebuffer_multisample_coverage NVIDIA OpenGL Extension Specifications

 1364

 supported value. The query would then ret urn the maximum
 number of color samples supported given th e resolved value of
 <coverageSamples>. There is no precedent for supporting a
 query of an implementation dependent value that requires
 complex evaluation of a parameter to the q uery. Adding such
 a query is unlikely.

 An alternative query mechanism might invol ve a pair of queries.
 One query returns the maximum number of un ique combinations of
 coverage samples and color samples support ed by the
 implementation. A second query is used to enumerate these
 combinations. In the event that no such q uery mechanism is
 added, an application can still determin t he set of unique and
 valid combinations of coverage samples and color samples.

 An application wishing to implement such a query can do so by
 creating a set of multisample renderbuffer s and querying their
 properties. A renderbuffer can be created for each
 (<coverageSamples>, <colorSamples>) pair w here
 <coverageSamples> is in [1, MAX_SAMPLES_EX T], and
 <colorSamples> is in [1, <coverageSamples>]. The application
 can query RENDERBUFFER_COVERAGE_SAMPLES_NV and
 RENDERBUFFER_COLOR_SAMPLES_NV for each ren derbuffer, using
 the results to identify the set of unique
 (<coverageSamples>, <colorSamples>) pairs supported by the
 implementation.

Revision History

 None

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1365

Name

 NV_geometry_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 11/06/2006
 NVIDIA Revision: 6

Number

 323

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 EXT_framebuffer_object interacts with this exte nsion.

 EXT_framebuffer_blit interacts with this extens ion.

 EXT_texture_array interacts with this extension .

 ARB_texture_rectangle trivially affects the def inition of this extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this extension.

Overview

 NV_geometry_program4 defines a new type of prog ram available to be run on
 the GPU, called a geometry program. Geometry p rograms are run on full
 primitives after vertices are transformed, but prior to flat shading and
 clipping.

 A geometry program begins with a single primiti ve - a point, line, or
 triangle. Quads and polygons are allowed, but are decomposed into
 individual triangles prior to geometry program execution. It can read the

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1366

 attributes of any of the vertex in the primitiv e and use them to generate
 new primitives. A geometry program has a fixed output primitive type,
 either a point, a line strip, or a triangle str ip. It emits vertices
 (using the EMIT opcode) to define the output pr imitive. The attributes of
 emitted vertices are specified by writing to th e same set of result
 bindings (e.g., "result.position") provided for vertex programs.
 Additionally, a geometry program can emit multi ple disconnected primitives
 by using the ENDPRIM opcode, which is roughly e quivalent to calling End
 and then Begin again. The primitives emitted b y the geometry program are
 then clipped and then processed like an equival ent OpenGL primitive
 specified by the application.

 This extension provides four additional primiti ve types: lines with
 adjacency, line strips with adjacency, separate triangles with adjacency,
 and triangle strips with adjacency. Some of th e vertices specified in
 these new primitive types are not part of the o rdinary primitives.
 Instead, they represent neighboring vertices th at are adjacent to the two
 line segment end points (lines/strips) or the t hree triangle edges
 (triangles/tstrips). These "adjacency" vertice s can be accessed by
 geometry programs and used to match up the outp uts of the geometry program
 with those of neighboring primitives.

 Additionally, geometry programs allow for layer ed rendering, where entire
 three-dimensional, cube map, or array textures (EXT_texture_array) can be
 bound to the current framebuffer. Geometry pro grams can use the
 "result.layer" binding to select a layer or cub e map face to render to.
 Each primitive emitted by such a geometry progr am is rendered to the layer
 taken from its provoking vertex.

 Since geometry programs expect a specific input primitive type, an error
 will occur if the application presents primtive s of a different type. For
 example, if an enabled geometry program expects points, an error will
 occur at Begin() time, if a primitive mode of T RIANGLES is specified.

New Procedures and Functions

 void ProgramVertexLimitNV(enum target, int limi t);

 void FramebufferTextureEXT(enum target, enum at tachment,
 uint texture, int le vel);
 void FramebufferTextureLayerEXT(enum target, en um attachment,
 uint texture, i nt level, int layer);

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 GEOMETRY_PROGRAM_NV 0x8C26

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1367

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_OUTPUT_VERTICES_NV 0x8C27
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV 0x8C28
 GEOMETRY_VERTICES_OUT_EXT 0x8DDA
 GEOMETRY_INPUT_TYPE_EXT 0x8DDB
 GEOMETRY_OUTPUT_TYPE_EXT 0x8DDC

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT 0x8C29

 Accepted by the <mode> parameter of Begin, Draw Arrays, MultiDrawArrays,
 DrawElements, MultiDrawElements, and DrawRangeE lements:

 LINES_ADJACENCY_EXT 0xA
 LINE_STRIP_ADJACENCY_EXT 0xB
 TRIANGLES_ADJACENCY_EXT 0xC
 TRIANGLE_STRIP_ADJACENCY_EXT 0xD

 Returned by CheckFramebufferStatusEXT:

 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT 0x8DA8
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT 0x8DA9

 Accepted by the <pname> parameter of
 GetFramebufferAttachmentParameterivEXT:

 FRAMEBUFFER_ATTACHMENT_LAYERED_EXT 0x8DA7
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT 0x8CD4

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, and by
 the <pname> parameter of GetIntegerv, GetFloatv , GetDoublev, and
 GetBooleanv:

 PROGRAM_POINT_SIZE_EXT 0x8642

 (Note: The "EXT" tokens above are shared with the EXT_geometry_shader4
 extension.)

 (Note: FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is simply an alias for the
 FRAMEBUFFER_ATTACHMENT_TEXTURE_3D_ZOFFSET_EXT token provided in
 EXT_framebuffer_object. This extension general izes the notion of
 "<zoffset>" to include layers of an array textu re.)

 (Note: PROGRAM_POINT_SIZE_EXT is simply an ali as for the
 VERTEX_PROGRAM_POINT_SIZE token provided in Ope nGL 2.0, which is itself an
 alias for VERTEX_PROGRAM_POINT_SIZE_ARB provide d by ARB_vertex_program.
 Program-computed point sizes can be enabled if geometry programs are
 enabled, even if no vertex program is used.)

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1368

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL Operation)

 Modify Section 2.6.1 (Begin and End Objects), p . 13

 (Add to end of section, p. 18)

 (add figure)

 1 - - - 2----->3 - - - 4 1 - - - 2--->3 --->4--->5 - - - 6

 5 - - - 6----->7 - - - 8

 (a) (b)

 Figure X.1 (a) Lines with adjacency, (b) Line strip with adja cency.
 The vertices connected with solid lines belon g to the main primitives;
 the vertices connected by dashed lines are th e adjacent vertices that
 may be used in a geometry program.

 Lines with Adjacency

 Lines with adjacency are independent line segme nts where each endpoint has
 a corresponding "adjacent" vertex that can be a ccessed by a geometry
 program (Section 2.15). If geometry programs a re disabled, the "adjacent"
 vertices are ignored.

 A line segment is drawn from the 4i + 2nd verte x to the 4i + 3rd vertex
 for each i = 0, 1, ... , n-1, where there are 4 n+k vertices between the
 Begin and End. k is either 0, 1, 2, or 3; if k is not zero, the final k
 vertices are ignored. For line segment i, the 4i + 1st and 4i + 4th
 vertices are considered adjacent to the 4i + 2n d and 4i + 3rd vertices,
 respectively. See Figure X.1.

 Lines with adjacency are generated by calling B egin with the argument
 value LINES_ADJACENCY_EXT.

 Line Strips with Adjacency

 Line strips with adjacency are similar to line strips, except that each
 line segment has a pair of adjacent vertices th at can be accessed by
 geometry programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 A line segment is drawn from the i + 2nd vertex to the i + 3rd vertex for
 each i = 0, 1, ..., n-1, where there are n+3 ve rtices between the Begin
 and End. If there are fewer than four vertices between a Begin and End,
 all vertices are ignored. For line segment i, the i + 1st and i + 4th
 vertices are considered adjacent to the i + 2nd and i + 3rd vertices,
 respectively. See Figure X.1.

 Line strips with adjacency are generated by cal ling Begin with the
 argument value LINE_STRIP_ADJACENCY_EXT.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1369

 (add figure)
 2 - - - 3 - - - 4 8 - - - 9 - - - 10
 ^\ ^\
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | \ | \
 \ | \ | \ | \ |
 | v | v
 1<------5 7< ------11

 \ | \ |

 \ | \ |

 \ | \ |

 6 12

 Figure X.2 Triangles with adjacency. The vertices connected with solid
 lines belong to the main primitive; the verti ces connected by dashed
 lines are the adjacent vertices that may be u sed in a geometry program.

 Triangles with Adjacency

 Triangles with adjacency are similar to separat e triangles, except that
 each triangle edge has an adjacent vertex that can be accessed by geometry
 programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 The 6i + 1st, 6i + 3rd, and 6i + 5th vertices (in that order) determine a
 triangle for each i = 0, 1, ..., n-1, where the re are 6n+k vertices
 between the Begin and End. k is either 0, 1, 2 , 3, 4, or 5; if k is
 non-zero, the final k vertices are ignored. Fo r triangle i, the i + 2nd,
 i + 4th, and i + 6th vertices are considered ad jacent to edges from the i
 + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i +
 5th to the i + 1st vertices, respectively. See Figure X.2.

 Triangles with adjacency are generated by calli ng Begin with the argument
 value TRIANGLES_ADJACENCY_EXT.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1370

 (add figure)
 6 6

 | \ | \

 | \ | \

 | \ | \

 2 - - - 3- - - >6 2 - - - 3------>7 2 - - - 3------>7- - - 10
 ^\ ^^ | ^^ ^^ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | \ | \ | | \ | \ |
 \ | \ | \ | \ | \ \ | \ | \
 | v | vv | vv v|
 1<------5 1<------5 - - - 8 1<------5<------9

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 \ | \ | \ | \ |

 4 4 4 8

 6 10

 | \ | \

 | \ | \

 | \ | \
 2 - - - 3------>7------> 11
 ^^ ^^ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | \ | \ |
 \ | \ | \ | \
 | vv v v
 1<------5<------ 9 - - - 12

 \ | \ |

 \ | \ |

 \ | \ |

 4 8

 Figure X.3 Triangle strips with adjacency. The vertices conn ected with
 solid lines belong to the main primitives; th e vertices connected by
 dashed lines are the adjacent vertices that m ay be used in a geometry
 program.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1371

 Triangle Strips with Adjacency

 Triangle strips with adjacency are similar to t riangle strips, except that
 each triangle edge has an adjacent vertex that can be accessed by geometry
 programs (Section 2.15). If geometry programs are disabled, the
 "adjacent" vertices are ignored.

 In triangle strips with adjacency, n triangles are drawn using 2 * (n+2) +
 k vertices between the Begin and End. k is eit her 0 or 1; if k is 1, the
 final vertex is ignored. If fewer than 6 verti ces are specified between
 the Begin and End, the entire primitive is igno red. Table X.1 describes
 the vertices and order used to draw each triang le, and which vertices are
 considered adjacent to each edge of the triangl e. See Figure X.3.

 (add table)
 primitive adjacent
 vertices vertices
 primitive 1st 2nd 3rd 1 /2 2/3 3/1
 --------------- ---- ---- ---- -- -- ---- ----
 only (i==0, n==1) 1 3 5 2 6 4
 first (i==0) 1 3 5 2 7 4
 middle (i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+7
 middle (i even) 2i+1 2i+3 2i+5 2i -1 2i+7 2i+4
 last (i==n-1, i odd) 2i+3 2i+1 2i+5 2i -1 2i+4 2i+6
 last (i==n-1, i even) 2i+1 2i+3 2i+5 2i -1 2i+6 2i+4

 Table X.1: Triangles generated by triangle strips with adjac ency.
 Each triangle is drawn using the vertices in the "1st", "2nd", and "3rd"
 columns under "primitive vertices", in that o rder. The vertices in the
 "1/2", "2/3", and "3/1" columns under "adjace nt vertices" are considered
 adjacent to the edges from the first to the s econd, from the second to
 the third, and from the third to the first ve rtex of the triangle,
 respectively. The six rows correspond to the six cases: the first and
 only triangle (i=0, n=1), the first triangle of several (i=0, n>0),
 "odd" middle triangles (i=1,3,5...), "even" m iddle triangles
 (i=2,4,6,...), and special cases for the last triangle inside the
 Begin/End, when i is either even or odd. For the purposes of this
 table, the first vertex specified after Begin is numbered "1" and the
 first triangle is numbered "0".

 Triangle strips with adjacency are generated by calling Begin with the
 argument value TRIANGLE_STRIP_ADJACENCY_EXT.

 Modify Section 2.14.1, Lighting (p. 59)

 (modify fourth paragraph, p. 63) Additionally, vertex and geometry shaders
 and programs can operate in two-sided color mod e, which is enabled and
 disabled by calling Enable or Disable with the symbolic value
 VERTEX_PROGRAM_TWO_SIDE. When a vertex or geom etry shader is active, the
 shaders can write front and back color values t o the gl_FrontColor,
 gl_BackColor, gl_FrontSecondaryColor and gl_Bac kSecondaryColor outputs.
 When a vertex or geometry program is active, pr ograms can write front and
 back colors using the available color result bi ndings. When a vertex or
 geometry shader or program is active and two-si ded color mode is enabled,
 the GL chooses between front and back colors, a s described below. If

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1372

 two-sided color mode is disabled, the front col or output is always
 selected.

 Insert New Section 2.14.6, Geometry Programs (b etween 2.14.5, Color Index
 Lighting and 2.14.6, Clamping and Masking, p. 6 9)

 Section 2.14.6, Geometry Programs

 Each primitive may be optionally transformed by a geometry program.
 Geometry programs are enabled by calling Enable with the value
 GEOMETRY_PROGRAM_NV. A geometry program takes a single input primitive
 and generates vertices to be arranged into one or more output primitives.
 The original input primitive is discarded, and the output primitives are
 processed in order by the remainder of the GL p ipeline.

 Section 2.14.6.1, Geometry Program Input Primit ives

 A geometry program can operate on one of five i nput primitive types, as
 specified by the mandatory "PRIMITIVE_IN" decla ration. Depending on the
 input primitive type, one to six vertices are a vailable when the program
 is executed. A geometry program will fail to l oad unless it contains
 exactly one such declaration.

 Each input primitive type supports only a subse t of the primitives
 provided by the GL. If geometry programs are e nabled, Begin, or any
 function that implicitly calls Begin, will prod uce an INVALID_OPERATION
 error if the <mode> parameter is incompatible w ith the input primitive
 type of the current geometry program.

 The supported input primitive types are:

 Points (POINTS)

 Geometry programs that operate on points are va lid only for the POINTS
 primitive type. There is a only a single verte x available for each
 program invocation: "vertex[0]" refers to the s ingle point.

 Lines (LINES)

 Geometry programs that operate on line segments are valid only for the
 LINES, LINE_STRIP, and LINE_LOOP primitive type s. There are two vertices
 available for each program invocation: "vertex [0]" and "vertex[1]" refer
 to the beginning and end of the line segment.

 Lines with Adjacency (LINES_ADJACENCY)

 Geometry programs that operate on line segments with adjacent vertices are
 valid only for the LINES_ADJACENCY_EXT and LINE _STRIP_ADJACENCY_EXT
 primitive types. There are four vertices avail able for each program
 invocation. "vertex[1]" and "vertex[2]" refer to the beginning and end of
 the line segment. "vertex[0]" and "vertex[3]" refer to the vertices
 adjacent to the beginning and end of the line s egment, respectively.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1373

 Triangles (TRIANGLES)

 Geometry programs that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP, TRIANGLE_FAN, QUADS, QUAD_STRIP , and POLYGON primitive
 types.

 When used with a geometry program that operates on triangles, QUADS,
 QUAD_STRIP, and POLYGON primitives are decompos ed into triangles in an
 unspecified, implementation-dependent manner. For convex polygons
 (already required in the core GL specification) , this decomposition
 satisfies three properties:

 * the collection of triangles fully covers th e area of the original
 primitive,

 * no two triangles in the decomposition overl ap, and

 * the orientation of each triangle is consist ent with the orientation of
 the original primitive.

 For such primitives, the program is executed on ce for each triangle in the
 decomposition.

 There are three vertices available for each pro gram invocation.
 "vertex[0]", "vertex[1]", and "vertex[2]", refe r to the first, second, and
 third vertex of the triangle, respectively.

 Triangles with Adjacency (TRIANGLES_ADJACENCY)

 Geometry programs that operate on triangles wit h adjacent vertices are
 valid for the TRIANGLES_ADJACENCY_EXT and TRIAN GLE_STRIP_ADJACENCY_EXT
 primitive types. There are six vertices availa ble for each program
 invocation. "vertex[0]", "vertex[2]", and "ver tex[4]" refer to the first,
 second, and third vertex of the triangle respec tively. "vertex[1]",
 "vertex[3]", and "vertex[5]" refer to the verti ces adjacent to the edges
 from the first to the second vertex, from the s econd to the third vertex,
 and from the third to the first vertex, respect ively.

 Section 2.14.6.2, Geometry Program Output Primi tives

 A geometry program can generate primitives of o ne of three types, as
 specified by the mandatory "PRIMITIVE_OUT" decl aration. A geometry
 program will fail to load unless it contains ex actly one such declaration.

 The supported output primitive types are points (POINTS), line strips
 (LINE_STRIP), and triangle strips (TRIANGLE_STR IP). The vertices output
 by the geometry program are decomposed into poi nts, lines, or triangles
 based on the output primitive type in the manne r described in section
 2.6.1.

 Section 2.14.6.3, Geometry Program Execution En vironment

 Geometry programs execute using the instruction set documented in the
 GL_NV_gpu_program4 extension specification and in a manner similar to
 vertex programs. Each vertex attribute access must identify the vertex
 number being accessed. For example, "vertex[1] .position" identifies the
 transformed position of "vertex[1]" as specifie d in teh description of the

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1374

 input primitive type. Output vertices are spec ified by writing to vertex
 result variables in the same manner as done by vertex programs.

 The special instruction "EMIT" specifies that a vertex is completed. A
 vertex is added to the current output primitive using the current values
 of the vertex result variables. The values of any unwritten result
 variables (or components) are undefined.

 After an EMIT instruction is completed, the cur rent values of all vertex
 result variables become undefined. If a progra m wants to ensure that the
 same result is used for every vertex written by the program, it is
 necessary to write the corresponding value once per vertex.

 The special instruction "ENDPRIM" specifies tha t the current output
 primitive should be completed and a new output primitive should be
 started. A geometry program starts with an out put primitive containing no
 vertices. When a geometry program terminates, the current output
 primitive is automatically completed. ENDPRIM has no effect if the
 geometry program's output primitive type is POI NTS.

 When a primitive generated by a geometry progra m is completed, the
 vertices added by the EMIT instruction are deco mposed into points, lines,
 or triangles according to the output primitive type in the manner
 described in Section 2.8.1. The resulting prim itives are then clipped and
 rasterized. If the number of vertices emitted by the geometry program is
 not sufficient to produce a single primitive, n othing is drawn.

 Like vertex and fragment programs, geometry pro grams can access textures.
 The maximum number of texture image units that can be accessed by a
 geometry program is given by the value of
 MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT.

 Section 2.14.6.4, Geometry Program Output Limit s

 A geometry program may not emit an limited in t he number of vertices per
 invocation. Each geometry program must declare a vertex limit, which is
 the maximum number of vertices that the program can ever produce. The
 vertex limit is specified using the "VERTICES_O UT" declaration. A
 geometry program will fail to load unless it co ntains exactly one such
 declaration.

 There are two implementation-dependent limits t hat limit the total number
 of vertices that a program can emit. First, th e vertex limit may not
 exceed the value of MAX_PROGRAM_OUTPUT_VERTICES _NV. Second, product of
 the vertex limit and the number of result varia ble components written by
 the program (PROGRAM_RESULT_COMPONENTS_NV, as d escribed in section 2.X.3.5
 of NV_gpu_program4) may not exceed the value of
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV. A geometry program will fail to
 load if its maximum vertex count or maximum tot al component count exceeds
 the implementation-dependent limit. The limits may be queried by calling
 GetProgramiv with a <target> of GEOMETRY_PROGRA M_NV. Note that the
 maximum number of vertices that a geometry prog ram can emit may be much
 lower than MAX_PROGRAM_OUTPUT_VERTICES_NV if th e program writes a large
 number of result variable components.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1375

 After a geometry program is compiled, the verte x limit may be changed
 using the command

 void ProgramVertexLimitNV(enum target, int li mit);

 <target> must be GEOMETRY_PROGRAM_NV. <limit> is the new vertex limit,
 which must satisfy the two rules described abov e. The error INVALID_VALUE
 is generated if <limit> is less than or equal t o zero, <limit> is greater
 than or equal to MAX_PROGRAM_OUTPUT_VERTICES_NV , or if the total number of
 components emitted would exceed MAX_PROGRAM_TOT AL_OUTPUT_COMPONENTS_NV.
 The error INVALID_OPERATION is generated if the current geometry program
 has not been successfully loaded.

 When a program executes, the number of vertices it emits should not exceed
 the vertex limit. Once a geometry program emit s a number of vertices
 equal to the vertex limit, subsequent EMIT inst ructions may or may not
 have any effect.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Geometry programs are required to begin with th e header string
 "!!NVgp4.0". This header string identifies the subsequent program body as
 being a geometry program and indicates that it should be parsed according
 to the base NV_gpu_program4 grammar plus the ad ditions below. Program
 string parsing begins with the character immedi ately following the header
 string.

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <declSequence> ::= <declaration> <decl Sequence>

 <instruction> ::= <SpecialInstruction >

 <attribUseV> ::= <attribVarName> <ar rayMem> <arrayMem>
 <swizzleSuffix>

 <attribUseS> ::= <attribVarName> <ar rayMem> <arrayMem>
 <scalarSuffix>

 <attribUseVNS> ::= <attribVarName> <ar rayMem> <arrayMem>

 <resultUseW> ::= <resultVarName> <ar rayMem> <optWriteMask>
 | <resultColor> <optW riteMask>
 | <resultColor> "." < colorType> <optWriteMask>
 | <resultColor> "." < faceType> <optWriteMask>
 | <resultColor> "." < faceType> "." <colorType>
 "." <optWriteMask>

 <resultUseD> ::= <resultColor>
 | <resultColor> "." < colorType>
 | <resultMulti>

 <declaration> ::= "PRIMITIVE_IN" <dec lPrimInType>
 | "PRIMITIVE_OUT" <de clPrimOutType>
 | "VERTICES_OUT" <int >

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1376

 <declPrimInType> ::= "POINTS"
 | "LINES"
 | "LINES_ADJACENCY"
 | "TRIANGLES"
 | "TRIANGLES_ADJACENC Y"

 <declPrimOutType> ::= "POINTS"
 | "LINE_STRIP"
 | "TRIANGLE_STRIP"

 <SpecialInstruction> ::= "EMIT"
 | "ENDPRIM"

 <attribBasic> ::= <vtxPrefix> "positi on"
 | <vtxPrefix> "fogcoo rd"
 | <vtxPrefix> "points ize"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribClip> <array MemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | "primitive" "." "id "

 <attribColor> ::= <vtxPrefix> "color"

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribClip> <array Range>
 | <attribGeneric> <ar rayRange>

 <attribTexCoord> ::= <vtxPrefix> "texcoo rd"

 <attribClip> ::= <vtxPrefix> "clip"

 <attribGeneric> ::= <vtxPrefix> "attrib "

 <vtxPrefix> ::= "vertex" <optArrayM emAbs>

 <resultBasic> ::= <resPrefix> "positi on"
 | <resPrefix> "fogcoo rd"
 | <resPrefix> "points ize"
 | <resPrefix> "primid "
 | <resPrefix> "layer"
 | <resultTexCoord> <o ptArrayMemAbs>
 | <resultClip> <array MemAbs>
 | <resultGeneric> <ar rayMemAbs>

 <resultColor> ::= <resPrefix> "color"

 <resultMulti> ::= <resultTexCoord> <a rrayRange>
 | <resultClip> <array Range>
 | <resultGeneric> <ar rayRange>

 <resultTexCoord> ::= <resPrefix> "texcoo rd"

 <resultClip> ::= <resPrefix> "clip"

 <resultGeneric> ::= <resPrefix> "attrib "

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1377

 <resPrefix> ::= "result" "."

 (add the following subsection to section 2.X.3. 2, Program Attribute
 Variables)

 Geometry program attribute variables describe t he attributes of each
 transformed vertex accessible to the geometry p rogram. Most attributes
 correspond to the per-vertex results generated by vertex program execution
 or fixed-function vertex processing. The "prim itive.id" attribute is
 generated specially, as described below.

 If vertex programs are enabled, attributes will be obtained from the
 per-vertex outputs of the vertex program used t o generate the vertex in
 question. Geometry program attributes should b e read using the same
 component data type used to write the correspon ding vertex program
 results. The value of any attribute correspond ing to a vertex output not
 written by the vertex program is undefined.

 If vertex programs are disabled, attributes wil l be obtained from the
 values computed by fixed-function vertex proces sing. All attributes,
 except for the primitive ID should be read as f loating-point values in
 this case.

 Geometry Vertex Binding Components D escription
 ----------------------------- ---------- - ---------------------------
 vertex[m].position (x,y,z,w) c lip coordinates
 vertex[m].color (r,g,b,a) f ront primary color
 vertex[m].color.primary (r,g,b,a) f ront primary color
 vertex[m].color.secondary (r,g,b,a) f ront secondary color
 vertex[m].color.front (r,g,b,a) f ront primary color
 vertex[m].color.front.primary (r,g,b,a) f ront primary color
 vertex[m].color.front.secondary (r,g,b,a) f ront secondary color
 vertex[m].color.back (r,g,b,a) b ack primary color
 vertex[m].color.back.primary (r,g,b,a) b ack primary color
 vertex[m].color.back.secondary (r,g,b,a) b ack secondary color
 vertex[m].fogcoord (f,-,-,-) f og coordinate
 vertex[m].pointsize (s,-,-,-) p oint size
 vertex[m].texcoord (s,t,r,q) t exture coordinate, unit 0
 vertex[m].texcoord[n] (s,t,r,q) t exture coordinate, unit n
 vertex[m].attrib[n] (x,y,z,w) g eneric interpolant n
 vertex[m].clip[n] (d,-,-,-) c lip plane distance
 vertex[m].texcoord[n..o] (s,t,r,q) a rray of texture coordinates
 vertex[m].attrib[n..o] (x,y,z,w) a rray of generic interpolants
 vertex[m].clip[n..o] (d,-,-,-) a rray of clip distances
 vertex[m].id (id,-,-,-) v ertex id
 primitive.id (id,-,-,-) p rimitive number

 Table X.2, Geometry Program Attribute Bindings. <m> refers t o a vertex
 number, while <n>, and <o> refer to integer c onstants. Only the
 "vertex[m].texcoord" and "vertex.attrib" bind ings are available in
 arrays.

 For bindings that include "vertex[m]", <m> iden tifies the vertex number
 whose attributes are used for the binding. For bindings in explicit
 variable declarations, "[m]" is optional. If " [m]" is specified, <m> must
 be an integer constant and must be in the valid range of vertices
 supported for the input primitive type. If "[m]" is not specified, the

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1378

 declared variable is accessed as an array, with the first array index
 specifying the vertex number. If such a variab le is declared an array, it
 must have a second array index to identify the individual array element.
 For bindings used directly in instructions, "[m]" is required and must be
 an integer constant specifying a vertex number. The following examples
 illustrate various legal and illegal geometry p rogram bindings and their
 meanings.

 ATTRIB pos = vertex.position;
 ATTRIB pos2 = vertex[2].position;
 ATTRIB texcoords[] = { vertex.texcoord[0..3] };
 ATTRIB tcoords1[4] = { vertex[1].texcoord[1.. 4] };
 INT TEMP A0;
 ...
 MOV R0, pos[1]; # position of vertex 1
 MOV R0, vertex[1].position; # position of vertex 1
 MOV R0, pos2; # position of vertex 2
 MOV R0, texcoords[A0.x][1]; # texcoord 1 of vertex A0.x
 MOV R0, texcoords[A0.x][A0.y]; # texcoord A0.y of vertex A0.x
 MOV R0, tcoords1[2]; # texcoord 3 of vertex 1
 MOV R0, vertex[A0.x].texcoord[1]; # ILLEGAL a llowed -- vertex number
 # must b e constant here.

 If a geometry attribute binding matches "vertex [m].position", the "x",
 "y", "z" and "w" components of the geometry att ribute variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of the
 transformed position of vertex <m>, in clip coo rdinates.

 If a geometry attribute binding matches any bin ding in Table X.2 beginning
 with "vertex[m].color", the "x", "y", "z", and "w" components of the
 geometry attribute variable are filled with the "r", "g", "b", and "a"
 components, respectively, of the corresponding color of vertex <m>.
 Bindings containing "front" and "back" refer to the front and back colors,
 respectively. Bindings containing "primary" an d "secondary" refer to
 primary and secondary colors, respectively. If face or color type is
 omitted in the binding, the binding is treated as though "front" and
 "primary", respectively, were specified.

 If a geometry attribute binding matches "vertex [m].fogcoord", the "x"
 component of the geometry attribute variable is filled with the fog
 coordinate of vertex <m>. The "y", "z", and "w " components are undefined.

 If a geometry attribute binding matches "vertex [m].pointsize", the "x"
 component of the geometry attribute variable is filled with the point size
 of vertex <m> computed by the vertex program. For fixed-function vertex
 processing, the point size attribute is undefin ed. The "y", "z", and "w"
 components are always undefined.

 If a geometry attribute binding matches "vertex [m].texcoord" or
 "vertex[m].texcoord[n]", the "x", "y", "z", and "w" coordinates of the
 geometry attribute variable are filled with the "s", "t", "r", and "q"
 coordinates of texture coordinate set <n> of ve rtex <m>. If <n> is
 omitted, texture coordinate set zero is used.

 If a geometry attribute binding matches "vertex [m].attrib[n]", the "x",
 "y", "z", and "w" components of the geometry at tribute variable are filled
 with the "x", "y", "z", and "w" coordinates of generic interpolant <n> of

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1379

 vertex <m>. All generic interpolants will be u ndefined when used with
 fixed-function vertex processing.

 If a geometry attribute binding matches "vertex [m].clip[n]", the "x"
 component of the geometry attribute variable is filled the clip distance
 of vertex <m> for clip plane <n>, as written by the vertex program. If
 fixed-function vertex processing or position-in variant vertex programs are
 used, the clip distance is obtained by computin g the per-clip plane dot
 product:

 (p_1' p_2' p_3' p_4') dot (x_e y_e z_e w_e),

 at the vertex location, as described in section 2.12. The clip distance
 for clip plane <n> is undefined if clip plane < n> is disabled. The "y",
 "z", and "w" components of the attribute are un defined.

 If a geometry attribute binding matches "vertex [m].texcoord[n..o]",
 "vertex[m].attrib[n..o]", or "vertex[m].clip[n. .o]", a sequence of
 1+<o>-<n> texture coordinate bindings is create d. For texture coordinate
 bindings, it is as though the sequence "vertex[m].texcoord[n],
 vertex[m].texcoord[n+1], ... vertex[m].texcoord [o]" were specfied. These
 bindings are available only in explicit declara tions of array variables.
 A program will fail to load if <n> is greater t han <o>.

 If a geometry attribute binding matches "vertex [m].id", the "x" component
 is filled with the vertex ID. If a vertex prog ram is currently active,
 the attribute variable is filled with the verte x ID result written by the
 vertex program. If fixed-function vertex proce ssing is used, the vertex
 ID is undefined. The "y", "z", and "w" compone nts of the attribute are
 undefined.

 If a geometry attribute binding matches "primit ive.id", the "x" component
 is filled with the number of primitives receive d by the GL since the last
 time Begin was called (directly or indirectly v ia vertex array functions).
 The first primitive generated after a Begin is numbered zero, and the
 primitive ID counter is incremented after every individual point, line, or
 polygon primitive is processed. For QUADS and QUAD_STRIP primitives that
 are decomposed into triangles, the primitive ID is incremented after each
 complete quad is processed. For POLYGON primit ives, the primitive ID
 counter is zero. Restarting a primitive topolo gy using the primitive
 restart index has no effect on the primitive ID counter. The "y", "z",
 and "w" components of the variable are always u ndefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Geometry programs emit vertices, and the set of result variables available
 to such programs correspond to the attributes o f each emitted vertex. The
 set of allowable result variable bindings for g eometry programs is given
 in Table X.3.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1380

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.position (x,y,z,w) po sition in clip coordinates
 result.color (r,g,b,a) fr ont-facing primary color
 result.color.primary (r,g,b,a) fr ont-facing primary color
 result.color.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.front (r,g,b,a) fr ont-facing primary color
 result.color.front.primary (r,g,b,a) fr ont-facing primary color
 result.color.front.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.back (r,g,b,a) ba ck-facing primary color
 result.color.back.primary (r,g,b,a) ba ck-facing primary color
 result.color.back.secondary (r,g,b,a) ba ck-facing secondary color
 result.fogcoord (f,*,*,*) fo g coordinate
 result.pointsize (s,*,*,*) po int size
 result.texcoord (s,t,r,q) te xture coordinate, unit 0
 result.texcoord[n] (s,t,r,q) te xture coordinate, unit n
 result.attrib[n] (x,y,z,w) ge neric interpolant n
 result.clip[n] (d,*,*,*) cl ip plane distance
 result.texcoord[n..o] (s,t,r,q) te xture coordinates n thru o
 result.attrib[n..o] (x,y,z,w) ge neric interpolants n thru o
 result.clip[n..o] (d,*,*,*) cl ip distances n thru o
 result.primid (id,*,*,*) pr imitive id
 result.layer (l,*,*,*) la yer for cube/array/3D FBOs

 Table X.3: Geometry Program Result Variable Bindings.
 Components labeled "*" are unused.

 If a result variable binding matches "result.po sition", updates to the
 "x", "y", "z", and "w" components of the result variable modify the "x",
 "y", "z", and "w" components, respectively, of the transformed vertex's
 clip coordinates. Final window coordinates wil l be generated for the
 vertex as described in section 2.14.4.4.

 If a result variable binding match begins with "result.color", updates to
 the "x", "y", "z", and "w" components of the re sult variable modify the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 vertex color attribute in Table X.3. Color bin dings that do not specify
 "front" or "back" are consided to refer to fron t-facing colors. Color
 bindings that do not specify "primary" or "seco ndary" are considered to
 refer to primary colors.

 If a result variable binding matches "result.fo gcoord", updates to the "x"
 component of the result variable set the transf ormed vertex's fog
 coordinate. Updates to the "y", "z", and "w" c omponents of the result
 variable have no effect.

 If a result variable binding matches "result.po intsize", updates to the
 "x" component of the result variable set the tr ansformed vertex's point
 size. Updates to the "y", "z", and "w" compone nts of the result variable
 have no effect.

 If a result variable binding matches "result.te xcoord" or
 "result.texcoord[n]", updates to the "x", "y", "z", and "w" components of
 the result variable set the "s", "t", "r" and " q" components,
 respectively, of the transformed vertex's textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is selected.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1381

 If a result variable binding matches "result.at trib[n]", updates to the
 "x", "y", "z", and "w" components of the result variable set the "x", "y",
 "z", and "w" components of the generic interpol ant <n>.

 If a result variable binding matches "result.cl ip[n]", updates to the "x"
 component of the result variable set the clip d istance for clip plane <n>.

 If a result variable binding matches "result.te xcoord[n..o]",
 "result.attrib[n..o]", or "result.clip[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinates, it is as though the
 sequence "result.texcoord[n], result.texcoord[n +1],
 ... result.texcoord[o]" were specfied. These b indings are available only
 in explicit declarations of array variables. A program will fail to load
 if <n> is greater than <o>.

 If a result variable binding matches "result.pr imid", updates to the "x"
 component of the result variable provide a sing le integer that serves as a
 primitive identifier. The written primitive ID is available to fragment
 programs using the "primitive.id" attribute bin ding. If a fragment
 program using primitive IDs is active and a geo metry program is also
 active, the geometry program must write "result .primid" or the primitive
 ID number is undefined.

 If a result variable binding matches "result.la yer", updates to the "x"
 component of the result variable provide a sing le integer that serves as a
 layer selector for layered rendering (section 2 .14.6.5). The layer must
 be written as an integer value; writing a float ing-point layer number will
 produce undefined results.

 (modify Table X.13 in section 2.X.4, Program In structions, to include the
 following.)

 Modifiers
 Instruction F I C S H D Inputs Out Descri ption
 ----------- - - - - - - ---------- --- ------ --------------------------
 EMIT - - - - - - - - emit v ertex
 ENDPRIM - - - - - - - - end of primitive

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Geometry Program Options

 No options are supported at present for geometr y programs.

 (add the following subsection to section 2.X.6, Program Declarations.)

 Section 2.X.6.Y, Geometry Program Declarations

 Geometry programs support three types of declar ation statements, as
 described below. Each of the three must be inc luded exactly once in the
 geometry program.

 - Input Primitive Type (PRIMITIVE_IN)

 The PRIMITIVE_IN statement declares the type of primitives seen by a
 geometry program. The single argument must be one of "POINTS", "LINES",
 "LINES_ADJACENCY", "TRIANGLES", or "TRIANGLES_A DJACENCY".

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1382

 - Output Primitive Type (PRIMITIVE_OUT)

 The PRIMITIVE_OUT statement declares the type o f primitive emitted by a
 geometry program. The single argument must be one of "POINTS",
 "LINE_STRIP", or "TRIANGLE_STRIP".

 - Maximum Vertex Count (VERTICES_OUT)

 The VERTICES_OUT statement declares the maximum number of vertices that
 may be emitted by a geometry program. The sing le argument must be a
 positive integer. A vertex program that emits more than the specified
 number of vertices may terminate abnormally.

 (add the following subsections to section 2.X.7 , Program Instruction Set.)

 Section 2.X.7.Z, EMIT: Emit Vertex

 The EMIT instruction emits a new vertex to be a dded to the current output
 primitive of a geometry program. The attribute s of the emitted vertex are
 given by the current values of the vertex resul t variables. After the
 EMIT instruction completes, a new vertex is sta rted and all result
 variables become undefined.

 Section 2.X.7.Z, ENDPRIM: End of Primitive

 A geometry program can emit multiple primitives in a single invocation.
 The ENDPRIM instruction is used in a geometry p rogram to signify the end
 of the current primitive and the beginning of a new primitive of the same
 type. The effect of ENDPRIM is roughly equival ent to calling End followed
 by a new Begin, where the primitive mode is spe cified in the text of the
 geometry program.

 Like End, the ENDPRIM instruction does not emit a vertex. Any result
 registers written prior to an ENDPRIM instructi on are unchanged, and will
 be used in the vertex specified by the next EMI T instruction if they are
 not overwritten first.

 When geometry program execution completes, the current primitive is
 automatically terminated. It is not necessary to include an ENDPRIM
 instruction if the geometry program writes only a single primitive.

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Modify Section 3.3, Points (p. 95)

 (replace all Section 3.3 text on p. 95) A point is drawn by generating a
 set of fragments in the shape of a square or ci rcle centered around the
 vertex of the point. Each vertex has an associ ated point size that
 controls the size of that square or circle.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1383

 If no vertex or geometry program is active, the size of the point is
 controlled by

 void PointSize(float size);

 <size> specifies the requested size of a point. The default value is
 1.0. A value less than or equal to zero results in the error
 INVALID_VALUE.

 The requested point size is multiplied with a d istance attenuation factor,
 clamped to a specified point size range, and fu rther clamped to the
 implementation-dependent point size range to pr oduce the derived point
 size:

 derived size = clamp(size * sqrt(1/(a+b*d+c* d^2)))

 where d is the eye-coordinate distance from the eye, (0,0,0,1) in eye
 coordinates, to the vertex, and a, b, and c are distance attenuation
 function coefficients.

 If a vertex or geometry program is active, the derived size depends on the
 per-vertex point size mode enable. Per-vertex point size mode is enabled
 or disabled by calling Enable or Disable with t he symbolic value
 PROGRAM_POINT_SIZE_EXT. If per-vertex point si ze is enabled and a geometry
 program is active, the point size is taken from the point size emitted by
 the geometry program. If per-vertex point size is enabled an no geometry
 program is active, the point size is taken from the point size result of
 the vertex program. Otherwise, the point size is taken from the <size>
 value provided to PointSize, with no distance a ttenuation applied. In all
 cases, the point size is clamped to the impleme ntation-dependent point
 size range.

 If multisampling is not enabled, the derived si ze is passed on to
 rasterization as the point width. ...

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.5 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1384

GLX Protocol

 None.

Errors

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when geometry program mode is enabled
 and the currently bound geometry program object does not contain a valid
 geometry program.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when geometry program mode is enabled
 and:

 * the input primitive type of the current geo metry program is POINTS and
 <mode> is not POINTS,

 * the input primitive type of the current geo metry program is LINES and
 <mode> is not LINES, LINE_STRIP, or LINE_LO OP,

 * the input primitive type of the current geo metry program is TRIANGLES
 and <mode> is not TRIANGLES, TRIANGLE_STRIP , TRIANGLE_FAN, QUADS,
 QUAD_STRIP, or POLYGON,

 * the input primitive type of the current geo metry program is
 LINES_ADJACENCY and <mode> is not LINES_ADJ ACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current geo metry program is
 TRIANGLES_ADJACENCY and <mode> is not TRIAN GLES_ADJACENCY_EXT or
 TRIANGLE_STRIP_ADJACENCY_EXT.

 The error INVALID_ENUM is generated if GetProgr amivARB is called with a
 <pname> of MAX_PROGRAM_OUTPUT_VERTICES_NV or
 MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV and the target isn't
 GEOMETRY_PROGRAM_NV.

Dependencies on EXT_framebuffer_object

 If EXT_framebuffer_object (or similar functiona lity) is not supported, the
 "result.layer" binding should be removed. "Fra mebufferTextureEXT" and
 "FramebufferTextureLayerEXT" should be removed from "New Procedures and
 Functions", and FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT,
 FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT, and
 FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT should b e removed from "New
 Tokens".

 Otherwise, this extension modifies EXT_framebuf fer_object to add the
 notion of layered framebuffer attachments and f ramebuffers that can be
 used in conjunction with geometry programs to a llow programs to direct
 primitives to a face of a cube map or layer of a three-dimensional texture
 or one- or two-dimensional array texture. The layer used for rendering
 can be selected by the geometry program at run time.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1385

 (insert before the end of Section 4.4.2, Attach ing Images to Framebuffer
 Objects)

 There are several types of framebuffer-attachab le images:

 * the image of a renderbuffer object, which i s always two-dimensional,

 * a single level of a one-dimensional texture , which is treated as a
 two-dimensional image with a height of one,

 * a single level of a two-dimensional or rect angle texture,

 * a single face of a cube map texture level, which is treated as a
 two-dimensional image, or

 * a single layer of a one- or two-dimensional array texture or
 three-dimensional texture, which is treated as a two-dimensional
 image.

 Additionally, an entire level of a three-dimens ional texture, cube map
 texture, or one- or two-dimensional array textu re can be attached to an
 attachment point. Such attachments are treated as an array of
 two-dimensional images, arranged in layers, and the corresponding
 attachment point is considered to be layered.

 (replace section 4.4.2.3, "Attaching Texture Im ages to a Framebuffer")

 GL supports copying the rendered contents of th e framebuffer into the
 images of a texture object through the use of t he routines
 CopyTexImage{1D|2D}, and CopyTexSubImage{1D|2D| 3D}. Additionally, GL
 supports rendering directly into the images of a texture object.

 To render directly into a texture image, a spec ified level of a texture
 object can be attached as one of the logical bu ffers of the currently
 bound framebuffer object by calling:

 void FramebufferTextureEXT(enum target, enum attachment,
 uint texture, int level);

 <target> must be FRAMEBUFFER_EXT. <attachment> must be one of the
 attachment points of the framebuffer listed in table 1.nnn.

 If <texture> is zero, any image or array of ima ges attached to the
 attachment point named by <attachment> is detac hed, and the state of the
 attachment point is reset to its initial values . <level> is ignored if
 <texture> is zero.

 If <texture> is non-zero, FramebufferTextureEXT attaches level <level> of
 the texture object named <texture> to the frame buffer attachment point
 named by <attachment>. The error INVALID_VALUE is generated if <texture>
 is not the name of a texture object, or if <lev el> is not a supported
 texture level number for textures of the type c orresponding to <target>.
 The error INVALID_OPERATION is generated if <te xture> is the name of a
 buffer texture.

 If <texture> is the name of a three-dimensional texture, cube map texture,
 or one- or two-dimensional array texture, the t exture level attached to

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1386

 the framebuffer attachment point is an array of images, and the
 framebuffer attachment is considered layered.

 The command

 void FramebufferTextureLayerEXT(enum target, enum attachment,
 uint texture, int level, int layer);

 operates like FramebufferTextureEXT, except tha t only a single layer of
 the texture level, numbered <layer>, is attache d to the attachment point.
 If <texture> is non-zero, the error INVALID_VAL UE is generated if <layer>
 is negative, or if <texture> is not the name of a texture object. The
 error INVALID_OPERATION is generated unless <te xture> is zero or the name
 of a three-dimensional or one- or two-dimension al array texture.

 The command

 void FramebufferTextureFaceEXT(enum target, e num attachment,
 uint texture, int level, enum face);

 operates like FramebufferTextureEXT, except tha t only a single face of a
 cube map texture, given by <face>, is attached to the attachment point.
 <face> is one of TEXTURE_CUBE_MAP_POSITIVE_X, T EXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z. If <texture> is
 non-zero, the error INVALID_VALUE is generated if <texture> is not the
 name of a texture object. The error INVALID_OP ERATION is generated unless
 <texture> is zero or the name of a cube map tex ture.

 The command

 void FramebufferTexture1DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates identically to FramebufferTextureEXT, except for two additional
 restrictions. If <texture> is non-zero, the er ror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_1D and the error INVALID_OPERATION
 is generated unless <texture> is the name of a one-dimensional texture.

 The command

 void FramebufferTexture2DEXT(enum target, enu m attachment,
 enum textarget, uint texture, int level);

 operates similarly to FramebufferTextureEXT. I f <textarget> is TEXTURE_2D
 or TEXTURE_RECTANGLE_ARB, <texture> must be zer o or the name of a
 two-dimensional or rectangle texture. If <text arget> is
 TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
 TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
 TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MA P_NEGATIVE_Z, <texture>
 must be zero or the name of a cube map texture. For cube map textures,
 only the single face of the cube map texture le vel given by <textarget> is
 attached. The error INVALID_ENUM is generated if <texture> is not zero
 and <textarget> is not one of the values enumer ated above. The error
 INVALID_OPERATION is generated if <texture> is the name of a texture whose
 type does not match the texture type required b y <textarget>.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1387

 The command

 void FramebufferTexture3DEXT(enum target, enu m attachment,
 enum textarget, uint texture,
 int level, int z offset);

 behaves identically to FramebufferTextureLayerE XT, with the <layer>
 parameter set to the value of <zoffset>. The e rror INVALID_ENUM is
 generated if <textarget> is not TEXTURE_3D. Th e error INVALID_OPERATION
 is generated unless <texture> is zero or the na me of a three-dimensional
 texture.

 For all FramebufferTexture commands, if <textur e> is non-zero and the
 command does not result in an error, the frameb uffer attachment state
 corresponding to <attachment> is updated based on the new attachment.
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is set t o TEXTURE,
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT is set t o <texture>, and
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to <level>.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_FACE is set to <textarget> if
 FramebufferTexture2DEXT is called and <texture> is the name of a cubemap
 texture; otherwise, it is set to TEXTURE_CUBE_M AP_POSITIVE_X.
 FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER_EXT is set to <layer> or <zoffset> if
 FramebufferTextureLayerEXT or FramebufferTextur e3DEXT is called;
 otherwise, it is set to zero. FRAMEBUFFER_ATTA CHMENT_LAYERED_EXT is set
 to TRUE if FramebufferTextureEXT is called and <texture> is the name of a
 three-dimensional texture, cube map texture, or one- or two-dimensional
 array texture; otherwise it is set to FALSE.

 (modify Section 4.4.4.1, Framebuffer Attachment Completeness -- add to the
 conditions necessary for attachment completenes s)

 The framebuffer attachment point <attachment> i s said to be "framebuffer
 attachment complete" if ...:

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a three-dimensional
 texture, FRAMEBUFFER_ATTACHMENT_TEXTURE_LAY ER_EXT must be smaller than
 the depth of the texture.

 * If FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT i s TEXTURE and
 FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT name s a one- or two-dimensional
 array texture, FRAMEBUFFER_ATTACHMENT_TEXTU RE_LAYER_EXT must be
 smaller than the number of layers in the te xture.

 (modify section 4.4.4.2, Framebuffer Completene ss -- add to the list of
 conditions necessary for completeness)

 * If any framebuffer attachment is layered, a ll populated attachments
 must be layered. Additionally, all populat ed color attachments must
 be from textures of the same target (i.e., three-dimensional, cube
 map, or one- or two-dimensional array textu res).
 { FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS_EXT }

 * If any framebuffer attachment is layered, a ll attachments must have
 the same layer count. For three-dimensiona l textures, the layer count
 is the depth of the attached volume. For c ube map textures, the layer
 count is always six. For one- and two-dime nsional array textures, the

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1388

 layer count is simply the number of layers in the array texture.
 { FRAMEBUFFER_INCOMPLETE_LAYER_COUNT_EXT }

 The enum in { brackets } after each clause of t he framebuffer completeness
 rules specifies the return value of CheckFrameb ufferStatusEXT (see below)
 that is generated when that clause is violated. ...

 (add section 4.4.7, Layered Framebuffers)

 A framebuffer is considered to be layered if it is complete and all of its
 populated attachments are layered. When render ing to a layered
 framebuffer, each fragment generated by the GL is assigned a layer number.
 The layer number for a fragment is zero if

 * the fragment is generated by DrawPixels, Co pyPixels, or Bitmap,

 * geometry programs are disabled, or

 * the current geometry program does not conta in an instruction that
 writes to the layer result binding.

 Otherwise, the layer for each point, line, or t riangle emitted by the
 geometry program is taken from the layer output of the provoking vertex.
 For line strips, the provoking vertex is the se cond vertex of each line
 segment. For triangle strips, the provoking ve rtex is the third vertex of
 each individual triangles. The per-fragment la yer can be different for
 fragments generated by each individual point, l ine, or triangle emitted by
 a single geometry program invocation. A layer number written by a
 geometry program has no effect if the framebuff er is not layered.

 When fragments are written to a layered framebu ffer, the fragment's layer
 number selects an image from the array of image s at each attachment point
 from which to obtain the destination R, G, B, A values for blending
 (Section 4.1.8) and to which to write the final color values for that
 attachment. If the fragment's layer number is negative or greater than
 the number of layers attached, the effects of t he fragment on the
 framebuffer contents are undefined.

 When the Clear command is used to clear a layer ed framebuffer attachment,
 all layers of the attachment are cleared.

 When commands such as ReadPixels or CopyPixels read from a layered
 framebuffer, the image at layer zero of the sel ected attachment is always
 used to obtain pixel values.

 When cube map texture levels are attached to a layered framebuffer, there
 are six layers attached, numbered zero through five. Each layer number is
 mapped to a cube map face, as indicated in Tabl e X.4.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1389

 layer number cube map face
 ------------ ---------------------------
 0 TEXTURE_CUBE_MAP_POSITIVE_X
 1 TEXTURE_CUBE_MAP_NEGATIVE_X
 2 TEXTURE_CUBE_MAP_POSITIVE_Y
 3 TEXTURE_CUBE_MAP_NEGATIVE_Y
 4 TEXTURE_CUBE_MAP_POSITIVE_Z
 5 TEXTURE_CUBE_MAP_NEGATIVE_Z

 Table X.4, Layer numbers for cube map texture faces. The lay ers are
 numbered in the same sequence as the cube map face token values.

 (modify Section 6.1.3, Enumerated Queries -- Mo dify/add to list of <pname>
 values for GetFramebufferAttachmentParameterivE XT if
 FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT is TEXTURE)

 If <pname> is FRAMEBUFFER_ATTACHMENT_TEXTURE_ LAYER_EXT and the attached
 image is a layer of a three-dimensional textu re or one- or
 two-dimensional array texture, then <params> will contain the specified
 layer number. Otherwise, <params> will conta in the value zero.

 If <pname> is FRAMEBUFFER_ATTACHMENT_LAYERED_ EXT, then <params> will
 contain TRUE if an entire level of a three-di mesional texture, cube map
 texture, or one- or two-dimensional array tex ture is attached to the
 <attachment>. Otherwise, <params> will conta in FALSE.

 (Modify the Additions to Chapter 5, section 5.4)

 Add the commands FramebufferTextureEXT, Framebu fferTextureLayerEXT, and
 FramebufferTextureFaceEXT to the list of comman ds that are not compiled
 into a display list, but executed immediately.

Dependencies on EXT_framebuffer_blit

 If EXT_framebuffer_blit is supported, the EXT_f ramebuffer_object language
 should be further amended so that <target> valu es passed to
 FramebufferTextureEXT and FramebufferTextureLay erEXT can be
 DRAW_FRAMEBUFFER_EXT or READ_FRAMEBUFFER_EXT, and that those functions
 set/query state for the draw framebuffer if <ta rget> is FRAMEBUFFER_EXT.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, the disc ussion array textures the
 layered rendering edits to EXT_framebuffer_obje ct should be removed.
 Layered rendering to cube map and 3D textures w ould still be supported.

 If EXT_texture_array is supported, the edits to EXT_framebuffer_object
 supersede those made in EXT_texture_array, exce pt for language pertaining
 to mipmap generation of array textures.

 There are no functional incompatibilities betwe en the FBO support in these
 two specifications. The only differences are t hat this extension supports
 layered rendering and also rewrites certain sec tions of the core FBO
 specification more aggressively.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1390

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, all references to rectangle
 textures in the EXT_framebuffer_object spec lan guage should be removed.

Dependencies on EXT_texture_buffer_object

 If EXT_buffer_object is not supported, the refe rence to an
 INVALID_OPERATION error if a buffer texture is passed to
 FramebufferTextureEXT should be removed.

Dependencies on NV_primitive_restart

 The spec describes the behavior that primitive restart does not affect the
 primitive ID counter, including for POLYGON pri mitives (where one could
 argue that the restart index starts a new primi tive without a new Begin to
 reset the count). If NV_primitive_restart is n ot supported, references to
 that extension in the discussion of the "primit ive.id" attribute should be
 removed.

New State

 Initial
 Get Value Type Get Command Value Description Sec. Attribut e
 ------------------------- ---- ----------- ------- ---------------------- ------ -------- --------
 GEOMETRY_PROGRAM_NV B IsEnabled FALSE Geometry shader enable 2.14.6 enable/t ransform

 FRAMEBUFFER_ATTACHMENT_ nxB GetFramebuff er- FALSE Framebuffer attachment 4.4.2.3 -
 LAYERED_EXT Attachment- is layered
 ParameterivE XT
 GEOMETRY_VERTICES_OUT_EXT Z+ GetProgramiv ARB 0 vertex limit of the 2.14.6.4 -
 current geometry
 program
 GEOMETRY_INPUT_TYPE_EXT Z+ GetProgramiv ARB 0 input primitive type 2.14.6.4 -
 of the current geometry
 program
 GEOMETRY_OUTPUT_TYPE_EXT Z+ GetProgramiv ARB 0 output primitive type 2.14.6.4 -
 of the current geometry
 program

New Implementation Dependent State

 Minimum
 Get Value Type Get Co mmand Value Description Sec Attrib
 ------------------------------- ---- ------ --------- ---------- -------------------- ---- -------- ------
 MAX_GEOMETRY_TEXTURE_ Z+ GetInt egerv 16 maximum number of 2.14 .6.3 -
 IMAGE_UNITS_EXT texture image units
 accessible in a
 geometry program
 MAX_PROGRAM_OUTPUT_VERTICES_NV Z+ GetPro gramivARB 256 maximum number of 2.14 .6.4 -
 vertices that any
 geometry program
 could emit
 MAX_PROGRAM_TOTAL_OUTPUT_ Z+ GetPro gramivARB 1024 maximum number of 2.14 .6.4 -
 COMPONENTS_NV result components (all
 vertices) that a
 geometry program
 can emit

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1391

NVIDIA Implementation Details

 Because of a hardware limitation, some GeForce 8 series chips use the
 odd vertex of an incomplete TRIANGLE_STRIP_ADJA CENCY_EXT primitive
 as a replacement adjacency vertex rather than i gnoring it.

Issues

 (1) How do geometry programs fit into the exist ing GL pipeline?

 RESOLVED: The following diagram illustrates how geometry programs fit
 into the "vertex processing" portion of the G L (Chapter 2 of the OpenGL
 2.0 Specification).

 First, vertex attributes are specified via im mediate-mode commands or
 through vertex arrays. They can be conventio nal attributes (e.g.,
 glVertex, glColor, glTexCoord) or generic (nu mbered) attributes.

 Vertices are then transformed, either using a vertex program or
 fixed-function vertex processing. Fixed-func tion vertex processing
 includes position transformation (modelview a nd projection matrices),
 lighting, texture coordinate generation, and other calculations. The
 results of either method are a "transformed v ertex", which has a
 position (in clip coordinates), front and bac k colors, texture
 coordinates, generic attributes (vertex progr am only), and so on. Note
 that on many current GL implementations, vert ex processing is performed
 by executing a "fixed function vertex program " generated by the driver.

 After vertex transformation, vertices are ass embled into primitives,
 according to the topology (e.g., TRIANGLES, Q UAD_STRIP) provided by the
 call to glBegin(). Primitives are points, li nes, triangles, quads, or
 polygons. Many GL implementations do not dir ectly support quads or
 polygons, but instead decompose them into tri angles as permitted by the
 spec.

 After initial primitive assembly, a geometry program is executed on each
 individual point, line, or triangle primitive , if enabled. It can read
 the attributes of each transformed vertex, pe rform arbitrary
 computations, and emit new transformed vertic es. These emitted vertices
 are themselves assembled into primitives acco rding to the output
 primitive type of the geometry program.

 Then, the colors of the vertices of each prim itive are clamped to [0,1]
 (if color clamping is enabled), and flat shad ing may be performed by
 taking the color from the provoking vertex of the primitive.

 Each primitive is clipped to the view volume, and to any enabled
 user-defined clip planes. Color, texture coo rdinate, and other
 attribute values are computed for each new ve rtex introduced by
 clipping.

 After clipping, the position of each vertex (in clip coordinates) is
 converted to normalized device coordinates in the perspective division
 (divide by w) step, and to window coordinates in the viewport
 transformation step.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1392

 At the same time, color values may be convert ed to normalized
 fixed-point values according to the "Final Co lor Processing" portion of
 the specification.

 After the vertices of the primitive are trans formed to window
 coordinate, the GL determines if the primitiv e is front- or back-facing.
 That information is used for two-sided color selection, where a single
 set of colors is selected from either the fro nt or back colors
 associated with each transformed vertex.

 When all this is done, the final transformed position, colors (primary
 and secondary), and other attributes are used for rasterization (Chapter
 3 in the OpenGL 2.0 Specification).

 When the raster position is specified (via gl RasterPos), it goes through
 the entire vertex processing pipeline as thou gh it were a point.
 However, geometry programs are never run on t he raster position.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1393

 |generic |conv entional
 |vertex |vert ex
 |attributes |attr ibutes
 | |
 | +-------------------+
 | | |
 V V V
 vertex fixed-funct ion
 program vertex
 | processing
 | |
 | |
 +<-------------------+
 | Output
 |position, color, Primitive
 |other vertex data Type
 | |
 V |
 Begin/ primitive geometry primitive |
 End ------> assembly -----> program ---- > assembly <-+
 State | |
 V |
 +<------------------------ ------+
 |
 |
 | color flat
 +----------> clamping ---- > shading
 | |
 V |
 +<------------------------ ------+
 |
 |
 clipping
 |
 | perspective viewport
 +------> divide ----> transform
 | |
 | +---+-----+
 | V |
 | final f acing |
 +------> color dete rmination |
 | processing | | |
 | | | |
 | | | |
 | +-----+ +--- -+ |
 | | | |
 | V V |
 | two-sided |
 | coloring |
 | | |
 | | |
 +------------------+ | +-- -----------+
 | | |
 V V V
 rasterizati on
 |
 |

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1394

 V

 (2) Why is this called GL_NV_geometry_program4? There aren't any previous
 versions of this extension, let alone three?

 RESOLVED: The instruction set for GPU progra ms of all types (vertex,
 fragment, and now geometry) have been unified in the GL_NV_gpu_program4
 extension, and the "4" suffix in this extensi on name indicates the
 instruction set type. There are three previo us NV_vertex_program
 variants (four if you count NV_vertex_program 1_1), so "4" is the next
 available numeric suffix.

 (3) Should the GL produce errors at Begin time if an application specifies
 a primitive mode that is "incompatible" with th e geometry program? For
 example, if the geometry program operates on tr iangles and the application
 sends a POINTS primitive?

 RESOLVED: Yes. Mismatches of app-specified primitive types and
 geometry program input primitive types seem l ike clear errors and would
 produce weird and wonderful effects.

 (4) Can the input primitive type of a geometry program be changed at run
 time?

 RESOLVED: Not in this extension. Each geome try program has a single
 input primitive type, and vertices are presen ted to the program in a
 specific order based on that type.

 (5) Can the output primitive type of a geometry program be determined at
 run time?

 RESOLVED: Not in this extension.

 (6) Must the output primitive type of a geometr y program match the input
 primitive type in any way?

 RESOLVED: No, you can have a geometry progra m generate points out of
 triangles or triangles out of points. Some c ombinations are analogous
 to existing OpenGL operations: reading trian gles and writing points or
 line strips can be used to emulate a subset o f PolygonMode
 functionality. Reading points and writing tr iangle strips can be used
 to emulate point sprites.

 (7) Are primitives emitted by a geometry progra m processed like any other
 OpenGL primitive?

 RESOLVED: Yes. Antialiasing, stippling, pol ygon offset, polygon mode,
 culling, two-sided lighting and color selecti on, point sprite
 operations, and fragment processing all work as expected.

 One limitation is that the only output primit ive types supported are
 points, line strips, and triangle strips, non e of which meaningfully
 support edge flags that are sometimes used in conjunction with the POINT
 and LINE polygon modes (edge flags are always ignored for line-mode
 triangle strips).

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1395

 (8) Should geometry programs support additional input primitive types?

 RESOLVED: Possibly in a future extension. I t should be straightforward
 to build a future extension to support geomet ry programs that operate on
 quads. Other primitive types might be more d emanding on hardware.
 Quads with adjacency would require 12 vertice s per program execution.
 General polygons may require even more, since there is no fixed bound on
 the number of vertices in a polygon.

 (9) Should geometry programs support additional output primitive types?

 RESOLVED: Possibly in a future extension. A dditional output types
 (e.g., independent lines, line loops, triangl e fans, polygons) may be
 useful in the future; triangle fans/polygons seem particularly useful.

 (10) Should we provide additional adjacency pri mitive types that can be
 used inside a Begin/End?

 RESOLVED: Not in this extension. It may be desirable to add new
 primitive types (e.g., TRIANGLE_FAN_ADJACENCY) in a future extension.

 (11) How do geometry programs interact with Ras terPos?

 RESOLVED: Geometry programs are ignored when specifying the raster
 position. While the raster position could be treated as a point,
 turning it into a triangle strip would be qui te bizarre.

 (12) How do geometry programs interact with pix el primitives (DrawPixels,
 Bitmap)?

 RESOLVED: They do not. Fragments generated be DrawPixels and Bitmap
 are injected into the pipeline after the poin t where geometry program
 execution occurs.

 (13) Is there a limit on the number of vertices that can be emitted by a
 geometry program?

 RESOLVED: Unfortunately, yes. Besides pract ical hardware limits, there
 may also be practical performance advantages when applications guarantee
 a tight upper bound on the number of vertices a geometry shader will
 emit. GPUs frequently excecute programs in p arallel, and there are
 substantial implementation challenges to para llel execution of geometry
 threads that can write an unbounded number of results, particular given
 that the all the primitives generated by the first geometry program
 invocation must be consumed before any of the primitives generated by
 the second program invocation. Limiting the amount of data a geometry
 program can write substantially eases the imp lementation burden.

 A geometry program must declare a maximum num ber of vertices that can be
 emitted, called the vertex limit. There is a n implementation-dependent
 limit on the total number of vertices a progr am can emit (256 minimum)
 and the product of the vertex limit and the n umber of active result
 components (1024 minimum). A program will fa il to load if doesn't
 declare a limit or exceeds either of the two implementatoin-dependent
 limits.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1396

 It would be ideal if the limit could be infer red from the instructions
 in the program itself, and that would be poss ible for many programs,
 particularly ones with straight-line flow con trol. For programs with
 more complicated flow control (subroutines, d ata-dependent looping, and
 so on), it would be impossible to make such a n inference and a "safe"
 limit would have to be used with adverse and possibly unexpected
 performance consequences.

 The limit on the number of EMIT instructions that can be issued can not
 always be enforced at compile time, or even a t Begin time. We specify
 that if a program tries to emit more vertices than the vertex limit
 allows, emits that exceed the limit may or ma y not have any effect.

 (14) Should it be possible to change the limit on the number of vertices
 emitted by a geometry program after the program is specified?

 RESOLVED: Yes, using the function ProgramVer texLimitNV(). Applications
 may want to tweak a piece of data that affect s the number of vertices
 emitted, but doesn't necessarily require reco mpiling the entire program.
 Examples might be a "circular point sprite" p rogram, that reads a single
 point, and draws a circle centered at that po int with <N> vertices. An
 application could change the value <N> at run time, but it could require
 a change in the vertex limit. Another exampl e might be a geometry
 program that does some fancy subdivision, whe re the relevant parameter
 might be a limit on how far the primitive is subdivided.

 Ideally, this program object state should be set by a "program
 parameter" command, much like texture state i s set by a "texture
 parameter" (TexParameter) command. Unfortuna tely, there are already
 several different "program parameter" functio ns:

 ProgramEnvParameter4fARB() -- sets global environment constants
 ProgramLocalParameter4fARB() -- sets per-pr ogram constants
 ProgramParameter4fNV() -- also sets g lobal environment constants

 Additionally, GLSL and OpenGL 2.0 introduced "program objects" which are
 linked collections of vertex, fragment, and n ow geometry shaders. A
 GLSL vertex "shader" is equivalent to an ARB_ vertex_program vertex
 "program", which is nothing like a GLSL progr am. As of OpenGL 2.0, GLSL
 programs do not have settable parameters, by subsequent extensions may
 want to add them (for example, EXT_geometry_s hader4, which has this same
 functionality for GLSL). If that happens, th ey would want their own
 ProgramParameter API, but with a different pr ototype than this extension
 would want.

 Naming this function "ProgramVertexLimitNV" s idesteps this issue for
 now.

 (15) How do edge flags interact with adjacency primitives?

 RESOLVED: If geometry programs are disabled, adjacency primitives are
 still supported. For TRIANGLES_ADJACENCY_EXT , edge flags will apply as
 they do for TRIANGLES. Such primitives are r endered as independent
 triangles as though the adjacency vertices we re not provided. Edge
 flags for the "real" vertices are supported. For all other adjacency
 primitive types, edge flags are irrelevant.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1397

 (16) How do geometry programs interact with col or clamping?

 RESOLVED: Geometry program execution occurs prior to color clamping in
 the pipeline. This means the colors written by vertex programs or
 fixed-function vertex processing are not clam ped to [0,1] before they
 are read by geometry programs. If color clam ping is enabled, any vertex
 colors written by the geometry program will h ave their components
 clamped to [0,1].

 (17) How are QUADS, QUAD_STRIP, and POLYGON pri mitives decomposed into
 triangles in the initial implementation of GL_N V_geometry_program4?

 RESOLVED: The specification leaves the decom position undefined, subject
 to a small number of rules. Assume that four vertices are specified in
 the order V0, V1, V2, V3.

 For QUADS primitives, the quad V0->V1->V2->V3 is decomposed into the
 triangles V0->V1->V2, and V0->V2->V3. The pr ovoking vertex of the quad
 (V3) is only found in the second triangle. I f it's necessary to flat
 shade over an entire quad, take the attribute s from V0, which will be
 the first vertex for both triangles in the de composition.

 For QUAD_STRIP primitives, the quad V0->V1->V 3->V2 is decomposed into
 the triangles V0->V1->V3 and V2->V0->V3. Thi s has the property of
 leaving the provoking vertex for the polygon (V3) as the third vertex
 for each triangle of the decomposition.

 For POLYGON primitives, the polygon V0->V1->V 2->V3 is decomposed into
 the triangles V1->V2->V0 and V2->V3->V0. Thi s has the property of
 leaving the provoking vertex for the polygon (V0) as the third vertex
 for each triangle of the decomposition.

 (18) Should geometry programs be able to select a layer of a 3D texture,
 cube map texture, or array texture at run time? If so, how?

 RESOLVED: This extension provides a per-vert ex result binding called
 "result.layer", which is an integer specifyin g the layer to render to.
 When an each individual point, line, or trian gle is emitted by a
 geometry program, the layer number is taken f rom the provoking (last)
 vertex of the primitive and is used for all f ragments generated by that
 primitive.

 The EXT_framebuffer_object (FBO) extension is used for rendering to
 textures, but for cube maps and 3D textures, it only provides the
 ability to attach a single face or layer of s uch textures.

 This extension generalizes FBO by creates new entry points to bind an
 entire texture level (FramebufferTextureEXT) or a single layer of a
 texture level (FramebufferTextureLayerEXT) to an attachment point. The
 existing FBO binding functions, FramebufferTe xture[123]DEXT are
 retained, and are defined in terms of the mor e general new functions.

 The new functions do not have a dimension in the function name or a
 <textarget> parameter, which can be inferred from the provided texture.
 They can do anything that the old functions c an do, except attach a
 single face of a cube map texture. We consid ered adding a separate
 function FramebufferTextureFaceEXT to provide this functionality, but

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1398

 decided that the existing FramebufferTexture2 DEXT API was adequate. We
 also considered using FramebufferTextureLayer EXT for this purpose, but
 it was not clear whether a layer number (0-5) or face enum (e.g,
 TEXTURE_CUBE_MAP_POSITIVE_X) should be provid ed.

 When an entire texel level of a cube map, 3D, or array texture is
 attached, that attachment is considered layer ed. The framebuffer is
 considered layered if any attachment is layer ed. When the framebuffer
 is layered, there are three additional comple teness requirements:

 * all attachments must be layered
 * all color attachments must be from textur es of identical type
 * all attachments must have the same number of layers

 We expect subsequent versions of the FBO spec to relax the requirement
 that all attachments must have the same width and height, and plan to
 relax the similar requirement for layer count at that time.

 When rendering to a layered framebuffer, laye r zero is used unless a
 geometry program that writes the layer result is enabled. When
 rendering to a non-layered framebuffer, any l ayer result emitted from
 geometry programs is ignored and the set of s ingle-image attachments are
 used. When reading from a layered framebuffe r (e.g., ReadPixels), layer
 zero is always used. When clearing a layered framebuffer, all layers
 are cleared to the corresponding clear values .

 Several other approaches were considered, inc luding leveraging existing
 FBO attachment functions and requiring the us e of FramebufferTexture3D
 with a <zoffset> of zero to make a framebuffe r attachment "layerable"
 (attaching layer zero means that the attachme nt could be used for either
 layered- or non-layered rendering). Whether rendering was layered or
 not could either be inferred from the active geometry program, or set as
 a new property of the framebuffer object. Th ere is presently
 FramebufferParameter API to set a property of a framebuffer, so it would
 have been necessary to create new set/query A PIs if this approach were
 chosen.

 (19) How can single-pass cube map rendering be done efficiently in a
 geometry program?

 UNRESOLVED: To do single-pass cubemap render ing, attach entire cube map
 textures to framebuffer attachment points usi ng the new functions
 provided by this extension. The vertex progr am used should only
 transform the vertex position to eye coordina tes (position relative to
 the center of the cube map). A geometry prog ram should be used that
 effectively projects each input triangle onto each of the six faces of
 the cube map, emitting a triangle for each. Each of the projected
 vertices should be emitted with a "result.lay er" value matching the face
 number (0-5). When the projected triangle is drawn, it is automatically
 drawn on the face corresponding to the emitte d layer number.

 It should be simple to skip projecting primit ives onto faces they won't
 touch. For example, if all of the X eye coor dinates are positive, there
 is no reason to project to the "negative X" c ube map face.

 An example should be provided for this issue.

NVIDIA OpenGL Extension Specifications NV_geometry_program4

 1399

 (20) How should per-vertex point size work with geometry programs?

 RESOLVED: We will generalize the existing VE RTEX_PROGRAM_POINT_SIZE
 enable to control the point size behavior if either vertex or geometry
 programs are enabled.

 If geometry programs are enabled, the point s ize is taken from the point
 size result of the emitted vertex if VERTEX_P ROGRAM_POINT_SIZE is
 enabled, or from the PointSize state otherwis e.

 If no geometry program is enabled, it works l ike OpenGL 2.0. If a
 vertex program is active, it's taken from the point size result or
 PointSize state, depending on the VERTEX_PROG RAM_POINT_SIZE enable. If
 no program is enabled, normal fixed-function point size handling
 (including distance attenuation) is supported .

 This extension creates a new alias for the VE RTEX_PROGRAM_POINT_SIZE
 enum, called PROGRAM_POINT_SIZE_EXT, to refle ct that the point size
 enable now covers multiple program types. Bo th enums have the same
 value.

 (21) How do vertex IDs work with geometry progr ams?

 RESOLVED: Vertex IDs are automatically provi ded to vertex programs
 when applicable, via the "vertex.id" binding. However, they are not
 automatically copied the transformed vertex r esults that are read by
 geometry programs.

 Geometry programs can read the ID of vertex < n> via the
 "vertex[<n>].id" binding, but the vertex ID m ust have been copied by
 the vertex program using an instruction such as:

 MOV result.id.x, vertex.id.x;

 If a vertex program doesn't write vertex ID, or fixed-function vertex
 processing is used, the vertex ID visible to geometry programs is
 undefined.

 (22) How do primitive IDs work with geometry pr ograms?

 RESOLVED: Primitive IDs are automatically av ailable to geometry
 programs via the "primitive.id" binding and i ndicate the number of
 input primitives previously processed since t he last explicit or
 implicit Begin call.

 If a geometry program wants to make the primi tive ID available to a
 fragment program, it should copy the appropri ate value to the
 "result.primid" binding.

 (23) How do primitive IDs work with primitives not supported directly by
 geometry program input topologies (e.g., QUADS, POLYGON)?

 RESOLVED: QUADS are decomposed into two tria ngles. Both triangles
 will have the same primitive ID, which is the number of full quads
 previously processed. POLYGON primitives are decomposed into a series
 of triangles, and all of them will have the p rimitive ID -- zero.

NV_geometry_program4 NVIDIA OpenGL Extension Specifications

 1400

 (24) This is an NV extension (NV_geometry_progr am4). Why do some of the
 new tokens have an "EXT" extension?

 RESOLVED: Some of the tokens are shared betw een this extension and the
 comparable high-level GLSL programmability ex tension
 (EXT_geometry_shader4). Rather than provide a duplicate set of tokens,
 we simply use the EXT versions here. The tok ens specific to assembly
 shader uses retain an NV suffix.

Revision History

 None

NVIDIA OpenGL Extension Specifications NV_geometry_shader4

 1401

Name

 NV_geometry_shader4

Name String

 GL_NV_geometry_shader4

Contact

 Pat Brown, NVIDIA (pbrown 'at' nvidia.com)
 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 01/10/2007
 Author revision: 16

Number

 338

Dependencies

 OpenGL 1.1 is required.

 EXT_geometry_shader4 is required.

 This extension is written against the EXT_geome try_shader4 and OpenGL 2.0
 specifications.

Overview

 This extension builds upon the EXT_geometry_sha der4 specification to
 provide two additional capabilities:

 * Support for QUADS, QUAD_STRIP, and POLYGO N primitive types when
 geometry shaders are enabled. Such primi tives will be tessellated
 into individual triangles.

 * Setting the value of GEOMETRY_VERTICES_OU T_EXT will take effect
 immediately. It is not necessary to link the program object in
 order for this change to take effect, as is the case in the EXT
 version of this extension.

New Procedures and Functions

 None

New Tokens

 None

NV_geometry_shader4 NVIDIA OpenGL Extension Specifications

 1402

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.16.1, Geometry shader Input Pr imitives, of the
 EXT_geometry_shader4 specification as follows:

 Triangles (TRIANGLES)

 Geometry shaders that operate on triangles are valid for the TRIANGLES,
 TRIANGLE_STRIP, TRIANGLE_FAN, QUADS, QUAD_STRIP , and POLYGON primitive
 types.

 When used with a geometry shader that operates on triangles, QUADS,
 QUAD_STRIP, and POLYGON primitives are decompos ed into triangles in an
 unspecified, implementation-dependent manner. T his decomposition satisfies
 three properties:

 1. the collection of triangles fully covers the area of the original
 primitive,
 2. no two triangles in the decomposition ove rlap, and
 3. the orientation of each triangle is consi stent with the orientation
 of the original primitive.

 For such primitives, the shader is executed onc e for each triangle in the
 decomposition.

 There are three vertices available for each pro gram invocation. The first,
 second and third vertices refer to attributes o f the first, second and
 third vertex of the triangle, respectively. ...

 Modify Section 2.16.4, Geometry Shader Executio n Environment, of the
 EXT_geometry_shader4 specification as follows:

 Geometry shader inputs

 (modify the spec language for primitive ID, des cribing its interaction
 with QUADS, QUAD_STRIP, and POLYGON topologies) The built-in special
 variable gl_PrimitiveIDIn is not an array and h as no vertex shader
 equivalent. It is filled with the number of pri mitives processed since the
 last time Begin was called (directly or indirec tly via vertex array
 functions). The first primitive generated afte r a Begin is numbered zero,
 and the primitive ID counter is incremented aft er every individual point,
 line, or polygon primitive is processed. For p olygons drawn in point or
 line mode, the primitive ID counter is incremen ted only once, even though
 multiple points or lines may be drawn. For QUA DS and QUAD_STRIP
 primitives that are decomposed into triangles, the primitive ID is
 incremented after each complete quad is process ed. For POLYGON
 primitives, the primitive ID counter is undefin ed. Restarting a primitive
 topology using the primitive restart index has no effect on the primitive
 ID counter.

 Geometry Shader outputs

 (modify the vertex output limit language to all ow changes to take effect
 immediately) A geometry shader is limited in th e number of vertices it may
 emit per invocation. The maximum number of vert ices a geometry shader can
 possibly emit needs to be set as a parameter of the program object that
 contains the geometry shader. To do so, call P rogramParameteriEXT with

NVIDIA OpenGL Extension Specifications NV_geometry_shader4

 1403

 <pname> set to GEOMETRY_VERTICES_OUT_EXT and <v alue> set to the maximum
 number of vertices the geometry shader will emi t in one invocation.
 Setting this limit will take effect immediately . If a geometry shader, in
 one invocation, emits more vertices than the va lue
 GEOMETRY_VERTICES_OUT_EXT, these emits may have no effect.

 (modify the error checking language for values that are too large) There
 are two implementation-dependent limits on the value of
 GEOMETRY_VERTICES_OUT_EXT. First, the error IN VALID_VALUE will be
 generated by ProgramParameteriEXT if the number of vertices specified
 exceeds the value of MAX_GEOMETRY_OUTPUT_VERTIC ES_EXT. Second, the
 product of the total number of vertices and the sum of all components of
 all active varying variables may not exceed the value of
 MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT. If <program> has already been
 successfully linked, the error INVALID_VALUE wi ll be generated by
 ProgramParameteriEXT if the specified value cau ses this limit to be
 exceeded. Additionally, LinkProgram will fail if it determines that the
 total component limit would be violated.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None

Additions to the AGL/GLX/WGL Specifications

 None

Interactions with NV_transform_feedback

 If GL_NV_transform_feedback is not supported, t he function
 GetActiveVaryingNV() needs to be added to this extension. This function
 can be used to count the number of varying comp onents output by a geometry
 shader, and from that data the maximum value fo r GEOMETRY_VERTICES_OUT_EXT
 computed by the application.

GLX protocol

 None required

NV_geometry_shader4 NVIDIA OpenGL Extension Specifications

 1404

Errors

 The error INVALID_OPERATION is generated if Beg in, or any command that
 implicitly calls Begin, is called when a geomet ry shader is active and:

 * the input primitive type of the current g eometry shader is POINTS
 and <mode> is not POINTS,

 * the input primitive type of the current g eometry shader is LINES and
 <mode> is not LINES, LINE_STRIP, or LINE_LO OP,

 * the input primitive type of the current g eometry shader is TRIANGLES
 and <mode> is not TRIANGLES, TRIANGLE_STRIP , TRIANGLE_FAN, QUADS,
 QUAD_STRIP, or POLYGON,

 * the input primitive type of the current g eometry shader is
 LINES_ADJACENCY_EXT and <mode> is not LINES _ADJACENCY_EXT or
 LINE_STRIP_ADJACENCY_EXT, or

 * the input primitive type of the current g eometry shader is
 TRIANGLES_ADJACENCY_EXT and <mode> is not T RIANGLES_ADJACENCY_EXT or
 TRIANGLE_STRIP_ADJACENCY_EXT.

 * GEOMETRY_VERTICES_OUT_EXT is zero for the currently active program
 object.

New State

 None

Issues

 1. Why is there a GL_NV_geometry_shader4 and a G L_EXT_geometry_shader4
 extension?

 RESOLVED: NVIDIA initially wrote the geometr y shader extension, and
 worked with other vendors on a common extensi on. Most of the
 functionality of the original specification w as retained, but a few
 functional changes were made, resulting in th e GL_EXT_geometry_shader4
 specification.

 Some of the functionality removed in this pro cess may be useful to
 developers, so we chose to provide an NVIDIA extension to expose this
 extra functionality.

 2. Should it be possible to change the limit on the number of vertices
 emitted by a geometry shader after the progra m object, containing the
 shader, is linked?

 RESOLVED: Yes. Applications may want to twe ak a piece of data that
 affects the number of vertices emitted, but w ouldn't otherwise require
 re-linking the entire program object. One si mple example might be a
 "circular point sprite" shader, that reads a single point, and draws a
 circle centered at that point with <N> vertic es, where <N> is provided
 as a uniform. An application could change th e value <N> at run time,
 which would require a change in the vertex li mit. Another example might
 be a geometry shader that does some fancy sub division, where the

NVIDIA OpenGL Extension Specifications NV_geometry_shader4

 1405

 relevant parameter might be a limit on how fa r the primitive is
 subdivided. This limit can be changed using the function
 ProgramParameteriEXT with <pname> set to GEOM ETRY_VERTICES_OUT_EXT.

 3. How are QUADS, QUAD_STRIP, and POLYGON primit ives decomposed into
 triangles in the initial implementation?

 RESOLVED: The specification leaves the decomp osition undefined, subject
 to a small number of rules. Assume that four vertices are specified in
 the order V0, V1, V2, V3.

 For QUADS primitives, the quad V0->V1->V2->V3 is decomposed into the
 triangles V0->V1->V2, and V0->V2->V3. The pr ovoking vertex of the quad
 (V3) is only found in the second triangle. I f it's necessary to flat
 shade over an entire quad, take the attribute s from V0, which will be
 the first vertex for both triangles in the de composition.

 For QUAD_STRIP primitives, the quad V0->V1->V 3->V2 is decomposed into
 the triangles V0->V1->V3 and V2->V0->V3. Thi s has the property of
 leaving the provoking vertex for the polygon (V3) as the third vertex
 for each triangle of the decomposition.

 For POLYGON primitives, the polygon V0->V1->V 2->V3 is decomposed into
 the triangles V1->V2->V0 and V2->V3->V0. Thi s has the property of
 leaving the provoking vertex for the polygon (V0) as the third vertex
 for each triangle of the decomposition.

 The triangulation described here is not guara nteed to be used on all
 implementations of this extension, and subseq uent implementations may
 use a more natural decomposition for QUAD_STR IP and POLYGON primitives.
 (For example, the triangulation of 4-vertex p olygons might match that
 used for QUADS.)

Revision History

 None

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1406

Name

 NV_gpu_program4

Name Strings

 GL_NV_gpu_program4

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 NVIDIA Revision: 4

Number

 322

Dependencies

 This extension is written against to OpenGL 2.0 specification.

 OpenGL 2.0 is not required, but we expect all i mplementations of this
 extension will also support OpenGL 2.0.

 This extension is also written against the ARB_ vertex_program
 specification, which provides the basic mechani sms for the assembly
 programming model used by this extension.

 This extension serves as the basis for the NV_f ragment_program4,
 NV_geometry_program4, and NV_vertex_program4, w hich all build on this
 extension to support fragment, geometry, and ve rtex programs,
 respectively. If "GL_NV_gpu_program4" is found in the extension string,
 all of these extensions are supported.

 NV_parameter_buffer_object affects the definiti on of this extension.

 ARB_texture_rectangle trivially affects the def inition of this extension.

 EXT_gpu_program_parameters trivially affects th e definition of this
 extension.

 EXT_texture_integer trivially affects the defin ition of this extension.

 EXT_texture_array trivially affects the definit ion of this extension.

 EXT_texture_buffer_object trivially affects the definition of this
 extension.

 NV_primitive_restart trivially affects the defi nition of this extension.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1407

Overview

 This specification documents the common instruc tion set and basic
 functionality provided by NVIDIA's 4th generati on of assembly instruction
 sets supporting programmable graphics pipeline stages.

 The instruction set builds upon the basic frame work provided by the
 ARB_vertex_program and ARB_fragment_program ext ensions to expose
 considerably more capable hardware. In additio n to new capabilities for
 vertex and fragment programs, this extension pr ovides a new program type
 (geometry programs) further described in the NV _geometry_program4
 specification.

 NV_gpu_program4 provides a unified instruction set -- all instruction set
 features are available for all program types, e xcept for a small number of
 features that make sense only for a specific pr ogram type. It provides
 fully capable signed and unsigned integer data types, along with a set of
 arithmetic, logical, and data type conversion i nstructions capable of
 operating on integers. It also provides a unif orm set of structured
 branching constructs (if tests, loops, and subr outines) that fully support
 run-time condition testing.

 This extension provides several new texture map ping capabilities. Shadow
 cube maps are supported, where cube map faces c an encode depth values.
 Texture lookup instructions can include an imme diate texel offset, which
 can assist in advanced filtering. New instruct ions are provided to fetch
 a single texel by address in a texture map (TXF) and query the size of a
 specified texture level (TXQ).

 By and large, vertex and fragment programs writ ten to ARB_vertex_program
 and ARB_fragment_program can be ported directly by simply changing the
 program header from "!!ARBvp1.0" or "!!ARBfp1.0 " to "!!NVvp4.0" or
 "!!NVfp4.0", and then modifying the code to tak e advantage of the expanded
 feature set. There are a small number of areas where this extension is
 not a functional superset of previous vertex pr ogram extensions, which are
 documented in this specification.

New Procedures and Functions

 void ProgramLocalParameterI4iNV(enum target, ui nt index,
 int x, int y, i nt z, int w);
 void ProgramLocalParameterI4ivNV(enum target, u int index,
 const int *par ams);
 void ProgramLocalParametersI4ivNV(enum target, uint index,
 sizei count, const int *params);
 void ProgramLocalParameterI4uiNV(enum target, u int index,
 uint x, uint y , uint z, uint w);
 void ProgramLocalParameterI4uivNV(enum target, uint index,
 const uint *p arams);
 void ProgramLocalParametersI4uivNV(enum target, uint index,
 sizei count, const uint *params);

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1408

 void ProgramEnvParameterI4iNV(enum target, uint index,
 int x, int y, int z, int w);
 void ProgramEnvParameterI4ivNV(enum target, uin t index,
 const int *param s);
 void ProgramEnvParametersI4ivNV(enum target, ui nt index,
 sizei count, co nst int *params);
 void ProgramEnvParameterI4uiNV(enum target, uin t index,
 uint x, uint y, uint z, uint w);
 void ProgramEnvParameterI4uivNV(enum target, ui nt index,
 const uint *par ams);
 void ProgramEnvParametersI4uivNV(enum target, u int index,
 sizei count, c onst uint *params);

 void GetProgramLocalParameterIivNV(enum target, uint index,
 int *params) ;
 void GetProgramLocalParameterIuivNV(enum target , uint index,
 uint *param s);
 void GetProgramEnvParameterIivNV(enum target, u int index,
 int *params);
 void GetProgramEnvParameterIuivNV(enum target, uint index,
 uint *params) ;

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MIN_PROGRAM_TEXEL_OFFSET_EXT 0x8904
 MAX_PROGRAM_TEXEL_OFFSET_EXT 0x8905

 (note: these tokens are shared with the EXT_gp u_shader4 extension.)

 Accepted by the <pname> parameter of GetProgram ivARB:

 PROGRAM_ATTRIB_COMPONENTS_NV 0x8906
 PROGRAM_RESULT_COMPONENTS_NV 0x8907
 MAX_PROGRAM_ATTRIB_COMPONENTS_NV 0x8908
 MAX_PROGRAM_RESULT_COMPONENTS_NV 0x8909
 MAX_PROGRAM_GENERIC_ATTRIBS_NV 0x8DA5
 MAX_PROGRAM_GENERIC_RESULTS_NV 0x8DA6

Additions to Chapter 2 of the OpenGL 1.5 Specificat ion (OpenGL Operation)

 (Modify "Section 2.14.1" of the ARB_vertex_prog ram specification,
 describing program parameters.)

 Each program object has an associated array of program local parameters.
 Program local parameters are four-component vec tors whose components can
 hold floating-point, signed integer, or unsigne d integer values. The data
 type of each local parameter is established whe n the parameter's values
 are assigned. If a program attempts to read a local parameter using a
 data type other than the one used when the para meter is set, the values
 returned are undefined. ... The commands

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1409

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 void ProgramLocalParameterI4iNV(enum target, uint index,
 int x, int y, int z, int w);
 void ProgramLocalParameterI4ivNV(enum target, uint index,
 const int *p arams);
 void ProgramLocalParameterI4uiNV(enum target, uint index,
 uint x, uint y, uint z, uint w);
 void ProgramLocalParameterI4uivNV(enum target , uint index,
 const uint *params);

 update the values of the program local paramete r numbered <index>
 belonging to the program object currently bound to <target>. For the
 non-vector versions of these commands, the four components of the
 parameter are updated with the values of <x>, < y>, <z>, and <w>,
 respectively. For the vector versions, the com ponents of the parameter
 are updated with the array of four values point ed to by <params>. The
 error INVALID_VALUE is generated if <index> is greater than or equal to
 the number of program local parameters supporte d by <target>.

 The commands

 void ProgramLocalParameters4fvNV(enum target, uint index,
 sizei count, const float *params);
 void ProgramLocalParametersI4ivNV(enum target , uint index,
 sizei count , const int *params);
 void ProgramLocalParametersI4uivNV(enum targe t, uint index,
 sizei coun t, const uint *params);

 update the values of the program local paramete rs numbered <index> through
 <index> + <count> - 1 with the array of 4 * <co unt> values pointed to by
 <params>. The error INVALID_VALUE is generated if the sum of <index> and
 <count> is greater than the number of program l ocal parameters supported
 by <target>.

 When a program local parameter is updated, the data type of its components
 is assigned according to the data type of the p rovided values. If values
 provided are of type "float" or "double", the c omponents of the parameter
 are floating-point. If the values provided are of type "int", the
 components of the parameter are signed integers . If the values provided
 are of type "uint", the components of the param eter are unsigned integers.

 Additionally, each program target has an associ ated array of program
 environment parameters. Unlike program local p arameters, program
 environment parameters are shared by all progra m objects of a given
 target. Program environment parameters are fou r-component vectors whose
 components can hold floating-point, signed inte ger, or unsigned integer
 values. The data type of each environment para meter is established when
 the parameter's values are assigned. If a prog ram attempts to read an
 environment parameter using a data type other t han the one used when the

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1410

 parameter is set, the values returned are undef ined. ... The commands

 void ProgramEnvParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, u int index,
 const float *p arams);
 void ProgramEnvParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramEnvParameterI4iNV(enum target, ui nt index,
 int x, int y, i nt z, int w);
 void ProgramEnvParameterI4ivNV(enum target, u int index,
 const int *par ams);
 void ProgramEnvParameterI4uiNV(enum target, u int index,
 uint x, uint y , uint z, uint w);
 void ProgramEnvParameterI4uivNV(enum target, uint index,
 const uint *p arams);

 update the values of the program environment pa rameter numbered <index>
 for the given program target <target>. For the non-vector versions of
 these commands, the four components of the para meter are updated with the
 values of <x>, <y>, <z>, and <w>, respectively. For the vector versions,
 the four components of the parameter are update d with the array of four
 values pointed to by <params>. The error INVAL ID_VALUE is generated if
 <index> is greater than or equal to the number of program environment
 parameters supported by <target>.

 The commands

 void ProgramEnvParameters4fvNV(enum target, u int index,
 sizei count, c onst float *params);
 void ProgramEnvParametersI4ivNV(enum target, uint index,
 sizei count, const int *params);
 void ProgramEnvParametersI4uivNV(enum target, uint index,
 sizei count, const uint *params);

 update the values of the program environment pa rameters numbered <index>
 through <index> + <count> - 1 with the array of 4 * <count> values pointed
 to by <params>. The error INVALID_VALUE is gen erated if the sum of
 <index> and <count> is greater than the number of program local parameters
 supported by <target>.

 When a program environment parameter is updated , the data type of its
 components is assigned according to the data ty pe of the provided values.
 If values provided are of type "float" or "doub le", the components of the
 parameter are floating-point. If the values pr ovided are of type "int",
 the components of the parameter are signed inte gers. If the values
 provided are of type "uint", the components of the parameter are unsigned
 integers.

 Insert New Section 2.X between Sections 2.Y and 2.Z:

 Section 2.X, GPU Programs

 The GL provides a number of different program t argets that allow an
 application to either replace certain fixed-fun ction pipeline stages with

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1411

 a fully programmable model or use a program to control aspects of the GL
 pipeline that previously had only hard-wired be havior.

 A common base instruction set is available for all program types,
 providing both integer and floating-point opera tions. Structured
 branching operations and subroutine calls are a vailable. Texture
 mapping (loading data from external images) is supported for all
 program types. The main differences between th e different program
 types are the set of available inputs and outpu ts, which are program type-
 specific, and a few instructions that are meani ngful for only a subset
 of program types.

 Section 2.X.2, Program Grammar

 GPU program strings are specified as an array o f ASCII characters
 containing the program text. When a GPU progra m is loaded by a call to
 ProgramStringARB, the program string is parsed into a set of tokens
 possibly separated by whitespace. Spaces, tabs , newlines, carriage
 returns, and comments are considered whitespace . Comments begin with the
 character "#" and are terminated by a newline, a carriage return, or the
 end of the program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for GPU programs. The set of valid t okens can be inferred
 from the grammar. A line containing "/* empty */" represents an empty
 string and is used to indicate optional rules. A program is invalid if it
 contains any tokens or characters not defined i n this specification.

 Note that this extension is not a standalone ex tension and a small number
 of grammar rules are left to be defined in the extensions defining the
 specific vertex, fragment, and geometry program types.

 <program> ::= <optionSequence> <d eclSequence>
 <statementSequence> "END"

 <optionSequence> ::= <option> <optionSeq uence>
 | /* empty */

 <option> ::= "OPTION" <identifie r> ";"

 <declSequence> ::= /* empty */

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"
 | <instLabel> ":"

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>
 | <FlowInstruction>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1412

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <VECSCAop_instructi on>
 | <TRIop_instruction>
 | <SWZop_instruction>

 <TexInstruction> ::= <TEXop_instruction>
 | <TXDop_instruction>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>
 | <IFop_instruction>
 | <REPop_instruction>
 | <ENDFLOWop_instruct ion>

 <VECTORop_instruction> ::= <VECTORop> <opModif iers> <instResult> ","
 <instOperandV>

 <VECTORop> ::= "ABS"
 | "CEIL"
 | "FLR"
 | "FRC"
 | "I2F"
 | "LIT"
 | "MOV"
 | "NOT"
 | "NRM"
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"
 | "ROUND"
 | "SSG"
 | "TRUNC"

 <SCALARop_instruction> ::= <SCALARop> <opModif iers> <instResult> ","
 <instOperandS>

 <SCALARop> ::= "COS"
 | "EX2"
 | "LG2"
 | "RCC"
 | "RCP"
 | "RSQ"
 | "SCS"
 | "SIN"
 | "UP2H"
 | "UP2US"
 | "UP4B"
 | "UP4UB"

 <BINSCop_instruction> ::= <BINSCop> <opModifi ers> <instResult> ","
 <instOperandS> "," <instOperandS>

 <BINSCop> ::= "POW"

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1413

 <VECSCAop_instruction> ::= <VECSCAop> <opModif iers> <instResult> ","
 <instOperandV> "," <instOperandS>

 <VECSCAop> ::= "DIV"
 | "SHL"
 | "SHR"
 | "MOD"

 <BINop_instruction> ::= <BINop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV>

 <BINop> ::= "ADD"
 | "AND"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "OR"
 | "RFL"
 | "SEQ"
 | "SFL"
 | "SGE"
 | "SGT"
 | "SLE"
 | "SLT"
 | "SNE"
 | "STR"
 | "SUB"
 | "XPD"
 | "DP2"
 | "XOR"

 <TRIop_instruction> ::= <TRIop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV> ","
 <instOperandV>

 <TRIop> ::= "CMP"
 | "DP2A"
 | "LRP"
 | "MAD"
 | "SAD"
 | "X2D"

 <SWZop_instruction> ::= <SWZop> <opModifier s> <instResult> ","
 <instOperandVNS> ", " <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <TEXop_instruction> ::= <TEXop> <opModifier s> <instResult> ","
 <instOperandV> "," <texAccess>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1414

 <TEXop> ::= "TEX"
 | "TXB"
 | "TXF"
 | "TXL"
 | "TXP"
 | "TXQ"

 <TXDop_instruction> ::= <TXDop> <opModifier s> <instResult> ","
 <instOperandV> "," <instOperandV> ","
 <instOperandV> "," <texAccess>

 <TXDop> ::= "TXD"

 <BRAop_instruction> ::= <BRAop> <opModifier s> <instTarget>
 <optBranchCond>

 <BRAop> ::= "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <opModif iers> <optBranchCond>

 <FLOWCCop> ::= "RET"
 | "BRK"
 | "CONT"

 <IFop_instruction> ::= <IFop> <opModifiers > <ccTest>

 <IFop> ::= "IF"

 <REPop_instruction> ::= <REPop> <opModifier s> <instOperandV>
 | <REPop> <opModifier s>

 <REPop> ::= "REP"

 <ENDFLOWop_instruction> ::= <ENDFLOWop> <opModi fiers>

 <ENDFLOWop> ::= "ELSE"
 | "ENDIF"
 | "ENDREP"

 <opModifiers> ::= <opModifierItem> <o pModifiers>
 | /* empty */

 <opModifierItem> ::= "." <opModifier>

 <opModifier> ::= "F"
 | "U"
 | "S"
 | "CC"
 | "CC0"
 | "CC1"
 | "SAT"
 | "SSAT"
 | "NTC"
 | "S24"
 | "U24"
 | "HI"

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1415

 <texAccess> ::= <texImageUnit> "," <texTarget>
 | <texImageUnit> "," <texTarget> "," <texOffset>

 <texImageUnit> ::= "texture" <optArray MemAbs>

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"
 | "SHADOW1D"
 | "SHADOW2D"
 | "SHADOWRECT"
 | "ARRAY1D"
 | "ARRAY2D"
 | "SHADOWCUBE"
 | "SHADOWARRAY1D"
 | "SHADOWARRAY2D"

 <texOffset> ::= "(" <texOffsetComp> ")"
 | "(" <texOffsetComp> "," <texOffsetComp> ")"
 | "(" <texOffsetComp> "," <texOffsetComp> ","
 <texOffsetComp> ")"

 <texOffsetComp> ::= <optSign> <int>

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <instOperandV> ::= <instOperandAbsV>
 | <instOperandBaseV>

 <instOperandAbsV> ::= <operandAbsNeg> "|" <instOperandBaseV> "|"

 <instOperandBaseV> ::= <operandNeg> <attri bUseV>
 | <operandNeg> <tempU seV>
 | <operandNeg> <param UseV>
 | <operandNeg> <buffe rUseV>

 <instOperandS> ::= <instOperandAbsS>
 | <instOperandBaseS>

 <instOperandAbsS> ::= <operandAbsNeg> "|" <instOperandBaseS> "|"

 <instOperandBaseS> ::= <operandNeg> <attri bUseS>
 | <operandNeg> <tempU seS>
 | <operandNeg> <param UseS>
 | <operandNeg> <buffe rUseS>

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>
 | <bufferUseVNS>

 <operandAbsNeg> ::= <optSign>

 <operandNeg> ::= <optSign>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1416

 <instResult> ::= <instResultCC>
 | <instResultBase>

 <instResultCC> ::= <instResultBase> <c cMask>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <namingStatement> ::= <varMods> <ATTRIB_s tatement>
 | <varMods> <PARAM_st atement>
 | <varMods> <TEMP_sta tement>
 | <varMods> <OUTPUT_s tatement>
 | <varMods> <BUFFER_s tatement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> <optArraySize>
 <paramMultipleInit>

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <varMods> ::= <varModifier> <varM ods>
 | /* empty */

 <varModifier> ::= "SHORT"
 | "LONG"
 | "INT"
 | "UINT"
 | "FLOAT"

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <BUFFER_statement> ::= <bufferDeclType> <e stablishName> "="
 <bufferSingleInit>
 | <bufferDeclType> <e stablishName>
 <optArraySize> "=" <bufferMultInit>

 <bufferDeclType> ::= "BUFFER"
 | "BUFFER4"

 <bufferSingleInit> ::= "=" <bufferUseDB>

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1417

 <bufferMultInit> ::= "=" "{" <bufferMult InitList> "}"

 <bufferMultInitList> ::= <bufferUseDM>
 | <bufferUseDM> "," < bufferMultInitList>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribVarName> <ar rayMem> <swizzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribVarName> <ar rayMem> <scalarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribVarName> <ar rayMem>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>
 | <attribMulti>

 <paramUseV> ::= <paramVarName> <opt ArrayMem> <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar>

 <paramUseS> ::= <paramVarName> <opt ArrayMem> <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar>

 <paramUseVNS> ::= <paramVarName> <opt ArrayMem>
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1418

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exGenItem>
 | "state" "." <stateC lipPlaneItem>
 | "state" "." <stateP ointItem>
 | "state" "." <stateT exEnvItem>
 | "state" "." <stateD epthItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" <arrayMemAb s> "." <stateLightProperty>

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" "." <s tateLModProperty>

 <stateLModProperty> ::= "ambient"
 | "scenecolor"
 | <faceType> "." "sce necolor"

 <stateLightProdItem> ::= "lightprod" <arrayM emAbs> "."
 <stateLProdProperty >
 | "lightprod" <arrayM emAbs> "." <faceType> "."
 <stateLProdProperty >

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1419

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" <arrayRange>
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" <arrayRange>

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" <arrayMemAbs>
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" <arrayMemAbs>

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixName> ::= "modelview" <optArr ayMemAbs>
 | "projection"
 | "mvp"
 | "texture" <optArray MemAbs>
 | "program" <arrayMem Abs>

 <stateTexGenItem> ::= "texgen" <optArrayM emAbs> "."
 <stateTexGenType> " ." <stateTexGenCoord>

 <stateTexGenType> ::= "eye"
 | "object"

 <stateTexGenCoord> ::= "s"
 | "t"
 | "r"
 | "q"

 <stateClipPlaneItem> ::= "clip" <arrayMemAbs > "." "plane"

 <statePointItem> ::= "point" "." <stateP ointProperty>

 <statePointProperty> ::= "size"
 | "attenuation"

 <stateTexEnvItem> ::= "texenv" <optArrayM emAbs> "."
 <stateTexEnvPropert y>

 <stateTexEnvProperty> ::= "color"

 <stateDepthItem> ::= "depth" "." <stateD epthProperty>

 <stateDepthProperty> ::= "range"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1420

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" <arrayMemAbs>
 | "program" "." "env" <arrayRange>

 <progEnvParam> ::= "program" "." "env" <arrayMemAbs>

 <progLocalParams> ::= "program" "." "loca l" <arrayMemAbs>
 | "program" "." "loca l" <arrayRange>

 <progLocalParam> ::= "program" "." "loca l" <arrayMemAbs>

 <constantVector> ::= "{" <constantVector List> "}"

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>
 | <intConstant>

 <floatConstant> ::= <float>

 <intConstant> ::= <int>

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>

 <resultUseD> ::= <resultBasic>

 <bufferUseV> ::= <bufferVarName> <op tArrayMem> <swizzleSuffix>

 <bufferUseS> ::= <bufferVarName> <op tArrayMem> <scalarSuffix>

 <bufferUseVNS> ::= <bufferVarName> <op tArrayMem>

 <bufferUseDB> ::= <bufferBinding> <ar rayMemAbs>

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1421

 <bufferUseDM> ::= <bufferBinding> <ar rayMemAbs>
 | <bufferBinding> <ar rayRange>
 | <bufferBinding>

 <bufferBinding> ::= "program" "." "buff er" <arrayMemAbs>

 <optArraySize> ::= "[" "]"
 | "[" <int> "]"

 <optArrayMem> ::= /* empty */
 | <arrayMem>

 <arrayMem> ::= <arrayMemAbs>
 | <arrayMemRel>

 <optArrayMemAbs> ::= /* empty */
 | <arrayMemAbs>

 <arrayMemAbs> ::= "[" <int> "]"

 <arrayMemRel> ::= "[" <arrayMemReg> < arrayMemOffset> "]"

 <arrayMemReg> ::= <addrUseS>

 <arrayMemOffset> ::= /* empty */
 | "+" <int>
 | "-" <int>

 <arrayRange> ::= "[" <int> ".." <int > "]"

 <addrUseS> ::= <addrVarName> <scal arSuffix>

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1422

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"
 | "TR"
 | "FL"
 | "EQ0"
 | "GE0"
 | "GT0"
 | "LE0"
 | "LT0"
 | "NE0"
 | "TR0"
 | "FL0"
 | "EQ1"
 | "GE1"
 | "GT1"
 | "LE1"
 | "LT1"
 | "NE1"
 | "TR1"
 | "FL1"
 | "NAN"
 | "NAN0"
 | "NAN1"
 | "LEG"
 | "LEG0"
 | "LEG1"
 | "CF"
 | "CF0"
 | "CF1"
 | "NCF"
 | "NCF0"
 | "NCF1"
 | "OF"
 | "OF0"
 | "OF1"
 | "NOF"
 | "NOF0"
 | "NOF1"
 | "AB"
 | "AB0"
 | "AB1"
 | "BLE"
 | "BLE0"
 | "BLE1"
 | "SF"
 | "SF0"
 | "SF1"
 | "NSF"
 | "NSF0"
 | "NSF1"

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1423

 <optWriteMask> ::= /* empty */
 | <xyzwMask>
 | <rgbaMask>

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwSwizzle>
 | "." <rgbaSwizzle>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>
 | <optSign> <rgbaExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= <rgbaComponent>

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1424

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <rgbaComponent> ::= "r"
 | "g"
 | "b"
 | "a"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <instLabel> ::= <identifier>

 <instTarget> ::= <identifier>

 <establishedName> ::= <identifier>

 <establishName> ::= <identifier>

 The <int> rule matches an integer constant. Th e integer consists of a
 sequence of one or more digits ("0" through "9"), or a sequence in
 hexadecimal form beginning with "0x" followed b y a sequence of one or more
 hexadecimal digits ("0" through "9", "a" throug h "f", "A" through "F").

 The <float> rule matches a floating-point const ant consisting of an
 integer part, a decimal point, a fraction part, an "e" or "E", and an
 optionally signed integer exponent. The intege r and fraction parts both
 consist of a sequence of one or more digits ("0 " through "9"). Either the
 integer part or the fraction parts (not both) m ay be missing; either the
 decimal point or the "e" (or "E") and the expon ent (not both) may be
 missing. Most grammar rules that allow floatin g-point values also allow
 integers matching the <int> rule.

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z"), digits ("0" thro ugh "9), underscores ("_"),
 or dollar signs ("$"); the first character must not be a number. Upper
 and lower case letters are considered different (names are
 case-sensitive). The following strings are res erved keywords and may not
 be used as identifiers: "fragment" (for fragme nt programs only), "vertex"
 (for vertex and geometry programs), "primitive" (for fragment and geometry
 programs), "program", "result", "state", and "t exture".

 The <tempVarName>, <paramVarName>, <attribVarNa me>, <resultVarName>, and
 <bufferName> rules match identifiers that have been previously established
 as names of temporary, program parameter, attri bute, result, and program
 parameter buffer variables, respectively.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1425

 The <xyzwSwizzle> and <rgbaSwizzle> rules match any 4-character strings
 consisting only of the characters "x", "y", "z" , and "w" (<xyzwSwizzle>)
 or "r", "g", "b", "a" (<rgbaSwizzle>).

 The error INVALID_OPERATION is generated if a p rogram fails to load
 because it is not syntactically correct or for one of the semantic
 restrictions described in the following section s.

 A successfully loaded program is parsed into a sequence of instructions.
 Each instruction is identified by its tokenized name. The operation of
 these instructions when executed is defined in section 2.X.4. A
 successfully loaded program string replaces the program string previously
 loaded into the specified program object. If t he OUT_OF_MEMORY error is
 generated by ProgramStringARB, no change is mad e to the previous contents
 of the current program object.

 Section 2.X.3, Program Variables

 Programs may operate on a number of different v ariables during their
 execution. The following sections define the d ifferent classes of
 variables that can be declared and used by a pr ogram.

 Some variable classes require variable bindings . Variable classes with
 bindings refer to state that is either generate d or consumed outside the
 program. Examples of variable bindings include a vertex's normal, the
 position of a vertex computed by a vertex progr am, an interpolated texture
 coordinate, and the diffuse color of light 1. Variables that are used
 only during program execution do not have bindi ngs.

 Variables may be declared explicitly according to the <namingStatement>
 grammar rule. Explicit variable declarations a llow a program to establish
 a variable name that can be used to refer to a specified resource in
 subsequent instructions. Variables may be decl ared anywhere in the
 program string, but must be declared prior to u se. A program will fail to
 load if it declares the same variable name more than once, or if it refers
 to a variable name that has not been previously declared in the program
 string.

 Variables may also be declared implicitly, simp ly by using a variable
 binding as an operand in a program instruction. Such uses are considered
 to automatically create a nameless variable usi ng the specified binding.
 Only variable from classes with bindings can be declared implicitly.

 Section 2.X.3.1, Program Variable Types

 Explicit variable declarations may include one or more modifiers that
 specify additional information about the variab le, such as the size and
 data type of the components of the variable. V ariable modifiers are
 specified according to the <varModifier> gramma r rule.

 By default, variables are considered typeless. They can be used in
 instructions that read or write the variable as floating-point values,
 signed integers, or unsigned integers. If a va riable is written using one
 data type but then read using a different one, the results of the
 operation are undefined. Variables with bindin gs are considered to be
 read or written when their values are produced or consumed; the data type
 used by the GL is specified in the description of each binding.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1426

 Explicitly declared variables may optionally ha ve one data type modifier,
 which can be used to detect data type mismatch errors. Type modifers of
 "INT", "UINT", and "FLOAT" indicate that the co mponents of the variable
 are stored as signed integers, unsigned integer s, or floating-point
 values, respectively. A program will fail to l oad if it attempts to read
 or write a variable using a data type other tha n the one indicated by the
 data type modifier. Variables without a data t ype modifier can be read or
 written using any data type.

 Explicitly declared variables may optionally ha ve one storage size
 modifier. Variables decared as "SHORT" will be represented using at least
 16 bits per component. "SHORT" floating-point values will have at least 5
 bits of exponent and 10 bits of mantissa. Vari ables declared as "LONG"
 will be represented with at least 32 bits per c omponent. "LONG"
 floating-point values will have at least 8 bits of exponent and 23 bits of
 mantissa. If no size modifier is provided, the GL will automatically
 select component sizes. Implementations are no t required to support more
 than one component size, so "SHORT", "LONG", an d the default could all
 refer to the same component size.

 Each variable declaration can include at most o ne data type and one
 storage size modifier. A program will fail to load if it specifies
 multiple data type or multiple storage size mod ifiers in a single variable
 declaration.

 (NOTE: Fragment programs also support the modi fiers "FLAT", "CENTROID",
 and "NOPERSPECTIVE", which control how per-frag ment attribute values are
 produced. These modifiers are described in det ail in the
 NV_fragment_program4 specification.)

 Explicitly declared variables of all types may be declared as arrays. An
 array variable has one or more members, numbere d 0 through <n>-1, where
 <n> is the number of entries in the array. The total number of entries in
 the array can be declared using the <optArraySi ze> grammar rule. For
 variable classes without bindings, an array siz e must be specified in the
 program, and must be a positive integer. For v ariable classes with
 bindings, a declared size is optional, and is t aken from the number of
 bindings assigned in the declaration if omitted . A program will fail to
 load if the declared size of an array variable does not match the number
 of assigned bindings.

 When a variable is declared as an array, instru ctions that use the
 variable must specify an array member to access according to the
 <arrayMem> grammar rule. A program will fail t o load if it contains an
 instruction that accesses an array variable wit hout specifying an array
 member or an instruction that specifies an arra y member for a non-array
 variable.

 Section 2.X.3.2, Program Attribute Variables

 Program attribute variables represent per-verte x or per-fragment inputs to
 the program. All attribute variables have asso ciated bindings, and are
 read-only during program execution. Attribute variables may be declared
 explicitly via the <ATTRIB_statement> grammar r ule, or implicitly by using
 an attribute binding in an instruction.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1427

 The set of available attribute bindings depends on the program type, and
 is enumerated in the specifications for each pr ogram type.

 The set of bindings allowed for attribute array variables is limited to
 attribute state grouped in arrays (e.g., textur e coordinates, generic
 vertex attributes). Additionally, all bindings assigned to the array must
 be of the same binding type and must increase c onsecutively. Examples of
 valid and invalid binding lists include:

 vertex.attrib[1], vertex.attrib[2] # val id, 2-entry array
 vertex.texcoord[0..3] # val id, 4-entry array
 vertex.attrib[1], vertex.attrib[3] # inv alid, skipped attrib 2
 vertex.attrib[2], vertex.attrib[1] # inv alid, wrong order
 vertex.attrib[1], vertex.texcoord[2] # inv alid, different types

 Additionally, attribute bindings may be used in no more than one array
 variable accessed with relative addressing.

 Implementations may have a limit on the total n umber of attribute binding
 components used by each program target (MAX_PRO GRAM_ATTRIB_COMPONENTS).
 Programs that use more attribute binding compon ents than this limit will
 fail to load. The method of counting used attr ibute binding components is
 implementation-dependent, but must satisfy the following properties:

 * If an attribute binding is not referenced i n a program, or is
 referenced only in declarations of attribut e variables that are not
 used, none of its components are counted.

 * An attribute binding component may be count ed as used only if there
 exists an instruction operand where

 - the component is enabled for read by th e swizzle pattern (Section
 2.X.4.2), and

 - the attribute binding is

 - referenced directly by the operand,

 - bound to a declared variable refere nced by the operand, or

 - bound to a declared array variable where another binding in
 the array satisfies one of the two previous conditions.

 Implementations are not required to optimiz e out unused elements of an
 attribute array or components that are used in only some elements of
 an array. The last of these rules is inten ded to cover the case where
 the same attribute binding is used in multi ple variables.

 For example, an operand whose swizzle patte rn selects only the x
 component may result in the x component of an attribute binding being
 counted, but may never result in the counti ng of the y, z, or w
 components of any attribute binding.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1428

 * Implementations are not required to determi ne that components read by
 an instruction are actually unused due to:

 - instruction write masks (for example, a component-wise ADD
 operation that only writes the "x" comp onent doesn't have to read
 the "y", "z", and "w" components of its operands) or

 - any other properties of the instruction (for example, the DP3
 instruction computes a 3-component dot product doesn't have to
 read the "w" component of its operands) .

 Section 2.X.3.3, Program Parameters

 Program parameter variables are used as constan ts during program
 execution. All program parameter variables hav e associated bindings and
 are read-only during program execution. Progra m parameters retain their
 values across program invocations, although the ir values may change
 between invocations due to GL state changes. P rogram parameter variables
 may be declared explicitly via the <PARAM_state ment> grammar rule, or
 implicitly by using a parameter binding in an i nstruction. Except where
 otherwise specified, program parameter bindings always specify
 floating-point values.

 When declaring program parameter array variable s, all bindings are
 supported and can be assigned to array members in any order. The only
 restriction is that no parameter binding may be used more than once in
 array variables accessed using relative address ing. A program will fail
 to load if any program parameter binding is use d more than once in a
 single array accessed using relative addressing or used at least once in
 two or more arrays accessed using relative addr essing.

 Constant Bindings

 If a program parameter binding matches the <con stantScalar> or
 <signedConstantScalar> grammar rules, the corre sponding program parameter
 variable is bound to the vector (X,X,X,X), wher e X is the value of the
 specified constant.

 If a program parameter binding matches <constan tVector>, the corresponding
 program parameter variable is bound to the vect or (X,Y,Z,W), where X, Y,
 Z, and W are the values corresponding to the fi rst, second, third, and
 fourth match of <signedConstantScalar>. If few er than four constants are
 specified, Y, Z, and W assume the values 0, 0, and 1, if their respective
 constants are not specified.

 Constant bindings can be interpreted as having signed integer, unsigned
 integer, or floating-point values, depending on how they are used in the
 program text. For constants in variable declar ations, the components of
 the constant are interpreted according to the v ariable's component data
 type modifier. If no data type modifier is spe cified in a declaration,
 constants are interpreted as floating-point val ues. For constant bindings
 used directly in an instruction, the components of the constant are
 interpreted according to the required data type of the operand. A program
 will fail to load if it specifies a floating-po int constant value
 (matching the <floatConstant> grammar rule) tha t should be interpreted as
 a signed or unsigned integer, or a negative int eger constant value that
 should be interpreted as an unsigned integer.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1429

 If the value used to specify a floating-point c onstant can not be exactly
 represented, the nearest floating-point value w ill be used. If the value
 used to specify an integer constant is too larg e to be represented, the
 program will fail to load.

 Program Environment/Local Parameter Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ -------------------------
 program.env[a] (x,y,z,w) progra m environment parameter a
 program.local[a] (x,y,z,w) progra m local parameter a
 program.env[a..b] (x,y,z,w) progra m environment parameters
 a thro ugh b
 program.local[a..b] (x,y,z,w) progra m local parameters
 a thro ugh b

 Table X.1: Program Environment/Local Parameter Bindings. <a > and
 indicate parameter numbers, where <a> must be less than or equal to .

 If a program parameter binding matches "program .env[a]" or
 "program.local[a]", the four components of the program parameter variable
 are filled with the four components of program environment parameter <a>
 or program local parameter <a> respectively.

 Additionally, for program parameter array bindi ngs, "program.env[a..b]"
 and "program.local[a..b]" are equivalent to spe cifying program environment
 or local parameters <a> through in order, r espectively. A program
 using any of these bindings will fail to load i f <a> is greater than .

 Program environment and local parameters are ty peless, and may be
 specified as signed integer, unsigned integer, or floating-point
 variables. If a program environment parameter is read using a data type
 other than the one used to specify it, an undef ined value is returned.

 Material Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.material.ambient (r,g,b,a) fr ont ambient material color
 state.material.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.specular (r,g,b,a) fr ont specular material color
 state.material.emission (r,g,b,a) fr ont emissive material color
 state.material.shininess (s,0,0,1) fr ont material shininess
 state.material.front.ambient (r,g,b,a) fr ont ambient material color
 state.material.front.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.front.specular (r,g,b,a) fr ont specular material color
 state.material.front.emission (r,g,b,a) fr ont emissive material color
 state.material.front.shininess (s,0,0,1) fr ont material shininess
 state.material.back.ambient (r,g,b,a) ba ck ambient material color
 state.material.back.diffuse (r,g,b,a) ba ck diffuse material color
 state.material.back.specular (r,g,b,a) ba ck specular material color
 state.material.back.emission (r,g,b,a) ba ck emissive material color
 state.material.back.shininess (s,0,0,1) ba ck material shininess

 Table X.3: Material Property Bindings. If a material face i s not
 specified in the binding, the front property is used.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1430

 If a program parameter binding matches any of t he material properties
 listed in Table X.3, the program parameter vari able is filled according to
 the table. For ambient, diffuse, specular, or emissive colors, the "x",
 "y", "z", and "w" components are filled with th e "r", "g", "b", and "a"
 components, respectively, of the corresponding material color. For
 material shininess, the "x" component is filled with the material's
 specular exponent, and the "y", "z", and "w" co mponents are filled with
 the floating-point constants 0, 0, and 1, respe ctively. Bindings
 containing ".back" refer to the back material; all other bindings refer to
 the front material.

 Material properties can be changed inside a Beg in/End pair, either
 directly by calling Material, or indirectly thr ough color material.
 However, such property changes are not guarante ed to update program
 parameter bindings until the following End comm and. Program parameter
 variables bound to material properties changed inside a Begin/End pair are
 undefined until the following End command.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1431

 Light Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.light[n].ambient (r,g,b,a) li ght n ambient color
 state.light[n].diffuse (r,g,b,a) li ght n diffuse color
 state.light[n].specular (r,g,b,a) li ght n specular color
 state.light[n].position (x,y,z,w) li ght n position
 state.light[n].attenuation (a,b,c,e) li ght n attenuation constants
 an d spot light exponent
 state.light[n].spot.direction (x,y,z,c) li ght n spot direction and
 cu toff angle cosine
 state.light[n].half (x,y,z,1) li ght n infinite half-angle
 state.lightmodel.ambient (r,g,b,a) li ght model ambient color
 state.lightmodel.scenecolor (r,g,b,a) li ght model front scene color
 state.lightmodel. (r,g,b,a) li ght model front scene color
 front.scenecolor
 state.lightmodel. (r,g,b,a) li ght model back scene color
 back.scenecolor
 state.lightprod[n].ambient (r,g,b,a) li ght n / front material
 am bient color product
 state.lightprod[n].diffuse (r,g,b,a) li ght n / front material
 di ffuse color product
 state.lightprod[n].specular (r,g,b,a) li ght n / front material
 sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.specular sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.specular sp ecular color product

 Table X.4: Light Property Bindings. <n> indicates a light nu mber.

 If a program parameter binding matches "state.l ight[n].ambient",
 "state.light[n].diffuse", or "state.light[n].sp ecular", the "x", "y", "z",
 and "w" components of the program parameter var iable are filled with the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 light color.

 If a program parameter binding matches "state.l ight[n].position", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of the light
 position.

 If a program parameter binding matches "state.l ight[n].attenuation", the
 "x", "y", and "z" components of the program par ameter variable are filled
 with the constant, linear, and quadratic attenu ation parameters of the
 specified light, respectively (section 2.13.1). The "w" component of the
 program parameter variable is filled with the s pot light exponent of the
 specified light.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1432

 If a program parameter binding matches "state.l ight[n].spot.direction",
 the "x", "y", and "z" components of the program parameter variable are
 filled with the "x", "y", and "z" components of the spot light direction
 of the specified light, respectively (section 2 .13.1). The "w" component
 of the program parameter variable is filled wit h the cosine of the spot
 light cutoff angle of the specified light.

 If a program parameter binding matches "state.l ight[n].half", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the x, y, and z components, respectively, of th e normalized infinite
 half-angle vector

 h_inf = || P + (0, 0, 1) ||.

 The "w" component is filled with 1.0. In the c omputation of h_inf, P
 consists of the x, y, and z coordinates of the normalized vector from the
 eye position P_e to the eye-space light positio n P_pli (section 2.13.1).
 h_inf is defined to correspond to the normalize d half-angle vector when
 using an infinite light (w coordinate of the po sition is zero) and an
 infinite viewer (v_bs is FALSE). For local lig hts or a local viewer,
 h_inf is well-defined but does not match the no rmalized half-angle vector,
 which will vary depending on the vertex positio n.

 If a program parameter binding matches "state.l ightmodel.ambient", the
 "x", "y", "z", and "w" components of the progra m parameter variable are
 filled with the "r", "g", "b", and "a" componen ts of the light model
 ambient color, respectively.

 If a program parameter binding matches "state.l ightmodel.scenecolor" or
 "state.lightmodel.front.scenecolor", the "x", " y", and "z" components of
 the program parameter variable are filled with the "r", "g", and "b"
 components respectively of the "front scene col or"

 c_scene = a_cs * a_cm + e_cm,

 where a_cs is the light model ambient color, a_ cm is the front ambient
 material color, and e_cm is the front emissive material color. The "w"
 component of the program parameter variable is filled with the alpha
 component of the front diffuse material color. If a program parameter
 binding matches "state.lightmodel.back.scenecol or", a similar back scene
 color, computed using back-facing material prop erties, is used. The front
 and back scene colors match the values that wou ld be assigned to vertices
 using conventional lighting if all lights were disabled.

 If a program parameter binding matches anything beginning with
 "state.lightprod[n]", the "x", "y", and "z" com ponents of the program
 parameter variable are filled with the "r", "g" , and "b" components,
 respectively, of the corresponding light produc t. The three light product
 components are the products of the correspondin g color components of the
 specified material property and the light color of the specified light
 (see Table X.4). The "w" component of the prog ram parameter variable is
 filled with the alpha component of the specifie d material property.

 Light products depend on material properties, w hich can be changed inside
 a Begin/End pair. Such property changes are no t guaranteed to take effect
 until the following End command. Program param eter variables bound to

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1433

 light products whose corresponding material pro perty changes inside a
 Begin/End pair are undefined until the followin g End command.

 Texture Coordinate Generation Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texgen[n].eye.s (a,b,c,d) TexGen eye linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].eye.t (a,b,c,d) TexGen eye linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].eye.r (a,b,c,d) TexGen eye linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].eye.q (a,b,c,d) TexGen eye linear plane
 coeffi cients, q coord, unit n
 state.texgen[n].object.s (a,b,c,d) TexGen object linear plane
 coeffi cients, s coord, unit n
 state.texgen[n].object.t (a,b,c,d) TexGen object linear plane
 coeffi cients, t coord, unit n
 state.texgen[n].object.r (a,b,c,d) TexGen object linear plane
 coeffi cients, r coord, unit n
 state.texgen[n].object.q (a,b,c,d) TexGen object linear plane
 coeffi cients, q coord, unit n

 Table X.5: Texture Coordinate Generation Property Bindings. "[n]" is
 optional -- texture unit <n> is used if speci fied; texture unit 0 is
 used otherwise.

 If a program parameter binding matches a set of TexGen plane coefficients,
 the "x", "y", "z", and "w" components of the pr ogram parameter variable
 are filled with the coefficients p1, p2, p3, an d p4, respectively, for
 object linear coefficients, and the coefficents p1', p2', p3', and p4',
 respectively, for eye linear coefficients (sect ion 2.10.4).

 Fog Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.fog.color (r,g,b,a) RG B fog color (section 3.10)
 state.fog.params (d,s,e,r) fo g density, linear start
 an d end, and 1/(end-start)
 (s ection 3.10)

 Table X.6: Fog Property Bindings

 If a program parameter binding matches "state.f og.color", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the "r", "g", "b", and "a" components, respecti vely, of the fog color
 (section 3.10).

 If a program parameter binding matches "state.f og.params", the "x", "y",
 and "z" components of the program parameter var iable are filled with the
 fog density, linear fog start, and linear fog e nd parameters (section
 3.10), respectively. The "w" component is fill ed with 1/(end-start),
 where end and start are the linear fog end and start parameters,
 respectively.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1434

 Clip Plane Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.clip[n].plane (a,b,c,d) cl ip plane n coefficients

 Table X.7: Clip Plane Property Bindings. <n> specifies the clip plane
 number, and is required.

 If a program parameter binding matches "state.c lip[n].plane", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the coefficients p1', p2', p3', and p4', r espectively, of clip plane
 <n> (section 2.11).

 Point Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.point.size (s,n,x,f) po int size, min and max size
 cl amps, and fade threshold
 (s ection 3.3)
 state.point.attenuation (a,b,c,1) po int size attenuation consts

 Table X.8: Point Property Bindings

 If a program parameter binding matches "state.p oint.size", the "x", "y",
 "z", and "w" components of the program paramete r variable are filled with
 the point size, minimum point size, maximum poi nt size, and fade
 threshold, respectively (section 3.3).

 If a program parameter binding matches "state.p oint.attenuation", the "x",
 "y", and "z" components of the program paramete r variable are filled with
 the constant, linear, and quadratic point size attenuation parameters (a,
 b, and c), respectively (section 3.3). The "w" component is filled with
 1.0.

 Texture Environment Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texenv[n].color (r,g,b,a) textur e environment n color

 Table X.9: Texture Environment Property Bindings. "[n]" is optional --
 texture unit <n> is used if specified; textur e unit 0 is used otherwise.

 If a program parameter binding matches "state.t exenv[n].color", the "x",
 "y", "z", and "w" components of the program par ameter variable are filled
 with the "r", "g", "b", and "a" components, res pectively, of the
 corresponding texture environment color. Note that only "legacy" texture
 units, as queried by MAX_TEXTURE_UNITS, include texture environment state.
 Texture image units and texture coordinate sets do not have associated
 texture environment state.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1435

 Depth Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.depth.range (n,f,d,1) Dept h range near, far, and
 (far -near) (section 2.10.1)

 Table X.10: Depth Property Bindings

 If a program parameter binding matches "state.d epth.range", the "x" and
 "y" components of the program parameter variabl e are filled with the
 mappings of near and far clipping planes to win dow coordinates,
 respectively. The "z" component is filled with the difference of the
 mappings of near and far clipping planes, far m inus near. The "w"
 component is filled with 1.0.

 Matrix Property Bindings

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 * state.matrix.modelview[n] modelvi ew matrix n
 state.matrix.projection project ion matrix
 state.matrix.mvp modelvi ew-projection matrix
 * state.matrix.texture[n] texture matrix n
 state.matrix.program[n] program matrix n

 Table X.11: Base Matrix Property Bindings. The "[n]" syntax indicates
 a specific matrix number. For modelview and texture matrices, a matrix
 number is optional, and matrix zero will be u sed if the matrix number is
 omitted. These base bindings may further be modified by a
 inverse/transpose selector and a row selector .

 If the beginning of a program parameter binding matches any of the matrix
 binding names listed in Table X.11, the binding corresponds to a 4x4
 matrix. If the parameter binding is followed b y ".inverse", ".transpose",
 or ".invtrans" (<stateMatModifier> grammar rule), the inverse, transpose,
 or transpose of the inverse, respectively, of t he matrix specified in
 Table X.11 is selected. Otherwise, the matrix specified in Table X.11 is
 selected. If the specified matrix is poorly-co nditioned (singular or
 nearly so), its inverse matrix is undefined. T he binding name
 "state.matrix.mvp" refers to the product of mod elview matrix zero and the
 projection matrix, defined as

 MVP = P * M0,

 where P is the projection matrix and M0 is mode lview matrix zero.

 If the selected matrix is followed by ".row[<a>]" (matching the
 <stateMatrixRow> grammar rule), the "x", "y", " z", and "w" components of
 the program parameter variable are filled with the four entries of row <a>
 of the selected matrix. In the example,

 PARAM m0 = state.matrix.modelview[1].row[0];
 PARAM m1 = state.matrix.projection.transpose. row[3];

 the variable "m0" is set to the first row (row 0) of modelview matrix 1
 and "m1" is set to the last row (row 3) of the transpose of the projection

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1436

 matrix.

 For program parameter array bindings, multiple rows of the selected matrix
 can be bound via the <stateMatrixRows> grammar rule. If the selected
 matrix binding is followed by ".row[<a>..]", the result is equivalent
 to specifying matrix rows <a> through , in o rder. A program will fail
 to load if <a> is greater than . If no row selection is specified
 (<optMatrixRows> matches ""), matrix rows 0 thr ough 3 are bound in order.
 In the example,

 PARAM m2[] = { state.matrix.program[0].row[1. .2] };
 PARAM m3[] = { state.matrix.program[0].transp ose };

 the array "m2" has two entries, containing rows 1 and 2 of program matrix
 zero, and "m3" has four entries, containing all four rows of the transpose
 of program matrix zero.

 Section 2.X.3.4, Program Temporaries

 Program temporary variables are used to hold te mporary results during
 program execution. Temporaries do not persist between program
 invocations, and are undefined at the beginning of each program
 invocation.

 Temporary variables are declared explicitly usi ng the <TEMP_statement>
 grammar rule. Each such statement can declare one or more temporaries.
 Temporaries can not be declared implicitly. Te mporaries can be declared
 using any component size ("SHORT" or "LONG") an d type ("FLOAT" or "INT")
 modifier.

 Temporary variables may be declared as arrays. Temporary variables
 declared as arrays may be stored in slower memo ry than those not declared
 as arrays, and it is recommended to use non-arr ay variables unless array
 functionality is required.

 Section 2.X.3.5, Program Results

 Program result variables represent the per-vert ex or per-fragment results
 of the program. All result variables have asso ciated bindings, are
 write-only during program execution, and are un defined at the beginning of
 each program invocation. Any vertex or fragmen t attributes corresponding
 to unwritten result variables will be undefined in subsequent stages of
 the pipeline. Result variables may be declared explicitly via the
 <OUTPUT_statement> grammar rule, or implicitly by using a result binding
 in an instruction.

 The set of available result bindings depends on the program type, and is
 enumerated in the specifications for each progr am type.

 Result variables may generally be declared as a rrays, but the set of
 bindings allowed for arrays is limited to state grouped in arrays (e.g.,
 texture coordinates, clip distances, colors). Additionally, all bindings
 assigned to the array must be of the same bindi ng type and must increase
 consecutively. Examples of valid and invalid b inding lists for vertex
 programs include:

 result.clip[1], result.clip[2] # val id, 2-entry array

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1437

 result.texcoord[0..3] # val id, 4-entry array
 result.texcoord[1], result.texcoord[3] # inv alid, skipped texcoord 2
 result.texcoord[2], result.texcoord[1] # inv alid, wrong order
 result.texcoord[1], result.clip[2] # inv alid, different types

 Additionally, result bindings may be used in no more than one array
 addressed with relative addressing.

 Implementations may have a limit on the total n umber of result binding
 components used by each program target (MAX_PRO GRAM_RESULT_COMPONENTS_NV).
 Programs that require more result binding compo nents than this limit will
 fail to load. The method of counting used resu lt binding components is
 implementation-dependent, but must satisfy the following properties:

 * If a result binding is not referenced in a program, or is referenced
 only in declarations of result variables th at are not used, none of
 its components are counted.

 * A result binding component may be counted a s used only if there exists
 an instruction operand where

 - the component is enabled in the write m ask (Section 2.X.4.3), and

 - the result binding is either

 - referenced directly by the operand,

 - bound to a declared variable refere nced by the operand, or

 - bound to a declared array variable where another binding in
 the array satisfies one of the two previous conditions.

 Implementations are not required to optimiz e out unused elements of an
 result array or components that are used in only some elements of an
 array. The last of these rules is intended to cover the case where
 the same result binding is used in multiple variables.

 For example, an instruction whose write mas k selects only the x
 component may result in the x component of a result binding being
 counted, but may never result in the counti ng of the y, z, or w
 components of any result binding.

 Section 2.X.3.6, Program Parameter Buffers

 Program parameter buffers are arrays consisting of single-component
 typeless values or four-component typeless vect ors stored in a buffer
 object. The GL provides an implementation-depe ndent number of buffer
 object binding points for each program target, to which buffer objects can
 be attached. Program parameter buffer variable s can be changed either by
 updating the contents of bound buffer objects, or simply by changing the
 buffer object attached to a binding point.

 Program parameter buffer variables are used as constants during program
 execution. All program parameter buffer variab les have an associated
 binding and are read-only during program execut ion. Program parameter
 buffers retain their values across program invo cations, although their
 values may change as buffer object bindings or contents change. Program

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1438

 parameter buffer variables must be declared exp licitly via the
 <BUFFER_statement> grammar rule. Program param eter buffer bindings can
 not be used directly in executable instructions .

 Program parameter buffer variables are treated as an array of
 single-component values if the <bufferDeclType> grammar rule matches
 "BUFFER" or as an array of four-component vecto rs if it matches "BUFFER4".
 A program will fail to load if a variable decla red as "BUFFER" and another
 variable declared as "BUFFER4" use the same buf fer binding point.

 Program parameter buffer variables may be decla red as arrays, but all
 bindings assigned to the array must use the sam e binding point and must
 increase consecutively.

 Binding Components Un derlying State
 ----------------------------- ---------- -- ---------------------------
 program.buffer[a][b] (x,x,x,x) pr ogram parameter buffer a,
 element b
 program.buffer[a][b..c] (x,x,x,x) pr ogram parameter buffer a,
 elements b through c
 program.buffer[a] (x,x,x,x) pr ogram parameter buffer a,
 all elements

 Table X.12: Program Parameter Buffer Bindings. <a> indicates a buffer
 number, and <c> indicate individual eleme nts.

 If a program parameter buffer binding matches " program.buffer[a][b]", the
 program parameter variable are filled with elem ent of the buffer
 object bound to binding point <a>. Each elemen t of the bound buffer
 object is treated a one or four words of data t hat can hold integer or
 floating-point values. When a single-component binding is evaluated, the
 selected word is broadcast to all four componen ts of the variable. When a
 four-component binding is evaluated, the four c omponents of the buffer
 element are loaded into the variable. If no bu ffer object is bound to
 binding point <a>, or the bound buffer object i s not large enough to hold
 an element , the values used are undefined. The binding point <a> must
 be a nonnegative integer constant.

 For program parameter buffer array declarations , "program.buffer[a][b..c]"
 is equivalent to specifying elements throug h <c> of the buffer object
 bound to binding point <a> in order.

 For program parameter buffer array declarations , "program.buffer[a]" is
 equivalent to specifying the entire buffer -- e lements 0 through <n>-1,
 where <n> is either the size of the array (if d eclared) or the
 implementation-dependent maximum parameter buff er object size limit (if no
 size is declared).

 Section 2.X.3.7, Program Condition Code Registe rs

 The program condition code registers are four-c omponent vectors. Each
 component of this register is a collection of s ingle-bit flags, including
 a sign flag (SF), a zero flag (ZF), an overflow flag (OF), and a carry
 flag (CF). There are two condition code regist ers (CC0 and CC1), whose
 values are undefined at the beginning of progra m execution.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1439

 Most program instructions can optionally update one of the condition code
 registers, by designating the condition code to update in the instruction.
 When a condition code component is updated, the four flags of each
 component of the condition code are set accordi ng to the corresponding
 component of the instruction result. Full deta ils on the condition code
 updates and tests can be found in Section 2.X.4 .3.

 The value of these four flags can be combined i n various condition code
 tests, which can be used to mask writes to dest ination variables and to
 perform conditional branches or other condition operations.

 Section 2.X.3.8, Program Aliases

 Programs can create aliases by matching the <AL IAS_statement> grammar
 rule. Aliases allow programs to use multiple v ariable names to refer to a
 single underlying variable. For example, the s tatement

 ALIAS var1 = var0

 establishes a variable name of "var1". Subsequ ent references to "var1" in
 the program text are treated as references to " var0". The left hand side
 of an ALIAS statement must be a new variable na me, and the right hand side
 must be an established variable name.

 Aliases are not considered variable declaration s, so do not count against
 the limits on the number of variable declaratio ns allowed in the program
 text.

 Section 2.X.3.9, Program Resource Limits

 (see ARB_vertex_program specification, incorpor ates all the different
 limits on instruction counts, temporaries, attr ibute bindings, program
 parameters, and so on)

 Section 2.X.4, Program Execution Environment

 The set of instructions supported for GPU progr ams is given in Table X.13
 below and is described in detail in Section 2.X .8. An instruction can use
 up to three operands when it executes, and most instructions can write a
 single result vector. Instructions may also sp ecify one or more
 modifiers, according to the <opModifiers> gramm ar rule. Instruction
 modifiers affect how the specified operation is performed.

 GPU programs may operate on signed integer, uns igned integer, or
 floating-point values; some instructions are ca pable of operating on any
 of the three types. However, the data type of the operands and the result
 are always determined based solely on the instr uction and its modifiers.
 If any of the variables used in the instruction are typeless, they will be
 interpreted according to the data type derived from the instruction. If
 any variables with a conflicting data type are used in the instruction,
 the program will fail to load unless the "NTC" (no type checking)
 instruction modifier is specified.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1440

 Modifiers
 Instruction F I C S H D Out Inputs Descri ption
 ----------- - - - - - - --- -------- ------ --------------------------
 ABS X X X X X F v v absolu te value
 ADD X X X X X F v v,v add
 AND - X X - - S v v,v bitwis e and
 BRK - - - - - - - c break out of loop instruction
 CAL - - - - - - - c subrou tine call
 CEIL X X X X X F v vf ceilin g
 CMP X X X X X F v v,v,v compar e
 CONT - - - - - - - c contin ue with next loop interation
 COS X - X X X F s s cosine with reduction to [-PI,PI]
 DIV X X X X X F v v,s divide vector components by scalar
 DP2 X - X X X F s v,v 2-comp onent dot product
 DP2A X - X X X F s v,v,v 2-comp . dot product w/scalar add
 DP3 X - X X X F s v,v 3-comp onent dot product
 DP4 X - X X X F s v,v 4-comp onent dot product
 DPH X - X X X F s v,v homoge neous dot product
 DST X - X X X F v v,v distan ce vector
 ELSE - - - - - - - - start if test else block
 ENDIF - - - - - - - - end if test block
 ENDREP - - - - - - - - end of repeat block
 EX2 X - X X X F s s expone ntial base 2
 FLR X X X X X F v vf floor
 FRC X - X X X F v v fracti on
 I2F - X X - - S vf v intege r to float
 IF - - - - - - - c start of if test block
 KIL X X - - X F - vc kill f ragment
 LG2 X - X X X F s s logari thm base 2
 LIT X - X X X F v v comput e lighting coefficients
 LRP X - X X X F v v,v,v linear interpolation
 MAD X X X X X F v v,v,v multip ly and add
 MAX X X X X X F v v,v maximu m
 MIN X X X X X F v v,v minimu m
 MOD - X X - - S v v,v modulu s vector components by scalar
 MOV X X X X X F v v move
 MUL X X X X X F v v,v multip ly
 NOT - X X - - S v v bitwis e not
 NRM X - X X X F v v normal ize 3-component vector
 OR - X X - - S v v,v bitwis e or
 PK2H X X - - - F s vf pack t wo 16-bit floats
 PK2US X X - - - F s vf pack t wo floats as unsigned 16-bit
 PK4B X X - - - F s vf pack f our floats as signed 8-bit
 PK4UB X X - - - F s vf pack f our floats as unsigned 8-bit
 POW X - X X X F s s,s expone ntiate
 RCC X - X X X F s s recipr ocal (clamped)
 RCP X - X X X F s s recipr ocal
 REP X X - - X F - v start of repeat block
 RET - - - - - - - c subrou tine return
 RFL X - X X X F v v,v reflec tion vector
 ROUND X X X X X F v vf round to nearest integer
 RSQ X - X X X F s s recipr ocal square root
 SAD - X X - - S vu v,v,vu sum of absolute differences
 SCS X - X X X F v s sine/c osine without reduction
 SEQ X X X X X F v v,v set on equal
 SFL X X X X X F v v,v set on false
 SGE X X X X X F v v,v set on greater than or equal

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1441

 Modifiers
 Instruction F I C S H D Out Inputs Descri ption
 ----------- - - - - - - --- -------- ------ --------------------------
 SGT X X X X X F v v,v set on greater than
 SHL - X X - - S v v,s shift left
 SHR - X X - - S v v,s shift right
 SIN X - X X X F s s sine w ith reduction to [-PI,PI]
 SLE X X X X X F v v,v set on less than or equal
 SLT X X X X X F v v,v set on less than
 SNE X X X X X F v v,v set on not equal
 SSG X - X X X F v v set si gn
 STR X X X X X F v v,v set on true
 SUB X X X X X F v v,v subtra ct
 SWZ X - X X X F v v extend ed swizzle
 TEX X X X X - F v vf textur e sample
 TRUNC X X X X X F v vf trunca te (round toward zero)
 TXB X X X X - F v vf textur e sample with bias
 TXD X X X X - F v vf,vf,vf textur e sample w/partials
 TXF X X X X - F v vs texel fetch
 TXL X X X X - F v vf textur e sample w/LOD
 TXP X X X X - F v vf textur e sample w/projection
 TXQ - - - - - S vs vs textur e info query
 UP2H X X X X - F vf s unpack two 16-bit floats
 UP2US X X X X - F vf s unpack two unsigned 16-bit ints
 UP4B X X X X - F vf s unpack four signed 8-bit ints
 UP4UB X X X X - F vf s unpack four unsigned 8-bit ints
 X2D X - X X X F v v,v,v 2D coo rdinate transformation
 XOR - X X - - S v v,v exclus ive or
 XPD X - X X X F v v,v cross product

 Table X.13: Summary of NV_gpu_program4 instructions. The "Mo difiers"
 columns specify the set of modifiers allowed for the instruction:

 F = floating-point data type modifiers
 I = signed and unsigned integer data type m odifiers
 C = condition code update modifiers
 S = clamping (saturation) modifiers
 H = half-precision float data type suffix
 D = default data type modifier (F, U, or S)

 The input and output columns describe the for mats of the operands and
 results of the instruction.

 v: 4-component vector (data type is inheri ted from operation)
 vf: 4-component vector (data type is always floating-point)
 vs: 4-component vector (data type is always signed integer)
 vu: 4-component vector (data type is always unsigned integer)
 s: scalar (replicated if written to a vect or destination;
 data type is inherited from ope ration)
 c: condition code test result (e.g., "EQ", "GT1.x")
 vc: 4-component vector or condition code te st

 Section 2.X.4.1, Program Instruction Modifiers

 There are several types of instruction modifier s available. A data type
 modifier specifies that an instruction should o perate on signed integer,
 unsigned integer, or floating-point data, when multiple data types are

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1442

 supported. A clamping modifier applies to inst ructions with
 floating-point results, and specifies the range to which the results
 should be clamped. A condition code update mod ifier specifies that the
 instruction should update one of the condition code variables. Several
 other special modifiers are also provided.

 Instruction modifiers may be specified as stand -alone modifiers or as
 suffixes concatenated with the opcode name. A program will fail to load
 if it contains an instruction that

 * specifies more than one modifier of any giv en type,

 * specifies a clamping modifier on an instruc tion, unless it produces
 floating-point results, or

 * specifies a modifier that is not supported by the instruction (see
 Table X.13 and the instruction description) .

 Stand-alone instruction modifiers are specified according to the
 <opModifiers> grammar rule using a ".<modifier> " syntax. Multiple
 modifers, separated by periods, may be specifie d. The set of supported
 modifiers is described in Table X.14.

 Modifier Description
 -------- ----------------------------------- ------------
 F Floating-point operation
 U Fixed-point operation, unsigned ope rands
 S Fixed-point operation, signed opera nds
 CC Update condition code register zero
 CC0 Update condition code register zero
 CC1 Update condition code register one
 SAT Floating-point results clamped to [0,1]
 SSAT Floating-point results clamped to [-1,1]
 NTC Disable type-checking on operands/r esults
 S24 Signed multiply (24-bit operands)
 U24 Unsigned multiply (24-bit operands)
 HI Multiplies two 32-bit integer opera nds, returns
 the 32 MSBs of the product

 Table X.14, Instruction Modifers.

 "F", "U", and "S" modifiers are data type modif iers and specify that the
 instruction should operate on floating-point, u nsigned integer, or
 signed integer values, respectively. For examp le, "ADD.F", "ADD.U", and
 "ADD.S" specify component-wise addition of floa ting-point, unsigned
 integer, or signed integer vectors, respectivel y. These modifiers specify
 a data type, but do not specify a precision at which the operation is
 performed. Floating-point operations will be c arried out with an internal
 precision no less than that used to represent t he largest operand.
 Fixed-point operations will be carried out usin g at least as many bits as
 used to represent the largest operand. Operand s represented with fewer
 bits than used to perform the instruction will be promoted to a larger
 data type. Signed integer operands will be sig n-extended, where the most
 significant bits are filled with ones if the op erand is negative and zero
 otherwise. Unsigned integer operands will be z ero-extended, where the
 most significant bits are always filled with ze roes. For some
 instructions, the data type of some operands or the result are fixed; in

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1443

 these cases, the data type modifier specifies t he data type of the
 remaining values.

 "CC", "CC0", and "CC1" are condition code updat e modifiers that specify
 that one of the condition code registers should be updated based on the
 result of the instruction, as described in sect ion 2.X.4.3. "CC" and
 "CC0" specify that the condition code register CC0 be updated; "CC1"
 specifies an update to CC1. If no condition co de update modifier is
 provided, the condition code registers will not be affected.

 "SAT" and "SSAT" are clamping modifiers that sp ecify that the
 floating-point components of the instruction re sult should be clamped to
 [0,1] or [-1,1], respectively, before updating the condition code and the
 destination variable. If no clamping suffix is specified, unclamped
 results will be used for condition code updates (if any) and destination
 variable writes. Clamping modifiers are not su pported on instructions
 that do not produce floating-point results.

 "NTC" (no type checking) disables data type che cking on the instruction,
 and allows instructions to use operands or resu lt variables whose data
 types are inconsistent with the expected data t ypes of the instruction.

 "S24", "U24", and "HI" are special modifiers th at are allowed only for the
 MUL instruction, and are described in detail wh ere MUL is documented. No
 more than one such modifier may be provided for any instruction.

 If an instruction supports data type modifiers, but none is provided, a
 default data type will be chosen based on the i nstruction, as specified in
 Table X.13 and the instruction set description (Section 2.X.8). If
 condition code update or clamping modifiers are not specified, the
 corresponding operation will not be performed.

 Additionally, each instruction name may have on e or more suffixes,
 concatenated onto the base instruction name, th at operate as instruction
 modifiers. For conciseness, these suffixes are not spelled out in the
 grammar -- the base opcode name is used as a pl aceholder for the opcode
 and all of its possible suffixes. Instruction suffixes are provided
 mainly for compatibility with prior GPU program instruction sets (e.g.,
 NV_vertex_program3, NV_fragment_program2, and p redecessors). The set of
 allowable suffixes, and their equivalent stand- alone modifiers, are listed
 in Table X.15.

 Suffix Modifier Description
 ------ ---------- ------------------------ ---------------------------
 R F Floating-point operation , 32-bit precision
 H F(*) Floating-point operation , at least 16-bit precision
 C CC0 Update condition code re gister zero
 C0 CC0 Update condition code re gister zero
 C1 CC1 Update condition code re gister one
 _SAT SAT Floating-point results c lamped to [0,1]
 _SSAT SSAT Floating-point results c lamped to [-1,1]

 Table X.15, Instruction Suffixes.

 The "R" and "H" suffixes specify floating-point operations and are
 equivalent to the "F" data type modifier. They additionally specify a
 minimum precision for the operations. Instruct ions with an "R" precision

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1444

 modifier will be carried out at no less than IE EE single-precision
 floating-point (8 bits of exponent, 23 bits of mantissa). Instructions
 with an "H" precision modifier will be carried out at no less than 16-bit
 floating-point precision (5 bits of exponent, 1 0 bits of mantissa).

 An instruction may have multiple suffixes, but they must appear in order,
 with data type suffixes first, followed by cond ition code update suffixes,
 followed by clamping suffixes. For example, "A DDR" carries out an add at
 32-bit precision. "ADDH_SAT" carries out an ad d at 16-bit precision (or
 better) and clamps the results to [0,1]. "ADDR C1_SSAT" carries out an add
 at 32-bit floating-point precision, clamps the results to [-1,1], and
 updates condition code one based on the clamped result.

 Section 2.X.4.2, Program Operands

 Most program instructions operate on one or mor e scalar or vector
 operands. Each operand specifies an operand va riable, which is either the
 name of a previously declared variable or an im plicit variable declaration
 created by using a variable binding in the inst ruction. Attribute,
 parameter, or parameter buffer variables can be declared implicitly by
 using a valid binding name in an operand. Inst ruction operands are
 specified by the <instOperandV>, <instOperandS> , or <instOperandVNS>
 grammar rules.

 If the operand variable is not an array, its co ntents are loaded directly.
 If the operand variable is an array, a single e lement of the array is
 loaded according to the <arrayMem> grammar rule . The elements of an array
 are numbered from 0 to <n>-1, where <n> is the number of entries in the
 array. Array members can be accessed using eit her absolute or relative
 addressing.

 Absolute array addressing is used when the <arr ayMemAbs> grammar rule is
 matched; the array member to load is specified by the matching integer.
 Out-of-bounds array absolute accesses are not a llowed. If the specified
 member number is greater than or equal to the s ize of the array, the
 program will fail to load.

 Relative array addressing is used when the <arr ayMemRel> grammar rule is
 matched. This grammar rule allows the program to specify a scalar integer
 operand and an optional constant offset, accord ing to the <arrayMemReg>
 and <arrayMemOffset> grammar rules. When perfo rming relative addressing,
 the GL evaluates the specified integer scalar o perand (according to the
 rules specified in this section) and adds the c onstant offset. The array
 member loaded is given by this sum. The consta nt offset is considered
 zero if an offset is omitted. If the sum is ne gative or exceeds the size
 of the array, the results of the access are und efined, but may not lead to
 program or GL termination. The set of constant offsets supported for
 relative addressing is limited to values in the range [0,<n>-1], where <n>
 is the size of the array. A program will fail to load if it specifies an
 offset outside that range. If offsets outside that range are required,
 they can be applied by using an integer ADD ins truction writing to a
 temporary variable.

 After the operand is loaded, its components can be rearranged according to
 the <swizzleSuffix> grammar rule, or it can be converted to a scalar
 operand according to the <scalarSuffix> grammar rule.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1445

 The <swizzleSuffix> grammar rule rearranges the components of a loaded
 vector to produce another vector. If the <swiz zleSuffix> rule matches the
 <xyzwSwizzle> or <rgbaSwizzle> grammar rule, a pattern of the form ".????"
 is used, where each question mark is replaced w ith one of "x", "y", "z",
 "w", "r", "g", "b", or a". For such patterns, the x, y, z, and w
 components of the operand are taken from the ve ctor components named by
 the first, second, third, and fourth character of the pattern,
 respectively. Swizzle components of "r", "g", "b", and "a" are equivalent
 to "x", "y", "z", and "w", respectively. For e xample, if the swizzle
 suffix is ".yzzx" or ".gbbr" and the specified source contains {2,8,9,0},
 the result is the vector {8,9,9,2}. If the <sw izzleSuffix> matches the
 <component> grammar rule, a pattern of the form ".?" is used. For this
 pattern, all four components of the operand are taken from the single
 component identified by the pattern. If the sw izzle suffix is omitted,
 components are not rearranged and swizzling has no effect, as though
 ".xyzw" were specified.

 The swizzle suffix rules do not allow mixing "x ", "y", "z", or "w"
 selectors with "r", "g", "b", or "a" selectors. A program will fail to
 load if it contains a swizzle suffix with selec tors from both of these
 sets.

 The <scalarSuffix> grammar rule converts a vect or to a scalar by selecting
 a single component. The <scalarSuffix> rule is similar to the swizzle
 selector, except that only a single component i s selected. If the scalar
 suffix is ".y" and the specified source contain s {2,8,9,0}, the value is
 the scalar value 8.

 Next, a component-wise negate operation is perf ormed on the operand if the
 <operandNeg> grammar rule matches "-". Negatio n is not performed if the
 operand has no sign prefix, or is prefixed with "+". For unsigned integer
 operands, the negate operand performs a two's c omplement operation.

 Next, a component-wise absolute value operation is performed on the
 operand if the <instOperandAbsV> or <instOperan dAbsS> grammar rule is
 matched, by surrounding the operand with two "| " characters. The result
 is optionally negated if the <operandAbsNeg> gr ammar rule matches "-".
 For unsigned integer operands, the absolute val ue operation has no effect.

 Section 2.X.4.3, Program Destination Variable U pdate

 Most program instructions perform computations that produce a result,
 which will be written to a variable. Each inst ruction that computes a
 result specifies a destination variable, which is either the name of a
 previously declared variable or an implicit var iable declaration created
 by using a variable binding in the instruction. Result variables can be
 declared implicitly by using a valid program re sult binding name in the
 result portion of the instruction. Instruction results are specified
 according to the <instResult> grammar rule.

 The destination variable may be a single member of an array. In this
 case, a single array member is specified using the <arrayMem> grammar
 rule, and the array member to update is compute d in the exact same manner
 as done for operand loads. If the array member is computed at run time,
 and is negative or greater than or equal to the size of the array, the
 results of the destination variable update are undefined and could result
 in overwriting other program variables.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1446

 The results of the operation may be obtained at a different precision than
 that used to store the destination variable. I f so, the results are
 converted to match the size of the destination variable. For
 floating-point values, the results are rounded to the nearest
 floating-point value that can be represented in the destination variable.
 If a result component is larger in magnitude th an the largest
 representable floating-point value in the data type of the destination
 variable, an infinity encoding (+/-INF) is used . Signed or unsigned
 integer values are sign-extended or zero-extend ed, respectively, if the
 destination variable has more bits than the res ult, and have their most
 significant bits discarded if the destination v ariable has fewer bits.

 Writes to individual components of a vector des tination variable can be
 controlled at compile time by individual compon ent write masks specified
 in the instruction. The component write mask i s specified by the
 <optWriteMask> grammar rule, and is a string of up to four characters,
 naming the components to enable for writing. I f no write mask is
 specified, all components are enabled for writi ng. The characters "x",
 "y", "z", and "w" match the x, y, z, and w comp onents respectively. For
 example, a write mask mask of ".xzw" indicates that the x, z, and w
 components should be enabled for writing but th e y component should not be
 written. The grammar requires that the destina tion register mask
 components must be listed in "xyzw" order. Add itionally, write mask
 components of "r", "g", "b", and "a" are equiva lent to "x", "y", "z", and
 "w", respectively. The grammar does not allow mixing "x", "y", "z", or
 "w" components with "r", "g", "b", and "a" ones .

 Writes to individual components of a vector des tination variable, or to a
 scalar destination variable, can also be contro lled at run time using
 condition code write masks. The condition code write mask is specified by
 the <ccMask> grammar rule. If a mask is specif ied, a condition code
 variable is loaded according to the <ccMaskRule > grammar rule and tested
 as described in Table X.16 to produce a four-co mponent vector of
 TRUE/FALSE values.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1447

 mask rule test name condition
 --------------- ---------------------- -----------------
 EQ, EQ0, EQ1 equal !SF && ZF
 GE, GE0, GE1 greater than or equal !(SF ^ OF)
 GT, GT0, GT1 greater than (!SF ^ OF) && !ZF
 LE, LE0, LE1 less than or equal SF ^ (ZF || OF)
 LT, LT0, LT1 less than (SF && !ZF) ^ OF
 NE, NE0, NE1 not equal SF || !ZF
 FL, FL0, FL1 false always false
 TR, TR0, TR1 true always true

 NAN, NAN0, NAN1 not a number SF && ZF
 LEG, LEG0, LEG1 less, equal, or greater !SF || !ZF
 (anything but a NaN)

 CF, CF0, CF1 carry flag CF
 NCF, NCF0, NCF1 no carry flag !CF
 OF, OF0, OF1 overflow flag OF
 NOF, NOF0, NOF1 no overflow flag !OF
 SF, SF0, SF1 sign flag SF
 NSF, NSF0, NSF1 no sign flag !SF
 AB, AB0, AB1 above CF && !ZF
 BLE, BLE0, BLE1 below or equal !CF || ZF

 Table X.16, Condition Code Tests. The allowed rules are speci fied in
 the "mask rule" column. If "0" or "1" is app ended to the rule name
 (e.g., "EQ1"), the corresponding condition co de register (CC1 in this
 example) is loaded, otherwise CC0 is loaded. After loading, each
 component is tested, using the expression lis ted in the "condition"
 column.

 After the condition code tests are performed, t he four-component result
 can be swizzled according to the <swizzleSuffix > grammar rule. Individual
 components of the destination variable are writ ten only if the
 corresponding component of the swizzled conditi on code test result is
 TRUE. If both a (compile-time) component write mask and a condition code
 write mask are specified, destination variable components are written only
 if the corresponding component is enabled in bo th masks.

 A program instruction can also optionally updat e one of the two condition
 code registers if the "CC", "CC0", or "CC1" ins truction modifier are
 specified. These instruction modifiers update condition code register
 CC0, CC0, or CC1, respectively. The instructio ns "ADD.CC" or "ADD.CC0"
 will perform an add and update condition code z ero, "ADD.CC1" will add and
 update condition code one, and "ADD" will simpl y perform the add without a
 condition code update. The components of the s elected condition code
 register are updated if and only if the corresp onding component of the
 destination variable are enabled by both write masks. For the purposes of
 condition code update, a scalar destination var iable is treated as a
 vector where the scalar result is written to "x " (if enabled in the write
 mask), and writes to the "y", "z", and "w" comp onents are disabled.

 When condition code components are written, the condition code flags are
 updated based on the corresponding component of the result. If a
 component of the destination register is not en abled for writes, the
 corresponding condition code component is also unchanged.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1448

 For floating-point results, the sign flag (SF) is set if the result is
 less than zero or is a NaN (not a number) value . The zero flag (ZF) is
 set if the result is equal to zero or is a NaN.

 For signed and unsigned integer results, the si gn flag (SF) is set if the
 most significant bit of the value written to th e result variable is set
 and the zero flag (ZF) is set if the result wri tten is zero. For
 instructions other than those performing an int eger add or subtract (ADD,
 MAD, SAD, SUB), the overflow and carry flags (O F and CF) are cleared.

 For integer add or subtract operations, the ove rflow and carry flags by
 doing both signed and unsigned adds/subtracts a s follows:

 The overflow flag (OF) is set by interpreting the two operands as signed
 integers and performing a signed add or subtr act. If the result is
 representable as a signed integer (i.e., does n't overflow), the overflow
 flag is cleared; otherwise, it is set.

 The carry flag (CF) is set by interpreting th e two operands as unsigned
 integers and performing an unsigned add or su btract. If the result of
 an add is representable as an unsigned intege r (i.e., doesn't overflow),
 the carry flag is cleared; otherwise, it is s et. If the result of a
 subtract is greater than or equal to zero, th e carry flag is set;
 otherwise, it is cleared.

 For the purposes of condition code setting, neg ation modifiers turn add
 operations into subtracts and vice versa. If t he operation is equivalent
 to an add with both operands negated (-A-B), th e carry and overflow flags
 are both undefined.

 Section 2.X.4.4, Program Texture Access

 Certain program instructions may access texture images, as described in
 section 3.8. The coordinates, level-of-detail, and partial derivatives
 used for performing the texture lookup are deri ved from values provided in
 the program as described in the various sub-sec tions of Section 2.X.8.
 These descriptions use the function

 result_t_vec
 TextureSample(float_vec coord, float lod, f loat_vec ddx,
 float_vec ddy, int_vec offset);

 which obtains a filtered texel value <tau> as d escribed in Section 3.8.8
 and returns a 4-component vector (R,G,B,A) acco rding to the format
 conversions specified in Table 3.21. The resul t vector is interpreted as
 floating-point, signed integer, or unsigned int eger, according to the data
 type modifier of the instruction. If the inter nal format of the texture
 does not match the instruction's data type modi fer, the results of the
 texture lookup are undefined.

 (Note: For unextended OpenGL 2.0, all supporte d texture internal formats
 store integer values but return floating-point results in the range [0,1]
 on a texture lookup. The ARB_texture_float ext ension introduces
 floating-point internal format where components are both stored and
 returned as floating-point values. The EXT_tex ture_integer extension
 introduces formats that both store and return e ither signed or unsigned
 integer values.)

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1449

 <coord> is a four-component floating-point vect or from which the (s,t,r)
 texture coordinates used for the texture access , the layer used for array
 textures, and the reference value used for dept h comparisons (section
 3.8.14) are extracted according to Table X.17. If the texture is a cube
 map, (s,t,r) is projected to one of the six cub e faces to produce a new
 (s,t) vector according to Section 3.8.6. For a rray textures, the layer
 used is derived by rounding the extracted float ing-point component to the
 nearest integer and clamping the result to the range [0,<n>-1], where <n>
 is the number of layers in the texture.

 <lod> specifies the level of detail parameter a nd replaces the value
 computed in equation 3.18. <ddx> and <ddy> spe cify partial derivatives
 (ds/dx, dt/dx, dr/dx, ds/dy, dt/dy, and dr/dy) for the texture
 coordinates, and may be used to derive footprin t shapes for anisotropic
 texture filtering.

 <offset> is a constant 3-component signed integ er vector specified
 according to the <texOffset> grammar rule, whic h is added to the computed
 <u>, <v>, and <w> texel locations prior to samp ling. One, two, or three
 components may be specified in the instruction; if fewer than three are
 specified, the remaining offset components are zero. A limited range of
 offset values are supported; the minimum and ma ximum <texOffset> values
 are implementation-dependent and given by MIN_P ROGRAM_TEXEL_OFFSET_EXT and
 MAX_PROGRAM_TEXEL_OFFSET_EXT, respectively. A program will fail to load:

 * if the texture target specified in the inst ruction is 1D, ARRAY1D,
 SHADOW1D, or SHADOWARRAY1D, and the second or third component of the
 offset vector is non-zero,

 * if the texture target specified in the inst ruction is 2D, RECT,
 ARRAY2D, SHADOW2D, SHADOWRECT, or SHADOWARR AY2D, and the third
 component of the offset vector is non-zero,

 * if the texture target is CUBE or SHADOWCUBE , and any component of the
 offset vector is non-zero -- texel offsets are not supported for cube
 map or buffer textures, or

 * if any component of the offset vector is le ss than
 MIN_PROGRAM_TEXEL_OFFSET_EXT or greater tha n
 MAX_PROGRAM_TEXEL_OFFSET_EXT.

 (NOTE: Texel offsets are a new feature provide d by this extension and are
 described in more detail in edits to Section 3. 8 below.)

 The texture used by TextureSample() is one of t he textures bound to the
 texture image unit whose number is specified in the instruction according
 to the <texImageUnit> grammar rule. The textur e target accessed is
 specified according to the <texTarget> grammar rule and Table X.17.
 Fixed-function texture enables are always ignor ed when determining the
 texture to access in a program.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1450

 coordinates used
 texTarget Texture Type s t r layer shadow
 ---------------- --------------------- ----- ----- ------
 1D TEXTURE_1D x - - - -
 2D TEXTURE_2D x y - - -
 3D TEXTURE_3D x y z - -
 CUBE TEXTURE_CUBE_MAP x y z - -
 RECT TEXTURE_RECTANGLE_ARB x y - - -
 ARRAY1D TEXTURE_1D_ARRAY_EXT x - - y -
 ARRAY2D TEXTURE_2D_ARRAY_EXT x y - z -
 SHADOW1D TEXTURE_1D x - - - z
 SHADOW2D TEXTURE_2D x y - - z
 SHADOWRECT TEXTURE_RECTANGLE_ARB x y - - z
 SHADOWCUBE TEXTURE_CUBE_MAP x y z - w
 SHADOWARRAY1D TEXTURE_1D_ARRAY_EXT x - - y z
 SHADOWARRAY2D TEXTURE_2D_ARRAY_EXT x y - z w
 BUFFER TEXTURE_BUFFER_EXT <not supported>

 Table X.17: Texture types accessed for each of the <texTarget >, and
 coordinate mappings. The "SHADOW" and "ARRAY " targets are special
 pseudo-targets described below. The "coordin ates used" column indicate
 the input values used for each coordinate of the texture lookup, the
 layer selector for array textures, and the re ference value for texture
 comparisons. Buffer textures are not support ed by normal texture lookup
 functions, but are supported by TXF and TXQ, described below.

 Texture targets with "SHADOW" are used to acces s textures with a
 DEPTH_COMPONENT base internal format using dept h comparisons (Section
 3.8.14). Results of a texture access are undef ined:

 * if a "SHADOW" target is used, and the corre sponding texture has a base
 internal format other than DEPTH_COMPONENT or a TEXTURE_COMPARE_MODE
 of NONE, or

 * if a non-"SHADOW" target is used, and the c orresponding texture has a
 base internal format of DEPTH_COMPONENT and a TEXTURE_COMPARE_MODE
 other than NONE.

 If the texture being accessed is not complete (or cube complete for
 cubemap textures), no texture access is perform ed and the result is
 undefined.

 A program will fail to load if it attempts to s ample from multiple texture
 targets (including the SHADOW pseudo-targets) o n the same texture image
 unit. For example, a program containing any tw o the following
 instructions will fail to load:

 TEX out, coord, texture[0], 1D;
 TEX out, coord, texture[0], 2D;
 TEX out, coord, texture[0], ARRAY2D;
 TEX out, coord, texture[0], SHADOW2D;
 TEX out, coord, texture[0], 3D;

 Additionally, multiple texture targets for a si ngle texture image unit may
 not be used at the same time by the GL. The er ror INVALID_OPERATION is
 generated by Begin, RasterPos, or any command t hat performs an implicit
 Begin if an enabled program accesses one textur e target for a texture unit

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1451

 while another enabled program or fixed-function fragment processing
 accesses a different texture target for the sam e texture image unit.

 Some texture instructions use standard methods to compute partial
 derivatives and/or the level-of-detail used to perform texture accesses.
 For fragment programs, the functions

 float_vec ComputePartialsX(float_vec coord);
 float_vec ComputePartialsY(float_vec coord);

 compute approximate component-wise partial deri vatives of the
 floating-point vector <coord> relative to the X and Y coordinates,
 respectively. For vertex and geometry programs , these functions always
 return (0,0,0,0). The function

 float ComputeLOD(float_vec ddx, float_vec ddy);

 maps partial derivative vectors <ddx> and <ddy> to ds/dx, dt/dx, dr/dx,
 ds/dy, dt/dy, and dr/dy and computes lambda_bas e(x,y) according to
 equation 3.18.

 The TXF instruction provides the ability to ext ract a single texel from a
 specified texture image using the function

 result_t_vec TexelFetch(uint_vec coord, int_v ec offset);

 The extracted texel is converted to an (R,G,B,A) vector according to Table
 3.21. The result vector is interpreted as floa ting-point, signed integer,
 or unsigned integer, according to the data type modifier of the
 instruction. If the internal format of the tex ture is not compatible with
 the instruction's data type modifer, the extrac ted texel value is
 undefined.

 <coord> is a four-component signed integer vect or used to identify the
 single texel accessed. The (i,j,k) coordinates of the texel and the layer
 used for array textures are extracted according to Table X.18. The level
 of detail accessed is obtained by adding the w component of <coord> to the
 base level (level_base). <offset> is a constan t 3-component signed
 integer vector added to the texel coordinates p rior to the texel fetch as
 described above. In addition to the restrictio ns described above,
 non-zero offset components are also not support ed for BUFFER targets.

 The texture used by TexelFetch() is specified b y the image unit and target
 parameters provided in the instruction, as for TextureSample() above.
 Single texel fetches can not perform depth comp arisons or access cubemaps.
 If a program contains a TXF instruction specify ing one of the "SHADOW" or
 "CUBE" targets, it will fail to load.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1452

 coordinates u sed
 texTarget supported i j k laye r lod
 ---------------- --------- ----- ---- - ---
 1D yes x - - - w
 2D yes x y - - w
 3D yes x y z - w
 CUBE no - - - - -
 RECT yes x y - - w
 ARRAY1D yes x - - y w
 ARRAY2D yes x y - z w
 SHADOW1D no - - - - -
 SHADOW2D no - - - - -
 SHADOWRECT no - - - - -
 SHADOWCUBE no - - - - -
 SHADOWARRAY1D no - - - - -
 SHADOWARRAY2D no - - - - -
 BUFFER yes x - - - -

 Table X.18, Mappings of texel fetch coordinates to texel locat ion.

 Single-texel fetches do not support LOD clampin g or any texture wrap mode,
 and require a mipmapped minification filter to access any level of detail
 other than the base level. The results of the texel fetch are undefined:

 * if the computed LOD is less than the textur e's base level (level_base)
 or greater than the maximum level (level_ma x),

 * if the computed LOD is not the texture's ba se level and the texture's
 minification filter is NEAREST or LINEAR,

 * if the layer specified for array textures i s negative or greater than
 the number of layers in the array texture,

 * if the texel at (i,j,k) coordinates refer t o a border texel outside
 the defined extents of the specified LOD, w here

 i < -b_s, j < -b_s, k < -b_s,
 i >= w_s - b_s, j >= h_s - b_s, or k >= d_ s - b_s,

 where the size parameters (w_s, h_s, d_s, a nd b_s) refer to the width,
 height, depth, and border size of the image , as in equations 3.15,
 3.16, and 3.17, or

 * if the texture being accessed is not comple te (or cube complete for
 cubemaps).

 Section 2.X.5, Program Flow Control

 In addition to basic arithmetic, logical, and t exture instructions, a
 number of flow control instructions are provide d, which are described in
 detail in Section 2.X.8. Programs can contain several types of
 instruction blocks: IF/ELSE/ENDIF blocks, REP/ ENDREP blocks, and
 subroutine blocks. IF/ELSE/ENDIF blocks are a set of instructions
 beginning with an "IF" instruction, ending with an "ENDIF" instruction,
 and possibly containing an optional "ELSE" inst ruction. REP/ENDREP blocks
 are a set of instructions beginning with a "REP " instruction and ending
 with an "ENDREP" instruction. Subroutine block s begin with an instruction

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1453

 label identifying the name of the subroutine an d ending just before the
 next instruction label or the end of the progra m. Examples include the
 following:

 MOVC CC, R0;
 IF GT.x;
 MOV R0, R1; # executes if R0.x > 0
 ELSE;
 MOV R0, R2; # executes if R0.x <= 0
 ENDIF;

 REP repCount;
 ADD R0, R0, R1;
 ENDREP;

 square: # subroutine to compute R 0^2
 MUL R0, R0, R0;
 RET;
 main:
 MOV R0, 9.0;
 CAL square; # compute 9.0^2 in R0

 IF/ELSE/ENDIF and REP/ENDREP blocks may be nest ed inside each other, and
 inside subroutines. In all cases, each instruc tion block must be
 terminated with the appropriate instruction (EN DIF for IF, ENDREP for
 REP). Nested instruction blocks must be wholly contained within a block
 -- if a REP instruction is found between an IF and ELSE instruction, the
 corresponding ENDREP must also be present betwe en the IF and ELSE.
 Subroutines may not be nested inside IF/ELSE/EN DIF or REP/ENDREP blocks,
 or inside other subroutines. A program will fa il to load if any
 instruction block is terminated by an incorrect instruction, is not
 terminated before the block containing it, or c ontains an instruction
 label.

 IF/ELSE/ENDIF blocks evaluate a condition to de termine which instructions
 to execute. If the condition is true, all inst ructions between the IF and
 ELSE are executed. If the condition is false, all instructions between
 the ELSE and ENDIF are executed. The ELSE inst ruction is optional. If
 the ELSE is omitted, all instructions between t he IF and ENDIF are
 executed if the condition is true, or skipped i f the condition is false.
 A limited amount of nesting is supported -- a p rogram will fail to load if
 an IF instruction is nested inside MAX_PROGRAM_ IF_DEPTH_NV or more
 IF/ELSE/ENDIF blocks.

 REP/ENDREP blocks are used to execute a sequenc e of instructions multiple
 times. The REP instruction includes an optiona l scalar operand to specify
 a loop count indicating the number of times the block of instructions
 should be repeated. If the loop count is omitt ed, the contents of a
 REP/ENDREP block will be repeated indefinitely until the loop is
 explicitly terminated. A limited amount of nes ting is supported -- a
 program will fail to load if a REP instruction is nested inside
 MAX_PROGRAM_LOOP_DEPTH_NV or more REP/ENDREP bl ocks.

 Within a REP/ENDREP block, the CONT instruction can be used to terminate
 the current iteration of the loop by effectivel y jumping to the ENDREP
 instruction. The BRK instruction can be used t o terminate the entire loop
 by effectively jumping to the instruction immed iately following the ENDREP

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1454

 instruction. If CONT and BRK instructions are found inside multiply
 nested REP/ENDREP blocks, they apply to the inn ermost block. A program
 will fail to load if it includes a CONT or BRK instruction that is not
 contained inside a REP/ENDREP block.

 A REP/ENDREP block without a specified loop cou nt can result in an
 infinite loop. To prevent obvious infinite loo ps, a program will fail to
 load if it contains a REP/ENDREP block that con tains neither a BRK
 instruction at the current nesting level or a R ET instruction at any
 nesting level.

 Subroutines are supported via the CAL and RET i nstructions. A subroutine
 block is identified by an instruction, which ca n be any valid identifier
 according to the <instLabel> grammar rule. The CAL instruction identifies
 a subroutine name to call according to the <ins tTarget> grammar rule.
 Instruction labels used in CAL instructions do not need to be defined in
 the program text that precedes the instruction, but a program will fail to
 load if it includes a CAL instruction that refe rences an instruction label
 that is not defined anywhere in the program. W hen a CAL instruction is
 executed, it transfers control to the instructi on immediately following
 the specified instruction label. Subsequent in structions in that
 subroutine are executed until a RET instruction is executed, or until
 program execution reaches another instruction l abel or the end of the
 program text. After the subroutine finishes, e xecution continues with the
 instruction immediately following the CAL instr uction. When a RET
 instruction is issued, it will break out of any IF/ELSE/ENDIF or
 REP/ENDREP blocks that contain it.

 Subroutines may call other subroutines before c ompleting, up to an
 implementation-dependent maximum depth of MAX_P ROGRAM_CALL_DEPTH_NV calls.
 Subroutines may call any subroutine in the prog ram, including themselves,
 as long as the call depth limit is obeyed. The results of issuing a CAL
 instruction while MAX_PROGRAM_CALL_DEPTH subrou tines have not completed
 has undefined results, including possible progr am termination.

 Several flow control instructions include condi tion code tests. The IF
 instruction requires a condition test to determ ine what instructions are
 executed. The CONT, BRK, CAL, and RET instruct ions have an optional
 condition code test; if the test fails, the ins tructions are not executed.
 Condition code tests are specified by the <ccTe st> grammar rule. The test
 is evaluated like the condition code write mask (section 2.X.4.3), and
 passes if and only if any of the four component s passes.

 If an instruction label named "main" is specifi ed, GPU program execution
 begins with the instruction immediately followi ng that label. Otherwise,
 it begins with the first instruction of the pro gram. Instructions are
 executed in sequence until either a RET instruc tion is issued in the main
 subroutine or the end of the program text is re ached.

 Section 2.X.6, Program Options

 Programs may specify a number of options to ind icate that one or more
 extended language features are used by the prog ram. All program options
 used by the program must be declared at the beg inning of the program
 string. Each program option specified in a pro gram string will modify the
 syntactic or semantic rules used to interpet th e program and the execution
 environment used to execute the program. Featu res in program options

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1455

 not declared by the program are ignored, even i f the option is otherwise
 supported by the GL. Each option declaration c onsists of two tokens: the
 keyword "OPTION" and an identifier.

 The set of available options depends on the pro gram type, and is
 enumerated in the specifications for each progr am type. Some program
 types may not provide any options.

 Section 2.X.7, Program Declarations

 Programs may include a number of declaration st atements to specify
 characteristics of the program. Each declarati on statement is followed by
 one or more arguments, separated by commas.

 The set of available declarations depends on th e program type, and is
 enumerated in the specifications for each progr am type. Some program
 types may not provide declarations.

 Section 2.X.8, Program Instruction Set

 The following sections enumerate the set of ins tructions supported for GPU
 programs.

 Some instructions allow the use of one of the t hree basic data type
 modifiers (floating point, signed integer, and unsigned integer). Unless
 otherwise mentioned:

 * the result and all of the operands will be interpreted according to
 the specified data type, and

 * if no data type modifier is specified, the instruction will operate as
 though a floating-point modifier ("F") were specified.

 Some instructions will override one or both of these rules.

 Section 2.X.8.Z, ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value operation on
 the single operand to yield a result vector.

 tmp = VectorLoad(op0);
 result.x = abs(tmp.x);
 result.y = abs(tmp.y);
 result.z = abs(tmp.z);
 result.w = abs(tmp.w);

 ABS supports all three data type modifiers. Ta king the absolute value of
 an unsigned integer is not a useful operation, but is not illegal.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1456

 Section 2.X.8.Z, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 ADD supports all three data type modifiers.

 Section 2.X.8.Z, AND: Bitwise AND

 The AND instruction performs a bitwise AND oper ation on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x & tmp1.x;
 result.y = tmp0.y & tmp1.y;
 result.z = tmp0.z & tmp1.z;
 result.w = tmp0.w & tmp1.w;

 AND supports only signed and unsigned integer d ata type modifiers. If no
 type modifier is specified, both operands and t he result are treated as
 signed integers.

 Section 2.X.8.Z, BRK: Break out of Loop Instru ction

 The BRK instruction conditionally transfers con trol to the instruction
 immediately following the next ENDREP instructi on. A BRK instruction has
 no effect if the condition code test evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at instruction following the next ENDREP;
 }

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1457

 Section 2.X.8.Z, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing the
 matching RET instruction. The following pseudo code describes the
 operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 // undefined results
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <instTarget>
 } else {
 // do nothing
 }

 In the pseudocode, <instTarget> is the label sp ecified in the instruction
 matching the <branchLabel> grammar rule, <callS tackDepth> is the current
 depth of the call stack, <callStack> is an arra y holding the call stack,
 and <nextInstruction> is a reference to the ins truction immediately
 following the CAL instruction in the program st ring.

 If the call stack overflows, the results of the CAL instruction are
 undefined, and can result in immediate program termination.

 An instruction label signifies the beginning of a new subroutine.
 Subroutines may not nest or overlap. If a CAL instruction is executed and
 subsequent program execution reaches an instruc tion label before a
 corresponding RET instruction is executed, the subroutine call returns
 immediately, as though an unconditional RET ins truction were inserted
 immediately before the instruction label.

 (Note: On previous vertex program extensions - - NV_vertex_program2 and
 NV_vertex_program3 -- instruction labels were a lso used as targets for
 branch (BRA) instructions. This unstructured b ranching functionality has
 been replaced with the structured branching con structs found in this
 instruction set.)

 Section 2.X.8.Z, CEIL: Ceiling

 The CEIL instruction loads a single vector oper and and performs a
 component-wise ceiling operation to generate a result vector.

 tmp = VectorLoad(op0);
 iresult.x = ceil(tmp.x);
 iresult.y = ceil(tmp.y);
 iresult.z = ceil(tmp.z);
 iresult.w = ceil(tmp.w);

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1458

 The ceiling operation returns the nearest integ er greater than or equal to
 the operand. For example ceil(-1.7) = -1.0, ce il(+1.0) = +1.0, and
 ceil(+3.7) = +4.0.

 CEIL supports all three data type modifiers. T he single operand is always
 treated as a floating-point vector, but the res ult is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, CMP: Compare

 The CMP instructions performs a component-wise comparison of the first
 operand against zero, and copies the values of the second or third
 operands based on the results of the compare.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = (tmp0.x < 0) ? tmp1.x : tmp2.x;
 result.y = (tmp0.y < 0) ? tmp1.y : tmp2.y;
 result.z = (tmp0.z < 0) ? tmp1.z : tmp2.z;
 result.w = (tmp0.w < 0) ? tmp1.w : tmp2.w;

 CMP supports all three data type modifiers. CM P with an unsigned data
 type modifier is not a useful operation, but is not illegal.

 Section 2.X.8.Z, CONT: Continue with Next Loop Iteration

 The CONT instruction conditionally transfers co ntrol to the next ENDREP
 instruction. A CONT instruction has no effect if the condition code test
 evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next ENDREP;
 }

 Section 2.X.8.Z, COS: Cosine with Reduction to [-PI,PI]

 The COS instruction approximates the trigonomet ric cosine of the angle
 specified by the scalar operand and replicates it to all four components
 of the result vector. The angle is specified i n radians and does not have
 to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 COS supports only floating-point data type modi fiers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1459

 Section 2.X.8.Z, DDX: Partial Derivative Relat ive to X

 The DDX instruction computes approximate partia l derivatives of a vector
 operand with respect to the X window coordinate , and is only available to
 fragment programs. See the NV_fragment_program 4 specification for more
 details.

 Section 2.X.8.Z, DDY: Partial Derivative Relat ive to Y

 The DDY instruction computes approximate partia l derivatives of a vector
 operand with respect to the Y window coordinate , and is only available to
 fragment programs. See the NV_fragment_program 4 specification for more
 details.

 Section 2.X.8.Z, DIV: Divide Vector Components by Scalar

 The DIV instruction performs a component-wise d ivide of the first vector
 operand by the second scalar operand to produce a 4-component result
 vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x / tmp1;
 result.y = tmp0.y / tmp1;
 result.z = tmp0.z / tmp1;
 result.w = tmp0.w / tmp1;

 DIV supports all three data type modifiers. Fo r floating-point division,
 this instruction is not guaranteed to produce r esults identical to a
 RCP/MUL instruction sequence.

 The results of an signed or unsigned integer di vision by zero are
 undefined.

 Section 2.X.8.Z, DP2: 2-Component Dot Product

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components) and r eplicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP2 supports only floating-point data type modi fiers.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1460

 Section 2.X.8.Z, DP2A: 2-Component Dot Product with Scalar Add

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components), adds the x component of the
 third operand, and replicates the result to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + tmp2.x;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP2A supports only floating-point data type mod ifiers.

 Section 2.X.8.Z, DP3: 3-Component Dot Product

 The DP3 instruction computes a three-component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP3 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, DP4: 4-Component Dot Product

 The DP4 instruction computes a four-component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1.w);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DP4 supports only floating-point data type modi fiers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1461

 Section 2.X.8.Z, DPH: Homogeneous Dot Product

 The DPH instruction computes a three-component dot product of the two
 operands (using the x, y, and z components), ad ds the w component of the
 second operand, and replicates the sum to all f our components of the
 result vector. This is equivalent to a four-co mponent dot product where
 the w component of the first operand is forced to 1.0.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 DPH supports only floating-point data type modi fiers.

 Section 2.X.8.Z, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-vertex l ight attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 DST supports only floating-point data type modi fiers.

 Section 2.X.8.Z, ELSE: Start of If Test Else B lock

 The ELSE instruction signifies the end of the " execute if true" portion of
 an IF/ELSE/ENDIF block and the beginning of the "execute if false"
 portion.

 If the condition evaluated at the IF statement was TRUE, when a program
 reaches the ELSE statement, it has completed th e entire "execute if true"

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1462

 portion of the IF/ELSE/ENDIF block. Execution will continue at the
 corresponding ENDIF instruction.

 If the condition evaluated at the IF statement was FALSE, program
 execution would skip over the entire "execute i f true" portion of the
 IF/ELSE/ENDIF block, including the ELSE instruc tion.

 Section 2.X.8.Z, EMIT: Emit Vertex

 The EMIT instruction emits a new vertex to be a dded to the current output
 primitive generated by a geometry program, and is only available to
 geometry programs. See the NV_geometry_program 4 specification for more
 details.

 Section 2.X.8.Z, ENDIF: End of If Test Block

 The ENDIF instruction signifies the end of an I F/ELSE/ENDIF block. It has
 no other effect on program execution.

 Section 2.X.8,Z, ENDPRIM: End of Primitive

 A geometry program can emit multiple primitives in a single invocation.
 The ENDPRIM instruction is used in a geometry p rogram to signify the end
 of the current primitive and the beginning of a new primitive of the same
 type. It is only available to geometry program s. See the
 NV_geometry_program4 specification for more det ails.

 Section 2.X.8.Z, ENDREP: End of Repeat Block

 The ENDREP instruction specifies the end of a R EP block.

 When used with in conjunction with a REP instru ction with a loop count,
 ENDREP decrements the loop counter. If the dec remented loop counter is
 greater than zero, ENDREP transfers control to the instruction immediately
 after the corresponding REP instruction. If th e loop counter is less than
 or equal to zero, execution continues at the in struction following the
 ENDREP instruction. When used in conjunction w ith a REP instruction
 without loop count, ENDREP always transfers con trol to the instruction
 immediately after the REP instruction.

 if (REP instruction includes a loop count) {
 LoopCount--;
 if (LoopCount > 0) {
 continue execution at instruction followi ng corresponding REP
 instruction;
 }
 } else {
 continue execution at instruction following corresponding REP
 instruction;
 }

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1463

 Section 2.X.8.Z, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates the approximation to all four components of the
 result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 EX2 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, FLR: Floor

 The FLR instruction loads a single vector opera nd and performs a
 component-wise floor operation to generate a re sult vector.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The floor operation returns the nearest integer less than or equal to
 the operand. For example floor(-1.7) = -2.0, f loor(+1.0) = +1.0, and
 floor(+3.7) = +3.0.

 FLR supports all three data type modifiers. Th e single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.0, 1.0).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = fraction(tmp.x);
 result.y = fraction(tmp.y);
 result.z = fraction(tmp.z);
 result.w = fraction(tmp.w);

 FRC supports only floating-point data type modi fiers.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1464

 Section 2.X.8.Z, I2F: Integer to Float

 The I2F instruction converts the components of an integer vector operand
 to floating-point to produce a floating-point r esult vector.

 tmp = VectorLoad(op0);
 result.x = (float) tmp.x;
 result.y = (float) tmp.y;
 result.z = (float) tmp.z;
 result.w = (float) tmp.w;

 I2F supports only signed and unsigned integer d ata type modifiers. The
 single operand is interpreted according to the data type modifier. If no
 data type modifier is specified, the operand is treated as a signed
 integer vector. The result is always written a s a float.

 Section 2.X.8.Z, IF: Start of If Test Block

 The IF instruction performs a condition code te st to determine what
 instructions inside an IF/ELSE/ENDIF block are executed. If the test
 passes, execution continues at the instruction immediately following the
 IF instruction. If the test fails, IF transfer s control to the
 instruction immediately following the correspon ding ELSE instruction (if
 present) or the ENDIF instruction (if no ELSE i s present).

 Implementations may have a limited ability to n est IF blocks in any
 subroutine. If the number of IF/ENDIF blocks n ested inside each other is
 MAX_PROGRAM_IF_DEPTH_NV or higher, a program wi ll fail to compile.

 // Evaluate the condition. If the condition is true, continue at the
 // next instruction. Otherwise, continue at the
 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next instruction;
 } else if (IF block contains an ELSE statemen t) {
 continue execution at instruction following corresponding ELSE;
 } else {
 continue execution at instruction following corresponding ENDIF;
 }

 (Note: Unlike the NV_fragment_program2 extensi on, there is no run-time
 limit on the maximum overall depth of IF/ENDIF nesting. As long as each
 individual subroutine of the program obeys the static nesting limits,
 there will be no run-time errors in the program . With the
 NV_fragment_program2 extension, a program could terminate abnormally if it
 called a subroutine inside a very deeply nested set of IF/ENDIF blocks and
 the called subroutine also contained deeply nes ted IF/ENDIF blocks. SUch
 an error could occur even if neither subroutine exceeded static limits.)

 Section 2.X.8.Z, KIL: Kill Fragment

 The KIL instruction conditionally kills a fragm ent, and is only available
 to fragment programs. See the NV_fragment_prog ram4 specification for more
 details.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1465

 Section 2.X.8.Z, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 If the scalar operand is zero or negative, the result is undefined.

 LG2 supports only floating-point data type modi fiers.

 Section 2.X.8.Z, LIT: Compute Lighting Coeffic ients

 The LIT instruction accelerates lighting comput ations by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the single operand is assumed to hold
 a diffuse dot product (n dot VP_pli, as in the vertex lighting equations
 in Section 2.13.1). The "y" component of the o perand is assumed to hold a
 specular dot product (n dot h_i). The "w" comp onent of the operand is
 assumed to hold the specular exponent of the ma terial (s_rm), and is
 clamped to the range (-128, +128) exclusive.

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

 tmp = VectorLoad(op0);
 if (tmp.x < 0) tmp.x = 0;
 if (tmp.y < 0) tmp.y = 0;
 if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0 -epsilon);
 else if (tmp.w > 128-epsilon) tmp.w = 128-eps ilon;
 result.x = 1.0;
 result.y = tmp.x;
 result.z = (tmp.x > 0) ? RoughApproxPower(tmp .y, tmp.w) : 0.0;
 result.w = 1.0;

 Since 0^0 is defined to be 1, RoughApproxPower(0.0, 0.0) will produce 1.0.

 LIT supports only floating-point data type modi fiers.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1466

 Section 2.X.8.Z, LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation between
 the second and third operands using the first o perand as the blend factor.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 LRP supports only floating-point data type modi fiers.

 Section 2.X.8.Z, MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 The multiplication and addition operations in t his instruction are subject
 to the same rules as described for the MUL and ADD instructions.

 MAD supports all three data type modifiers.

 Section 2.X.8.Z, MAX: Maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1. x;
 result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1. y;
 result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1. z;
 result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1. w;

 MAX supports all three data type modifiers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1467

 Section 2.X.8.Z, MIN: Minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0. x;
 result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0. y;
 result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0. z;
 result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0. w;

 MIN supports all three data type modifiers.

 Section 2.X.8.Z, MOD: Modulus

 The MOD instruction performs a component-wise m odulus operation on the first
 vector operand by the second scalar operand to produce a 4-component result
 vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x % tmp1;
 result.y = tmp0.y % tmp1;
 result.z = tmp0.z % tmp1;
 result.w = tmp0.w % tmp1;

 MOD supports both signed and unsigned integer d ata type modifiers. If no
 data type modifier is specified, both operands and the result are treated
 as signed integers.

 Section 2.X.8.Z, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

 MOV supports all three data type modifiers.

 Section 2.X.8.Z, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 MUL supports all three data type modifiers. Th e MUL instruction
 additionally supports three special modifiers.

 The "S24" and "U24" modifiers specify "fast" si gned or unsigned integer
 multiplies of 24-bit quantities, respectively. The results of such

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1468

 multiplies are undefined if either operand is o utside the range
 [-2^23,+2^23-1] for S24 or [0,2^24-1] for U24. If "S24" or "U24" is
 specified, the data type is implied and normal data type modifiers may not
 be provided.

 The "HI" modifier specifies a 32-bit integer mu ltiply that returns the 32
 most significant bits of the 64-bit product. I nteger multiplies without
 the "HI" modifier normally return the least sig nificant bits of the
 product. If "HI" is specified, either of the " S" or "U" integer data type
 modifiers must also be specified.

 Note that if condition code updates are perform ed on integer multiplies,
 the overflow or carry flags are always cleared, even if the product
 overflowed. If it is necessary to determine if the results of an integer
 multiply overflowed, the MUL.HI instruction may be used.

 Section 2.X.8.Z, NOT: Bitwise Not

 The NOT instruction performs a component-wise b itwise NOT operation on the
 source vector to produce a result vector.

 tmp = VectorLoad(op0);
 tmp.x = ~tmp.x;
 tmp.y = ~tmp.y;
 tmp.z = ~tmp.z;
 tmp.w = ~tmp.w;

 NOT supports only integer data type modifiers. If no type modifier is
 specified, the operand and the result are treat ed as signed integers.

 Section 2.X.8.Z, NRM: Normalize 3-Component Ve ctor

 The NRM instruction normalizes the vector given by the x, y, and z
 components of the vector operand to produce the x, y, and z components of
 the result vector. The w component of the resu lt is undefined.

 tmp = VectorLoad(op0);
 scale = ApproxRSQ(tmp.x * tmp.x + tmp.y * tmp .y + tmp.z * tmp.z);
 result.x = tmp.x * scale;
 result.y = tmp.y * scale;
 result.z = tmp.z * scale;
 result.w = undefined;

 NRM supports only floating-point data type modi fiers.

 Section 2.X.8.Z, OR: Bitwise Or

 The OR instruction performs a bitwise OR operat ion on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x | tmp1.x;
 result.y = tmp0.y | tmp1.y;
 result.z = tmp0.z | tmp1.z;
 result.w = tmp0.w | tmp1.w;

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1469

 OR supports only integer data type modifiers. If no type modifier is
 specified, both operands and the result are tre ated as signed integers.

 Section 2.X.8.Z, PK2H: Pack Two 16-bit Floats

 The PK2H instruction converts the "x" and "y" c omponents of the single
 floating-point vector operand into 16-bit float ing-point format, packs the
 bit representation of these two floats into a 3 2-bit unsigned integer, and
 replicates that value to all four components of the result vector. The
 PK2H instruction can be reversed by the UP2H in struction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 PK2H supports all three data type modifiers. T he single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er results, the bits can be
 interpreted as described above. For floating-p oint result variables, the
 packed results do not constitute a meaningful f loating-point variable and
 should only be used to feed future unpack instr uctions.

 A program will fail to load if it contains a PK 2H instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, PK2US: Pack Two Floats as Uns igned 16-bit

 The PK2US instruction converts the "x" and "y" components of the single
 floating-point vector operand into a packed pai r of 16-bit unsigned
 scalars. The scalars are represented in a bit pattern where all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the two converted components are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK2US instruction can b e reversed by the UP2US
 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 PK2US supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1470

 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions.

 A program will fail to load if it contains a PK 2S instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, PK4B: Pack Four Floats as Sig ned 8-bit

 The PK4B instruction converts the four componen ts of the single
 floating-point vector operand into 8-bit signed quantities. The signed
 quantities are represented in a bit pattern whe re all '0' bits corresponds
 to -128/127 and all '1' bits corresponds to +12 7/127. The bit
 representations of the four converted component s are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK4B instruction can be reversed by the UP4B
 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 PK4B supports all three data type modifiers. T he single operand is always
 treated as a floating-point value, but the resu lt is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the
 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions. A program will fail to load if i t contains a PK4B
 instruction that writes its results to a variab le declared as "SHORT".

 Section 2.X.8.Z, PK4UB: Pack Four Floats as Un signed 8-bit

 The PK4UB instruction converts the four compone nts of the single
 floating-point vector operand into a packed gro uping of 8-bit unsigned
 scalars. The scalars are represented in a bit pattern where all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the four converted component s are packed into a 32-bit
 unsigned integer, and that value is replicated to all four components of
 the result vector. The PK4UB instruction can b e reversed by the UP4UB

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1471

 instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 PK4UB supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. For integ er result variables, the
 bits can be interpreted as described above. Fo r floating-point result
 variables, the packed results do not constitute a meaningful
 floating-point variable and should only be used to feed future unpack
 instructions.

 A program will fail to load if it contains a PK 4UB instruction that writes
 its results to a variable declared as "SHORT".

 Section 2.X.8.Z, POW: Exponentiate

 The POW instruction approximates the value of t he first scalar operand
 raised to the power of the second scalar operan d and replicates it to all
 four components of the result vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function may b e implemented using the
 base 2 exponentiation and logarithm approximati on operations in the EX2
 and LG2 instructions. In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 Note that a logarithm may be involved even for cases where the exponent is
 an integer. This means that it may not be poss ible to exponentiate
 correctly with a negative base. In constrast, it is possible in a
 "normal" mathematical formulation to raise nega tive numbers to integral
 powers (e.g., (-3)^2== 9, and (-0.5)^-2==4).

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1472

 POW supports only floating-point data type modi fiers.

 Section 2.X.8.Z, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped result
 to all four components of the result vector.

 If the approximated reciprocal is greater than 0.0, the result is clamped
 to the range [2^-64, 2^+64]. If the approximat e reciprocal is not greater
 than zero, the result is clamped to the range [-2^+64, -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 RCC supports only floating-point data type modi fiers.

 Section 2.X.8.Z, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 RCP supports only floating-point data type modi fiers.

 Section 2.X.8.Z, REP: Start of Repeat Block

 The REP instruction begins a REP/ENDREP block. The REP instruction
 supports an optional operand whose x component specifies the initial value
 for the loop count. The loop count indicates t he number of times the
 instructions between the REP and corresponding ENDREP instruction will be
 executed. If the initial value of the loop cou nt is not positive, the
 entire block is skipped and execution continues at the instruction
 following the corresponding ENDREP instruction. If the loop count is
 specified as a floating-point value, it is conv erted to the largest
 integer less than or equal to the specified val ue (i.e., taking its
 floor).

 If no operand is provided to REP, the loop coun t is ignored and the
 corresponding ENDREP instruction unconditionall y transfers control to the
 instruction immediately following the REP instr uction. The only way to
 exit such a loop is with the BRK instruction. To prevent obvious infinite
 loops, a program that includes a REP/ENDREP blo ck with no loop count will
 fail to compile unless it contains either a BRK instruction at the current
 nesting level or a RET instruction at any nesti ng level.

 Implementations may have a limited ability to n est REP/ENDREP blocks. If
 the number of REP/ENDREP blocks nested inside e ach other is

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1473

 MAX_PROGRAM_LOOP_DEPTH_NV or higher, a program will fail to compile.

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(tmp.x);
 if (LoopCount <= 0) {
 continue execution at the corresponding END REP;
 }

 REP supports all three data type modifiers. Th e single operand is
 interpreted according to the data type modifier .

 (Note: Unlike the NV_fragment_program2 extensi on, REP blocks in this
 extension support fully general looping; the sp ecified loop count can be
 computed in the program itself. Additionally, there is no run-time limit
 on the maximum overall depth of REP/ENDREP nest ing. As long as each
 individual subroutine of the program obeys the static nesting limits,
 there will be no run-time errors in the program . With the
 NV_fragment_program2 extension, a program could terminate abnormally if it
 called a subroutine inside a deeply nested set of REP/ENDREP blocks and
 the called subroutine also contained deeply nes ted REP/ENDREP blocks.
 Such an error could occur even if neither subro utine exceeded static
 limits.)

 Section 2.X.8.Z, RET: Subroutine Return

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction by popping an instruction refer ence off the top of the
 call stack and transferring control to the refe renced instruction. The
 following pseudocode describes the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is a
 reference to an instruction previously pushed o nto the call stack.

 If the call stack is empty when RET executes, t he program terminates
 normally.

 Section 2.X.8.Z, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector operand
 (the "direction" vector) about the vector speci fied by the first vector
 operand (the "axis" vector). Both operands are treated as 3D vectors (the

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1474

 w components are ignored). The result vector i s another 3D vector (the
 "reflected direction" vector). The length of t he result vector, ignoring
 rounding errors, should equal that of the secon d operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y + axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 RFL supports only floating-point data type modi fiers.

 Section 2.X.8.Z, ROUND: Round to Nearest Integ er

 The ROUND instruction loads a single vector ope rand and performs a
 component-wise round operation to generate a re sult vector.

 tmp = VectorLoad(op0);
 result.x = round(tmp.x);
 result.y = round(tmp.y);
 result.z = round(tmp.z);
 result.w = round(tmp.w);

 The round operation returns the nearest integer to the operand. If the
 fractional portion of the operand is 0.5, round () selects the nearest even
 integer. For example round(-1.7) = -2.0, round (+1.0) = +1.0, and
 round(+3.7) = +4.0.

 ROUND supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly
 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, RSQ: Reciprocal Square Root

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 If the operand is less than or equal to zero, t he results of the
 instruction are undefined.

 RSQ supports only floating-point data type modi fiers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1475

 Note that this instruction differs from the RSQ instruction in
 ARB_vertex_program in that it does not implicit ly take the absolute value
 of its operand. The |abs| operator can be used to achieve equivalent
 semantics.

 Section 2.X.8.Z, SAD: Sum of Absolute Differen ces

 The SAD instruction performs a component-wise d ifference of the first two
 integer operands (subtracting the second from t he first), and then does a
 component-wise add of the absolute value of the difference to the third
 unsigned integer operand to yield an unsigned i nteger result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = abs(tmp0.x - tmp1.x) + tmp2.x;
 result.y = abs(tmp0.y - tmp1.y) + tmp2.y;
 result.z = abs(tmp0.z - tmp1.z) + tmp2.z;
 result.w = abs(tmp0.w - tmp1.w) + tmp2.w;

 SAD supports signed and unsigned integer data t ype modifiers. The first
 two operands are interpreted according to the d ata type modifier. The
 third operand and the result are always unsigne d integers.

 Section 2.X.8.Z, SCS: Sine/Cosine without Redu ction

 The SCS instruction approximates the trigonomet ric sine and cosine of the
 angle specified by the scalar operand and place s the cosine in the x
 component and the sine in the y component of th e result vector. The z and
 w components of the result vector are undefined . The angle is specified
 in radians and must be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxSine(tmp);

 If the scalar operand is not in the range [-PI, PI], the result vector is
 undefined.

 SCS supports only floating-point data type modi fiers.

 Section 2.X.8.Z, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 equal to that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y == tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z == tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w == tmp1.w) ? TRUE : FALSE;

 SEQ supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1476

 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to a FALSE
 value (described below).

 result.x = FALSE;
 result.y = FALSE;
 result.z = FALSE;
 result.w = FALSE;

 SFL supports all data type modifiers. For floa ting-point data types, the
 FALSE value is 0.0. For signed and unsigned in teger data types, the FALSE
 value is zero.

 Section 2.X.8.Z, SGE: Set on Greater Than or E qual

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 greater than or equal to that of the second, an d a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y >= tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z >= tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w >= tmp1.w) ? TRUE : FALSE;

 SGE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 greater than that of the second, and a FALSE va lue otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y > tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z > tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w > tmp1.w) ? TRUE : FALSE;

 SGT supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1477

 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SHL: Shift Left

 The SHL instruction performs a component-wise l eft shift of the bits of
 the first operand by the value of the second sc alar operand to produce a
 result vector. The bits vacated during the shi ft operation are filled
 with zeroes.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x << tmp1;
 result.y = tmp0.y << tmp1;
 result.z = tmp0.z << tmp1;
 result.w = tmp0.w << tmp1;

 The results of a shift operation ("<<") are und efined if the value of the
 second operand is negative, or greater than or equal to the number of bits
 in the first operand.

 SHL supports both signed and unsigned integer d ata type modifiers. If no
 modifier is provided, the operands and the resu lt are treated as signed
 integers.

 Section 2.X.8.Z, SHR: Shift Right

 The SHR instruction performs a component-wise r ight shift of the bits of
 the first operand by the value of the second sc alar operand to produce a
 result vector. The bits vacated during shift o peration are filled with
 zeros if the operand is non-negative and ones o therwise.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x >> tmp1;
 result.y = tmp0.y >> tmp1;
 result.z = tmp0.z >> tmp1;
 result.w = tmp0.w >> tmp1;

 The results of a shift operation (">>") are und efined if the value of the
 second operand is negative, or greater than or equal to the number of bits
 in the first operand.

 SHR supports both signed and unsigned integer d ata type modifiers. If no
 modifiers are provided, the operands and the re sult are treated as signed
 integers.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1478

 Section 2.X.8.Z, SIN: Sine with Reduction to [-PI,PI]

 The SIN instruction approximates the trigonomet ric sine of the angle
 specified by the scalar operand and replicates it to all four components
 of the result vector. The angle is specified i n radians and does not have
 to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 SIN supports only floating-point data type modi fiers.

 Section 2.X.8.Z, SLE: Set on Less Than or Equa l

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than or equal to that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y <= tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z <= tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w <= tmp1.w) ? TRUE : FALSE;

 SLE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y < tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z < tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w < tmp1.w) ? TRUE : FALSE;

 SLT supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1479

 Section 2.X.8.Z, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector returns a TRUE value
 (described below) if the corresponding componen t of the first operand is
 less than that of the second, and a FALSE value otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? TRUE : FALSE;
 result.y = (tmp0.y != tmp1.y) ? TRUE : FALSE;
 result.z = (tmp0.z != tmp1.z) ? TRUE : FALSE;
 result.w = (tmp0.w != tmp1.w) ? TRUE : FALSE;

 SNE supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0 and the FALSE value is 0.0. For signed integer data
 types, the TRUE value is -1 and the FALSE value is 0. For unsigned
 integer data types, the TRUE value is the maxim um integer value (all bits
 are ones) and the FALSE value is zero.

 Section 2.X.8.Z, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of
 each component of the single vector operand. E ach component of the
 result vector is 1.0 if the corresponding compo nent of the operand
 is greater than zero, 0.0 if the corresponding component of the
 operand is equal to zero, and -1.0 if the corre sponding component
 of the operand is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 SSG supports only floating-point data type modi fiers.

 Section 2.X.8.Z, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to a TRUE value
 (described below).

 result.x = TRUE;
 result.y = TRUE;
 result.z = TRUE;
 result.w = TRUE;

 STR supports all data type modifiers. For floa ting-point data types, the
 TRUE value is 1.0. For signed integer data typ es, the TRUE value is -1.
 For unsigned integer data types, the TRUE value is the maximum integer
 value (all bits are ones).

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1480

 Section 2.X.8.Z, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 SUB supports all three data type modifiers.

 Section 2.X.8.Z, SWZ: Extended Swizzle

 The SWZ instruction loads the single vector ope rand, and performs a
 swizzle operation more powerful than that provi ded for loading normal
 vector operands to yield an instruction vector.

 After the operand is loaded, the "x", "y", "z", and "w" components of the
 result vector are selected by the first, second , third, and fourth matches
 of the <extSwizComp> pattern in the <extendedSw izzle> rule.

 A result component can be selected from any of the four components of the
 operand or the constants 0.0 and 1.0. The resu lt component can also be
 optionally negated. The following pseudocode d escribes the component
 selection method. "operand" refers to the vect or operand, "select" is an
 enumerant where the values ZERO, ONE, X, Y, Z, and W correspond to the
 <extSwizSel> rule matching "0", "1", "x", "y", "z", and "w", respectively.
 "negate" is TRUE if and only if the <optionalSi gn> rule in <extSwizComp>
 matches "-".

 float ExtSwizComponent(floatVec operand, enum select, boolean negate)
 {
 float result;
 switch (select) {
 case ZERO: result = 0.0; break;
 case ONE: result = 1.0; break;
 case X: result = operand.x; break;
 case Y: result = operand.y; break;
 case Z: result = operand.z; break;
 case W: result = operand.w; break;
 }
 if (negate) {
 result = -result;
 }
 return result;
 }

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1481

 The entire extended swizzle operation is then d efined using the following
 pseudocode:

 tmp = VectorLoad(op0);
 result.x = ExtSwizComponent(tmp, xSelect, xNe gate);
 result.y = ExtSwizComponent(tmp, ySelect, yNe gate);
 result.z = ExtSwizComponent(tmp, zSelect, zNe gate);
 result.w = ExtSwizComponent(tmp, wSelect, wNe gate);

 "xSelect", "xNegate", "ySelect", "yNegate", "zS elect", "zNegate",
 "wSelect", and "wNegate" correspond to the "sel ect" and "negate" values
 above for the four <extSwizComp> matches.

 Since this instruction allows for component sel ection and negation for
 each individual component, the grammar does not allow the use of the
 normal swizzle and negation operations allowed for vector operands in
 other instructions.

 SWZ supports only floating-point data type modi fiers.

 Section 2.X.8.Z, TEX: Texture Sample

 The TEX instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically.

 tmp = VectorLoad(op0);
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda, ddx, ddy, texelOffset);

 TEX supports all three data type modifiers. Th e single operand is always
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TRUNC: Truncate (Round Toward Zero)

 The TRUNC instruction loads a single vector ope rand and performs a
 component-wise truncate operation to generate a result vector.

 tmp = VectorLoad(op0);
 result.x = trunc(tmp.x);
 result.y = trunc(tmp.y);
 result.z = trunc(tmp.z);
 result.w = trunc(tmp.w);

 The truncate operation returns the nearest inte ger to zero smaller in
 magnitude than the operand. For example trunc(-1.7) = -1.0, trunc(+1.0) =
 +1.0, and trunc(+3.7) = +3.0.

 TRUNC supports all three data type modifiers. The single operand is
 always treated as a floating-point value, but t he result is written as a
 floating-point value, a signed integer, or an u nsigned integer, as
 specified by the data type modifier. If a valu e is not exactly

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1482

 representable using the data type of the result (e.g., an overflow or
 writing a negative value to an unsigned integer), the result is undefined.

 Section 2.X.8.Z, TXB: Texture Sample with Bias

 The TXB instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically, but the fourth comp onent of the source vector
 is added to the computed LOD prior to sampling.

 tmp = VectorLoad(op0);
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda + tmp.w, d dx, ddy, texelOffset);

 The single source vector in the TXB instruction does not have enough
 coordinates to specify a lookup into a two-dime nsional array texture or
 cube map texture with both an LOD bias and an e xplicit reference value for
 depth comparison. A program will fail to load if it contains a TXB
 instruction with a target of SHADOWCUBE or SHAD OWARRAY2D.

 TXB supports all three data type modifiers. Th e single operand is always
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXD: Texture Sample with Part ials

 The TXD instruction takes the four components o f the first floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. The partial deri vatives of the texture
 coordinates with respect to X and Y are specifi ed by the second and third
 floating-point source vectors. The level of de tail is computed
 automatically using the provided partial deriva tives.

 Note that for cube map texture targets, the pro vided partial derivatives
 are in the coordinate system used before textur e coordinates are projected
 onto the appropriate cube face. The partial de rivatives of the
 post-projection texture coordinates, which are used for level-of-detail
 and anisotropic filtering calculations, are der ived from the original
 coordinates and partial derivatives in an imple mentation-dependent manner.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 lambda = ComputeLOD(tmp1, tmp2);
 result = TextureSample(tmp0, lambda, tmp1, tm p2, texelOffset);

 TXD supports all three data type modifiers. Al l three operands are always
 treated as floating-point vectors; the results are interpreted according
 to the data type modifier.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1483

 Section 2.X.8.Z, TXF: Texel Fetch

 The TXF instruction takes the four components o f a single signed integer
 source vector and performs a single texel fetch as described in Section
 2.X.4.4. The first three components provide th e <i>, <j>, and <k> values
 for the texel fetch, and the fourth component i s used to determine the LOD
 to access. The returned (R,G,B,A) value is wri tten to the floating-point
 result vector. Partial derivatives are irrelev ant for single texel
 fetches.

 tmp = VectorLoad(op0);
 result = TexelFetch(tmp, texelOffset);

 TXF supports all three data type modifiers. Th e single vector operand is
 treated as a signed integer vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXL: Texture Sample with LOD

 The TXL instruction takes the four components o f a single floating-point
 source vector and performs a filtered texture a ccess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. The level of det ail is taken from the
 fourth component of the source vector.

 Partial derivatives are not computed by the TXL instruction and
 anisotropic filtering is not performed.

 tmp = VectorLoad(op0);
 ddx = (0,0,0);
 ddy = (0,0,0);
 result = TextureSample(tmp, tmp.w, ddx, ddy, texelOffset);

 The single source vector in the TXL instruction does not have enough
 coordinates to specify a lookup into a 2D array or cube map texture with
 both an explicit LOD and a reference value for depth comparison. A
 program will fail to load if it contains a TXL instruction with a target
 of SHADOWCUBE or SHADOWARRAY2D.

 TXL supports all three data type modifiers. Th e single vector operand is
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1484

 Section 2.X.8.Z, TXP: Texture Sample with Proj ection

 The TXP instruction divides the first three com ponents of its single
 floating-point source vector by its fourth comp onent, maps the results to
 s, t, and r, and performs a filtered texture ac cess as described in
 Section 2.X.4.4. The returned (R,G,B,A) value is written to the
 floating-point result vector. Partial derivati ves and the level of detail
 are computed automatically.

 tmp0 = VectorLoad(op0);
 tmp0.x = tmp0.x / tmp0.w;
 tmp0.y = tmp0.y / tmp0.w;
 tmp0.z = tmp0.z / tmp0.w;
 ddx = ComputePartialsX(tmp);
 ddy = ComputePartialsY(tmp);
 lambda = ComputeLOD(ddx, ddy);
 result = TextureSample(tmp, lambda, ddx, ddy, texelOffset);

 The single source vector in the TXP instruction does not have enough
 coordinates to specify a lookup into a 2D array or cube map texture with
 both a Q coordinate and an explicit reference v alue for depth comparison.
 A program will fail to load if it contains a TX P instruction with a target
 of SHADOWCUBE or SHADOWARRAY2D.

 TXP supports all three data type modifiers. Th e single vector operand is
 treated as a floating-point vector; the results are interpreted according
 to the data type modifier.

 Section 2.X.8.Z, TXQ: Texture Size Query

 The TXQ instruction takes the first component o f the single integer vector
 operand, adds the number of the base level of t he specified texture to
 determine a texture image level, and returns an integer result vector
 containing the size of the image at that level of the texture.

 For one-dimensional and one-dimensional array t extures, the "x" component
 of the result vector is filled with the width o f the image(s). For
 two-dimensional, rectangle, cube map, and two-d imensional array textures,
 the "x" and "y" components are filled with the width and height of the
 image(s). For three-dimensional textures, the "x", "y", and "z"
 components are filled with the width, height, a nd depth of the image.
 Additionally, the number of layers in an array texture is returned in the
 "y" component of the result for one-dimensional array textures or the "z"
 component for two-dimensional array textures. All other components of the
 result vector is undefined. For the purposes o f this instruction, the
 width, height, and depth of a texture do NOT in clude any border.

 tmp0 = VectorLoad(op0);
 tmp0.x = tmp0.x + texture[op1].target[op2].ba se_level;
 result.x = texture[op1].target[op2].level[tmp 0.x].width;
 result.y = texture[op1].target[op2].level[tmp 0.x].height;
 result.z = texture[op1].target[op2].level[tmp 0.x].depth;

 If the level computed by adding the operand to the base level of the
 texture is less than the base level number or g reater than the maximum
 level number, the results are undefined.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1485

 TXQ supports no data type modifiers; the scalar operand and the result
 vector are both interpreted as signed integers.

 Section 2.X.8.Z, UP2H: Unpack Two 16-bit Float s

 The UP2H instruction unpacks two 16-bit floats stored together in a 32-bit
 scalar operand. The first 16-bit float (stored in the 16 least
 significant bits) is written into the "x" and " z" components of the result
 vector; the second is written into the "y" and "w" components of the
 result vector.

 This operation undoes the type conversion and p acking performed by
 the PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 UP2H supports all three data type modifiers. T he single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 2H instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, UP2US: Unpack Two Unsigned 16 -bit Integers

 The UP2US instruction unpacks two 16-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and
 a pattern of all '1' bits corresponds to 1.0. The "x" and "z"
 components of the result vector are obtained fr om the 16 least
 significant bits of the operand; the "y" and "w " components are
 obtained from the 16 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 UP2US supports all three data type modifiers. The single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1486

 A GPU program will fail to load if it contains a UP2S instruction
 whose operand is a variable declared as "SHORT" .

 Section 2.X.8.Z, UP4B: Unpack Four Signed 8-bi t Integers

 The UP4B instruction unpacks four 8-bit signed values packed together
 in a 32-bit scalar operand. The signed quantit ies are encoded where
 a bit pattern of all '0' bits corresponds to -1 28/127 and a pattern
 of all '1' bits corresponds to +127/127. The " x" component of the
 result vector is the converted value correspond ing to the 8 least
 significant bits of the operand; the "w" compon ent corresponds to
 the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 UP2B supports all three data type modifiers. T he single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it
 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 4B instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, UP4UB: Unpack Four Unsigned 8 -bit Integers

 The UP4UB instruction unpacks four 8-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and a
 pattern of all '1' bits corresponds to 1.0. Th e "x" component of the
 result vector is obtained from the 8 least sign ificant bits of the
 operand; the "w" component is obtained from the 8 most significant
 bits.

 This operation undoes the type conversion and p acking performed by
 the PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 UP4UB supports all three data type modifiers. The single operand is read
 as a floating-point value, a signed integer, or an unsigned integer, as
 specified by the data type modifier; the 32 lea st significant bits of the
 encoding are used for unpacking. For floating- point operand variables, it

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1487

 is expected (but not required) that the operand was produced by a previous
 pack instruction. The result is always written as a floating-point
 vector.

 A program will fail to load if it contains a UP 4UB instruction whose
 operand is a variable declared as "SHORT".

 Section 2.X.8.Z, X2D: 2D Coordinate Transforma tion

 The X2D instruction multiplies the 2D offset ve ctor specified by the
 "x" and "y" components of the second vector ope rand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds
 the transformed offset vector to the 2D vector specified by the "x"
 and "y" components of the first vector operand. The first component
 of the sum is written to the "x" and "z" compon ents of the result;
 the second component is written to the "y" and "w" components of
 the result.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

 X2D supports only floating-point data type modi fiers.

 Section 2.X.8.Z, XOR: Exclusive Or

 The XOR instruction performs a bitwise XOR oper ation on the components of
 the two source vectors to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x ^ tmp1.x;
 result.y = tmp0.y ^ tmp1.y;
 result.z = tmp0.z ^ tmp1.z;
 result.w = tmp0.w ^ tmp1.w;

 XOR supports only integer data type modifiers. If no type modifier is
 specified, both operands and the result are tre ated as signed integers.

 Section 2.X.8.Z, XPD: Cross Product

 The XPD instruction computes the cross product using the first three
 components of its two vector operands to genera te the x, y, and z
 components of the result vector. The w compone nt of the result vector is
 undefined.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
 result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
 result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

 XPD supports only floating-point data type modi fiers.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1488

Additions to Chapter 3 of the OpenGL 1.5 Specificat ion (Rasterization)

 Modify Section 3.8.1, Texture Image Specificati on, p. 150

 (modify 4th paragraph, p. 151 -- add cubemaps t o the list of texture
 targets that can be used with DEPTH_COMPONENT t extures) Textures with a
 base internal format of DEPTH_COMPONENT are sup ported by texture image
 specification commands only if <target> is TEXT URE_1D, TEXTURE_2D,
 TEXTURE_CUBE_MAP, TEXTURE_RECTANGLE_ARB, TEXTURE_1D_ARRAY_EXT,
 TEXTURE_2D_ARRAY_EXT, PROXY_TEXTURE_1D PROXY_TEXTURE_2D,
 PROXY_TEXTURE_CUBE_MAP, PROXY_TEXTURE_RECTANGLE_ARB,
 PROXY_TEXTURE_1D_ARRAY_EXT, or PROXY_TEXTURE_2D _ARRAY_EXT. Using this
 format in conjunction with any other target wil l result in an
 INVALID_OPERATION error.

 Delete Section 3.8.7, Texture Wrap Modes. (The language in this section
 is folded into updates to the following section , and is no longer needed
 here.)

 Modify Section 3.8.8, Texture Minification:

 (replace the last paragraph, p. 171): Let s(x, y) be the function that
 associates an s texture coordinate with each se t of window coordinates
 (x,y) that lie within a primitive; define t(x,y) and r(x,y) analogously.
 Let

 u(x,y) = w_t * s(x,y) + offsetu_shader,
 v(x,y) = h_t * t(x,y) + offsetv_shader,
 w(x,y) = d_t * r(x,y) + offsetw_shader, and

 where w_t, h_t, and d_t are as defined by equat ions 3.15, 3.16, and 3.17
 with w_s, h_s, and d_s equal to the width, heig ht, and depth of the image
 array whose level is level_base. (offsetu_shad er, offsetv_shader,
 offsetw_shader) is the texel offset specified i n the vertex, geometry, or
 fragment program instruction used to perform th e access. For
 fixed-function texture accesses, all three shad er offsets are taken to be
 zero. For a one-dimensional texture, define v(x,y) == 0 and w(x,y) === 0;
 for two-dimensional textures, define w(x,y) == 0.

 (start a new paragraph with "For a polygon, rho is given at a fragment
 with window coordinates...", and then continue with the original spec
 text.)

 (replace text starting with the last paragraph on p. 172, continuing to
 the end of p. 174)

 The (u,v,w) coordinates are then modified accor ding the texture wrap
 modes, as specified in Table X.19, to generate a new set of coordinates
 (u',v',w').

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1489

 TEXTURE_WRAP_S Coordinate Transf ormation
 -------------------------- ----------------- -------------------------
 CLAMP u' = clamp(u, 0, w_t-0.5),
 if NEAREST filtering,
 clamp(u, 0, w_t),
 otherwise
 CLAMP_TO_EDGE u' = clamp(u, 0.5 , w_t-0.5)
 CLAMP_TO_BORDER u' = clamp(u, -0. 5, w_t+0.5)
 REPEAT u' = clamp(fmod(u , w_t), 0.5, w_t-0.5)
 MIRROR_CLAMP_EXT u' = clamp(fabs(u), 0.5, w_t-0.5),
 if NEAREST filtering, or
 = clamp(fabs(u), 0.5, w_t),
 otherwise
 MIRROR_CLAMP_TO_EDGE_EXT u' = clamp(fabs(u), 0.5, w_t-0.5)
 MIRROR_CLAMP_TO_BORDER_EXT u' = clamp(fabs(u), 0.5, w_t+0.5)
 MIRRORED_REPEAT u' = w_t - clamp(fabs(w_t - fmod(u, 2*w_t)),
 0.5, w_t-0.5),

 Table X.19: Texel coordinate wrap mode application. clamp(a, b,c)
 returns b if a<b, c if a>c, and a otherwise. fmod(a,b) returns
 a-b*floor(a/b), and fabs(a) returns the absol ute value of a. For the v
 and w coordinates, TEXTURE_WRAP_T and h_t, an d TEXTURE_WRAP_R and d_t,
 respectively, are used.

 When lambda indicates minification, the value a ssigned to
 TEXTURE_MIN_FILTER is used to determine how the texture value for a
 fragment is selected.

 When TEXTURE_MIN_FILTER is NEAREST, the texel i n the image array of level
 level_base that is nearest (in Manhattan distan ce) to that specified by
 (s,t,r) is obtained. For a three-dimensional t exture, the texel at
 location (i,j,k) becomes the texture value. Fo r a two-dimensional
 texture, k is irrelevant, and the texel at loca tion (i,j) becomes the
 texture value. For a one-dimensional texture, j and k are irrelevant, and
 the texel at location i becomes the texture val ue.

 If the selected (i,j,k), (i,j), or i location r efers to a border texel
 that satisfies any of the following conditions:

 i < -b_s,
 j < -b_s,
 k < -b_s,
 i >= w_l + b_s,
 j >= h_l + b_s, or
 j >= d_l + b_s,

 then the border values defined by TEXTURE_BORDE R_COLOR are used in place
 of the non-existent texel. If the texture conta ins color components, the
 values of TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match
 the texture’s internal format in a manner consi stent with table 3.15. If
 the texture contains depth components, the firs t component of
 TEXTURE_BORDER_COLOR is interpreted as a depth value.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1490

 When TEXTURE_MIN_FILTER is LINEAR, a 2x2x2 cube of texels in the image
 array of level level_base is selected. Let:

 i_0 = floor(u' - 0.5),
 j_0 = floor(v' - 0.5),
 k_0 = floor(w' - 0.5),
 i_1 = i_0 + 1,
 j_1 = j_0 + 1,
 k_1 = k_0 + 1,
 alpha = frac(u' - 0.5),
 beta = frac(v' - 0.5),
 gamma = frac(w' - 0.5),

 For a three-dimensional texture, the texture va lue tau is found as...

 (replace last paragraph, p.174) For any texel i n the equation above that
 refers to a border texel outside the defined ra nge of the image, the texel
 value is taken from the texture border color as with NEAREST filtering.

 Modify Section 3.8.14, Texture Comparison Modes (p. 185)

 (modify 2nd paragraph, p. 188, indicating that the Q texture coordinate is
 used for depth comparisons on cubemap textures)

 Let D_t be the depth texture value, in the rang e [0, 1]. For
 fixed-function texture lookups, let R be the in terpolated <r> texture
 coordinate, clamped to the range [0, 1]. For t exture lookups generated by
 a program instruction, let R be the reference v alue for depth comparisons
 provided in the instruction, also clamped to [0 , 1]. Then the effective
 texture value L_t, I_t, or A_t is computed as f ollows:

Additions to Chapter 4 of the OpenGL 1.5 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.5 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.5 Specificat ion (State and
State Requests)

 Modify Section 6.1.12 of the ARB_vertex_program specification.

 (Add new integer program parameter queries, plu s language that program
 environment or local parameter query results ar e undefined if the query
 specifies a data type incompatible with the dat a type of the parameter
 being queried.)

 The commands

 void GetProgramEnvParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramEnvParameterfvARB(enum target, uint index,
 float *param s);
 void GetProgramEnvParameterIivNV(enum target, uint index,

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1491

 int *params) ;
 void GetProgramEnvParameterIuivNV(enum target , uint index,
 uint *param s);

 obtain the current value for the program enviro nment parameter numbered
 <index> for the given program target <target>, and places the information
 in the array <params>. The values returned are undefined if the data type
 of the components of the parameter is not compa tible with the data type of
 <params>. Floating-point components are compat ible with "double" or
 "float"; signed and unsigned integer components are compatible with "int"
 and "uint", respectively. The error INVALID_EN UM is generated if <target>
 specifies a nonexistent program target or a pro gram target that does not
 support program environment parameters. The er ror INVALID_VALUE is
 generated if <index> is greater than or equal t o the
 implementation-dependent number of supported pr ogram environment
 parameters for the program target.

 ...

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);
 void GetProgramLocalParameterIivNV(enum targe t, uint index,
 int *param s);
 void GetProgramLocalParameterIuivNV(enum targ et, uint index,
 uint *par ams);

 obtain the current value for the program local parameter numbered <index>
 belonging to the program object currently bound to <target>, and places
 the information in the array <params>. The val ues returned are undefined
 if the data type of the components of the param eter is not compatible with
 the data type of <params>. Floating-point comp onents are compatible with
 "double' or "float"; signed and unsigned intege r components are compatible
 with "int" and "uint", respectively. The error INVALID_ENUM is generated
 if <target> specifies a nonexistent program tar get or a program target
 that does not support program local parameters. The error INVALID_VALUE
 is generated if <index> is greater than or equa l to the
 implementation-dependent number of supported pr ogram local parameters for
 the program target.

 ...

 The command

 void GetProgramivARB(enum target, enum pname, int *params);

 obtains program state for the program target <t arget>, writing ...

 (add new paragraphs describing the new supporte d queries)

 If <pname> is PROGRAM_ATTRIB_COMPONENTS_NV or
 PROGRAM_RESULT_COMPONENTS_NV, GetProgramivARB r eturns a single integer
 holding the number of active attribute or resul t variable components,
 respectively, used by the program object curren tly bound to <target>.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1492

 If <pname> is MAX_PROGRAM_ATTRIB_COMPONENTS or
 MAX_PROGRAM_RESULT_COMPONENTS_NV, GetProgramivARB returns a single integer
 holding the maximum number of active attribute or result variable
 components, respectively, supported for program s of type <target>.

Additions to Appendix A of the OpenGL 1.5 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 The error INVALID_VALUE is generated by Program LocalParameter4fARB,
 ProgramLocalParameter4fvARB, ProgramLocalParame ter4dARB,
 ProgramLocalParameter4dvARB, ProgramLocalParame terI4iNV,
 ProgramLocalParameterI4ivNV, ProgramLocalParame terI4uiNV,
 ProgramLocalParameterI4uivNV, GetProgramLocalPa rameter4fvARB,
 GetProgramLocalParameter4dvARB, GetProgramLocal ParameterI4ivNV, and
 GetProgramLocalParameterI4uivNV if <index> is g reater than or equal to the
 number of program local parameters supported by <target>.

 The error INVALID_VALUE is generated by Program EnvParameter4fARB,
 ProgramEnvParameter4fvARB, ProgramEnvParameter4 dARB,
 ProgramEnvParameter4dvARB, ProgramEnvParameterI 4iNV,
 ProgramEnvParameterI4ivNV, ProgramEnvParameterI 4uiNV,
 ProgramEnvParameterI4uivNV, GetProgramEnvParame ter4fvARB,
 GetProgramEnvParameter4dvARB, GetProgramEnvPara meterI4ivNV, and
 GetProgramEnvParameterI4uivNV if <index> is gre ater than or equal to the
 number of program environment parameters suppor ted by <target>.

 The error INVALID_VALUE is generated by Program LocalParameters4fvNV,
 ProgramLocalParametersI4ivNV, and ProgramLocalP arametersI4uivNV if the sum
 of <index> and <count> is greater than the numb er of program local
 parameters supported by <target>.

 The error INVALID_VALUE is generated by Program EnvParameters4fvNV,
 ProgramEnvParametersI4ivNV, and ProgramEnvParam etersI4uivNV if the sum of
 <index> and <count> is greater than the number of program environment
 parameters supported by <target>.

Dependencies on NV_parameter_buffer_object

 If NV_parameter_buffer_object is not supported, references to program
 parameter buffer variables and bindings should be removed.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1493

Dependencies on ARB_texture_rectangle

 If ARB_texture_rectangle is not supported, refe rences to rectangle
 textures and the RECT and SHADOWRECT texture ta rget identifiers should be
 removed.

Dependencies on EXT_gpu_program_parameters

 If EXT_gpu_program_parameters is not supported, references to the
 Program{Local,Env}Parameters4fvNV commands, whi ch set multiple program
 local or environment parameters in a single cal l, should be removed.
 These prototypes were included in this spec for completeness only.

Dependencies on EXT_texture_integer

 If EXT_texture_integer is not supported, refere nces to texture lookups
 returning integer values in Section 2.X.4.4 (Te xture Access) should be
 removed, and all texture formats are considered to produce floating-point
 values.

Dependencies on EXT_texture_array

 If EXT_texture_array is not supported, referenc es to array textures in
 Section 2.X.4.4 (Texture Access) and elsewhere should be removed, as
 should all references to the "ARRAY1D", "ARRAY2 D", "SHADOWARRAY1D", and
 "SHADOWARRAY2D" tokens.

Dependencies on EXT_texture_buffer_object

 If EXT_texture_buffer_object is not supported, references to buffer
 textures in Section 2.X.4.4 (Texture Access) an d elsewhere should be
 removed, as should all references to the "BUFFE R" tokens.

Dependencies on NV_primitive_restart

 If NV_primitive_restart is supported, index val ues causing a primitive
 restart are not considered as specifying an End command, followed by
 another Begin. Primitive restart is therefore not guaranteed to
 immediately update bindings for material proper ties changed inside a
 Begin/End. The spec language says they "are no t guaranteed to update
 program parameter bindings until the following End command."

New State

 Initial
 Get Value Type Get Command Value Description Sec Attri b
 ---------------------------- ---- ----------- ---- ------- ---------------------- ------ ----- -
 PROGRAM_ATTRIB_COMPONENTS_NV Z+ GetProgrami vARB - number of components 6.1.12 -
 used for attributes
 PROGRAM_RESULT_COMPONENTS_NV Z+ GetProgrami vARB - number of components 6.1.12 -
 used for results

 Table X.20. New Program Object State. Program object queries return
 attributes of the program object currently boun d to the program target
 <target>.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1494

New Implementation Dependent State

 Minimum
 Get Value Type Get Com mand Value Description Sec. Att rib
 -------------------------------- ---- ------- -------- ------- --------------------- ------ --- ---
 MIN_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv -8 minimum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_TEXEL_OFFSET_EXT Z GetInte gerv +7 maximum texel offset 2.x.4.4 -
 allowed in lookup
 MAX_PROGRAM_ATTRIB_COMPONENTS_NV Z+ GetProg ramivARB (*) maximum number of 6.1.12 -
 components allowed
 for attributes
 MAX_PROGRAM_RESULT_COMPONENTS_NV Z+ GetProg ramivARB (*) maximum number of 6.1.12 -
 components allowed
 for results
 MAX_PROGRAM_GENERIC_ATTRIBS_NV Z+ GetProg ramivARB (*) number of generic 6.1.12 -
 attribute vectors
 supported
 MAX_PROGRAM_GENERIC_RESULTS_NV Z+ GetProg ramivARB (*) number of generic 6.1.12 -
 result vectors
 supported
 MAX_PROGRAM_CALL_DEPTH_NV Z+ GetProg ramivARB 4 maximum program 2.X.5 -
 call stack depth
 MAX_PROGRAM_IF_DEPTH_NV Z+ GetProg ramivARB 48 maximum program 2.X.5 -
 if nesting
 MAX_PROGRAM_LOOP_DEPTH_NV Z+ GetProg ramivARB 4 maximum program 2.X.5 -
 loop nesting

 Table X.21: New Implementation-Dependent Values Introduced by
 NV_gpu_program4. (*) means that the required m inimum is program
 type-specific. There are separate limits for e ach program type.

Issues

 (1) How does this extension differ from previou s NV_vertex_program and
 NV_fragment_program extensions?

 RESOLVED:

 - This extension provides a uniform set of instructions and bindings.
 Unlike previous extensions, the set of in structions and bindings
 available is generally the same. The onl y exceptions are a small
 number of instructions and bindings that make sense for one specific
 program type.

 - This extension supports integer data type s and provides a
 full-fledged integer instruction set.

 - This extension supports array variables o f all types, including
 temporaries. Array variables can be acce ssed directly or indirectly
 (using integer temporaries as indices).

 - This extension provides a uniform set of structured branching
 constructs (if tests, loops, subroutines) that fully support
 run-time condition testing. Previous ver sions of NV_vertex_program
 provided unstructured branching. Previou s versions of
 NV_fragment_program provided structure br anching constructs, but the
 support was more limited -- for example, looping constructs couldn't
 specify loop counts with values computed at run time.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1495

 - This extension supports geometry programs , which are described in
 more detail in the NV_geometry_program4 e xtension.

 - This extension provides the ability to sp ecify and use cubemap
 textures with a DEPTH_COMPONENT internal format. Shadow mapping is
 supported; the Q texture coordinate is us ed as the reference value
 for comparisons.

 (2) Is this extension backward-compatible with previous NV_vertex_program
 and NV_fragment_program extensions? If not, wh at support has been
 removed?

 RESOLVED: This extension is largely, but not completely,
 backward-compatible. Functionality removed i ncludes:

 - Unstructured branching: NV_vertex_progra m2 included a general
 branch instruction "BRA" that could be us ed to jump to an arbitrary
 instruction. The "CAL" instruction could "call" to an arbitrary
 instruction into code that was not necess arily structured as simple
 subroutine blocks. Arbitrary unstructure d branching can be
 difficult to implement efficiently on hig hly parallel GPU
 architectures, while basic structured bra nching is not nearly as
 difficult.

 This extension retains the "CAL" instruct ion but treats each block
 of code between instruction labels as a s eparate subroutine. The
 "BRA" instruction and arbitrary branching has been removed. The
 structured branching constructs in this e xtension are sufficient to
 implement almost all of the looping/branc hing support in high-level
 languages ("goto" being the most obvious exception).

 - Address registers: NV_vertex_program add ed the notion of address
 registers, which were effectively under-p owered integer temporaries.
 The set of instructions used to manipulat e address registers was
 severely limited. NV_vertex_program[23] extended the original
 scalars to vectors and added a few more i nstructions to manipulate
 address registers. Fragment programs had no address registers until
 NV_fragment_program2 added the loop count er, which was very similar
 in functionality to vertex program addres s registers, but even more
 limited. This extension adds true intege r temporaries, which can
 accomplish everything old address registe rs could do, and much more.
 Address register support was removed to s implify the API.

 - NV_fragment_program2 LOOP construct: NV_ fragment_program2 added a
 LOOP instruction, which let you repeat a block of code <N> times,
 with a parallel loop counter that started at <A> and stepped by
 on each iteration. This construct was si gnficantly limited in
 several ways -- the loop count had to be constant, and you could
 only access the innermost loop counter in a nested loop. This
 extension discards the support and retain s the simpler "REP"
 construct to implement loops. If desired , a loop counter can be
 implemented by manipulating an integer te mporary. The "BRK"
 instruction (conditional break) is retain ed, and a "CONT"
 instruction (conditional continue) is add ed. Additionally, the loop
 count need not be a constant.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1496

 - NV_vertex_program and ARB_vertex_program EXP and LOG instructions:
 NV_vertex_program provided EXP and LOG in structions that computed a
 rough approximation of 2^x or log_2(x) an d provided some additional
 values that could help refine the approxi mation. Those opcodes were
 carried forward into ARB_vertex_program. Both ARB_vertex_program
 and NV_vertex_program2 provided EX2 and L G2 instructions that
 computed a better approximation. All fra gment program extensions
 also provided EX2 and LG2, but did not bo ther to include EXP and
 LOG. On the hardware targeted by this ex tension, there is no
 advantage to using EXP and LOG, so these opcodes have been removed
 for simplicity.

 - NV_vertex_program3 and NV_fragment_progra m2 provide the ability to
 do indirect addressing of inputs/outputs when using bindings in
 instructions -- for example:

 MOV R0, vertex.attrib[A0.x+2]; # v ertex
 MOV result.texcoord[A0.y], R1; # v ertex
 MOV R2, fragment.texcoord[A0.x]; # f ragment

 This extension provides indexing capabili ty, but using named array
 variables instead.

 ATTRIB attribs[] = { vertex.attrib[2..5] };
 MOV R0, attribs[A0.x];
 OUTPUT outcoords[] = { result.texcoord[0..3] };
 MOV outcoords[A0.y], R1;
 ATTRIB texcoords[] = { fragment.texcoor d[0..2] };
 MOV R2, texcoords[A0.x];

 This approach makes the set of attribute and result bindings more
 regular. Additionally, it helps the asse mbler determine which
 vertex/fragment attributes are actually n eeded -- when the assembler
 sees constructs like "fragment.texcoord[A 0.x]", it must treat *all*
 texture coordinates as live unless it can determine the range of
 values used for indexing. The named arra y variable approach
 explicitly identifies which attributes ar e needed when indexing is
 used.

 Functionality altered includes:

 - The RSQ instruction in the original NV_ve rtex_program and
 ARB_vertex_program extensions implicitly took the absolute value of
 their operand. Since the ARB extensions don't have numerics
 guarantees, computing the reciprocal squa re root of a negative value
 was not meaningful. To allow for the pos sibility of taking the
 reciprocal square root of a negative valu e (which should yield NaN
 -- "not a number"), the RSQ instruction i n this instruction no
 longer implicitly takes the absolute valu e of its operand.
 Equivalent functionality can be achieved using the explicit |abs|
 absolute value operator on the operand to RSQ.

 - The results of texture lookups accessing inconsistent textures are
 now undefined, instead of producing a fix ed constant vector.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1497

 (3) What should this set of extensions be calle d?

 RESOLVED: NV_gpu_program4, NV_vertex_program 4, NV_fragment_program4,
 and NV_geometry_program4. Only NV_gpu_progra m4 will appear in the
 extension string; the other three specificati ons exist simply to define
 vertex, fragment, and geometry program-specif ic features.

 The "gpu_program" name was chosen due to the common instruction set
 intended to run on GPUs. On previous chip ge nerations, the vertex and
 fragment instruction sets were similar, but t here were enough
 differences to package them separately.

 The choice of "4" indicates that this is the fourth generation of
 programmable hardware from NVIDIA. The GeFor ce3 and GeForce4 series
 supported NV_vertex_program. The GeForce FX series supported
 NV_vertex_program2 and added fragment program mability with
 NV_fragment_program. Around this time, the O penGL Architecture Review
 Board (ARB) approved ARB_vertex_program and A RB_fragment_program
 extensions, and NVIDIA added NV_vertex_progra m2_option and
 NV_fragment_program_option extensions exposin g GeForce FX features using
 the ARB extensions' instruction set. The GeF orce6 and GeForce7 series
 brought the NV_vertex_program3 and NV_fragmen t_program2 extensions,
 which extend the ARB extensions further. Thi s extension adds geometry
 programs, and brings the "version number" for each of these extensions
 up to "4".

 (4) This instruction adds integer data type sup port in programmable
 shaders that were previously float-centric. Sh ould applications be able
 to pass integer values directly to the shaders, and if so, how does it
 work?

 RESOLVED: The diagram at the bottom of this issue depicts data flows in
 the GL, as extended by this and related exten sions.

 This extension generalizes some state to be " typeless", instead of being
 strongly typed (and almost invariably floatin g-point) as in the core
 specification. We introduce a new set of fun ctions to specify GL state
 as signed or unsigned integer values, instead of floating point values.
 These functions include:

 * VertexAttribI*{i,ui}() -- Specify generic vertex attributes as
 integers. This extension does not create "integer" versions for
 fixed-function attribute functions (e.g., glColor, glTexCoord),
 which remain fully floating-point.

 * Program{Env,Local}ParameterI*{i,ui}() -- Specify environment and
 local parameters as integers.

 * TexImage*() with EXT_texture_integer inte rnal formats -- Specify
 texture images as containing integer data whose values are not
 converted to floating-point values.

 * EXT_parameter_buffer_object functions -- Bind (typeless) buffer
 object data stores for use as program par ameters. These buffer
 objects can be loaded with either integer or floating-point data.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1498

 * EXT_texture_buffer_object functions -- Bi nd (typeless) buffer object
 data stores for use as textures. These b uffer objects can be loaded
 with either integer or floating-point dat a.

 Each type of program (using NV_gpu_program4 a nd related extension) can
 read attributes using any data type (float, s igned integer, unsigned
 integer) and write result values used by subs equent stages using any
 data type.

 Finally, there are several new places where i nteger data can be
 consumed by the GL:

 * NV_transform_feedback -- Stream transform ed vertex attribute
 components to a (typeless) buffer object. The transformed
 attributes can be written as signed or un signed integers in vertex
 and geometry programs.

 * EXT_texture_integer internal formats and framebuffer objects --
 Provide support for rendering to integer texture formats, where
 final fragment values are treated as sign ed or unsigned integers,
 rather than floating-point values.

 The diagram below represents a substantial po rtion of the GL pipeline.
 Each line connecting blocks represents an int erface where data is
 "produced" from the GL state or by fixed-func tion or programmable
 pipeline stages and "consumed" by another pip eline stage. Each producer
 and consumer is labeled with a data type. Fo r producers, the
 "(typeless)" designation generally means that the state and/or output
 can be written as floating-point values or as signed or unsigned
 integers. "(float)" means that the outputs a re always written as
 floating-point. The same distinction applies to consumers --
 "(typeless)" means that the consumer is capab le of reading inputs using
 any data type, and "(float)" means that consu mer always reads inputs as
 floating-point values.

 To get sane results, applications must ensure that each value passed
 between pipeline stages is produced and consu med using the same data
 type. If a value is written in one stage as a floating-point value; it
 must be read as a floating-point value as wel l. If such a value is read
 as a signed or unsigned integer, its value is considered undefined. In
 practice, the raw bits used to represent the floating-point (IEEE
 single-precision floating-point encoding in t he initial implementation
 of this spec) will be treated as an integer.

 Type matching between stages is not enforced by the GL, because the
 overhead of doing so would be substantial. S uch overhead would include:

 * matching the inputs and outputs of each p ipeline stage
 (fixed-function or programmable) every ti me the program
 configuration or fixed-function state cha nges,

 * tracking the data type of each generic ve rtex attribute and checking
 it against the vertex program's inputs,

 * tracking the data type of each program pa rameter and checking it
 against the manner the parameters were us ed in programs,

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1499

 * matching color buffers against fragment p rogram outputs.

 Such error checking is certainly valuable, bu t the additional CPU
 overhead cost is substantial. Given that cur rent CPUs often have a hard
 time keeping up with high-end GPUs, adding mo re overhead is a step in
 the wrong direction. We expect developer too ls, such as instrumented
 drivers, to be able to provide type checking on most interfaces.

 The diagram below depicts assembly programmab ility. Using vertex,
 geometry, and fragment shaders provided by th e OpenGL Shading Language
 (GLSL) isn't substantially different from the assembly interface, except
 that the interfaces between programmable pipe line stages are more
 tightly coupled in GLSL (vertex, geometry, an d fragment shaders are
 linked together into a single program object) , and that shader variables
 are more strongly typed in GLSL than in the a ssembly interface.

 In the figure below, the first programmable s tage is vertex program
 execution. For all inputs read by the vertex program, they must be
 specified in the GL vertex APIs (immediate mo de or vertex arrays) using
 a data type matching the data type read by th e shader. Additionally,
 vertex programs (and all other program types) can read program
 parameters, parameter buffers, and textures. In all cases the
 parameter, buffer, or texture data must be ac cessed in the shader using
 the same data type used to specify the data. If vertex programs are
 disabled, fixed-function vertex processing is used. Fixed-function
 vertex processing is fully floating-point, an d all the conventional
 vertex attributes and state used by fixed-fun ction are floating-point
 values.

 After vertex processing, an optional geometry program can be executed,
 which reads attributes written by vertex prog rams (or fixed-functon) and
 writes out new vertex attributes. The vertex attributes it reads must
 have been written by the vertex program (or f ixed-function) using a
 matching data type.

 After geometry program execution, vertex attr ibutes can optionally be
 written out to buffer objects using the NV_tr ansform_feedback extension.
 The vertex attributes are written by the GL t o the buffer objects using
 the same data type used to write the attribut e in the geometry program
 (or vertex program if geometry programs are d isabled).

 Then, rasterization generates fragments based on transformed vertices.
 Most attributes written by vertex or geometry programs can be read by
 fragment programs, after the rasterization ha rdware "interpolates" them.
 This extension allows fragment programs to co ntrol how each attribute is
 interpolated. If an attribute is flat-shaded , it will be taken from the
 output attribute of the provoking vertex of t he primitive using the same
 data type. If an attribute is smooth-shaded, the per-vertex attributes
 will be interpreted as a floating-point value , and a floating-point
 result. One necessary consequence of this is that any integer
 per-fragment attributes must be flat-shaded. To prevent some
 interpolation type errors, assembly and GLSL fragment shaders will not
 compile if they declare an integer fragment a ttribute that is not flat
 shaded. [NOTE: While point primitives gener ally have constant
 attributes, any integer attributes must still be flat-shaded; point
 rasterization may perform (degenerate) floati ng-point interpolation.]

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1500

 Fragment programs must read attributes using data types matching the
 outputs of the interpolation or flat-shading operations. They may write
 one or more color outputs using any data type , but the data type used
 must match the corresponding framebuffer atta chments. Outputs directed
 at signed or unsigned integer textures (EXT_t exture_integer) must be
 written using the appropriate integer data ty pe; all other outputs must
 be written as floating-point values. Note th at some of the
 fixed-function per-fragment operations (e.g., blending, alpha test) are
 specified as floating-point operations and ar e skipped when directed at
 signed or unsigned integer color buffers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1501

 generic conventional
 vertex vertex
 attributes attributes
 | (typeless) | (float)
 | |
 | |
 | +----------------------+
 program | | |
 parameters ----+ | | |
 (typeless) | | | (typeless) | (float)
 | V V V
 constant +-+----------> vertex fixed-function
 buffers ----+ |(typeless) program vertex
 (typeless) | | | |
 | | | (typeless) | (float)
 textures ----+ | V |
 (typeless) | |<----------------------+
 | | |
 | | +---------------+
 | | | |
 | | | (typeless) |
 | | V |
 | +---------> geometry |
 | |(typeless) program | |
 | | | |
 | | | (typeless) |
 | | V |
 | | |<--------------+
 | | |
 | | |
 | | +-----------------+
 | | | |(typeless)
 | | | v
 | | | transform
 | | | feedback
 | | | buffers
 | | |
 | | |
 | | +-----------------------+
 | | | |
 | | | (float) | (typeless)
 | | V V
 | | interpolated flat
 | | attributes attributes
 | | | |
 | | | (float) | (typeless)
 | | V |
 | | |<----------------------+
 | | |
 | | +-----------------------+
 | | | |
 | | | (typeless) | (float)
 | |(typeless) V V
 | +---------> fragment +------> fixed-function
 | program |(float) fragment
 | | | |
 +--------------------------/|/--------+ |
 | |
 | (typeless) | (float)
 V |
 |<----------------------+
 |
 +-----------------------+------
 | |
 | (typeless) | (typeless)
 V V
 color color
 attachment attachment
 0 1

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1502

 (5) Instructions can operate on signed integer, unsigned integer, and
 floating-point values. Some operations make se nse on all three data
 types? How is this supported, and what type ch ecking support is provided
 by the assembler?

 RESOLVED: One important property of the inst ruction set is that the
 data type for all operands and the result is fully specified by the
 instructions themselves. For instructions (s uch as ADD) that make sense
 for both integer and floating-point values, a n optional data type
 modifier is provided to indicate which type o f operation should be
 performed. For example, "ADD.S", "ADD.U", an d "ADD.F", add signed
 integers, unsigned integers, or floating-poin t values, respectively. If
 no data type modifier is provided, ".F" is as sumed if the instruction
 can apply to floating-point values and ".S" i s assumed otherwise.

 To help identify errors where the wrong data type is used -- for
 example, adding integer values in an ADD inst ruction that omits a data
 type modifier and thus defaults to "ADD.F" -- variables may be declared
 with optional data type modifiers. In the fo llowing code:

 INT TEMP a;
 UINT TEMP b;
 FLOAT TEMP c;
 TEMP d;

 "a", "b", "c", and "d" are declared as tempor ary variables holding
 signed integer, unsigned integer, floating-po int, and typeless values.
 Since each instruction fully specifies the da ta type of each operand and
 its result, these data types can be checked a gainst the data type
 assigned to the variables operated on. If th e types don't match, and
 the variable is not typeless, an error is rep orted. The opcode modifier
 ".NTC" can be used to ignore such errors on a per-opcode basis, if
 required.

 Note that when bindings are used directly in instructions, they are
 always considered typeless for simplicity. S ome fixed-function bindings
 have an obvious data type, but other bindings (e.g., program parameters)
 can hold either integer or floating-point val ues, depending on how they
 were specified.

 Variable data types are optional. Typeless v ariables are provided
 because some programs may want to reuse the s ame variable in several
 places with different data types.

 (6) Should both signed (INT) and unsigned integ er (UINT) data types be
 provided?

 RESOLVED: Yes. Signed and unsigned integer operations are supported.
 Providing both "INT" and "UINT" variable modi fiers distinguish between
 signed and unsigned values for type checking purposes, to ensure that
 unsigned values aren't read as signed values and vice versa.

 This specification says if a value is read a signed integer, but was
 written as an unsigned integer, the value ret urned is undefined.
 However, signed and unsigned integers are int erchangeable in practice,
 except for very large unsigned integers (whic h can't be represented as
 signed values of the equivalent size) or nega tive signed integers.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1503

 If programs know that they won't generate neg ative or very large values,
 signed and unsigned integers can be used inte rchangeably. To avoid type
 errors in the assembler in this case, typeles s variables can be used.
 Or the ".NTC" modifier can be used when appro priate.

 (7) Integer and floating-point constants are su pported in the instruction
 set. Integer constants might be interpreted to mean either "real integer"
 values or floating-point values. How are they supported?

 RESOLVED: When an obvious floating point con stant is specified (e.g.,
 "3.0"), the developers' intent is clear. If you try to use a
 floating-point value in an instruction that w ants an integer operand, or
 a declaration of an integer parameter variabl e, the program will fail to
 load. An integer constant used in an instruc tion isn't quite as clear.
 But its meaning can be easily inferred becaus e the operand types of
 instructions are well-known at compile time. An integer multiply
 involving the constant "2" will interpret the "2" as an integer. A
 floating-point multiply involving the same co nstant "2" will interpret
 it as a floating-point value.

 The only real problem is for a parameter decl aration that is typeless.
 For typed variables, the intent is clear:

 INT PARAM two = 2; # use inte ger 2
 FLOAT PARAM twoPt0 = 2; # use floa ting-point 2.0

 For typeless variables, there's no context to go on:

 PARAM two = 2; # 2? 2.0?

 This extension is intended to be largely upwa rd-compatible with
 ARB_vertex_program, ARB_fragment_program, and the other extensions built
 on top of them. In all of these, the previou s declaration is legal and
 means "2.0". For compatibility, we choose to interpret integer
 constants in this case as floating-point valu es. The assembler in the
 NVIDIA implementation will issue a warning if this case ever occurs.

 This extension does not provide decoration of integer constant values --
 we considered adding suffixed integers such a s "2U" to mean "2, and
 don't even think about converting me to a flo at!". We expect that it
 will be sufficient to use the "INT" or "FLOAT " modifiers to disambiguate
 effectively.

 (8) Should hexadecimal constants (e.g., 0x87A3 or 0xFFFFFFFF) be
 supported?

 RESOLVED: Yes.

 (9) Should we provide data type modifiers with explicit component sizes?
 For example, "INT8", "FLOAT16", or "INT32". If so, should we provide a
 mechanism to query the size (in bits) of a vari able, or of different
 variable types/qualifiers?

 RESOLVED: No.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1504

 (10) Should this extension provide better suppo rt for array variables?

 RESOLVED: Yes; array variables of all types are allowed.

 In ARB_vertex_program, program parameter (con stant) variables could be
 addressed as arrays. Temporary variables, ve rtex attributes, and vertex
 results could not be declared as arrays.

 In NV_vertex_program3 and NV_fragment_program 2, relative addressing was
 supported in program bindings:

 MOV R0, vertex.attrib[A0.x]; # v ertex
 MOV result.texcoord[A0.x], R0; # v ertex
 MOV R0, fragment.texcoord[A0.x]; # f ragment -- inside LOOP

 Explicitly declared attribute or result array s were not supported, and
 temporaries could also not be arrays.

 This extension allows users to declare attrib ute, result, and temporary
 arrays such as:

 ATTRIB attribs[] = { vertex.attrib[7..11] } ;
 TEMP scratch[10];
 RESULT texcoords[] = { result.texcoord[0..3] };

 Additionally, the relative addressing mechani sms provided by
 NV_vertex_program3 and NV_fragment_program2 a re NOT supported in this
 extension -- instead, declared array variable s are the only way to get
 relative addressing. Using declared arrays a llows the assembler to
 identify which attributes will actually be us ed. An expression like
 "vertex.texcoord[A0.x]" doesn't identify whic h texture coordinates are
 referenced, and the assembler must be conserv ative in this case and
 assume that they all are.

 (11) Is relative addressing of temporaries allo wed?

 RESOLVED: Yes. However, arrays of temporari es may end up being stored
 in off-chip memory, and may be slower to acce ss than non-array
 temporaries.

 (12) Should this extension add bindings to pass generic attributes between
 vertex, geometry, and fragment programs, or are texture coordinates
 sufficient?

 RESOLVED: While texture coordinates have bee n used in the past, generic
 attributes should be provided.

 The assembler provides a large set of binding s and automatically
 eliminates generic attributes or components t hat are unused. At each
 interface between programs, there is an imple mentation-dependent limit
 on the number of attribute components that ca n be passed.

 There are several reasons that this approach was chosen. First, if the
 number of attributes that can be passed betwe en program stages exceeds
 the number of existing texture coordinate set s supported when specifying
 vertex, a second implementation-dependent num ber of texture coordinates
 would need to be exposed to cover the number supported between stages.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1505

 Second, the mechanisms described above reduce or eliminate the need to
 pack attributes into four component vectors. Third, "texture
 coordinates" that have been historically used for texture lookups don't
 need to be used to pass values that aren't us ed this way.

 (13) The structured branching support in NV_fra gment_program2 provides a
 REP instruction that says to repeat a block of code <N> times, as well as
 a LOOP instruction that does the same, but also provides a special loop
 counter variable. What sort of looping mechani sm should we provide here?

 RESOLVED: Provide only the REP instruction. The functionality provided
 by the LOOP instruction can be easily achieve d by using an integer
 temporary as the loop index. This avoids two annoyances of the old LOOP
 models: (a) the loop index (A0.x) is a speci al variable name, while all
 other variables are declared normally and (b) instructions can only
 access the loop index of the innermost loop - - loop indices at higher
 nesting levels are not accessible.

 One other option was a considered -- a "LOOPV " instruction (LOOP with a
 variable where the program specified a variab le name and component to
 hold the loop index, instead of using the imp licit variable name "A0.x".
 In the end, it was decided that using an inte ger temporary as a loop
 counter was sufficient.

 (14) The structured branching support in NV_fra gment_program2 provides a
 REP instruction that requires a loop count. So me looping constructs may
 not have a definite loop count, such as a "whil e" statement in C. Should
 this construct be supported, and if so, how?

 RESOLVED: The REP instruction is extended to make the loop count
 optional. If no loop count is provided, the REP instruction specified a
 loop that can only be exited using the BRK (b reak) or RET instructions.
 To avoid obvious infinite loops, an error wil l be reported if a
 REP/ENDREP block contains no BRK instruction at the current nesting
 level and no RET instruction at any nesting l evel.

 To implement a loop like "while (value < 7.0) ...", code such as the
 following can be used:

 TEMP cc; # dummy var iable
 REP;
 SLT.CC cc.x, value.x, 7.0; # compare v alue.x to 7.0, set CC0
 BRK NE.x; # break out if not true
 ...
 ... # presumabl y update value!
 ...
 ENDREP;

 (15) The structured branching support in NV_fra gment_program2 provides a
 BRK instruction that operates like C's "break" statement. Should we
 provide something similar to C's "continue" sta tement, which skips to the
 next iteration of the loop?

 RESOLVED: Yes, a new CONT opcode is provided for this purpose.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1506

 (16) Can the BRK or CONT instructions break out of multiple levels of
 nested loops at once?

 RESOLVED: No. BRK and CONT only exit the cu rrent nesting level. To
 break out of multiple levels of nested loops, multiple BRK/CONT
 instructions are required.

 (17) For REP instructions, is the loop counter reloaded on each iteration
 of the loop?

 RESOLVED: No. The loop counter is loaded on ce at the top of the loop,
 compared to zero at the top of the loop, and decremented when each loop
 iteration completes. A program may overwrite the variable used to
 specify the initial value of the loop counter inside the loop without
 affecting the number of times the loop body i s executed.

 (18) How are floating-point values represented in this extension? What
 about floating-point arithmetic operations?

 RESOLVED: In the initial hardware implementa tion of this extension,
 floating-point values are represented using t he standard 32-bit IEEE
 single-precision encoding, consisting of a si gn bit, 8 exponent bits,
 and 23 mantissa bits. Special encodings for NaN (not a number), +/-INF
 (infinity), and positive and negative zero ar e supported. Denorms
 (values less than 2^-126, which have an expon ent encoding of "0" and no
 implied leading one) are supported, but may b e flushed to zero,
 preserving the sign bit of the original value . Arithmetic operations
 are carried out at single-precision using nor mal IEEE floating-point
 rules, including special rules for generating infinities, NaNs, and
 zeros of each sign.

 Floating-point temporaries declared as "SHORT " may be, but are not
 necessarily, stored as 16-bit "fp16" values (sign bit, five exponent
 bits, ten mantissa bits), as specified in the NV_float_buffer and
 ARB_half_float_pixel extensions.

 (19) Should we provide a method to declare how fragment attributes are
 interpolated? It is possible to have flat-shad ed attributes,
 perspective-corrected attributes, and centroid- sampled attributes.

 RESOLVED: Yes. Fragment program attribute v ariable declarations may
 specify the "FLAT", "NOPERSPECTIVE", and "CEN TROID" modifiers.

 These modifiers are documented in detail in t he NV_fragment_program4
 specification.

 (20) Should vertex and primitive identifiers be supported? If so, how?

 RESOLVED: A vertex identifier is available a s "vertex.id" in a vertex
 program. The vertex ID is equal to value eff ectively passed to
 ArrayElement when the vertex is specified, an d is defined only if vertex
 arrays are used with buffer objects (VBOs).

 A primitive identifier is available as "primi tive.id" in a geometry or
 fragment program. The primitive ID is equal to the number of primitives
 processed since the last implicit or explicit call to glBegin().

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1507

 See the NV_vertex_program4 spec for more info rmation on vertex IDs, and
 the NV_geometry_program4 or NV_fragment_progr am4 specs for more
 information on primitive IDs.

 (21) For integer opcodes, should a bitwise inve rsion operator "~" be
 provided, analogous to existing negation operat or?

 RESOLVED: No. If this operator were provide d, it might allow a program
 to evaluate the expression "a&(~b)" using a s ingle instruction:

 AND.U a, a, ~b;

 Instead, it is necessary to instead do someth ing like:

 UINT TEMP t;
 NOT.U t, b;
 AND.U a, a, t;

 If necessary, this functionality could be add ed in a subsequent
 extension.

 (22) What happens if you negate or take the abs olute value of the
 biggest-magnitude negative integer?

 RESOLVED: Signed integers are represented us ing two's complement
 representation. For 32-bit integers, the lar gest possible value is
 2^31-1; the smallest possible value is -2^31. There is no way to
 represent 2^31, which is what these operators "should" return. The
 value returned in this case is the original v alue of -2^31.

 (23) How do condition codes work? How are they different from those
 provided in previous NVIDIA extensions?

 RESOLVED: There are two condition codes -- C C0 and CC1 -- each of which
 is a four-component vector. The condition co des are set based on the
 result of an instruction that specifies a con dition code update
 modifier. Examples include:

 ADD.S.CC R0, R1, R2; # add signed in tegers R1 and R2, update
 # CC0 based o n the result, write the
 # final value to R0
 ADD.F.CC1 R3, R4, R5; # add floats R4 and R5, update CC1 based
 # on the resu lt, write the final value
 # to R3
 ADD.U.CC0 R6.xy, R7, R8; # add unsigned integers R7 and R8, update
 # CC0 (x and y components) based on the
 # result, wri te the final value to R6
 # (x and y co mponents)

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1508

 Condition codes can be used for conditional w rites, conditional
 branches, or other operations. The condition codes aren't used
 directly, but are instead used with a conditi on code test such as "LT"
 (less than) or "EQ" (equal to). Examples inc lude:

 MOV R0 (GT.x), R1; # move R1 to R0 only if the x component of
 # CC0 indicat es a result of ">0"
 MOV R2 (NE1), R3; # component-wis e move of R3 to R2 if the
 # correspondi ng component of CC1
 # indicates a result of "!=0"
 IF LE0.xyxy; # execute the b lock of code if the x or
 ... # y component s of CC0 indicate a result
 ENDIF; # of "<=0"
 REP;
 ...
 BRK EQ1.xyzx; # break out of loop if the x, y, or z
 ENDREP; # components of CC1 indicate a result of
 # "==0".

 Previous NVIDIA extensions provide eight test s, which are still
 supported here. The tests "EQ" (equal), "GE" (greater/equal), "GT"
 (greater than), "LE" (less/equal), "LT" (less than), and "NE" (not
 equal) can be used to determine the relation of the result used to set
 the condition code with zero. The tests "TR" (true) and "FL" (false),
 are special tests that always evaluate to tru e or false respectively.

 For floating-point results, a NaN (not a numb er) encoding causes the
 "NE" condition to evaluate to TRUE and all ot her conditions to evaluate
 to FALSE. IEEE encodings for "negative" and "positive" zero are both
 treated as equal to zero.

 Condition codes are implemented as a set of f lags, which are set
 depending on the type of operation, as descri bed in the spec.

 For instructions that return floating-point o r signed integer values,
 the normal condition code tests reliably indi cate the relationship of
 the result to zero. For instructions that re turn unsigned values, the
 condition codes are a bit more complicated. For example, the sign flag
 is set if the most significant bit of the res ult written is set. As a
 result, very large unsigned integer values (e .g., 0x80000000 -
 0xFFFFFFFF) are effectively treated as negati ve values. Condition code
 tests should be used with care with unsigned results -- to test if an
 unsigned integer is ">0", use a sequence like :

 MOV.U.CC R0, R1; # move R1 to R0 , set condition code
 IF NE; # test if the r esult is "!=0", a very
 ... # large value might fail "GT"!
 ENDIF;

 This extension provides a number of additiona l condition code tests
 useful for different floating-point or intege r operations:

 * NAN (not a number) is true if a floating- point result is a NaN. LEG
 (less, equal to, or greater) is the oppos ite of NAN.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1509

 * CF (carry flag) is true if an unsigned ad d overflows, or if an
 unsigned subtract produces a non-negative value. NCF (no carry
 flag) is the opposite of CF.

 * OF (overflow flag) is true if a signed ad d or subtract overflows.
 NOF (no overflow flag) is the opposite of OF.

 * SF (sign flag) is true if the sign flag i s set. NSF (no sign flag)
 is the opposite of SF.

 * AB (above) is true if an unsigned subtrac t produces a positive
 result. BLE (below or equal) is the oppo site of AB, and is true if
 an unsigned subtract produces a negative result or zero. Note that
 CF can be used to test if the result is g reater than or equal to
 zero, and NCF can be used to test if the result is less than zero.

 (24) How do the "set on" instructions (SEQ, SGE , SGT, SLE, SLT, SNE) work
 with integer values and/or condition codes?

 RESOLVED: "Set on" instructions comparing si gned and unsigned values
 return zero if the condition is false, and an integer with all bits set
 if the condition is true. If the result is s igned, it is interpreted as
 -1. If the result is unsigned, it is interpr eted the largest unsigned
 value (0xFFFFFFFF for 32-bit integers). This is different from the
 floating-point "set on", which is defined to return 1.0.

 This specific result encoding was chosen so t hat bitwise operators (NOT,
 AND, OR, XOR) can be used to evaluate boolean expressions.

 When performing condition code tests on the r esults of an integer "set
 on" instruction, keep in mind that a TRUE res ult has the most
 significant bit set and will be interpreted a s a negative value. To
 test if a condition is true, use "NE" (!=0). A condition code test of
 "GT" will always fail if the condition code w as written by an integer
 "set on" instruction.

 (25) What new texture functionality is provided ?

 RESOLVED: Several new features are provided.

 First, the TXF (texel fetch) instruction allo ws programs to access a
 texture map like a normal array. Integer coo rdinates identifying an
 individual texel and LOD are provided, and th e corresponding texture
 data is returned without filtering of any typ e.

 Second, the TXQ (texture size query) instruct ion allows programs to
 query the size of a specified level of detail of a texture. This
 feature allows programs to perform computatio ns dependent on the size of
 the texture without having to pass the size a s a program parameter or
 via some other mechanism.

 Third, applications may specify a constant te xel offset in a texture
 instruction that moves the texture sample poi nt by the specified number
 of texels. This offset can be used to perfor m custom texture filtering,
 and is also independent of the size of the te xture LOD -- the same
 offsets are applied, regardless of the mipmap level.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1510

 Fourth, shadow mapping is supported for cube map textures. The first
 three coordinates are the normal (s,t,r) coor dinates for a cube map
 texture lookup, and the fourth component is a depth reference value that
 can be compared to the depth value stored in the texture.

 (26) What "consistency" requirements are in eff ect for textures accessed
 via the TXF (texel fetch) instruction?

 UNRESOLVED: The texture must be usable for r egular texture mapping
 operations -- if texture sizes or formats are inconsistent and a
 mipmapped min filter is used, the results are undefined.

 (27) How does the TXF instruction work with bor dered textures?

 RESOLVED: The entire image can be accessed, including the border
 texels. For a 64x64 2D texture plus border (66x66 overall), the lower
 left border texel is accessed using the coord inates (-1,-1); the upper
 right border texel is accessed using the coor dinates (64,64).

 (28) What should TXQ (texture size query) retur n for "irrelevant" texture
 sizes (e.g., height of a 1D texture)? Should i t return any other
 information at the same time?

 RESOLVED: This specification leaves all "ext ra" components undefined.

 (29) How do texture offsets interact with cubem ap textures?

 RESOLVED: They are not supported in this ext ension.

 (30) How do texture offsets interact with mipma pped textures?

 RESOLVED: The texture offsets are added afte r the (s,t,r) coordinates
 have been divided by q (if applicable) and co nverted to (u,v,w)
 coordinates by multiplying by the size of the selected texture level.
 The offsets are added to the (u,v,w) coordina tes, and always move the
 sample point by an integral number of texel c oordinates. If multiple
 mipmaps are accessed, the sample point in eac h mipmap level is moved by
 an identical offset. The applied offsets are independent of the
 selected mipmap level.

 (31) How do shadow cube maps work?

 UNRESOLVED: An application can define a cube map texture with a
 DEPTH_COMPONENT internal format, and then ren der a scene using the cube
 map faces as the depth buffer(s). When rende ring the projection should
 be set up using the "center" of the cubemap a s the eye, and using a
 normal projection matrix. When applying the shadow map, the fragment
 program read the (x,y,z) eye coordinates, com pute the length of the
 major axis (MAX(|x|,|y|,|z|) and then transfo rm this coordinate to [0,1]
 space using the same parameters used to deriv e Z in the projection
 matrix. A 4-component vector consisting of x , y, z, and this computed
 depth value should be passed to the texture l ookup, and normal shadow
 mapping operations will be performed.

 This issue should include the math needed to do this computation and
 sample code.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1511

 (32) Integer multiplies can overflow by a lot. Should there be some way
 to return the high part of both unsigned and si gned integer multiplies?

 RESOLVED: Yes. The ".HI" multipler is provi ded to do a return the 32
 MSBs of a 32x32 integer multiply. The instru ction sequence:

 INT TEMP R0, R1, R2, R3;
 MUL.S R0, R2, R3;
 MUL.S.HI R1, R2, R3;

 will do a 32x32 signed integer multiply of R2 and R3, with the 32 LSBs of
 the 64-bit result in R0 and the 32 MSBs in R1.

 (33) Should there be any other special multipli cation modifiers?

 RESOLVED: Yes. The ".S24" and ".U24" modifi ers allow for signed and
 unsigned integer multiplies where both operan ds are guaranteed to fit in
 the least significant 24 bits. On some archi tectures supporting this
 extension, ".S24" and ".U24" integer multipli es may be faster than
 general-purpose ".S" and ".U" multiplies. If either value doesn't fit
 in 24 bits, the results of the operation are undefined --
 implementations may, but are not required to, ignore the MSBs of the
 operands if ".S24" or ".U24" is specified.

 (34) This extension provides subroutines, but d oesn't provide a stack to
 push and pop parameters. How do we deal with t his? NV_vertex_program3
 supported PUSHA/POPA instructions to push and p op address registers.

 RESOLVED: No explicit stack is required. A program can implement a
 stack by allocating a temporary array plus a single integer temporary to
 use as the stack "pointer". For example:

 TEMP stack[256]; # 256 4-com ponent vectors
 INT TEMP sp; # sp.x == s tack pointer
 INT TEMP cc; # condition code results

 function:
 SGE.S.CC cc.x, sp.x, 256; # compute s tackPointer >= 256
 RET NE.x; # return if TRUE
 MOV stack[sp], R0; # push R0 o nto the stack
 ADD.S sp.x, sp.x, 1;
 ...
 SUB.S sp.x, sp.x, 1; # pop R0 of f the stack
 MOV R0, stack[sp];
 RET

 (35) Should we provide new vector semantics for previously-defined opcodes
 (e.g., LG2 computes a component-wise logarithm) ?

 RESOLVED: Not in this extension. The instru ctions we define here are
 compatible with the vector or scalar nature o f previously defined
 opcodes. This simplifies the implementation of an assembler that needs
 to support both old and new instruction sets.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1512

 (36) Should it really be undefined to read from a register storing data of
 one type with an instruction of the other type (e.g., to read the bits of
 a floating-point number as an unsigned integer) ?

 RESOLVED: The spec describes undefined resul ts for simplicity. In
 practice, mixing data types can be done, wher e signed integers are
 represented as two's complement integers and floating-point numbers are
 represented using IEEE single-precision repre sentation. For example:

 TEMP R0, R1; # typeless
 MOV.U R0, 0x3F800000; # R0 = 1.0
 MOV.U R1, 0xBF800000; # R1 = -1.0
 MUL.F R0, R0, R1; # R0 = -1 * 1 = -1 (0xBF800000)
 XOR.U R0, R0, R1; # R0 = 0xBF 800000 ^ 0xBF800000 = 0
 NOT.U R0, R0; # R0 = 0xFF FFFFFF
 I2F.S R0, R0; # R0 = -1.0 (0xFFFFFFFF = -1 signed)
 SEQ.F R0, R0, R1; # R0 = 1.0 (-1.0 == -1.0)

 (37) Buffer objects can be sourced as program p arameters using the
 NV_parameter_buffer_object extension. How are they accessed in a program?

 RESOLVED: The instruction set and existing p rogram environment and
 local parameter bindings operate largely on f our-component vectors.
 However, NV_parameter_buffer_object exposes t he ability to reach into
 buffers consisting of user-generated data or data written to the buffer
 object by the GPU. Such data sets may not co nsist entirely
 four-component floating-point vectors, so a f our-component vector API
 may be unnatural. An application might need to reformat its data set to
 deal with this issue. Or it might generate o dd code to compensate for
 mis-alignment -- for example, reading an arra y of 3-component vectors by
 doing two four-component vector accesses and then rotating based on
 alignment. Neither approach is particularly satisfying.

 Instead, this extension takes the approach of treating parameter buffers
 as array of scalar words. When an individual buffer element is read,
 the single word is replicated to produce a fo ur-component vector. To
 access an array of 3-component vectors, code like the following can be
 used:

 PARAM buffer[] = { program.buffer[0] };
 INT TEMP index;
 TEMP R0;
 ...
 MUL.S index, index, 3; # to read " vec3" #X, compute 3*X
 MOV R0.x, buffer[index+0];
 MOV R0.y, buffer[index+1];
 MOV R0.z, buffer[index+2];

 (38) Should recursion be allowed? If so, how i s the total amount of
 recursion limited?

 RESOLVED: Recursion is allowed, and a call s tack is provided by the
 implementation. The size of the call stack i s limited to the
 implementation-dependent constant MAX_PROGRAM _CALL_DEPTH, and when a the
 call stack is full, the results of further CA L instructions is
 undefined. In the initial implementation of this extension, such
 instructions will have no effect.

NVIDIA OpenGL Extension Specifications NV_gpu_program4

 1513

 Note that no stack is provided to hold local registers; a program may
 implement its own via a temporary array and i nteger stack "pointer".

 (39) Variables are all four-component vectors i n previous extensions.
 Should scalar or small-vector variables be prov ided?

 RESOLVED: It would be a useful feature, but it was left out for
 simplicity. In practice, a variable where on ly the X component is used
 will be equivalent to a scalar.

 (40) The PK* (pack) and UP* (unpack) instructio ns allow packing multiple
 components of data into a single component. Th e bit packing is
 well-defined. Should we require specific data types (e.g., unsigned
 integer) to hold packed values?

 RESOLVED: No. Previous instruction sets onl y allowed programs to write
 packed values to a floating-point variable (t he only data type
 provided). We will allow packed results to b e written to a variable of
 any data type. Integer instructions can be u sed to manipulate bits of
 packed data in place.

 (41) What happens when converting integers to f loats or vice versa if
 there is insufficient precision or range to rep resent the result?

 RESOLVED: For integer-to-float conversions, the nearest representable
 floating-point value is used, and the least s ignificant bits of the
 original integer value are lost. For float-t o-integer conversions,
 out-of-range values are clamped to the neares t representable integer.

 (42) Why are some of the grammar rules so bizar re (e.g., attribUseD,
 attribUseV, attribUseS, attribUseVNS)?

 RESOLVED: This grammar is based upon the ori ginal ARB_vertex_program
 grammar, which has a number of "interesting" characteristics. For
 example, some of the bindings provided by ARB _vertex_program naturally
 require some amount of lookahead. For exampl e, a vertex program can
 write an output color using any of the follow ing:

 MOV result.color, 0; # primary c olor
 MOV result.color.primary, 0; # primary c olor again
 MOV result.color.secondary, 0; # secondary color this time

 The pieces of the color binding are separated by "." tokens. However,
 writemasks are also supported, which also use "." before the write
 mask. So, we could also have something like:

 MOV result.color.xyz, 0; # primary c olor with W masked off

 In this form, a parser needs to look at both the "." and the "xyz" to
 determine that the binding being used is "res ult.color" (and not
 "result.color.secondary").

 Additionally, some checks that should probabl y be semantic errors (e.g.,
 allowing different swizzle or scalar operand selectors per instruction,
 or disallowing both in the case of SWZ) we sp ecified in the original
 grammar.

NV_gpu_program4 NVIDIA OpenGL Extension Specifications

 1514

 ARB_fragment_program and subsequent NVIDIA in structions built upon this,
 and the grammar for this extension was rewrit ten in the current form so
 it could be validated more easily.

 (43) This is an NV extension (NV_gpu_program4). Why does the
 MAX_PROGRAM_TEXEL_OFFSET_EXT token has an "EXT " suffix?

 RESOLVED: This token is shared between this extension and the
 comparable high-level GLSL programmability ex tension (EXT_gpu_shader4).
 Rather than provide a duplicate set of token names, we simply use the
 EXT version here.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 4 02/04/08 pbrown Fix errors in texture wrap mode handling.
 Added a missing clamp to avoid sampling border
 in REPEAT mode. Fixe d incorrectly specified
 weights for LINEAR fi ltering.

NVIDIA OpenGL Extension Specifications NV_half_float

 1515

Name

 NV_half_float

Name Strings

 GL_NV_half_float

Notice

 Copyright NVIDIA Corporation, 2001-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: 02/25/2004
 NVIDIA Revision: 9

Number

 283

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

 OpenGL 1.1 is required.

 NV_float_buffer affects the definition of this extension.

 EXT_fog_coord affects the definition of this ex tension.

 EXT_secondary_color affects the definition of t his extension.

 EXT_vertex_weighting affects the definition of this extension.

 NV_vertex_program affects the definition of thi s extension.

Overview

 This extension introduces a new storage format and data type for
 half-precision (16-bit) floating-point quantiti es. The floating-point
 format is very similar to the IEEE single-preci sion floating-point
 standard, except that it has only 5 exponent bi ts and 10 mantissa bits.
 Half-precision floats are smaller than full pre cision floats and provide a
 larger dynamic range than similarly-sized norma lized scalar data types.

 This extension allows applications to use half- precision floating point
 data when specifying vertices or pixel data. I t adds new commands to

NV_half_float NVIDIA OpenGL Extension Specifications

 1516

 specify vertex attributes using the new data ty pe, and extends the
 existing vertex array and image specification c ommands to accept the new
 data type.

 This storage format is also used to represent 1 6-bit components in the
 floating-point frame buffers, as defined in the NV_float_buffer extension.

Issues

 What should the new data type be called? "half "? "hfloat"? In addition,
 what should the immediate mode function suffix be? "h"? "hf"?

 RESOLVED: half and "h". This convention b uilds on the convention of
 using the type "double" to describe double- precision floating-point
 numbers. Here, "half" will refer to half-p recision floating-point
 numbers.

 Even though the 16-bit float data type is a first-class data type, it
 is still more problematic than the other ty pes in the sense that no
 native programming languages support the da ta type. "hfloat/hf" would
 have reflected a second-class status better than "half/h".

 Both names are not without conflicting prec edents. The name "half" is
 used to connote 16-bit scalar values on som e 32-bit CPU architectures
 (e.g., PowerPC). The name "hfloat" has bee n used to describe 128-bit
 floating-point data on VAX systems.

 Should we provide immediate-mode entry points f or half-precision
 floating-point data types?

 RESOLVED: Yes, for orthogonality. Also us eful as a fallback for the
 "general" case for ArrayElement.

 Should we support half-precision floating-point color index data?

 RESOLVED: No.

 Should half-precision data be accepted by all c ommands that accept pixel
 data or only a subset?

 RESOLVED: All functions. Note that some t extures or frame buffers
 may store the half-precision floating-point data natively.

 Since half float data would be accepted in some cases, it will be
 necessary for drivers to provide some data conversion code. This code
 can be reused to handle the less common com mands.

NVIDIA OpenGL Extension Specifications NV_half_float

 1517

New Procedures and Functions

 void Vertex2hNV(half x, half y);
 void Vertex2hvNV(const half *v);
 void Vertex3hNV(half x, half y, half z);
 void Vertex3hvNV(const half *v);
 void Vertex4hNV(half x, half y, half z, half w) ;
 void Vertex4hvNV(const half *v);
 void Normal3hNV(half nx, half ny, half nz);
 void Normal3hvNV(const half *v);
 void Color3hNV(half red, half green, half blue) ;
 void Color3hvNV(const half *v);
 void Color4hNV(half red, half green, half blue, half alpha);
 void Color4hvNV(const half *v);
 void TexCoord1hNV(half s);
 void TexCoord1hvNV(const half *v);
 void TexCoord2hNV(half s, half t);
 void TexCoord2hvNV(const half *v);
 void TexCoord3hNV(half s, half t, half r);
 void TexCoord3hvNV(const half *v);
 void TexCoord4hNV(half s, half t, half r, half q);
 void TexCoord4hvNV(const half *v);
 void MultiTexCoord1hNV(enum target, half s);
 void MultiTexCoord1hvNV(enum target, const half *v);
 void MultiTexCoord2hNV(enum target, half s, hal f t);
 void MultiTexCoord2hvNV(enum target, const half *v);
 void MultiTexCoord3hNV(enum target, half s, hal f t, half r);
 void MultiTexCoord3hvNV(enum target, const half *v);
 void MultiTexCoord4hNV(enum target, half s, hal f t, half r, half q);
 void MultiTexCoord4hvNV(enum target, const half *v);
 void FogCoordhNV(half fog);
 void FogCoordhvNV(const half *fog);
 void SecondaryColor3hNV(half red, half green, h alf blue);
 void SecondaryColor3hvNV(const half *v);
 void VertexWeighthNV(half weight);
 void VertexWeighthvNV(const half *weight);
 void VertexAttrib1hNV(uint index, half x);
 void VertexAttrib1hvNV(uint index, const half * v);
 void VertexAttrib2hNV(uint index, half x, half y);
 void VertexAttrib2hvNV(uint index, const half * v);
 void VertexAttrib3hNV(uint index, half x, half y, half z);
 void VertexAttrib3hvNV(uint index, const half * v);
 void VertexAttrib4hNV(uint index, half x, half y, half z, half w);
 void VertexAttrib4hvNV(uint index, const half * v);
 void VertexAttribs1hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs2hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs3hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs4hvNV(uint index, sizei n, co nst half *v);

NV_half_float NVIDIA OpenGL Extension Specifications

 1518

New Tokens

 Accepted by the <type> argument of VertexPointe r, NormalPointer,
 ColorPointer, TexCoordPointer, FogCoordPointerE XT,
 SecondaryColorPointerEXT, VertexWeightPointerEX T, VertexAttribPointerNV,
 DrawPixels, ReadPixels, TexImage1D, TexImage2D, TexImage3D, TexSubImage1D,
 TexSubImage2D, TexSubImage3D, and GetTexImage:

 HALF_FLOAT_NV 0x140B

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Modify Section 2.3, GL Command Syntax (p. 7)

 (Modify the last paragraph, p. 7. In the text below, "e*" represents the
 epsilon character used to indicate no characte r.)

 These examples show the ANSI C declarations for these commands. In
 general, a command declaration has the form

 rtype Name{e*1234}{e* b s i h f d ub us ui} {e*v}
 ([args ,] T arg1, ... , T argN [, args]) ;

 (Modify Table 2.1, p. 8 -- add new row)

 Letter Corresponding GL Type
 ------ ---------------------
 h half

 (add after last paragraph, p. 8) The half data type is a floating-point
 data type encoded in an unsigned scalar data ty pe. If the unsigned scalar
 holding a half has a value of N, the correspond ing floating point number
 is

 (-1)^S * 0.0, if E = = 0 and M == 0,
 (-1)^S * 2^-14 * (M / 2^10), if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E = = 31 and M == 0, or
 NaN, if E = = 31 and M != 0,

 where

 S = floor((N mod 65536) / 32768),
 E = floor((N mod 32768) / 1024), and
 M = N mod 1024.

 INF (Infinity) is a special representation indi cating numerical overflow.
 NaN (Not a Number) is a special representation indicating the result of
 illegal arithmetic operations, such as computin g the square root or
 logarithm of a negative number. Note that all normal values, zero, and
 INF have an associated sign. -0.0 and +0.0 are considered equivalent for
 the purposes of comparisons. Note also that ha lf is not a native type in
 most CPUs, so some special processing may be re quired to generate or
 interpret half data.

NVIDIA OpenGL Extension Specifications NV_half_float

 1519

 (Modify Table 2.2, p. 9 -- add new row)

 Minimum
 GL Type Bit Width Description
 ------- --------- ------------------- ----------------
 half 16 half-precision floa ting-point value
 encoded in an unsig ned scalar

 Modify Section 2.7, Vertex Specification, p. 19

 (Modify the descriptions of the immediate mode functions in this section,
 including those introduced by extensions.)

 void Vertex[234][sihfd](T coords);
 void Vertex[234][sihfd]v(T coords);
 ...
 void TexCoord[1234][sihfd](T coords);
 void TexCoord[1234][sihfd]v(T coords);
 ...
 void MultiTexCoord[1234][sihfd](enum textur e, T coords);
 void MultiTexCoord[1234][sihfd]v(enum textu re, T coords);
 ...
 void Normal3[bsihfd][T coords);
 void Normal3[bsihfd]v(T coords);
 ...
 void Color[34][bsihfd ubusui](T components);
 void Color[34][bsihfd ubusui]v(T component s);
 ...
 void FogCoord[fd]EXT(T fog);
 void FogCoordhNV(T fog);
 void FogCoord[fd]vEXT(T fog);
 void FogCoordhvNV(T fog);
 ...
 void SecondaryColor3[bsihfd ubusui](T comp onents);
 void SecondaryColor3hNV(T components);
 void SecondaryColor3[bsihfd ubusui]v(T com ponents);
 void SecondaryColor3hvNV(T components);
 ...
 void VertexWeightfEXT(T weight);
 void VertexWeighthNV(T weight);
 void VertexWeightfvEXT(T weight);
 void VertexWeighthvNV(T weight);
 ...
 void VertexAttrib[1234][shfd]NV(uint index, T components);
 void VertexAttrib4ubNV(uint index, T compon ents);
 void VertexAttrib[1234][shfd]vNV(uint index , T components);
 void VertexAttrib4ubvNV(uint index, T compo nents);
 void VertexAttribs[1234][shfd]vNV(uint inde x, sizei n, T components);
 void VertexAttribs4ubvNV(uint index, sizei n, T components);

 Modify Section 2.8, Vertex Arrays, p. 21

 (Modify 1st paragraph on p. 22) ... For <type>, the values BYTE, SHORT,
 INT, FLOAT, HALF_FLOAT_NV, and DOUBLE indicate types byte, short, int,
 float, half, and double, respectively. ...

NV_half_float NVIDIA OpenGL Extension Specifications

 1520

 (Modify Table 2.4, p. 23)

 Command Sizes Types
 ------------------ ------- ------ ---------------------------
 VertexPointer 2,3,4 short, int, float, half, double
 NormalPointer 3 byte, short, int, float, half,
 double
 ColorPointer 3,4 byte, ubyte, short, ushort, int,
 uint, float, half, double
 IndexPointer 1 ubyte, short, int, float, double
 TexCoordPointer 1,2,3,4 short, int, float, half, double
 EdgeFlagPointer 1 boolea n
 FogCoordPointerEXT 1 float, half, double
 SecondaryColorPointerEXT 3 byte, ubyte, short, ushort, int,
 uint, float, half, double
 VertexWeightPointerEXT 1 float, half

 Table 2.4: Vertex array sizes (values per v ertex) and data types.

 Modify Section 2.13, Colors and Coloring, p.44

 (Modify Table 2.6, p. 45) Add new row to the t able:

 GL Type Conversion
 ------- ----------
 half c

 Modify NV_vertex_program_spec, Section 2.14.3, Vertex Arrays for Vertex
 Attributes.

 (modify paragraph describing VertexAttribPointe r) ... type specifies the
 data type of the values stored in the array. t ype must be one of SHORT,
 FLOAT, HALF_FLOAT_NV, DOUBLE, or UNSIGNED_BYTE and these values correspond
 to the array types short, int, float, half, dou ble, and ubyte
 respectively. ...

 (add to end of paragraph describing mapping of vertex arrays to
 immediate-mode functions) ... For each vertex a ttribute, the corresponding
 command is VertexAttrib[size][type]v, where siz e is one of [1,2,3,4], and
 type is one of [s,f,h,d,ub], corresponding to t he array types short, int,
 float, half, double, and ubyte respectively.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (Modify Table 3.5, p. 94 -- add new row)

 type Parameter Corresponding Spec ial
 Token Name GL Data Type Interpr etation
 -------------- ------------- ------- -------
 HALF_FLOAT_NV half No

NVIDIA OpenGL Extension Specifications NV_half_float

 1521

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.3.2, Reading Pixels (p. 173)

 (modify Final Conversion, p. 177) For an index, if the type is not FLOAT
 or HALF_FLOAT_NV, final conversion consists of masking the index with the
 value given in Table 4.6; if the type is FLOAT or HALF_FLOAT_NV, then the
 integer index is converted to a GL float or hal f data value. For an RGBA
 color, components are clamped depending on the data type of the buffer
 being read. For fixed-point buffers, each comp onent is clamped to [0.1].
 For floating-point buffers, if <type> is not FL OAT or HALF_FLOAT_NV, each
 component is clamped to [0,1] if <type> is unsi gned or [-1,1] if <type> is
 signed and then converted according to Table 4. 7.

 (Modify Table 4.7, p. 178 -- add new row)

 type Parameter GL Data Type Component Conversion Formula
 -------------- ------------ --------- -------------------
 HALF_FLOAT_NV half c = f

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol (Modification to the GLX 1.3 Protocol Encoding Specification)

 Add to Section 1.4 (p.2), Common Types

 FLOAT16 A 16-bit floating-point value i n the format specified
 in the NV_half_float extension specification.

 Modify Section 2.3.3 (p. 79), GL Rendering Comm ands

 The following rendering commands are sent to the server as part of a
 glXRender request:

 Vertex2hvNV
 2 8 rendering c ommand length
 2 4240 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

NV_half_float NVIDIA OpenGL Extension Specifications

 1522

 Vertex3hvNV
 2 12 rendering c ommand length
 2 4241 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Vertex4hvNV
 2 12 rendering c ommand length
 2 4242 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 Normal3hvNV
 2 12 rendering c ommand length
 2 4243 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Color3hvNV
 2 12 rendering c ommand length
 2 4244 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Color4hvNV
 2 12 rendering c ommand length
 2 4245 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 TexCoord1hvNV
 2 8 rendering c ommand length
 2 4246 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

 TexCoord2hvNV
 2 8 rendering c ommand length
 2 4247 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

NVIDIA OpenGL Extension Specifications NV_half_float

 1523

 TexCoord3hvNV
 2 12 rendering c ommand length
 2 4248 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 TexCoord4hvNV
 2 12 rendering c ommand length
 2 4249 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 MultiTexCoord1hvNV
 2 12 rendering c ommand length
 2 4250 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 unused

 MultiTexCoord2hvNV
 2 12 rendering c ommand length
 2 4251 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

 MultiTexCoord3hvNV
 2 16 rendering c ommand length
 2 4252 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 MultiTexCoord4hvNV
 2 16 rendering c ommand length
 2 4253 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 FogCoordhvNV
 2 8 rendering c ommand length
 2 4254 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

NV_half_float NVIDIA OpenGL Extension Specifications

 1524

 SecondaryColor3hvNV
 2 12 rendering c ommand length
 2 4255 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 VertexWeighthvNV
 2 8 rendering c ommand length
 2 4256 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

 VertexAttrib1hvNV
 2 12 rendering c ommand length
 2 4257 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 unused

 VertexAttrib2hvNV
 2 12 rendering c ommand length
 2 4258 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

 VertexAttrib3hvNV
 2 16 rendering c ommand length
 2 4259 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 VertexAttrib4hvNV
 2 16 rendering c ommand length
 2 4260 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 VertexAttribs1hvNV
 2 12+2*n+p rendering c ommand length
 2 4261 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 2*n LISTofFLOAT16 v
 p unused, p=p ad(2*n)

NVIDIA OpenGL Extension Specifications NV_half_float

 1525

 VertexAttribs2hvNV
 2 12+4*n rendering c ommand length
 2 4262 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 4*n LISTofFLOAT16 v

 VertexAttribs3hvNV
 2 12+6*n+p rendering c ommand length
 2 4263 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 6*n LISTofFLOAT16 v
 p unused, p=p ad(6*n)

 VertexAttribs4hvNV
 2 12+8*n rendering c ommand length
 2 4264 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 8*n LISTofFLOAT16 v

 Modify Section 2.3.4, GL Rendering Commands Tha t May Be Large (p. 127)

 (Modify the ARRAY_INFO portion of the DrawArra ys encoding (p.129) to
 reflect the new data type supported by vertex arrays.)

 ARRAY_INFO

 4 enum data ty pe
 0x1400 i=1 BYTE
 0x1401 i=1 UNSIGNE D_BYTE
 0x1402 i=2 SHORT
 ...
 0x140B i=2 HALF_FL OAT_NV
 4 INT32 j
 4 ENUM array t ype
 ...

 Modify Appendix A, Pixel Data (p. 148)

 (Modify Table A.1, p. 149 -- add new row for HALF_FLOAT_NV data)

 type Encoding Protocol Typ e nbytes
 ------------- -------- ------------ - ------
 HALF_FLOAT_NV 0x140B CARD16 2

Dependencies on NV_float_buffer

 If NV_float_buffer is not supported, the fixed and floating-point color
 buffer language in ReadPixels "Final Conversion " should be removed.

NV_half_float NVIDIA OpenGL Extension Specifications

 1526

Dependencies on EXT_fog_coord, EXT_secondary_color, and EXT_vertex_weighting

 If EXT_fog_coord, EXT_secondary_color, or EXT_v ertex_weighting are not
 supported, references to FogCoordPointerEXT, Se condaryColorPointerEXT, and
 VertexWeightEXT, respectively, should be remove d.

Dependencies on NV_vertex_program

 If NV_vertex_program is not supported, referenc es to VertexAttribPointerNV
 should be removed, as should references to Vert exAttrib*h[v] commands.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Rev. Date Author Changes
 ---- -------- -------- ---------------------- ----------------------
 9 02/25/04 pbrown Fixed incorrect langua ge using division by zero
 as an example of somet hing producing a NaN.

NV_light_max_exponent NVIDIA OpenGL Extension Specifications

1527

Name

 NV_light_max_exponent

Name Strings

 GL_NV_light_max_exponent

Notice

 Copyright NVIDIA Corporation, 1999, 2000.

Version

 May 20, 1999

Number

 189

Dependencies

 None

Overview

 Default OpenGL does not permit a shininess or s pot exponent over
 128.0. This extension permits implementations to support and
 advertise a maximum shininess and spot exponent beyond 128.0.

 Note that extremely high exponents for shinines s and/or spot light
 cutoff will require sufficiently high tessellat ion for acceptable
 lighting results.

 Paul Deifenbach's thesis suggests that higher e xponents are
 necessary to approximate BRDFs with per-vertex ligthing and
 multiple passes.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_SHININESS_NV 0x8504
 MAX_SPOT_EXPONENT_NV 0x8505

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 In Table 2.7, change the srm range entry to rea d:

 "(range: [0.0, value of MAX_SHININESS_NV])"

NV_light_max_exponent NVIDIA OpenGL Extension Specifications

 1528

 In Table 2.7, change the srli range entry to re ad:

 "(range: [0.0, value of MAX_SPOT_EXPONENT_NV])"

 Add to the end of the second paragraph in Secti on 2.13.2:

 "The values of MAX_SHININESS_NV and MAX_SPOT_EX PONENT_NV are
 implementation dependent, but must be equal or greater than 128."

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None.

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_VALUE is generated by Material if enum is SHININESS and the
 shininess param is greater than the MAX_SHININE SS_NV.

 INVALID_VALUE is generated by Material if enum is SPOT_EXPONENT and
 the shininess param is greater than the MAX_SPO T_EXPONENT_NV.

New State

 None.

NVIDIA OpenGL Extension Specifications NV_light_max_exponent

 1529

New Implementation Dependent State

(table 6.24, p214) add the following entries:

 Minimum
Get Value Type Get Command Value Description Sec Attribute
---------------------- ---- ----------- -------- ---------------- ------- ---------
MAX_SHININESS_NV Z+ GetIntegerv 128 Maximum 2.13.2 -
 shininess for
 specular lighting
MAX_SPOT_EXPONENT_NV Z+ GetIntegerv 128 Maximum 2.13.2 -
 exponent for
 spot lights

NVIDIA Implementation Details

 NVIDIA's Release 4 drivers incorrectly and accidently advertised this
 extension with an "EXT" prefix instead of an "NV" prefix. Release 5
 and later drivers correctly advertise this extension with an "NV"
 extension.

Revision History

 5/20/00 - earlier versions of this specification had the incorrect
 enumerant values which did not match NVIDIA's driver implementation.

NV_multisample_filter_hint NVIDIA OpenGL Extension Specifications

 1530

Name

 NV_multisample_filter_hint

Name Strings

 GL_NV_multisample_filter_hint

Notice

 Copyright NVIDIA Corporation, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Shipping, May 2001

Version

 NVIDIA Date: May 16, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_multisam ple_filter_hint.txt#2 $

Number

 259

Dependencies

 Written based on the OpenGL 1.2.1 specification .

 Requires ARB_multisample.

Overview

 OpenGL multisampling typically assumes that the samples of a given
 pixel are weighted uniformly and averaged to co mpute the pixel's
 resolved color. This extension provides a hint that permits
 implementations to provide an alternative metho d of resolving the
 color of multisampled pixels.

 As an example of such an alternative method, NV IDIA's GeForce3 GPU
 provides a technique known as Quincunx filterin g. This technique
 is used in two-sample multisampling, but it ble nds the pixel's two
 samples and three additional samples from adjac ent pixels. The sample
 pattern is analogous to the 5 pattern on a die. The quality of this
 technique is widely regarded as comparable to 4 sample multisampling.

Issues

 Is the glHint mechanism the right mechanism to expo se this functionality?

 RESOLUTION: Yes. Multisample filtering qual ity is subject to
 the kinds of variations that the glHint was i ntended to control.

NVIDIA OpenGL Extension Specifications NV_multisample_filter_hint

 1531

 Arguably, the glHint mechanism only provides two definite settings:
 GL_FASTEST and GL_NICEST while there may be m any different
 techniques for controlling multisample filter ing quality.
 We expect hardware to support only one or two techniques rather
 than a multitude of nearly indistinguishable sampling techniques.

 When does changing the multisampling filter hint ta ke effect?

 RESOLUTION: It may not be until the next swap buffers or glClear
 operation that the multisample hint actually takes effect.
 This may be implementation dependent.

 What is the meaning of GL_DONT_CARE for the multisa mple hint?

 RESOLUTION: By default, NVIDIA expects to tr eat GL_DONT_CARE
 the same as GL_FASTEST. However, the meaning of GL_DONT_CARE
 for this hint may be subject to a registry (o r environment) setting,
 possibly settable through a control panel.

 Does GL_NICEST require Quincunx filtering?

 RESOLUTION: No. NVIDIA's GeForce3 Quincunx filtering is one
 possible technique that may be used to implem ent the GL_NICEST
 setting, but future GPUs may use other techni ques.

 Can the meaning of the multisample hint vary depend ing on the number
 of samples of the drawable?

 RESOLUTION: Yes.

 The following describes how GeForce3 uses the multisample hint:

 When using 2-sample multisampling with GeForc e3, the multisample
 filter hint affects multisample filtering as follows: GL_NICEST uses
 5-tap Quincunx multisample filtering while GL _FASTEST uses standard
 even-weighted 2-tap multisample filtering of the pixel's 2 samples.

 When using 4-sample multisampling with GeForc e3, the multisample
 filter hint affects multisample filtering as follows: GL_NICEST
 uses 9-tap 3x3 multisample filtering while GL _FASTEST uses standard
 even-weighted 4-tap multisample filtering of the pixel's 4 samples.

 What is the difference between a "tap" and a "sampl e"?

 In the context of multisample filtering, a sa mple is
 a subpixel frame buffer sample containing col or, depth, and
 stencil information. A tap is a source of da ta for filtering.
 Typically, samples are filtered by evenly wei ghting all the samples
 belonging to a pixel. In this case, the numb er of taps for the
 filter is equal to the number of samples for the pixel. In other
 filtering schemes, the number of taps and sam ples may not be equal
 (and potentially not evenly weighted as well) . For example,
 GeForce3's quincunx filtering uses 5 taps eve n though each pixel
 has only 2 multisample samples. Three of the five taps source
 samples outside the pixel's footprint of two samples.

NV_multisample_filter_hint NVIDIA OpenGL Extension Specifications

 1532

 Should the multisample filtering technique be deter mined by the
 visual/PFD rather than OpenGL rendering context state?

 RESOLUTION: No. The number of multisample s amples per pixel that
 a window has is a property of the visual/PFD, but the filtering
 technique does not have to be defined up-fron t at when the pixel
 format is set.

 While not quite consistent with the way ARB_mul tisample is specified,
 NVIDIA uses the SwapBuffers operation as a trig ger for downsampling
 multisample sample buffers (other operations su ch as glReadPixels
 also trigger downsampling). But a SwapBuffers operation can be
 requested without a current OpenGL rendering co ntext. What happens
 when a SwapBuffers operation is performed with no current OpenGL
 rendering context?

 RESOLUTION: The multisample filter hint is t reated as GL_DONT_CARE
 in this case. Applications that want the mul tisample filter hint
 to apply to their BufferSwap operation should perform the BufferSwap
 operation while bound to an OpenGL rendering context.

New Procedures and Functions

 None

New Tokens

 Accepted by the <target> parameter of Hint and by the <pname>
 parameter of GetBooleanv, GetIntegerv, GetFloat v, and GetDoublev:

 MULTISAMPLE_FILTER_HINT_NV 0 x8534

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 -- Section 5.6 "Hints"

 Replace the description of hint targets in the first paragraph with:

 "target may be one of PERSPECTIVE_HINT, indica ting the desired
 quality of parameter interpolation; POINT_SMOO TH_HINT, indicating the
 desired sampling quality of points; LINE_SMOOT H_HINT, indicating the
 desired sampling quality of lines; POLYGON_SMO OTH_HINT, indicating
 the desired sampling quality of polygons; FOG_ HINT, indicating
 whether fog calculations are done per pixel or per vertex; and

NVIDIA OpenGL Extension Specifications NV_multisample_filter_hint

 1533

 MULTISAMPLE_FILTER_HINT, indicating the desire d quality of multisample
 filtering. The MULTISAMPLE_FILTER_HINT is ign ored if the frame buffer
 has no multisample samples. When NICEST (or p ossibly DONT_CARE)
 multisample filtering is requested and the fra me buffer supports
 multisampling, the multisample filter pattern may involve samples
 outside the pixel's sample set. The exact NIC EST (or possibly
 DONT_CARE) multisample filtering technique use d is implementation
 dependent and may vary with the number of mult isample samples
 supported."

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX, WGL, and AGL Specification

 Add the following to the description of what ha ppens at SwapBuffers
 time.

 "When a SwapBuffers operation is performed by a thread without
 a current OpenGL rendering context and the targ et drawable to be
 swapped is multisampled, any multisample filter ing operation that
 occurs should be done as if the GL_MULTISAMPLE_ FILTER_HINT value is
 set to GL_DONT_CARE."

GLX Protocol

 None

Errors

 None

New State

(table 6.23, p213) add the following entry:

Get Value Type Get Command Initial Value Description Sec Attr ibute
---------------------------- ---- ----------- ------------- ----------- ------ ---- ----------
MULTISAMPLE_FILTER_HINT_NV Z3 GetIntegerv DONT_CARE Multisample filter 5.6 hint
 quality hint

Revision History

 None

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1534

Name

 NV_occlusion_query

Name Strings

 GL_NV_occlusion_query

Notice

 Copyright NVIDIA Corporation, 2001, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.0)

Version

 NVIDIA Date: February 6, 2002 (version 1.0)
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_occlusio n_query.txt#3 $

Number

 261

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

 Requires support for the HP_occlusion_test exte nsion.

Overview

 The HP_occlusion_test extension defines a mecha nism whereby an
 application can query the visibility of an obje ct, where "visible"
 means that at least one pixel passes the depth and stencil tests.

 The HP extension has two major shortcomings.

 - It returns the result as a simple GL_TRUE/GL_ FALSE result, when in
 fact it is often useful to know exactly how m any pixels passed.
 - It provides only a simple "stop-and-wait" mod el for using multiple
 queries. The application begins an occlusion test and ends it;
 then, at some later point, it asks for the re sult, at which point
 the driver must stop and wait until the resul t from the previous
 test is back before the application can even begin the next one.
 This is a very simple model, but its performa nce is mediocre when
 an application wishes to perform many queries , and it eliminates
 most of the opportunites for parallelism betw een the CPU and GPU.

 This extension solves both of those problems. It returns as its
 result the number of pixels that pass, and it p rovides an interface
 conceptually similar to that of NV_fence that a llows applications to

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1535

 issue many occlusion queries before asking for the result of any one.
 As a result, they can overlap the time it takes for the occlusion
 query results to be returned with other, more u seful work, such as
 rendering other parts of the scene or performin g other computations
 on the CPU.

 There are many situations where a pixel count, rather than a boolean
 result, is useful.

 - If the visibility test is an object bounding box being used to
 decide whether to skip the object, sometimes it can be acceptable,
 and beneficial to performance, to skip an obj ect if less than some
 threshold number of pixels could be visible.
 - Knowing the number of pixels visible in the b ounding box may also
 help decide what level of detail a model shou ld be drawn with. If
 only a few pixels are visible, a low-detail m odel may be
 acceptable. In general, this allows level-of -detail mechanisms to
 be slightly less ad hoc.
 - "Depth peeling" techniques, such as order-ind ependent transparency,
 would typically like to know when to stop ren dering more layers; it
 is difficult to come up with a way to determi ne a priori how many
 layers to use. A boolean count allows applic ations to stop when
 more layers will not affect the image at all, but this will likely
 be unacceptable for performance, with minimal gains to image
 quality. Instead, it makes more sense to sto p rendering when the
 number of pixels goes below a threshold; this should provide better
 results than any of these other algorithms.
 - Occlusion queries can be used as a replacemen t for glReadPixels of
 the depth buffer to determine whether, say, a light source is
 visible for the purposes of a lens flare effe ct or a halo to
 simulate glare. Pixel counts allow you to co mpute the percentage
 of the light source that is visible, and the brightness of these
 effects can be modulated accordingly.

Issues

 * Should we use an object-based interface?

 RESOLVED: Yes, this makes the interface muc h simpler, and it is
 friendly for indirect rendering.

 * Should we offer an entry point analogous to glTestFenceNV?

 RESOLVED: No, it is sufficient to have glGe tOcclusionQueryivNV
 provide a query for whether the occlusion q uery result is back
 yet. Whereas it is interesting to poll fen ce objects, it is
 relatively less interesting to poll occlusi on queries.

 * Is glGetOcclusionQueryuivNV necessary?

 RESOLVED: Yes, it makes using a 32-bit pixe l count less painful.

 * Should there be a limit on how many queries can be outstanding?

 RESOLVED: No. This would make the extensio n much more
 difficult to spec and use. Allowing this d oes not add any
 significant implementation burden; and even if drivers have some

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1536

 internal limit on the number of outstanding queries, it is not
 expected that applications will need to kno w this to achieve
 optimal or near-optimal performance.

 * What happens if glBeginOcclusionQueryNV is called when an
 occlusion query is already outstanding for a different object?

 RESOLVED: This is a GL_INVALID_OPERATION er ror.

 * What happens if HP_occlusion_test and NV_oc clusion_query usage is
 overlapped?

 RESOLVED: The two can be overlapped safely. Counting is enabled
 if we are _either_ inside a glBeginOcclusio nQueryNV or if
 if GL_OCCLUSION_TEST_HP is enabled. The al ternative (producing
 an error) does not work -- it would require that glPopAttrib be
 capable of producing an error, which would be rather problematic.

 Note that glBeginOcclusionQueryNV, not glEn dOcclusionQueryNV,
 resets the pixel counter and occlusion test result. This can
 avoid certain types of strange behavior whe re an occlusion
 query's pixel count does not always corresp ond to the pixels
 rendered during the occlusion query. The s pec would make sense
 the other way, but the behavior would be st range.

 * Does EndOcclusionQuery need to take any par ameters?

 RESOLVED: No. Giving it, for example, an " id" parameter would
 be redundant -- adding complexity for no be nefit. Only one query
 can be active at a time.

 * How many bits should we require the pixel c ounter to be, at
 minimum?

 RESOLVED: 24. 24 is enough to handle 8.7 f ull overdraws of a
 1600x1200 window. That seems quite suffici ent.

 * What should we do about overflows?

 RESOLVED: Overflows leave the pixel count u ndefined. Saturating
 is recommended but not required.

 The ideal behavior really is to saturate. This ensures that you
 always get a "large" result when you render many pixels. It also
 ensures that apps which want a boolean test can do one on their
 own, and not worry about the rare case wher e the result ends up
 exactly at zero from wrapping.

 That being said, with 24 bits of pixel coun t required, it's not
 clear that this really matters. It's bette r to be a bit
 permissive here. In addition, even if satu ration was required,
 the goal of having strictly defined behavio r is still not really
 met.

 Applications don't (or at least shouldn't) check for some _exact_
 number of bits. Imagine if a multitextured app had been written
 that required that the number of texture un its supported be

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1537

 exactly two! Implementors of OpenGL woul d be greatly annoyed
 to find that the app did not run on, say, t hree-texture or four-
 texture hardware.

 So, we expect apps here to always be doing a "greater than or
 equal to" check. An app might check for, s ay, at least 28 bits.
 This doesn't ensure defined behavior -- it only ensures that once
 an overflow occurs (which may happen at any power of two), that
 overflow will be handled with saturation. This behavior still
 remains sufficiently unpredictable that the reasons for defining
 behavior in even rarely-used cases (prevent ing compatibility
 problems, for example) are unsatisfied.

 All that having been said, saturation is st ill explicitly
 recommended in the spec language.

 * What is the interaction with multisample, w hich was not defined
 in the original spec?

 RESOLVED: The pixel count is the number of samples that pass, not
 the number of pixels. This is true even if GL_MULTISAMPLE is
 disabled but GL_SAMPLE_BUFFERS is 1. Note that the depth/stencil
 test optimization whereby implementations m ay choose to depth
 test at only one of the samples when GL_MUL TISAMPLE is disabled
 does not cause this to become ill-specified , because we are
 counting the number of samples that are sti ll alive _after_ the
 depth test stage. The mechanism used to de cide whether to kill
 or keep those samples is not relevant.

 * Exactly what stage are we counting at? The original spec said
 depth test; what does stencil test do?

 RESOLVED: We are counting immediately after _both_ the depth and
 stencil tests, i.e., pixels that pass both. This was the
 original spec's intent. Note that the dept h test comes after the
 stencil test, so to say that it is the numb er that pass the depth
 test is reasonable; though it is often help ful to think of the
 depth and stencil tests as being combined, because the depth test
 result impacts the stencil operation used.

 * Is it guaranteed that occlusion queries ret urn in order?

 RESOLVED: Yes. It makes sense to do this. If occlusion test X
 occurred before occlusion query Y, and the driver informs the app
 that occlusion query Y is done, the app can infer that occlusion
 query X is also done. For applications tha t do poll, this allows
 them to do so with less effort.

 * Will polling an occlusion query without a g lFlush possibly cause
 an infinite loop?

 RESOLVED: Yes, this is a risk. If you ask for the result,
 however, any flush required will be done au tomatically. It is
 only when you are polling that this is a pr oblem because there is
 no guarantee that a flush has occured in th e time since
 glEndOcclusionQueryNV, and the spec is writ ten to say that the
 result is only "available" if the value cou ld be returned

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1538

 instantaneously.

 This is different from NV_fence, where Fini shFenceNV can cause an
 app hang, and where TestFenceNV was also no t guaranteed to ever
 finish.

 There need not be any spec language to desc ribe this behavior
 because it is implied by what is already sa id.

 In short, if you use GL_PIXEL_COUNT_AVAILAB LE_NV, you _must_ use
 glFlush, or your app may hang.

 * The HP_occlusion_test specs did not contain the spec edits that
 explain the exact way the extension works. Should this spec fill
 in those details?

 RESOLVED: Yes. These two extensions are in tertwined in so many
 important ways that doing so is not optiona l.

 * Should there be a "target" parameter to Beg inOcclusionQuery?

 RESOLVED: No. We're not trying to solve th e problem of "query
 anything" here.

 * What might an application that uses this ex tension look like?

 Here is some rough sample code:

 GLuint occlusionQueries[N];
 GLuint pixelCount;

 glGenOcclusionQueriesNV(N, occlusionQueries);
 ...
 // before this point, render major occluder s
 glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, G L_FALSE);
 glDepthMask(GL_FALSE);
 // also disable texturing and any fancy sha ding features
 for (i = 0; i < N; i++) {
 glBeginOcclusionQueryNV(occlusionQuerie s[i]);
 // render bounding box for object i
 glEndOcclusionQueryNV();
 }
 // at this point, if possible, go and do so me other computation
 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_T RUE);
 glDepthMask(GL_TRUE);
 // reenable other state
 for (i = 0; i < N; i++) {
 glGetOcclusionQueryuivNV(occlusionQueri es[i], GL_PIXEL_COUNT_NV,
 &pixelCount);
 if (pixelCount > 0) {
 // render object i
 }
 }

 * Is this extension useful for saving geometr y, fill rate, or both?

 It is expected that it will be most useful for saving geometry

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1539

 work, because for the cost of rendering a b ounding box you can
 save rendering a normal object.

 It is possible for this extension to help i n fill-limited
 situations, but using it may also hurt perf ormance in such
 situations, because rendering the pixels of a bounding box is
 hardly free. In most situations a bounding box will probably
 have more pixels than the original object.

 One exception is that for objects rendered with multiple passes,
 the first pass can be wrapped with an occlu sion query almost for
 free. That is, render the first pass for a ll objects in the
 scene, and get the number of pixels rendere d on each object. If
 zero pixels were rendered for an object, yo u can skip subsequent
 rendering passes. This trick can be very u seful in many cases.

 * What can be said about guaranteeing correct ness when using
 occlusion queries, especially as it relates to invariance?

 Invariance is critical to guarantee the cor rectness of occlusion
 queries. If occlusion queries go through a different code path
 than standard rendering, the pixels rendere d may be different.

 However, the invariance issues are difficul t at best to solve.
 Because of the vagaries of floating-point p recision, it is
 difficult to guarantee that rendering a bou nding box will render
 at least as many pixels with equal or small er Z values than the
 object itself would have rendered.

 Likewise, many other aspects of rendering s tate tend to be
 different when performing an occlusion quer y. Color and depth
 writes are typically disabled, as are textu ring, vertex programs,
 and any fancy per-pixel math. So unless al l these features have
 guarantees of invariance themselves (unlike ly at best), requiring
 invariance for NV_occlusion_query would be futile.

 For what it's worth, NVIDIA's implementatio n is fully invariant
 with respect to whether an occlusion query is active; that is, it
 does not affect the operation of any other stage of the pipeline.
 (When occlusion queries are being emulated on hardware that does
 not support them, via the emulation registr y keys, using an
 occlusion query produces a software rasteri ation fallback, and in
 such cases invariance cannot be guaranteed.)

 Another problem that can threaten correctne ss is near and far
 clipping. If the bounding box penetrates t he near clip plane,
 for example, it may be clipped away, reduci ng the number of
 pixels counted, when in fact the original o bject may have stayed
 entirely beyond the near clip plane. Whene ver you design an
 algorithm using occlusion queries, it is be st to be careful about
 the near and far clip planes.

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1540

 * How can frame-to-frame coherency help appli cations using this
 extension get even higher performance?

 Usually, if an object is visible one frame, it will be visible
 the next frame, and if it is not visible, i t will not be visible
 the next frame.

 Of course, for most applications, "usually" isn't good enough.
 It is undesirable, but acceptable, to rende r an object that
 wasn't visible, because that only costs per formance. It is
 generally unacceptable to not render an obj ect that was visible.

 The simplest approach is that visible objec ts should be checked
 every N frames (where, say, N=5) to see if they have become
 occluded, while objects that were occluded last frame must be
 rechecked again in the current frame to gua rantee that they are
 still occluded. This will reduce the numbe r of wasteful
 occlusion queries by a factor of almost N.

 It may also pay to do a raycast on the CPU in order to try to
 prove that an object is visible. After all , occlusion queries
 are only one of many items in your bag of t ricks to decide
 whether objects are visible or invisible. They are not an excuse
 to skip frustum culling, or precomputing vi sibility using portals
 for static environments, or other standard visibility techniques.

 In general, though, taking advantage of fra me-to-frame coherency
 in your occlusion query code is absolutely essential to getting
 the best possible performance.

New Procedures and Functions

 void GenOcclusionQueriesNV(sizei n, uint *ids);
 void DeleteOcclusionQueriesNV(sizei n, const ui nt *ids);
 boolean IsOcclusionQueryNV(uint id);
 void BeginOcclusionQueryNV(uint id);
 void EndOcclusionQueryNV(void);
 void GetOcclusionQueryivNV(uint id, enum pname, int *params);
 void GetOcclusionQueryuivNV(uint id, enum pname , uint *params);

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 OCCLUSION_TEST_HP 0x8165

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 OCCLUSION_TEST_RESULT_HP 0x8166
 PIXEL_COUNTER_BITS_NV 0x8864
 CURRENT_OCCLUSION_QUERY_ID_NV 0x8865

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1541

 Accepted by the <pname> parameter of GetOcclusi onQueryivNV and
 GetOcclusionQueryuivNV:

 PIXEL_COUNT_NV 0x8866
 PIXEL_COUNT_AVAILABLE_NV 0x8867

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Add a new section "Occlusion Tests and Queries" between sections
 4.1.6 and 4.1.7:

 "4.1.6A Occlusion Tests and Queries

 Occlusion testing keeps track of whether any pi xels have passed the
 depth test. Such testing is enabled or disable d with the generic
 Enable and Disable commands using the symbolic constant
 OCCLUSION_TEST_HP. The occlusion test result i s initially FALSE.

 Occlusion queries can be used to track the exac t number of fragments
 that pass the depth test. Occlusion queries ar e associated with
 occlusion query objects. The command

 void GenOcclusionQueriesNV(sizei n, uint *ids);

 returns n previously unused occlusion query nam es in ids. These
 names are marked as used, but no object is asso ciated with them until
 the first time BeginOcclusionQueryNV is called on them. Occlusion
 queries contain one piece of state, a pixel cou nt result. This pixel
 count result is initialized to zero when the ob ject is created.

 Occlusion queries are deleted by calling

 void DeleteOcclusionQueriesNV(sizei n, const uint *ids);

 ids contains n names of occlusion queries to be deleted. After an
 occlusion query is deleted, its name is again u nused. Unused names
 in ids are silently ignored.

 An occlusion query can be started and finished by calling

 void BeginOcclusionQueryNV(uint id);
 void EndOcclusionQueryNV(void);

 If BeginOcclusionQueryNV is called with an unus ed id, that id is
 marked as used and associated with a new occlus ion query object. If
 it is called while another occlusion query is a ctive, an
 INVALID_OPERATION error is generated. If EndOc clusionQueryNV is
 called while no occlusion query is active, an I NVALID_OPERATION error

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1542

 is generated. Calling either GenOCclusionQueri esNV or
 DeleteOcclusionQueriesNV while an occlusion que ry is active causes an
 INVALID_OPERATION error to be generated.

 When EndOcclusionQueryNV is called, the current pixel counter is
 copied into the active occlusion query object's pixel count result.
 BeginOcclusionQueryNV resets the pixel counter to zero and the
 occlusion test result to FALSE.

 Whenever a fragment reaches this stage and OCCL USION_TEST_HP is
 enabled or an occlusion query is active, the oc clusion test result is
 set to TRUE and the pixel counter is incremente d. If the value of
 SAMPLE_BUFFERS is 1, then the pixel counter is incremented by the
 number of samples whose coverage bit is set; ot herwise, it is always
 incremented by one. If it the pixel counter ov erflows, i.e., exceeds
 the value 2^PIXEL_COUNTER_BITS_NV-1, its value becomes undefined.
 It is recommended, but not required, that imple mentations handle this
 overflow case by saturating at 2^PIXEL_COUNTER_ BITS_NV-1 and
 incrementing no further.

 The necessary state is a single bit indicating whether the occlusion
 test is enabled, a single bit indicating whethe r an occlusion query
 is active, the identifier of the currently acti ve occlusion query, a
 counter of no smaller than 24 bits keeping trac k of the pixel count,
 and a single bit indicating the occlusion test result."

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 Add to the end of Section 5.4 "Display Lists":

 "DeleteOcclusionQueriesNV, GenOcclusionQueriesN V, IsOcclusionQueryNV,
 GetOcclusionQueryivNV, and GetOcclusionQueryuiv NV are not complied
 into display lists but are executed immediately ."

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 Add a new section 6.1.13 "Occlusion Test and Oc clusion Queries":

 "The occlusion test result can be queried using GetBooleanv,
 GetIntegerv, GetFloatv, or GetDoublev with a <p name> of
 OCCLUSION_TEST_RESULT_HP. Whenever such a quer y is performed, the
 occlusion test result is reset to FALSE and the pixel counter is
 reset to zero as a side effect.

 Which occlusion query is active can be queried using GetBooleanv,
 GetIntegerv, GetFloatv, or GetDoublev with a <p name> of
 CURRENT_OCCLUSION_QUERY_ID_NV. This query retu rns the name of the
 currently active occlusion query if one is acti ve, and zero
 otherwise.

 The state of an occlusion query can be queried with the commands

 void GetOcclusionQueryivNV(uint id, enum pnam e, int *params);
 void GetOcclusionQueryuivNV(uint id, enum pna me, uint *params);

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1543

 If the occlusion query object named by id is cu rrently active, then
 an INVALID_OPERATION error is generated.

 If <pname> is PIXEL_COUNT_NV, then the occlusio n query's pixel count
 result is placed in params.

 Often, occlusion query results will be returned asychronously with
 respect to the host processor's operation. As a result, sometimes,
 if a pixel count is queried, the host must wait until the result is
 back. If <pname> is PIXEL_COUNT_AVAILABLE_NV, the value placed in
 params indicates whether or not such a wait wou ld occur if the pixel
 count for that occlusion query were to be queri ed presently. A
 result of TRUE means no wait would be required; a result of FALSE
 means that some wait would occur. The length o f this wait is
 potentially unbounded. It must always be true that if the result for
 one occlusion query is available, the result fo r all previous
 occlusion queries must also be available at tha t point in time."

GLX Protocol

 Seven new GL commands are added.

 The following two rendering commands are sent t o the server as part
 of a glXRender request:

 BeginOcclusionQueryNV
 2 8 rendering c ommand length
 2 ???? rendering c ommand opcode
 4 CARD32 id

 EndOcclusionQueryNV
 2 4 rendering c ommand length
 2 ???? rendering c ommand opcode

 The remaining fivecommands are non-rendering co mmands. These
 commands are sent separately (i.e., not as part of a glXRender or
 glXRenderLarge request), using the glXVendorPri vateWithReply
 request:

 DeleteOcclusionQueriesNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 ids

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1544

 GenOcclusionQueriesNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 queries

 IsOcclusionQueryNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused
 1 1 reply

 GetOcclusionQueryivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

NVIDIA OpenGL Extension Specifications NV_occlusion_query

 1545

 GetOcclusionQueryuivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 ???? vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 CARD32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofCARD32 params

Errors

 The error INVALID_VALUE is generated if GenOccl usionQueriesNV is
 called where n is negative.

 The error INVALID_VALUE is generated if DeleteO cclusionQueriesNV is
 called where n is negative.

 The error INVALID_OPERATION is generated if Gen OcclusionQueriesNV or
 DeleteOcclusionQueriesNV is called when an occl usion query is active.

 The error INVALID_OPERATION is generated if Beg inOcclusionQueryNV is
 called when an occlusion query is already activ e.

 The error INVALID_OPERATION is generated if End OcclusionQueryNV is
 called when an occlusion query is not active.

 The error INVALID_OPERATION is generated if Get OcclusionQueryivNV or
 GetOcclusionQueryuivNV is called where id is no t the name of an
 occlusion query.

 The error INVALID_OPERATION is generated if Get OcclusionQueryivNV or
 GetOcclusionQueryuivNV is called where id is th e name of the
 currently active occlusion query.

 The error INVALID_ENUM is generated if GetOcclu sionQueryivNV or
 GetOcclusionQueryuivNV is called where pname is not either
 PIXEL_COUNT_NV or PIXEL_COUNT_AVAILABLE_NV.

NV_occlusion_query NVIDIA OpenGL Extension Specifications

 1546

 The error INVALID_OPERATION is generated if any of the commands
 defined in this extension is executed between t he execution of Begin
 and the corresponding execution of End.

New State

(table 6.18, p. 226)

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ ---------
OCCLUSION_TEST_HP B IsEnabled FALSE occlusion test enable 4.1.6A enable
OCCLUSION_TEST_RESULT_HP B GetBooleanv FALSE occlusion test result 4.1.6A -
- B GetBooleanv FALSE occlusion query active 4.1.6A -
CURRENT_OCCLUSION_QUERY_ID_NV Z+ GetIntegerv 0 occlusion query ID 4.1.6A -
- Z+ - 0 pixel counter 4.1.6A -

New Implementation Dependent State

(table 6.29, p. 237) Add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribu te
-------------------------- ---- ----------- ------------- ---------------- ------ ------- -------
PIXEL_COUNTER_BITS_NV Z+ GetIntegerv 24 Number of bits in 6.1.13 -
 pixel counters

Revision History

 none yet

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 1547

Name

 NV_packed_depth_stencil

Name Strings

 GL_NV_packed_depth_stencil

Notice

 Copyright NVIDIA Corporation, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: January 18, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_packed_d epth_stencil.txt#6 $

Number

 ??

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 SGIX_depth_texture affects the definition of th is extension.

Overview

 Many OpenGL implementations have chosen to inte rleave the depth and
 stencil buffers into one buffer, often with 24 bits of depth
 precision and 8 bits of stencil data. 32 bits is more than is needed
 for the depth buffer much of the time; a 24-bit depth buffer, on the
 other hand, requires that reads and writes of d epth data be unaligned
 with respect to power-of-two boundaries. On th e other hand, 8 bits
 of stencil data is more than sufficient for mos t applications, so it
 is only natural to pack the two buffers into a single buffer with
 both depth and stencil data. OpenGL never prov ides direct access to
 the buffers, so the OpenGL implementation can p rovide an interface to
 applications where it appears the one merged bu ffer is composed of
 two logical buffers.

 One disadvantage of this scheme is that OpenGL lacks any means by
 which this packed data can be handled efficient ly. For example, when
 an application reads from the 24-bit depth buff er, using the type
 GL_UNSIGNED_SHORT will lose 8 bits of data, whi le GL_UNSIGNED_INT has
 8 too many. Both require expensive format conv ersion operations. A
 24-bit format would be no more suitable, becaus e it would also suffer
 from the unaligned memory accesses that made th e standalone 24-bit
 depth buffer an unattractive proposition in the first place.

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 1548

 Many applications, such as parallel rendering a pplications, may also
 wish to draw to or read back from both the dept h and stencil buffers
 at the same time. Currently this requires two separate operations,
 reducing performance. Since the buffers are in terleaved, drawing to
 or reading from both should be no more expensiv e than using just one;
 in some cases, it may even be cheaper.

 This extension provides a new data format, GL_D EPTH_STENCIL_NV, that
 can be used with the glDrawPixels, glReadPixels , and glCopyPixels
 commands, as well as a packed data type, GL_UNS IGNED_INT_24_8_NV,
 that is meant to be used with GL_DEPTH_STENCIL_ NV. No other formats
 are supported with GL_DEPTH_STENCIL_NV. If SGI X_depth_texture is
 supported, GL_DEPTH_STENCIL_NV/GL_UNSIGNED_INT_ 24_8_NV data can also
 be used for textures; this provides a more effi cient way to supply
 data for a 24-bit depth texture.

 GL_DEPTH_STENCIL_NV data, when passed through t he pixel path,
 undergoes both depth and stencil operations. T he depth data is
 scaled and biased by the current GL_DEPTH_SCALE and GL_DEPTH_BIAS,
 while the stencil data is shifted and offset by the current
 GL_INDEX_SHIFT and GL_INDEX_OFFSET. The stenci l data is also put
 through the stencil-to-stencil pixel map.

 glDrawPixels of GL_DEPTH_STENCIL_NV data operat es similarly to that
 of GL_STENCIL_INDEX data, bypassing the OpenGL fragment pipeline
 entirely, unlike the treatment of GL_DEPTH_COMP ONENT data. The
 stencil and depth masks are applied, as are the pixel ownership and
 scissor tests, but all other operations are ski pped.

 glReadPixels of GL_DEPTH_STENCIL_NV data reads back a rectangle from
 both the depth and stencil buffers.

 glCopyPixels of GL_DEPTH_STENCIL_NV data copies a rectangle from
 both the depth and stencil buffers. Like glDra wPixels, it applies
 both the stencil and depth masks but skips the remainder of the
 OpenGL fragment pipeline.

 glTex[Sub]Image[1,2,3]D of GL_DEPTH_STENCIL_NV data loads depth data
 into a depth texture. glGetTexImage of GL_DEPT H_STENCIL_NV data can
 be used to retrieve depth data from a depth tex ture.

Issues

 * Depth data has a format of GL_DEPTH_COMPONE NT, and stencil data
 has a format of GL_STENCIL_INDEX. So shoul dn't the enumerant be
 called GL_DEPTH_COMPONENT_STENCIL_INDEX_NV?

 RESOLVED: No, this is fairly clumsy.

 * Should we support CopyPixels?

 RESOLVED: Yes. Right now copying stencil d ata means masking off
 just the stencil bits, while copying depth data has strange
 unintended consequences (fragment operation s) and is difficult to
 implement. It is easy and useful to add Co pyPixels support.

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 1549

 * Should we support textures?

 RESOLVED: Yes. 24-bit depth textures have no good format without
 this extension.

 * Should the depth/stencil format support oth er standard types,
 like GL_FLOAT or GL_UNSIGNED_INT?

 RESOLVED: No, this extension is designed to be minimalist.
 Supporting more types gains little because the new types will
 just require data format conversions. Our goal is to match the
 native format of the buffer, not add broad new classes of
 functionality.

 * Should the 24/8 format be supported for oth er formats, such as
 LUMINANCE_ALPHA? Should we support an 8/24 reversed format as
 well?

 RESOLVED: No and no, this adds implementati on burden and gains us
 little, if anything.

 * Does anything need to be written in the spe c on the topic of
 using GL_DEPTH_STENCIL_NV formats for glTex Image* or
 glGetTexImage?

 RESOLVED: No. Since the SGIX_depth_texture extension spec was
 never actually written (the additions to Se ction 3 are "XXX -
 lots" and a few brief notes on how it's int ended to work), it's
 impossible to write what would essentially be amendments to that
 spec.

 However, it is worthwhile to mention here t he intended behavior.
 When downloading into a depth component tex ture, the stencil
 indices are ignored, and when retrieving a depth component
 texture, the stencil indices obtained from the texture are
 undefined.

 * Should anything be said about performance?

 RESOLVED: No, not in the spec. However, co mmon sense should
 apply. Apps should probably check that GL_ DEPTH_BITS is 24 and
 that GL_STENCIL_BITS is 8 before using eith er the new DrawPixels
 or ReadPixels formats. CopyPixels is proba bly safe regardless of
 the size of either buffer. The 24/8 format should probably only
 be used with 24-bit depth textures.

New Procedures and Functions

 None.

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 1550

New Tokens

 Accepted by the <format> parameter of DrawPixel s, ReadPixels,
 TexImage1D, TexImage2D, TexImage3D, TexSubImage 1D, TexSubImage2D,
 TexSubImage3D, and GetTexImage, and by the <typ e> parameter of
 CopyPixels:

 DEPTH_STENCIL_NV 0x84F9

 Accepted by the <type> parameter of DrawPixels, ReadPixels,
 TexImage1D, TexImage2D, TexImage3D, TexSubImage 1D, TexSubImage2D,
 TexSubImage3D, and GetTexImage:

 UNSIGNED_INT_24_8_NV 0x84FA

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Update the first paragraph on page 90 to say:

 "... If the GL is in color index mode and <form at> is not one of
 COLOR_INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL_NV,
 then the error INVALID_OPERATION occurs. If <t ype> is BITMAP and
 <format> is not COLOR_INDEX or STENCIL_INDEX th en the error
 INVALID_ENUM occurs. If <format> is DEPTH_STEN CIL_NV and <type> is
 not UNSIGNED_INT_24_8_NV then the error INVALID _ENUM occurs. Some
 additional constraints on the combinations of < format> and <type>
 values that are accepted is discussed below."

 Add a row to Table 3.5 (page 91):

 type Parameter GL Type Spec ial
 --- ---

 UNSIGNED_INT_2_10_10_10_REV uint Yes
 UNSIGNED_INT_24_8_NV uint Yes

 Add a row to Table 3.6 (page 92):

 Format Name Element Meaning and Order Target Buffer
 --- ---------------------

 DEPTH_COMPONENT Depth Depth
 DEPTH_STENCIL_NV Depth and Stencil Index Depth and Stencil

 Add a row to Table 3.8 (page 94):

 type Parameter GL Type Compone nts Pixel Formats
 --- ---------------------

 UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA,BGRA
 UNSIGNED_INT_24_8_NV uint 2 DEPTH_STENCIL_NV

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 1551

 Update the last paragraph on page 93 to say:

 "Calling DrawPixels with a <type> of UNSIGNED_B YTE_3_3_2, ...,
 UNSIGNED_INT_2_10_10_10_REV, or UNSIGNED_INT_24 _8_NV is a special
 case in which all the components of each group are packed into a
 single unsigned byte, unsigned short, or unsign ed int, depending on
 the type."

 Add the following diagram to Table 3.11 (page 9 7):

 UNSIGNED_INT_24_8_NV

 31 30 29 28 27 26 ... 12 11 10 9 8 7 6 5 4 3 2 1 0
 +----------------------------------+--------- ------+
 | 1st Component | 2nd Comp onent |
 +----------------------------------+--------- ------+

 Add a row to Table 3.12 (page 98):

 Format | 1st 2nd 3rd 4 th
 -----------------+--------------------------- ----
 ... |
 BGRA | blue green red a lpha
 DEPTH_STENCIL_NV | depth stencil N/A N /A

 Add the following paragraph to the end of the s ection "Conversion to
 floating-point" (page 99):

 "For groups of components that contain both sta ndard components and
 index elements, such as DEPTH_STENCIL_NV, the i ndex elements are not
 converted."

 Update the last paragraph in the section "Conve rsion to Fragments"
 (page 100) to say:

 "... Groups arising from DrawPixels with a <for mat> of STENCIL_INDEX
 or DEPTH_STENCIL_NV are treated specially and a re described in
 section 4.3.1."

 Update the first paragraph of section 3.6.5 "Pi xel Transfer
 Operations" (pages 100-101) to say:

 "The GL defines five kinds of pixel groups:

 1. RGBA component: Each group comprises four color components:
 red, green, blue, and alpha.
 2. Depth component: Each group comprises a s ingle depth component.
 3. Color index: Each group comprises a singl e color index.
 4. Stencil index: Each group comprises a sin gle stencil index.
 5. Depth/stencil: Each group comprises a dep th component and a
 stencil index."

 Update the first paragraph in the section "Arit hmetic on Components"
 (page 101) to say:

 "This step applies only to RGBA component and d epth component groups
 and the depth components in depth/stencil group s. ..."

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 1552

 Update the first paragraph in the section "Arit hmetic on Indices"
 (page 101) to say:

 "This step applies only to color index and sten cil index groups and
 the stencil indices in depth/stencil groups. .. ."

 Update the first paragraph in the section "Sten cil Index Lookup"
 (page 102) to say:

 "This step applies only to stencil index groups and the stencil
 indices in depth/stencil groups. ..."

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 Replace section 4.3.1 "Writing to the Stencil B uffer" (page 156) with
 the following:

 "4.3.1 Writing to the Stencil Buffer or to the Depth and Stencil
 Buffers

 The operation of DrawPixels was described in se ction 3.6.4, except if
 the <format> argument was STENCIL_INDEX or DEPT H_STENCIL_NV. In this
 case, all operations described for DrawPixels t ake place, but window
 (x,y) coordinates, each with the corresponding stencil index or depth
 value and stencil index, are produced in lieu o f fragments. Each
 coordinate-data pair is sent directly to the pe r-fragment operations,
 bypassing the texture, fog, and antialiasing ap plication stages of
 rasterization. Each pair is then treated as a fragment for purposes
 of the pixel ownership and scissor tests; all o ther per-fragment
 operations are bypassed. Finally, each stencil index is written to
 its indicated location in the framebuffer, subj ect to the current
 setting of StencilMask, and if a depth componen t is present, if the
 setting of DepthMask is not FALSE, it is also w ritten to the
 framebuffer; the setting of DepthTest is ignore d.

 The error INVALID_OPERATION results if there is no stencil buffer, or
 if the <format> argument was DEPTH_STENCIL_NV, if there is no depth
 buffer."

 Add the following paragraph after the second pa ragraph of the
 section "Obtaining Pixels from the Framebuffer" (page 158):

 "If the <format> is DEPTH_STENCIL_NV, then valu es are taken from both
 the depth buffer and the stencil buffer. If th ere is no depth buffer
 or if there is no stencil buffer, the error INV ALID_OPERATION
 occurs. If the <type> parameter is not UNSIGNE D_INT_24_8_NV, the
 error INVALID_ENUM occurs."

 Update the third paragraph on page 159 to say:

 "If the GL is in RGBA mode, and <format> is one of RED, GREEN, BLUE,
 ALPHA, RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMI NANCE_ALPHA, then red,
 green, blue, and alpha values are obtained from the framebuffer

NVIDIA OpenGL Extension Specifications NV_packed_depth_stencil

 1553

 Update the first sentence of the section "Conve rsion of RGBA values"
 (page 159) to say:

 "This step applies only if the GL is in RGBA mo de, and then only if
 <format> is neither STENCIL_INDEX, DEPTH_COMPON ENT, nor
 DEPTH_STENCIL_NV."

 Update the section "Conversion of Depth values" (page 159) to say:

 "This step applies only if <format> is DEPTH_CO MPONENT or
 DEPTH_STENCIL_NV. Each element taken from the depth buffer is taken
 to be a fixed-point value in [0,1] with m bits, where m is the number
 of bits in the depth buffer (see section 2.10.1)."

 Add a row to Table 4.6 (page 160):

 type Parameter Index Mask

 INT 2^31-1
 UNSIGNED_INT_24_8_NV 2^8-1

 Add the following paragraph to the end of the s ection "Final
 Conversion" (page 160):

 "For a depth/stencil pair, first the depth comp onent is clamped to
 [0,1]. Then the appropriate conversion formula from Table 4.7 is
 applied to the depth component, while the index is masked by the
 value given in Table 4.6 or converted to a GL f loat data type if the
 <type> is FLOAT."

 Add a row to Table 4.7 (page 161):

 type Parameter GL Type Compon ent Conversion ...
 --- ---------------------

 UNSIGNED_INT_2_10_10_10_REV uint c = (2 ^N - 1)f
 UNSIGNED_INT_24_8_NV uint c = (2 ^N - 1)f (depth only)

 Update the second and third paragraphs of secti on 4.3.3 (page 162) to
 say:

 "<type> is a symbolic constant that must be one of COLOR, STENCIL,
 DEPTH, or DEPTH_STENCIL_NV, indicating that the values to be
 transfered are colors, stencil values, or depth values, respectively.
 The first four arguments have the same interpre tation as the
 corresponding arguments to ReadPixels.

 Values are obtained from the framebuffer, conve rted (if appropriate),
 then subjected to the pixel transfer operations described in section
 3.6.5, just as if ReadPixels were called with t he corresponding
 arguments. If the <type> is STENCIL, DEPTH, or DEPTH_STENCIL_NV,
 then it is as if the <format> for ReadPixels we re STENCIL_INDEX,
 DEPTH_COMPONENT, or DEPTH_STENCIL_NV, respectiv ely. If the <type> is
 COLOR, then if the GL is in RGBA mode, it is as if the <format> were
 RGBA, while if the GL is in color index mode, i t is as if the
 <format> were COLOR_INDEX."

NV_packed_depth_stencil NVIDIA OpenGL Extension Specifications

 1554

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

GLX Protocol

 None.

Errors

 The error INVALID_ENUM is generated if DrawPixe ls or ReadPixels is
 called where format is DEPTH_STENCIL_NV and typ e is not
 UNSIGNED_INT_24_8_NV.

 The error INVALID_OPERATION is generated if Dra wPixels or ReadPixels
 is called where type is UNSIGNED_INT_24_8_NV an d format is not
 DEPTH_STENCIL_NV.

 The error INVALID_OPERATION is generated if Dra wPixels or ReadPixels
 is called where format is DEPTH_STENCIL_NV and there is not both a
 depth buffer and a stencil buffer.

 The error INVALID_OPERATION is generated if Cop yPixels is called
 where type is DEPTH_STENCIL_NV and there is not both a depth buffer
 and a stencil buffer.

New State

 None.

Revision History

 None yet

NVIDIA OpenGL Extension Specifications NV_parameter_buffer_object

 1555

Name

 NV_parameter_buffer_object

Name Strings

 None (impled by NV_GPU_program4)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)
 Eric Werness, NVIDIA Corporation (ewerness 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 04/18/2007
 NVIDIA Revision: 7

Number

 339

Dependencies

 OpenGL 2.0 is required.

 NV_gpu_program4 is required.

 This extension is written against the OpenGL 2. 0 specification.

 NV_transform_feedback affects this extension.

Overview

 This extension, in conjunction with NV_gpu_prog ram4, provides a new type
 of program parameter than can be used as a cons tant during vertex,
 fragment, or geometry program execution. Each program target has a set of
 parameter buffer binding points to which buffer objects can be attached.

 A vertex, fragment, or geometry program can rea d data from the attached
 buffer objects using a binding of the form "pro gram.buffer[a][b]". This
 binding reads data from the buffer object attac hed to binding point <a>.
 The buffer object attached is treated either as an array of 32-bit words
 or an array of four-component vectors, and the binding above reads the
 array element numbered .

 The use of buffer objects allows applications t o change large blocks of
 program parameters at once, simply by binding a new buffer object. It
 also provides a number of new ways to load para meter values, including
 readback from the frame buffer (EXT_pixel_buffe r_object), transform
 feedback (NV_transform_feedback), buffer object loading functions such as
 MapBuffer and BufferData, as well as dedicated parameter buffer update
 functions provided by this extension.

NV_parameter_buffer_object NVIDIA OpenGL Extension Specifications

 1556

New Procedures and Functions

 void BindBufferRangeNV(enum target, uint index, uint buffer,
 intptr offset, sizeiptr size);
 void BindBufferOffsetNV(enum target, uint index , uint buffer,
 intptr offset);
 void BindBufferBaseNV(enum target, uint index, uint buffer);
 void ProgramBufferParametersfvNV(enum target, u int buffer, uint index,
 sizei count, c onst float *params);
 void ProgramBufferParametersIivNV(enum target, uint buffer, uint index,
 sizei count, const int *params);
 void ProgramBufferParametersIuivNV(enum target, uint buffer, uint index,
 sizei count, const uint *params);
 void GetIntegerIndexedvEXT(enum value, uint ind ex, boolean *data);

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_NV 0x8DA0
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV 0x8DA1

 Accepted by the <target> parameter of ProgramBu fferParametersfvNV,
 ProgramBufferParametersIivNV, and ProgramBuffer ParametersIuivNV,
 BindBufferRangeNV, BindBufferOffsetNV, BindBuff erBaseNV, and BindBuffer
 and the <value> parameter of GetIntegerIndexedv EXT:

 VERTEX_PROGRAM_PARAMETER_BUFFER_NV 0x8DA2
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV 0x8DA3
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV 0x8DA4

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify "Section 2.14.1" of the ARB_vertex_progr am specification.

 (Add after the discussion of environment parame ters.)

 Additionally, each program target has an array of parameter buffer binding
 points, to which a buffer object (Section 2.9) can be bound. The number
 of available binding points is given by the imp lementation-dependent
 constant MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_ NV. These binding points
 are shared by all programs of a given type. Al l bindings are initialized
 to the name zero, which indicates that no valid binding is present.

 A program parameter binding is associated with a buffer object using
 BindBufferOffset with a <target> of VERTEX_PROG RAM_PARAMETER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV and <index> corresponding to the
 number of the desired binding point. The error INVALID_VALUE is generated
 if the value of <index> is greater than or equa l to
 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS.

NVIDIA OpenGL Extension Specifications NV_parameter_buffer_object

 1557

 Buffer objects are made to be sources of progra m parameter buffers by
 calling one of

 void BindBufferRangeNV(enum target, uint inde x, uint buffer,
 intptr offset, sizeipt r size)
 void BindBufferOffsetNV(enum target, uint ind ex, uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index , uint buffer)

 where <target> is set to VERTEX_PROGRAM_PARAMET ER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV. Any of t he three BindBuffer*
 commands perform the equivalent of BindBuffer(t arget, buffer). <buffer>
 specifies which buffer object to bind to the ta rget at index number
 <index>. <index> must be less than the value o f
 MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS_NV. <off set> specifies a starting
 offset into the buffer object <buffer>. <size> specifies the number of
 elements in the bound portion of the buffer. B oth <offset> and <size> are
 in basic machine units. The error INVALID_VALUE is generated if the value
 of <size> is less than or equal to zero. The e rror INVALID_VALUE is
 generated if <offset> or <size> are not word-al igned. For program
 parameter buffers, the error INVALID_VALUE is g enerated if <offset> is
 non-zero.

 BindBufferBaseNV is equivalent to calling BindB ufferOffsetNV with an
 <offset> of 0. BindBufferOffsetNV is the equiva lent of calling
 BindBufferRangeNV with <size> = sizeof(buffer) - <offset> and rounding
 <size> down so that it is word-aligned.

 All program parameter buffer parameters are eit her single-component 32-bit
 words or four-component vectors made up of 32-b it words. The program
 parameter buffers may hold signed integer, unsi gned integer, or
 floating-point data. There is a limit on the m aximum number of words of a
 buffer object that can be accessed using any si ngle parameter buffer
 binding point, given by the implementation-depe ndent constant
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV. Buffer o bjects larger than this
 size may be used, but the results of accessing portions of the buffer
 object beyond the limit are undefined.

 The commands

 void ProgramBufferParametersfvNV(enum target, uint buffer, uint index,
 sizei count, const float *params);
 void ProgramBufferParametersIivNV(enum target , uint buffer, uint index,
 sizei count , const int *params);
 void ProgramBufferParametersIuivNV(enum targe t, uint buffer, uint index,
 sizei count , const uint *params);

 update words <index> through <index>+<count>-1 in the buffer object bound
 to the binding point numbered <buffer> for the program target <target>.
 The new data is referenced by <params>. The er ror INVALID_OPERATION is
 generated if no buffer object is bound to the b inding point numbered
 <buffer>. The error INVALID_VALUE is generated if <index>+<count> is
 greater than either the number of words in the buffer object or the
 maximum parameter buffer size MAX_PROGRAM_PARAM ETER_BUFFER_SIZE_NV. These
 functions perform an operation functionally equ ivalent to calling
 BufferSubData, but possibly with higher perform ance.

NV_parameter_buffer_object NVIDIA OpenGL Extension Specifications

 1558

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries) p. 244 to
 read as follows:

 ...<data> is a pointer to a scalar or array of the indicated type in which
 to place the returned data.

 void GetIntegerIndexedvEXT(enum target, uin t index,
 boolean *data);

 are used to query indexed state. <target> is t he name of the indexed
 state and <index> is the index of the particula r element being queried.
 <data> is a pointer to a scalar or array of the indicated type in which to
 place the returned data.

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 TBD

Dependencies on NV_transform_feedback

 Both NV_transform_feedback and this extension d efine the behavior of
 BindBuffer{Range, Offset, Base}NV. Both definit ions should be functionally
 identical.

Errors

 The error INVALID_VALUE is generated by BindBuf ferRangeNV,
 BindBufferOffsetNV, or BindBufferBaseNV if <tar get> is
 VERTEX_PROGRAM_PARAMETER_BUFFER_NV, GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV,
 or FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV, and <i ndex> is greater than or
 equal to MAX_PROGRAM_PARAMETER_BUFFER_BINDINGS.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <offset> or <size> is not word-aligned.

NVIDIA OpenGL Extension Specifications NV_parameter_buffer_object

 1559

 The error INVALID_VALUE is generated by BindBuf ferRangeNV if <size> is
 less than zero.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <target> is VERTEX_PROGRA M_PARAMETER_BUFFER_NV,
 GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV, or
 FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV, and <offs et> is non-zero.

 The error INVALID_OPERATION is generated by Pro gramBufferParametersfvNV,
 ProgramBufferParametersIivNV, or ProgramBufferP arametersIuivNV if no
 buffer object is bound to the binding point num bered <buffer> for program
 target <target>.

 The error INVALID_VALUE is generated by Program BufferParametersfvNV,
 ProgramBufferParametersIivNV, or ProgramBufferP arametersIuivNV if the sum
 of <index> and <count> is greater than either t he number of words in the
 buffer object boudn to <buffer> or the maximum parameter buffer size
 MAX_PROGRAM_PARAMETER_BUFFER_SIZE_NV.

New State

 (Modify ARB_vertex_program, Table X.6 -- Progra m State)

 Initial
 Get Value Type Get Command Value Description Sec. Attribute
 --------- ------- ----------- ------- ------------------------ ------ ---------
 VERTEX_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active vertex program 2.14.1 -
 BUFFER_NV buffer object binding
 VERTEX_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT vertex program use
 GEOMETRY_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active geometry program 2.14.1 -
 BUFFER_NV buffer object binding
 GEOMETRY_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT geometry program use
 FRAGMENT_PROGRAM_PARAMETER_ Z+ GetIntegerv 0 Active fragment program 2.14.1 -
 BUFFER_NV buffer object binding
 FRAGMENT_PROGRAM_PARAMETER_ nxZ+ GetInteger- 0 Buffer objects bound for 2.14.1 -
 BUFFER_NV IndexedvEXT fragment program use

New Implementation Dependent State

 Minimum
 Get Value Type Get Comman d Value Description Sec. Attribute
 --------- ------- ---------- - ------- ---------------- ------ ---------
 MAX_PROGRAM_PARAMETER_ Z GetProgram - 8 size of program 2.14.1 -
 BUFFER_BINDINGS_NV ivARB parameter binding
 tables
 MAX_PROGRAM_PARAMETER_ Z GetProgram - 4096 maximum usable 2.14.1 -
 BUFFER_SIZE_NV ivARB size of program
 parameter buffers

NV_parameter_buffer_object NVIDIA OpenGL Extension Specifications

 1560

Examples

 !!NVfp4.0
 # Legal
 BUFFER bones[] = { program.buffer[0] };
 ALIAS funBone = bones[69];
 MOV t, bones[1];
 # Illegal
 ALIAS numLights = program.buffer[5][6];
 MOV t, program.buffer[3][x];
 END

Issues

 (1) PBO is already taken as an acronym? What d o we call this?

 RESOLVED: PaBO.

 (2) How should the ability to simultaneously ac cess multiple parameter
 buffers be exposed?

 RESOLVED: In the program text (see NV_gpu_pro gram4), the buffers are
 referred to using a buffer binding statement which is dereferenced in
 the instructions. In the rest of the APIs, a n array of internal binding
 points is provided, which are dereferenced us ing the index parameter of
 BindBufferBase and associated functions.

 (3) Should program parameter buffer bindings be provided per-target (i.e.,
 environment parameters), per-program (i.e., local parameters), or some
 combination of the two?

 RESOLVED: Per-target. That fits most naturall y with the ARB program
 model, similar to textures. Having both per-p rogram and per-target add
 complexity with no benefit.

 (4) Should references to the parameter buffer b e scalar or vector?

 RESOLVED: Scalar. Having vector is more consi stent with the legacy APIs,
 but is more difficult to build the arbitrary data structures that are
 interesting to store in a parameter buffer. A future extension can
 define an alternate keyword in the program te xt to specify accesses of a
 different size.

 (5) Should parameter buffers be editable using the ProgramEnvParameter
 API?

 RESOLVED: No. There is a new parallel API for the bindable buffers,
 including the ability to update multiple para meters at a time. These are
 more convenient than having to rebind for Buf ferData and potentially
 faster.

 (6) Should parameter buffers be editable outsid e the ProgramBufferParameters
 API?

 RESOLVED: Yes. The use of buffer objects al lows the buffers to be
 naturally manipulated using normal buffer obj ect mechanisms. That

NVIDIA OpenGL Extension Specifications NV_parameter_buffer_object

 1561

 includes CPU mapping, loading via BufferData or BufferSubData, and even
 reading data back using the ARB_pixel_buffer_ object extension.

 (7) Will buffer object updates from different s ources cause potential
 synchronization problems? If so, how will they be resolved.

 RESOLVED: If reads and write occur in the cou rse of the same call
 (e.g. reading from a buffer using parameter b uffer binding while writing
 to it using transform feedback. All other cas es are allowed and occur in
 command order. Any synchronization is handled by the GL.

 (8) Is there an implementation-dependent limit to the size of program
 parameter buffers?

 RESOLVED: Yes, limited-size buffers are provi ded to reduce the
 complexity of the GPU design that supports pr ogram parameter buffer
 access and updates. However, the minimum lim it is 16K scalar
 parameters, or 64KB. A larger buffer object can be provided, but only
 the first 64KB is accessible. The limit is qu eryable with
 GetProgramivARB with <pname> MAX_PROGRAM_PARA METER_BUFFER_SIZE_NV.

 (9) With scalar buffers, which parameter settin g routines do we need?

 UNRESOLVED: A function to set N scalars is ve ry important. It might be
 nice to have convenience functions that take 1 or 4 parameters directly.

 (10) Do we need GetProgramBufferParameter funct ions?

 UNRESOLVED: Probably not - they aren't perf c ritical and offer no
 functionality beyond getting the buffer objec t data any of the standard
 ways.

 (11) What happens if a value written using Prog ramBufferParametersfNV is
 read as an integer or the other way around ?

 RESOLVED: Undefined - likely just a raw bit c ast between whatever
 internal representations are used by the GL.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- --------------------
 7 04/18/07 pbrown Fixed state table to include the buffer
 object binding array for each program type.

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1562

Name

 NV_pixel_data_range

Name Strings

 GL_NV_pixel_data_range

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.0)

Version

 NVIDIA Date: November 7, 2002 (version 1.0)
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_pixel_da ta_range.txt#5 $

Number

 284

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

 If this extension is implemented, the WGL or GL X memory allocator
 interface specified in NV_vertex_array_range mu st also be
 implemented. Please refer to the NV_vertex_arr ay_range specification
 for further information on this interface.

Overview

 The vertex array range extension is intended to improve the
 efficiency of OpenGL vertex arrays. OpenGL ver tex arrays' coherency
 model and ability to access memory from arbitra ry locations in memory
 prevented implementations from using DMA (Direc t Memory Access)
 operations.

 Many image-intensive applications, such as thos e that use dynamically
 generated textures, face similar problems. The se applications would
 like to be able to sustain throughputs of hundr eds of millions of
 pixels per second through DrawPixels and hundre ds of millions of
 texels per second through TexSubImage.

 However, the same restrictions that limited ver tex throughput also
 limit pixel throughput.

 By the time that any pixel operation that reads data from user memory
 returns, OpenGL requires that it must be safe f or the application to

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1563

 start using that memory for a different purpose . This coherency
 model prevents asynchronous DMA transfers direc tly out of the user's
 buffer.

 There are also no restrictions on the pointer p rovided to pixel
 operations or on the size of the data. To faci litate DMA
 implementations, the driver needs to know in ad vance what region of
 the address space to lock down.

 Vertex arrays faced both of these restrictions already, but pixel
 operations have one additional complicating fac tor -- they are
 bidirectional. Vertex array data is always bei ng transfered from the
 application to the driver and the HW, whereas p ixel operations
 sometimes transfer data to the application from the driver and HW.
 Note that the types of memory that are suitable for DMA for reading
 and writing purposes are often different. For example, on many PC
 platforms, DMA pulling is best accomplished wit h write-combined
 (uncached) AGP memory, while pushing data shoul d use cached memory so
 that the application can read the data efficien tly once it has been
 read back over the AGP bus.

 This extension defines an API where an applicat ion can specify two
 pixel data ranges, which are analogous to verte x array ranges, except
 that one is for operations where the applicatio n is reading data
 (e.g. glReadPixels) and one is for operations w here the application
 is writing data (e.g. glDrawPixels, glTexSubIma ge2D, etc.). Each
 pixel data range has a pointer to its start and a length in bytes.

 When the pixel data range is enabled, and if th e pointer specified
 as the argument to a pixel operation is inside the corresponding
 pixel data range, the implementation may choose to asynchronously
 pull data from the pixel data range or push dat a to the pixel data
 range. Data pulled from outside the pixel data range is undefined,
 while pushing data to outside the pixel data ra nge produces undefined
 results.

 The application may synchronize with the hardwa re in one of two ways:
 by flushing the pixel data range (or causing an implicit flush) or by
 using the NV_fence extension to insert fences i n the command stream.

Issues

 * The vertex array range extension required t hat all active vertex
 arrays must be located inside the vertex ar ray range. Should
 this extension be equally strict?

 RESOLVED: No, because a user may want to us e the pixel data range
 for one type of operation (say, texture dow nloads) but still be
 able to use standard non-PDR pixel operatio ns for everything
 else. Requiring that apps disable PDR ever y time such an
 operation occurs would be burdensome and ma ke it difficult to
 integrate this extension into a larger app with minimal changes.
 So, for each pixel operation, we will look at the pointer
 provided by the application. If it's insid e the PDR, the PDR
 rules apply, and if it's not inside the PDR , it's a standard GL
 pixel operation, even if some of the data i s actually inside the
 PDR.

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1564

 * Reads and writes may require different type s of memory. How do
 we handle this?

 RESOLVED: The allocator interface already p rovides the ability to
 specify different read and write frequencie s. A buffer for a
 write PDR should probably be allocated with a high write
 frequency and low read frequency, while a r ead PDR's buffer
 should have a low write and high read frequ ency.

 Having two PDRs is essential because a sing le application may
 want to perform both asynchronous reads and writes
 simultaneously.

 * What happens if a PDR pixel operation pulls data from a location
 outside the PDR?

 RESOLVED: The data pulled is undefined, and program termination
 may result.

 * What happens if a PDR pixel operation pushe s data to a location
 outside the PDR?

 RESOLVED: The contents of that memory locat ion become undefined,
 and program termination may result.

 * What happens if the hardware can't support the operation?

 RESOLVED: The operation may be slow, becaus e we may need to, for
 example, read the pixel data out of uncache d memory with the CPU,
 but it should still work. So this should n ever be a problem; in
 fact, it means that a basic implementation that accelerates only,
 say, one operation is quite trivial.

 * Should there be any limitations to what ope rations should be
 supported?

 RESOLVED: No, in theory any pixel operation that accesses a
 user's buffer can work with PDR. This incl udes Bitmap,
 PolygonStipple, GetTexImage, ConvolutionFil ter2D, etc. Many are
 unlikely to be accelerated, but there is no reason to place
 arbitrary restrictions. A list of possibly supported operations
 is provided for OpenGL 1.2.1 with ARB_imagi ng support and for all
 the extensions currently supported by NVIDI A. Developers should
 carefully read the Implementation Details p rovided by their
 vendor before using the extension.

 * Should PixelMap and GetPixelMap be supporte d?

 RESOLVED: Yes. They're not really pixel pa th operations, but,
 again, there is no good reason to omit oper ations, and they _are_
 operations that pass around big chunks of p ixel-related data. If
 we support PolygonStipple, surely we should support this.

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1565

 * Can the PDRs and the VAR overlap and/or be the same buffer?

 RESOLVED: Yes. In fact, it is expected tha t one of the preferred
 modes of usage for this extension will be t o use the same AGP
 buffer for both the write PDR and the VAR, so it can be used for
 both dynamic texturing and dynamic geometry .

 * Can video memory buffers be used?

 RESOLVED: Yes, assuming the implementation supports using them
 for PDR. On systems with AGP Fast Writes, this may be
 interesting in some cases. Another possibl e use for this is to
 treat a video memory buffer as an offscreen surface, where
 DrawPixels can be thought of as a blit from offscreen memory to
 a GL surface, and ReadPixels can be thought of as a blit from a
 GL surface to offscreen memory. This techn ique should be used
 with caution, because there are other alter natives, such as
 pbuffers, aux buffers, and even textures.

 * Do we want to support more than one read an d one write PDR?

 RESOLVED: No, but I could imagine uses for it. For example, an
 app could use two system memory buffers (on e read, one write PDR)
 and a single video memory buffer (both read and write). Do we
 need a scheme where an unlimited number of PDR buffers can be
 specified? Ugh. I hope not. I can't thin k of a good reason to
 use more than 3 buffers, and even that is s tretching it.

 * Do we want a separate enable for both the r ead and write PDR?

 RESOLVED: Yes. In theory, they are complet ely independent, and
 we should treat them as such.

 * Is there an equivalent to the VAR validity check?

 RESOLVED: No. When a vertex array call occ urs, all the vertex
 array state is already set. We can know in advance whether all
 the pointers, strides, etc. are set up in a satisfactory way.
 However, for a pixel operation, much of the state is provided on
 the same function call that performs the op eration. For example,
 the pixel format of the data may need to ma tch that of the
 framebuffer. We can't know this without lo oking at the format
 and type arguments.

 An alternative might be some sort of "proxy " mechanism for pixel
 operations, but this seems to be very compl icated.

 * Do we want a more generalized API? What st ops us from needing a
 DMA extension for every single conceivable use in the future?

 RESOLVED: No, this is good enough. Since n ew extensions will
 probably require new semantics anyhow, we'l l just live with that.
 Maybe if the ARB wants to create a more gen eric "DMA" extension,
 these issues can be revisited.

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1566

 * How do applications synchronize with the ha rdware?

 RESOLVED: A new command, FlushPixelDataRang eNV, is provided, that
 is analogous to FlushVertexArrayRangeNV. A pplications can also
 use the Finish command. The NV_fence exten sion is best for
 applications that need fine-grained synchro nization.

 * Should enabling or disabling a PDR induce a n implicit PDR flush?

 RESOLVED: No. In the VAR extension, enabli ng and disabling the
 VAR does induce a VAR flush, but this has p roven to be more
 problematic than helpful, because it makes it much more difficult
 to switch between VAR and non-VAR rendering ; the VAR2 extension
 lifts this restriction, and there is no rea son to get this wrong
 a second time.

 The PDR extension does not suffer from the problem of enabling
 and disabling frequently, because non-PDR o perations are
 permitted simply by providing a pointer out side of the PDR, but
 there is no clear reason why the enable or disable should cause
 a quite unnecessary PDR flush.

 * Should this state push/pop?

 RESOLVED: Yes, but via a Push/PopClientAttr ib and the
 GL_CLIENT_PIXEL_STORE_BIT bit. Although th is is heavyweight
 state, VAR also allowed push/pop. It does fit nicely into an
 existing category, too.

 * Should making another context current cause a PDR flush?

 RESOLVED: No. There's no fundamental reaso n it should. Note
 that apps should be careful to not free the ir memory until the
 hardware is not using it... note also that this decision is
 inconsistent with VAR, which did guarantee a flush here.

 * Is the read PDR guaranteed to give you eith er old or new values,
 or is it truly undefined?

 RESOLVED: Undefined. This may ease impleme ntation constraints
 slightly. Apps must not rely at all on the contents of the
 region where the readback is occuring until it is known to be
 finished.

 An example of how an implementation might c onceivably require
 this is as follows. Suppose that a piece o f hardware, for some
 reason, can only write full 32-byte chunks of data. Any bytes
 that were supposed to be unwritten are in f act trashed by the
 hardware, filled with garbage. By careful fixups (read the
 contents before the operation, restore when done), the driver may
 be able to hide this fact, but a requiremen t that either new or
 old data must show up would be violated.

 Or, more trivially, you might implement cer tain pixel operations
 as an in-place postprocess on the returned data.

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1567

 It is not anticipated that NVIDIA implement ations will need this
 flexibility, but it is nevertheless provide d.

 * How should an application allocate its PDR memory?

 The app should use wglAllocateMemoryNV, eve n for a read PDR in
 system memory. Using malloc may result in suboptimal
 performance, because the driver will not be able to choose an
 optimal memory type. For ReadPixels to sys tem memory, you might
 set a read frequency of 1.0, a write freque ncy of 0.0, and a
 priority of 1.0. The driver might allocate PCI memory, or
 physically contiguous PCI memory, or cachab le AGP memory, all
 depending on the performance characteristic s of the device.
 While memory from malloc will work, it does not allow the driver
 to make these decisions, and it will certai nly never give you AGP
 memory.

 Write PDR memory for purposes of streaming textures, etc. works
 exactly the same as VAR memory for streamin g vertices. You can,
 and in fact are encouraged to, use the same circular buffer for
 both vertices and textures.

 If you have different needs (not just strea ming textures or
 asynchronous readbacks), you may want your pixel data in video
 memory.

New Procedures and Functions

 void PixelDataRangeNV(enum target, sizei length , void *pointer)
 void FlushPixelDataRangeNV(enum target)

New Tokens

 Accepted by the <target> parameter of PixelData RangeNV and
 FlushPixelDataRangeNV, and by the <cap> paramet er of
 EnableClientState, DisableClientState, and IsEn abled:

 WRITE_PIXEL_DATA_RANGE_NV 0x8878
 READ_PIXEL_DATA_RANGE_NV 0x8879

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 WRITE_PIXEL_DATA_RANGE_LENGTH_NV 0x887A
 READ_PIXEL_DATA_RANGE_LENGTH_NV 0x887B

 Accepted by the <pname> parameter of GetPointer v:

 WRITE_PIXEL_DATA_RANGE_POINTER_NV 0x887C
 READ_PIXEL_DATA_RANGE_POINTER_NV 0x887D

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None.

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1568

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Add new section to Section 3.6, "Pixel Rectangl es", on page 113:

 "3.6.7 Write Pixel Data Range Operation

 Applications can enhance the performance of Dra wPixels and other
 commands that transfer large amounts of pixel d ata by using a pixel
 data range. The command

 void PixelDataRangeNV(enum target, sizei len gth, void *pointer)

 specifies one of the current pixel data ranges. When the write pixel
 data range is enabled and valid, pixel data tra nsfers from within
 the pixel data range are potentially faster. T he pixel data range is
 a contiguous region of (virtual) address space for placing pixel
 data. The "pointer" parameter is a pointer to the base of the pixel
 data range. The "length" pointer is the length of the pixel data
 range in basic machine units (typically unsigne d bytes). For the
 write pixel data range, "target" must be WRITE_ PIXEL_DATA_RANGE_NV.

 The pixel data range address space region exten ds from "pointer"
 to "pointer + length - 1" inclusive.

 There is some system burden associated with est ablishing a pixel data
 range (typically, the memory range must be lock ed down). If either
 the pixel data range pointer or size is set to zero, the previously
 established pixel data range is released (typic ally, unlocking the
 memory).

 The pixel data range may not be established for operating system
 dependent reasons, and therefore, not valid. R easons that a pixel
 data range cannot be established include spanni ng different memory
 types, the memory could not be locked down, ali gnment restrictions
 are not met, etc.

 The write pixel data range is enabled or disabl ed by calling
 EnableClientState or DisableClientState with th e symbolic constant
 WRITE_PIXEL_DATA_RANGE_NV.

 The write pixel data range is valid when the fo llowing conditions are
 met:

 o WRITE_PIXEL_DATA_RANGE_NV is enabled.

 o PixelDataRangeNV has been called with a no n-null pointer and
 non-zero size, for target WRITE_PIXEL_DATA _RANGE_NV.

 o The write pixel data range has been establ ished.

 o An implementation-dependent validity check based on the
 pointer alignment, size, and underlying me mory type of the
 write pixel data range region of memory.

 Otherwise, the write pixel data range is not va lid.

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1569

 The commands, such as DrawPixels, that may be m ade faster by the
 write pixel data range are listed in the Append ix.

 When the write pixel data range is valid, an at tempt will be made to
 accelerate these commands if and only if the da ta pointer argument to
 the command lies within the write pixel data ra nge. No attempt will
 be made to accelerate commands whose base point er is outside this
 range. Accessing data outside the write pixel data range when the
 base pointer lies within the range and the rang e is valid will
 produce undefined results and may cause program termination.

 The standard OpenGL pixel data coherency model requires that pixel
 data be extracted from the user's buffer immedi ately, before the
 pixel command returns. When the write pixel da ta range is valid,
 this model is relaxed so that changes made to p ixel data until the
 next "write pixel data range flush" may affect pixel commands in non-
 sequential ways. That is, a call to a pixel co mmand that precedes
 a change to pixel data (without an intervening "write pixel data
 range flush") may access the changed data; thou gh a call to a pixel
 command following a change to pixel data must a lways access the
 changed data, and never the original data.

 A 'write pixel data range flush' occurs when on e of the following
 operations occur:

 o Finish returns.

 o FlushPixelDataRangeNV (with target WRITE_ PIXEL_DATA_RANGE_NV)
 returns.

 o PixelDataRangeNV (with target WRITE_PIXEL _DATA_RANGE_NV)
 returns.

 The client state required to implement the writ e pixel data range
 consists of an enable bit, a memory pointer, an d an integer size.

 If the memory mapping of pages within the pixel data range changes,
 using the pixel data range has undefined effect s. To ensure that the
 pixel data range reflects the address space's c urrent state, the
 application is responsible for calling PixelDat aRange again after any
 memory mapping changes within the pixel data ra nge."

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Add new section to Section 4.3, "Pixel Draw/Rea d State", on page 180:

 "4.3.5 Read Pixel Data Range Operation

 The read pixel data range is similar to the wri te pixel data range
 (see section 3.6.7), but is specified with Pixe lDataRangeNV with a
 target READ_PIXEL_DATA_RANGE_NV. It is exactly analogous to the
 write pixel data range, but applies to commands where OpenGL returns
 pixel data to the caller, such as ReadPixels. The list of commands
 to which the read pixel data range applies can be found in the
 Appendix.

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1570

 Validity checks and flushes of the read pixel d ata range behave in a
 manner exactly analogous to those of the write pixel data range,
 though any implementation-dependent checks may differ between the two
 types of pixel data range.

 The standard OpenGL pixel data coherency model requires that pixel
 data be written into the user's buffer immediat ely, before the
 pixel command returns. When the read pixel dat a range is valid,
 this model is relaxed so that this data may not necessarily be
 available until the next "read pixel data range flush". Until such
 point in time, an attempt to read the buffer re turns undefined
 values.

 If both the read and write pixel data ranges ar e valid and overlap,
 then all operations involving both in the same thread are
 automatically synchronized. That is, the write pixel data range
 operation will automatically wait for any pendi ng read pixel data
 range results to become available before attemp ting to retrieve them.
 However, if the operations are performed from d ifferent threads, the
 user is responsible for all such synchronizatio n.

 Read pixel data range operations are also synch ronized with vertex
 array range operations in the same way.

 The client state required to implement the read pixel data range
 consists of an enable bit, a memory pointer, an d an integer size."

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 Add the following to the end of Section 5.4 "Di splay Lists" (page
 179):

 "PixelDataRangeNV and FlushPixelDataRangeNV are not complied into
 display lists but are executed immediately.

 If a display list is compiled while WRITE_PIXEL _DATA_RANGE_NV is
 enabled, all commands affected by that enable a re accumulated into a
 display list as if WRITE_PIXEL_DATA_RANGE_NV is disabled.

 The state of the read pixel data range does not affect display list
 compilation, because those commands that might be accelerated by a
 read pixel data range are commands that are exe cuted immediately
 rather than being compiled into a display list (ReadPixels and
 GetTexImage, for example)."

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

Additions to the GLX Specification

 "OpenGL implementations using GLX indirect rend ering should fail to
 set up the pixel data range and will not accele rate any pixel
 operations using it. Additionally, glXAllocate MemoryNV always fails
 to allocate memory (returns NULL) when used wit h an indirect
 rendering context."

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1571

GLX Protocol

 None

Errors

 INVALID_OPERATION is generated if PixelDataRang eNV or
 FlushPixelDataRangeNV is called between the exe cution of Begin and
 the corresponding execution of End.

 INVALID_ENUM is generated if PixelDataRangeNV o r
 FlushPixelDataRangeNV is called when target is not
 WRITE_PIXEL_DATA_RANGE_NV or READ_PIXEL_DATA_RA NGE_NV.

 INVALID_VALUE is generated if PixelDataRangeNV is called when length
 is negative.

New State

 Initial
Get Value Get Command Type Value Attrib
--------- ----------- ---- ------- ------
WRITE_PIXEL_DATA_RANGE_NV IsEnabled B False pixel-store
READ_PIXEL_DATA_RANGE_NV IsEnabled B False pixel-store
WRITE_PIXEL_DATA_RANGE_POINTER_NV GetPointerv Z+ 0 pixel-store
READ_PIXEL_DATA_RANGE_POINTER_NV GetPointerv Z+ 0 pixel-store
WRITE_PIXEL_DATA_RANGE_LENGTH_NV GetIntegerv Z+ 0 pixel-store
READ_PIXEL_DATA_RANGE_LENGTH_NV GetIntegerv Z+ 0 pixel-store

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1572

Appendix: Operations Supported

 In unextended OpenGL 1.3 with ARB_imaging suppo rt, the following
 commands may take advantage of the write PDR:

 glBitmap
 glColorSubTable
 glColorTable
 glCompressedTexImage1D
 glCompressedTexImage2D
 glCompressedTexImage3D
 glCompressedTexSubImage1D
 glCompressedTexSubImage2D
 glCompressedTexSubImage3D
 glConvolutionFilter1D
 glConvolutionFilter2D
 glDrawPixels
 glPixelMapfv
 glPixelMapuiv
 glPixelMapusv
 glPolygonStipple
 glSeparableFilter2D
 glTexImage1D
 glTexImage2D
 glTexImage3D
 glTexSubImage1D
 glTexSubImage2D
 glTexSubImage3D

 In unextended OpenGL 1.3 with ARB_imaging suppo rt, the following
 commands may take advantage of the read PDR:

 glGetColorTable
 glGetCompressedTexImage
 glGetConvolutionFilter
 glGetHistogram
 glGetMinmax
 glGetPixelMapfv
 glGetPixelMapuiv
 glGetPixelMapusv
 glGetPolygonStipple
 glGetSeparableFilter
 glGetTexImage
 glReadPixels

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1573

 No other extensions shipping in the NVIDIA Open GL drivers add any
 other new commands that may take advantage of t his extension,
 although in a few cases there are new commands that alias to other
 commands that may be accelerated by this extens ion. These commands
 are:

 glCompressedTexImage1DARB (ARB_texture_comp ression)
 glCompressedTexImage2DARB (ARB_texture_comp ression)
 glCompressedTexImage3DARB (ARB_texture_comp ression)
 glCompressedTexSubImage1DARB (ARB_texture_c ompression)
 glCompressedTexSubImage2DARB (ARB_texture_c ompression)
 glCompressedTexSubImage3DARB (ARB_texture_c ompression)
 glColorSubTableEXT (EXT_paletted_texture)
 glColorTableEXT (EXT_paletted_texture)
 glGetCompressedTexImageARB (ARB_texture_com pression)
 glTexImage3DEXT (EXT_texture3D)
 glTexSubImage3DEXT (EXT_texture3D)

NVIDIA Implementation Details

 In the Release 40 OpenGL drivers, the NV_pixel_ data_range extension
 is supported on all GeForce/Quadro-class hardwa re. The following
 commands may potentially be accelerated in this release:

 glReadPixels
 glTexImage2D
 glTexSubImage2D
 glCompressedTexImage2D
 glCompressedTexImage3D
 glCompressedTexSubImage2D

 The following type/format/buffer format sets ar e accelerated for
 glReadPixels:

type format buffer format
--- --
GL_UNSIGNED_SHORT_5_6_5 GL_RGB 16-bit color (PCs only -- Macs use 555)
GL_UNSIGNED_INT_8_8_8_8_REV GL_BGRA 32-bit color w/ alpha
GL_UNSIGNED_BYTE GL_BGRA 32-bit color w/ alpha (little endian only)
GL_UNSIGNED_SHORT GL_DEPTH_COMPONENT 16-bit depth
GL_UNSIGNED_INT_24_8_NV GL_DEPTH_STENCIL_NV 24-bit depth, 8-bit stencil

NV_pixel_data_range NVIDIA OpenGL Extension Specifications

 1574

 The following internalformat/type/format sets a re accelerated for
 glTex[Sub]Image2D:

internalformat type format
--- ----------------------------
GL_LUMINANCE8 GL_UNSIGNED_BYTE GL_LUMINANCE
GL_INTENSITY8 GL_UNSIGNED_BYTE GL_LUMINANCE
GL_ALPHA8 GL_UNSIGNED_BYTE GL_ALPHA
GL_COLOR_INDEX8_EXT GL_UNSIGNED_BYTE GL_COLOR_INDEX

GL_RGB5 GL_UNSIGNED_SHORT_5_6_5 GL_RGB
GL_RGB8 GL_UNSIGNED_INT_8_8_8_8 _REV GL_BGRA
GL_RGBA4 GL_UNSIGNED_SHORT_4_4_4 _4_REV GL_BGRA
GL_RGB5_A1 GL_UNSIGNED_SHORT_1_5_5 _5_REV GL_BGRA
GL_RGBA8 GL_UNSIGNED_INT_8_8_8_8 _REV GL_BGRA

GL_DEPTH_COMPONENT16_SGIX GL_UNSIGNED_SHORT GL_DEPTH_COMPONENT
GL_DEPTH_COMPONENT24_SGIX GL_UNSIGNED_INT_24_8_NV GL_DEPTH_STENCIL_NV

 The following internalformat/type/format sets w ill be accelerated for
 glTex[Sub]Image2D on little-endian machines onl y:

internalformat type format
--- ----------------------------
GL_LUMINANCE8_ALPHA8 GL_UNSIGNED_BYTE GL_LUMINANCE_ALPHA

GL_RGB8 GL_UNSIGNED_BYTE GL_BGRA
GL_RGBA8 GL_UNSIGNED_BYTE GL_BGRA

 All compressed texture formats are supported fo r
 glCompressedTex[Sub]Image[2,3]D.

 The following restrictions apply to all command s:
 - No pixel transfer operations of any kind may be in use.
 - The base address of the PDR must be aligned t o a 32-byte boundary.
 - The data pointer must be aligned to boundarie s of the size of one
 group of pixels. For example, GL_UNSIGNED_SH ORT_5_6_5 data must
 be aligned to 2-byte boundaries, GL_UNSIGNED_ INT_24_8_NV data must
 be aligned to 4-byte boundaries, and GL_BGRA/ GL_UNSIGNED_BYTE data
 must be aligned to 4-byte boundaries (not 1-b yte boundaries).
 Compressed texture data must be aligned to a block boundary.

 No additional restrictions apply to glReadPixel s or
 glCompressedTex[Sub]Image[2,3]D.

 The following additional restrictions apply to glTex[Sub]Image2D:
 - The texture must fit in video memory.
 - The texture must have a border size of zero.
 - The stride (in bytes) between two lines of so urce data must not
 exceed 65535.
 - For non-rectangle textures, the width and hei ght of the destination
 mipmap level must not exceed 2048, nor be bel ow 2; also, the
 destination mipmap level must not be 2x2 (for 16-bit textures) or
 2x2, 4x2, or 2x4 (for 8-bit textures).

 Future software releases may increase the numbe r of accelerated
 commands and the number of accelerated data for mats for each command.

NVIDIA OpenGL Extension Specifications NV_pixel_data_range

 1575

 Note also that although all of the formats and commands listed are
 guaranteed to be accelerated, there may be limi tations in the actual
 implementation not as strict as those stated he re; for example, some
 data formats not listed here may turn out to be accelerated.
 However, it is highly recommended that you stic k to the formats and
 commands listed in this section. In cases wher e actual restrictions
 are less strict, future implementations may ver y well enforce the
 listed restriction.

 It is also possible that some of these restrict ions may become _more_
 strict on future chips; though at present no su ch additional
 restrictions are known to be likely. Such rest rictions would likely
 take the form of more stringent pitch or alignm ent restrictions, if
 they proved to be necessary.

 In practice, you should expect that several of these restrictions
 will be more lenient in a future release.

Revision History

 November 7, 2002 - Updated implementation detai ls section with most
 up-to-date rules on PDR usage. Lifted rule tha t texture downloads
 must be 2046 pixels in size or smaller. Remove d support for 8-bit
 texture downloads. Increased max TexSubImage p itch to 65535 from
 8191.

NV_point_sprite NVIDIA OpenGL Extension Specifications

 1576

 Name

 NV_point_sprite

Name Strings

 GL_NV_point_sprite

Notice

 Copyright NVIDIA Corporation, 2001, 2002.

IP Status

 No known IP issues.

Status

 Shipping (version 1.1)

Version

 NVIDIA Date: March 6, 2003 (version 1.3)
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_point_sp rite.txt#14 $

Number

 262

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

 Assumes support for the EXT_point_parameters ex tension.

Overview

 Applications such as particle systems usually m ust use OpenGL quads
 rather than points to render their geometry, si nce they would like to
 use a custom-drawn texture for each particle, r ather than the
 traditional OpenGL round antialiased points, an d each fragment in
 a point has the same texture coordinates as eve ry other fragment.

 Unfortunately, specifying the geometry for thes e quads can be quite
 expensive, since it quadruples the amount of ge ometry required, and
 it may also require the application to do extra processing to compute
 the location of each vertex.

 The goal of this extension is to allow such app s to use points rather
 than quads. When GL_POINT_SPRITE_NV is enabled , the state of point
 antialiasing is ignored. For each texture unit , the app can then
 specify whether to replace the existing texture coordinates with
 point sprite texture coordinates, which are int erpolated across the
 point. Finally, the app can set a global param eter for the way to
 generate the R coordinate for point sprites; th e R coordinate can
 either be zero, the input S coordinate, or the input R coordinate.
 This allows applications to use a 3D texture to represent a point

NVIDIA OpenGL Extension Specifications NV_point_sprite

 1577

 sprite that goes through an animation, with fil tering between frames,
 for example.

Issues

 * Should this spec say that point sprites get converted into quads?

 RESOLVED: No, this would make the spec much uglier, because then
 we'd have to say that polygon smooth and st ipple get turned off,
 etc. Better to provide a formula for compu ting the texture
 coordinates and leave them as points.

 * How are point sprite texture coordinates co mputed?

 RESOLVED: They move smoothly as the point m oves around on the
 screen, even though the pixels touched by t he point do not. The
 exact formula is given in the spec. Note t hat point sprites' T
 texture coordinate decreases, not increases , with Y; that is,
 point sprite textures go top-down, not bott om-up.

 * How do point sizes for point sprites work?

 RESOLVED: The original NV_point_sprite spec treated point sprites
 as being sized like aliased points, i.e., i ntegral sizes only.
 This was a mistake, because it can lead to visible popping
 artifacts. In addition, it limits the size of points
 unnecessarily.

 This revised specification treats point spr ite sizes more like
 antialiased point sizes, but with more leni ency. Implementations
 may choose to not clamp the point size to t he antialiased point
 size range. The set of point sprite sizes available must be a
 superset of the antialiased point sizes. H owever, whereas
 antialiased point sizes are all evenly spac ed by the point size
 granularity, point sprites can have an arbi trary set of sizes.
 This lets implementations use, e.g., floati ng-point sizes.

 It is anticipated that this behavior change will not cause any
 problems for compatibility. In fact, it sh ould be beneficial to
 quality.

 * Should there be a way to query the list of supported point sprite
 sizes?

 RESOLVED: No. If an implementation were to use, say, a single-
 precision IEEE float to represent point siz es, the list would be
 rather long.

 * Do mipmaps apply to point sprites?

 RESOLVED: Yes. They are similar to quads i n this respect.

NV_point_sprite NVIDIA OpenGL Extension Specifications

 1578

 * What of this extension's state is per-textu re unit and what
 of this extension's state is state is globa l?

 RESOLVED: The GL_POINT_SPRITE_NV enable and POINT_SPRITE_R_MODE_NV
 state are global. The COORD_REPLACE_NV sta te is per-texture unit
 (state set by TexEnv is per-texture unit).

 * Should we create an entry point for the R m ode?

 RESOLVED: No, we take advantage of the exis ting glPointParameter
 interface. Unfortunately, EXT_point_parame ters does not define a
 PointParameteri entry point. This extensio n adds one. It could
 live without, but it's a little annoying to have to use a float
 interface to specify an enumerant.

 This is definitely not TexEnv state, becaus e it is global, not
 per texture unit.

 * What should the suffix for PointParameteri[v] be?

 RESOLVED: NV. This is an NV extension, and therefore any new
 entry points must be NV also. This is a bi t less aesthetically
 pleasing than matching the EXT suffixes of EXT_point_parameters,
 but it is the right thing to do.

 * Should there be a global on/off switch for point sprites, or
 should the per-unit enable imply that switc h?

 RESOLVED: There is a global switch to turn it on and off. This
 is probably more convenient for both driver and app, and it
 simplifies the spec.

 * What should the TexEnv mode for point sprit es be called?

 RESOLVED: After much deliberation, COORD_RE PLACE_NV seems to be
 appropriate.

 * What is the motivation for each of the thre e point sprite R
 modes?

 The R mode is most convenient for applicati ons that may already
 be drawing their own "point sprites" by ren dering quads. These
 applications already need to put the R coor dinate in R, and they
 do not need to change their code.

 The S mode is most convenient for applicati ons that do not use
 vertex programs, because it allows them to use TexCoord1 rather
 than TexCoord3 to specify their third textu re coordinate. This
 reduces the size of the vertex data. Appli cations that use
 vertex programs are largely unaffected by t his, because they can
 map the input S texture coordinate into the output R coordinate
 if they so desire.

 The zero mode may allow some applications t o more easily obtain
 the behavior they want out of the dot produ ct functionality of
 the NV_texture_shader extension. It reduce s these dot products
 from three-component dot products into two- component dot

NVIDIA OpenGL Extension Specifications NV_point_sprite

 1579

 products. In some implementations, it may also have higher
 performance than the other modes.

 There is no mode corresponding to the T or Q coordinates because
 we cannot envision a scenario where such mo des would be useful.

 * What is the interaction with multisample po ints, which are round?

 RESOLVED: Point sprites are rasterized as s quares, even in
 multisample mode. Leaving them as round po ints would make the
 feature useless.

 * How does the point sprite extension interac t with fragment
 program extensions (ARB_fragment_program, N V_fragment_program,
 etc)?

 RESOLVED: The primary issue is how the inte rpolanted texture
 coordinate set appears when fragment attrib ute variables
 (ARB terminology) or fragment program attri bute registers (NV
 terminology) are accessed.

 When point sprite is enabled and the GL_COO RD_REPLACE_NV state for
 a given texture unit is GL_TRUE, the textur e coordinate set for
 that texture unit is (s,t,r,1) where the po int sprite-overriden
 s, t, and r are described in the amended Se ction 3.3 below.
 The important point is that q is forced to 1.

 For fragment program extensions, q coorespo nds to the w component
 of the respective fragment attribute.

 * What push/pop attribute bits control the st ate of this extension?

 RESOLVED: POINT_BIT for all the state. Al so ENABLE_BIT for
 the POINT_SPRITE_NV enable.

New Procedures and Functions

 void PointParameteriNV(enum pname, int param)
 void PointParameterivNV(enum pname, const int * params)

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev, and by the <target> parameter of Te xEnvi, TexEnviv,
 TexEnvf, TexEnvfv, GetTexEnviv, and GetTexEnvfv :

 POINT_SPRITE_NV 0x8861

 When the <target> parameter of TexEnvf, TexEnvf v, TexEnvi, TexEnviv,
 GetTexEnvfv, or GetTexEnviv is POINT_SPRITE_NV, then the value of
 <pname> may be:

 COORD_REPLACE_NV 0x8862

NV_point_sprite NVIDIA OpenGL Extension Specifications

 1580

 When the <target> and <pname> parameters of Tex Envf, TexEnvfv,
 TexEnvi, or TexEnviv are POINT_SPRITE_NV and CO ORD_REPLACE_NV
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 FALSE
 TRUE

 Accepted by the <pname> parameter of PointParam eteriNV,
 PointParameterfEXT, PointParameterivNV, PointPa rameterfvEXT,
 GetBooleanv, GetIntegerv, GetFloatv, and GetDou blev:

 POINT_SPRITE_R_MODE_NV 0x8863

 When the <pname> parameter of PointParameteriNV , PointParameterfEXT,
 PointParameterivNV, or PointParameterfvEXT is
 POINT_SPRITE_R_MODE_NV, then the value of <para m> or the value
 pointed to by <params> may be:

 ZERO
 S
 R

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Insert the following paragraphs after the secon d paragraph of section
 3.3 (page 63):

 "Point sprites are enabled or disabled by calli ng Enable or Disable
 with the symbolic constant POINT_SPRITE_NV. Th e default state is for
 point sprites to be disabled. When point sprit es are enabled, the
 state of the point antialiasing enable is ignor ed.

 The point sprite R coordinate mode is set with one of the commands

 void PointParameter{if}NV(enum pname, T param)
 void PointParameter{if}vNV(enum pname, const T *params)

 where pname is POINT_SPRITE_R_MODE_NV. The pos sible values for param
 are ZERO, S, and R. The default value is ZERO.

 The point sprite texture coordinate replacement mode is set with one
 of the commands

 void TexEnv{if}(enum target, enum pname, T pa ram)
 void TexEnv{if}v(enum target, enum pname, con st T *params)

 where target is POINT_SPRITE_NV and pname is CO ORD_REPLACE_NV. The
 possible values for param are FALSE and TRUE. The default value for
 each texture unit is for point sprite texture c oordinate replacement
 to be disabled."

NVIDIA OpenGL Extension Specifications NV_point_sprite

 1581

 Replace the first two sentences of the fourth p aragraph of section
 3.3 (page 63) with the following:

 "The effect of a point width other than 1.0 dep ends on the state of
 point antialiasing and point sprites. If antia liasing and point
 sprites are disabled, ..."

 Replace the first sentences of the sixth paragr aph of section 3.3
 (page 64) with the following:

 "If antialiasing is enabled and point sprites a re disabled, ..."

 Insert the following paragraphs at the end of s ection 3.3 (page 66):

 "When point sprites are enabled, then point ras terization produces a
 fragment for each framebuffer pixel whose cente r lies inside a square
 centered at the point's (x_w, y_w), with side l ength equal to the
 current point size.

 All fragments produced in rasterizing a point s prite are assigned the
 same associated data, which are those of the ve rtex corresponding to
 the point, with texture coordinates s, t, and r replaced with s/q,
 t/q, and r/q, respectively. If q is less than or equal to zero, the
 results are undefined. However, for each textu re unit where
 COORD_REPLACE_NV is TRUE, these texture coordin ates are replaced with
 point sprite texture coordinates. The s coordi nate varies from 0 to
 1 across the point horizontally, while the t co ordinate varies from 0
 to 1 vertically. The r coordinate depends on t he value of
 POINT_SPRITE_R_MODE_NV. If this is set to ZERO , then the r
 coordinate is set to zero. If it is set to S, then the r coordinate
 is set to the s texture coordinate before coord inate replacement
 takes place. If it is set to R, then the r coo rdinate is set to the
 r texture coordinate before coordinate replacem ent takes place.

 The following formula is used to evaluate the s and t coordinates:

 s = 1/2 + (x_f + 1/2 - x_w) / size
 t = 1/2 - (y_f + 1/2 - y_w) / size

 where size is the point's size, x_f and y_f are the (integral) window
 coordinates of the fragment, and x_w and y_w ar e the exact, unrounded
 window coordinates of the vertex for the point.

 The widths supported for point sprites must be a superset of those
 supported for antialiased points. There is no requirement that these
 widths must be equally spaced. If an unsupport ed width is requested,
 the nearest supported width is used instead."

 Replace the text of section 3.3.1 (page 66) wit h the following:

 "The state required to control point rasterizat ion consists of the
 floating-point point width, a bit indicating wh ether or not
 antialiasing is enabled, a bit indicating wheth er or not point
 sprites are enabled, the current value of the p oint sprite R
 coordinate mode, and a bit for the point sprite texture coordinate
 replacement mode for each texture unit."

NV_point_sprite NVIDIA OpenGL Extension Specifications

 1582

 Replace the text of section 3.3.2 (page 66) wit h the following:

 "If MULTISAMPLE is enabled, and the value of SA MPLE_BUFFERS is one,
 then points are rasterized using the following algorithm, regardless
 of whether point antialiasing (POINT_SMOOTH) is enabled or disabled.
 Point rasterization produces a fragment for eac h framebuffer pixel
 with one or more sample points that intersect a region centered at
 the point's (x_w, y_w). This region is a circl e having diameter
 equal to the current point width if POINT_SPRIT E_NV is disabled, or
 a square with side equal to the current point w idth if
 POINT_SPRITE_NV is enabled. Coverage bits that correspond to sample
 points that intersect the region are 1, other c overage bits are 0.
 All data associated with each sample for the fr agment are the data
 associated with the point being rasterized, wit h the exception of
 texture coordinates when POINT_SPRITE_NV is ena bled; these texture
 coordinates are computed as described in sectio n 3.3.

 Point size range and number of gradations are e quivalent to those
 supported for antialiased points when POINT_SPR ITE_NV is disabled.
 The set of point sizes supported is equivalent to those for point
 sprites without multisample when POINT_SPRITE_N V is enabled."

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

GLX Protocol

 Two new GL rendering commands are added. The fo llowing commands are
 sent to the server as part of a glXRender reque st:

 PointParameteriNV
 2 8+4*n rendering c ommand length
 2 4221 rendering c ommand opcode
 4 ENUM pname
 0x8126 n==1 POINT_SIZE_ MIN_ARB
 0x8127 n==1 POINT_SIZE_ MAX_ARB
 0x8128 n==1 POINT_FADE_ THRESHOLD_SIZE_ARB
 0x8863 n==1 POINT_SPRIT E_R_MODE_NV
 4 INT32 param

NVIDIA OpenGL Extension Specifications NV_point_sprite

 1583

 PointParameterivNV
 2 8+4*n rendering c ommand length
 2 4222 rendering c ommand opcode
 4 ENUM pname
 0x8126 n==1 POINT_SIZE_ MIN_ARB
 0x8127 n==1 POINT_SIZE_ MAX_ARB
 0x8128 n==1 POINT_FADE_ THRESHOLD_SIZE_ARB
 0x8129 n==3 DISTANCE_AT TENUATION_ARB
 0x8863 n==1 POINT_SPRIT E_R_MODE_NV
 4*n LISTofINT32 params

Errors

 None.

New State

(table 6.12, p. 220)

Get Value Type Get Command In itial Value Description Sec Attrib ute
--------- ---- ----------- -- ----------- ----------- ------ ------ ---
POINT_SPRITE_NV B IsEnabled Fa lse point sprite enable 3.3 point/ enable
POINT_SPRITE_R_MODE_NV Z3 GetIntegerv ZE RO R coordinate mode 3.3 point
COORD_REPLACE_NV 2* x B GetTexEnviv Fa lse coordinate replacement 3.3 point
 enable

(table 6.17, p. 225)

Get Value Type Get Command In itial Value Description Sec Attrib ute
--------- ---- ----------- -- ----------- ----------- ------ ------ ---
COORD_REPLACE_NV 2* x B GetTexEnviv Fa lse coordinate replacement 3.3 point
 enable

NVIDIA Implementation Details

 This extension was first supported for GeForce4 Ti only in NVIDIA's
 Release 25 drivers. Future drivers will suppor t this extension on
 all GeForce products.

 However, the extension is only hardware-acceler ated on the GeForce3
 and GeForce4 Ti platforms. In addition, there are restrictions on
 the cases that are accelerated on the GeForce3.

 In order to ensure that you get hardware accele ration on GeForce3,
 make sure that:

 1. The point sprite R mode is set to GL_ZERO. (This is the default.)
 2. Coordinate replacement is turned on for text ure unit 3 and for no
 other texture units. This is non-obvious; u sing texture unit zero
 will _not_ be accelerated. Also, if coordin ate replacement is off
 for _all_ texture units, that's also unaccel erated.

 So, in the typical usage case where you just wa nt a single texture on
 some points, you should enable TEXTURE_2D on un it 3 but disable it on
 unit zero.

NV_point_sprite NVIDIA OpenGL Extension Specifications

 1584

 The GeForce4 Ti platform supports point sprites as large as 8192, but
 the spacing between sizes becomes larger as the size increases. All
 other platforms do not support point sprite siz es above 64.

ATI Implementation Details

 This extension is supported on the Radeon 8000 series and later
 platforms.

 In order to ensure that Radeon 8000 series will accelerate point
 sprite rendering using TCL hardware, make sure that the point sprite
 R mode is set to GL_ZERO. (This is the default .)

 Radeon 8000 series can render points as large a s 2047.

Revision History

 June 4, 2002 - Added implementation details sec tion. Fixed a typo in
 the overview. Changed behavior of point sizes so that fractional
 sizes are allowed and so that implementations c an support large point
 sprites or use floating-point point size repres entations.
 Significant rewrite of spec language to cover t his new point size
 behavior.

NVIDIA OpenGL Extension Specifications NV_present_video

 1585

Name

 NV_present_video

Name Strings

 GL_NV_present_video
 GLX_NV_present_video
 WGL_NV_present_video

Status

 Implemented in 165.33 driver for NVIDIA SDI dev ices.

Version

 Last Modified Date: February 20, 2008
 Author Revision: 6
 $Date$ $Revision$

Number

 347

Dependencies

 OpenGL 1.1 is required.

 ARB_occlusion_query is required.
 EXT_timer_query is required.
 ARB_texture_compression affects the definition of this extension.
 ARB_texture_float affects the definition of thi s extension.
 GLX_NV_video_out affects the definition of this extension.
 EXT_framebuffer_object affects the definition o f this extension.
 WGL_ARB_extensions_string affects the definitio n of this extension.
 WGL_NV_video_out affects the definition of this extension.

 This extension is written against the OpenGL 2. 1 Specification
 and the GLX 1.4 Specification.

Overview

 This extension provides a mechanism for display ing textures and
 renderbuffers on auxiliary video output devices . It allows an
 application to specify separate buffers for the individual
 fields used with interlaced output. It also pr ovides a way
 to present frames or field pairs simultaneously in two separate
 video streams. It also allows an application t o request when images
 should be displayed, and to obtain feedback on exactly when images
 are actually first displayed.

 This specification attempts to avoid language t hat would tie it to
 any particular hardware or vendor. However, it should be noted that
 it has been designed specifically for use with NVIDIA SDI products
 and the features and limitations of the spec co mpliment those of
 NVIDIA's line of SDI video output devices.

NV_present_video NVIDIA OpenGL Extension Specifications

 1586

New Procedures and Functions

 void PresentFrameKeyedNV(uint video_slot,
 uint64EXT minPresentTi me,
 uint beginPresentTimeI d,
 uint presentDurationId ,
 enum type,
 enum target0, uint fil l0, uint key0,
 enum target1, uint fil l1, uint key1);

 void PresentFrameDualFillNV(uint video_slot,
 uint64EXT minPresen tTime,
 uint beginPresentTi meId,
 uint presentDuratio nId,
 enum type,
 enum target0, uint fill0,
 enum target1, uint fill1,
 enum target2, uint fill2,
 enum target3, uint fill3);

 void GetVideoivNV(uint video_slot, enum pname, int *params);
 void GetVideouivNV(uint video_slot, enum pname, uint *params);
 void GetVideoi64vNV(uint video_slot, enum pname , int64EXT *params);
 void GetVideoui64vNV(uint video_slot, enum pnam e,
 uint64EXT *params);
 void VideoParameterivNV(uint video_slot, enum p name,
 const int *params);

 unsigned int *glXEnumerateVideoDevicesNV(Displa y *dpy, int screen,
 int *n elements);
 int glXBindVideoDeviceNV(Display *dpy, unsigned int video_slot,
 unsigned int video_dev ice,
 const int *attrib_list);

 DECLARE_HANDLE(HVIDEOOUTPUTDEVICENV);

 int wglEnumerateVideoDevicesNV(HDC hDc,
 HVIDEOOUTPUTDEVI CENV *phDeviceList);
 BOOL wglBindVideoDeviceNV(HDC hDc, unsigned int uVideoSlot,
 HVIDEOOUTPUTDEVICENV hVideoDevice,
 const int *piAttribLi st);
 BOOL wglQueryCurrentContextNV(int iAttribute, i nt *piValue);

New Tokens

 Accepted by the <type> parameter of PresentFram eKeyedNV and
 PresentFrameDualFillNV:

 FRAME_NV 0x8E26
 FIELDS_NV 0x8E27

NVIDIA OpenGL Extension Specifications NV_present_video

 1587

 Accepted by the <pname> parameter of GetVideoiv NV, GetVideouivNV,
 GetVideoi64vNV, GetVideoui64vNV:

 CURRENT_TIME_NV 0x8E28
 NUM_FILL_STREAMS_NV 0x8E29

 Accepted by the <target> parameter of GetQueryi v:

 PRESENT_TIME_NV 0x8E2A
 PRESENT_DURATION_NV 0x8E2B

 Accepted by the <attribute> parameter of glXQue ryContext:

 GLX_NUM_VIDEO_SLOTS_NV 0x20F0

 Accepted by the <iAttribute> parameter of wglQu eryCurrentContextNV:

 WGL_NUM_VIDEO_SLOTS_NV 0x20F0

Additions to Chapter 2 of the OpenGL 2.1 Specificat ion (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 2.1 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 2.1 Specificat ion (Per-Fragment Operations
and the Framebuffer)

 Add a new section after Section 4.4:

 "4.5 Displaying Buffers

 "To queue the display of a set of textures or r enderbuffers on one
 of the current video output devices, call one o f:

 void PresentFrameKeyedNV(uint video_slot,
 uint64EXT minPrese ntTime,
 uint beginPresentT imeId,
 uint presentDurati onId,
 enum type,
 enum target0, uint fill0, uint key0,
 enum target1, uint fill1, uint key1);

 void PresentFrameDualFillNV(uint video_slot ,
 uint64EXT minPr esentTime,
 uint beginPrese ntTimeId,
 uint presentDur ationId,
 enum type,
 enum target0, u int fill0,
 enum target1, u int fill1,
 enum target2, u int fill2,
 enum target3, u int fill3);

 "PresentFrameKeyedNV can only be used when one output stream
 is being used for color data. Key data will be presented on the

NV_present_video NVIDIA OpenGL Extension Specifications

 1588

 second output stream. PresentFrameDualFillNV c an be used only when
 two output streams are being used for color dat a. It will present
 separate color images on each stream simultaneo usly.

 "The <video_slot> parameter specifies which vid eo output slot
 in the current context this frame should be pre sented on. If no
 video output device is bound at <video_slot> at the time of the
 call, INVALID_OPERATION is generated.

 "The value of <minPresentTime> can be set to ei ther the earliest
 time in nanoseconds that the frame should becom e visible, or the
 special value 0. Frame presentation is always queued until the
 video output's vertical blanking period. At th at time, the video
 output device will consume the frames in the qu eue in the order
 they were queued until it finds a frame qualifi ed for display. A
 frame is qualified if it meets one of the follo wing criteria:

 1) The frame's minimum presentation time is the special value
 zero.

 2) The frame's minimum presentation time is less than or equal
 to the current time and the next queued f rame, if it exists,
 has a minimum presentation time greater t han the current time.

 Any consumed frames not displayed are discarded . If no qualified
 frames are found, the current frame continues t o display.

 "If <beginPresentTimeId> or <presentDurationId> are non-zero, they
 must name valid query objects (see section 4.1. 7, Asynchronous
 Queries). The actual time at which the video o utput device began
 displaying this frame will be stored in the obj ect referred to by
 <beginPresentTimeId>. The present frame operat ions will implicitly
 perform the equivalent of:

 BeginQuery(PRESENT_TIME_NV, <beginPresentTi meId>);
 BeginQuery(PRESENT_DURATION_NV, <presentDur ationId>);

 when the respective query object names are vali d, followed by the
 actual present operation, then an implicit EndQ uery() for each
 query started. The result can then be obtained asynchronously via
 the GetQueryObject calls with a <target> of PRE SENT_TIME_NV or
 PRESENT_DURATION_NV. The results of a query on the PRESENT_TIME_NV
 target will be the time in nanoseconds when the frame was first
 started scanning out, and will become available at that time. The
 results of a query on the PRESENT_DURATION_NV t arget will be the
 number of times this frame was fully scanned ou t by the video output
 device and will become available when the subse quent frame begins
 scanning out.

 "If the frame was removed from the queue withou t being displayed,
 the present duration will be zero, and the pres ent time will refer
 to the time in nanoseconds when the first subse quent frame that was
 not skipped began scanning out.

 "The query targets PRESENT_TIME_NV and PRESENT_ DURATION_NV may not
 be explicitly used with BeginQuery or EndQuery. Attempting to do
 so will generate INVALID_ENUM.

NVIDIA OpenGL Extension Specifications NV_present_video

 1589

 "The parameters <type>, <target0>, <fill0>, <ke y0>, <target1>,
 <fill1>, and <key1> define the data to be displ ayed on the first
 video output stream. Valid values for <type> a re FIELDS_NV or
 FRAME_NV. Other values will generate INVALID_E NUM. The <target0>
 and <target1> parameters can each be one of TEX TURE_2D,
 TEXTURE_RECTANGLE, RENDERBUFFER_EXT, or NONE. Other values will
 generate INVALID_ENUM. The <fill0> and <fill1> parameters then name
 an object of the corresponding type from which the color data will
 be read. Similarly, <key0> and <key1> name an object from which key
 channel data will be read. If <type> is FIELDS _NV <target0> and
 <target1> can not be NONE and <fill0>, and <fil l1> must both name
 valid image objects or INVALID_VALUE is generat ed. If <type> is
 FRAME_NV <target0> can not be NONE and <fill0> must name a valid
 object or INVALID_VALUE is generated. Addition ally, <target1> must
 be NONE or INVALID_ENUM is generated. The valu es of <fill1> and
 <key1> are ignored.

 "A texture object is considered a valid color i mage object only if
 it is consistent and has a supported internal f ormat. A
 renderbuffer object is considered a valid image object if its
 internal format has been specified as one of th ose supported.
 Implementations must support at least the follo wing internal formats
 for presenting color buffers:

 RGB
 RGBA
 RGB16F_ARB
 RGBA16F_ARB
 RGB32F_ARB
 RGBA32F_ARB
 LUMINANCE
 LUMINANCE_AlPHA

 If no separate key object is specified when usi ng a key output
 stream, the key data is taken from the alpha ch annel of the color
 object if it is present, or is set to 1.0 other wise.
 Implementations must support at least the follo wing internal formats
 when presenting key stream buffers:

 RGBA
 RGBA16F_ARB
 RGBA32F_ARB
 LUMINANCE_AlPHA
 DEPTH_COMPONENT

 "The key values are read from the alpha channel unless a depth
 format is used. For depth formats, the key val ue is the depth
 value.

 "It is legal to use the same image for more tha n one of <fill0>,
 <fill1>, <key0>, and <key1>.

 "In the following section, which discusses imag e dimension
 requirements, the image objects named by <fill0 > and <key0> are
 collectively referred to as 'image 0' and the i mage objects named by
 <fill1> and <key1> are collectively referred to as 'image 1'. The

NV_present_video NVIDIA OpenGL Extension Specifications

 1590

 dimensions of a pair of fill and key images mus t be equal. If using
 PresentFrameDualFillNV, 'image 0' refers only t o <fill0>, and
 'image 1' refers only to <fill1>.

 "If <type> is FRAME_NV image 1 must have a heig ht equal to the
 number of lines displayed per frame on the outp ut device and a width
 equal to the number of pixels per line on the o utput device or
 INVALID_VALUE will be generated. Each line in the image will
 correspond to a line displayed on the output de vice.

 "If <type> is FIELDS_NV, the way in which lines from the image are
 displayed depends on the image's size. If prog ressive output is in
 use, image 0 and image 1 must either both have a height equal to the
 number of lines displayed per frame, or both ha ve a height equal to
 the ceiling of half the number of lines display ed per frame. If an
 interlaced output is in use, the images must ei ther both have a
 height equal to the number of lines displayed p er frame, or image 0
 must have a height equal to the number of lines in field one and
 image 1 must have a height equal to the number of lines in field
 two. The images must both have a width equal t o the number of
 pixels per line on the output device. If any o f these conditions
 are not met, INVALID_VALUE is generated.

 "If progressive output is used, the lines are d isplayed as follows:
 If the images are the same height as a frame, t he resulting frame
 displayed is comprised of the first line of ima ge 0, followed by
 the second line of image 1, followed by the thi rd line of image 0,
 and so on until all the lines of a frame have b een displayed. If
 the images are half the height of the frame, th e resulting frame
 displayed is comprised of the first line of ima ge 0, followed by the
 first line of image 1, followed by the second l ine of image 0, and
 so on until the number of lines per frame has b een displayed.

 "If interlaced output is used and the images ar e the same height as
 a frame, the order in which lines are chosen fr om the images
 depends on the video output mode in use. If th e video output mode
 specifies field 1 as containing the first line of the display, the
 first line of field 1 will come from the first line of image 0,
 followed by the third line from image 0, and so on until the entire
 first field has been displayed. The first line of field 2 will come
 from the second line of image 1, followed by th e fourth line of
 image 1, and so on until the entire second fiel d is displayed. If
 the mode specifies field 1 as containing the se cond line of the
 display, the first line of field 1 will come fr om the second line of
 image 0, followed by the fourth line of image 0 , and so on until the
 entire first field is displayed. The first lin e of field 2 will
 come from the first line of image 1, followed b y the third line of
 image 1, and so on until the entire second fiel d is displayed.

 "If interlaced output is used and the images ar e the same height as
 individual fields, the order of lines used does not depend on the
 mode in use. Regardless of the mode used the f irst line of the
 first field will come from the first line of im age 0, followed by
 the second line of image 0, and so on until the entire first field
 has been displayed. The first line of the seco nd field will come
 from the first line of image 1, followed by the second line of
 image 1, and so on until the entire second fiel d has been displayed.

NVIDIA OpenGL Extension Specifications NV_present_video

 1591

 "The parameters <target2>, <fill2>, <target3>, and <fill3> are used
 identically to <target0>, <fill0>, <target1>, a nd <fill1>
 respectively, but they operate on the second co lor video output
 stream.

 "If the implementation requires a copy as part of the present frame
 operation, the copy will be transparent to the user and as such will
 bypass the fragment pipeline completely and wil l not alter any GL
 state."

Additions to Chapter 5 of the OpenGL 2.1 Specificat ion (Special Functions)

 (Add to section 5.4, "Display Lists", page 244, in the list of
 commands that are not compiled into display lis ts)

 "Display commands: PresentFrameKeyedNV, Present FrameDualFillNV

Additions to Chapter 6 of the OpenGL 2.1 Specificat ion (State and
State Requests)

 (In section 6.1.12, Asynchronous Queries, add t he following after
 paragraph 6, p. 254)

 For present time queries (PRESENT_TIME_NV), if the minimum number of
 bits is non-zero, it must be at least 64.

 For present duration queries (PRESENT_DURATION_ NV, if the minimum
 number of bits is non-zero, it must be at least 1.

 (Replace section 6.1.15, Saving and Restoring S tate, p. 264)

 Section 6.1.15, Video Output Queries

 Information about a video slot can be queried w ith the commands

 void GetVideoivNV(uint video_slot enum pnam e, int *params);
 void GetVideouivNV(uint video_slot enum pna me, uint *params);
 void GetVideoi64vNV(uint video_slot enum pn ame,
 int64EXT *params);
 void GetVideoui64vNV(uint video_slot enum p name,
 uint64EXT *params);

 If <video_slot> is not a valid video slot in th e current context or
 no video output device is currently bound at <v ideo_slot> an
 INVALID_OPERATION is generated. If <pname> is CURRENT_TIME_NV, the
 current time on the video output device in nano seconds is returned
 in <params>. If the time value can not be expr essed without using
 more bits than are available in <params>, the v alue is truncated.
 If <pname> is NUM_FILL_STREAMS_NV, the number o f active video output
 streams is returned in <params>.

Additions to Appendix A of the OpenGL 2.1 Specifica tion (Invariance)

 None

NV_present_video NVIDIA OpenGL Extension Specifications

 1592

Additions to the WGL Specification

 Add a new section "Video Output Devices"

 "WGL video output devices can be used to displa y images with more
 fine-grained control over the presentation than wglSwapBuffers
 allows. Use

 int wglEnumerateVideoDevicesNV(HDC hDc,
 HVIDEOOUTPUT DEVICENV *phDeviceList);

 to enumerate the available video output devices .

 "This call returns the number of video devices available on <hDC>.
 If <phDeviceList> is non-NULL, an array of vali d device handles
 will be returned in it. The function will assu me <phDeviceList> is
 large enough to hold all available handles so t he application should
 take care to first query the number of devices present and allocate
 an appropriate amount of memory.

 "To bind a video output device to the current c ontext, use

 BOOL wglBindVideoDeviceNV(HDC hDc, unsigned int uVideoSlot,
 HVIDEOOUTPUTDEVIC ENV hVideoDevice,
 const int *piAttr ibList);

 "wglBindVideoDeviceNV binds the video output de vice specified by
 <hVideoDevice> to one of the context's availabl e video output slots
 specified by <uVideoSlot>. <piAttribList> is a set of attribute
 name-value pairs that affects the bind operatio n. Currently there
 are no valid attributes so <piAttribList> must be either NULL or an
 empty list. To release a video device without binding another
 device to the same slot, call wglBindVideoDevic eNV with
 <hVideoDevice> set to INVALID_HANDLE_VALUE. Th e bound video output
 device will be enabled before wglBindVideoDevic eNV returns. It will
 display black until the first image is presente d on it. The
 previously bound video device, if any, will als o be deactivated
 before wglBindVIdeoDeviceNV resturns. Video sl ot 0 is reserved for
 the GL. If wglBindVideoDeviceNV is called with <uVideoSlot> less
 than 1 or greater than the maximum number of vi deo slots supported
 by the current context, if <hVideoDevice> does not refer to a valid
 video output device, or if there is no current context, FALSE will
 be returned. A return value of TRUE indicates a video device has
 successfully been bound to the video slot.

 Add section "Querying WGL context attributes"

 To query an attribute associated with the curre nt WGL context, use

 BOOL wglQueryCurrentContextNV(int iAttribut e, int *piValue);

 wglQueryCurrentContextNV will place the value o f the attribute named
 by <iAttribute> in the memory pointed to by <pi Value>. If there is
 no context current or <iAttribute> does not nam e a valid attribute,
 FALSE will be returned and the memory pointed t o by <piValue> will
 not be changed. Currently the only valid attri bute name is

NVIDIA OpenGL Extension Specifications NV_present_video

 1593

 WGL_NUM_VIDEO_SLOTS_NV. This attribute contain s the number of valid
 video output slots in the current context.

Additions to Chapter 2 of the GLX 1.4 Specification (GLX Operation)

 None

Additions to Chapter 3 of the GLX 1.4 Specification (Functions and Errors)

 Modify table 3.5:

 Attribute Type Description
 ---------------------- ---- --
 GLX_FBCONFIG_ID XID XID of GLXFBConfig associated with context
 GLX_RENDER_TYPE int type of rendering supported
 GLX_SCREEN int screen number
 GLX_NUM_VIDEO_SLOTS_NV int number of video output slots this context supports

 Add a section between Sections 3.3.10 and 3.3.1 1:

 3.3.10a Video Output Devices

 "GLX video output devices can be used to displa y images with more
 fine-grained control over the presentation than glXSwapBuffers
 allows. Use

 unsigned int *glXEnumerateVideoDevicesNV(Di splay *dpy,
 in t screen,
 in t *nElements);

 to enumerate the available video output devices .

 "This call returns an array of unsigned ints. The number of
 elements in the array is returned in nElements. Each entry in the
 array names a valid video output device. Use X Free to free the
 memory returned by glXEnumerateVideoDevicesNV.

 "To bind a video output device to the current c ontext, use

 Bool glXBindVideoDeviceNV(Display *dpy,
 unsigned int vide o_slot,
 unsigned int vide o_device,
 const int *attrib _list);

 "glXBindVideoDeviceNV binds the video output de vice specified
 by <video_device> to one of the context's avail able video
 output slots specified by <video_slot>. <attri b_list> is a
 set of attribute name-value pairs that affects the bind
 operation. Currently there are no valid attrib utes so <attrib_list>
 must be either NULL or an empty list. To relea se a video device
 without binding another device to the same slot , call
 glXBindVideoDeviceNV with <video_device> set to "0". Video slot 0
 is reserved for the GL. The bound video output device will be
 enabled before glXBindVideoDeviceNV returns. I t will display black
 until the first image is presented on it. The previously bound
 video device, if any, will also be deactivated before

NV_present_video NVIDIA OpenGL Extension Specifications

 1594

 glXBindVIdeoDeviceNV resturns. If glXBindVideo DeviceNV is called
 with <video_slot> less than 1 or greater than t he maximum number of
 video slots supported by the current context, B adValue is generated.
 If <video_device> does not refer to a valid vid eo output device,
 BadValue is generated. If <attrib_list> contai ns an invalid
 attribute or an invalid attribute value, BadVal ue is generated. If
 glXBindVideoDeviceNV is called without a curren t context,
 GLXBadContext is generated.

Additions to Chapter 4 of the GLX 1.4 Specification (Encoding on the X
Byte Stream)

 None

Additions to Chapter 5 of the GLX 1.4 Specification (Extending OpenGL)

 None

Additions to Chapter 6 of the GLX 1.4 Specification (GLX Versions)

 None

GLX Protocol

 BindVideoDeviceNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6+n request len gth
 4 1332 vendor spec ific opcode
 4 CARD32 context tag
 4 CARD32 video_slot
 4 CARD32 video_devic e
 4 CARD32 num_attribs
 4*n LISTofATTRIBUTE_PAIR attribute, value pairs
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 CARD32 status
 20 unused

 EnumerateVideoDevicesNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1333 vendor spec ific opcode
 4 unused
 4 CARD32 screen
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 4 CARD32 num_devices
 4*n LISTofCARD32 device name s

NVIDIA OpenGL Extension Specifications NV_present_video

 1595

 PresentFrameKeyedNV
 1 CARD8 opcode (X a ssigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 15 request len gth
 4 1334 vendor spec ific opcode
 4 CARD32 context tag
 8 CARD64 minPresentT ime
 4 CARD32 video_slot
 4 CARD32 beginPresen tTimeId
 4 CARD32 presentDura tionId
 4 CARD32 type
 4 CARD32 target0
 4 CARD32 fill0
 4 CARD32 key0
 4 CARD32 target1
 4 CARD32 fill1
 4 CARD32 key1

 PresentFrameDualFillNV
 1 CARD8 opcode (X a ssigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 17 request len gth
 4 1335 vendor spec ific opcode
 4 CARD32 context tag
 8 CARD64 minPresentT ime
 4 CARD32 video_slot
 4 CARD32 beginPresen tTimeId
 4 CARD32 presentDura tionId
 4 CARD32 type
 4 CARD32 target0
 4 CARD32 fill0
 4 CARD32 target1
 4 CARD32 fill1
 4 CARD32 target2
 4 CARD32 fill2
 4 CARD32 target3
 4 CARD32 fill3

NV_present_video NVIDIA OpenGL Extension Specifications

 1596

 GetVideoivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1336 vendor spec ific opcode
 4 CARD32 context tag
 4 CARD32 video_slot
 4 CARD32 pname
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetVideouivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1337 vendor spec ific opcode
 4 CARD32 context tag
 4 CARD32 video_slot
 4 CARD32 pname
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 CARD32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofCARD32 params

NVIDIA OpenGL Extension Specifications NV_present_video

 1597

 GetVideoi64vNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1338 vendor spec ific opcode
 4 CARD32 context tag
 4 CARD32 video_slot
 4 CARD32 pname
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 INT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofINT64EXT params

 GetVideoui64vNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1339 vendor spec ific opcode
 4 CARD32 context tag
 4 CARD32 video_slot
 4 CARD32 pname
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 CARD64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofCARD64 params

Dependencies on ARB_occlusion_query:

 The generic query objects introduced in ARB_occ lusion_query are
 used as a method to asynchronously deliver timi ng data to the
 application. The language describing BeginQuer yARB and

NV_present_video NVIDIA OpenGL Extension Specifications

 1598

 EndQueryARB API is also relevant as the same op erations are
 implicitly performed by PresentFrameKeyedNV and
 PresentFrameDualFillNV.

Dependencies on EXT_timer_query:

 The 64-bit types introduced in EXT_timer_query are used in this
 extension to specify time values with nanosecon d accuracy.

Dependencies on ARB_texture_float

 If ARB_texture_float is not supported, the floa ting point internal
 formats are removed from the list of internal f ormats required to be
 supported by the PresentFrame functions.

Dependencies on EXT_framebuffer_object:

 If EXT_framebuffer_object is not supported, all references to
 targets of type RENDERBUFFER_EXT should be remo ved from the spec
 language.

Dependencies on GLX_NV_video_out:

 Video output resources can not be used simultan eously with this
 extension and GLX_NV_video_out. If an applicat ion on the system has
 obtained a video device handle from GLX_NV_vide o_out, no other
 application may bind any video out devices usin g this spec until all
 GLX_NV_video_out devices have been released. S imilarly, if an
 application has bound a video out device using this spec, no other
 applications on the system can obtain a GLX_NV_ video_out device
 handle until all devices have been unbound.

Dependencies on WGL_ARB_extensions_string:

 Because there is no way to extend wgl, these ca lls are defined in
 the ICD and can be called by obtaining the addr ess with
 wglGetProcAddress. The WGL extension string is not included in the
 GL_EXTENSIONS string. Its existence can be det ermined with the
 WGL_ARB_extensions_string extension.

Dependencies on WGL_NV_video_out:

 Video output resources can not be used simultan eously with this
 extension and WGL_NV_video_out. If an applicat ion on the system has
 obtained a video device handle from WGL_NV_vide o_out, no other
 application may bind any video out devices usin g this spec until all
 WGL_NV_video_out devices have been released. S imilarly, if an
 application has bound a video out device using this spec, no other
 applications on the system can obtain a WGL_NV_ video_out device
 handle until all devices have been unbound.

Errors

 TBD

NVIDIA OpenGL Extension Specifications NV_present_video

 1599

New State

 Get Value Type Get Command Init. Value Description Sec Attribute
 -------------------------- ---- ------------- --- ------------- ------------------------- ---- - ---------
 CURRENT_QUERY 4xZ+ GetQueryiv 0 Active query object name 4.1. 7 -
 (occlusion, timer,
 present time, and
 present duration)
 QUERY_RESULT 4xZ+ GetQueryObjec tiv 0 Query object result 4.1. 7 -
 (samples passed,
 time elapsed,
 present time, or
 present duration)
 QUERY_RESULT_AVAILABLE 4xB GetQueryObjec tiv TRUE Query object result 4.1. 7 -
 available?
 CURRENT_TIME_NV 1xZ GetVideoui64v NV 0 Video device timer 4.4 -

New Implementation Dependent state

 Get Value Type Get Command Minimum Value Description Sec Attribute
 ---------------------- ---- ---------------- -------------- -------------------------- ----- ---------
 NUM_FILL_STREAMS_NV 1xZ GetVideouivNV 0 Number of video streams 4.4 -
 active on a video slot
 NUM_VIDEO_SLOTS_NV 1xZ GetIntegerv 1 Number of video slots a 4.4 -
 context supports.
 QUERY_COUNTER_BITS 4xZ+ GetQueryiv see 6.1.12 Asynchronous query counter 6.1.12 -
 bits (occlusion, timer,
 present time and present
 duration queries)

Issues

 1) How does the user enumerate video devices?

 RESOLVED: There will be OS-specific functio ns that
 will enumerate OS-specific identifiers that refer to video
 devices. On WGL, this will likely be tied to an hDC. GPU
 affinity can then be used to enumerate SDI devices even on GPUs
 that are not used as part of the windows de sktop. On GLX,
 SDI devices can be enumerated per X screen.

 2) How does the user specify data for the secon d output?

 RESOLVED: There will be a separate entry p oint that accepts up
 to 4 buffers total.

 3) When is SDI output actually enabled?

 RESOLVED: The BindVideoDevice functions wil l enable and disable
 SDI output.

 4) Should the PresentFrame functions return the frame
 count/identifier?

 RESOLVED: No. PresentFrame will instead ac cept two query
 object IDs and will implicitly begin and en d a query on each
 of these objects. The first object's query target will be
 PRESENT_TIME_EXT. Its result will be the t ime in nanoseconds
 when the frame was first displayed, and wil l become available
 when the frame begins displaying or when a subsequent frame

NV_present_video NVIDIA OpenGL Extension Specifications

 1600

 begins displaying if this frame be skipped. The second
 object's query target will be PRESENT_LENGT H_EXT. The result
 will be the number of full-frame vblanks th at occurred while
 the frame was displayed. This result will become available when
 the next frame begins displaying. If the f rame was skipped,
 this value will be 0 and the PRESENT_TIME_E XT result will refer
 to the time when the first subsequent frame that was not skipped
 began displaying.

 5) Should there be any other queryable video ou tput device
 attributes?

 RESOLVED: There are none. The glXQueryVide oDeviceNV and
 wglQueryVideoDeviceNV calls have been remov ed from this
 specification. They can be added in a sepa rate extension if
 they are ever needed.

 6) Should this spec require a timed present mec hanism?

 RESOLVED: Yes, this spec will include a mec hanism for presenting
 frames at a specified absolute time and a m ethod for querying
 when frames were displayed to allow apps to adjust their
 rendering time. Leaving this out would wea ken the PresentFrame
 mechanism considerably.

 7) Should this specification allow downsampling as part of the
 present operation.

 RESOLVED: No, this functionality can retroa ctively be added to
 the PresentFrame functions as part of a lat er spec if necessary.

 8) What happens when two outputs are enabled bu t only one output's
 worth of buffers are specified?

 RESOLVED: This will be an invalid operation . If two outputs are
 enabled, data must be presented on both of them for every frame.

 9) What section of the spec should the PresentF rame functions be in?

 RESOLVED: A new section has been added to C hapter 4 to describe
 functions that control the displaying of bu ffers.

 10) What should this extension be called?

 RESOLVED: The original name for this specif ication was
 NV_video_framebuffer because the motivation for creating this
 extension came from the need to expose a me thod for sending
 framebuffer objects to an SDI video output device. However, it
 has grown beyond that purpose and no longer even requires
 EXT_framebuffer_object to function. For th ese reasons, it has
 been renamed NV_present_video.

 11) Should a "stacked fields" mode be added to allow the application
 to specify two fields vertically concatenat ed in one buffer?

 RESOLVED: No. The stacked fields in previo us extensions were a
 workaround to allow the application to spec ify two fields at

NVIDIA OpenGL Extension Specifications NV_present_video

 1601

 once with an API that only accepted one ima ge at a time. Since
 this extension requires all buffers that ma ke up a frame to be
 specified simultaneously, stacked fields ar e not needed.

 12) Should there be a separate function for pre senting output data
 for one stream?

 RESOLVED: Yes. To clarify the different ty pes of data needed
 for single and dual stream modes, two separ ate entry points are
 provided.

 13) Should we allow users to override the mode- defined mapping
 between frame-height buffer lines and field lines?

 RESOLVED: No. Not only does this seem unne cessary, it is also
 impractical. If a mode has an odd number o f lines, the
 application would need to specify incorrect ly sized buffers to
 satisfy the line choosing rules as they are specified currently.

Revision History

 Revision 6, 2008/2/20
 -Public specification

NV_primitive_restart NVIDIA OpenGL Extension Specifications

 1602

Name

 NV_primitive_restart

Name Strings

 GL_NV_primitive_restart

Notice

 Copyright NVIDIA Corporation, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 NVIDIA Date: August 29, 2002 (version 0.1)

Number

 285

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

Overview

 This extension allows applications to easily an d inexpensively
 restart a primitive in its middle. A "primitiv e restart" is simply
 the same as an End command, followed by another Begin command with
 the same mode as the original. The typical exp ected use of this
 feature is to draw a mesh with many triangle st rips, though primitive
 restarts are legal for all primitive types, eve n for points (where
 they are not useful).

 Although the EXT_multi_draw_arrays extension di d reduce the overhead
 of such drawing techniques, they still remain m ore expensive than one
 would like.

 This extension provides an extremely lightweigh t primitive restart,
 which is accomplished by allowing the applicati on to choose a special
 index number that signals that a primitive rest art should occur,
 rather than a vertex being provoked. This inde x can be an arbitrary
 32-bit integer for maximum application convenie nce.

 In addition, for full orthogonality, a special OpenGL command is
 provided to restart primitives when in immediat e mode. This command
 is not likely to increase performance in any si gnificant fashion, but

NVIDIA OpenGL Extension Specifications NV_primitive_restart

 1603

 providing it greatly simplifies the specificati on and implementation
 of display list compilation and indirect render ing.

Issues

 * What should the default primitive restart i ndex be?

 RESOLVED: Zero. It's tough to pick another number that is
 meaningful for all three element data types . In practice, apps
 are likely to set it to 0xFFFF or 0xFFFFFFF F.

 * Are primitives other than triangle strips s upported?

 RESOLVED: Yes. One example of how this can be useful is for
 rendering a heightfield. The "standard" wa y to render a
 heightfield uses a number of triangle strip s, one for each row of
 the grid. Another method, which can produc e higher-quality
 meshes, is to render a number of 8-triangle triangle fans. This
 has the effect of alternating the direction of tessellation, as
 shown in the diagram below. Primitive rest arts enhance the
 performance of both techniques.

 ------------------------- ---------- ---------------
 | /| /| /| /| /| /| /| /| |\ | /|\ | /|\ | /|\ | /|
 |/ |/ |/ |/ |/ |/ |/ |/ | | \|/ | \| / | \|/ | \|/ |
 ------------------------- ---*-----* -----*-----*---
 | /| /| /| /| /| /| /| /| | /|\ | /| \ | /|\ | /|\ |
 |/ |/ |/ |/ |/ |/ |/ |/ | |/ | \|/ | \|/ | \|/ | \|
 ------------------------- ---------- ---------------

 Two strips Four fans (c enters marked '*')

 * How is this feature turned on and off?

 RESOLVED: Via a glEnable/DisableClientState setting. It is not
 possible to select a restart index that is guaranteed to be
 unused.

 * Is the immediate mode PrimitiveRestartNV ne eded?

 RESOLVED: Yes. It is difficult to make ind irect rendering to
 work without it, and it is near impossible to make display lists
 work without it. It is a very clean way to resolve these issues.

 * How is indirect rendering handled?

 RESOLVED: Because of PrimitiveRestartNV, it works very easily.
 PrimitiveRestartNV has a wire protocol and therefore it can
 easily be inserted as needed. The server t racks the current
 Begin mode, relieving the client of this bu rden.

 Note that in practice, we expect that this feature is essentially
 useless for indirect rendering.

 * How does this extension interact with NV_el ement_array and
 NV_vertex_array_range?

NV_primitive_restart NVIDIA OpenGL Extension Specifications

 1604

 RESOLVED: It doesn't, not even for performa nce. It should be
 fast on hardware that supports the feature with or without the
 use of element arrays, with or without vert ex array range.

 * Does this extension affect ArrayElement and DrawArrays, or just
 DrawElements?

 RESOLVED: All of them. It applies to Array Element and to the
 rest as a consequence. It is likely not us eful with any other
 than DrawElements, but nevertheless not pro hibited.

 * In the case of ArrayElement, what happens i f the restart index is
 used outside Begin/End?

 RESOLVED: Since this is defined as being eq uivalent to a call to
 PrimitiveRestartNV, and PrimitiveRestartNV is an
 INVALID_OPERATION when not inside Begin/End , this is just an
 error.

 * For DrawRangeElements/LockArrays purposes, must the restart index
 lie within the start/end range?

 RESOLVED: No, this would to some extent def eat the point if the
 restart index was, e.g., 0xFFFFFFFF. I don 't believe any spec
 language is required here, since hitting th is index does not
 cause a vertex to be dereferenced.

 * Should this state push/pop?

 RESOLVED: Yes, as vertex array client state .

New Procedures and Functions

 void PrimitiveRestartNV(void);
 void PrimitiveRestartIndexNV(uint index);

New Tokens

 Accepted by the <array> parameter of EnableClie ntState and
 DisableClientState, by the <cap> parameter of I sEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 PRIMITIVE_RESTART_NV 0x8558

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PRIMITIVE_RESTART_INDEX_NV 0x8559

NVIDIA OpenGL Extension Specifications NV_primitive_restart

 1605

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Add a section 2.6.X "Primitive Restarts", immed iately after section
 2.6.2 "Polygon Edges" (page 19):

 "2.6.X Primitive Restarts

 An OpenGL primitive may be restarted with the c ommand

 void PrimitiveRestartNV(void)

 Between the execution of a Begin and its corres ponding End, this
 command is equivalent to a call to End, followe d by a call to Begin
 where the mode argument is the same mode as tha t used by the previous
 Begin. Outside the execution of a Begin and it s corresponding End,
 this command generates the error INVALID_OPERAT ION."

 Add PrimitiveRestartNV to the list of commands that are allowed
 between Begin and End in section 2.6.3 "GL Comm ands within Begin/End"
 (page 19).

 Add to section 2.8 "Vertex Arrays", after the d escription of
 ArrayElement (page 24):

 "Primitive restarting is enabled or disabled by calling
 EnableClientState or DisableClientState with pa rameter
 PRIMITIVE_RESTART_NV. The command

 void PrimitiveRestartIndexNV(uint index)

 specifies the index of a vertex array element t hat is treated
 specially when primitive restarting is enabled. When ArrayElement is
 called between an execution of Begin and the co rresponding execution
 of End, if i is equal to PRIMITIVE_RESTART_INDE X_NV, then no vertex
 data is derefererenced, and no current vertex s tate is modified.
 Instead, it is as if PrimitiveRestartNV had bee n called."

 Replace the last paragraph of section 2.8 "Vert ex Arrays" (page 28)
 with the following:

 "If the number of supported texture units (the value of
 MAX_TEXTURE_UNITS) is k, then the client state required to implement
 vertex arrays consists of 7+k boolean values, 5 +k memory pointers,
 5+k integer stride values, 4+k symbolic constan ts representing array
 types, 3+k integers representing values per ele ment, and an unsigned
 integer representing the restart index. In the initial state, the
 boolean values are each disabled, the memory po inters are each null,
 the strides are each zero, the array types are each FLOAT, the
 integers representing values per element are ea ch four, and the
 restart index is zero."

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None.

NV_primitive_restart NVIDIA OpenGL Extension Specifications

 1606

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 Add to the end of Section 5.4 "Display Lists":

 "PrimitiveRestartIndexNV is not compiled into d isplay lists, but is
 executed immediately."

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

GLX Protocol

 One new GL command is added.

 The following rendering command is sent to the server as part of a
 glXRender request:

 PrimitiveRestartNV
 2 4 rendering c ommand length
 2 ???? rendering c ommand opcode

Errors

 The error INVALID_OPERATION is generated if Pri mitiveRestartNV is
 called outside the execution of Begin and the c orresponding execution
 of End.

 The error INVALID_OPERATION is generated if Pri mitiveRestartIndexNV
 is called between the execution of Begin and th e corresponding
 execution of End.

New State

 Initial
 Get Value Get Command Type Value Sec Attrib
 --------- ----------- ---- ------- ---- ------------
 PRIMITIVE_RESTART_NV IsEnabled B FALSE 2.8 vertex-array
 PRIMITIVE_RESTART_INDEX_NV GetIntegerv Z+ 0 2.8 vertex-array

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1607

Name

 NV_register_combiners

Name Strings

 GL_NV_register_combiners

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001, 2002, 2003.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.6)

Version

 NVIDIA Date: February 1, 2007 (version 1.7)
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_register _combiners.txt#56 $

Number

 191

Dependencies

 ARB_multitexture, assuming the value of MAX_TEX TURE_UNITS_ARB is
 at least 2.

 Written based on the wording of the OpenGL 1.2 specification with
 the ARB_multitexture appendix E.

 NV_texture_shader affects the definition of thi s extension.

 ARB_depth_texture and ARB_shadow -or- SGIX_dept h_texture and
 SGIX_shadow affect the definition of this exten sion.

Overview

 NVIDIA's next-generation graphics processor and its derivative designs
 support an extremely configurable mechanism kno w as "register combiners"
 for computing fragment colors.

 The register combiner mechanism is a significan t redesign of NVIDIA's
 original TNT combiner mechanism as introduced b y NVIDIA's RIVA
 TNT graphics processor. Familiarity with the T NT combiners will
 help the reader appreciate the greatly enhanced register combiners
 functionality (see the NV_texture_env_combine4 OpenGL extension
 specification for this background). The regist er combiner mechanism
 has the following enhanced functionality:

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1608

 The numeric range of combiner computations is from [-1,1]
 (instead of TNT's [0,1] numeric range),

 The set of available combiner inputs is expan ded to include the
 secondary color, fog color, fog factor, and a second combiner
 constant color (TNT's available combiner inpu ts consist of
 only zero, a single combiner constant color, the primary color,
 texture 0, texture 1, and, in the case of com biner 1, the result
 of combiner 0).

 Each combiner variable input can be independe ntly scaled and
 biased into several possible numeric ranges (TNT can only
 complement combiner inputs).

 Each combiner stage computes three distinct o utputs (instead
 TNT's single combiner output).

 The output operations include support for com puting dot products
 (TNT has no support for computing dot product s).

 After each output operation, there is a confi gurable scale and bias
 applied (TNT's combiner operations builds in a scale and/or bias
 into some of its combiner operations).

 Each input variable for each combiner stage i s fetched from any
 entry in a combiner register set. Moreover, the outputs of each
 combiner stage are written into the register set of the subsequent
 combiner stage (TNT could only use the result from combiner 0 as
 a possible input to combiner 1; TNT lacks the notion of an
 input/output register set).

 The register combiner mechanism supports at l east two general combiner
 stages and then a special final combiner stag e appropriate for
 applying a color sum and fog computation (TNT provides two simpler
 combiner stages, and TNT's color sum and fog stages are hard-wired
 and not subsumed by the combiner mechanism as in register combiners).

 The register combiners fit into the OpenGL pipe line as a rasterization
 processing stage operating in parallel to the t raditional OpenGL
 texture environment, color sum, AND fog applica tion. Enabling this
 extension bypasses OpenGL's existing texture en vironment, color sum,
 and fog application processing and instead use the register combiners.
 The combiner and texture environment state is o rthogonal so
 modifying combiner state does not change the tr aditional OpenGL
 texture environment state and the texture envir onment state is
 ignored when combiners are enabled.

 OpenGL application developers can use the regis ter combiner mechanism
 for very sophisticated shading techniques. For example, an
 approximation of Blinn's bump mapping technique can be achieved with
 the combiner mechanism. Additionally, multi-pa ss shading models
 that require several passes with unextended Ope nGL 1.2 functionality
 can be implemented in several fewer passes with register combiners.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1609

Issues

 Should we expose the full register combiners me chanism?

 RESOLUTION: NO. We ignore small bits of NV1 0 hardware
 functionality. The texture LOD input is igno red. We also ignore
 the inverts on input to the EF product.

 Do we provide full gets for all the combiner st ate?

 RESOLUTION: YES.

 Do we parameterize combiner input and output up dates to avoid
 enumerant explosions?

 RESOLUTION: YES. To update a combiner stage input variable, you
 need to specify the <stage>, <portion>, and < variable>. To update a
 combiner stage output operation, you need to specify the <stage> and
 <portion>. This does mean that we need to ad d special Get routines
 that are likewise parameterized. Hence, GetC ombinerInputParameter*,
 GetCombinerOutputParameter*, and GetFinalComb inerInputParameter*.

 Is the register combiner functionality a super-s et of the TNT combiner
 functionality?

 Yes, but only in the sense of being a computa tional super-set.
 All computations performed with the TNT combi ners can be performed
 with the register combiners, but the sequence of operations necessary
 to configure an identical computational resul t can be quite
 different.

 For example, the TNT combiners have an operat ion that includes
 a final complement operation. The register c ombiners can perform
 range mappings only on inputs, but not on out puts. The register
 combiners can mimic the TNT operation with a post-operation
 complement only by taking pains to complement on input any uses
 of the output in later combiner stages.

 What this does mean is that NV10's hardware f unctionality
 will permit support for both the NV_register_ combiners AND
 NV_texture_env_combine4 extensions.

 Note the existance of an "speclit" input comp lement bit supported
 by NV10 (but not accessible through the NV_re gister_combiners extensions).

 Should we say anything about the precision of th e combiner
 computations?

 RESOLUTION: NO. The spec is written as if t he computations are
 done on floating point values ranging from -1 .0 to 1.0 (clamping is
 specified where this range is exceeded). The fact that NV10 does
 the computations as 9-bit signed fixed point is not mentioned in
 the spec. This permits a future design to su pport more precision
 or use a floating pointing representation.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1610

 What should the initial combiner state be?

 RESOLUTION: See tables NV_register_combiners .4 and
 NV_register_combiners.5. The default state h as one general combiner
 stage active that modulates the incoming colo r with texture 0.
 The final combiner is setup initially to impl ement OpenGL 1.2's
 standard color sum and fog stages.

 What should happen to the TEXTURE0_ARB and TEXT UER1_ARB inputs if
 one or both textures are disabled?

 RESOLUTION: The value of these inputs is und efined.

 What do the TEXTURE0_ARB and TEXTURE1_ARB input s correspond to?
 Does the number correspond to the absolute text ure unit number
 or is the number based on how many textures are enabled (ie,
 TEXTURE_ARB0 would correspond to the 2nd textur e unit if the
 2nd unit is enabled, but the 1st is disabled).

 RESOLUTION: The absolute texture unit.

 This should be a lot less confusing to the pr ogrammer than having
 the texture inputs switch textures if texture 0 is disabled.

 Note that the proposed hardware actually dete rmines the TEXTURE0
 and TEXTURE1 input based on which texture is enabled. This means
 it is up to the ICD to properly update the co mbiner state when just
 one texture is enabled. Since we will alread y have to do this to
 track the standard OpenGL texture environment for ARB_multitexture,
 we can do it for this extension too.

 Should the combiners state be PushAttrib/PopAtt rib'ed along with
 the texture state?

 RESOLUTION: YES.

 Should we advertise the LOD fractional input to the combiners?

 RESOLUTION: NO.

 There will be a performance impact when two com biner stages are
 enabled versus just one stage. Should we menti on that somewhere?

 RESOLUTION: NO. (But it is worth mentioning in this issues
 section.)

 Should the scale and bias for the CombinerOutpu tNV be indicated
 by enumerants or specified outright as floats?

 RESOLUTION: ENUMERANTS. While some future c ombiners might
 support an arbitrary scale & bias specified a s floats, NV10 just
 does the enumerated options.

 Should a dot product be computed in parralel wi th the sum of
 products?

 RESOLUTION: YES (changed for version 1.6). The hardware is

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1611

 capable of summing the two dot products.

 Versions of this specification prior to versi on 1.6 documented that
 an INVALID_OPERATION should be generated if e ither <abDotProduct>
 or <cdDotProduct> is true and then <sumOutput > is not GL_DISCARD.
 However, this check was never added to the dr iver and some
 applications found the mode useful.

 Does the GL_E_TIMES_F_NV token for the final co mbiner perform any
 mapping on E or F before the mapping? Is the m ultiply signed?
 Can the result be negative?

 RESOLUTION: Input mappings and component usa ge is applied to E or
 F before their product is computed. Yes, the product is a signed
 multiplication. The result can be negative, but the two allowed
 final combiner input mapping modes (GL_UNSIGN ED_IDENTITY_NV and
 GL_UNSIGNED_INVERT_NV) both effectively clamp their results to
 [0,1].

 A negative value resulting from the "E times F" product with the
 GL_UNSIGNED_IDENTITY_NV mapping mode would be clamped to zero.

 A negative value resulting from the "E times F" product with the
 GL_UNSIGNED_INVERT_NV mpaping mode would be c lamped to zero but
 then one minus that clamped result (zero) wou ld generate one.

New Procedures and Functions

 void CombinerParameterfvNV(GLenum pname,
 const GLfloat *param s);

 void CombinerParameterivNV(GLenum pname,
 const GLint *params) ;

 void CombinerParameterfNV(GLenum pname,
 GLfloat param);

 void CombinerParameteriNV(GLenum pname,
 GLint param);

 void CombinerInputNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 void CombinerOutputNV(GLenum stage,
 GLenum portion,
 GLenum abOutput,
 GLenum cdOutput,
 GLenum sumOutput,
 GLenum scale,
 GLenum bias,
 GLboolean abDotProduct,
 GLboolean cdDotProduct,
 GLboolean muxSum);

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1612

 void FinalCombinerInputNV(GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 void GetCombinerInputParameterfvNV(GLenum stage ,
 GLenum porti on,
 GLenum varia ble,
 GLenum pname ,
 GLfloat *par ams);

 void GetCombinerInputParameterivNV(GLenum stage ,
 GLenum porti on,
 GLenum varia ble,
 GLenum pname ,
 GLint *param s);

 void GetCombinerOutputParameterfvNV(GLenum stag e,
 GLenum port ion,
 GLenum pnam e,
 GLfloat *pa rams);

 void GetCombinerOutputParameterivNV(GLenum stag e,
 GLenum port ion,
 GLenum pnam e,
 GLint *para ms);

 void GetFinalCombinerInputParameterfvNV(GLenum variable,
 GLenum pname,
 GLfloat *params);

 void GetFinalCombinerInputParameterivNV(GLenum variable,
 GLenum pname,
 GLint * params);

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 REGISTER_COMBINERS_NV 0x8522

 Accepted by the <stage> parameter of CombinerIn putNV,
 CombinerOutputNV, GetCombinerInputParameterfvNV ,
 GetCombinerInputParameterivNV, GetCombinerOutpu tParameterfvNV,
 and GetCombinerOutputParameterivNV:

 COMBINER0_NV 0x8550
 COMBINER1_NV 0x8551
 COMBINER2_NV 0x8552
 COMBINER3_NV 0x8553
 COMBINER4_NV 0x8554
 COMBINER5_NV 0x8555
 COMBINER6_NV 0x8556
 COMBINER7_NV 0x8557

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1613

 Accepted by the <variable> parameter of Combine rInputNV,
 GetCombinerInputParameterfvNV, and GetCombinerI nputParameterivNV:

 VARIABLE_A_NV 0x8523
 VARIABLE_B_NV 0x8524
 VARIABLE_C_NV 0x8525
 VARIABLE_D_NV 0x8526

 Accepted by the <variable> parameter of FinalCo mbinerInputNV,
 GetFinalCombinerInputParameterfvNV, and
 GetFinalCombinerInputParameterivNV:

 VARIABLE_A_NV
 VARIABLE_B_NV
 VARIABLE_C_NV
 VARIABLE_D_NV
 VARIABLE_E_NV 0x8527
 VARIABLE_F_NV 0x8528
 VARIABLE_G_NV 0x8529

 Accepted by the <input> parameter of CombinerIn putNV:

 ZERO (not new)
 CONSTANT_COLOR0_NV 0x852A
 CONSTANT_COLOR1_NV 0x852B
 FOG (not new)
 PRIMARY_COLOR_NV 0x852C
 SECONDARY_COLOR_NV 0x852D
 SPARE0_NV 0x852E
 SPARE1_NV 0x852F
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)

 Accepted by the <mapping> parameter of Combiner InputNV:

 UNSIGNED_IDENTITY_NV 0x8536
 UNSIGNED_INVERT_NV 0x8537
 EXPAND_NORMAL_NV 0x8538
 EXPAND_NEGATE_NV 0x8539
 HALF_BIAS_NORMAL_NV 0x853A
 HALF_BIAS_NEGATE_NV 0x853B
 SIGNED_IDENTITY_NV 0x853C
 SIGNED_NEGATE_NV 0x853D

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1614

 Accepted by the <input> parameter of FinalCombi nerInputNV:

 ZERO (not new)
 CONSTANT_COLOR0_NV
 CONSTANT_COLOR1_NV
 FOG (not new)
 PRIMARY_COLOR_NV
 SECONDARY_COLOR_NV
 SPARE0_NV
 SPARE1_NV
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)
 E_TIMES_F_NV 0x8531
 SPARE0_PLUS_SECONDARY_COLOR_NV 0x8532

 Accepted by the <mapping> parameter of FinalCom binerInputNV:

 UNSIGNED_IDENTITY_NV
 UNSIGNED_INVERT_NV

 Accepted by the <scale> parameter of CombinerOu tputNV:

 NONE (not new)
 SCALE_BY_TWO_NV 0x853E
 SCALE_BY_FOUR_NV 0x853F
 SCALE_BY_ONE_HALF_NV 0x8540

 Accepted by the <bias> parameter of CombinerOut putNV:

 NONE (not new)
 BIAS_BY_NEGATIVE_ONE_HALF_NV 0x8541

 Accepted by the <abOutput>, <cdOutput>, and <su mOutput> parameter
 of CombinerOutputNV:

 DISCARD_NV 0x8530
 PRIMARY_COLOR_NV
 SECONDARY_COLOR_NV
 SPARE0_NV
 SPARE1_NV
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)

 Accepted by the <pname> parameter of GetCombine rInputParameterfvNV
 and GetCombinerInputParameterivNV:

 COMBINER_INPUT_NV 0x8542
 COMBINER_MAPPING_NV 0x8543
 COMBINER_COMPONENT_USAGE_NV 0x8544

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1615

 Accepted by the <pname> parameter of GetCombine rOutputParameterfvNV
 and GetCombinerOutputParameterivNV:

 COMBINER_AB_DOT_PRODUCT_NV 0x8545
 COMBINER_CD_DOT_PRODUCT_NV 0x8546
 COMBINER_MUX_SUM_NV 0x8547
 COMBINER_SCALE_NV 0x8548
 COMBINER_BIAS_NV 0x8549
 COMBINER_AB_OUTPUT_NV 0x854A
 COMBINER_CD_OUTPUT_NV 0x854B
 COMBINER_SUM_OUTPUT_NV 0x854C

 Accepted by the <pname> parameter of CombinerPa rameterfvNV,
 CombinerParameterivNV, GetBooleanv, GetDoublev, GetFloatv, and
 GetIntegerv:

 CONSTANT_COLOR0_NV
 CONSTANT_COLOR1_NV

 Accepted by the <pname> parameter of CombinerPa rameterfvNV,
 CombinerParameterivNV, CombinerParameterfNV, Co mbinerParameteriNV,
 GetBooleanv, GetDoublev, GetFloatv, and GetInte gerv:

 NUM_GENERAL_COMBINERS_NV 0x854E
 COLOR_SUM_CLAMP_NV 0x854F

 Accepted by the <pname> parameter of GetFinalCo mbinerInputParameterfvNV
 and GetFinalCombinerInputParameterivNV:

 COMBINER_INPUT_NV
 COMBINER_MAPPING_NV
 COMBINER_COMPONENT_USAGE_NV

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_GENERAL_COMBINERS_NV 0x854D

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Figure 3.1 "Rasterization" (page 58)

 + Change the "Texturing" block to say "Textur e Fetching".

 + Insert a new block between "Texture Fetchin g" and "Color Sum".
 Name the new block "Texture Environment App lication".

 + Insert a new block after "Texture Fetching" . Name the new block
 "Register Combiners Application".

 + The output of the "Texture Fetching" stage feeds to both "Texture
 Environment Application" and "Register Comb iners Application".

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1616

 + The input for "Color Sum" comes from "Textu re Environment
 Application".

 + The output to "Fragments" is switched (cont rolled by
 Disable/Enable REGISTER_COMBINERS_NV) betwe en the output of "Fog"
 and "Register Combiners Application".

 Essentially, when register combiners are enabl ed, the entire standard
 texture environment application, color sum, an d fog blocks are
 replaced with the single register combiners bl ock. [Note that this
 is different from how the NV_texture_env_combi ne4 extension works;
 that extension controls the texture environmen t application
 block, but still uses the standard color sum a nd fog blocks.]

 -- NEW Section 3.8.12 "Register Combiners Applica tion"

 "In parallel to the texture application, color sum, and fog processes
 described in sections 3.8.10, 3.9, and 3.10, r egister combiners provide
 a means of computing fcoc, the final combiner output color, for
 each fragment generated by rasterization.

 The register combiners consist of two or more general combiner stages
 arranged in a fixed sequence ordered by each c ombiner stage's number.
 An implementation supports a maximum number of general combiners
 stages, which may be queried by calling GetInt egerv with the symbolic
 constant MAX_GENERAL_COMBINERS_NV. Implementa tions must
 support at least two general combiner stages. The general combiner
 stages are named COMBINER0_NV, COMBINER1_NV, a nd so on.

 Each general combiner in the sequence receives its inputs and
 computes its outputs in an identical manner. At the end of the
 sequence of general combiner stages, there is a final combiner stage
 that operates in a different manner than the g eneral combiner stages.
 The general combiner operation is described fi rst, followed by a
 description of the final combiner operation.

 Each combiner stage (the general combiner stag es and the final
 combiner stage) has an associated combiner reg ister set. Each
 combiner register set contains <n> RGBA vector s with components
 ranging from -1.0 to 1.0 where <n> is 8 plus t he maximum number
 of active textures supported (that is, the imp lementation's value
 for MAX_TEXTURE_UNITS_ARB). The combiner regi ster set entries
 are listed in the table NV_register_combiners. 1.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1617

 [Table NV_register_combiners.1]

 Initial Output
 Register Name Value Referen ce Status
 --------------------- ---------- ------- --------- ---------
 ZERO 0 - read only
 CONSTANT_COLOR0_NV ccc0 Section 3.8.12.1 read only
 CONSTANT_COLOR1_NV ccc1 Section 3.8.12.1 read only
 FOG Cf Section 3.10 read only
 PRIMARY_COLOR_NV cpri Section 2.13.1 read/write
 SECONDARY_COLOR_NV csec Section 2.13.1 read/write
 SPARE0_NV see below Section 3.8.12 read/write
 SPARE1_NV undefined Section 3.8.12 read/write
 TEXTURE0_ARB CT0 Figure E.2 read/write
 TEXTURE1_ARB CT1 Figure E.2 read/write
 TEXTURE<i>_ARB CT<i> Figure E.2 read/write

 The register set of COMBINER0_NV, the first co mbiner stage,
 is initialized as described in table NV_regist er_combiners.1.

 The initial value of the alpha portion of regi ster SECONDARY_COLOR_NV
 is undefined. The initial value of the alpha portion of register
 SPARE0_NV is the alpha component of texture 0 if texturing is
 enabled for texture 0; however, the initial va lue of the RGB portion
 SPARE0_NV is undefined. The initial value of the SPARE1_NV register
 is undefined. The initial of registers TEXTUR E0_ARB, TEXTURE1_ARB,
 and TEXTURE<i>_ARB are undefined if texturing is not enabled for
 textures 0, 1, and <i>, respectively.

 The mapping of texture components to component s of texture registers
 is summarized in Table NV_register_combiners.2 . In the following
 table, At, Lt, It, Rt, Gt, Bt, and Dt, are the filtered texel
 values.

 [Table NV_register_combiners.2]: Correspondenc e of texture components
 to register components for texture registers.

 Base Internal Format RGB Values Alpha Value
 -------------------- ---------- -----------
 ALPHA 0, 0, 0 At
 LUMINANCE Lt, Lt, Lt 1
 LUMINANCE_ALPHA Lt, Lt, Lt At
 INTENSITY It, It, It It
 RGB Rt, Gt, Bt 1
 RGBA Rt, Gt, Bt At

 DEPTH_COMPONENT 0, 0, 0, Lt
 (when TEXTURE_COMPARE_MODE_ARB is NONE -o r-
 TEXTURE_COMPARE_SGIX is false)
 DEPTH_COMPONENT Lt, Lt, Lt, Lt
 (when TEXTURE_COMPARE_MODE_ARB is COMPARE _R_TO_TEXTURE -or-
 TEXTURE_COMPARE_SGIX is true)
 HILO_NV 0, 0, 0, 0
 DSDT_NV 0, 0, 0, 0
 DSDT_MAG_NV 0, 0, 0, 0
 DSDT_MAG_INTENSITY_NV 0, 0, 0, It

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1618

 Note that the ALPHA, DEPTH_COMPONENT, and DSDT _MAG_INTENSITY_NV
 base internal formats are mapped to components differently than
 one could infer from the standard texture envi ronment operations
 with this formats. A texture's DEPTH_TEXTURE_ MODE_ARB state (see
 the ARB_depth_texture extension) is irrelevant for determining the
 correspondence of texture components to regist er components for
 texture registers when REGISTER_COMBINERS_NV i s enabled.

 3.8.12.1 Combiner Parameters

 Combiner parameters are specified by

 CombinerParameterfvNV(GLenum pname, const GLfloat *params);
 CombinerParameterivNV(GLenum pname, const GLint *params);
 CombinerParameterfNV(GLenum pname, GLfloat param);
 CombinerParameteriNV(GLenum pname, GLint p aram);

 <pname> is a symbolic constant indicating whic h parameter is to be
 set as described in the table NV_register_comb iners.3:

 [Table NV_register_combiners.3]
 Numb er
 Parameter Name of v alues Type
 --------- ------------------------- ---- ----- ---------------
 ccc0 CONSTANT_COLOR0_NV 4 color
 ccc1 CONSTANT_COLOR1_NV 4 color
 ngc NUM_GENERAL_COMBINERS_NV 1 positive integer
 csc COLOR_SUM_CLAMP_NV 1 boolean

 <params> is a pointer to a group of values to which to set the
 indicated parameter. <param> is simply the in dicated parameter.
 The number of values pointed to depends on the parameter being
 set as shown in the table above. Color parame ters specified with
 CombinerParameter*NV are converted to floating -point values (if
 specified as integers) as indicated by Table 2 .6 for signed integers.
 The floating-point color values are then clamp ed to the range [0,1].

 The values ccc0 and ccc1 named by CONSTANT_COL OR0_NV and
 CONSTANT_COLOR1_NV are constant colors availab le for inputs to the
 combiner stages. The value ngc named by NUM_G ENERAL_COMBINERS_NV
 is a positive integer indicating how many gene ral combiner stages are
 active, that is, how many general combiner sta ges a fragment should
 be processed by. Setting ngc to a value less than one or
 greater than the value of MAX_GENERAL_COMBINER S_NV generates an
 INVALID_VALUE error. The value csc named by C OLOR_SUM_CLAMP_NV
 is a boolean described in section 3.8.12.3.

 3.8.12.2 General Combiner Stage Operation

 The command

 CombinerInputNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1619

 controls the assignment of all the general com biner input variables.
 For the RGB combiner portion, these are Argb, Brgb, Crgb, and
 Drgb; and for the combiner alpha portion, thes e are Aa, Ba, Ca,
 and Da. The <stage> parameter is a symbolic c onstant of the form
 COMBINER<i>_NV, indicating that general combin er stage <i> is to
 be updated. The constant COMBINER<i>_NV = COM BINER0_NV + <i>
 where <i> is in the range 0 to <k>-1 and <k> i s the implementation
 dependent value of MAX_COMBINERS_NV. The <por tion> parameter
 may be either RGB or ALPHA and determines whet her the RGB color
 vector or alpha scalar portion of the specifie d combiner stage is
 updated. The <variable> parameter may be one of VARIABLE_A_NV,
 VARIABLE_B_NV, VARIABLE_C_NV, or VARIABLE_D_NV and determines
 which respective variable of the specified com biner stage and
 combiner stage portion is updated.

 The <input>, <mapping>, and <componentUsage> p arameters specify
 the assignment of a value for the input variab le indicated by
 <stage>, <portion>, and <variable>. The <inpu t> parameter may be
 one of the register names from table NV_regist er_combiners.1.

 The <componentUsage> parameter may be one of R GB, ALPHA, or BLUE.

 When the <portion> parameter is RGB, a <compon entUsage> parameter
 of RGB indicates that the RGB portion of the i ndicated register
 should be assigned to the RGB portion of the c ombiner input variable,
 while an ALPHA <componentUsage> parameter indi cates that the
 alpha portion of the indicated register should be replicated across
 the RGB portion of the combiner input variable .

 When the <portion> parameter is ALPHA, the <co mponentUsage>
 parameter of ALPHA indicates that the alpha po rtion of the indicated
 register should be assigned to the alpha porti on of the combiner
 input variable, while a BLUE <componentUsage> parameter indicates
 that the blue component of the indicated regis ter should be assigned
 to the alpha portion of the combiner input var iable.

 When the <portion> parameter is ALPHA, a <comp onentUsage> parameter
 of RGB generates an INVALID_OPERATION error. When the <portion>
 parameter is RGB, a <componentUsage> parameter of BLUE generates
 an INVALID_OPERATION error.

 When the <portion> parameter is ALPHA, an <inp ut> parameter of FOG
 generates an INVALID_OPERATION error. The alp ha component of the
 fog register is only available in the final co mbiner. The alpha
 component of the fog register is the fragment' s fog factor when
 fog is enabled; otherwise, the alpha component of the fog register
 is one.

 Before the value in the register named by <inp ut> is assigned to the
 specified input variable, a range mapping is p erformed based on
 <mapping>. The mapping may be one of the toke ns from the table
 NV_register_combiners.4.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1620

 [Table NV_register_combiners.4]

 Mapping Name Mapping Function
 ----------------------- ------------------ -------------------
 UNSIGNED_IDENTITY_NV max(0.0, e)
 UNSIGNED_INVERT_NV 1.0 - min(max(e, 0 .0), 1.0)
 EXPAND_NORMAL_NV 2.0 * max(0.0, e) - 1.0
 EXPAND_NEGATE_NV -2.0 * max(0.0, e) + 1.0
 HALF_BIAS_NORMAL_NV max(0.0, e) - 0.5
 HALF_BIAS_NEGATE_NV -max(0.0, e) + 0.5
 SIGNED_IDENTITY_NV e
 SIGNED_NEGATE_NV -e

 Based on the <mapping> parameter, the mapping function in the table
 above is evaluated for each element <e> of the input vector before
 assigning the result to the specified input va riable. Note that
 the mapping for the RGB and alpha portion of e ach input variable
 is distinct.

 Each general combiner stage computes the follo wing ten expressions
 based on the values assigned to the variables Argb, Brgb, Crgb,
 Drgb, Aa, Ba, Ca, and Da as determined by the combiner state set
 by CombinerInputNV.

 ["gcc" stands for general combiner computation .]

 gcc1rgb = [Argb[r]*Brgb[r], Argb[g]*Brgb[g], Argb[b]*Brgb[b]]

 gcc2rgb = [Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
 Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
 Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b]]

 gcc3rgb = [Crgb[r]*Drgb[r], Crgb[g]*Drgb[g], Crgb[b]*Drgb[b]]

 gcc4rgb = [Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
 Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
 Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b]]

 gcc5rgb = gcc1rgb + gcc3rgb

 gcc6rgb = gcc1rgb or gcc3rgb [see below]

 gcc1a = Aa * Ba

 gcc2a = Ca * Da

 gcc3a = gcc1a + gcc2a

 gcc4a = gcc1a or gcc2a [see below]

 The computation of gcc6rgb and gcc4a involves a special "or"
 operation. This operation evaluates to the le ft-hand operand if the
 alpha component of the combiner's SPARE0_NV re gister is less than
 0.5; otherwise, the operation evaluates to the right-hand operand.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1621

 The command

 CombinerOutputNV(GLenum stage,
 GLenum portion,
 GLenum abOutput,
 GLenum cdOutput,
 GLenum sumOutput,
 GLenum scale,
 GLenum bias,
 GLboolean abDotProduct,
 GLboolean cdDotProduct,
 GLboolean muxSum);

 controls the general combiner output operation including designating
 the register set locations where results of th e general combiner's
 three computations are written. The <stage> a nd <portion>
 parameters take the same values as the respect ive parameters for
 CombinerInputNV.

 If the <portion> parameter is ALPHA, specifyin g a non-FALSE value
 for either of the parameters <abDotProduct> or <cdDotProduct>,
 generates an INVALID_VALUE error.

 The <scale> parameter must be one of NONE, SCA LE_BY_TWO_NV,
 SCALE_BY_FOUR_NV, or SCALE_BY_ONE_HALF_NV and specifies the
 value of the combiner stage's portion scale, e ither cscalergb or
 cscalea depending on the <portion> parameter, to 1.0, 2.0, 4.0,
 or 0.5, respectively.

 The <bias> parameter must be either NONE or
 BIAS_BY_NEGATIVE_ONE_HALF_NV and specifies the value of the
 combiner stage's portion bias, either cbiasrgb or cbiasa depending
 on the <portion> parameter, to 0.0 or -0.5, re spectively. If <scale>
 is either SCALE_BY_ONE_HALF_NV or SCALE_BY_FOU R_NV, a <bias> of
 BIAS_BY_NEGATIVE_ONE_HALF_NV generates an INVA LID_OPERATION error.

 If the <abDotProduct> parameter is FALSE, then

 if <portion> is RGB, out1rgb = max(min(gcc1rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out1a = max(min((gcc1a + cbiasa) * cscalea, 1), -1)

 otherwise <portion> must be RGB and

 out1rgb = max(min((gcc2rgb + cbiasrgb) * cs calergb, 1), -1)

 If the <cdDotProduct> parameter is FALSE, then

 if <portion> is RGB, out2rgb = max(min ((gcc3rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out2a = max(min ((gcc2a + cbiasa) * cscalea, 1), -1)

 otherwise <portion> must be RGB so

 out2rgb = max(min((gcc4rgb + cbiasrgb) * cs calergb, 1), -1)

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1622

 If the <muxSum> parameter is FALSE, then

 if <portion> is RGB, out3rgb = max(min ((gcc5rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out3a = max(min ((gcc3a + cbiasa) * cscalea, 1), -1)

 otherwise

 if <portion> is RGB, out3rgb = max(min ((gcc6rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out3a = max(min ((gcc4a + cbiasa) * cscalea, 1), -1)

 out1rgb, out2rgb, and out3rgb are written to t he RGB portion of
 combiner stage's registers named by <abOutput> , <cdOutput>, and
 <sumOutput> respectively. out1a, out2a, and o ut3a are written to
 the alpha portion of combiner stage's register s named by <abOutput>,
 <cdOutput>, and <sumOutput> respectively. The parameters <abOutput>,
 <cdOutput>, and <sumOutput> must be either DIS CARD_NV or one of
 the register names from table NV_register_comb iners.1 that has an output
 status of read/write. If an output is set to DISCARD_NV, that
 output is not written to any register. The er ror INVALID_OPERATION
 is generated if <abOutput>, <cdOutput>, and <s umOutput> do not all
 name unique register names (though multiple ou tputs to DISCARD_NV
 are legal).

 When the general combiner stage's register set is written based on
 the computed outputs, the updated register set is copied to the
 register set of the subsequent combiner stage in the combiner
 sequence. Copied undefined values are likewis e undefined.
 The subsequent combiner stage following the la st active general
 combiner stage, indicated by the general combi ner stage's number
 being equal to ngc-1, in the sequence is the f inal combiner
 stage. In other words, the number of general combiner stages
 each fragment is transformed by is determined by the value of
 NUM_GENERAL_COMBINERS_NV.

 3.8.12.3 Final Combiner Stage Operation

 The final combiner stage operates differently from the general
 combiner stages. While a general combiner sta ge updates its register
 set and passes the register set to the next co mbiner stage, the final
 combiner outputs an RGBA color fcoc, the final combiner output color.
 The final combiner stage is capable of applyin g the standard OpenGL
 color sum and fog operations, but has the conf igurability to be
 used for other purposes.

 The command

 FinalCombinerInputNV(GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage) ;

 controls the assignment of all the final combi ner input variables.
 The variables A, B, C, D, E, and F are RGB vec tors. The variable
 G is an alpha scalar. The <variable> paramete r may be one of
 VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV, V ARIABLE_D_NV,
 VARIABLE_E_NV, VARIABLE_F_NV, and VARIABLE_G_N V, and determines
 which respective variable of the final combine r stage is updated.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1623

 The <input>, <mapping>, and <componentUsage> p arameters specify
 the assignment of a value for the input variab le indicated by
 <variable>.

 The <input> parameter may be any one of the re gister names from
 table NV_register_combiners.1 or be one of two pseudo-register
 names, either E_TIMES_F_NV or SPARE0_PLUS_SECO NDARY_COLOR_NV.
 The value of E_TIMES_F_NV is the product of th e value of
 variable E times the value of variable F. The value of
 SPARE0_PLUS_SECONDARY_COLOR_NV is the value th e SPARE0_NV
 register mapped using the UNSIGNED_IDENITY_NV input mapping plus
 the value of the SECONDARY_COLOR_NV register m apped using the
 UNSIGNED_IDENTITY_NV input mapping. If csc, t he color sum clamp,
 is non-FALSE, the value of SPARE0_PLUS_SECONDA RY_COLOR_NV is first
 clamped to the range [0,1]. The alpha compone nt of E_TIMES_F_NV
 and SPARE0_PLUS_SECONDARY_COLOR_NV is always z ero.

 When <variable> is one of VARIABLE_E_NV, VARIA BLE_F_NV,
 or VARIABLE_G_NV and <input> is either E_TIMES _F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV, generate an IN VALID_OPERATION
 error. When <variable> is VARIABLE_A_NV and < input> is
 SPARE0_PLUS_SECONDARY_COLOR_NV, generate an IN VALID_OPERATION
 error.

 The <componentUsage> parameter may be one of R GB, BLUE, ALPHA
 (with certain restrictions depending on the <v ariable> and <input>
 as described below).

 When the <variable> parameter is not VARIABLE_ G_NV, a
 <componentUsage> parameter of RGB indicates th at the RGB portion of
 the indicated register should be assigned to t he RGB portion of the
 combiner input variable, while an ALPHA <compo nentUsage> parameter
 indicates that the alpha portion of the indica ted register should
 be replicated across the RGB portion of the co mbiner input variable.

 When the <variable> parameter is VARIABLE_G_NV , a <componentUsage>
 parameter of ALPHA indicates that the alpha co mponent of the
 indicated register should be assigned to the a lpha portion of the
 G input variable, while a BLUE <componentUsage > parameter indicates
 that the blue component of the indicated regis ter should be assigned
 to the alpha portion of the G input variable.

 The INVALID_OPERATION error is generated when <componentUsage> is
 BLUE and <variable> is not VARIABLE_G_NV. The INVALID_OPERATION
 error is generated when <componentUsage> is RG B and <variable>
 is VARIABLE_G_NV.

 The INVALID_OPERATION error is generated when both the <input>
 parameter is either E_TIMES_F_NV or SPARE0_PLU S_SECONDARY_COLOR_NV
 and the <componentUsage> parameter is ALPHA or BLUE.

 Before the value in the register named by <inp ut> is assigned to
 the specified input variable, a range mapping is performed based
 on <mapping>. The mapping may be either UNSIG NED_IDENTITY_NV
 or UNSIGNED_INVERT_NV and operates as specifie d in table
 NV_register_combiners.4.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1624

 The final combiner stage computes the followin g expression based
 on the values assigned to the variables A, B, C, D, E, F, and G as
 determined by the combiner state set by FinalC ombinerInputNV

 fcoc = [min(ab[r] + iac[r] + D[r], 1.0),
 min(ab[g] + iac[g] + D[g], 1.0),
 min(ab[b] + iac[b] + D[b], 1.0),
 G]

 where

 ab = [A[r]*B[r], A[g]*B[g], A[b]*B[b]]
 iac = [(1.0 -A [r])*C[r], (1.0 - A[g])*C[g], (1.0 - A[b])*C[b]]

 3.8.12.4 Required State

 The state required for the register combiners is a bit indicating
 whether register combiners are enabled or disa bled, an integer
 indicating how many general combiners are acti ve, a bit indicating
 whether or not the color sum clamp to 1 should be performed, two
 RGBA constant colors, <n> sets of general comb iner stage state where
 <n> is the value of MAX_GENERAL_COMBINERS_NV, and the final
 combiner stage state. The per-stage general c ombiner state consists
 of the RGB input portion state and the alpha i nput portion state.
 Each portion (RGB and alpha) of the per-stage general combiner
 state consists of: four integers indicating th e input register for
 the four variables A, B, C, and D; four intege rs to indicate each
 variable's range mapping; four bits to indicat e whether to use the
 alpha component of the input for each variable ; a bit indicating
 whether the AB dot product should be output; a bit indicating
 whether the CD dot product should be output; a bit indicating
 whether the sum or mux output should be output ; two integers to
 maintain the output scale and bias enumerants; three integers to
 maintain the output register set names. The f inal combiner stage
 state consists of seven integers to indicate t he input register
 for the seven variables A, B, C, D, E, F, and G; seven integers to
 indicate each variable's range mapping; and se ven bits to indicate
 whether to use the alpha component of the inpu t for each variable.

 The general combiner per-stage state is initia lized as described
 in table NV_register_combiners.5.

 [Table NV_register_combiners.5]

 Component
 Portion Variable Input Usage Mapping
 ------- -------- ------------------ --------- ----------------------
 RGB A PRIMARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
 RGB B ZERO RGB UNSIGNED_INVERT_NV
 RGB C ZERO RGB UNSIGNED_IDENTITY_NV
 RGB D ZERO RGB UNSIGNED_IDENTITY_NV
 alpha A PRIMARY_COLOR_NV ALPHA UNSIGNED_IDENTITY_NV
 alpha B ZERO ALPHA UNSIGNED_INVERT_NV
 alpha C ZERO ALPHA UNSIGNED_IDENTITY_NV
 alpha D ZERO ALPHA UNSIGNED_IDENTITY_NV

 The final combiner stage state is initialized as described in table
 NV_register_combiners.6.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1625

 [Table NV_register_combiners.6]

 Component
 Variable Input Usage Mapping
 -------- -------------------------------- --------- ----------------------
 A FOG ALPHA UNSIGNED_IDENTITY_NV
 B SPARE0_PLUS_SECONDARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
 C FOG RGB UNSIGNED_IDENTITY_NV
 D ZERO RGB UNSIGNED_IDENTITY_NV
 E ZERO RGB UNSIGNED_IDENTITY_NV
 F ZERO RGB UNSIGNED_IDENTITY_NV
 G SPARE0_NV ALPHA UNSIGNED_IDENTITY_NV"

 -- NEW Section 3.8.11 "Antialiasing Application"

 Insert the following paragraph BEFORE the sect ion's first paragraph:

 "Register combiners are enabled or disabled us ing the generic Enable
 and Disable commands, respectively, with the s ymbolic constant
 REGISTER_COMBINERS_NV. If the register combin ers are enabled (and not
 in color index mode), the fragment's color val ue is replaced with fcoc,
 the final combiner output color, computed in s ection 3.8.12; otherwise,
 the fragment's color value is the result of th e fog application
 in section 3.10."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Change the first two sentences (page 182) to s ay:

 "Other commands exist to obtain state variable s that are identified by
 a category (clip plane, light, material, combi ners, etc.) as well as
 a symbolic constant. These are"

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1626

 Add to the bottom of the list of function prot otypes (page 183):

 void GetCombinerInputParameterfvNV(GLenum st age, GLenum portion,
 GLenum va riable,
 GLenum pn ame, const GLfloat *params);
 void GetCombinerInputParameterivNV(GLenum st age, GLenum portion,
 GLenum va riable,
 GLenum pn ame, const GLint *params);
 void GetCombinerOutputParameterfvNV(GLenum s tage, GLenum portion,
 GLenum p name, const GLfloat *params);
 void GetCombinerOutputParameterivNV(GLenum s tage, GLenum portion,
 GLenum p name, GLint *params);
 void GetFinalCombinerInputParameterfvNV(GLen um variable, GLenum pname,
 cons t GLfloat *params);
 void GetFinalCombinerInputParameterivNV(GLen um variable, GLenum pname,
 cons t GLfloat *params);

 Add the following paragraph to the end of the section (page 184):

 "The GetCombinerInputParameterfvNV,
 GetCombinerInputParameterivNV, GetCombinerOutp utParameterfvNV,
 and GetCombinerOutputParameterivNV parameter < stage> may be one of
 COMBINER0_NV, COMBINER1_NV, and so on, indicat ing which general
 combiner stage to query. The GetCombinerInput ParameterfvNV,
 GetCombinerInputParameterivNV, GetCombinerOutp utParameterfvNV,
 and GetCombinerOutputParameterivNV parameter < portion> may be
 either RGB or ALPHA, indicating which portion of the general
 combiner stage to query. The GetCombinerInput ParameterfvNV
 and GetCombinerInputParameterivNV parameter <v ariable> may
 be one of VARIABLE_A_NV, VARIABLE_B_NV, VARIAB LE_C_NV,
 or VARIABLE_D_NV, indicating which variable of the general
 combiner stage to query. The GetFinalCombiner InputParameterfvNV
 and GetFinalCombinerInputParameterivNV paramet er <variable> may be one
 of VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV , VARIABLE_D_NV,
 VARIABLE_E_NV, VARIABLE_F_NV, or VARIABLE_G_NV ."

Additions to the GLX Specification

 None.

GLX Protocol

 Thirteen new GL commands are added.

 The following seven rendering commands are sent to the sever as part
 of a glXRender request:

 CombinerParameterfNV
 2 12 rendering c ommand length
 2 4136 rendering c ommand opcode
 4 ENUM pname
 4 FLOAT32 param

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1627

 CombinerParameterfvNV
 2 8+4*n rendering c ommand length
 2 4137 rendering c ommand opcode
 4 ENUM pname
 0x852A n=4 GL_CONSANT_ COLOR0_NV
 0x852B n=4 GL_CONSANT_ COLOR1_NV
 0x854E n=1 GL_NUM_GENE RAL_COMBINERS_NV
 0x854F n=1 GL_COLOR_SU M_CLAMP_NV
 else n=0
 4*n LISTofFLOAT32 params

 CombinerParameteriNV
 2 12 rendering c ommand length
 2 4138 rendering c ommand opcode
 4 ENUM pname
 4 INT32 param

 CombinerParameterivNV
 2 8+4*n rendering c ommand length
 2 4139 rendering c ommand opcode
 4 ENUM pname
 0x852A n=4 GL_CONSANT_ COLOR0_NV
 0x852B n=4 GL_CONSANT_ COLOR1_NV
 0x854E n=1 GL_NUM_GENE RAL_COMBINERS_NV
 0x854F n=1 GL_COLOR_SU M_CLAMP_NV
 else n=0
 4*n LISTofINT32 params

 CombinerInputNV
 2 28 rendering c ommand length
 2 4140 rendering c ommand opcode
 4 ENUM stage
 4 ENUM portion
 4 ENUM variable
 4 ENUM input
 4 ENUM mapping
 4 ENUM componentUs age

 CombinerOutputNV
 2 36 rendering c ommand length
 2 4141 rendering c ommand opcode
 4 ENUM stage
 4 ENUM portion
 4 ENUM abOutput
 4 ENUM cdOutput
 4 ENUM sumOutput
 4 ENUM scale
 4 ENUM bias
 1 BOOL abDotProduc t
 1 BOOL cdDotProduc t
 1 BOOL muxSum
 1 BOOL unused

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1628

 FinalCombinerInputNV
 2 20 rendering c ommand length
 2 4142 rendering c ommand opcode
 4 ENUM variable
 4 ENUM input
 4 ENUM mapping
 4 ENUM componentUs age

 The remaining six commands are non-rendering co mmands. These commands
 are sent separately (i.e., not as part of a glX Render or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 GetCombinerInputParameterfvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 7 request len gth
 4 1270 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM stage
 4 ENUM portion
 4 ENUM variable
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1629

 GetCombinerInputParameterivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 7 request len gth
 4 1271 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM stage
 4 ENUM portion
 4 ENUM variable
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetCombinerOutputParameterfvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1272 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM stage
 4 ENUM portion
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1630

 GetCombinerOutputParameterivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1273 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM stage
 4 ENUM portion
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetFinalCombinerInputParameterfvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1274 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM variable
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1631

 GetFinalCombinerInputParameterivNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1275 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM variable
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

Dependencies on NV_texture_shader

 If NV_texture_shader is not supported, referen ces to HILO_NV,
 DSDT_NV, DSDT_MAG_NV, and DSDT_MAG_INTENSITY_N V base internal
 formats in this document are invalid and shoul d be ignored.

Dependencies on ARB_depth_texture and ARB_shadow -o r- SGIX_depth_texture
and SGIX_shadow

 If ARB_depth_texture and ARB_shadow -or- SGIX_ depth_texture and
 SGIX_shadow are not supported, references to t he DEPTH_COMPONENT base
 internal format in this document are invalid a nd should be ignored.

 If ARB_depth_texture and ARB_shadow are not su pported, references
 to the DEPTH_TEXTURE_MODE_ARB state in this do cument are invalid
 and should be ignored.

Errors

 INVALID_VALUE is generated when CombinerParame terfvNV
 or CombinerParameterivNV is called with <pname > set to
 NUM_GENERAL_COMBINERS and the value pointed to by <params>
 is less than one or greater or equal to the va lue of
 MAX_GENERAL_COMBINERS_NV.

 INVALID_OPERATION is generated when CombinerIn putNV is called
 with a <componentUsage> parameter of RGB and a <portion> parameter
 of ALPHA.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1632

 INVALID_OPERATION is generated when CombinerIn putNV is called
 with a <componentUsage> parameter of BLUE and a <portion> parameter
 of RGB.

 INVALID_OPERATION is generated When CombinerIn putNV is called with a
 <componentUsage> parameter of ALPHA and an <in put> parameter of FOG.

 INVALID_VALUE is generated when CombinerOutput NV is called with
 a <portion> parameter of ALPHA, but a non-FALS E value for either
 of the parameters <abDotProduct> or <cdDotProd uct>.

 INVALID_OPERATION is generated when CombinerOu tputNV is called with
 a <scale> of either SCALE_BY_ONE_HALF_NV or SC ALE_BY_FOUR_NV and
 a <bias> of BIAS_BY_NEGATIVE_ONE_HALF_NV.

 INVALID_OPERATION is generated when CombinerOu tputNV is called such
 that <abOutput>, <cdOutput>, and <sumOutput> d o not all name unique
 register names (though multiple outputs to DIS CARD_NV are legal).

 INVALID_OPERATION is generated when FinalCombi nerInputNV
 is called where <variable> is one of VARIABLE_ E_NV,
 VARIABLE_F_NV, or VARIABLE_G_NV and <input> is E_TIMES_F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV.

 INVALID_OPERATION is generated when FinalCombi nerInputNV
 is called where <variable> is VARIABLE_A_NV an d <input> is
 SPARE0_PLUS_SECONDARY_COLOR_NV.

 INVALID_OPERATION is generated when FinalCombi nerInputNV is called
 with VARIABLE_G_NV for <variable> and RGB for <componentUsage>.

 INVALID_OPERATION is generated when FinalCombi nerInputNV is called
 with a value other than VARIABLE_G_NV for <var iable> and BLUE for
 <componentUsage>.

 INVALID_OPERATION is generated when FinalCombi nerInputNV is
 called where the <input> parameter is either E _TIMES_F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV and the <compon entUsage> parameter
 is ALPHA.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1633

New State

 -- (NEW table 6.29, after p217)

Get Value Type Get Command Initial Value Descri ption Sec Attribute
--------- -------- ------------- ------------------- --------------------- ------ ---------- -------- ----------
REGISTER_COMBINERS_NV B IsEnabled False regist er 3.8.11
texture/enable
 combin ers enable
NUM_GENERAL_COMBINERS_NV Z+ GetIntegerv 1 number of active 3.8.12.1 texture
 combin er stages
COLOR_SUM_CLAMP_NV B GetBooleanv True whethe r or not 3.8.12.1 texture
 SPARE0 _PLUS_
 SECOND ARY_
 COLOR_ NV clamps
 combin er stages
CONSTANT_COLOR0_NV C GetFloatv 0,0,0,0 combin er constant 3.8.12.1 texture
 color zero
CONSTANT_COLOR1_NV C GetFloatv 0,0,0,0 combin er constant 3.8.12.1 texture
 color one
COMBINER_INPUT_NV Z8x#x2x4 GetCombinerI nputParameter*NV see 3.8.12.4 combin er input 3.8.12.2 texture
 variab les
COMBINER_COMPONENT_USAGE_NV Z3x#x2x4 GetCombinerI nputParameter*NV see 3.8.12.4 use al pha for 3.8.12.2 texture
 combin er input
COMBINER_MAPPING_NV Z8x#x2x4 GetCombinerI nputParameter*NV see 3.8.12.4 comple ment 3.8.12.2 texture
 combin er input
COMBINER_AB_DOT_PRODUCT_NV Bx#x2 GetCombinerO utputParameter*NV False output AB dot 3.8.12.3 texture
 produc t
COMBINER_CD_DOT_PRODUCT_NV Bx#x2 GetCombinerO utputParameter*NV False output CD dot 3.8.12.3 texture
 produc t
COMBINER_MUX_SUM_NV Bx#x2 GetCombinerO utputParameter*NV False output mux sum 3.8.12.3 texture
COMBINER_SCALE_NV Z2x#x2 GetCombinerO utputParameter*NV NONE output scale 3.8.12.3 texture
COMBINER_BIAS_NV Z2x#x2 GetCombinerO utputParameter*NV NONE output bias 3.8.12.3 texture
COMBINER_AB_OUTPUT_NV Z7x#x2 GetCombinerO utputParameter*NV DISCARD_NV AB out put 3.8.12.3 texture
 regist er
COMBINER_CD_OUTPUT_NV Z7x#x2 GetCombinerO utputParameter*NV DISCARD_NV CD out put 3.8.12.3 texture
 regist er
COMBINER_SUM_OUTPUT_NV Z7x#x2 GetCombinerO utputParameter*NV SPARE0_NV sum ou tput 3.8.12.3 texture
 regist er
COMBINER_INPUT_NV Z10x7 GetFinalComb inerInputParameter*NV see 3.8.12.4 final combiner 3.8.12.4 texture
 input
COMBINER_MAPPING_NV Z2x7 GetFinalComb inerInputParameter*NV UNSIGNED_IDENTITY_NV final combiner 3.8.12.4 texture
 input mapping
COMBINER_COMPONENT_USAGE_NV Z2x7 GetFinalComb inerInputParameter*NV see 3.8.12.4 use al pha for 3.8.12.4 texture
 final combiner
 input mapping

[where # is the value of MAX_GENERAL_COMBINERS_NV]

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimu m Value Description Sec Attribute
------------------------ ---- ----------- ------ ------- ---------------- ------ ---------
MAX_GENERAL_COMBINERS_NV Z+ GetIntegerv 2 Maximum num of 3.8.12 -
 general combiner
 stages

NVIDIA Implementation Details

 The effective range of the RGB portion of the final combiner should
 be [0,4] if the color sum clamp is false. Exercising this range
 requires assigning SPARE0_PLUS_SECONDARY_COLOR_NV to the D variable
 and either B or C or both B and C. In practice this is a very
 unlikely configuration.

 However due to a bug in the GeForce 256 and Quadro hardware, values
 generated above 2 in the RGB portion of the final combiner will be
 computed incorrectly. GeForce2 GTS and subsequent NVIDIA GPUs have

NV_register_combiners NVIDIA OpenGL Extension Specifications

 1634

 fixed this bug.

 The behavior of the SIGNED_NEGATE_NV mapping mode is undefined on
 GeForce3 GPUs (NV20) when used to map the initial value of a texture
 register corresponding to an enabled texture with a base internal
 format of GL_DEPTH_COMPONENT and a GL_TEXTURE_COMPARE_MODE_ARB mode of
 GL_COMPARE_R_TO_TEXTURE (or for SGIX_shadow, GL_TEXTURE_COMPARE_SGIX
 mode of true) mode when multiple enabled textures have different
 values for GL_TEXTURE_COMPARE_FUNC_ARB (or for SGIX_shadow,
 GL_TEXTURE_COMPARE_OPERATOR_SGIX). Values subsequently assigned
 to such registers and then mapped with SIGNED_NEGATIE_NV operate
 as expected. This issue does not affect GeForce4 Ti (NV25) and
 subsequent GPUs.

Revision History

 April 4, 2000 - Document that alpha component of the FOG register
 should be zero when fog is disabled. The Release 4 NVIDIA drivers
 have a bug where this is not always true (though it often still is).
 The bug is fixed in the Release 5 NVIDIA drivers.

 June 8, 2000 - The alpha component of the FOG register is not
 available for use until the final combiner. The specification
 previously incorrectly stated:

 "INVALID_OPERATION is generated When CombinerInputNV is called with
 a <portion> parameter of ALPHA and an <input> parameter of FOG."

 It is actually the <componentUsage> (not the <portion>) that should
 not be allowed to be ALPHA. The Release 4 NVIDIA drivers implemented
 the above incorrect error check. The Release 5 (and later) NVIDIA
 drivers (after June 8, 2000) have fixed this bug and correctly
 implement the error based on <componentUsage>.

 The specification previously did not allow BLUE for the
 <componentUsage> of the G variable in the final combiner. This is
 now allowed in the Release 5 (and later) NVIDIA drivers (after June
 8, 2000). The Release 4 NVIDIA drivers do not permit BLUE for the
 <componentUsage> of the G variable and generate an INVALID_OPERATION
 error if this is attempted. The Release 5 NVIDIA drivers (after June
 8, 2000) have fixed this bug and permit BLUE for the <componentUsage>
 of the G variable.

 August 11, 2000 - The "mux" operation was incorrectly documented in
 previous versions of this specification. The correct mux behave is
 as follows:

 spare0_alpha >= 0.5 ? C*D : A*B

 or

 spare0_alpha < 0.5 ? A*B : C*D

 Previous versions of this specification had the mux sense reversed.

 October 31, 2000 - The initial general combiner state
 was misdocumented for the B variable. Previously, Table
 NV_register_combiners.5 said that the RGB and alpha inputs for B
 were GL_TEXTURE#_ARB and the RGB and alpha input mappings for B
 were GL_UNSIGNED_IDENTITY_NV. The table is now updated so that the
 RGB and alpha inputs for B are GL_ZERO and the RGB and alpha input
 mappings for B are GL_UNSIGNED_INVERT_NV. The implementation has
 always behaved in the manner described by the updated specification.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 1635

 December 13, 2000 - Added a new table NV_register_combiners.2
 describing the correspondence of texture components to register
 components for texture registers. This table is based on the
 table in the EXT_texture_env_combine extension. The table includes
 correspondences for HILO, DSDT, DSDT_MAG, DSDT_MAG_INTENSITY, and
 DEPTH_COMPONENT formatted textures when supported in conjunction
 with the NV_texture_shader, SGIX_depth_texture, and SGIX_shadow
 extensions.

 Because a new table 2 was inserted, all the tables beyond it are
 renumbered.

 Document the behavior of SIGNED_NEGATE_NV in conjunction with shadow
 mapping in the "NVIDIA Implementation Details" section.

 June 28, 2002 - Properly document NV_register_combiners interactions
 with the ARB_depth_texture and ARB_shadow extensions (previously,
 the extension just addressed the SGIX versions of these extensions).

 September 30, 2003 - Remove an error (not implemented in early NVIDIA
 drivers prior to Release 4x.xx drivers; implemented in Relase
 4x.xx drivers; and again removed for Release 5x.xx drivers and up)
 that was meant to restrict the API to not allow the summing of dot
 product outputs. NVIDIA hardware handles this case correctly however
 so the functionality might as well be supported; some applications
 found it useful. The deleted error read:

 If the <abDotProduct> or <cdDotProduct> parameter is non-FALSE,
 the value of the <sumOutput> parameter must be GL_DISCARD_NV;
 otherwise, generate an INVALID_OPERATION error.

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 1636

Name

 NV_register_combiners2

Name Strings

 GL_NV_register_combiners2

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2004 .

IP Status

 NVIDIA Proprietary.

Status

 Implemented.

Version

 NVIDIA Date: February 11, 2004
 Version 1.2

Number

 227

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 Assumes support for the NV_register_combiners e xtension (version 1.4).

Overview

 The NV_register_combiners extension provides a powerful fragment
 coloring mechanism. This specification extends the register combiners
 functionality to support more color constant va lues that are unique
 for each general combiner stage.

 The base register combiners functionality suppo rts only two color
 constants. These two constants are available i n every general
 combiner stage and in the final combiner.

 When many general combiner stages are supported , more than two
 unique color constants is often required. The obvious way to extend
 the register combiners is to add several more c olor constant
 registers. But adding new unique color constan t registers is
 expensive for hardware implementation because e very color constant
 register must be available as an input to any s tage.

 In practice however, it is the total set of gen eral combiner stages
 that requires more color constants, not each an d every individual
 general combiner stage. Each individual genera l combiner stage
 typically requires only one or two color consta nts.

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 1637

 By keeping two color constant registers but mak ing these two registers
 contain two unique color constant values for ea ch general combiner
 stage, the hardware expense of supporting multi ple color constants
 is minimized. Additionally, this scheme scales appropriately as
 more general combiner stages are added.

Issues

 How do is compatibility maintained with the ori ginal register
 combiners?

 RESOLUTION: Initially, per general combiner stage constants are
 disabled and the register combiners operate a s described in the
 original NV_register_combiners specification. A distinct "per
 stage constants" enable exposes this extensio n's new functionality.

 Where do the final combiner color constant valu es come from?

 RESOLUTION: When "per stage constants" is en abled, the final
 combiner color constants continue to use the constant colors set
 with glCombinerParameterfvNV.

 Is the alpha component of the SECONDARY_COLOR_N V register now
 initialized with the expected interpolated seco ndary color's alpha
 component?

 RESOLUTION: Yes, see Revision History for d etails.

New Procedures and Functions

 void CombinerStageParameterfvNV(GLenum stage,
 GLenum pname,
 const GLfloat * params);

 void GetCombinerStageParameterfvNV(GLenum stage ,
 GLenum pname ,
 GLfloat *par ams);

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 PER_STAGE_CONSTANTS_NV 0x8535

 Accepted by the <pname> parameter of CombinerSt ageParameterfvNV
 and GetCombinerStageParameterfvNV:

 CONSTANT_COLOR0_NV (see NV_register_combiners)
 CONSTANT_COLOR1_NV (see NV_register_combiners)

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 1638

 Accepted by the <stage> parameter of CombinerSt ageParameterfvNV and
 GetCombinerStageParameterfvNV:

 COMBINER0_NV (see NV_register_combiners)
 COMBINER1_NV (see NV_register_combiners)
 COMBINER2_NV (see NV_register_combiners)
 COMBINER3_NV (see NV_register_combiners)
 COMBINER4_NV (see NV_register_combiners)
 COMBINER5_NV (see NV_register_combiners)
 COMBINER6_NV (see NV_register_combiners)
 COMBINER7_NV (see NV_register_combiners)

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.8.12 "Register Combiners Application "

 Because the alpha component of the SECONDARY_CO LOR_NV register is
 well-defined now (see Revision History) to be t he alpha value of csec,
 STRIKE this sentence:

 "The initial value of the alpha portion of regi ster SECONDARY_COLOR_NV
 is undefined."

 Add a paragraph immediately before section 3.8. 12.1:

 "The ccc0 and ccc1 values map to particular con stant color values.
 The ccc0 and ccc1 mappings depend on whether pe r-stage constants
 are enabled or not. Per-stage constants are en abled and disabled
 with the Enable and Disable commands using the symbolic constant
 PER_STAGE_CONSTANTS_NV.

 When per-stage constants are disabled, ccc0 and ccc1 are mapped to
 the register combiners' global color constant v alues, gccc0 and
 gccc1.

 When per-stage constants are enabled, ccc0 and ccc1 depend
 on the combiner stage that inputs the COLOR_CON STANT0_NV and
 COLOR_CONSTANT1_NV registers. Each general com biner stage # maps
 ccc0 and ccc1 to the per-stage values s#ccc0 an d s#ccc1 respectively.
 The final combiner maps ccc0 and ccc1 to the va lues gccc0 and gccc1
 (the same as if per-stage constants are disable d).

 gccc0, gccc1, s#ccc0, and s#ccc1 are further de scribed in the
 following section."

 -- Section 3.8.12.1 "Combiner Parameters"

 Change Table NV_register_combiners.3 to read "g ccc0" instead of
 "ccc0" and "gccc1" instead of "ccc1".

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 1639

 Change the first sentence of the last paragraph to read:

 "The values gccc0 and gccc1 named by CONSTANT_C OLOR0_NV and
 CONSTANT_COLOR1_NV are global constant colors a vailable for inputs to
 the final combiner stage and, when per-stage co nstants is disabled,
 to the general combiner stages."

 Add the following after the last paragraph in t he section:

 "Per-stage combiner parameters are specified by

 void CombinerStageParameterfvNV(GLenum stag e,
 GLenum pnam e,
 const GLflo at *params);

 The <stage> parameter is a symbolic constant of the form
 COMBINER<#>_NV, indicating the general combiner stage <#> whose
 parameter named by <pname> is to be updated. < pname> must be either
 CONSTANT_COLOR0_NV or CONSTANT_COLOR1_NV. <par ams> is a pointer
 to a group of four values to which to set the i ndicated parameter.
 The parameter names CONSTANT_COLOR0_NV and CONS TANT_COLOR1_NV
 update the per-stage color constants s#ccc0 and s#ccc1 respectively
 where # is the number of the specified general combiner stage.
 The floating-point color values are clamped to the range [0,1]
 when specified."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Add to the bottom of the list of function proto types (page 183):

 void GetCombinerStageParameterfvNV(GLenum s tage,
 GLenum p name,
 GLfloat *params);

 Change the first sentence describing the regist er combiner queries
 to mention GetCombinerStageParameterfvNV so the sentence reads:

 "The GetCombinerInputParameterfvNV, GetCombiner InputParameterivNV,
 GetCombinerOutputParameterfvNV, GetCombinerOutp utParameterivNV,
 and GetCombinerStageParameterfvNV parameter <st age> may be one of
 COMBINER0_NV, COMBINER1_NV, and so on, indicati ng which general
 combiner stage to query."

Additions to the GLX Specification

 None

NV_register_combiners2 NVIDIA OpenGL Extension Specifications

 1640

GLX Protocol

 Two new GL commands are added.

 The following rendering command is sent to the sever as part of a
 glXRender request:

 CombinerParameterfvNV
 2 8+4*n rendering command length
 2 ???? rendering command opcode
 4 ENUM pname
 0x852A n=4 GL_CONSANT_COLOR0_NV
 0x852B n=4 GL_CONSANT_COLOR1_NV
 else n=0
 4*n LISTofFLOAT32 params

 The remaining command is a non-rendering comman d. This commands
 is sent separately (i.e., not as part of a glXR ender or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 GetCombinerStageParameterfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 ???? vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM stage
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m = (n==1 ? 0 : n)
 4 unused
 4 CARD32 unused

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

Errors

 None

NVIDIA OpenGL Extension Specifications NV_register_combiners2

 1641

New State

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------- ---- --------------------- -------- ------------- ------------------ ------ -- --------------
PER_STAGE_CONSTANTS_NV B IsEnabled False enable for 3.8.12 texture/enable
CONSTANT_COLOR0_NV Cx# GetCombinerStageParam eterfvNV 0,0,0,0 per-stage constant 3.8.12 .1 texture
 color zero
CONSTANT_COLOR1_NV Cx# GetCombinerStageParam eterfvNV 0,0,0,0 per-stage constant 3.8.12 .1 texture
 color one

[where # is the value of MAX_GENERAL_COMBINERS_NV]

New Implementation State

 None

Revision History

 Version 1.2 (February 11, 2004) - When describing the
 per-fragment register initialization within the combiners, the
 NV_register_combiners specification says "The initial value of the
 alpha portion of register SECONDARY_COLOR_NV is undefined." While
 this is true of NV1x GPUs, NV2x and beyond GPUs can properly
 initialize the alpha component of the SECONDARY_COLOR_NV
 register with the expected interpolated secondary color alpha.
 Unfortunately, due to a driver bug, the alpha components was always
 initialized to 1.0 in driver versions 56.90 (circa February 2004)
 and before. Drivers subsequent to 56.90 have this problem fixed.
 This specification is updated to indicate that SECONDARY_COLOR_NV
 initialization is well-defined and what you would expect now.

 Version 1.1 (April 28, 2003) - The original specification failed
 to specify what should happen if a color component parameter for
 CombinerStageParameter*NV is outside the [0,1] range. Such values
 should be clamped to the [0,1] range.

 NVIDIA drivers prior to May 2003 incorrectly failed to clamp color
 component values specified with CombinerStageParameter*NV to [0,1].
 Instead, approximately "x-floor(x)" where x is a component value
 is used for rendering.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 1642

Name

 NV_texgen_emboss

Name Strings

 GL_NV_texgen_emboss

Notice

 Copyright NVIDIA Corporation, 1999, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Deprecated. Future NVIDIA drivers will NOT sup port this extension.
 Developers are strongly encouraged to use NV_ve rtex_program instead
 of this extension.

Version

 NVIDIA Date: February 20, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texgen_e mboss.txt#22 $

Number

 193

Dependencies

 ARB_multitexture.

 Written based on the wording of the OpenGL 1.2 specification and the
 ARB_multitexture extension.

Overview

 This extension provides a new texture coordinat e generation mode
 suitable for multitexture-based embossing (or b ump mapping) effects.

 Given two texture units, this extension generat es the texture
 coordinates of a second texture unit (an odd-nu mbered texture unit)
 as a perturbation of a first texture unit (an e ven-numbered texture
 unit one less than the second texture unit). T he perturbation is
 based on the normal, tangent, and light vectors . The normal vector
 is supplied by glNormal; the light vector is su pplied as a direction
 vector to a specified OpenGL light's position; and the tanget
 vector is supplied by the second texture unit's current texture
 coordinate. The perturbation is also scaled by program-supplied
 scaling constants.

 If both texture units are bound to the same tex ture representing a
 height field, by subtracting the difference bet ween the resulting two
 filtered texels, programs can achieve a per-pix el embossing effect.

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 1643

Issues

 Can you do embossing on any texture unit?

 NO. Just odd numbered units. This meets a c onstraint of the
 proposed hardware implementation, and because embossing takes two
 texture units anyway, it shouldn't be a real limitation.

 Can you just enable one coordinate of a texture unit for embossing?

 Yes but NOT REALLY. The texture coordinate g eneration formula
 is specified such that only when ALL the coor dinates are enabled
 and are using embossing, do you get the embos sing computation.
 Otherwise, you get undefined values for textu re coordinates enabled
 for texture coordinate generation and setup f or embossing.

 Does the light specified have to be enabled for embossing to work?

 Yes, currently. But perhaps we could require implementations to
 enable a phantom light (the light colors woul d be black).

 Could the emboss constant just be the reciproca l of the width and
 height of the texture units texture if that's w hat the programmer
 will have it be most of the time?

 NO. Too much work and there may be reasons f or the programmer to
 control this.

 OpenGL's base texture environment functionality isn't powerful enough
 to do the subtraction needed for embossing. Wh ere would you get
 powerful enough texture environment functionali ty.

 Another extension. Try NV_register_combiners .

 What is the interpretation of CT?

 For the purposes of embossing, CT should be t hought of as the
 vertex's tangent vector. This tangent vector indicates the direction
 on the "surface" where PCTs is not changing a nd PCTt is increasing.

 Are the CT and PCT variables the user-supplied current texture
 coordinates?

 YES. Except when the texture unit's texture coordinate evaluator
 is enabled, then CT and PCT use the respectiv e evaluated texture
 coordinates.

 This extension specification's language "Deno te as CT the texture
 unit's current texture coordinates" and "Deno te as PCT the previous
 texture unit's current texture coordinates" r efers to the "current
 texture coordinates" OpenGL state which is th e state specified
 via glTexCoord. Plus the exception for evalu ators.

 To be explicit, PCT is NOT the result of texg en or the texture
 matrix. Likewise, CT is NOT the result of te xgen or the
 texture matrix. PCT and CT are the respectiv e texture unit's

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 1644

 evaluated texture coordinate if the vertex is evaluated with
 texture coordinate evaluation enabled, otherw ise if the vertex is
 generated via vertex arrays with the respecti ve texture coordinate
 array enabled, the texture coordinate from th e texture coordinate
 array, otherwise the respective current textu re coordinate is used.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 EMBOSS_MAP_NV 0x855F

 When the <pname> parameter of TexGendv, TexGenf v, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may a lso contain
 EMBOSS_MAP_NV.

 Accepted by the <pname> parameters of GetTexGen dv, GetTexGenfv,
 GetTexGeniv, TexGend, TexGendv, TexGenf, TexGen fv, TexGeni, and
 TexGeniv:

 EMBOSS_LIGHT_NV 0x855D
 EMBOSS_CONSTANT_NV 0x855E

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates "

 Change the last sentence in the 1st paragraph to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the s ymbolic constants
 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, or EMB OSS_MAP_NV."

 Add these paragraphs after the 4th paragraph:

 "When used with a suitable texture, suitable explicit texture
 coordinates, a suitable (extended) texture en vironment,
 suitable lighting parameters, and suitable em bossing parameters,
 calling TexGen with TEXTURE_GEN_MODE indicati ng EMBOSS_MAP_NV
 can simulate the lighting effect of embossing on a polygon.
 The error INVALID_ENUM occurs when the active texture unit has an
 even number.

 The emboss constant and emboss light paramete rs for controlling
 the EMBOSS_MAP_NV mode are specified by calli ng TexGen with pname
 set to EMBOSS_CONSTANT_NV and EMBOSS_LIGHT_NV respectively.

 When pname is EMBOSS_CONSTANT_NV, param or wh at params points
 to is a scalar value. An error INVALID_ENUM occurs if pname is
 EMBOSS_CONSTANT_NV and coord is R or Q. An er ror INVALID_ENUM
 also occurs if pname is EMBOSS_CONSTANT_NV an d the active texture
 unit number is even.

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 1645

 When pname is EMBOSS_LIGHT_NV, param or what params points to is
 a symbolic constant of the form LIGHTi, indic ating that light i
 is to have the specified parameter set. An e rror INVALID_ENUM
 occurs if pname is EMBOSS_LIGHT_NV and coord is R or Q. An error
 INVALID_ENUM occurs if pname is EMBOSS_LIGHT_ NV and the active
 texture unit number is even. An error INVALI D_ENUM occurs if
 pname is EMBOSS_LIGHT_NV and the value i for LIGHTi is negative
 or is greater than or equal to the value of M AX_LIGHTS.

 If TEXTURE_GEN_MODE indicates EMBOSS_MAP_NV, the generation function
 for the coordinates S, T, R, and Q is compute d as follows.

 Denote as L the light direction vector from t he vertex's eye
 position to the position of the light specifi ed by the coordinate's
 EMBOSS_LIGHT_NV state (the direction vector i s computed as described
 in Section 3.13.1).

 Denote as N the current normal after transfor mation to eye
 coordinates.

 Denote as CT the texture unit's current textu re coordinates
 transformed to eye coordinates by normal tran sformation (as
 described in Section 3.10.3) and normalized.

 However, if the vertex is evaluated (as descr ibed in Section 5.1)
 and the texture unit's texture coordinate map is enabled, use the
 texture unit's evaluated texture coordinate t o compute CT.

 Denote as B the cross product of N and the <s ,t,r> vector of CT.

 Bx = Ny*CTr - CTt*Nz
 By = Nz*CTs - CTr*Nx
 Bz = Nx*CTt - CTs*Ny

 Denote as BN the normalized version of the ve ctor B.

 BNx = Bx / sqrt(Bx*Bx + By*By + Bz*Bz);
 BNy = By / sqrt(Bx*Bx + By*By + Bz*Bz);
 BNz = Bz / sqrt(Bx*Bx + By*By + Bz*Bz);

 Denote as T the cross product of B and N.

 Tx = BNy*Nz - Ny*BNz
 Ty = BNz*Nx - Nz*BNx
 Tz = BNx*Ny - Nx*BNy

 Observe that BN and T are orthonormal.

 Denote as PCT the previous texture unit's cur rent texture
 coordinates. If the number of the texture un it for the texture
 coordinates being generated is n, then the pr evious texture unit
 is texture unit number n-1. Note that n is r estricted to be odd.

 However, if the vertex is evaluated (as descr ibed in Section 5.1)
 and the previous texture unit's texture coord inate map is enabled,

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 1646

 use the previous texture unit's evaluated tex ture coordinate to
 compute PCT.

 Denote Ks as the S coordinate's EMBOSS_CONSTA NT_NV state. Denote Kt
 as the T coordinate's EMBOSS_CONSTANT_NV stat e. These constants
 should typically be set to the reciprocal of the width and height
 respectively of the texture map used for embo ssing.

 Denote E as follows:

 Es = PCTs + Ks * (Lx*BNx + Ly*BNy + Lz*BNz) * PCTq
 Et = PCTt - Kt * (Lx*Tx + Ly*Ty + Lz*Tz) * PCTq
 Er = PCTr
 Eq = PCTq

 Then the value assigned to an s, t, r, and q coordinates are Es,
 Et, Er, and Eq respectively. However, for th is assignment to
 occur, the following three conditions must be met. First, all the
 texture coordinate generation modes of all th e texture coordinates
 (S, T, R, and Q) of the texture unit must be set to EMBOSS_MAP_NV.
 Second, all the texture coordinate generation modes of the texture
 unit must be enabled. Third, the EMBOSS_LIGH T_NV parameters of
 coordinates S and T must be identical and the light and lighting
 must be enabled. If these conditions are not met, the values of
 all coordinates in the texture unit with the EMBOSS_MAP_NV mode
 are undefined."

 The last paragraph's first sentence should be changed to:

 "The state required for texture coordinate ge neration comprises
 a five-valued integer for each coordinate ind icating coordinate
 generation mode, and a bit for each coordinat e to indicate whether
 texture coordinate generation is enabled or d isabled. In addition,
 four coefficients are required for the four c oordinates for each
 of EYE_LINEAR and OBJECT_LINEAR; also, an emb oss constant and
 emboss light are required for each of the fou r coordinates....
 The initial values for emboss constants and e mboss lights are 1.0
 and LIGHT0 respectively."

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 1647

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is calle d with a <pname>
 of TEXTURE_GEN_MODE, a <param> value or value of what <params>
 points to of EMBOSS_MAP_NV, and the active tex ture unit is even.

 INVALID_ENUM is generated when TexGen is calle d with a <pname>
 of EMBOSS_CONSTANT_NV and the active texture u nit is even.

 INVALID_ENUM is generated when TexGen is calle d with a <pname>
 of EMBOSS_LIGHT_NV and the active texture unit is even.

 INVALID_ENUM is generated when TexGen is calle d with a <coord>
 of R or Q when <pname> indicates EMBOSS_CONSTA NT_NV.

 INVALID_ENUM is generated when TexGen is calle d with a <coord>
 of R or Q when <pname> indicates EMBOSS_LIGHT_ NV.

 INVALID_ENUM is generated when TexGen is calle d with a <pname>
 of EMBOSS_LIGHT_NV and the value of i for the parameter LIGHTi is
 negative or is greater than or equal to the va lue of MAX_LIGHTS.

New State

(table 6.14, p204) change the entry for TEXTURE_GEN _MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
------------------ ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)
EMBOSS_CONSTANT_NV 4xR GetTexGenfv 1.0 Scaling constant 2.10.4 texture
 for emboss texgen
EMBOSS_LIGHT_NV 4xZ8* GetTexGeniv LIGHT0 Light used for 2.10.4 texture
 embossing.

When ARB_multitexture is supported, the Type column is per-texture unit.

(the TEXTURE_GEN_MODE type changes from 4xZ3 to 4xZ 5)

New Implementation State

 None

Revision History

 2001/02/20 - Status changed to deprecated.

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

1648

Name

 NV_texgen_reflection

Name Strings

 GL_NV_texgen_reflection

Notice

 Copyright NVIDIA Corporation, 1999.

Status

 Shipping (version 1.0)
 NVIDIA, Mesa 3.1, and ATI support this.

 This extension's texture coordinate generation functionality is
 incoporated into the ARB_texture_cube_map exten sion. The same
 enumerant values are used.

 The ARB_texture_cube_map functionality, includi ng this texgen
 reflection functionality, is part of OpenGL 1.3 and subsequent
 revisions of the core OpenGL standard.

Version

 June 17, 2003
 $Date: 2003/06/17 $ $Revision: #10 $

Number

 179

Dependencies

 Written based on the wording of the OpenGL 1.2 specification but
 not dependent on it.

Overview

 This extension provides two new texture coordin ate generation modes
 that are useful texture-based lighting and envi ronment mapping.
 The reflection map mode generates texture coord inates (s,t,r)
 matching the vertex's eye-space reflection vect or. The reflection
 map mode is useful for environment mapping with out the singularity
 inherent in sphere mapping. The normal map mod e generates texture
 coordinates (s,t,r) matching the vertex's trans formed eye-space
 normal. The normal map mode is useful for soph isticated cube map
 texturing-based diffuse lighting models.

NVIDIA OpenGL Extension Specifications NV_texgen_reflection

 1649

Issues

 Should we place the normal/reflection vector in the (s,t,r) texture
 coordinates or (s,t,q) coordinates?

 RESOLUTION: (s,t,r). Even if the proposed h ardware uses "q" for
 the third component, the API should claim to support generation of
 (s,t,r) and let the texture matrix (through a concatenation with
 the user-supplied texture matrix) move "r" in to "q".

 Should you be able to have some texture coordin ates computing
 REFLECTION_MAP_NV and others not? Same questio n with NORMAL_MAP_NV.

 RESOLUTION: YES. This is the way that SPHERE _MAP works. It is
 not clear that this would ever be useful thou gh.

 Should something special be said about the hand ling of the q
 texture coordinate for this spec?

 RESOLUTION: NO. But the following paragraph is useful for
 implementors concerned about the handling of q.

 The REFLECTION_MAP_NV and NORMAL_MAP_NV modes are intended to supply
 reflection and normal vectors for cube map te xturing hardware.
 When these modes are used for cube map textur ing, the generated
 texture coordinates can be thought of as a re flection vector.
 The value of the q texture coordinate then si mply scales the
 vector but does not change its direction. Be cause only the vector
 direction (not the vector magnitude) matters for cube map texturing,
 implementations are free to leave q undefined when any of the s,
 t, or r texture coordinates are generated usi ng REFLECTION_MAP_NV
 or NORMAL_MAP_NV.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 NORMAL_MAP_NV 0x8511
 REFLECTION_MAP_NV 0x8512

 When the <pname> parameter of TexGendv, TexGenf v, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may a lso contain
 NORMAL_MAP_NV or REFLECTION_MAP_NV.

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates "

 Change the last sentence in the 1st paragraph to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the s ymbolic constants

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

 1650

 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLEC TION_MAP_NV, or
 NORMAL_MAP_NV."

 Add these paragraphs after the 4th paragraph:

 "If TEXTURE_GEN_MODE indicates REFLECTION_MAP _NV, compute the
 reflection vector r as described for the SPHE RE_MAP mode. Then the
 value assigned to an s coordinate (the first TexGen argument value
 is S) is s = rx; the value assigned to a t co ordinate is t = ry;
 and the value assigned to a r coordinate is r = rz. Calling TexGen
 with a <coord> of Q when <pname> indicates RE FLECTION_MAP_NV
 generates the error INVALID_ENUM.

 If TEXTURE_GEN_MODE indicates NORMAL_MAP_NV, compute the normal
 vector n' as described in section 2.10.3. Th en the value assigned
 to an s coordinate (the first TexGen argument value is S) is s =
 nfx; the value assigned to a t coordinate is t = nfy; and the
 value assigned to a r coordinate is r = nfz. (The values nfx, nfy,
 and nfz are the components of nf.) Calling T exGen with a <coord>
 of Q when <pname> indicates REFLECTION_MAP_NV generates the error
 INVALID_ENUM.

 The last paragraph's first sentence should be changed to:

 "The state required for texture coordinate ge neration comprises a
 five-valued integer for each coordinate indic ating coordinate
 generation mode, ..."

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is calle d with a <coord> of Q
 when <pname> indicates REFLECTION_MAP_NV or NO RMAL_MAP_NV.

NVIDIA OpenGL Extension Specifications NV_texgen_reflection

 1651

New State

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
---------------- ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation State

 None

Revision History

 None

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

1652

Name

 NV_texture_compression_vtc

Name Strings

 GL_NV_texture_compression_vtc

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2004.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: April 20, 2004
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_ compression_vtc.txt#3 $

Number

 228

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 ARB_texture_compression is required.

 EXT_texture_compression_s3tc is required.

Overview

 This extension adds support for the VTC 3D text ure compression
 formats, which are analogous to the S3TC textur e compression formats,
 with the addition of some retiling in the Z dir ection. VTC has the
 same compression ratio as S3TC and uses 4x4x1, 4x4x2, or 4x4x4
 blocks.

Issues

 * Should the enumerants' (1) values and (2) n ames be reused from
 the S3TC extension?

 RESOLVED: Yes and yes. There is such a clo se correspondence
 between the formats that introducing new va lues or names would
 serve no purpose.

 * Should the block alignment restrictions dif fer in any way from
 the block alignment restrictions in the S3T C extension?

 RESOLVED: No, except for the addition of th e Z-direction block
 alignment restriction for CompressedTexSubI mage3D, which is
 analogous to the X and Y restrictions.

NVIDIA OpenGL Extension Specifications NV_texture_compression_vtc

 1653

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage3D and
 CompressedTexImage3DARB and the <format> parame ter of
 CompressedTexSubImage2DARB:

 COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
 COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
 COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
 COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify the paragraph added to the end of the Te xSubImage discussion
 (page 123) by EXT_texture_compression_s3tc to s ay:

 "If the internal format of the texture image be ing modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
 texture is stored using one of several S3TC or VTC compressed texture
 image formats. Such images are easily edited a long 4x4 texel
 boundaries, so the limitations on TexSubImage2D , TexSubImage3D,
 CopyTexSubImage2D, and CopyTexSubImage3D parame ters are relaxed.
 These commands will result in an INVALID_OPERAT ION error only if one
 of the following conditions occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <xoffset> or <yoffset> is not a multiple of four."

 Modify the paragraph added to Section 3.8.2 "Al ternate Image
 Specification" at the end of the CompressedTexI mage section by
 EXT_texture_compression_s3tc to say:

 "If <internalformat> is COMPRESSED_RGB_S3TC_DXT 1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT, the compressed t exture is stored using
 one of several S3TC or VTC compressed texture i mage formats. The
 S3TC texture compression algorithm supports onl y 2D images without
 borders, while the VTC texture compression algo rithm supports only
 3D images without borders. CompressedTexImage1 DARB produces an
 INVALID_ENUM error if <internalformat> is an S3 TC/VTC format.
 CompressedTexImage2DARB and CompressedTexImage3 DARB will produce an
 INVALID_OPERATION error if <border> is non-zero ."

 Modify the paragraph added to Section 3.8.2 "Al ternate Image
 Specification" at the end of the CompressedTexS ubImage section by
 EXT_texture_compression_s3tc to say:

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

 1654

 "If the internal format of the texture image be ing modified is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT, the
 texture is stored using one of several S3TC or VTC compressed texture
 image formats. Since these algorithms support only 2D and 3D images,
 CompressedTexSubImage1DARB produces an INVALID_ ENUM error if <format>
 is an S3TC/VTC format. Since S3TC/VTC images a re easily edited along
 4x4 and 4x4x4 texel boundaries, the limitations on
 CompressedTexSubImage2D and CompressedTexSubIma ge3D are relaxed.
 CompressedTexSubImage2D and CompressedTexSubIma ge3D will result in an
 INVALID_OPERATION error only if one of the foll owing conditions
 occurs:

 * <width> is not a multiple of four or equa l to TEXTURE_WIDTH.
 * <height> is not a multiple of four or equ al to TEXTURE_HEIGHT.
 * <depth> is not a multiple of four or equa l to TEXTURE_DEPTH.
 * <xoffset>, <yoffset>, or <zoffset> is not a multiple of four."

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None.

GLX Protocol

 None.

Errors

 The INVALID_ENUM error that was generated by Co mpressedTexImage3DARB
 if <internalformat> is COMPRESSED_RGB_S3TC_DXT1 _EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT no longer occurs.

 INVALID_OPERATION is generated by CompressedTex Image3DARB if
 <internalformat> is COMPRESSED_RGB_S3TC_DXT1_EX T,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT and <border> is n ot equal to zero.

 The INVALID_ENUM error that was generated by
 CompressedTexSubImage3DARB if <format> is
 COMPRESSED_RGB_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT3_EXT, or COMPRESSED_RGBA_S3TC_DXT5_EXT no
 longer occurs.

NVIDIA OpenGL Extension Specifications NV_texture_compression_vtc

 1655

 INVALID_OPERATION is generated by TexSubImage3D or
 CopyTexSubImage3D if INTERNAL_FORMAT is COMPRES SED_RGB_S3TC_DXT1_EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, or
 COMPRESSED_RGBA_S3TC_DXT5_EXT and any of the fo llowing apply: <width>
 is not a multiple of four or equal to TEXTURE_W IDTH; <height> is not
 a multiple of four or equal to TEXTURE_HEIGHT; <xoffset> or <yoffset>
 is not a multiple of four.

 INVALID_OPERATION is generated by CompressedTex SubImage3D
 if INTERNAL_FORMAT is COMPRESSED_RGB_S3TC_DXT1_ EXT,
 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT,
 or COMPRESSED_RGBA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <depth> is not
 a multiple of four or equal to TEXTURE_DEPTH; < xoffset> <yoffset>,
 or <zoffset> is not a multiple of four.

 See also errors in the GL_ARB_texture_compressi on and
 GL_EXT_texture_compression_s3tc specifications.

New State

 None.

Appendix

 VTC Compressed Texture Image Formats

 Each VTC compression format is similar to a cor responding S3TC
 compression format, but where an S3TC block enc odes a 4x4 block of
 texels, a VTC block encodes a 4x4x1, 4x4x2, or 4x4x4 block of texels.
 If the depth of the image is four or greater, 4 x4x4 blocks are used,
 and if the depth is 1 or 2, 4x4x1 or 4x4x2 bloc ks are used.

 The size in bytes of a VTC image with dimension s w, h, and d is:

 ceil(w/4) * ceil(h/4) * d * blocksize,

 where blocksize is the size of an analogous 4x4 S3TC block and is
 either 8 or 16 bytes.

 The block containing a texel at location (x,y,z) starts at an offset
 inside the image of:

 blocksize * min(d,4) * (floor(x/4) +
 ceil(w/4) * (floor(y/4) +
 ceil(h /4) * floor(z/4)))

 bytes.

 A 4x4x1 block of each of the four formats is st ored in exactly the
 same way that a 4x4 block of the analogous S3TC format is stored.

 A 4x4x2 or 4x4x4 block is stored as two or four consecutive 4x4
 blocks of the analogous S3TC format, one for ea ch layer inside the
 block. For example, a 4x4x2 DXT1 block consist s of 16 bytes in

NV_texture_compression_vtc NVIDIA OpenGL Extension Specifications

 1656

 total. The first 8 bytes encode the texels at locations (0,0,0)
 through (3,3,0), and the second 8 bytes encode the texels at
 locations (0,0,1) through (3,3,1).

 For definitions of the S3TC formats, please ref er to the
 EXT_texture_compression_s3tc specification.

Revision History

 April 20, 2004 - Relax restrictions on depth an d zoffset for
 CopyTexSubImage3D and TexSubImage3D commands. Previous restrictions
 required 1) the image level's depth to be 1 for CopyTexSubImage3D to
 work (making the command useless in practice) a nd 2) the depth and
 zoffset for TexSubImage3D to be a multiple 4. If these restrictions
 were violated, an INVALID_OPERATION error was d ocumented to be
 generated. NVIDIA Release 60 drivers after Apr il 20, 2004 relax
 these restrictions. Note the restrictions on C ompressedTexSubImage3D
 that depth and zoffset must be multiples of 4 s till exist because the
 VTC block is a 3D 4x4x4 block (or 4x4x2 and 4x4 x1 in the end cases).

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 1657

Name

 NV_texture_env_combine4

Name Strings

 GL_NV_texture_env_combine4

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: January 18, 2001
 $Date: 1999/06/21 13:54:17 $ $Revision: 1.2 $
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_ env_combine4.txt#13 $

Number

 195

Dependencies

 EXT_texture_env_combine is required and is modi fied by this extension
 ARB_multitexture affects the definition of this extension

Overview

 New texture environment function COMBINE4_NV al lows programmable
 texture combiner operations, including

 ADD Arg0 * Arg1 + Arg2 * Arg3
 ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

 where Arg0, Arg1, Arg2 and Arg3 are derived fro m

 ZERO the value 0
 PRIMARY_COLOR_EXT primary color of in coming fragment
 TEXTURE texture color of co rresponding texture unit
 CONSTANT_EXT texture environment constant color
 PREVIOUS_EXT result of previous texture environment; on
 texture unit 0, thi s maps to PRIMARY_COLOR_EXT
 TEXTURE<n>_ARB texture color of th e <n>th texture unit

 In addition, the result may be scaled by 1.0, 2 .0 or 4.0.

Issues

 None

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 1658

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is TE XTURE_ENV_MODE

 COMBINE4_NV 0x8503

 Accepted by the <pname> parameter of GetTexEnvf v, GetTexEnviv,
 TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when t he <target> parameter
 value is TEXTURE_ENV

 SOURCE3_RGB_NV 0x8583
 SOURCE3_ALPHA_NV 0x858B
 OPERAND3_RGB_NV 0x8593
 OPERAND3_ALPHA_NV 0x859B

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is SO URCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT, or SOURCE 3_ALPHA_NV

 ZERO
 TEXTURE<n>_ARB

 where <n> is in the range 0 to NUMBER_OF_TEXTUR E_UNITS_ARB-1.

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is OP ERAND0_RGB_EXT,
 OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV

 SRC_COLOR
 ONE_MINUS_SRC_COLOR
 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is OP ERAND0_ALPHA_EXT,
 OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPER AND3_ALPHA_NV

 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 Added to subsection 3.8.9, before the paragraph describing the state
 requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE4_NV , the form of the
 texture function depends on the values of COMBI NE_RGB_EXT and

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 1659

 COMBINE_ALPHA_EXT, according to table 3.21. Th e RGB and ALPHA results
 of the texture function are then multiplied by the values of
 RGB_SCALE_EXT and ALPHA_SCALE, respectively. T he results are clamped
 to [0,1]. If the value of COMBINE_RGB_EXT or C OMBINE_ALPHA_EXT is not
 one of the listed values, the result is undefin ed.

 COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT Texture Function
 ------------------ ----------------
 ADD Arg0 * Arg1 + Arg2 * Arg3
 ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

 Table 3.21: COMBINE4_NV texture functions

 The arguments Arg0, Arg1, Arg2 and Arg3 are det ermined by the values
 of SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPER AND<n>_RGB_EXT and
 OPERAND<n>_ALPHA_EXT. In the following two tab les, Ct and At are the
 filtered texture RGB and alpha values; Cc and A c are the texture
 environment RGB and alpha values; Cf and Af are the RGB and alpha of
 the primary color of the incoming fragment; and Cp and Ap are the RGB
 and alpha values resulting from the previous te xture environment. On
 texture environment 0, Cp and Ap are identical to Cf and Af,
 respectively. Ct<n> and At<n> are the filtered texture RGB and alpha
 values from the texture bound to the <n>th text ure unit. If the <n>th
 texture unit is disabled, the value of each com ponent is 1. The
 relationship is described in tables 3.22 and 3. 23.

 SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
 ----------------- -------------- --------
 ZERO SRC_COLOR 0
 ONE_MINUS_SRC_COLOR 1
 SRC_ALPHA 0
 ONE_MINUS_SRC_ALPHA 1
 TEXTURE SRC_COLOR Ct
 ONE_MINUS_SRC_COLOR (1-Ct)
 SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_COLOR Cc
 ONE_MINUS_SRC_COLOR (1-Cc)
 SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_COLOR Cf
 ONE_MINUS_SRC_COLOR (1-Cf)
 SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_COLOR Cp
 ONE_MINUS_SRC_COLOR (1-Cp)
 SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)
 TEXTURE<n>_ARB SRC_COLOR Ct<n>
 ONE_MINUS_SRC_COLOR (1-Ct<n>)
 SRC_ALPHA At<n>
 ONE_MINUS_SRC_ALPHA (1-At<n>)

 Table 3.22: Arguments for COMBINE_RGB_EXT f unctions

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 1660

 SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EX T Argument
 ----------------- -------------- --------
 ZERO SRC_ALPHA 0
 ONE_MINUS_SRC_ALPHA 1
 TEXTURE SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)
 TEXTURE<n>_ARB SRC_ALPHA At<n>
 ONE_MINUS_SRC_ALPHA (1-At<n>)

 Table 3.23: Arguments for COMBINE_ALPHA_EXT functions

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT or SOURCE3 _ALPHA_NV is not one of
 ZERO, TEXTURE, CONSTANT_EXT, PRIMARY_COLOR_EXT, PREVIOUS_EXT or
 TEXTURE<n>_ARB, where <n> is in the range 0 to
 NUMBER_OF_TEXTURE_UNITS_ARB-1.

 INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT,
 OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV is not one of
 SRC_COLOR, ONE_MINUS_SRC_COLOR, SRC_ALPHA or ON E_MINUS_SRC_ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
 OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPER AND3_ALPHA_NV is not
 one of SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 1661

Modifications to EXT_texture_env_combine

 This extension relaxes the restrictions on SOUR CE<n>_RGB_EXT,
 SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and OPE RAND<n>_ALPHA_EXT for
 use with EXT_texture_env_combine. All params s pecified by Table 3.22
 and Table 3.23 are valid.

Dependencies on ARB_multitexture

 If ARB_multitexture is not implemented, all ref erences to
 TEXTURE<n>_ARB and NUMBER_OF_TEXTURE_UNITS_ARB are deleted.

New State

 Get Value Get Command Type In itial Value Attribute
 --------- ----------- ---- -- ----------- ---------
 SOURCE3_RGB_NV GetTexEnviv n x Z5+n ZE RO texture
 SOURCE3_ALPHA_NV GetTexEnviv n x Z5+n ZE RO texture
 OPERAND3_RGB_NV GetTexEnviv n x Z2 ON E_MINUS_SRC_COLOR texture
 OPERAND3_ALPHA_NV GetTexEnviv n x Z2 ON E_MINUS_SRC_ALPHA texture

New Implementation Dependent State

 None

NVIDIA Implementation Details

 Because of a hardware limitation, TNT, TNT2, Ge Force, and Quadro
 treat "scale by 4.0" with the COMBINE_RGB_EXT o r COMBINE_ALPHA_EXT
 mode of ADD_SIGNED_EXT as "scale by 2.0".

NV_texture_expand_normal NVIDIA OpenGL Extension Specifications

 1662

Name

 NV_texture_expand_normal

Name Strings

 GL_NV_texture_expand_normal

Notice

 Copyright NVIDIA Corporation, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented, November 2002

Version

 Last Modified: $Date: 2005/06/16 $
 NVIDIA Revision: 4

Number

 286

Support

 NVIDIA plans to discontinue this extension for future GPU
 architectures. Support for NV3x (GeForce FX), NV4x (GeForce 6
 Series), and G7x (GeForce 7x00) architectures w ill continue.

 As an alternative to the EXT_texture_expand_nor mal functionality,
 developers can either use the signed fixed-poin t texture formats
 provided by NV_texture_shader (such as GL_SIGNE D_RGBA8_NV) or perform
 the "expand normal" operation with shader instr uctions (typically
 just a MAD)..

Dependencies

 OpenGL 1.1 is required.

Overview

 This extension provides a remapping mode where unsigned texture
 components (in the range [0,1]) can be treated as though they
 contained signed data (in the range [-1,+1]). This allows
 applications to easily encode signed data into unsigned texture
 formats.

 The functionality of this extension is nearly i dentical to the
 EXPAND_NORMAL_NV remapping mode provided in the NV_register_combiners
 extension, although it applies even if register combiners are used.

NVIDIA OpenGL Extension Specifications NV_texture_expand_normal

 1663

Issues

 (1) When is the remapping applied?

 RESOLVED: It would be possible to remap afte r loading each texel,
 remap after all filtering is done, or somethi ng in between.
 Ignoring implementation-dependent rounding er rors, it really
 doesn't matter.

 The spec language says that the remapping is applied after filtering
 texel values within each level. For LINEAR_M IPMAP_LINEAR, this
 means that the remapping is "done" twice. Th is approach was chosen
 solely to simplify the spec language, and doe s not necessarily
 reflect NVIDIA's implementation.

 (2) Should the remapping mode apply to textures with signed
 components?

 RESOLVED: No -- the EXPAND_NORMAL_NV mapping is ignored for
 such textures.

 (3) NV_texture_shader provides several internal formats with a mix
 of signed and unsigned components. For example , the base formats
 DSDT_MAG_NV, and DSDT_MAG_INTENSITY_NV have thi s property, and
 there is a variant of RGBA where the RGB compon ents are signed,
 but the A component is unsigned. What should h appen in this case?

 RESOLVED: The unsigned components are remapp ed; the signed
 components are unmodified.

 (4) What should be said about signed fixed-poin t precision and range
 of actual implementations?

 RESOLVED: The fundamental problem is that it is not possible
 to derive a linear mapping taking unsigned va lues that exactly
 represents -1.0, 0.0, and +1.0.

 The mapping chosen for current NVIDIA impleme ntations does not
 exactly represent +1.0. For an n-bit fixed-p oint component,
 0 maps to -1.0, 2^(n-1) maps to 0.0, and 2^n- 1 (maximum value)
 maps to 1.0 - 1/(2^(n-1)). This same convers ion is applied to
 stored textures using the signed texture type s in NV_texture_shader.

 This specification is written using the conve ntional OpenGL mapping
 where -1.0 and +1.0 can be represented exactl y, but 0.0 can not.
 The specification is simpler and avoids preci sion-dependent language
 describing the mapping. We expect some leewa y in how the remapping
 is applied.

 This issue is discussed in more detail in the issues section
 of the NV_texture_shader specification (the q uestion is phrased
 identically).

NV_texture_expand_normal NVIDIA OpenGL Extension Specifications

 1664

 (5) Are texture border color components remappe d?

 RESOLVED: Yes -- if the border values are us ed for filtering,
 border color components are remapped identica lly to normal texel
 components.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameters of TexParame teri,
 TexParameteriv, TexParameterf, TexParameterfv, GetTexParameteri,
 and GetTexParameteriv:

 TEXTURE_UNSIGNED_REMAP_MODE_NV 0x888F

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 Modify Section 3.8.4, Texture Parameters, p.135

 (modify Table 3.19, p. 137)

 Name Type Legal Values
 ----------------- ---- ---------------- ------
 TEXTURE_UNSIGNED_ enum EXPAND_NORMAL_NV , NONE
 REMAP_MODE_NV

 Modify Section 3.8.8, Texture Minification, p. 140

 (add after the last paragraph before the "Mipma pping" subsection,
 p. 144)

 After the texture filter is applied, the filter ed texture values are
 optionally rescaled, converting unsigned textur e components encoded
 in the range [0,1] to signed values in the rang e [-1,+1]. If the
 texture parameter TEXTURE_UNSIGNED_REMAP_MODE_N V is EXPAND_NORMAL_NV,
 the filtered values for each unsigned component of the texture is
 transformed by

 tau = 2 * tau - 1.

 For components

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

NVIDIA OpenGL Extension Specifications NV_texture_expand_normal

 1665

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 None.

New State

(add to table 6.15, p. 230)
 Initial
Get Value Type Get Command Value Description Sec. Attribute
------------------------------ ---- ------------- ---- ------- ------------------ ----- ---------
TEXTURE_UNSIGNED_REMAP_MODE_NV nxZ2 GetTexParameteriv NONE unsigned component 3.8.8 texture
 remapping

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1666

Name

 NV_texture_rectangle

Name Strings

 GL_NV_texture_rectangle

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2002, 2003, 2004.

Status

 Implemented in NVIDIA's Release 10 drivers.

Version

 NVIDIA Date: March 5, 2004
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_ rectangle.txt#6 $

Number

 229

Dependencies

 Written based on the OpenGL 1.2.1 specification including
 ARB_texture_cube_map wording.

 IBM_mirrored_repeat affects the definition of t his extension.

 ARB_texture_border_clamp affects the definition of this extension.

 EXT_paletted_texture affects the definition of this extension.

 This extension affects the definition of the NV _texture_shader
 extension.

Overview

 OpenGL texturing is limited to images with powe r-of-two dimensions
 and an optional 1-texel border. NV_texture_rec tangle extension
 adds a new texture target that supports 2D text ures without requiring
 power-of-two dimensions.

 Non-power-of-two dimensioned textures are usefu l for storing
 video images that do not have power-of-two dime nsions. Re-sampling
 artifacts are avoided and less texture memory m ay be required by using
 non-power-of-two dimensioned textures. Non-pow er-of-two dimensioned
 textures are also useful for shadow maps and wi ndow-space texturing.

 However, non-power-of-two dimensioned (NPOTD) t extures have
 limitations that do not apply to power-of-two d imensioned (POT)
 textures. NPOTD textures may not use mipmap fi ltering; POTD
 textures support both mipmapped and non-mipmapp ed filtering.
 NPOTD textures support only the GL_CLAMP, GL_CL AMP_TO_EDGE,

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1667

 and GL_CLAMP_TO_BORDER_ARB wrap modes; POTD tex tures support
 GL_CLAMP_TO_EDGE, GL_REPEAT, GL_CLAMP, GL_MIRRO RED_REPEAT_IBM,
 and GL_CLAMP_TO_BORDER. NPOTD textures do not support an optional
 1-texel border; POTD textures do support an opt ional 1-texel border.

 NPOTD textures are accessed by non-normalized t exture coordinates.
 So instead of thinking of the texture image lyi ng in a [0..1]x[0..1]
 range, the NPOTD texture image lies in a [0..w] x[0..h] range.

 This extension adds a new texture target and re lated state (proxy,
 binding, max texture size).

Issues

 Should rectangular textures simply be an extens ion to the 2D texture
 target that allows non-power-of-two widths and heights?

 RESOLUTION: No. The rectangular texture is an entirely new texture
 target type called GL_TEXTURE_RECTANGLE_NV. This is because while
 the texture rectangle target relaxes the powe r-of-two dimensions
 requirements of the texture 2D target, it als o has limitations
 such as the absence of both mipmapping and th e GL_REPEAT and
 GL_MIRRORED_REPEAT_IBM wrap modes. Additiona lly, rectangular
 textures do not use [0..1] normalized texture coordinates.

 How is the image of a rectangular texture speci fied?

 RESOLUTION: Using the standard OpenGL API fo r specifying a 2D
 texture image: glTexImage2D, glSubTexImage2D, glCopyTexImage2D,
 and glCopySubTexImage2D. The target for thes e commands is
 GL_TEXTURE_RECTANGLE_NV though.

 This is similar to how the ARB_texture_cube_m ap extension uses
 the 2D texture image specification API though with its own texture
 target.

 Should 3D textures be allowed to be NPOTD?

 RESOLUTION: No. That should be left to anot her extension.

 Should cube map textures be allowed to be NPOTD ?

 RESOLUTION: No. Probably not particularly i nteresting for
 cube maps. If it becomes important, another extension should
 provide NPOTD cube maps.

 Should 1D textures be allowed to be NPOTD?

 RESOLUTION: No. Rectangular textures are al ways considered 2D
 by this extension. You can always simulate a 1D NPOTD textures
 by using a 2D Wx1 or 1xH dimensioned rectangu lar texture.

 Should anything be said about performance?

 RESOLUTION: No, but developers should not be surprised if
 conventional POTD textures will render slight ly faster than NPOTD

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1668

 textures. This is particularly likely to be true when NPOTD
 textures are minified leading to texture cach e thrashing.

 How are rectangular textures enabled?

 RESOLUTION: Since rectangular textures add a new texture target,
 you enable rectangular textures by enabling t his target. Example:

 glEnable(GL_TEXTURE_RECTANGLE_NV);

 What is the priority of the rectangular texture target enable relative to
 existing texture enables?

 RESOLUTION: The texture rectangle target is like a 2D texture in
 many ways so its enable priority is just abov e GL_TEXTURE_2D. From
 lowest priority to highest priority: GL_TEXTU RE_1D, GL_TEXTURE_2D,
 GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_3D, GL_TE XTURE_CUBE_MAP_ARB.

 What is the default wrap state for a texture re ctangle?

 RESOLUTION: GL_CLAMP_TO_EDGE. The normal de fault wrap state is
 GL_REPEAT, but that mode is not allowed for r ectangular textures?

 What is the default minification filter for a t exture rectangle?

 RESOLUTION: GL_LINEAR. The normal default m inification filter
 state is GL_NEAREST_MIPMAP_LINEAR, but that m ode is not allowed
 for rectangular textures because mipmapping i s not supported.

 Do paletted textures work with rectangular text ures?

 RESOLUTION: No. Similar (but not identical) functionality can
 be accomplished using dependent texture shade r operations (see
 NV_texture_shader).

 The difference between paletted texture acces ses and dependent
 texture accesses is that paletted texture loo kups are
 "pre-filtering" while dependent texture shade r operations are
 "post-filtering".

 Can compressed texture images be specified for a rectangular texture?

 RESOLUTION: The generic texture compression internal formats
 introduced by ARB_texture_compression are sup ported for rectangular
 textures because the image is not presented a s compressed data and
 the ARB_texture_compression extension always permits generic texture
 compression internal formats to be stored in uncompressed form.
 Implementations are free to support generic c ompression internal
 formats for rectangular textures if supported but such support is
 not required.

 This extensions makes a blanket statement tha t specific compressed
 internal formats for use with CompressedTexIm age<n>DARB are NOT
 supported for rectangular textures. This is because several
 existing hardware implementations of texture compression formats
 such as S3TC are not designed for compressing rectangular textures.
 This does not preclude future texture compres sion extensions from

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1669

 supporting compressed internal formats that d o work with rectangular
 extensions (by relaxing the current blanket e rror condition).

 Does this extension work with SGIX_shadow-style shadow mapping?

 RESOLUTION: Yes. The one non-obvious allowa nce to support
 SGIX_shadow-style shadow mapping is that the R texture coordinate
 wrap mode remains UNCHANGED for rectangular t extures. Clamping of
 the R texture coordinate for rectangular text ures uses the standard
 [0,1] interval rather than the [0,ws] or [0,h s] intervals as in
 the case of S and T. This is because R repre sents a depth value
 in the [0,1] range whether using a 2D or rect angular texture.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, IsEnabled, and
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f BindTexture,
 GetTexParameterfv, GetTexParameteriv, TexParame terf, TexParameteri,
 TexParameterfv, and TexParameteriv:

 TEXTURE_RECTANGLE_NV 0x84F5

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 TEXTURE_BINDING_RECTANGLE_NV 0x84F6

 Accepted by the <target> parameter of GetTexIma ge,
 GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
 CopyTexImage2D, TexSubImage2D, and CopySubTexIm age2D:

 TEXTURE_RECTANGLE_NV

 Accepted by the <target> parameter of GetTexLev elParameteriv,
 GetTexLevelParameterfv, GetTexParameteriv, and TexImage2D:

 PROXY_TEXTURE_RECTANGLE_NV 0x84F7

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev,
 GetIntegerv, and GetFloatv:

 MAX_RECTANGLE_TEXTURE_SIZE_NV 0x84F8

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1670

Additions to Chapter 3 of the GL Specification (Ras terization)

 -- Section 3.6.3 "Pixel Transfer Modes" under "Co lor Table
 Specification" or the ColorTableEXT descriptio n in the
 EXT_paletted_texture specification (rev 1.2)

 Add the following statement after introducing ColorTableEXT:

 "The error INVALID_ENUM is generated if the ta rget to ColorTable (or
 ColorTableEXT or the various ColorTable and Co lorTableEXT alternative
 commands) is TEXTURE_RECTANGLE_NV or PROXY_TEX TURE_RECTANGLE_NV."

 -- Section 3.8.1 "Texture Image Specification"

 Change the second sentence through the rest of the paragraph
 describing TexImage2D on page 116 to:

 "<target> must be one of TEXTURE_2D for a 2D t exture, or one
 of TEXTURE_RECTANGLE_NV for a rectangle textur e, or one of
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, or TEXTURE_CU BE_MAP_NEGATIVE_Z_ARB
 for a cube map texture. Additionally, <target > can be either
 PROXY_TEXTURE_2D for a 2D proxy texture or PRO XY_TEXTURE_RECTANGLE_NV
 for a rectangle proxy texture or PROXY_TEXTURE _CUBE_MAP_ARB for a
 cube map proxy texture as discussed in section 3.8.7.
 The other parameters match the corresponding p arameters of TexImage3D."

 Add a following paragraph reading:

 "Rectangular textures do not support paletted formats. The error
 INVALID_ENUM is generated if the target is TEX TURE_RECTANGLE_NV
 or PROXY_TEXTURE_RECTANGLE_NV and the format i s COLOR_INDEX or
 the internalformat is COLOR_INDEX or one of th e COLOR_INDEX<n>_EXT
 internal formats."

 Change the 14th paragraph (page 116) to read:

 "In a similar fashion, the maximum allowable w idth of a rectangular
 texture image, and the maximum allowable heigh t of a rectangular
 texture image, must be at least the implementa tion-dependent value
 of MAX_RECTANGLE_TEXTURE_SIZE_NV."

 Add the following paragraph after the paragrap h introducing
 TexImage2D (page 116):

 "When the target is TEXTURE_RECTANGLE_NV, the INVALID_VALUE error is
 generated if border is any value other than ze ro or the level is any
 value other than zero. Also when the target i s TEXTURE_RECTANGLE_NV,
 the texture dimension restrictions specified b y equations 3.11,
 3.12, and 3.13 are ignored; however, if the wi dth is less than zero or
 the height is less than zero, the error INVALI D_VALUE is generated.
 In the case of a rectangular texture, ws and h s equal the specified
 width and height respectively of the rectangul ar texture image
 while ds is 1."

 Amend the following paragraph that was added b y the

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1671

 ARB_texture_cube_map specification after the f irst paragraph on
 page 117:

 "A 2D texture consists of a single 2D texture image. A rectangle
 texture consists of a single 2D texture image. A cube map texture
 is a set of six 2D texture images. The six cu be map texture
 targets form a single cube map texture though each target names
 a distinct face of the cube map. The TEXTURE_ CUBE_MAP_*_ARB
 targets listed above update their appropriate cube map face 2D
 texture image. Note that the six cube map 2D image tokens such as
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB are used when specifying, updating,
 or querying one of a cube map's six 2D image, but when enabling cube
 map texturing or binding to a cube map texture object (that is when
 the cube map is accessed as a whole as opposed to a particular 2D
 image), the TEXTURE_CUBE_MAP_ARB target is spe cified."

 Append to the end of the third to the last par agraph in the section
 (page 118):

 "A rectangular texture array has depth dt=1, w ith height ht and width
 wt defined by the specified image height and w idth parameters."

 -- Section 3.8.2 "Alternate Texture Image Specifi cation Commands"

 Add TEXTURE_RECTANGLE_NV to the second paragra ph (page 120) to say:

 ... "Currently, <target> must be TEXTURE_2D,
 TEXTURE_RECTANGLE_NV, TEXTURE_CUBE_MAP_POSITIV E_X_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
 or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB." ...

 Add TEXTURE_RECTANGLE_NV to the fourth paragra ph (page 121) to say:

 ... "Currently the target arguments of TexSubI mage1D and
 CopyTexSubImage1D must be TEXTURE_1D, the <tar get> arguments of
 TexSubImage2D and CopyTexSubImage2D must be on e of TEXTURE_2D,
 TEXTURE_RECTANGLE_NV, TEXTURE_CUBE_MAP_POSITIV E_X_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
 or TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB, and the <t arget> arguments of
 TexSubImage3D and CopyTexSubImage3D must be TE XTURE_3D." ...

 Also add to the end of the fourth paragraph (1 21):

 "If target is TEXTURE_RECTANGLE_NV and level i s not zero, the error
 INVALID_VALUE is generated."

 -- Section "Compressed Texture Images" in the ARB _texture_compression
 specification

 Add the following paragraph after introducing the
 CompressedTexImage<n>DARB commands:

 "The error INVALID_ENUM is generated if the ta rget parameter to one
 of the CompressedTexImage<n>DARB commands is T EXTURE_RECTANGLE_NV."

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1672

 Add the following paragraph after introducing the
 CompressedTexSubImage<n>DARB commands:

 "The error INVALID_ENUM is generated if the ta rget parameter
 to one of the CompressedTexSubImage<n>DARB com mands is
 TEXTURE_RECTANGLE_NV."

 -- Section 3.8.3 "Texture Parameters"

 Add TEXTURE_RECTANGLE_NV to paragraph one (pag e 124) to say:

 ... "<target> is the target, either TEXTURE_1D , TEXTURE_2D,
 TEXTURE_RECTANGLE_NV, TEXTURE_3D, or TEXTURE_C UBE_MAP_ARB." ...

 Add the following paragraph to the end of the section (page 134):

 "Certain texture parameter values may not be s pecified for textures
 with a target of TEXTURE_RECTANGLE_NV. The er ror INVALID_ENUM
 is generated if the target is TEXTURE_RECTANGL E_NV and the
 TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRA P_R parameter is set to
 REPEAT or MIRRORED_REPEAT_IBM. The error INVA LID_ENUM is generated
 if the target is TEXTURE_RECTANGLE_NV and the TEXTURE_MIN_FILTER is
 set to a value other than NEAREST or LINEAR (n o mipmap filtering
 is permitted). The error INVALID_ENUM is gene rated if the target
 is TEXTURE_RECTANGLE_NV and TEXTURE_BASE_LEVEL is set to any value
 other than zero."

 -- Section 3.8.4 "Texture Wrap Modes"

 Add this final additional paragraph:

 "Texture coordinates are clamped differently f or rectangular
 textures. The r texture coordinate is wrapped as described above (as
 required for shadow mapping to operate correct ly). When the texture
 target is TEXTURE_RECTANGLE_NV, the s and t co ordinates are wrapped
 as follows: CLAMP causes the s coordinate to b e clamped to the range
 [0,ws]. CLAMP causes the t coordinate to be c lamped to the range
 [0,hs]. CLAMP_TO_EDGE causes the s coordinate to be clamped to
 the range [0.5,ws-0.5]. CLAMP_TO_EDGE causes the t coordinate
 to be clamped to the range [0.5,hs-0.5]. CLAM P_TO_BORDER_ARB
 causes the s coordinate to be clamped to the r ange [-0.5,ws+0.5].
 CLAMP_TO_BORDER_ARB causes the t coordinate to be clamped to the
 range [-0.5,hs+0.5]."

 -- Section 3.8.5 "Texture Minification" under "Mi pmapping"

 Change the second full paragraph on page 126 t o read:

 "For non-rectangular textures, let u(x,y) = 2^ n*s(x,y), v(x,y) =
 2^m*t(x,y), and w(x,y) = 2^l*r(x,y), where n, m, and l are defined
 by equations 3.11, 3.12, and 3.13 with ws, hs, and ds equal to
 the width, height, and depth of the image arra y whose level is
 TEXTURE_BASE_LEVEL. However, for rectangular textures let u(x,y)
 = s(x,y), v(x,y) = t(x,y), and w(x,y) = r(x,y) ."

 Update the last sentence in the first full par agraph on page 127
 to read:

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1673

 "Depending on whether the texture's target is rectangular or
 non-rectangular, this means the texel at locat ion (i,j,k) becomes
 the texture value, with i given by

 / floor(u), s < 1
 /
 i = { 2^n-1, s == 1, non-rectangul ar texture (3.17)
 \
 \ ws-1, s == 1, rectangular t exture

 (Recall that if TEXTURE_WRAP_S is REPEAT, then 0 <= s < 1.) Similarly,
 j is found as

 / floor(v), t < 1
 /
 j = { 2^m-1, t == 1, non-rectangul ar texture (3.18)
 \
 \ hs-1, t == 1, rectangular t exture

 and k is found as

 / floor(w), r < 1
 /
 k = { 2^l-1, r == 1, non-rectangul ar texture (3.19)
 \
 \ 0, r == 1, rectangular t exture"

 Change the last sentence in the partial paragr aph after equation
 3.19 to read:

 "For a two-dimensional or rectangular texture, k is irrelevant;
 the texel at location (i,j) becomes the textur e value."

 Change the sentence preceding equation 3.20 (p age 128) specifying
 how to compute the value tau for a two-dimensi onal texture to:

 "For a two-dimensional or rectangular texture, "

 Follow the first full paragraph on page 130 wi th:

 "Rectangular textures do not support mipmappin g (it is an error to
 specify a minification filter that requires mi pmapping)."

 -- Section 3.8.7 "Texture State and Proxy State"

 Change the first sentence of the first paragra ph (page 131) to say:

 "The state necessary for texture can be divide d into two categories.
 First, there are the ten sets of mipmap arrays (one each for the
 one-, two-, and three-dimensional texture targ ets, one for the
 rectangular texture target (though the rectang ular texture target
 has only one mipmap level), and six for the cu be map texture targets)
 and their number." ...

 Change the fourth and third to last sentences of the first paragraph
 to say:

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1674

 "In the initial state, the value assigned to T EXTURE_MIN_FILTER
 is NEAREST_MIPMAP_LINEAR, except for rectangul ar textures where
 the initial value is LINEAR, and the value for TEXTURE_MAG_FILTER
 is LINEAR. s, t, and r warp modes are all set to REPEAT, except
 for rectangular textures where the initial val ue is CLAMP_TO_EDGE."

 Change the second paragraph (page 132) to say:

 "In addition to the one-, two-, three-dimensio nal, rectangular, and
 the six cube map sets of image arrays, the par tially instantiated
 one-, two-, and three-dimensional, rectangular , and one cube map
 sets of proxy image arrays are maintained." .. .

 Change the third paragraph (page 132) to:

 "One- and two-dimensional and rectangular prox y arrays are operated
 on in the same way when TexImage1D is executed with target specified
 as PROXY_TEXTURE_1D, or TexImage2D is executed with target specified
 as PROXY_TEXTURE_2D or PROXY_TEXTURE_RECTANGLE _NV."

 Change the second sentence of the fourth parag raph (page 132) to:

 "Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D,
 PROXY_TEXTURE_RECTANGLE_NV, PROXY_TEXTURE_3D, and
 PROXY_TEXTURE_CUBE_MAP_ARB cannot be used as t extures, and their
 images must never be queried using GetTexImage ." ...

 -- Section 3.8.8 "Texture Objects"

 Change the first sentence of the first paragra ph (page 132) to say:

 "In addition to the default textures TEXTURE_1 D, TEXTURE_2D,
 TEXTURE_RECTANGLE_NV, TEXTURE_3D, and TEXTURE_ CUBE_MAP_ARB, named
 one-dimensional, two-dimensional, rectangular, and three-dimensional
 texture objects and cube map texture objects c an be created and
 operated on." ...

 Change the second paragraph (page 132) to say:

 "A texture object is created by binding an unu sed name to
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
 TEXTURE_CUBE_MAP_ARB." ... "If the new textur e object is bound
 to TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_N V, TEXTURE_3D, or
 TEXTURE_CUBE_MAP_ARB, it remains a one-dimensi onal, two-dimensional,
 rectangular, three-dimensional, or cube map te xture until it is
 deleted."

 Change the third paragraph (page 133) to say:

 "BindTexture may also be used to bind an exist ing texture object
 to either TEXTURE_1D, TEXTURE_2D, TEXTURE_RECT ANGLE_NV, TEXTURE_3D,
 or TEXTURE_CUBE_MAP_ARB."

 Change paragraph five (page 133) to say:

 "In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV,

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1675

 TEXTURE_3D, and TEXTURE_CUBE_MAP have one-dime nsional,
 two-dimensional, rectangular, three-dimensiona l, and cube map state
 vectors associated with them respectively." . .. "The initial,
 one-dimensional, two-dimensional, rectangular, three-dimensional, and
 cube map texture is therefore operated upon, q ueried, and applied
 as TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_N V, TEXTURE_3D,
 and TEXTURE_CUBE_MAP_ARB respectively while 0 is bound to the
 corresponding targets."

 Change paragraph six (page 133) to say:

 ... "If a texture that is currently bound to o ne of the targets
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
 TEXTURE_CUBE_MAP_ARB is deleted, it is as thou gh BindTexture has
 been executed with the same <target> and <text ure> zero." ...

 -- Section 3.8.10 "Texture Application"

 Replace the beginning sentences of the first p aragraph (page 138)
 with:

 "Texturing is enabled or disabled using the ge neric Enable and
 Disable commands, respectively, with the symbo lic constants
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D,
 or TEXTURE_CUBE_MAP_ARB to enable the one-dime nsional,
 two-dimensional, rectangular, three-dimensiona l, or cube map
 texturing respectively. If both two- and one- dimensional textures
 are enabled, the two-dimensional texture is us ed. If the rectangular
 and either of the two- or one-dimensional text ures is enabled, the
 rectangular texture is used. If the three-dim ensional and any of the
 rectangular, two-dimensional, or one-dimension al textures is enabled,
 the three-dimensional texture is used. If the cube map texture
 and any of the three-dimensional, rectangular, two-dimensional,
 or one-dimensional textures is enabled, then c ube map texturing is
 used.

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 -- Section 5.4 "Display Lists"

 In the first paragraph (page 179), add PROXY_T EXTURE_RECTANGLE_NV
 to the list of PROXY_* tokens.

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Change the fourth paragraph (page 183) to say:

 "The GetTexParameter parameter <target> may be one of
 TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_NV, TEXTURE_3D, or
 TEXTURE_CUBE_MAP_ARB, indicating the currently bound one-dimensional,

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1676

 two-dimensional, rectangular, three-dimensiona l, or cube map
 texture object. For GetTexLevelParameter, <ta rget> may be one
 of TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE_N V, TEXTURE_3D,
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Z_ARB,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXT URE_RECTANGLE_NV,
 PROXY_TEXTURE_3D, or PROXY_TEXTURE_CUBE_MAP_AR B, indicating the
 one-dimensional texture object, two-dimensiona l texture object,
 rectangular texture object, three-dimensional texture object, or one
 of the six distinct 2D images making up the cu be map texture object
 or one-dimensional, two-dimensional, rectangul ar, three-dimensional,
 or cube map proxy state vector. Note that TEX TURE_CUBE_MAP_ARB is
 not a valid <target> parameter for GetTexLevel Parameter because it
 does not specify a particular cube map face."

 -- Section 6.1.4 "Texture Queries"

 Change the first paragraph (page 184) to read:

 ... "It is somewhat different from the other g et commands; <tex> is a
 symbolic value indicating which texture (or te xture face in the case
 of a cube map texture target name) is to be ob tained. TEXTURE_1D
 indicates a one-dimensional texture, TEXTURE_2 D indicates a
 two-dimensional texture, TEXTURE_RECTANGLE_NV indicates a rectangular
 texture, TEXTURE_3D indicates a three-dimensio nal texture, and
 TEXTURE_CUBE_MAP_POSITIVE_X_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_X_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, TEXTURE_CUBE_ MAP_NEGATIVE_Y_ARB,
 TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, and TEXTURE_C UBE_MAP_NEGATIVE_Z_ARB
 indicate the respective face of a cube map tex ture."

 Add a final sentence to the fourth paragraph:

 "Calling GetTexImage with a lod not zero when the tex is
 TEXTURE_RECTANGLE_NV causes the error INVALID_ VALUE."

Additions to the GLX Specification

 None

GLX Protocol

 None

Dependencies on ARB_texture_border_clamp

 If ARB_texture_border_clamp is not supported, r eferences to the
 CLAMP_TO_BORDER_ARB wrap mode in this document should be ignored.

Dependencies on IBM_mirrored_repeat

 If IBM_mirrored_repeat is not supported, refere nces to the
 MIRRORED_REPEAT_IBM wrap mode in this document should be ignored.

Dependencies on EXT_paletted_texture

 If EXT_paletted_texture is not supported, refer ences to the

NVIDIA OpenGL Extension Specifications NV_texture_rectangle

 1677

 COLOR_INDEX, COLOR_INDEX<n>_EXT, ColorTable, an d ColorTableEXT should
 be ignored.

Dependencies on EXT_texture_compression_s3tc

 If EXT_texture_compression_s3tc is not supporte d, references
 to CompressedTexImage2DARB and CompressedTexSub ImageARB and the
 COMPRESSED_*_S3TC_DXT*_EXT enumerants should be ignored.

Errors

 INVALID_ENUM is generated when ColorTable (or C olorTableEXT or the
 various ColorTable and ColorTableEXT alternativ e commands) is called
 and the target is TEXTURE_RECTANGLE_NV or PROXY _TEXTURE_RECTANGLE_NV.

 INVALID_ENUM is generated when TexImage2D is ca lled and the target
 is TEXTURE_RECTANGLE_NV or PROXY_TEXTURE_RECTAN GLE_NV and the format
 is COLOR_INDEX or the internalformat is COLOR_I NDEX or one of the
 COLOR_INDEX<n>_EXT internal formats.

 INVALID_VALUE is generated when TexImage2D is c alled when the target
 is TEXTURE_RECTANGLE_NV if border is any value other than zero or
 the level is any value other than zero.

 INVALID_VALUE is generated when TexImage2D is c alled when the target
 is TEXTURE_RECTANGLE_NV if the width is less th an zero or the height
 is less than zero.

 INVALID_VALUE is generated when TexSubImage2D o r CopyTexSubImage2D
 is called when the target is TEXTURE_RECTANGLE_ NV if the level is
 any value other than zero.

 INVALID_ENUM is generated when one of the Compr essedTexImage<n>DARB
 commands is called when the target parameter is TEXTURE_RECTANGLE_NV.

 INVALID_ENUM is generated when one of the Compr essedTexSubImage<n>DARB
 commands is called when the target parameter is TEXTURE_RECTANGLE_NV.

 INVALID_ENUM is generated when TexParameter is called with a
 target of TEXTURE_RECTANGLE_NV and the TEXTURE_ WRAP_S, TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R parameter is set to REPEAT or MIRRORED_REPEAT_IBM.

 INVALID_ENUM is generated when TexParameter is called with a
 target of TEXTURE_RECTANGLE_NV and the TEXTURE_ MIN_FILTER is set to
 a value other than NEAREST or LINEAR.

 INVALID_VALUE is generated when TexParameter is called with a
 target of TEXTURE_RECTANGLE_NV and the TEXTURE_ BASE_LEVEL is set to
 any value other than zero.

 INVALID_VALUE is generated when GetTexImage is called with a lod
 not zero when the tex is TEXTURE_RECTANGLE_NV.

New State

(table 6.12, p202) amend/add the following entries:

NV_texture_rectangle NVIDIA OpenGL Extension Specifications

 1678

Get Value Type Get Command In itial Value Description Sec Attribu te
---------------------------- ---- ----------- -- ----------- --------------------- ------ ------- -------
TEXTURE_RECTANGULAR_NV B IsEnabled Fa lse True if rectangular 3.8.10 texture /enable
 texturing is enabled
TEXTURE_BINDING_RECTANGLE_NV Z+ GetIntegerv 0 Texture object 3.8.8 texture
 for texture rectangle
TEXTURE_RECTANGLE_NV I GetTexImage se e 3.8 rectangular texture 3.8 -
 image for lod 0

(table 6.13, p203) amend/add the following entries:

Get Value Type Get Command Initial Value Description Sec Attrib ute
------------------ ----- --------------- ------- -------------- -------------------- ----- ------ ---
TEXTURE_MIN_FILTER 2+xZ6 GetTexparameter NEAREST _MIPMAP_LINEAR Texture minification 3.8.5 textur e
 except for function
 rectang ular which is
 LINEAR
TEXTURE_WRAP_S 5+xZ5 GetTexParameter REPEAT except Texture wrap mode S 3.8 textur e
 for rec tangular
 which i s
 CLAMP_T O_EDGE
TEXTURE_WRAP_T 5+xZ5 GetTexParameter REPEAT except Texture wrap mode T 3.8 textur e
 for rec tangular
 which i s
 CLAMP_T O_EDGE
TEXTURE_WRAP_R 5+xZ5 GetTexParameter REPEAT except Texture wrap mode R 3.8 textur e
 for rec tangular
 which i s
 CLAMP_T O_EDGE

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command M inimum Value Description Sec Attribute
----------------------------- ---- ----------- - ------------ ------------------- ----- ---------
MAX_RECTANGLE_TEXTURE_SIZE_NV Z+ GetIntegerv 6 4 Maximum rectangular 3.8.1 -
 texture image
 dimension

Revision History

 Jan 2, 2003 - Fix typo in 4th paragraph of Overv iew to read: "NPOTD
 textures are accessed by non-normalized texture coordinates."

 March 5, 2004 - Delete update to the convolution section because
 it was bogus language in the OpenGL 1.2.1 specification saying
 convolution affects glGetTexImage (it does not); this language was
 deleted in OpenGL 1.3. Fix minor typo in 6.12 table.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1679

Name

 NV_texture_shader

Name Strings

 GL_NV_texture_shader

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001, 2002, 2004.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (since GeForce3)

Version

 NVIDIA Date: March 13, 2007
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_ shader.txt#30 $

Number

 230

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification.

 Requires support for the ARB_multitexture exten sion.

 Requires support for the ARB_texture_cube_map e xtension.

 NV_register_combiners affects the definition of this extension.

 EXT_texture_lod_bias trivially affects the defi nition of this
 extension.

 ARB_texture_env_combine and/or EXT_texture_env_ combine affect the
 definition of this extension.

 NV_texture_env_combine4 affects the definition of this extension.

 ARB_texture_env_add and/or EXT_texture_env_add affect the definition
 of this extension.

 NV_texture_rectangle affects the definition of this extension.

 NV_texture_shader2 depends on the definition of this extension.

 ARB_color_buffer_float affects the definiton of this extension.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1680

Overview

 Standard OpenGL and the ARB_multitexture extens ion define a
 straightforward direct mechanism for mapping se ts of texture
 coordinates to filtered colors. This extension provides a more
 functional mechanism.

 OpenGL's standard texturing mechanism defines a set of texture
 targets. Each texture target defines how the t exture image
 is specified and accessed via a set of texture coordinates.
 OpenGL 1.0 defines the 1D and 2D texture target s. OpenGL 1.2
 (and/or the EXT_texture3D extension) defines th e 3D texture target.
 The ARB_texture_cube_map extension defines the cube map texture
 target. Each texture unit's texture coordinate set is mapped to a
 color using the unit's highest priority enabled texture target.

 This extension introduces texture shader stages . A sequence of
 texture shader stages provides a more flexible mechanism for mapping
 sets of texture coordinates to texture unit RGB A results than standard
 OpenGL.

 When the texture shader enable is on, the exten sion replaces the
 conventional OpenGL mechanism for mapping sets of texture coordinates
 to filtered colors with this extension's sequen ce of texture shader
 stages.

 Each texture shader stage runs one of 21 canned texture shader
 programs. These programs support conventional OpenGL texture
 mapping but also support dependent texture acce sses, dot product
 texture programs, and special modes. (3D textu re mapping
 texture shader operations are NOT provided by t his extension;
 3D texture mapping texture shader operations ar e added by the
 NV_texture_shader2 extension that is layered on this extension.
 See the NV_texture_shader2 specification.)

 To facilitate the new texture shader programs, this extension
 introduces several new texture formats and vari ations on existing
 formats. Existing color texture formats are ex tended by introducing
 new signed variants. Two new types of texture formats (beyond colors)
 are also introduced. Texture offset groups enc ode two signed offsets,
 and optionally a magnitude or a magnitude and a n intensity. The new
 HILO (pronounced high-low) formats provide poss ibly signed, high
 precision (16-bit) two-component textures.

 Each program takes as input the stage's interpo lated texture
 coordinate set (s,t,r,q). Each program generat es two results:
 a shader stage result that may be used as an in put to subsequent
 shader stage programs, and a texture unit RGBA result that becomes the
 texture color used by the texture unit's textur e environment function
 or becomes the initial value for the correspond ing texture register
 for register combiners. The texture unit RGBA r esult is always
 an RGBA color, but the shader stage result may be one of an RGBA
 color, a HILO value, a texture offset group, a floating-point value,
 or an invalid result. When both results are RG BA colors, the shader
 stage result and the texture unit RGBA result a re usually identical
 (though not in all cases).

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1681

 Additionally, certain programs have a side-effe ct such as culling
 the fragment or replacing the fragment's depth value.

 The twenty-one programs are briefly described:

 <none>

 1. NONE - Always generates a (0,0,0,0) textur e unit RGBA result.
 Equivalent to disabling all texture target s in conventional
 OpenGL.

 <conventional textures>

 2. TEXTURE_1D - Accesses a 1D texture via (s/ q).

 3. TEXTURE_2D - Accesses a 2D texture via (s/ q,t/q).

 4. TEXTURE_RECTANGLE_NV - Accesses a rectangu lar texture via (s/q,t/q).

 5. TEXTURE_CUBE_MAP_ARB - Accesses a cube map texture via (s,t,r).

 <special modes>

 6. PASS_THROUGH_NV - Converts a texture coord inate (s,t,r,q)
 directly to a [0,1] clamped (r,g,b,a) text ure unit RGBA result.

 7. CULL_FRAGMENT_NV - Culls the fragment base d on the whether each
 (s,t,r,q) is "greater than or equal to zer o" or "less than zero".

 <offset textures>

 8. OFFSET_TEXTURE_2D_NV - Transforms the sign ed (ds,dt) components
 of a previous texture unit by a 2x2 floati ng-point matrix and
 then uses the result to offset the stage's texture coordinates
 for a 2D non-projective texture.

 9. OFFSET_TEXTURE_2D_SCALE_NV - Same as above except the magnitude
 component of the previous texture unit res ult scales the red,
 green, and blue components of the unsigned RGBA texture 2D
 access.

 10. OFFSET_TEXTURE_RECTANGLE_NV - Similar to O FFSET_TEXTURE_2D_NV
 except that the texture access is into a r ectangular
 non-projective texture.

 11. OFFSET_TEXTURE_RECTANGLE_SCALE_NV - Simila r to
 OFFSET_TEXTURE_2D_SCALE_NV except that the texture access is
 into a rectangular non-projective texture.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1682

 <dependent textures>

 12. DEPENDENT_AR_TEXTURE_2D_NV - Converts the alpha and red
 components of a previous shader result int o an (s,t) texture
 coordinate set to access a 2D non-projecti ve texture.

 13. DEPENDENT_GB_TEXTURE_2D_NV - Converts the green and blue
 components of a previous shader result int o an (s,t) texture
 coordinate set to access a 2D non-projecti ve texture.

 <dot product textures>

 14. DOT_PRODUCT_NV - Computes the dot product of the texture
 shader's texture coordinate set (s,t,r) wi th some mapping of the
 components of a previous texture shader re sult. The component
 mapping depends on the type (RGBA or HILO) and signedness of
 the stage's previous texture input. Other dot product texture
 programs use the result of this program to compose a texture
 coordinate set for a dependent texture acc ess. The color result
 is undefined.

 15. DOT_PRODUCT_TEXTURE_2D_NV - When preceded by a DOT_PRODUCT_NV
 program in the previous texture shader sta ge, computes a second
 similar dot product and composes the two d ot products into (s,t)
 texture coordinate set to access a 2D non- projective texture.

 16. DOT_PRODUCT_TEXTURE_RECTANGLE_NV - Similar to
 DOT_PRODUCT_TEXTURE_2D_NV except that the texture acces is into
 a rectangular non-projective texture.

 17. DOT_PRODUCT_TEXTURE_CUBE_MAP_NV - When pre ceded by two
 DOT_PRODUCT_NV programs in the previous tw o texture shader
 stages, computes a third similar dot produ ct and composes the
 three dot products into (s,t,r) texture co ordinate set to access
 a cube map texture.

 18. DOT_PRODUCT_REFLECT_CUBE_MAP_NV - When pre ceded by two
 DOT_PRODUCT_NV programs in the previous tw o texture shader
 stages, computes a third similar dot produ ct and composes the
 three dot products into a normal vector (N x,Ny,Nz). An eye
 vector (Ex,Ey,Ez) is composed from the q t exture coordinates of
 the three stages. A reflection vector (Rx ,Ry,Rz) is computed
 based on the normal and eye vectors. The reflection vector
 forms an (s,t,r) texture coordinate set to access a cube map
 texture.

 19. DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV - Operates like
 DOT_PRODUCT_REFLECT_CUBE_MAP_NV except tha t the eye vector
 (Ex,Ey,Ez) is a user-defined constant rath er than composed from
 the q coordinates of the three stages.

 20. DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV - When use d instead of the second
 DOT_PRODUCT_NV program preceding
 a DOT_PRODUCT_REFLECT_CUBE_MAP_NV or
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV stage, the normal
 vector forms an (s,t,r) texture coordinat e set to access a
 cube map texture.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1683

 <dot product depth replace>

 21. DOT_PRODUCT_DEPTH_REPLACE_NV - When preced ed by a DOT_PRODUCT_NV
 program in the previous texture shader sta ge, computes a second
 similar dot product and replaces the fragm ent's window-space
 depth value with the first dot product res ults divided by
 the second. The texture unit RGBA result is (0,0,0,0).

Issues

 What should this extension be called? How does the functionality
 compare with DirectX 8's pixel shaders?

 RESOLUTION: This extension is called NV_text ure_shader.

 DirectX 8 refers to its similar functionality as "pixel shaders".
 However, DirectX 8 lumps both the functionali ty described in this
 extension and additional functionality simila r to the functionality
 in the NV_register_combiners extension togeth er into what DirectX
 8 calls pixel shaders. This is confusing in two ways.

 1) Pixels are not being shaded. In fact, th e DirectX 8 pixel
 shaders functionality is, taken as a whol e, shading only
 fragments (though Direct3D tends not to m ake the same
 clear distinction between fragments and p ixels that OpenGL
 consistently makes).

 2) There are two very distinct tasks being p erformed.

 First, there is the task of interpolated texture coordinate
 mapping. This per-fragment task maps fro m interpolated
 floating-point texture coordinate sets to (typically
 fixed-point) texture unit RGBA results. In conventional OpenGL,
 this mapping is performed by accessing th e highest priority
 enabled texture target using the fragment 's corresponding
 interpolated texture coordinate set. Thi s NV_texture_shader
 extension provides a significantly more p owerful mechanism
 for performing this mapping.

 Second, there is the task of fragment col oring. Fragment
 coloring is process of combining (typical ly fixed-point) RGBA
 colors to generate a final fragment color that, assuming the
 fragment is not discarded by subsequent p er-fragment tests,
 is used to update the fragment's correspo nding pixel in the
 frame buffer. In conventional OpenGL, fr agment coloring is
 performed by the enabled texture environm ent functions, fog, and
 color sum operations. NVIDIA's register combiners functionality
 (see the NV_register_combiners and NV_reg ister_combiners2
 extensions) provides a substantially more powerful alternative
 to conventional OpenGL fragment coloring.

 DirectX 8 has two types of opcodes for pixel shaders. Texture
 address opcodes correspond to the first task listed above. Texture
 register opcodes correspond to the second tas k listed above.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1684

 NVIDIA OpenGL extensions maintain a clear dis tinction between
 these two tasks. The texture shaders functio nality described in
 this specification corresponds to the first t ask listed above.

 Here is the conceptual framework that NVIDIA OpenGL extensions use
 to describe shading: Shading is the process of assigning colors
 to pixels, fragments, or texels. The texture shaders functionality
 assigns colors to texture unit results (essen tially texture
 shading). These texture unit RGBA results ca n be used by fragment
 coloring (fragment shading). The resulting f ragments are used to
 update pixels (pixel shading) possibly via bl ending and/or multiple
 rendering passes.

 The goal of these individual shading operatio ns is per-pixel
 shading. Per-pixel shading is accomplished b y combining the
 texture shading, fragment shading, and pixel shading operations,
 possibly with multiple rendering passes.

 Programmable shading is a style of per-pixel shading where the
 shading operations are expressed in a higher level of abstraction
 than "raw" OpenGL texture, fragment, and pixe l shading operations.
 In our view, programmable shading does not ne cessarily require a
 "pixel program" to be downloaded and executed per-pixel by graphics
 hardware. Indeed, there are many disadvantag es to such an approach
 in practice. An alternative view of programm able shading (the
 one that we are promoting) treats the OpenGL primitive shading
 operations as a SIMD machine and decomposes p er-pixel shading
 programs into one or more OpenGL rendering pa sses that map to "raw"
 OpenGL shading operations. We believe that c onventional OpenGL
 combined with NV_register_combiners and NV_te xture_shader (and
 further augmented by programmable geometry vi a NV_vertex_program
 and higher-order surfaces via NV_evaluators) can become the hardware
 basis for a powerful programmable shading sys tem.

 The roughly equivalent functionality to Direc tX 8's pixel
 shaders in OpenGL is the combination of NV_te xture_shader with
 NV_register_combiners.

 Is anyone working on programmable shading using the NV_texture_shader
 functionality?

 Yes. The Stanford Shading Group is actively working on
 support for programmable shading using NV_tex ture_shader,
 NV_register_combiners, and other extensions a s the hardware basis
 for such a system.

 What terms are important to this specification?

 texture shaders - A series of texture shader stages that map texture
 coordinate sets to texture unit RGBA results. An alternative to
 conventional OpenGL texturing.

 texture coordinate set - The interpolated (s, t,r,q) value for a
 particular texture unit of a particular fragm ent.

 conventional OpenGL texturing - The conventio nal mechanism used by
 OpenGL to map texture coordinate sets to text ure unit RGBA results

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1685

 whereby a given texture unit's texture coordi nate set is used to
 access the highest priority enabled texture t arget to generate
 the texture unit's RGBA result. Conventional OpenGL texturing
 supports 1D, 2D, 3D, and cube map texture tar gets. In conventional
 OpenGL texturing each texture unit operates i ndependently.

 texture target type - One of the four texture target types: 1D, 2D,
 3D, and cube map. (Note that NV_texture_shad er does NOT provide
 support for 3D textures; the NV_texture_shade r2 extension adds
 texture shader operations for 3D texture targ ets.)

 texture internal format - The internal format of a particular
 texture object. For example, GL_RGBA8, GL_SI GNED_RGBA8, or
 GL_SIGNED_HILO16_NV.

 texture format type - One of the three textur e format types: RGBA,
 HILO, or texture offset group.

 texture component signedness - Whether or not a given component
 of a texture's texture internal format is sig ned or not.
 Signed components are clamped to the range [- 1,1] while unsigned
 components are clamped to the range [0,1].

 texture shader enable - The OpenGL enable tha t determines whether
 the texture shader functionality (if enabled) or conventional
 OpenGL texturing functionality (if disabled) is used to map texture
 coordinate sets to texture unit RGBA results. The enable's initial
 state is disabled.

 texture shader stage - Each texture unit has a corresponding texture
 shader stage that can be loaded with one of 2 1 texture shader
 operations. Depending on the stage's texture shader operation,
 a texture shader stage uses the texture unit' s corresponding
 texture coordinate set and other state includ ing the texture shader
 results of previous texture shader stages to generate the stage's
 particular texture shader result and texture unit RGBA result.

 texture unit RGBA result - A (typically fixed -point) color result
 generated by either a texture shader or conve ntional OpenGL
 texturing. This is the color that becomes th e texture unit's
 texture environment function texture input or the initial value
 of the texture unit's corresponding texture r egister in the case
 of register combiners.

 texture shader result - The result of a textu re shader stage that
 may be used as an input to a subsequent textu re shader stage.
 This result is distinct from the texture unit RGBA result.
 The texture shader result may be one of four types: an RGBA
 color value, a HILO value, a texture offset g roup value, or a
 floating-point value. A few texture shader o perations are defined
 to always generate an invalid texture shader result.

 texture shader result type - One of the four texture shader result
 types: RGBA color, HILO, texture offset group , or floating-point.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1686

 texture shader operation - One of 21 fixed pr ograms that maps a
 texture unit's texture coordinate set to a te xture shader result
 and a texture unit RGBA result.

 texture consistency - Whether or not the text ure object for a
 given texture target is consistent. The rule s for determining
 consistency depend on the texture target and the texture object's
 filtering state. For example, a mipmapped te xture is inconsistent
 if its texture levels do not form a consisten t mipmap pyramid.
 Also, a cube map texture is inconsistent if i ts (filterable)
 matching cube map faces do not have matching dimensions.

 texture shader stage consistency - Whether or not a texture
 shader stage is consistent or not. The rules for determining
 texture shader stage consistency depend on th e texture shader
 stage operation and the inputs upon which the texture shader
 operation depends. For example, texture shad er operations that
 depend on accessing a given texture target ar e not consistent
 if the given texture target is not consistent . Also, a texture
 shader operation that depends on a particular texture shader
 result type for a previous texture shader res ult is not consistent
 if the previous texture shader result type is not appropriate
 or the previous texture shader stage itself i s not consistent.
 If a texture shader stage is not consistent, it operates as if
 the operation is the GL_NONE operation.

 previous texture input - Some texture shader operations depend
 on a texture shader result from a specific pr evious texture input
 designated by the GL_PREVIOUS_TEXTURE_INPUT_N V state.

 What should the default state be?

 RESOLUTION: Texture shaders disabled with all stages set to GL_NONE.

 How is the mipmap lambda parameter computed for dependent texture fetches?

 RESOLUTION: Very carefully. NVIDIA's implem entation details are
 NVIDIA proprietary, but mipmapping of depende nt texture fetches
 is supported.

 Does this extension support so-called "bump env ironment mapping"?

 Something similar to DirectX 6 so-called bump environment mapping
 can be emulated with the GL_OFFSET_TEXTURE_2D _NV texture shader.

 A more correct form of bump environment mappi ng can be implemented
 by using the following texture shaders:

 texture unit 0: GL_TEXTURE_2D
 texture unit 1: GL_DOT_PRODUCT_NV
 texture unit 2: GL_DOT_PRODUCT_DIFFUSE_CUBE _MAP_NV
 texture unit 3: GL_DOT_PRODUCT_REFLECT_CUBE _MAP_NV

 Texture unit 0 should use a normal map for it s 2D texture.
 A GL_SIGNED_RGB texture can encode signed tan gent-space normal
 perturbations. Or for more precision, a GL_S IGNED_HILO_NV texture
 can encode the normal perturbations in hemisp here fashion.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1687

 The tangent (Tx,Ty,Tz), binormal (Bx,By,Bz), and normal (Nx,Ny,Nz)
 that together map tangent-space normals to cu be map-space normals
 should be sent as texture coordinates s1, t1, r1, s2, t2, r2, s3,
 t3, and r3 respectively. Typically, cube map space is aligned to
 match world space.

 The (unnormalized) cube map-space eye vector (Ex,Ey,Ez) should be
 sent as texture coordinates q1, q2, and q3 re spectively.

 A vertex programs (using the NV_vertex_progra m extension) can
 compute and assign the required tangent, bino rmal, normal, and
 eye vectors to the appropriate texture coordi nates. Conventional
 OpenGL evaluators (or the NV_evaluators exten sion) can be used to
 evaluate the tangent and normal automatically for Bezier patches.
 The binormal is the cross product of the norm al and tangent.

 Texture units 1, 2, and 3, should also all sp ecify GL_TEXTURE0_ARB
 (the texture unit accessing the normal map) f or their
 GL_PREVIOUS_TEXTURE_INPUT_NV parameter.

 The three dot product texture shader operatio ns performed by the
 texture shaders for texture units 1, 2, and 3 form a 3x3 matrix
 that transforms the tangent-space normal (the result of the texture
 shader for texture unit 0). This rotates the tangent-space normal
 into a cube map-space.

 Texture unit 2's cube map texture should enco de a pre-computed
 diffuse lighting solution. Texture unit 3's cube map texture should
 encode a pre-computed specular lighting solut ion. The specular
 lighting solution can be an environment map.

 Texture unit 2 is accessed using the cube map -space normal
 vector resulting from the three dot product r esults
 of the texture shaders for texture units 1, 2 , and 3.
 (While normally texture shader operations are executed
 in order, preceding GL_DOT_PRODUCT_REFLECT_CU BE_MAP_NV by
 GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV is a speci al case where a dot
 product result from texture unit 3 influences the cube map access
 of texture unit 2.)

 Texture unit 3 is accessed using the cube map -space reflection
 vector computed using the cube map-space norm al vector from the
 three dot product results of the texture shad ers for texture units
 1, 2, and 3 and the cube-map space eye-vector (q1,q2,q3).

 Note that using cube maps to access the diffu se and specular
 illumination obviates the need for an explici t normalization of
 the typically unnormalized cube map-space nor mal and reflection
 vectors.

 The register combiners (using the NV_register _combiners extension)
 can combine the diffuse and specular contribu tion available in
 the GL_TEXTURE2_ARB and GL_TEXTURE3_ARB regis ters respectively.
 A constant ambient contribution can be stored in a register combiner
 constant. The ambient contribution could als o be folded into the
 diffuse cube map.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1688

 If desired, the diffuse and ambient contribut ion can be modulated
 by a diffuse material parameter encoded in th e RGB components of
 the primary color.

 If desired, the specular contribution can be modulated by a specular
 material parameter encoded in the RGB compone nts of the secondary
 color.

 Yes, this is all quite complicated, but the r esult is a true
 bump environment mapping technique with excel lent accounting for
 normalization and per-vertex interpolated dif fuse and specular
 materials. An environment and/or an arbitrar y number of distant
 or infinite lights can be encoded into the di ffuse and specular
 cube maps.

 Why must GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV be used only in
 conjunction with GL_DOT_PRODUCT_REFLECT_CUBE_MA P_NV? Why does the
 GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV stage rely o n a result computed
 in the following stage?

 Think of the GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_ NV and
 GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV operations as forming a compound
 operation. The idea is to generate two cube map accesses based
 on a perturbed normal and reflection vector w here the reflection
 vector is a function of the perturbed normal vector. To minimize
 the number of stages (three stages only) and reuse the internal
 computations involved, this is treated as a c ompound operation.

 Note that the GL_DOT_PRODUCT_REFLECT_CUBE_MAP _NV
 vector can be preceded by two GL_DOT_PRODUCT_ NV
 operations instead of a GL_DOT_PRODUCT_NV ope ration then a
 GL_DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV operation. This may be more
 efficient when only the cube map access using the reflection vector
 is required (a shiny object without any diffu se reflectance).

 Also note that if only the diffuse reflectanc e cube map
 access is required, this can be accomplished by simply using
 the GL_DOT_PRODUCT_CUBE_MAP_NV operation prec eded by two
 GL_DOT_PRODUCT_NV operations.

 How do texture shader stages map to register co mbiner texture registers?

 RESOLUTION: If GL_TEXTURE_SHADER_NV is enabl ed, the texture unit
 RGBA result for a each texture stage is used to initialize the
 respective texture register in the register c ombiners.

 So if a texture shader generates a texture un it RGBA result for
 texture unit 2, use GL_TEXTURE2_ARB for the n ame of the register
 value in register combiners.

 Should the number of shader stages be settable?

 RESOLUTION: No, unused stages can be set to G L_NONE.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1689

 How do signed RGBA texture components show up i n the register
 combiners texture registers?

 RESOLUTION: As signed values. You can use GL _SIGNED_IDENTITY_NV
 and get to the signed value directly.

 How does the texture unit RGBA result of a
 GL_NONE, GL_CULL_FRAGMENT_NV, DOT_PRODUCT_NV, o r
 GL_DOT_PRODUCT_DEPTH_REPLACE_NV texture shader operation show up in
 the register combiners texture registers?

 RESOLUTION: Always as the value (0,0,0,0).

 How the texture RGBA result of the GL_NONE, G L_CULL_FRAGMENT_NV,
 GL_DOT_PRODUCT_NV, and GL_DOT_PRODUCT_DEPTH_R EPLACE_NV texture
 shader operations shows up in the texture env ironment is not
 an issue, because the texture environment ope ration is always
 assumed to be GL_NONE when the corresponding texture shader
 is one of GL_NONE, GL_CULL_FRAGMENT_NV, GL_DO T_PRODUCT_NV, or
 GL_DOT_PRODUCT_DEPTH_REPLACE_NV when GL_TEXTU RE_SHADER_NV is
 enabled.

 Why introduce new pixel groups (the HILO and te xture offset groups)?

 RESOLUTION: In core OpenGL, texture image da ta is transferred and
 stored as sets of color components. Such col or data can always
 be promoted to RGBA data.

 In addition to color components, there are ot her types of image
 data in OpenGL including depth components, st encil components,
 and color indices. Depth and stencil compone nts can be used by
 glReadPixels, glDrawPixels, and glCopyPixels, but are not useful
 for storing texture data in core OpenGL. The EXT_paletted_texture
 and EXT_index_texture extensions extend the c ontents of textures to
 include indices (even though in the case of E XT_paletted_texture,
 texel fetches are always eventually expanded into color components
 by the texture palette).

 However this these existing pixel groups are not sufficient for
 all the texture shader operations introduced by this extension.
 Certain texture shader operations require tex ture data that
 is not merely a set of color components. The dot product
 (GL_DOT_PRODUCT_NV, etc) operations both can
 utilize high-precision hi and lo components. The
 offset texture operations (GL_OFFSET_TEXTURE_ 2D_NV,
 GL_OFFSET_TEXTURE_2D_SCALE_NV, GL_OFFSET_TEXT URE_RECTANGLE_NV,
 and GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV) req uire
 textures containing signed offsets used to di splace
 texture coordinates. The GL_OFFSET_TEXTURE_2 D_SCALE_NV and
 GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV also req uire an unsigned
 magnitude for the scaling operation.

 To facilitate these new texture representatio ns, this extension
 introduces several new (external) formats, pi xel groups, and
 internal texture formats. An (external) form at is the external
 representation used by an application to spec ify pixel data
 for use by OpenGL. A pixel group is a groupi ng of components

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1690

 that are transformed by OpenGL's pixel transf er mechanism is a
 particular manner. For example, RGBA compone nts for colors are
 transformed differently than stencil componen ts when passed through
 OpenGL's pixel transfer mechanism. An intern al texture format is
 the representation of texture data within Ope nGL. Note that the
 (external) format used to specify the data by the application may
 be different than the internal texture format used to store the
 texture data internally to OpenGL. For examp le, core OpenGL permits
 an application to specify data for a texture as GL_LUMINANCE_ALPHA
 data stored in GLfloats even though the data is to be store in
 a GL_RGBA8 texture. OpenGL's pixel unpacking and pixel transfer
 operations perform an appropriate transformat ion of the data when
 such a texture download is performed. Also n ote that data from
 one pixel group (say stencil components) cann ot be supplied as
 data for a different pixel group (say RGBA co mponents).

 This extension introduces four new (external) formats for
 texture data: GL_HILO_NV, GL_DSDT_NV, GL_DSD T_MAG_NV, and
 GL_DSDT_MAG_VIB_NV.

 GL_HILO_NV is for specifying high-precision h i and lo components.
 The other three formats are used to specify t exture offset groups.
 These new formats can only be used for specif ying textures (not
 copying, reading, or writing pixels).

 Each of these four pixel formats belong to on e of two pixel groups.
 Pixels specified with the GL_HILO_NV format a re transformed as HILO
 components. Pixels specified with the DSDT_N V, DSDT_MAG_NV, and
 DSDT_MAG_VIB_NV formats are transformed as te xture offset groups.

 The HILO component and texture offset group p ixel groups have
 independent scale and bias operations for eac h component type.
 Various pixel transfer operations that are pe rformed on the RGBA
 components pixel group are NOT performed on t hese two new pixel
 groups. OpenGL's pixel map, color table, con volution, color matrix,
 histogram, and min/max are NOT performed on t he HILO components
 or texture offset group pixel groups.

 There are four internal texture formats for t exture data specified
 as HILO components: GL_HILO_NV, GL_HILO16_NV , GL_SIGNED_HILO_NV,
 and GL_SIGNED_HILO16_NV. The HILO data can b e stored as either
 unsigned [0,1] value or [-1,1] signed values. There are also
 enumerants for both explicitly sized componen t precision (16-bit
 components) and unsized component precision. OpenGL implementations
 are expected to keep HILO components are high precision even if
 an unsized internal texture format is used.

 The expectation with HILO textures is that ap plications will
 specify HILO data using a type of GL_UNSIGNED _SHORT or GL_SHORT or
 larger data types. Specifying HILO data with GL_UNSIGNED_BYTE or
 GL_BYTE works but does not exploit the full a vailable precision
 of the HILO internal texture formats.

 There are six internal texture formats for te xture data
 specified as texture offset groups: GL_DSDT_N V, GL_DSDT8_NV,
 GL_DSDT_MAG_NV, GL_DSDT8_MAG8_NV, GL_DSDT_MAG _INTENSITY_NV and
 GL_DSDT8_MAG8_INTENSITY8_NV. The GL_DSDT_NV formats specify two

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1691

 signed [-1,1] components, ds and dt, used to offset s and t texture
 coordinates. The GL_DSDT_MAG_NV formats spec ify an additional
 third unsigned [0,1] component that is a magn itude to scale an
 unsigned RGBA texture fetch by. The GL_DSDT_ MAG_INTENSITY_NV
 formats specify an additional fourth [0,1] un signed component,
 intensity, that becomes the intensity of the fetched texture for
 use in the texture environment or register co mbiners. There are
 also enumerants for both explicitly sized (8- bit components)
 and unsized component precision.

 Note that the vibrance (VIB) component of the
 GL_DSDT_MAG_VIB_NV format becomes the intensi ty component of
 the GL_DSDT_MAG_INTENSITY_NV internal texture format. Vibrance
 becomes intensity in the GL_DSDT_MAG_INTENSIT Y_NV texture format.
 The introduction of vibrance is because core OpenGL has no notion
 of an intensity component in the pixel transf er mechanism or as
 an external format (instead the red component of an RGBA value
 becomes the intensity component of intensity textures).

 How does the texture unit RGBA result of a text ure shader that fetches
 a texture with a base internal format of GL_HIL O_NV, GL_DSDT_NV, or
 GL_DSDT_MAG_NV show up in the register combiner s texture registers?

 RESOLUTION: Always as the value (0,0,0,0).

 How the texture RGBA result of a texture shad er that fetches a
 texture with a base internal format of GL_HIL O_NV, GL_DSDT_NV,
 or GL_DSDT_MAG_NV the GL_DOT_PRODUCT_NV textu re shader shows up
 in the texture environment is not an issue, b ecause the texture
 environment operation is always assumed to be GL_NONE in this case
 when GL_TEXTURE_SHADER_NV is enabled.

 Does the GL_DOT_PRODUCT_DEPTH_REPLACE_NV progra m replace the
 eye-distance Z or window-space depth?

 RESOLUTION: Window-space depth. And if the window-space depth
 value is outside of the near and far depth ra nge values, the
 fragment is rejected.

 The GL_CULL_FRAGMENT_NV operation always compar es against all four
 texture coordinates. What if I want only one, two, or three
 comparisons?

 RESOLUTION: To compare against a single valu e, replicate that value
 in all the coordinates and set the comparison for all components to
 be identical. Or you can set uninteresting c oordinates to zero and
 use the GL_GEQUAL comparison which will never cull for the value zero.

 What is GL_CULL_FRAGMENT_NV good for?

 The GL_CULL_FRAGMENT_NV operation provides a mechanism to implement
 per-fragment clip planes. If a texture coord inate is assigned a
 signed distance to a plane, the cull fragment test can discard
 fragments on the wrong side of the plane. Ea ch texture shader
 stage provides up to four such clip planes. An eye-space clip
 plane can be established using the GL_EYE_LIN EAR texture coordinate

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1692

 generation mode where the clip plane equation is specified via
 the GL_EYE_PLANE state.

 Clip planes are one application for GL_CULL_F RAGMENT_NV, but
 other clipping approaches are possible too. For example, by
 computing and assigning appropriate texture c oordinates (perhaps
 with NV_vertex_program), fragments beyond a c ertain distance from
 a point can be culled (assuming that it is ac ceptable to linearly
 interpolate a distance between vertices).

 The texture border color is supposed to be an R GBA value clamped to
 the range [0,1]. How does the texture border c olor work in conjunction
 with signed RGBA color components, HILO compone nts, and texture offset
 component groups?

 RESOLUTION: The per-texture object GL_TEXTUR E_BORDER_COLOR
 is superceded by a GL_TEXTURE_BORDER_VALUES s ymbolic token.
 The texture border values are four floats (no t clamped to
 [0,1] when specified). When a texture border is required for
 a texture, the components for the border texe l are determined
 by the GL_TEXTURE_BORDER_VALUES state. For c olor components,
 the GL_TEXTURE_BORDER_VALUES state is treated as a set of RGBA
 color components. For HILO components, the f irst value is treated
 as hi and the second value is treated as lo. For texture offset
 components, the ds, dt, mag, and vib values c orrespond to the first,
 second, third, and fourth texture border valu es respectively.
 The particular texture border components are clamped to the range
 of the component determined by the texture's internal format. So a
 signed component is clamped to the [-1,1] ran ge and an unsigned
 component is clamped to the [0,1] range.

 For backward compatibility, the GL_TEXTURE_BO RDER_COLOR can
 still be specified and queried. When specifi ed, the values are
 clamped to [0,1] and used to update the textu re border values.
 When GL_TEXTURE_BORDER_COLOR is queried, ther e is no clamping of
 the returned values.

 With signed texture components, does the textur e environment function
 discussion need to be amended?

 RESOLUTION: Yes. We do not want texture env ironment results to
 exceed the range [-1,1].

 The GL_DECAL and GL_BLEND operations perform linear interpolations
 of various components of the form

 A * B + (1-A) * C

 The value of A should not be allowed to be ne gative otherwise,
 the value of (1-A) may exceed 1.0. These lin ear interpolations
 should be written in the form

 max(0,A) * B + (1-max(0,A)) * C

 The GL_ADD operation clamps its result to 1.0 , but if negative
 components are permitted, the result should b e clamped to the range
 [-1,1].

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1693

 The GL_COMBINE_ARB (and GL_COMBINE_EXT) and G L_COMBINE4_NV
 operations do explicit clamping of all result to [0,1].
 In addition, NV_texture_shader adds requireme nts to clamp
 inputs to [0,1] too. This is because the GL_ ONE_MINUS_SRC_COLOR
 and GL_ONE_MINUS_SRC_ALPHA operands should re ally be computing
 1-max(0,C). For completeness, GL_SRC_COLOR a nd GL_SRC_ALPHA should
 be computing max(0,C).

 With signed texture components, does the color sum discussion need
 to be amended?

 RESOLUTION: Yes. The primary and secondary color should both be
 clamped to the range [0,1] before they are su mmed.

 The unextended OpenGL 1.2 description of colo r sum does not
 require a clamp of the primary and secondary colors to the [0,1]
 range before they are summed. Before signed texture components,
 the standard texture environment modes either could not generate
 results outside the [0,1] range or explicitly clamped their
 results to this range (as in the case of GL_A DD, GL_COMBINE_EXT,
 and GL_COMBINE4_NV). Now with signed texture components, negative
 values can be generated by texture environmen t functions.

 We do not want to clamp the intermediate resu lts of texture
 environment stages since negative results may be useful in
 subsequent stages, but clamping should be app lied to the primary
 color immediately before the color sum. For symmetry, clamping of
 the secondary color is specified as well (tho ugh there is currently
 no way to generate a negative secondary color).

 Why vibrance?

 Vibrance is the fourth component of the exter nal representation of a
 texture offset group. During pixel transfer, vibrance is scaled and
 biased based on the GL_VIBRANCE_SCALE and GL_ VIBRANCE_BIAS state.
 Once transformed, the vibrance component beco mes the intensity
 component for textures with a DSDT_MAG_INTENS ITY base internal
 format. Vibrance is meaningful only when spe cifying texture images
 with the DS_DT_MAG_VIB_NV external format (an d is not supported
 when reading, drawing, or copying pixels).

 There are lots of reasons that a texture shader stage is inconsistent,
 and in which case, the stage operates as if the operation is NONE.
 For debugging sanity, is there a way to determi ne whether a particular
 texture shader stage is consistent?

 RESOLUTION: Yes. Query the shader consisten cy of a particular
 texture unit with:

 GLint consistent;

 glActiveTextureARB(stage_to_check);
 glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHAD ER_CONSISTENT_NV,
 &consistent);

 consistent is one or zero depending on whethe r the shader stage

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1694

 is consistent or not.

 Should there be signed components with sub 8-bi t precision?

 RESOLUTION: No.

 Should packed pixel formats for texture offset groups be supported?

 RESOLUTION: Yes, but they are limited to UNS IGNED_INT_S8_S8_8_8_NV
 and UNSIGNED_INT_8_8_S8_S8_REV_NV for use wit h the DSDT_MAG_VIB_NV
 format.

 Note that these two new packed pixel formats are only for the
 DSDT_MAG_VIB_NV and cannot be used with RGBA or BGRA formats.
 Likewise, the RGBA and BGRA formats cannot be used with the new
 UNSIGNED_INT_S8_S8_8_8_NV and UNSIGNED_INT_8_ 8_S8_S8_REV_NV types.

 What should be said about signed fixed-point pr ecision and range of
 actual implementations?

 RESOLUTION: The core OpenGL specification ty pically specifies
 fixed-point numerical computations without re gard to the specific
 precision of the computations. This practice is intentional because
 it permits implementations to vary in the deg ree of precision used
 for internal OpenGL computations. When mappi ng unsigned fixed-point
 values to a [0,1] range, the mapping is strai ghtforward.

 However, this extension supports signed textu re components in
 the range [-1,1]. This presents some awkward choices for how to
 map [-1,1] to a fixed-point representation. Assuming a binary
 fixed-point representation with an even distr ibution of precision,
 there is no way to exactly represent -1, 0, a nd 1 and avoid
 representing values outside the [-1,1] range.

 This is not a unique issue for this extension . In core OpenGL,
 table 2.6 describes mappings from unsigned in teger types (GLbyte,
 GLshort, and GLint) that preclude the exact s pecification of 0.0.
 NV_register_combiners supports signed fixed-p oint values that have
 similar representation issues.

 NVIDIA's solution to this representation prob lem is to use 8-, 9-,
 and 16-bit fixed-point representations for si gned values in the
 [-1,1] range such that

 floating-point 8-bit fixed-point 9-bit fixed -point 16 bit fixed-point
 -------------- ----------------- ----------- ------ ------------------
 1.0 n/a 255 n/a
 0.99996... n/a n/a 32767
 0.99218... 127 n/a n/a
 0.0 0 0 0
 -1.0 -128 -255 -32768
 -1.00392... n/a -256 n/a

 The 8-bit and 16-bit signed fixed-point types are used for signed
 internal texture formats, while the 9-bit sig ned fixed-point type
 is used for register combiners computations.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1695

 The 9-bit signed fixed-point type has the dis advantage that a
 number slightly more negative than -1 can be represented and this
 particular value is different dependent on th e number of bits of
 fixed-point precision. The advantage of this approach is that 1,
 0, and -1 can all be represented exactly.

 The 8-bit and 16-bit signed fixed-point types have the disadvantage
 that 1.0 cannot be exactly represented (thoug h -1.0 and zero can
 be exactly represented).

 The specification however is written using th e conventional
 OpenGL practice (table 2.6) of mapping signed values evenly over
 the range [-1,1] so that zero cannot be preci sely represented.
 This is done to keep this specification consi stent with OpenGL's
 existing conventions and to avoid the uglines s of specifying
 a precision-dependent range. We expect leewa y in how signed
 fixed-point values are represented.

 The spirit of this extension is that an impli cit allowance is
 made for signed fixed-point representations t hat cannot exactly
 represent 1.0.

 How should NV_texture_rectangle interact with N V_texture_shader?

 NV_texture_rectangle introduces a new texture target similar
 to GL_TEXTURE_2D but that supports non-power- of-two texture
 dimensions and several usage restrictions (no mipmapping, etc).
 Also the imaged texture coordinate range for rectangular textures
 is [0,width]x[0,height] rather than [0,1]x[0, 1].

 Four texture shader operations will operate l ike their 2D texture
 counter-parts, but will access the rectangula r texture
 target rather than the 2D texture target. Th ese are:

 GL_TEXTURE_RECTANGLE_NV
 GL_OFFSET_TEXTURE_RECTANGLE_NV
 GL_OFFSET_TEXTURE_RECTANGLE_SCALE_NV
 GL_DOT_PRODUCT_TEXTURE_RECTANGLE_NV

 A few 2D texture shader operations, namely
 GL_DEPENDENT_AR_TEXTURE_2D_NV and GL_DEPENDEN T_GB_TEXTURE_2D_NV,
 do not support rectangular textures because t urning colors in the
 [0,1] range into texture coordinates would on ly access a single
 corner texel in a rectangular texture. The o ffset and dot product
 rectangular texture shader operations support scaling of the
 dependent texture coordinates so these operat ions can access the
 entire image of a rectangular texture. Note however that it is the
 responsibility of the application to perform the proper scaling.

 Note that the 2D and rectangular "offset text ure" shaders both
 use the same matrix, scale, and bias state.

 Does the GL_DOT_PRODUCT_DEPTH_REPLACE_NV operat ion happen before or
 after polygon offset?

 RESOLUTION: After. The window Z (w_z) is co mputed during
 rasterization and polygon offset occurs at th is point. The depth

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1696

 replace operation occurs after rasterization (at the point that
 conventional OpenGL calls "texturing") so whe n the depth value
 is replaced, the effect of polygon offset (an d normal depth
 interpolation) is lost when using the depth r eplace operation.

 How does the GL_DOT_PRODUCT_DEPTH_REPLACE_NV op eration interact with
 ARB_multisample?

 RESOLUTION: The depth value for all covered samples of a
 multisampled fragment are replaced with the _ same_ single depth
 value computed by the depth replace operation . Without depth
 replace, the depth values of each sample of a fragment may have
 slightly different depth values because of th e polygon's depth
 gradient.

 How should the clamping work for GL_OFFSET_TEXT URE_2D_SCALE?

 RESOLUTION: The scale factor should be clam ped to [0,1] prior
 to scaling red, green, and blue.

 Red, green, and blue are guaranteed to be un signed RGB values
 so the [0,1] scale factor times the [0,1] RG B values results in
 [0,1] values so no output clamping need be s pecified.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f TexEnvf, TexEnvfv,
 TexEnvi, TexEnviv, GetTexEnvfv, and GetTexEnviv :

 TEXTURE_SHADER_NV 0 x86DE

 When the <target> parameter of TexEnvf, TexEnvf v, TexEnvi, TexEnviv,
 GetTexEnvfv, and GetTexEnviv is TEXTURE_SHADER_ NV, then the value
 of <pname> may be:

 RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV 0 x86D9
 SHADER_OPERATION_NV 0 x86DF
 OFFSET_TEXTURE_SCALE_NV 0 x86E2
 OFFSET_TEXTURE_BIAS_NV 0 x86E3
 OFFSET_TEXTURE_2D_SCALE_NV a lias for OFFSET_TEXTURE_SCALE_NV
 OFFSET_TEXTURE_2D_BIAS_NV d eprecated alias for OFFSET_TEXTURE_BIAS_NV
 PREVIOUS_TEXTURE_INPUT_NV 0 x86E4

 When the <target> parameter of TexEnvfv, TexEnv iv, GetTexEnvfv, and
 GetTexEnviv is TEXTURE_SHADER_NV, then the valu e of <pname> may be:

 CULL_MODES_NV 0x86E0
 OFFSET_TEXTURE_MATRIX_NV 0x86E1
 OFFSET_TEXTURE_2D_MATRIX_NV deprecated alias for OFFSET_TEXTURE_MATRIX_NV
 CONST_EYE_NV 0x86E5

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1697

 When the <target> parameter GetTexEnvfv and Get TexEnviv is
 TEXTURE_SHADER_NV, then the value of <pname> ma y be:

 SHADER_CONSISTENT_NV 0 x86DD

 When the <target> and <pname> parameters of Tex Envf, TexEnvfv,
 TexEnvi, and TexEnviv are TEXTURE_ENV and TEXTU RE_ENV_MODE
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 NONE

 When the <target> and <pname> parameters of Tex Envf, TexEnvfv,
 TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and SHADER_OPERATION_NV
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 NONE

 TEXTURE_1D
 TEXTURE_2D
 TEXTURE_RECTANGLE_NV (see NV_texture_rectangle)
 TEXTURE_CUBE_MAP_ARB (see ARB_texture_cube_map)

 PASS_THROUGH_NV 0 x86E6
 CULL_FRAGMENT_NV 0 x86E7

 OFFSET_TEXTURE_2D_NV 0 x86E8
 OFFSET_TEXTURE_2D_SCALE_NV s ee above, note aliasing
 OFFSET_TEXTURE_RECTANGLE_NV 0 x864C
 OFFSET_TEXTURE_RECTANGLE_SCALE_NV 0 x864D
 DEPENDENT_AR_TEXTURE_2D_NV 0 x86E9
 DEPENDENT_GB_TEXTURE_2D_NV 0 x86EA

 DOT_PRODUCT_NV 0 x86EC
 DOT_PRODUCT_DEPTH_REPLACE_NV 0 x86ED
 DOT_PRODUCT_TEXTURE_2D_NV 0 x86EE
 DOT_PRODUCT_TEXTURE_RECTANGLE_NV 0 x864E
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV 0 x86F0
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV 0 x86F1
 DOT_PRODUCT_REFLECT_CUBE_MAP_NV 0 x86F2
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV 0 x86F3

 When the <target> and <pname> parameters of Tex Envfv and TexEnviv
 are TEXTURE_SHADER_NV and CULL_MODES_NV respect ively, then the value
 of <param> or the value pointed to by <params> may be:

 LESS
 GEQUAL

 When the <target> and <pname> parameters of Tex Envf,
 TexEnvfv, TexEnvi, and TexEnviv are TEXTURE_SHA DER_NV and
 RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV respective ly, then the value
 of <param> or the value pointed to by <params> may be:

 UNSIGNED_IDENTITY_NV (see NV_register_combiners)
 EXPAND_NORMAL_NV (see NV_register_combiners)

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1698

 When the <target> and <pname> parameters of Tex Envf,
 TexEnvfv, TexEnvi, and TexEnviv are TEXTURE_SHA DER_NV and
 PREVIOUS_TEXTURE_INPUT_NV respectively, then th e value of <param>
 or the value pointed to by <params> may be:

 TEXTURE0_ARB
 TEXTURE1_ARB
 TEXTURE2_ARB
 TEXTURE3_ARB
 TEXTURE4_ARB
 TEXTURE5_ARB
 TEXTURE6_ARB
 TEXTURE7_ARB

 Accepted by the <format> parameter of GetTexIma ge, TexImage1D,
 TexImage2D, TexSubImage1D, and TexSubImage2D:

 HILO_NV 0 x86F4
 DSDT_NV 0 x86F5
 DSDT_MAG_NV 0 x86F6
 DSDT_MAG_VIB_NV 0 x86F7

 Accepted by the <type> parameter of GetTexImage , TexImage1D,
 TexImage2D, TexSubImage1D, and TexSubImage2D:

 UNSIGNED_INT_S8_S8_8_8_NV 0 x86DA
 UNSIGNED_INT_8_8_S8_S8_REV_NV 0 x86DB

 Accepted by the <internalformat> parameter of C opyTexImage1D,
 CopyTexImage2D, TexImage1D, and TexImage2D:

 SIGNED_RGBA_NV 0 x86FB
 SIGNED_RGBA8_NV 0 x86FC
 SIGNED_RGB_NV 0 x86FE
 SIGNED_RGB8_NV 0 x86FF
 SIGNED_LUMINANCE_NV 0 x8701
 SIGNED_LUMINANCE8_NV 0 x8702
 SIGNED_LUMINANCE_ALPHA_NV 0 x8703
 SIGNED_LUMINANCE8_ALPHA8_NV 0 x8704
 SIGNED_ALPHA_NV 0 x8705
 SIGNED_ALPHA8_NV 0 x8706
 SIGNED_INTENSITY_NV 0 x8707
 SIGNED_INTENSITY8_NV 0 x8708
 SIGNED_RGB_UNSIGNED_ALPHA_NV 0 x870C
 SIGNED_RGB8_UNSIGNED_ALPHA8_NV 0 x870D

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1699

 Accepted by the <internalformat> parameter of T exImage1D and
 TexImage2D:

 HILO_NV
 HILO16_NV 0 x86F8
 SIGNED_HILO_NV 0 x86F9
 SIGNED_HILO16_NV 0 x86FA
 DSDT_NV
 DSDT8_NV 0 x8709
 DSDT_MAG_NV
 DSDT8_MAG8_NV 0 x870A
 DSDT_MAG_INTENSITY_NV 0 x86DC
 DSDT8_MAG8_INTENSITY8_NV 0 x870B

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, GetDoublev, PixelTransferf, and Pixe lTransferi:

 HI_SCALE_NV 0 x870E
 LO_SCALE_NV 0 x870F
 DS_SCALE_NV 0 x8710
 DT_SCALE_NV 0 x8711
 MAGNITUDE_SCALE_NV 0 x8712
 VIBRANCE_SCALE_NV 0 x8713
 HI_BIAS_NV 0 x8714
 LO_BIAS_NV 0 x8715
 DS_BIAS_NV 0 x8716
 DT_BIAS_NV 0 x8717
 MAGNITUDE_BIAS_NV 0 x8718
 VIBRANCE_BIAS_NV 0 x8719

 Accepted by the <pname> parameter of TexParamet eriv, TexParameterfv,
 GetTexParameterfv and GetTexParameteriv:

 TEXTURE_BORDER_VALUES_NV 0 x871A

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_HI_SIZE_NV 0 x871B
 TEXTURE_LO_SIZE_NV 0 x871C
 TEXTURE_DS_SIZE_NV 0 x871D
 TEXTURE_DT_SIZE_NV 0 x871E
 TEXTURE_MAG_SIZE_NV 0 x871F

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1700

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.6 "Pixel Rectangles"

 Add four new rows to table 3.2:

 Parameter Name Type Initial Value Vali d Range
 ------------------ ----- ------------- ---- -------
 HI_SCALE_NV float 1.0 (-In f,+Inf)
 LO_SCALE_NV float 1.0 (-In f,+Inf)
 DS_SCALE_NV float 1.0 (-In f,+Inf)
 DT_SCALE_NV float 1.0 (-In f,+Inf)
 MAGNITUDE_SCALE_NV float 1.0 (-In f,+Inf)
 VIBRANCE_SCALE_NV float 1.0 (-In f,+Inf)

 HI_BIAS_NV float 0.0 (-In f,+Inf)
 LO_BIAS_NV float 0.0 (-In f,+Inf)
 DS_BIAS_NV float 0.0 (-In f,+Inf)
 DT_BIAS_NV float 0.0 (-In f,+Inf)
 MAGNITUDE_BIAS_NV float 0.0 (-In f,+Inf)
 VIBRANCE_BIAS_NV float 0.0 (-In f,+Inf)

 -- Section 3.6.4 "Rasterization of Pixel Rectangl es"

 Add before the subsection titled "Unpacking":

 "The HILO_NV, DSDT_NV, DSDT_MAG_NV, and DSDT_M AG_VIB_NV formats
 are described in this section and section 3.6. 5 even though these
 formats are supported only for texture images. Textures with
 the HILO_NV format are intended for use with c ertain dot product
 texture and dependent texture shader operation s (see section 3.8.13).
 Textures with the DSDT_NV, DSDT_MAG_NV, and DS DT_MAG_VIB_NV format
 are intended for use with certain offset textu re 2D texture shader
 operations (see section 3.8.13).

 The error INVALID_ENUM occurs if HILO_NV, DSDT _NV, DSDT_MAG_NV, or
 DSDT_MAG_VIB_NV is used as the format for Draw Pixels, ReadPixels,
 or other commands that specify or query an ima ge with a format and
 type parameter though the image is not a textu re image. The HILO_NV,
 DSDT_NV, DSDT_MAG_NV, or DSDT_MAG_VIB_NV forma ts are intended for
 use with the TexImage and TexSubImage commands .

 The HILO_NV format consists of two components, hi and lo, in the hi
 then lo order. The hi and lo components maint ain at least 16 bits
 of storage per component (at least 16 bits of magnitude for unsigned
 components and at least 15 bits of magnitude f or signed components).

 The DSDT_NV format consists of two signed comp onents ds and dt,
 in the ds then dt order. The DSDT_MAG_NV form at consists of
 three components: the signed ds and dt compone nts and an unsigned
 magnitude component (mag for short), in the ds , then dt, then mag
 order. The DSDT_MAG_VIB_NV format consists of four components:
 the signed ds and dt components, an unsigned m agnitude component
 (mag for short), and an unsigned vibrance comp onent (vib for short),
 in the ds, then dt, then mag, then vib order."

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1701

 Add a new row to table 3.8:

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
----------------------------- ------- ---------- ----------------
UNSIGNED_INT_S8_S8_8_8_NV uint 4 DSDT_MAG_VIB_NV
UNSIGNED_INT_8_8_S8_S8_REV_NV uint 4 DSDT_MAG_VIB_NV

 Add to table 3.11:

UNSIGNED_INT_S8_S8_8_8_NV:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1st component | 2nd | 3rd | 4th |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

UNSIGNED_INT_8_8_S8_S8_REV_NV:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 4th | 3rd | 2nd | 1st component |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 Replace the fifth paragraph in the subsection titled "Unpacking"
 with the following:

 "Calling DrawPixels with a type of UNSIGNED_BY TE_3_3_2,
 UNSIGNED_BYTE_2_3_3_REV, UNSIGNED_SHORT_5_6_5,
 UNSIGNED_SHORT_5_6_5_REV, UNSIGNED_SHORT_4_4_4 _4,
 UNSIGNED_SHORT_4_4_4_4_REV, UNSIGNED_SHORT_5_5 _5_1,
 UNSIGNED_SHORT_1_5_5_5_REV, UNSIGNED_INT_8_8_8 _8,
 UNSIGNED_INT_8_8_8_8_REV, UNSIGNED_INT_10_10_1 0_2, or
 UNSIGNED_INT_2_10_10_10_REV is a special case in which all
 the components of each group are packed into a single unsigned
 byte, unsigned short, or unsigned int, dependi ng on the type.
 When packing or unpacking texture images (for example, using
 TexImage2D or GetTexImage), the type parameter may also be either
 UNSIGNED_INT_S8_S8_8_8_NV or UNSIGNED_INT_8_8_ S8_S8_REV though
 neither symbolic token is permitted for DrawPi xels, ReadPixels,
 or other commands that specify or query an ima ge with a format
 and type parameter though the image is not a t exture image.
 The error INVALID_ENUM occurs when UNSIGNED_IN T_S8_S8_8_8_NV is
 used when it is not permitted. When UNSIGNED_ INT_S8_S8_8_8_NV
 or UNSIGNED_INT_8_8_S8_S8_REV_NV is used, the first and second
 components are treated as signed components. The number of
 components per packed pixel is fixed by the ty pe, and must match the
 number of components per group indicated by th e format parameter,
 as listed in table 3.8. The format must also be one of the formats
 listed in the Matching Pixel Formats column of table 3.8 for the
 specified packed type. The error INVALID_OPER ATION is generated
 if a mismatch occurs. This constraint also ho lds for all other
 functions that accept or return pixel data usi ng type and format
 parameters to define the type and format of th e data."

 Amend the second sentence in the sixth paragra ph in the subsection
 titled "Unpacking" to read:

 "Each bitfield is interpreted as an unsigned i nteger value unless

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1702

 it has been explicitly been stated that the bi tfield contains a
 signed component. Signed bitfields are treate d as two's complement
 numbers."

 Add a new row to table 3.12:

 First Second Third Fourth
 Format Component Component Compone nt Component
 --------------- --------- --------- ------- --- ---------
 DSDT_MAG_VIB_NV ds dt magnit ude vibrance

 Change the last sentence in the first paragrap h in the subsection
 titled "Conversion to floating-point" to read:

 "For packed pixel types, each unsigned element in the group is
 converted by computing c / (2^N-1), where c is the unsigned integer
 value of the bitfield containing the element a nd N is the number of
 bits in the bitfield. In the case of signed e lements of a packed
 pixel type, the signed element is converted by computing 2*c+1 /
 (2^N-1), where c is the signed integer value o f the bitfield
 containing the element and N is the number of bits in the bitfield."

 Change the first sentence in the subsection "F inal Expansion to RGBA"
 to read:

 "This step is performed only for groups other than HILO component,
 depth component, and texture offset groups."

 Add the following additional enumeration to th e kind of pixel groups
 in section 3.6.5:

 "5. HILO component: Each group comprises two components: hi and lo.

 6. Texture offset group: Each group compris es four components:
 a ds and dt pair, a magnitude, and a vibrance ."

 Change the subsection "Arithmetic on Component s" in section 3.6.5
 to read:

 "This step applies only to RGBA component, dep th component, and HILO
 component, and texture offset groups. Each co mponent is multiplied
 by an appropriate signed scale factor: RED_SC ALE for an R component,
 GREEN_SCALE for a G component, BLUE_SCALE for a B component,
 ALPHA_SCALE, for an A component, HI_SCALE_NV f or a HI component,
 LO_SCALE_NV for a LO component, DS_SCALE_NV fo r a DS component,
 DT_SCALE_NV for a DT component, MAGNITUDE_SCAL E_NV for a MAG
 component, VIBRANCE_SCALE_NV for a VIB compone nt, or DEPTH_SCALE
 for a depth component.

 Then the result is added to the appropriate si gned bias: RED_BIAS,
 GREEN_BIAS, BLUE_BIAS, ALPHA_BIAS, HI_BIAS_NV, LO_BIAS_NV,
 DS_BIAS_NV, DT_BIAS_NV, MAGNITUDE_BIAS_NV, VIB RANCE_BIAS_NV, or
 DEPTH_BIAS."

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1703

 -- Section 3.8 "Texturing"

 Replace the first paragraph with the following :

 "The GL provides two mechanisms for mapping se ts of (s,t,r,q)
 texture coordinates to RGBA colors: convention al texturing and
 texture shaders.

 Conventional texturing maps a portion of a spe cified image onto
 each primitive for each enabled texture unit. Conventional
 texture mapping is accomplished by using the c olor of an image
 at the location indicated by a fragment's non- homogeneous (s,t,r)
 coordinates for a given texture unit.

 The alternative to conventional texturing is t he texture shaders
 mechanism. When texture shaders are enabled, each texture unit
 uses one of twenty-one texture shader operatio ns. Eighteen of the
 twenty-one shader operations map an (s,t,r,q) texture coordinate
 set to an RGBA color. Of these, three texture shader operations
 directly correspond to the 1D, 2D, and cube ma p conventional
 texturing operations. Depending on the textur e shader operation,
 the mapping from the (s,t,r,q) texture coordin ate set to an RGBA
 color may depend on the given texture unit's c urrently bound
 texture object state and/or the results of pre vious texture
 shader operations. The three remaining textur e shader operations
 respectively provide a fragment culling mechan ism based on texture
 coordinates, a means to replace the fragment d epth value, and a dot
 product operation that computes a floating-poi nt value for use by
 subsequent texture shaders. The specifics of each texture shader
 operation are described in section 3.8.12.

 Texture shading is enabled or disabled using t he generic Enable
 and Disable commands, respectively, with the s ymbolic constant
 TEXTURE_SHADER_NV. When texture shading is di sabled, conventional
 texturing generates an RGBA color for each ena bled textures unit
 as described in Sections 3.8.10.

 After RGBA colors are assigned to each texture unit, either by
 conventional texturing or texture shaders, the GL proceeds with
 fragment coloring, either using the texture en vironment, fog,
 and color sum operations, or using register co mbiners extension if
 supported.

 Neither conventional texturing nor texture sha ders affects the
 secondary color."

 -- Section 3.8.1 "Texture Image Specification"

 Add the following sentence to the first paragr aph:

 "The formats HILO_NV, DSDT_NV, DSDT_MAG_NV, an d DSDT_MAG_VIB_NV
 are allowed for specifying texture images."

 Replace the fourth paragraph with:

 "The selected groups are processed exactly as for DrawPixels,
 stopping just before conversion. Each R, G, B , A, HI, LO, DS, DT,

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1704

 and MAG value so generated is clamped to [0,1] if the corresponding
 component is unsigned, or if the corresponding component is signed,
 is clamped to [-1,1]. The signedness of compo nents depends on the
 internal format (see table 3.16). The signedn ess of components
 for unsized internal formats matches the signe dness of components
 for any respective sized version of the intern al format."

 Replace table 3.15 with the following table:

 Base Internal Format Component Values In ternal Components Format Type
 --------------------- ------------------- -- ----------------- -------------------------
 ALPHA A A RGBA
 LUMINANCE R L RGBA
 LUMINANCE_ALPHA R,A L, A RGBA
 INTENSITY R I RGBA
 RGB R,G,B R, G,B RGBA
 RGBA R,G,B,A R, G,B,A RGBA
 HILO_NV HI,LO HI ,LO HILO
 DSDT_NV DS,DT DS ,DT texture offset group
 DSDT_MAG_NV DS,DT,MAG DS ,DT,MAG texture offset group
 DSDT_MAG_INTENSITY_NV DS,DT,MAG,VIB DS ,DT,MAG,I RGBA/texture offset group

 Re-caption table 3.15 as:

 "Conversion from RGBA, HILO, and texture offse t pixel components to
 internal texture table, or filter components. See section 3.8.9
 for a description of the texture components R, G, B, A, L, and I.
 See section 3.8.13 for an explanation of the h andling of the texture
 components HI, LO, DS, DT, MAG, and VIB."

 Add five more columns to table 3.16 labeled "H I bits", "LO bits", "DS
 bits", "DT bits", and "MAG bits". Existing ta ble rows should have
 these column entries blank. Add the following rows to the table:

Sized Base R G B A L I HI LO DS DT MAG
Internal Format Internal Format bits bits bits bits bits bits bits bits bits bits bits
------------------------------ -------------------- - ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
HILO16_NV HILO 16 16
SIGNED_HILO16_NV HILO 16* 16*
SIGNED_RGBA8_NV RGBA 8* 8* 8* 8*
SIGNED_RGB8_UNSIGNED_ALPHA8_NV RGBA 8* 8* 8* 8
SIGNED_RGB8_NV RGB 8* 8* 8*
SIGNED_LUMINANCE8_NV LUMINANCE 8*
SIGNED_LUMINANCE8_ALPHA8_NV LUMINANCE_ALPHA 8* 8*
SIGNED_ALPHA8_NV ALPHA 8*
SIGNED_INTENSITY8_NV INTENSITY 8*
DSDT8_NV DSDT_NV 8* 8*
DSDT8_MAG8_NV DSDT_MAG_NV 8* 8* 8
DSDT8_MAG8_INTENSITY8_NV DSDT_MAG_INTENSITY_N V 8 8* 8* 8

 Add to the caption for table 3.16:

 "An asterisk (*) following a component size in dicates that the
 corresponding component is signed (the sign bi t is included in
 specified component resolution size)."

 Change the first sentences of the fifth paragr aph to read:

 "Components are then selected from the resulti ng R, G, B, A, HI, LO,
 DS, DT, and MAG values to obtain a texture wit h the base internal
 format specified by (or derived from) internal format. Table 3.15
 summarizes the mapping of R, G, B, A, HI, LO, DS, DT, and MAG values

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1705

 to texture components, as a function of the ba se internal format of
 the texture image. internalformat may be spec ified as one of the
 ten base internal format symbolic constants li sted in table 3.15,
 or as one of the sized internal format symboli c constants listed
 in table 3.16."

 Add these sentences before the last sentence i n the fifth paragraph:

 "The error INVALID_OPERATION is generated if t he format is
 HILO_NV and the internalformat is not one of H ILO_NV, HILO16_NV,
 SIGNED_HILO_NV, SIGNED_HILO16_NV; or if the in ternalformat is one
 of HILO_NV, HILO16_NV, SIGNED_HILO_NV, or SIGN ED_HILO16_NV and the
 format is not HILO_NV.

 The error INVALID_OPERATION is generated if th e format is DSDT_NV
 and the internalformat is not either DSDT_NV o r DSDT8_NV; or if
 the internal format is either DSDT_NV or DSDT8 _NV and the format
 is not DSDT_NV.

 The error INVALID_OPERATION is generated if th e format is DSDT_MAG_NV
 and the internalformat is not either DSDT_MAG_ NV or DSDT8_MAG8_NV;
 or if the internal format is either DSDT_MAG_N V or DSDT8_MAG8_NV
 and the format is not DSDT_MAG_NV.

 The error INVALID_OPERATION is generated if th e format
 is DSDT_MAG_VIB_NV and the internalformat is n ot either
 DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8 _NV; or if the internal
 format is either DSDT_MAG_INTENSITY_NV or DSDT 8_MAG8_INTENSITY8_NV
 and the format is not DSDT_MAG_VIB_NV."

 Change the first sentence of the sixth paragra ph to read:

 "The internal component resolution is the numb er of bits allocated
 to each value in a texture image (and includes the sign bit if the
 component is signed)."

 Change the third sentence of the sixth paragra ph to read:

 "If a sized internal format is specified, the mapping of the R,
 G, B, A, HI, LO, DS, DT, and MAG values to tex ture components
 is equivalent to the mapping of the correspond ing base internal
 format's components, as specified in table 3.1 5, and the memory
 allocations per texture component is assigned by the GL to match
 the allocations listed in table 3.16 as closel y as possible."

 -- Section 3.8.2 "Alternate Texture Image Specifi cation Commands"

 In the second paragraph (describing CopyTexIma ge2D), change the
 third to the last sentence to:

 "Parameters level, internalformat, and border are specified using the
 same values, with the same meanings, as the eq uivalent arguments of
 TexImage2D, except that internalformat may not be specified as 1, 2,
 3, 4, HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIGN ED_HILO16_NV, DSDT_NV,
 DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG _INTENSITY_NV, or
 DSDT8_MAG8_INTENSITY8_NV."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1706

 In the third paragraph (describing CopyTexImag e1D), change the
 second to the last sentence to:

 "level, internalformat, and border are specifi ed using the same
 values, with the same meanings, as the equival ent arguments of
 TexImage1D, except that internalformat may not be specified as 1, 2,
 3, 4, HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIGN ED_HILO16_NV, DSDT_NV,
 DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG _INTENSITY_NV, or
 DSDT8_MAG8_INTENSITY8_NV."

 Insert the following text after the six paragr aph reading:

 "CopyTexSubImage2D and CopyTexSubImage1D gener ate the error
 INVALID_OPERATION if the internal format of th e texture array to
 which the pixels are to be copied is one of HI LO_NV, HILO16_NV,
 SIGNED_HILO_NV, SIGNED_HILO16_NV, DSDT_NV, DSD T8_NV, DSDT_MAG_NV,
 DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or DSDT8 _MAG8_INTENSITY8_NV.

 TexSubImage2D and TexSubImage1D generate the e rror INVALID_OPERATION
 if the internal format of the texture array to which the texels are
 to be copied has a different format type (acco rding to table 3.15)
 than the format type of the texels being speci fied. Specifically, if
 the base internal format is not one of HILO_NV , DSDT_NV, DSDT_MAG_NV,
 or DSDT_INTENSITY_NV, then the format paramete r must be one of
 COLOR_INDEX, RED, GREEN, BLUE, ALPHA, RGB, RGB A, LUMINANCE, or
 LUMINANCE_ALPHA; if the base internal format i s HILO_NV, then the
 format parameter must be HILO_NV; if the base internal format is
 DSDT_NV, then the format parameter must be DSD T_NV; if the base
 internal format is DSDT_MAG_NV, then the forma t parameter must be
 DSDT_MAG_NV; if the base internal format is DS DT_MAG_INTENSITY_NV,
 the format parameter must be DSDT_MAG_VIB_NV."

 -- Section 3.8.3 "Texture Parameters"

 Change the TEXTURE_BORDER_COLOR line in table 3.17 to read:

 Name Type Legal Valu es
 ------------------------ -------- ---------- --
 TEXTURE_BORDER_VALUES 4 floats any value

 Add the last two sentences to read:

 "The TEXTURE_BORDER_VALUES state can also be s pecified with the
 TEXTURE_BORDER_COLOR symbolic constant. When the state is specified
 via TEXTURE_BORDER_COLOR, each of the four val ues specified are
 first clamped to lie in [0,1]. However, if th e texture border
 values state is specified using TEXTURE_BORDER _VALUES, no clamping
 occurs. In either case, if the values are spe cified as integers,
 the conversion for signed integers from table 2.6 is applied to
 convert the values to floating-point."

 -- Section 3.8.5 "Texture Minification"

 Change the last paragraph to read:

 "If any of the selected tauijk, tauij, or taui in the above equations
 refer to a border texel with i < -bs, j < bs, k < -bs, i >= ws-bs, j

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1707

 >= hs-bs, or k >= ds-bs, then the border value s given by the current
 setting of TEXTURE_BORDER_VALUES is used inste ad of the unspecified
 value or values. If the texture contains colo r components, the
 components of the TEXTURE_BORDER_VALUES vector are interpreted as
 an RGBA color to match the texture's internal format in a manner
 consistent with table 3.15. If the texture co ntains HILO components,
 the first and second components of the TEXTURE _BORDER_VALUES vector
 are interpreted as the hi and lo components re spectively. If the
 texture contains texture offset group componen ts, the first, second,
 third, and fourth components of the TEXTURE_BO RDER_VALUES vector
 are interpreted as ds, dt, mag, and vib compon ents respectively.
 Additionally, the texture border values are cl amped appropriately
 depending on the signedness of each particular component. Unsigned
 components are clamped to [0,1]; signed compon ents are clamped to
 [-1,1]."

 -- Section 3.8.9 "Texture Environment and Texture Functions"

 Augment the list of supported texture function s in the first
 paragraph to read:

 "TEXTURE_ENV_MODE may be set to one of REPLACE , MODULATE, DECAL,
 BLEND, ADD, COMBINE_ARB (or COMBINE_EXT), COMB INE4_NV, or NONE;"

 Insert this paragraph between the first and se cond paragraphs:

 "When texture shaders are enabled (see section 3.8.13), a given
 texture unit's texture shader result may be in tended for use as
 an input to another texture shader stage rathe r than generating
 a texture unit RGBA result for use in the give n texture unit's
 texture environment function. Additionally, s everal texture shader
 operations and texture format types are intend ed only to generate
 texture shader results for subsequent texture shaders or perform a
 side effect (such as culling the fragment or r eplacing the fragment's
 depth value) rather than supplying a useful te xture unit RGBA result
 for use in the texture environment function. For this reason,
 the NONE texture environment ignores the textu re unit RGBA result
 and passes through its input fragment color un changed."

 Change the third sentence of the second paragr aph to read:

 "If the TEXTURE_SHADER_NV mode is disabled, th e precise form of
 the texture environment function depends on th e base internal
 format of the texture object bound to the give n texture unit's
 highest-precedence enabled texture target. Ot herwise if the
 TEXTURE_SHADER_NV mode is enabled, then the fo rm of the function
 depends on the texture unit's texture shader o peration.

 If a texture shader operation requires fetchin g a filtered
 texture color value (though not a HILO or text ure offset value;
 see the subsequent HILO and texture offset dis cussion), the texture
 environment function depends on the base inter nal format of the
 texture shader operation's respective texture target used for
 fetching by the texture shader operation.

 The PASS_THROUGH_NV texture shader operation d oes not fetch from any
 texture target, but it generates an RGBA color and therefore always

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1708

 operates as if the base internal format is RGB A for determining
 what texture environment function to apply.

 If the TEXTURE_SHADER_NV mode is enabled and t he texture shader
 operation for a given texture unit is one of N ONE, CULL_FRAGMENT_NV,
 DOT_PRODUCT_NV, or DOT_PRODUCT_DEPTH_REPLACE_NV, then the given
 texture unit's texture function always operate s as if the texture
 function is NONE.

 If the base internal format of the texture is HILO_NV, DSDT_NV,
 or DSDT_MAG_NV (independent of whether or not the TEXTURE_SHADER_NV
 mode is enabled or disabled), then correspondi ng the texture function
 always operates as if the texture function is NONE.

 If the base internal format of the texture is DSDT_MAG_INTENSITY_NV
 (independent of whether or not the TEXTURE_SHA DER_NV mode is enabled
 or disabled), then the corresponding texture f unction operates
 as if the base internal format is INTENSITY fo r the purposes of
 determining the appropriate function using the vibrance component
 as the intensity value."

 Change the phrase in the fourth sentence of th e second paragraph
 describing how Rt, Gt, Bt, At, Lt, and It are assigned to:

 "when TEXTURE_SHADER_NV is disabled, Rt, Gt, B t, At, Lt, and It are
 the filtered texture values; when TEXTURE_SHAD ER_NV is enabled, Rt,
 Gt, Bt, and At are the respective components o f the texture unit
 RGBA result of the texture unit's texture shad er stage, and Lt and
 It are any red, green, or blue component of th e texture unit RGBA
 result (the three components should be the sam e);"

 Change the second to last sentence of the seco nd paragraph to read:

 "The initial primary color and texture environ ment color component
 values are in the range [0,1]. The filtered t exture color and
 texture function result color component values are in the range
 [-1,1]. Negative filtered texture color compo nent values are
 generated by texture internal formats with sig ned components such
 as SIGNED_RGBA."

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1709

 Also amend tables 3.18 and 3.19 based on the f ollowing updated columns:

Base DECAL BLEND ADD
Internal Format Texture Function Texture Function Texture Function
================= ================================ ===== ===================================== ======= ===================
 ALPHA Rv = Rf (no longer undefined) Rv = Rf Rv = R f
 Gv = Gf Gv = Gf Gv = G f
 Bv = Bf Bv = Bf Bv = R f
 Av = Af Av = Af*At Av = A f*Av = At
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------
 LUMINANCE Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,Lt)) + Rc*max(0,Lt) Rv = m ax(-1,min(1,Rf+Lt))
 (or 1) Gv = Gf Gv = Gf*(1-max(0,Lt)) + Gc*max(0,Lt) Gv = m ax(-1,min(1,Gf+Lt))
 Bv = Bf Bv = Bf*(1-max(0,Lt)) + Bc*max(0,Lt) Bv = m ax(-1,min(1,Bf+Lt))
 Av = Af Av = Af Av = A f
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------
 LUMINANCE_ALPHA Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,Lt)) + Rc*max(0,Lt) Rv = m ax(-1,min(1,Rf+Lt))
 (or 2) Gv = Gf Gv = Gf*(1-max(0,Lt)) + Gc*max(0,Lt) Gv = m ax(-1,min(1,Gf+Lt))
 Bv = Bf Bv = Bf*(1-max(0,Lt)) + Bc*max(0,Lt) Bv = m ax(-1,min(1,Bf+Lt))
 Av = Af Av = Af*At Av = A f*At
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------
 INTENSITY Rv = Rf (no longer undefined) Rv = Rf*(1-max(0,It)) + Rc*max(0,It) Rv = m ax(-1,min(1,Rf+It))
 Gv = Gf Gv = Gf*(1-max(0,It)) + Gc*max(0,It) Gv = m ax(-1,min(1,Gf+It))
 Bv = Bf Bv = Bf*(1-max(0,It)) + Bc*max(0,It) Bv = m ax(-1,min(1,Bf+It))
 Av = Af Av = Af*(1-max(0,It)) + Ac*max(0,It) Av = m ax(-1,min(1,Af+It))
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------
 RGB Rv = Rt Rv = Rf*(1-max(0,Rt)) + Rc*max(0,Rt) Rv = m ax(-1,min(1,Rf+Rt))
 (or 3) Gv = Gt Gv = Gf*(1-max(0,Gt)) + Gc*max(0,Gt) Gv = m ax(-1,min(1,Gf+Gt))
 Bv = Bt Bv = Bf*(1-max(0,Bt)) + Bc*max(0,Bt) Bv = m ax(-1,min(1,Bf+Bt))
 Av = Af Av = Af Av = A f
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------
 RGBA Rv = Rf*(1-max(0,At)) + Rt*max(0,At) Rv = Rf*(1-max(0,Rt)) + Rc*max(0,Rt) Rv = m ax(-1,min(1,Rf+Rt))
 (or 4) Gv = Gf*(1-max(0,At)) + Gt*max(0,At) Gv = Gf*(1-max(0,Gt)) + Gc*max(0,Gt) Gv = m ax(-1,min(1,Gf+Gt))
 Bv = Bf*(1-max(0,At)) + Bt*max(0,At) Bv = Bf*(1-max(0,Bt)) + Bc*max(0,Bt) Bv = m ax(-1,min(1,Bf+Bt))
 Av = Af Av = Af*At Av = A f*At
----------------- -------------------------------- ----- ------------------------------------- ------- -------------------

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1710

 Also augment table 3.18 or 3.19 with the follo wing column:

 Base NONE
 Internal Format Texture Function
 ================= ================
 ALPHA Rv = Rf
 Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------
 LUMINANCE Rv = Rf
 (or 1) Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------
 LUMINANCE_ALPHA Rv = Rf
 (or 2) Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------
 INTENSITY Rv = Rf
 Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------
 RGB Rv = Rf
 (or 3) Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------
 RGBA Rv = Rf
 (or 4) Gv = Gf
 Bv = Bf
 Av = Af
 ----------------- ----------------

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1711

 Amend tables 3.21 and 3.22 in the ARB_texture_ env_combine
 specification (or EXT_texture_env_combine spec ification) to require
 inputs to be clamped positive (the TEXTURE<n>_ ARB entries apply
 only if NV_texture_env_combine4 is supported):

 SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
 ----------------- -------------- --------
 TEXTURE SRC_COLOR max(0,Ct)
 ONE_MINUS_SRC_COLOR (1-max(0,Ct))
 SRC_ALPHA max(0,At)
 ONE_MINUS_SRC_ALPHA (1-max(0,At))
 CONSTANT_EXT SRC_COLOR max(0,Cc
 ONE_MINUS_SRC_COLOR (1-max(0,Cc)
 SRC_ALPHA max(0,Ac
 ONE_MINUS_SRC_ALPHA (1-max(0,Ac)
 PRIMARY_COLOR_EXT SRC_COLOR max(0,Cf
 ONE_MINUS_SRC_COLOR (1-max(0,Cf)
 SRC_ALPHA max(0,Af
 ONE_MINUS_SRC_ALPHA (1-max(0,Af)
 PREVIOUS_EXT SRC_COLOR max(0,Cp
 ONE_MINUS_SRC_COLOR (1-max(0,Cp)
 SRC_ALPHA max(0,Ap
 ONE_MINUS_SRC_ALPHA (1-max(0,Ap)
 TEXTURE<n>_ARB SRC_COLOR max(0,Ct<n>)
 ONE_MINUS_SRC_COLOR (1-max(0,Ct<n>))
 SRC_ALPHA max(0,At<n>)
 ONE_MINUS_SRC_ALPHA (1-max(0,At<n>))

 Table 3.21: Arguments for COMBINE_RGB_ARB (or COMBINE_RGB_EXT)
 functions

 SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EX T Argument
 ----------------- -------------- --------
 TEXTURE SRC_ALPHA max(0,At)
 ONE_MINUS_SRC_ALPHA (1-max(0,At))
 CONSTANT_EXT SRC_ALPHA max(0,Ac)
 ONE_MINUS_SRC_ALPHA (1-max(0,Ac))
 PRIMARY_COLOR_EXT SRC_ALPHA max(0,Af)
 ONE_MINUS_SRC_ALPHA (1-max(0,Af))
 PREVIOUS_EXT SRC_ALPHA max(0,Ap)
 ONE_MINUS_SRC_ALPHA (1-max(0,Ap))
 TEXTURE<n>_ARB SRC_ALPHA max(0,At<n>)
 ONE_MINUS_SRC_ALPHA (1-max(0,At<n>))

 Table 3.22: Arguments for COMBINE_ALPHA_ARB (or COMBINE_ALPHA_EXT)
 functions

 -- Section 3.9 "Color Sum"

 Update the first paragraph to read:

 "At the beginning of color sum, a fragment has two RGBA colors: a
 primary color cpri (which texturing, if enable d, may have modified)
 and a secondary color csec. The components of these two colors are
 clamped to [0,1] and then summed to produce a single post-texturing
 RGBA color c. The components of c are then cl amped to the range
 [0,1]."

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1712

 -- NEW Section 3.8.13 "Texture Shaders"

 "Each texture unit is configured with one of t wenty-one
 texture shader operations. Several texture sh ader operations
 require additional state. All per-texture sha der stage state
 is specified using the TexEnv commands with th e target specified
 as TEXTURE_SHADER_NV. The per-texture shader state is replicated
 per texture unit so the texture unit selected by ActiveTextureARB
 determines which texture unit's environment is modified by TexEnv
 calls.

 When calling TexEnv with a target of TEXTURE_S HADER_NV,
 pname must be one of SHADER_OPERATION_NV, CULL _MODES_NV,
 OFFSET_TEXTURE_MATRIX_NV, OFFSET_TEXTURE_SCALE _NV,
 OFFSET_TEXTURE_BIAS_NV, PREVIOUS_TEXTURE_INPUT _NV, or CONST_EYE_NV.

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 SHADER_OPERATION_NV may be set to one of NONE,
 TEXTURE_1D, TEXTURE_2D, TEXTURE_CUBE_MAP_ARB,
 PASS_THROUGH_NV, CULL_FRAGMENT_NV, OFFSET_TEXT URE_2D_NV,
 OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV,
 OFFSET_TEXTURE_RECTANGLE_SCALE_NV, DEPENDENT_AR_TEXTURE_2D_NV,
 DEPENDENT_GB_TEXTURE_2D_NV, DOT_PRODUCT_NV,
 DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
 DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV, or
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. The semantics of each of
 these shader operations is described in sectio n 3.8.13.1. Not every
 operation is supported in every texture unit. The restrictions for
 how these shader operations can be configured in various texture
 units are described in section 3.8.13.2.

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 CULL_MODES_NV is set to a vector of four cull comparisons by
 providing four symbolic tokens, each being eit her LESS or GEQUAL.
 These cull modes are used by the CULL_FRAGMENT _NV operation (see
 section 3.8.13.1.7).

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV may be se t to either
 UNSIGNED_IDENTITY_NV or EXPAND_NORMAL_NV. Thi s RGBA unsigned dot
 product mapping mode is used by the DOT_PRODUC T_NV operation (see
 section 3.8.13.1.14) and other operations that compute dot products.

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 PREVIOUS_TEXTURE_INPUT_NV may be set to TEXTUR Ei_ARB where i is
 between 0 and n-1 where n is the implementatio n-dependent number of
 texture units supported. The INVALID_OPERATIO N error is generated
 if i is greater than or equal to the current a ctive texture unit.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1713

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 OFFSET_TEXTURE_MATRIX_NV may be set to a 2x2 m atrix of floating-point
 values stored in column-major order as 4 conse cutive floating-point
 values, i.e. as:

 [a1 a3]
 [a2 a4]

 This matrix is used by the OFFSET_TEXTURE_2D_N V,
 OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV, and
 OFFSET_TEXTURE_RECTANGLE_SCALE_NV operations (see sections 3.8.13.1.8
 through 3.8.13.1.11).

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 OFFSET_TEXTURE_SCALE_NV may be set to a floati ng-point value.
 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 OFFSET_TEXTURE_BIAS_NV may be set to a floatin g-point value. These
 scale and bias values are used by the OFFSET_T EXTURE_2D_SCALE_NV
 and OFFSET_TEXTURE_RECTANGLE_SCALE_NV operatio ns (see section
 3.8.13.1.9 and 3.8.13.1.11).

 When TexEnv is called with the target of TEXTU RE_SHADER_NV,
 CONST_EYE_NV is set to a vector of three float ing-point
 values used as the constant eye vector in the
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV texture shader (see
 section 3.8.13.1.19).

 3.8.13.1 Texture Shader Operations

 The texture enables described in section 3.8.1 0 only affect
 conventional texturing mode; these enables are ignored when
 TEXTURE_SHADER_NV is enabled. Instead, the te xture shader operation
 determines how texture coordinates are mapped to filtered texture
 values.

 Tables 3.A, 3.B, 3.C, and 3.D specify inter-st age dependencies,
 texture target dependencies, relevant inputs, and result types and
 values respectively for each texture shader op eration. Table 3.E
 specifies how the components of an accessed te xture are mapped to
 the components of the texture unit RGBA result based on the base
 internal format of the accessed texture. The following discussion
 describes each possible texture shader operati on in detail.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1714

texture shader
texture shader operation i previous texture input texture shader operation i-1 operati on i-2 texture shader operation i+1
================================= ================ ========= =============================== ======= ========= ================================
NONE - - - -
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
TEXTURE_1D - - - -
TEXTURE_2D - - - -
TEXTURE_RECTANGLE_NV - - - -
TEXTURE_CUBE_MAP_ARB - - - -
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
PASS_THROUGH_NV - - - -
CULL_FRAGMENT_NV - - - -
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
OFFSET_TEXTURE_2D_NV base internal te xture - - -
 format must be one of
 DSDT_NV, DSDT_M AG_NV, or
 DSDT_MAG_INTENS ITY_NV
OFFSET_TEXTURE_2D_SCALE_NV base internal te xture - - -
 format must be either
 DSDT_MAG_NV or
 DSDT_MAG_INTENS ITY_NV
OFFSET_TEXTURE_RECTANGLE_NV base internal te xture - - -
 format must be one of
 DSDT_NV, DSDT_M AG_NV, or
 DSDT_MAG_INTENS ITY_NV
OFFSET_TEXTURE_RECTANGLE_SCALE_NV base internal te xture - - -
 format must be either
 DSDT_MAG_NV or
 DSDT_MAG_INTENS ITY_NV
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
DEPENDENT_AR_TEXTURE_2D_NV shader result ty pe must - - -
 all be unsigned RGBA
DEPENDENT_GB_TEXTURE_2D_NV shader result ty pe must - - -
 all be unsigned RGBA
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
DOT_PRODUCT_NV shader result ty pe must - - -
 be one of signe d HILO,
 unsigned HILO, all
 signed RGBA, or all
 unsigned RGBA
DOT_PRODUCT_TEXTURE_2D_NV shader result ty pe must shader operation must be - -
 be one of signe d HILO, DOT_PRODUCT_NV
 unsigned HILO, all
 signed RGBA, or all
 unsigned RGBA
DOT_PRODUCT_TEXTURE_RECTANGLE_NV shader result ty pe must shader operation must be - -
 be one of signe d HILO, DOT_PRODUCT_NV
 unsigned HILO, all
 signed RGBA, al l
 unsigned RGBA
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV shader result ty pe must shader operation shader operation -
 be one of signe d HILO, must be must b e
 unsigned HILO, all DOT_PRODUCT_NV DOT_PR ODUCT_NV
 signed RGBA, or all
 unsigned RGBA
DOT_PRODUCT_REFLECT_CUBE_MAP_NV shader result ty pe must shader operation must be shader operation -
 be one of signe d HILO, DOT_PRODUCT_NV or must b e
 unsigned HILO, all DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV DOT_PR ODUCT_NV
 signed RGBA, or all
 unsigned RGBA; previous
 texture input m ust not
 be unit i-1
DOT_PRODUCT_CONST_EYE_- shader result ty pe must shader operation shader operation -
 REFLECT_CUBE_MAP_NV be one of signe d HILO, must be must b e
 unsigned HILO, all DOT_PRODUCT_NV or DOT_PR ODUCT_NV
 signed RGBA, or all DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV
 unsigned RGBA
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV shader result ty pe must shader operation must be - shader operation must be
 be one of signe d HILO, DOT_PRODUCT_NV DOT_PRODUCT_REFLECT_CUBE_MAP_NV
 unsigned HILO, all or DOT_PRODUCT_CONST_EYE_-
 signed RGBA, or all REFLECT_CUBE_MAP_NV
 unsigned RGBA
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV shader result ty pe must shader operation - -
 be one of signe d HILO, must be
 unsigned HILO, all DOT_PRODUCT_NV
 signed RGBA, or all
 unsigned RGBA
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------

Table 3.A: Texture shader inter-stage dependencies for each operation.
If any one of the dependencies listed above is not met, the texture
shader stage is considered inconsistent. Further t exture shader target
dependencies are listed in table X.Y. Additionally , if any one of the
texture shader stages that a particular texture sha der stage depends on is
inconsistent, then the dependent texture shader sta ge is also considered
inconsistent. When a texture shader stage is consi dered inconsistent,
the inconsistent stage operates as if the stage's o peration is NONE.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1715

texture shader operation i texture unit i
================================= =======================================
NONE -
--------------------------------- ---------------------------------------
TEXTURE_1D 1D target must be consistent
TEXTURE_2D 2D target must be consistent
TEXTURE_RECTANGLE_NV rectangle target must be consistent
TEXTURE_CUBE_MAP_ARB cube map target must be consistent
--------------------------------- ---------------------------------------
PASS_THROUGH_NV -
CULL_FRAGMENT_NV -
--------------------------------- ---------------------------------------
OFFSET_TEXTURE_2D_NV 2D target must be consistent
OFFSET_TEXTURE_2D_SCALE_NV 2D target must be consistent
 and 2D texture target type must
 be unsigned RGBA
OFFSET_TEXTURE_RECTANGLE_NV rectangle target must be consistent
OFFSET_TEXTURE_RECTANGLE_SCALE_NV rectangle target must be consistent
 and rectangle texture target type must
 be unsigned RGBA
--------------------------------- ---------------------------------------
DEPENDENT_AR_TEXTURE_2D_NV 2D target must be consistent
DEPENDENT_GB_TEXTURE_2D_NV 2D target must be consistent
--------------------------------- ---------------------------------------
DOT_PRODUCT_NV -
DOT_PRODUCT_TEXTURE_2D_NV 2D target must be consistent
DOT_PRODUCT_TEXTURE_RECTANGLE_NV rectangle target must be consistent
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV cube map target must be consistent
DOT_PRODUCT_REFLECT_CUBE_MAP_NV cube map target must be consistent
DOT_PRODUCT_CONST_EYE_- cube map target must be consistent
 REFLECT_CUBE_MAP_NV
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV cube map target must be consistent
--------------------------------- ---------------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV -
--------------------------------- ---------------------------------------

Table 3.B: Texture shader target dependencies for each operation.
If the dependency listed above is not met, the texture shader stage is
considered inconsistent.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1716

 uses uses uses uses use s offset uses
 texture stage stage stage previous uses off set texture const
 coordinate text ure result result result texture cull tex ture 2D scale eye
texture shader operation i set usage targ et i-1 i-2 i+1 input modes 2D matrix and bias vector
================================= ========== ==== ===== ====== ====== ====== ======== ===== === ====== ======== ======
NONE - - - - - - - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
TEXTURE_1D s,q 1D - - - - - - - -
TEXTURE_2D s,t,q 2D - - - - - - - -
TEXTURE_RECTANGLE_NV s,t,q rect angle - - - - - - - -
TEXTURE_CUBE_MAP_ARB s,t,r cube map - - - - - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
PASS_THROUGH_NV s,t,r,q - - - - - - - - -
CULL_FRAGMENT_NV s,t,r,q - - - - - y - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
OFFSET_TEXTURE_2D_NV s,t 2D - - - y - y - -
OFFSET_TEXTURE_2D_SCALE_NV s,t 2D - - - y - y y -
OFFSET_TEXTURE_RECTANGLE_NV s,t rect angle - - - y - y - -
OFFSET_TEXTURE_RECTANGLE_SCALE_NV s,t rect angle - - - y - y y -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
DEPENDENT_AR_TEXTURE_2D_NV - 2D - - - y - - - -
DEPENDENT_GB_TEXTURE_2D_NV - 2D - - - y - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
DOT_PRODUCT_NV s,t,r (q*) - - - - y - - - -
DOT_PRODUCT_TEXTURE_2D_NV s,t,r 2D y - - y - - - -
DOT_PRODUCT_TEXTURE_RECTANGLE_NV s,t,r rect angle y - - y - - - -
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV s,t,r cube map y y - y - - - -
DOT_PRODUCT_REFLECT_CUBE_MAP_NV s,t,r,q cube map y y - y - - - -
DOT_PRODUCT_CONST_EYE_- s,t,r cube map y y - y - - - y
 REFLECT_CUBE_MAP_NV
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV s,t,r (q*) cube map y y y y - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
DOT_PRODUCT_DEPTH_REPLACE_NV s,t,r - y - - y - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------

Table 3.C: Relevant texture shader computation inp uts for each
operation. The (q*) for the texture coordinate set usage indicates
that the q texture coordinate is used only when the DOT_PRODUCT_NV and
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV operations are used in conjunction with
DOT_PRODUCT_REFLECT_CUBE_MAP_NV.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1717

texture shader operation i shader stage res ult type shader stage result texture unit RGBA color result
================================= ================ ============= =================================== ======================================
NONE unsigned RGBA invalid (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
TEXTURE_1D matches 1D targe t type filtered 1D target texel if 1D target texture type is RGBA,
 filtered 1D target texel,
 else (0,0,0,0)
TEXTURE_2D matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
TEXTURE_RECTANGLE_NV matches rectangl e target type filtered rectangle target texel if rectangle target texture type is
 RGBA, filtered rectangle target
 texel, else (0,0,0,0)
TEXTURE_CUBE_MAP_ARB matches cube map target type filtered cube map target texel if cube map target texture type is
 RGBA, filtered cube map target
 texel, else (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
PASS_THROUGH_NV unsigned RGBA (max(0,min(1,s)), max(0,min(1,t)), (max(0,min(1,s)), max(0,min(1,t)),
 max(0,min(1,r)), max(0,min(1,q))) max(0,min(1,r)), max(0,min(1,q)))
CULL_FRAGMENT_NV unsigned RGBA invalid (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
OFFSET_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
OFFSET_TEXTURE_2D_SCALE_NV unsigned RGBA filtered 2D target texel scaled filtered 2D target texel
OFFSET_TEXTURE_RECTANGLE_NV matches rectangl e target type filtered rectangle target texel if rectangle target texture type is
 RGBA, filtered rectangle target
 texel, else (0,0,0,0)
OFFSET_TEXTURE_RECTANGLE_SCALE_NV unsigned RGBA filtered rectangle target texel scaled filtered rectangle target texel
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DEPENDENT_AR_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
DEPENDENT_GB_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_NV float dot product (0,0,0,0)
DOT_PRODUCT_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
DOT_PRODUCT_TEXTURE_RECTANGLE_NV matches rectangl e target type filtered rectangle target texel if rectangle target texture type is
 RGBA, filtered rectangle target
 texel, else (0,0,0,0)
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
 RGBA, filtered cube map target
 texel, else (0,0,0,0)
DOT_PRODUCT_REFLECT_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
 RGBA, filtered cube map target
 texel, else (0,0,0,0)
DOT_PRODUCT_CONST_EYE_- matches cube map target type filtered cube map target texel if cube map target texture type is
 REFLECT_CUBE_MAP_NV RGBA, filtered cube map target
 texel, else (0,0,0,0)
DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
 RGBA, filtered cube map target
 texel, else (0,0,0,0)
------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_DEPTH_REPLACE_NV unsigned RGBA invalid (0,0,0,0)
------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------

Table 3.D: Texture shader stage results for each o peration.

Base internal format Red Green Blue Alpha
-------------------- --- ----- ---- -----
ALPHA 1 1 1 At
LUMINANCE Lt Lt Lt 1
INTENSITY It It It It
LUMINANCE_ALPHA Lt Lt Lt At
RGB Rt Gt Bt 1
RGBA Rt Gt Bt At

Table 3.E: How base internal formats components ar e mapped to RGBA values
for texture shaders (note that the mapping for ALPH A is different from
the mapping in Table 3.23 in the EXT_texture_env_co mbine extension).

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1718

 3.8.13.1.1 None

 The NONE texture shader operation ignores the texture unit's texture
 coordinate set and always generates the textur e unit RGBA result
 (0,0,0,0) for its filtered texel value. The t exture shader result
 is invalid. This texture shader stage is alwa ys consistent.

 When a texture unit is not needed while textur e shaders are enabled,
 it is most efficient to set the texture unit's texture shader
 operation to NONE.

 3.8.13.1.2 1D Projective Texturing

 The TEXTURE_1D texture shader operation access es the texture unit's
 1D texture object (as described in sections 3. 8.4, 3.8.5, and 3.8.6)
 using (s/q) for the 1D texture coordinate wher e s and q are the
 homogeneous texture coordinates for the textur e unit. The result
 of the texture access becomes both the shader result and texture
 unit RGBA result (see table 3.E). The type of the shader result
 depends on the format type of the accessed tex ture. This mode is
 equivalent to conventional texturing's 1D text ure target.

 If the texture unit's 1D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.3 2D Projective Texturing

 The TEXTURE_2D texture shader operation access es the texture unit's
 2D texture object (as described in sections 3. 8.4, 3.8.5, and
 3.8.6) using (s/q,t/q) for the 2D texture coor dinates where s, t,
 and q are the homogeneous texture coordinates for the texture unit.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture. This mode
 is equivalent to conventional texturing's 2D t exture target.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.4 Rectangle Projective Texturing

 The TEXTURE_RECTANGLE_NV texture shader operat ion accesses
 the texture unit's rectangle texture object (a s described in
 sections 3.8.4, 3.8.5, and 3.8.6) using (s/q,t /q) for the 2D texture
 coordinates where s, t, and q are the homogene ous texture coordinates
 for the texture unit. The result of the textu re access becomes both
 the shader result and texture unit RGBA result (see table 3.E).
 The type of the shader result depends on the f ormat type of the
 accessed texture. This mode is equivalent to NV_texture_rectangle's
 rectangle texture target.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1719

 If the texture unit's rectangle texture object is not consistent,
 then this texture shader stage is not consiste nt.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.5 Cube Map Texturing

 The TEXTURE_CUBE_MAP_ARB texture shader operat ion accesses
 the texture unit's cube map texture object (as described in the
 ARB_texture_cube_map specification) using (s,t ,r) for the 3D texture
 coordinate where s, t, and r are the homogeneo us texture coordinates
 for the texture unit. The result of the textu re access becomes
 both the shader result and texture unit RGBA r esult (see table
 3.E). The type of the shader result depends o n the format type
 of the accessed texture. This mode is equival ent to conventional
 texturing's cube map texture target.

 If the texture unit's cube map texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.6 Pass Through

 The PASS_THROUGH_NV texture shader operation c onverts an (s,t,r,q)
 texture coordinate set into an RGBA color resu lt (r,g,b,a).
 Each texture coordinate is first clamped to [0 ,1] before being
 mapped to its corresponding color component. T he texture shader
 result and texture unit RGBA result of this op eration are both
 assigned the clamped RGBA color result.

 This operation in no way depends on any of the texture unit's
 texture objects.

 3.8.13.1.7 Cull Fragment

 The CULL_FRAGMENT_NV texture shader operation compares each
 component of the texture coordinate set (s,t,r ,q) to zero based
 on the texture shader's corresponding cull mod e. For the LESS
 cull mode to succeed, the corresponding compon ent must be less
 than zero; otherwise the comparison fails. Fo r the GEQUAL cull
 mode to succeed, the corresponding component m ust be greater or
 equal to zero; otherwise the comparison fails. If any of the four
 comparisons fails, the fragment is discarded.

 The texture unit RGBA result generated is alwa ys (0,0,0,0).
 The texture shader result is invalid. This te xture shader stage
 is always consistent.

 This operation in no way depends on any of the texture unit's
 texture objects.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1720

 3.8.13.1.8 Offset Texture 2D

 The OFFSET_TEXTURE_2D_NV texture shader operat ion uses the
 transformed result of a previous texture shade r stage to perturb
 the current texture shader stage's (s,t) textu re coordinates
 (without a projective division by q). The res ulting perturbed
 texture coordinates (s',t') are used to access the texture unit's 2D
 texture object (as described in sections 3.8.4 , 3.8.5, and 3.8.6).

 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture.

 The perturbed texture coordinates s' and t' ar e computed with
 floating-point math as follows:

 s' = s + a1 * DSprev + a3 * DTprev
 t' = t + a2 * DSprev + a4 * DTprev

 where a1, a2, a3, and a4 are the texture shade r stage's
 OFFSET_TEXTURE_MATRIX_NV values, and DSprev an d DTprev are the
 (signed) DS and DT components of a previous te xture shader unit's
 texture shader result specified by the current texture shader
 stage's PREVIOUS_TEXTURE_INPUT_NV value.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value
 has a base internalformat that is not one of D SDT_NV, DSDT_MAG_NV
 or DSDT_MAG_INTENSITY_NV, then this texture sh ader stage is not
 consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.9 Offset Texture 2D and Scale

 The OFFSET_TEXTURE_2D_SCALE_NV texture shader operation extends the
 functionality of the OFFSET_TEXTURE_2D_NV text ure shader operation.
 The texture unit's 2D texture object is access ed by the same
 perturbed s' and t' coordinates used by the OF FSET_TEXTURE_2D_NV
 operation. The red, green, and blue component s (but not alpha)
 of the RGBA result of the texture access are f urther scaled by

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1721

 the value Scale and clamped to the range [0,1] . This RGBA result
 is this shader's texture unit RGBA result. Th is shader's texture
 shader result is the RGBA result of the textur e access prior to
 scaling and clamping.

 Scale is computed with floating-point math as follows:

 Scale = max(0.0, min(1.0, textureOffsetBias + textureOffsetScale * MAGprev))

 where textureOffsetBias is the texture shader stage's
 OFFSET_TEXTURE_BIAS_NV value, textureOffsetSca le is the texture
 shader stage's OFFSET_TEXTURE_SCALE_NV value, and MAGprev
 is the magnitude component of the a previous t exture shader
 unit's result specified by the current texture shader stage's
 PREVIOUS_TEXTURE_INPUT_NV value.

 The texture unit RGBA result (red',green',blue ',alpha') is computed
 as follows:

 red' = Scale * red
 green' = Scale * green
 blue' = Scale * blue
 alpha' = alpha

 where red, green, blue, and alpha are the text ure access components.

 If the unit's 2D texture object has any signed components, then this
 texture shader stage is not consistent.

 If the texture unit's 2D texture object is has a format type other
 than RGBA (the DSDT_MAG_INTENSITY_NV base inte rnal format does not
 count as an RGBA format type in this context), then this texture
 shader stage is not consistent.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value
 has a base internalformat that is not either D SDT_MAG_NV
 or DSDT_MAG_INTENSITY_NV, then this texture sh ader stage is not
 consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1722

 3.8.13.1.10 Offset Texture Rectangle

 The OFFSET_TEXTURE_RECTANGLE_NV shader operati on operates
 identically to the OFFSET_TEXTURE_2D_NV shader operation except
 that the rectangle texture target is accessed rather than the 2D
 texture target.

 If the texture unit's rectangle texture object (rather than the 2D
 texture object) is not consistent, then this t exture shader stage
 is not consistent.

 3.8.13.1.11 Offset Texture Rectangle Scale

 The OFFSET_TEXTURE_RECTANGLE_SCALE_NV shader o peration operates
 identically to the OFFSET_TEXTURE_2D_SCALE_NV shader operation
 except that the rectangle texture target is ac cessed rather than
 the 2D texture target.

 If the texture unit's rectangle texture object (rather than the 2D
 texture object) is not consistent, then this t exture shader stage
 is not consistent.

 3.8.13.1.12 Dependent Alpha-Red Texturing

 The DEPENDENT_AR_TEXTURE_2D_NV texture shader operation accesses
 the texture unit's 2D texture object (as descr ibed in section 3.8.4,
 3.8.5, and 3.8.6) using (Aprev, Rprev) for the 2D texture coordinates
 where Aprev and Rprev are the are the alpha an d red components of
 a previous texture input's RGBA texture shader result specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS _TEXTURE_INPUT_NV
 value has a texture shader result type other t han RGBA (the
 DSDT_MAG_INTENSITY_NV base internal format doe s not count as an
 RGBA format type in this context), then this t exture shader stage
 is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS _TEXTURE_INPUT_NV
 value has a texture shader result type of RGBA but any of the
 RGBA components are signed, then this texture shader stage is not
 consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1723

 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.13 Dependent Green-Blue Texturing

 The DEPENDENT_GB_TEXTURE_2D_NV texture shader operation accesses
 the texture unit's 2D texture object (as descr ibed in section 3.8.4,
 3.8.5, and 3.8.6) using (Gprev, Bprev) for the 2D texture coordinates
 where Gprev and Bprev are the are the green an d blue components
 of a previous texture input's RGBA texture sha der result specified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS _TEXTURE_INPUT_NV
 value has a texture shader result type other t han RGBA (the
 DSDT_MAG_INTENSITY_NV base internal format doe s not count as an
 RGBA format type in this context), then this t exture shader stage
 is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS _TEXTURE_INPUT_NV
 value has a texture shader result type of RGBA but any of the
 RGBA components are signed, then this texture shader stage is not
 consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.14 Dot Product

 The DOT_PRODUCT_NV texture shader operation co mputes a
 floating-point texture shader result. The tex ture shader result
 is the floating-point dot product of the textu re unit's (s,t,r)

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1724

 texture coordinates and a remapped version of the RGBA or HILO
 texture shader result from a specified previou s texture shader stage.
 The RGBA color result of this shader is always (0,0,0,0).

 The re-mapping depends on the specified previo us texture shader
 stage's texture shader result type. Specifica lly, the re-mapping
 depends on whether this texture shader result type has all signed
 components or all unsigned components, and whe ther it has RGBA
 components or HILO components, and, in the cas e of unsigned RGBA
 texture shader results, the RGBA_UNSIGNED_DOT_ PRODUCT_MAPPING_NV
 state.

 If the specified previous texture unit's textu re shader result
 type is HILO and all the type components are u nsigned, then the
 floating-point result is computed by

 result = s * HI + t * LO + r

 where HI and LO are the (unsigned) hi and lo c omponents respectively
 of the previous texture unit's HILO texture sh ader result.

 If the specified previous texture unit's textu re shader result
 type is HILO and all the type components are s igned, then the
 floating-point result is computed by

 result = s * HI + t * LO + r * sqrt(max(0, 1 .0 - HI*HI - LO*LO))

 where HI and LO are the (signed) hi and lo com ponents respectively
 of the previous texture unit's texture shader result.

 If the specified previous texture unit's textu re shader result
 contains only signed RGBA components, then the floating-point result
 is computed by

 result = s * Rprev + t * Gprev + r * Bprev

 where Rprev, Gprev, and Bprev are the (signed) red, green, and blue
 components respectively of the previous textur e unit's RGBA texture
 shader result.

 If the specified previous texture unit's textu re shader result
 contains only unsigned RGBA components, then t he dot product
 computation depends on the RGBA_UNSIGNED_DOT_P RODUCT_MAPPING_NV
 state. When the RGBA_UNSIGNED_DOT_PRODUCT_MAP PING_NV is
 UNSIGNED_IDENTITY_NV, then the floating-point result for unsigned
 RGBA components is computed by

 result = s * Rprev + t * Gprev + r * Bprev

 where Rprev, Gprev, and Bprev are the (unsigne d) red, green, and
 blue components respectively of the previous t exture unit's RGBA
 texture shader result.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1725

 When the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV is EXPAND_NORMAL_NV,
 then the floating-point result for unsigned RG BA components is
 computed by

 result = s * (2.0*Rprev-1.0) + t * (2.0*Gpre v-1.0) + r * (2.0*Bprev-1.0)

 where Rprev, Gprev, and Bprev are the (unsigne d) red, green, and
 blue components respectively of the previous t exture unit's RGBA
 texture shader result.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the components of the previous texture inpu t texture
 object specified by the current texture shader stage's
 PREVIOUS_TEXTURE_INPUT_NV value have mixed sig nedness, then
 this texture shader stage is not consistent. For example,
 the SIGNED_RGB_UNSIGNED_ALPHA_NV base internal format has mixed
 signedness.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 This operation in no way depends on any of the texture unit's
 texture objects.

 3.8.13.1.15 Dot Product Texture 2D

 The DOT_PRODUCT_TEXTURE_2D_NV texture shader o peration accesses the
 texture unit's 2D texture object (as described in sections 3.8.4,
 3.8.5, and 3.8.6) using (dotP,dotC) for the 2D texture coordinates.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture.

 Assuming that i is the current texture shader stage, dotP is the
 floating-point dot product result from the i-1 texture shader stage,
 assuming the i-1 texture shader stage's operat ion is DOT_PRODUCT_NV.
 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of t he DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.1 4.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1726

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If the i-1 texture shader stage operation is n ot DOT_PRODUCT_NV,
 then this texture shader stage is not consiste nt.

 If the i-1 texture shader stage is not consist ent, then
 this texture shader stage is not consistent.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.16 Dot Product Texture Rectangle

 The DOT_PRODUCT_TEXTURE_RECTANGLE_NV shader op eration operates
 identically to the DOT_PRODUCT_TEXTURE_2D_NV s hader operation except
 that the rectangle texture target is accessed rather than the 2D
 texture target.

 If the texture unit's rectangle texture object (rather than the 2D
 texture object) is not consistent, then this t exture shader stage
 is not consistent.

 3.8.13.1.17 Dot Product Texture Cube Map

 The DOT_PRODUCT_TEXTURE_CUBE_MAP_NV texture sh ader operation
 accesses the texture unit's cube map texture o bject (as described
 in the ARB_texture_cube_map specification) usi ng (dotPP,dotP,dotC)
 for the 3D texture coordinates. The result of the texture access
 becomes both the shader result and texture uni t RGBA result (see
 table 3.E). The type of the shader result dep ends on the format
 type of the accessed texture.

 Assuming that i is the current texture shader stage, dotPP is the
 floating-point dot product texture shader resu lt from the i-2
 texture shader stage, assuming the i-2 texture shader stage's
 operation is DOT_PRODUCT_NV. dotP is the floa ting-point dot
 product texture shader result from the i-1 tex ture shader stage,

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1727

 assuming the i-1 texture shader stage's operat ion is DOT_PRODUCT_NV.
 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of t he DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.1 4.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If either the i-1 or i-2 texture shader stage operation is not
 DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If either the i-1 or i-2 texture shader stage is not consistent, then
 this texture shader stage is not consistent.

 If the texture unit's cube map texture object is not consistent,
 then this texture shader stage is not consiste nt.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.18 Dot Product Reflect Cube Map

 The DOT_PRODUCT_REFLECT_CUBE_MAP_NV and
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV (described in the section
 3.8.13.1.20) texture shader operations are typ ically used together.

 The DOT_PRODUCT_REFLECT_CUBE_MAP_NV texture sh ader operation
 accesses the texture unit's cube map texture o bject (as described
 in the ARB_texture_cube_map specification) usi ng (rx,ry,rz) for
 the 3D texture coordinates. The result of the texture access becomes
 both the shader result and texture unit RGBA r esult (see table 3.E).
 The type of the shader result depends on the f ormat type of the
 accessed texture.

 Let R = (rx,ry,rz), N = (dotPP,dotP,dotC), and E = (qPP,qP,qC),
 then

 R = 2 * (N dot E) / (N dot N) * N - E

 Assuming that i is the current texture shader stage, dotPP is
 the floating-point dot product texture shader result from the

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1728

 i-2 texture shader stage, assuming the i-2 tex ture shader stage's
 operation is DOT_PRODUCT_NV. dotP is the floa ting-point dot product
 texture shader result from the i-1 texture sha der stage, assuming
 the i-1 texture shader stage's operation is ei ther DOT_PRODUCT_NV
 or DOT_PRODUCT_DIFFUSE_NV. dotC is the floati ng-point dot product
 result from the current texture shader stage. dotC is computed in
 the identical manner used to compute the float ing-point result of
 the DOT_PRODUCT_NV texture shader described in section 3.8.13.1.14.

 qPP is the q component of the i-2 texture shad er stage's texture
 coordinate set. qP is the q component of the i-1 texture shader
 stage's texture coordinate set. qC is the q c omponent of the
 current texture shader stage's texture coordin ate set.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If this texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value
 refers to texture unit i-2 or i-1, then this t exture shader stage
 is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If the i-2 texture shader stage operation is n ot
 DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the i-1 texture shader stage operation is n ot DOT_PRODUCT_NV or
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, then this tex ture shader stage is
 not consistent.

 If either the i-1 or i-2 texture shader stage is not consistent, then
 this texture shader stage is not consistent.

 If the texture unit's cube map texture object is not consistent,
 then this texture shader stage is not consiste nt.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.19 Dot Product Constant Eye Reflect Cube Map

 The DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV texture shader
 operation operates the same as the DOT_PRODUCT _REFLECT_CUBE_MAP_NV
 operation except that the eye vector E is equa l to the three

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1729

 floating-point values assigned to the texture shader's eye
 constant (rather than the three q components o f the given texture
 unit and the previous two texture units).

 The DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV operation
 has the same texture shader consistency rules as the
 DOT_PRODUCT_REFLECT_CUBE_MAP_NV operation.

 3.8.13.1.20 Dot Product Diffuse Cube Map

 The DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV texture sh ader operation
 accesses the texture unit's cube map texture o bject (as described
 in the ARB_texture_cube_map specification) usi ng (dotP,dotC,dotN)
 for the 3D texture coordinates. The result of the texture access
 becomes both the shader result and texture uni t RGBA result (see
 table 3.E). The type of the shader result dep ends on the format
 type of the accessed texture.

 Assuming that i is the current texture shader stage, dotP is the
 floating-point dot product texture shader resu lt from the i-1 texture
 shader stage, assuming the i-1 texture shader stage's operation
 is DOT_PRODUCT_NV. dotC is the floating-point dot product result
 from the current texture shader stage. dotC i s computed in the
 identical manner used to compute the floating- point result of the
 DOT_PRODUCT_NV texture shader described in sec tion 3.8.13.1.14.
 dotN is the floating-point dot product texture shader result from
 the i+1 texture shader stage, assuming the nex t texture shader
 stage's operation is either DOT_PRODUCT_REFLEC T_CUBE_MAP_NV or
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 If the texture unit's cube map texture object is not consistent,
 then this operation operates as if it is the N ONE operation.
 If the previous texture unit's texture shader operation is
 not DOT_PRODUCT_NV, then this operation operat es as if it
 is the NONE operation. If the next texture un it's texture
 shader operation is neither DOT_PRODUCT_REFLEC T_CUBE_MAP_NV nor
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, then this operation
 operates as if it is the NONE operation. If t he next texture unit's
 texture shader operation is either DOT_PRODUCT _REFLECT_CUBE_MAP_NV
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, but the next texture
 unit operation is operating as if it is the NO NE operation, then
 this operation operates as if it is the NONE o peration. If the
 specified previous input texture unit is incon sistent or uses
 the DOT_PRODUCT_NV texture shader operation, t hen this operation
 operates as if it is the NONE operation.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1730

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If the i-1 texture shader stage operation is n ot
 DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the i+1 texture shader stage operation
 is not DOT_PRODUCT_REFLECT_CUBE_MAP_NV or
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV, then this texture shader
 stage is not consistent.

 If either the i-1 or i+1 texture shader stage is not consistent,
 then this texture shader stage is not consiste nt.

 If the texture unit's cube map texture object is not consistent,
 then this texture shader stage is not consiste nt.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.21 Dot Product Depth Replace

 The DOT_PRODUCT_DEPTH_REPLACE_NV texture shade r operation replaces
 the incoming fragments depth (in window coordi nates, after polygon
 offset and before conversion to fixed-point, i .e. in the [0,1]
 range) with a new depth value. The new depth is computed as follows:

 depth = dotP / dotC

 Assuming that i is the current texture shader stage, dotP is the
 floating-point dot product texture shader resu lt from the i-1 texture
 shader stage, assuming the i-1 texture shader stage's operation
 is DOT_PRODUCT_NV. dotC is the floating-point dot product result
 from the current texture shader stage. dotC i s computed in the
 identical manner used to compute the floating- point result of the
 DOT_PRODUCT_NV texture shader described in sec tion 3.8.13.1.14.

 If the new depth value is outside of the range of the near and far
 depth range values, the fragment is rejected.

 The texture unit RGBA result generated is alwa ys (0,0,0,0).
 The texture shader result is invalid.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1731

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If the i-1 texture shader stage operation is n ot DOT_PRODUCT_NV,
 then this texture shader stage is not consiste nt.

 If the i-1 texture shader stage is not consist ent, then
 this texture shader stage is not consistent.

 If any previous texture shader stage operation is
 DOT_PRODUCT_DEPTH_REPLACE_NV and that previous stage is consistent,
 then this texture shader stage is not consiste nt. (This eliminates
 the potential for two stages to each be perfor ming a depth replace
 operation.)

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 This operation in no way depends on any of the texture unit's
 texture objects.

 3.8.13.2 Texture Shader Restrictions

 There are various restrictions on possible tex ture shader
 configurations. These restrictions are descri bed in this section.

 The error INVALID_OPERATION occurs if the SHAD ER_OPERATION_NV
 parameter for texture unit 0 is assigned one o f OFFSET_TEXTURE_2D_NV,
 OFFSET_TEXTURE_2D_SCALE_NV, OFFSET_TEXTURE_RECTANGLE_NV,
 OFFSET_TEXTURE_RECTANGLE_SCALE_NV, DEPENDENT_AR_TEXTURE_2D_NV,
 DEPENDENT_GB_TEXTURE_2D_NV, DOT_PRODUCT_NV,
 DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
 DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these
 texture shaders requires a previous texture sh ader result that
 is not possible for texture unit 0. Therefore these shaders are
 disallowed for texture unit 0.

 The error INVALID_OPERATION occurs if the SHAD ER_OPERATION_NV
 parameter for texture unit 1 is assigned one o f
 DOT_PRODUCT_DEPTH_REPLACE_NV, DOT_PRODUCT_TEXTURE_2D_NV,
 DOT_PRODUCT_TEXTURE_RECTANGLE_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
 shaders requires either two previous texture s hader results or
 a dot product result that cannot be generated by texture unit 0.
 Therefore these shaders are disallowed for tex ture unit 1.

 The error INVALID_OPERATION occurs if the SHAD ER_OPERATION_NV
 parameter for texture unit 2 is assigned one o f

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1732

 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
 shaders requires three previous texture shader results. Therefore
 these shaders are disallowed for texture unit 2.

 The error INVALID_OPERATION occurs if the SHAD ER_OPERATION_NV
 parameter for texture unit n-1 (where n is the number of
 supported texture units) is assigned either DO T_PRODUCT_NV or
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV. DOT_PRODUCT_NV is invalid for the
 final texture shader stage because it is only useful as an input to
 a successive texture shader stage. DOT_PRODUC T_DIFFUSE_CUBE_MAP_NV
 is invalid for the final texture shader stage because it must be
 followed by the DOT_PRODUCT_REFLECT_CUBE_MAP_N V operation in the
 immediately successive stage. Therefore these shaders are disallowed
 for texture unit n-1.

 3.8.13.3 Required State

 The state required for texture shaders consist s of a single bit to
 indicate whether or not texture shaders are en abled, a vector of
 three floating-point values for the constant e ye vector, and n sets
 of per-texture unit state where n is the imple mentation-dependent
 number of supported texture units. The set of per-texture unit
 texture shader state consists of the twenty-on e-valued integer
 indicating the texture shader operation, four two-valued integers
 indicating the cull modes, an integer indicati ng the previous texture
 unit input, a two-valued integer indicating th e RGBA unsigned dot
 product mapping mode, a 2x2 floating-point mat rix indicating the
 texture offset transform, a floating-point val ue indicating the
 texture offset scale, a floating-point value i ndicating the texture
 offset bias, and a bit to indicate whether or not the texture shader
 stage is consistent.

 In the initial state, the texture shaders stat e is set as follows:
 the texture shaders enable is disabled; the co nstant eye vector
 is (0,0,-1); all the texture shader operations are NONE; the RGBA
 unsigned dot product mapping mode is UNSIGNED_ IDENTITY_NV; all the
 cull mode values are GEQUAL; all the previous texture units are
 TEXTURE0_ARB; each texture offset matrix is an identity matrix;
 all texture offset scales are 1.0; and all tex ture offset biases
 are 0.0."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1733

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 -- Section 6.1.3 "Texture Environments and Textur e Functions"

 Change the third sentence of the third paragra ph to read:

 "The env argument to GetTexEnv must be one of TEXTURE_ENV,
 TEXTURE_FILTER_CONTROL_EXT, or TEXTURE_SHADER_ NV."

 Add to the end of the third paragraph:

 "For GetTexEnv, when the target is TEXTURE_SHA DER_NV, the texture
 shader stage consistency can be queried with S HADER_CONSISTENT_NV."

 Change the following sentence in the fouth par agraph to include
 sizes for the newly introduced component:

 "Queries of TEXTURE_RED_SIZE, TEXTURE_GREEN_SI ZE, TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE, TE XTURE_DS_SIZE_EXT,
 TEXTURE_DT_SIZE_EXT, TEXTURE_HI_SIZE_EXT, TEXT URE_LO_SIZE_EXT,
 TEXTURE_MAG_SIZE_EXT, and TEXTURE_INTENSITY_SI ZE return the actual
 resolutions of the stored image array componen ts, not the resolutions
 specified when the image array was defined."

 Add the following to the end of the fourth par agraph:

 "Queries of TEXTURE_BORDER_COLOR return the sa me values as the
 TEXTURE_BORDER_VALUES query."

 -- Section 6.1.4 "Texture Queries"

 Add the following to the end of the fourth pa ragraph:

 "Calling GetTexImage with a color format (one of RED, GREEN,
 BLUE, ALPHA, RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE_ALPHA)
 when the texture image is of a format type (s ee table 3.15)
 other than RGBA (the DSDT_MAG_INTENSITY_NV ba se internal format
 does not count as an RGBA format type in this context) causes the
 error INVALID_OPERATION. Calling GetTexImage with a format of
 HILO_NV when the texture image is of a format type (see table
 3.15) other than HILO_NV causes the error INV ALID_OPERATION.
 Calling GetTexImage with a format of DSDT_NV when the texture image
 is of a base internal format other than DSDT_ NV causes the error
 INVALID_OPERATION. Calling GetTexImage with a format of DSDT_MAG_NV
 when the texture image is of a base internal format other than
 DSDT_MAG_NV causes the error INVALID_OPERATIO N. Calling GetTexImage
 with a format of DSDT_MAG_VIB_NV when the tex ture image is of a
 base internal format other than DSDT_MAG_INTE NSITY_NV causes the
 error INVALID_OPERATION."

Additions to the GLX Specification

 None

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1734

Dependencies on ARB_texture_env_add or EXT_texture_ env_add

 If neither ARB_texture_env_add nor EXT_texture _env_add are
 implemented, then the references to ADD are in valid and should be
 ignored.

Dependencies on ARB_texture_env_combine or EXT_text ure_env_combine

 If neither ARB_texture_env_combine nor EXT_tex ture_env_combine are
 implemented, then the references to COMBINE_AR B and COMBINE_EXT
 are invalid and should be ignored.

Dependencies on EXT_texture_lod_bias

 If EXT_texture_lod_bias is not implemented, th en the references to
 TEXTURE_FILTER_CONTROL_EXT are invalid and sho uld be ignored.

Dependencies on NV_texture_env_combine4

 If NV_texture_env_combine4 is not implemented, then the references
 to COMBINE4_NV are invalid and should be ignor ed.

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not implemented, th en the references
 to TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTAN GLE_NV,
 OFFSET_TEXTURE_RECTANGLE_SCALE_NV, and
 DOT_PRODUCT_TEXTURE_RECTANGLE_NV are invalid a nd should be ignored.

Dependencies on ARB_color_buffer_float

 If ARB_color_buffer_float is also implemented, then the "max(0,x)",
 "max(-1,x)" and "min(1,x)" functions for clamp ing in tables 3.18
 and 3.19 simply return "x" without applying th e maximum or minimum
 function when CLAMP_FRAGMENT_COLOR_ARB is eith er FIXED_ONLY_ARB
 when rendering to a floating-point color frame buffer or FALSE.

 However clamping operations for texture shader operations
 (specifically PASS_THROUGH_NV and OFFSET_TEXTU RE_2D_SCALE_NV)
 are performed independent of the CLAMP_FRAGMEN T_COLOR_ARB state.

 The intent of these interactions is to elimina te the specified
 clamping behavior of texture environment funct ions when
 CLAMP_FRAGMENT_COLOR_ARB indicates clamping sh ould not be performed.

Errors

 INVALID_ENUM is generated if one of HILO_NV, D SDT_NV, DSDT_MAG_NV,
 or DSDT_MAG_VIBRANCE_NV is used as the format for DrawPixels,
 ReadPixels, ColorTable, ColorSubTable, Convolu tionFilter1D,
 ConvolutionFilter2D, SeparableFilter2D, GetCol orTable,
 GetConvolutionFilter, GetSeparableFilter, GetH istogram, or
 GetMinmax.

 INVALID_ENUM is generated if either UNSIGNED_I NT_S8_S8_8_8_NV or
 UNSIGNED_INT_8_8_S8_S8_REV is used as the type for DrawPixels,
 ReadPixels, ColorTable, ColorSubTable, Convolu tionFilter1D,

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1735

 ConvolutionFilter2D, SeparableFilter2D, GetCol orTable,
 GetConvolutionFilter, GetSeparableFilter, GetH istogram, or
 GetMinmax.

 INVALID_OPERATION is generated if a packed pix el format type listed
 in table 3.8 is used with DrawPixels, ReadPixe ls, ColorTable,
 ColorSubTable, ConvolutionFilter1D, Convolutio nFilter2D,
 SeparableFilter2D, GetColorTable, GetConvoluti onFilter,
 GetSeparableFilter, GetHistogram, GetMinmax, T exImage1D, TexImage2D,
 TexSubImage1D, TexSubImage2D, TexSubImage3d, o r
 GetTexImage but the format parameter does not match on of the allowed
 Matching Pixel Formats listed in table 3.8 for the specified packed
 type parameter.

 INVALID_OPERATION is generated when TexImage1D or TexImage2D are
 called and the format is HILO_NV and the inter nalformat is not
 one of HILO_NV, HILO16_NV, SIGNED_HILO_NV, SIG NED_HILO16_NV; or if
 the internalformat is one of HILO_NV, HILO16_N V, SIGNED_HILO_NV,
 or SIGNED_HILO16_NV and the format is not HILO _NV.

 INVALID_OPERATION is generated when TexImage2D , or TexImage1D is
 called and if the format is DSDT_NV and the in ternalformat is not
 either DSDT_NV or DSDT8_NV; or if the internal format is either
 DSDT_NV or DSDT8_NV and the format is not DSDT _NV.

 INVALID_OPERATION is generated when TexImage2D , or TexImage1D is
 called and if the format is DSDT_MAG_NV and th e internalformat
 is not either DSDT_MAG_NV or DSDT8_MAG8_NV; or if the internal
 format is either DSDT_MAG_NV or DSDT8_MAG8_NV and the format is
 not DSDT_MAG_NV.

 INVALID_OPERATION is generated when TexImage2D or TexImage1D is
 called and if the format is DSDT_MAG_VIB_NV an d the internalformat
 is not either DSDT_MAG_INTENSITY_NV or DSDT8_M AG8_INTENSITY8_NV;
 or if the internal format is either DSDT_MAG_I NTENSITY_NV or
 DSDT8_MAG8_INTENSITY8_NV and the format is not DSDT_MAG_VIB_NV.

 INVALID_OPERATION is generated when CopyTexIma ge2D,
 CopyTexImage1D, CopyTexSubImage2D, or
 CopyTexSubImage1D is called and the internal f ormat of the texture
 array to which the pixels are to be copied is one of HILO_NV,
 HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, D SDT_NV, DSDT8_NV,
 DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY _NV, or
 DSDT8_MAG8_INTENSITY8_NV.

 INVALID_OPERATION is generated when TexSubImag e2D or
 TexSubImage1D is called and the texture array' s base internal format
 is not one of HILO_NV, DSDT_NV, DSDT_MAG_NV, o r DSDT_INTENSITY_NV,
 and the format parameter is not one of COLOR_I NDEX, RED,
 GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
 LUMINANCE_ALPHA

 INVALID_OPERATION is generated when TexSubImag e2D or
 TexSubImage1D is called and the texture array' s base internal format
 is HILO_NV and the format parameter is not HIL O_NV.

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1736

 INVALID_OPERATION is generated when TexSubImag e2D or
 TexSubImage1D is called and the texture array' s base internal format
 is DSDT_NV and the format parameter is not DSD T_NV.

 INVALID_OPERATION is generated when TexSubImag e2D or
 TexSubImage1D is called and the texture array' s base internal format
 is DSDT_MAG_NV and the format parameter is not DSDT_MAG_NV.

 INVALID_OPERATION is generated when TexSubImag e2D
 or TexSubImage1D is called and the texture arr ay's base internal
 format is DSDT_MAG_INTENSITY_NV and the format parameter is not
 DSDT_MAG_VIRBANCE_NV.

 INVALID_OPERATION is generated when TexEnv is called and the
 PREVIOUS_TEXTURE_INPUT_NV parameter for textur e unit i is assigned
 the value TEXTUREi_ARB where f i is greater th an or equal to the
 current active texture unit.

 INVALID_OPERATION is generated when TexEnv is called and the
 SHADER_OPERATION_NV parameter for texture unit 0 is assigned
 one of OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D _SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV.
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 INVALID_OPERATION is generated when TexEnv is called
 and the SHADER_OPERATION_NV parameter for text ure
 unit 1 is assigned one of DOT_PRODUCT_DEPTH_RE PLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 INVALID_OPERATION is generated when TexEnv is called
 and the SHADER_OPERATION_NV parameter for text ure
 unit 2 is assigned one of
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 INVALID_OPERATION is generated when TexEnv is called and the
 SHADER_OPERATION_NV parameter for texture unit n-1 (where n is the
 number of supported texture units) is assigned either DOT_PRODUCT_NV
 or DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 color format (one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, BGR, BGRA,
 LUMINANCE, or LUMINANCE_ALPHA) when the textur e image is of a format
 type (see table 3.15) other than RGBA (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context).

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1737

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of HILO_NV when the texture image is of a format type (see
 table 3.15) other than HILO_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_NV when the texture image is of a base internal
 format other than DSDT_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_MAG_NV when the texture image i s of a base internal
 format other than DSDT_MAG_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_MAG_VIBRANCE_NV when the textur e image is of a base
 internal format other than DSDT_MAG_INTENSITY_ NV causes the error
 INVALID_OPERATION."

New State

Add the following entries to table 6.12:

Get Value Type Get Command Initial Value Description Sec Attribu te
-------------------- ------ -------------------- ------------- --------------------- --- ------- --
TEXTURE_HI_SIZE_NV nxZ+ GetTexLevelParameter 0 xD texture image i's 3.8 texture
 hi resolution
TEXTURE_LO_SIZE_NV nxZ+ GetTexLevelParameter 0 xD texture image i's 3.8 texture
 lo resolution
TEXTURE_DS_SIZE_NV nxZ+ GetTexLevelParameter 0 xD texture image i's 3.8 texture
 ds resolution
TEXTURE_DT_SIZE_NV nxZ+ GetTexLevelParameter 0 xD texture image i's 3.8 texture
 dt resolution
TEXTURE_MAG_SIZE_NV nxZ+ GetTexLevelParameter 0 xD texture image i's 3.8 texture
 mag resolution

Change the TEXTURE_BORDER_COLOR line in table 6.13 to read:

Get Value Type Get Command Initial Value Description Sec Attribut e
------------------------ ------ --------------- ------------- --------------------- --- -------- -
TEXTURE_BORDER_VALUES_NV 4xR GetTexParameter (0,0,0,0) Texture border values 3.8 texture
(TEXTURE_BORDER_COLOR)

NV_texture_shader NVIDIA OpenGL Extension Specifications

 1738

Table 6.TextureShaders. Texture Shaders.

Get Value Type Get Command I nitial Value Description Sec A ttribute
--------------------------- ------ ----------- - ------------------- ------------------- ------ - -------------
HI_BIAS_NV R GetFloatv 0 .0 Hi bias for HILO 3.6.3 p ixel
LO_BIAS_NV R GetFloatv 0 .0 Lo bias for HILO 3.6.3 p ixel
DS_BIAS_NV R GetFloatv 0 .0 Ds bias 3.6.3 p ixel
DT_BIAS_NV R GetFloatv 0 .0 Dt bias 3.6.3 p ixel
MAGNITUDE_BIAS_NV R GetFloatv 0 .0 Magnitude bias 3.6.3 p ixel
VIBRANCE_BIAS_NV R GetFloatv 0 .0 Vibrance bias 3.6.3 p ixel
HI_SCALE_NV R GetFloatv 1 .0 Hi scale 3.6.3 p ixel
LO_SCALE_NV R GetFloatv 1 .0 Lo scale 3.6.3 p ixel
DS_SCALE_NV R GetFloatv 1 .0 Ds scale 3.6.3 p ixel
DT_SCALE_NV R GetFloatv 1 .0 Dt scale 3.6.3 p ixel
MAGNITUDE_SCALE_NV R GetFloatv 1 .0 Magnitude scale 3.6.3 p ixel
VIBRANCE_SCALE_NV R GetFloatv 1 .0 Vibrance scale 3.6.3 p ixel

TEXTURE_SHADER_NV B IsEnabled F alse Texture shaders 3.8 t exture/enable
 enable

SHADER_OPERATION_NV TxZ21 GetTexEnviv N ONE Texture shader 3.8.13 t exture
 operation
CULL_MODES_NV Tx4xZ2 GetTexEnviv G EQUAL,GEQUAL, Texture shader 3.8.13 t exture
 G EQUAL,GEQUAL cull fragment modes
RGBA_UNSIGNED_- TxZ2 GetTexEnviv U NSIGNED_IDENTITY_NV Texture shader RGBA 3.8.13 t exture
 DOT_PRODUCT_MAPPING_NV dot product mapping
PREVIOUS_TEXTURE_INPUT_NV TxZn GetTexEnviv T EXTURE0_ARB Texture shader 3.8.13 t exture
 previous tex input
CONST_EYE_NV TxRx3 GetTexEnvfv (0,0,-1) Shader constant 3.8.13 t exture
 eye vector
OFFSET_TEXTURE_MATRIX_NV TxM2 GetTexEnvfv (1,0,0,1) 2x2 texture offset 3.8.13 t exture
 matrix
OFFSET_TEXTURE_SCALE_NV TxR GetTexEnvfv 1 Texture offset 3.8.13 t exture
 scale
OFFSET_TEXTURE_BIAS_NV TxR GetTexEnvfv 0 Texture offset 3.8.13 t exture
 bias
SHADER_CONSISTENT_NV TxB GetTexEnviv T rue Texture shader 3.8.13 t exture
 stage consistency

[The "Tx" type prefix means that the state is per- texture unit.]

[The "Zn" type is an n-valued integer where n is t he
 implementation-dependent number of texture units supported.]

New Implementation State

 None

Revision History

 March 29, 2001 - document that using signed HI LO with a dot product
 shader forces the square root to zero if the 1 .0-HI*HI-LO*LO value
 is negative.

 November 15, 2001 - document that depth replac e is after polygon
 offset; add polygon offset issue and multisamp le issue.

 November 26, 2001 - Properly document the vari ous TEXTURE_*_SIZE_NV
 texture resolution query tokens. Add table 6. 12 entries.

 June 5, 2002 - Driver implementations before t his date
 incorrectly swap the HI and LO components when specifying
 GL_TEXTURE_BORDER_VALUES_NV when rendering via hardware. Drivers

NVIDIA OpenGL Extension Specifications NV_texture_shader

 1739

 after this date have fixed the problem and mat ch the specified
 behavior.

 July 2, 2003 - CULL_MODES_NV, OFFSET_TEXTURE_M ATRIX_NV,
 OFFSET_TEXTURE_2D_MATRIX_NV, and CONST_EYE_NV should not be specified
 to work with glTexEnvi & glTexEnvf (they can o nly be used with
 glTexEnviv & glTexEnvfv).

 October 19, 2006 - Add interaction with ARB_co lor_buffer_float to
 document how ths extension behaves when ARB_co lor_buffer_float is
 also supported and when its CLAMP_FRAGMENT_COL OR_ARB state is either
 FIXED_ONLY_ARB when rendering to a floating-po int color framebuffer
 or FALSE.

 March 13, 2007 - Fix OFFSET_TEXTURE_2D_SCALE_N V operation to clamp
 the scale factor to [0,1] before multiplying i t by red, green,
 and blue to match the hardware's actual behavi or.

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1740

Name

 NV_texture_shader2

Name Strings

 GL_NV_texture_shader2

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: April 29, 2004
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_ shader2.txt#9 $

Number

 231

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification,
 augmented by the NV_texture_shader extension sp ecification.

 Requires support for the NV_texture_shader exte nsion.

Overview

 This extension extends the NV_texture_shader fu nctionality to
 support texture shader operations for 3D textur es.

 See the NV_texture_shader extension for informa tion about the
 texture shader operational model.

 The two new texture shader operations are:

 <conventional textures>

 22. TEXTURE_3D - Accesses a 3D texture via (s/ q,t/q,r/q).

 <dot product textures>

 23. DOT_PRODUCT_TEXTURE_3D_NV - When preceded by two DOT_PRODUCT_NV
 programs in the previous two texture shade r stages, computes a
 third similar dot product and composes the three dot products
 into (s,t,r) texture coordinate set to acc ess a 3D non-projective
 texture.

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 1741

Issues

 Why a separate extension?

 Not all implementations of NV_texture_shader will support 3D
 textures in hardware.

 Breaking this extension out into a distinct e xtension allows OpenGL
 programs that only would use 3D textures if t hey are supported
 in hardware to determine whether hardware sup port is available by
 explicitly looking for the NV_texture_shader2 extension.

 What if an implementation wanted to support NV_ texture_shader2
 operations within a software rasterizer?

 Implementations should be free to implement t he 3D texture texture
 shader operations in software. In this case, the implementation
 should NOT advertise the NV_texture_shader2 e xtension, but should
 still accept the GL_TEXTURE_3D and GL_DOT_PRO DUCT_TEXTURE_3D_NV
 texture shader operations without an error. Likewise, the
 glTexImage3D command should accept the new in ternal texture formats,
 formats, and types allowed by this extension should be accepted
 without an error.

 When NV_texture_shader2 is not advertised in the GL_EXTENSIONS
 string, but the extension functionality works without GL errors,
 programs should expect that these two texture shader operations
 are slow.

New Procedures and Functions

 None.

New Tokens

 When the <target> and <pname> parameters of Tex Envf, TexEnvfv,
 TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and SHADER_OPERATION_NV
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 TEXTURE_3D
 DOT_PRODUCT_TEXTURE_3D_NV 0 x86EF

 Accepted by the <format> parameter of TexImage3 D and TexSubImage3D:

 HILO_NV 0 x86F4
 DSDT_NV 0 x86F5
 DSDT_MAG_NV 0 x86F6
 DSDT_MAG_VIB_NV 0 x86F7

 Accepted by the <type> parameter of TexImage3D and TexSubImage3D:

 UNSIGNED_INT_S8_S8_8_8_NV 0 x86DA
 UNSIGNED_INT_8_8_S8_S8_REV_NV 0 x86DB

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1742

 Accepted by the <internalformat> parameter of T exImage3D:

 SIGNED_RGBA_NV 0 x86FB
 SIGNED_RGBA8_NV 0 x86FC
 SIGNED_RGB_NV 0 x86FE
 SIGNED_RGB8_NV 0 x86FF
 SIGNED_LUMINANCE_NV 0 x8701
 SIGNED_LUMINANCE8_NV 0 x8702
 SIGNED_LUMINANCE_ALPHA_NV 0 x8703
 SIGNED_LUMINANCE8_ALPHA8_NV 0 x8704
 SIGNED_ALPHA_NV 0 x8705
 SIGNED_ALPHA8_NV 0 x8706
 SIGNED_INTENSITY_NV 0 x8707
 SIGNED_INTENSITY8_NV 0 x8708
 SIGNED_RGB_UNSIGNED_ALPHA_NV 0 x870C
 SIGNED_RGB8_UNSIGNED_ALPHA8_NV 0 x870D

 Accepted by the <internalformat> parameter of T exImage3D:

 HILO_NV
 HILO16_NV 0 x86F8
 SIGNED_HILO_NV 0 x86F9
 SIGNED_HILO16_NV 0 x86FA
 DSDT_NV
 DSDT8_NV 0 x8709
 DSDT_MAG_NV
 DSDT8_MAG8_NV 0 x870A
 DSDT_MAG_INTENSITY_NV 0 x86DC
 DSDT8_MAG8_INTENSITY8_NV 0 x870B

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 -- Section 3.8 "Texturing"

 Replace the third paragraph (amended by the NV _texture_shader
 extension) with the following that includes 3D texture references:

 "The alternative to conventional texturing is the texture shaders
 mechanism. When texture shaders are enabled, each texture unit
 uses one of twenty-three texture shader operat ions. Twenty of the
 twenty-three shader operations map an (s,t,r,q) texture coordinate
 set to an RGBA color. Of these, four texture shader operations
 directly correspond to the 1D, 2D, 3D, and cub e map conventional
 texturing operations. Depending on the textur e shader operation,
 the mapping from the (s,t,r,q) texture coordin ate set to an RGBA
 color may depend on the given texture unit's c urrently bound
 texture object state and/or the results of pre vious texture
 shader operations. The three remaining textur e shader operations
 respectively provide a fragment culling mechan ism based on texture
 coordinates, a means to replace the fragment d epth value, and a dot
 product operation that computes a floating-poi nt value for use by

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 1743

 subsequent texture shaders. The specifics of each texture shader
 operation are described in section 3.8.12."

 -- Section 3.8.2 "Alternate Texture Image Specifi cation Commands"

 Amend the following text inserted by NV_textur e_shader after the
 six paragraph to include 3D texture references :

 "CopyTexSubImage3D, CopyTexSubImage2D, and Cop yTexSubImage1D generate
 the error INVALID_OPERATION if the internal fo rmat of the texture
 array to which the pixels are to be copied is one of HILO_NV,
 HILO16_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, D SDT_NV, DSDT8_NV,
 DSDT_MAG_NV, DSDT8_MAG8_NV, DSDT_MAG_INTENSITY _NV, or
 DSDT8_MAG8_INTENSITY8_NV.

 TexSubImage3D, TexSubImage2D, and TexSubImage1 D generate the error
 INVALID_OPERATION if the internal format of th e texture array
 to which the texels are to be copied has a dif ferent format type
 (according to table 3.15) than the format type of the texels being
 specified. Specifically, if the base internal format is not one of
 HILO_NV, DSDT_NV, DSDT_MAG_NV, or DSDT_INTENSI TY_NV, then the format
 parameter must be one of COLOR_INDEX, RED, GRE EN, BLUE, ALPHA,
 RGB, RGBA, LUMINANCE, or LUMINANCE_ALPHA; if t he base internal
 format is HILO_NV, then the format parameter m ust be HILO_NV;
 if the base internal format is DSDT_NV, then t he format parameter
 must be DSDT_NV; if the base internal format i s DSDT_MAG_NV, then
 the format parameter must be DSDT_MAG_NV; if t he base internal
 format is DSDT_MAG_INTENSITY_NV, the format pa rameter must be
 DSDT_MAG_VIB_NV."

 -- Section 3.8.13 "Texture Shaders"

 Amend the designated paragraphs of the NV_text ure_shader
 specification to include discussion of 3D text ures.

 1st paragraph:

 "Each texture unit is configured with one of t wenty-three
 texture shader operations. Several texture sh ader operations
 require additional state. All per-texture sha der stage state
 is specified using the TexEnv commands with th e target specified
 as TEXTURE_SHADER_NV. The per-texture shader state is replicated
 per texture unit so the texture unit selected by ActiveTextureARB
 determines which texture unit's environment is modified by TexEnv
 calls."

 3rd paragraph:

 "When TexEnv is called with the target of TEXT URE_SHADER_NV,
 SHADER_OPERATION_NV may be set to one of NONE, TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, PASS_THROUGH_NV,
 CULL_FRAGMENT_NV, OFFSET_TEXTURE_2D_NV, OFFSET _TEXTURE_2D_SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1744

 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV, or
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. The semantics of each of
 these shader operations is described in sectio n 3.8.13.1. Not every
 operation is supported in every texture unit. The restrictions for
 how these shader operations can be configured in various texture
 units are described in section 3.8.13.2."

 3.8.13.1 Texture Shader Operations

 Amend tables 3.A, 3.B, 3.C, and 3.D in the NV_ texture_shader
 specification to include entries for 3D textur e operations:

 Table 3.A:

texture shader
texture shader operation i previous texture input texture shader operation i-1 operati on i-2 texture shader operation i+1
================================= ================ ========= =============================== ======= ========= ================================
TEXTURE_3D - - - -
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------
DOT_PRODUCT_TEXTURE_3D_NV shader result ty pe must shader operation shader operation -
 be one of signe d HILO, must be must b e
 unsigned HILO, all DOT_PRODUCT_NV DOT_PR ODUCT_NV
 signed RGBA, al l
 unsigned RGBA
--------------------------------- ---------------- --------- ------------------------------- ------- --------- --------------------------------

 Table 3.B:

texture shader operation i texture unit i
================================= ================ =======================
TEXTURE_3D 3D target must b e consistent
--------------------------------- ---------------- -----------------------
DOT_PRODUCT_TEXTURE_3D_NV 3D target must b e consistent
--------------------------------- ---------------- -----------------------

 Table 3.C:

 uses uses uses uses use s offset uses
 texture stage stage stage previous uses off set texture const
 coordinate text ure result result result texture cull tex ture 2D scale eye
texture shader operation i set usage targ et i-1 i-2 i+1 input modes 2D matrix and bias vector
================================= ========== ==== ===== ====== ====== ====== ======== ===== === ====== ======== ======
TEXTURE_3D s,t,r,q 3D - - - - - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------
DOT_PRODUCT_TEXTURE_3D_NV s,t,r 3D y y - y - - - -
--------------------------------- ---------- ---- ----- ------ ------ ------ -------- ----- --- ------ -------- ------

 Table 3.D:

texture shader operation i shader stage res ult type shader stage result texture unit RGBA color result
================================= ================ ============= =================================== ======================================
TEXTURE_3D matches 3D targe t type filtered 3D target texel if 3D target texture type is RGBA,
 filtered 3D target texel,
 else (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_TEXTURE_3D_NV matches 3D targe t type filtered 3D target texel if 3D target texture type is RGBA,
 filtered 3D target texel,
 else (0,0,0,0)
------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------

 Add the following new sections specifying new 3D texture operations:

 3.8.13.1.22 3D Projective Texturing

 The TEXTURE_3D texture shader operation access es the texture unit's

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 1745

 3D texture object (as described in sections 3. 8.4, 3.8.5, and 3.8.6)
 using (s/q,t/q,r/q) for the 3D texture coordin ates where s, t, r,
 and q are the homogeneous texture coordinates for the texture unit.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the acces sed texture. This mode
 is equivalent to conventional texturing's 3D t exture target.

 If the texture unit's 3D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.1.23 Dot Product Texture 3D

 The DOT_PRODUCT_TEXTURE_3D_NV texture shader o peration accesses the
 texture unit's 3D texture object (as described in sections 3.8.4,
 3.8.5, and 3.8.6) using (dotPP,dotP,dotC) for the 3D texture
 coordinates. The result of the texture access becomes both
 the shader result and texture unit RGBA result (see table 3.E).
 The type of the shader result depends on the f ormat type of the
 accessed texture.

 Assuming that i is the current texture shader stage, dotPP is the
 floating-point dot product texture shader resu lt from the i-2
 texture shader stage, assuming the i-2 texture shader stage's
 operation is DOT_PRODUCT_NV. dotP is the floa ting-point dot
 product texture shader result from the i-1 tex ture shader stage,
 assuming the i-1 texture shader stage's operat ion is DOT_PRODUCT_NV.
 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of t he DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.1 4.

 If the previous texture input texture object s pecified by the
 current texture shader stage's PREVIOUS_TEXTUR E_INPUT_NV value has
 a format type other than RGBA or HILO (the DSD T_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is no t consistent.

 If the previous texture input texture shader o peration specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader st age is not consistent.

 If the previous texture input texture shader r esult specified by
 the current texture shader stage's PREVIOUS_TE XTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage spe cified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_ NV value is not
 consistent, then this texture shader stage is not consistent.

 If either the i-1 or i-2 texture shader stage operation is not
 DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If either the i-1 or i-2 texture shader stage is not consistent, then

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1746

 this texture shader stage is not consistent.

 If the texture unit's 3D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent , it operates as if
 it is the NONE operation.

 3.8.13.2 Texture Shader Restrictions

 Amend the first four paragraphs in this sectio n to include 3D
 texture operations:

 "There are various restrictions on possible te xture shader
 configurations. These restrictions are descri bed in this section.

 The error INVALID_OPERATION occurs if the SHAD ER_OPERATION_NV
 parameter for texture unit 0 is assigned one o f
 OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_ NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these
 texture shaders requires a previous texture sh ader result that
 is not possible for texture unit 0. Therefore these shaders are
 disallowed for texture unit 0.

 The error INVALID_OPERATION occurs if the
 SHADER_OPERATION_NV parameter for texture unit
 1 is assigned one of DOT_PRODUCT_DEPTH_REPLACE _NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
 shaders requires either two previous texture s hader results or
 a dot product result that cannot be generated by texture unit 0.
 Therefore these shaders are disallowed for tex ture unit 1.

 The error INVALID_OPERATION occurs if the
 SHADER_OPERATION_NV parameter for texture unit
 2 is assigned one of DOT_PRODUCT_TEXTURE_3D_NV ,
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV. Each of these texture
 shaders requires three previous texture shader results. Therefore
 these shaders are disallowed for texture unit 2."

 3.8.13.3 Required State

 Amend the first paragraph in this section to a ccount for the 2 new
 3D texture shader operations:

 "The state required for texture shaders consis ts of a single bit to
 indicate whether or not texture shaders are en abled, a vector of
 three floating-point values for the constant e ye vector, and n sets

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 1747

 of per-texture unit state where n is the imple mentation-dependent
 number of supported texture units. The set of per-texture unit
 texture shader state consists of the twenty-th ree-valued integer
 indicating the texture shader operation, four two-valued integers
 indicating the cull modes, an integer indicati ng the previous texture
 unit input, a two-valued integer indicating th e RGBA unsigned dot
 product mapping mode, a 2x2 floating-point mat rix indicating the
 texture offset transform, a floating-point val ue indicating the
 texture offset scale, a floating-point value i ndicating the texture
 offset bias, and a bit to indicate whether or not the texture shader
 stage is consistent."

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on other specifications

 Same as the NV_texture_shader extension.

Errors

 The following errors are updated to reflect 3D texture operations:

 INVALID_OPERATION is generated if a packed pix el format type listed
 in table 3.8 is used with DrawPixels, ReadPixe ls, ColorTable,
 ColorSubTable, ConvolutionFilter1D, Convolutio nFilter2D,
 SeparableFilter2D, GetColorTable, GetConvoluti onFilter,
 GetSeparableFilter, GetHistogram, GetMinmax, T exImage1D, TexImage2D,
 TexImage3D, TexSubImage1D, TexSubImage2D, TexS ubImage3d, or
 GetTexImage but the format parameter does not match on of the allowed
 Matching Pixel Formats listed in table 3.8 for the specified packed
 type parameter.

 INVALID_OPERATION is generated when TexImage1D , TexImage2D,
 or TexImage3D are called and the format is HIL O_NV and the
 internalformat is not one of HILO_NV, HILO16_N V, SIGNED_HILO_NV,
 SIGNED_HILO16_NV; or if the internalformat is one of HILO_NV,
 HILO16_NV, SIGNED_HILO_NV, or SIGNED_HILO16_NV and the format is
 not HILO_NV.

 INVALID_OPERATION is generated when TexImage3D , TexImage2D,
 or TexImage1D is called and if the format is D SDT_NV and the
 internalformat is not either DSDT_NV or DSDT8_ NV; or if the internal

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1748

 format is either DSDT_NV or DSDT8_NV and the f ormat is not DSDT_NV.

 INVALID_OPERATION is generated when TexImage3D , TexImage2D, or
 TexImage1D is called and if the format is DSDT _MAG_NV and the
 internalformat is not either DSDT_MAG_NV or DS DT8_MAG8_NV; or if
 the internal format is either DSDT_MAG_NV or D SDT8_MAG8_NV and the
 format is not DSDT_MAG_NV.

 INVALID_OPERATION is generated when TexImage3D , TexImage2D,
 or TexImage1D is called and if the format is D SDT_MAG_VIB_NV
 and the internalformat is not either DSDT_MAG_ INTENSITY_NV or
 DSDT8_MAG8_INTENSITY8_NV; or if the internal f ormat is either
 DSDT_MAG_INTENSITY_NV or DSDT8_MAG8_INTENSITY8 _NV and the format
 is not DSDT_MAG_VIB_NV.

 INVALID_OPERATION is generated when CopyTexIma ge2D, CopyTexImage1D,
 CopyTexSubImage3D, CopyTexSubImage2D, or CopyT exSubImage1D is called
 and the internal format of the texture array t o which the pixels
 are to be copied is one of HILO_NV, HILO16_NV, SIGNED_HILO_NV,
 SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_ NV, DSDT8_MAG8_NV,
 DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY 8_NV.

 INVALID_OPERATION is generated when TexSubImag e3D, TexSubImage2D, or
 TexSubImage1D is called and the texture array' s base internal format
 is not one of HILO_NV, DSDT_NV, DSDT_MAG_NV, o r DSDT_INTENSITY_NV,
 and the format parameter is not one of COLOR_I NDEX, RED,
 GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
 LUMINANCE_ALPHA

 INVALID_OPERATION is generated when TexSubImag e3D, TexSubImage2D, or
 TexSubImage1D is called and the texture array' s base internal format
 is HILO_NV and the format parameter is not HIL O_NV.

 INVALID_OPERATION is generated when TexSubImag e3D, TexSubImage2D, or
 TexSubImage1D is called and the texture array' s base internal format
 is DSDT_NV and the format parameter is not DSD T_NV.

 INVALID_OPERATION is generated when TexSubImag e3D, TexSubImage2D, or
 TexSubImage1D is called and the texture array' s base internal format
 is DSDT_MAG_NV and the format parameter is not DSDT_MAG_NV.

 INVALID_OPERATION is generated when TexSubImag e3D, TexSubImage2D,
 or TexSubImage1D is called and the texture arr ay's base internal
 format is DSDT_MAG_INTENSITY_NV and the format parameter is not
 DSDT_MAG_VIRBANCE_NV.

 INVALID_OPERATION is generated when TexEnv is called and the
 SHADER_OPERATION_NV parameter for texture unit 0 is assigned
 one of OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D _SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV.
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

NVIDIA OpenGL Extension Specifications NV_texture_shader2

 1749

 INVALID_OPERATION is generated when TexEnv is called
 and the SHADER_OPERATION_NV parameter for text ure
 unit 1 is assigned one of DOT_PRODUCT_DEPTH_RE PLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 INVALID_OPERATION is generated when TexEnv is called
 and the SHADER_OPERATION_NV parameter for text ure
 unit 2 is assigned one of DOT_PRODUCT_TEXTURE_ 3D_NV,
 DOT_PRODUCT_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 or DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV.

 INVALID_OPERATION is generated when TexEnv is called and the
 SHADER_OPERATION_NV parameter for texture unit n-1 (where n is the
 number of supported texture units) is assigned either DOT_PRODUCT_NV
 or DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 color format (one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE,
 or LUMINANCE_ALPHA) when the texture image is of a format type (see
 table 3.15) other than RGBA (the DSDT_MAG_INTE NSITY_NV base internal
 format does not count as an RGBA format type i n this context).

 INVALID_OPERATION is generated when GetTexImag e is called with
 a format of HILO when the texture image is of a format type (see
 table 3.15) other than HILO.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_NV when the texture image is of a base internal
 format other than DSDT_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_MAG_NV when the texture image i s of a base internal
 format other than DSDT_MAG_NV.

 INVALID_OPERATION is generated when GetTexImag e is called with a
 format of DSDT_MAG_VIBRANCE_NV when the textur e image is of a base
 internal format other than DSDT_MAG_INTENSITY_ NV causes the error
 INVALID_OPERATION."

New State

Table 6.TextureShaders. Texture Shaders.

Get Value Type Get Command I nitial Value Description Sec A ttribute
--------------------------- ------ ----------- - ------------------- ------------------- ------ - -------------
SHADER_OPERATION_NV TxZ23 GetTexEnviv N ONE Texture shader 3.8.13 t exture
 operation

* Z21 in NV_texture_shader is now Z23 with NV_textu re_shader2.

[The "Tx" type prefix means that the state is per- texture unit.]

[The "Zn" type is an n-valued integer where n is t he
 implementation-dependent number of texture units supported.]

NV_texture_shader2 NVIDIA OpenGL Extension Specifications

 1750

New Implementation State

 None

Revision History

 None

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1751

Name

 NV_texture_shader3

Name Strings

 GL_NV_texture_shader3

Notice

 Copyright NVIDIA Corporation, 2001.

IP Status

 NVIDIA Proprietary.

Version

 NVIDIA Date: March 5, 2007
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_texture_shader3.txt#11 $

Number

 265

Dependencies

 Written based on the wording of the OpenGL 1.2.1 specification,
 augmented by the NV_texture_shader and NV_texture_shader2 extension
 specifications.

 Requires support for the NV_texture_shader extension.

 Requires support for the NV_texture_shader2 extension.

Overview

 NV_texture_shader3 extends the NV_texture_shader functionality by
 adding several new texture shader operations, extending several
 existing texture shader operations, adding a new HILO8 internal
 format, and adding new and more flexible re-mapping modes for dot
 product and dependent texture shader operations.

 See the NV_texture_shader extension for information about the
 texture shader operational model.

 The fourteen new texture shader operations are:

 <offset textures>

 24. OFFSET_PROJECTIVE_TEXTURE_2D_NV - Transforms the signed (ds,dt)
 components of a previous texture unit by a 2x2 floating-point
 matrix and then uses the result to offset the stage's texture
 coordinates for a 2D non-projective texture.

 25. OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV - Same as above except
 the magnitude component of the previous texture unit result
 scales the red, green, and blue components of the unsigned RGBA
 texture 2D access.

 26. OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV - Similar to
 OFFSET_TEXTURE_2D_NV except that the texture access is into a
 rectangular non-projective texture.

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1752

 27. OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV - Similar to
 OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV except that the texture
 access is into a rectangular non-projective texture.

 28. OFFSET_HILO_TEXTURE_2D_NV - Similar to OFFSET_TEXTURE_2D_NV
 but uses a (higher-precision) HILO base format texture rather
 than a DSDT-type base format.

 29. OFFSET_HILO_TEXTURE_RECTANGLE_NV - Similar to
 OFFSET_TEXTURE_RECTANGLE_NV but uses a (higher-precision)
 HILO base format texture rather than a DSDT-type base format.

 30. OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV - Similar to
 OFFSET_PROJECTIVE_TEXTURE_2D_NV but uses a (higher-precision)
 HILO base format texture rather than a DSDT-type base format.

 31. OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV - Similar to
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV but uses a
 (higher-precision) HILO base format texture rather than a
 DSDT-type base format.

 (There are no "offset HILO texture scale" operations because
 HILO textures have only two components with no third component
 for scaling.)

 <dependent textures>

 32. DEPENDENT_HILO_TEXTURE_2D_NV - Converts the hi and lo components
 of a previous shader HILO result into an (s,t) texture coordinate
 set to access a 2D non-projective texture.

 33. DEPENDENT_RGB_TEXTURE_3D_NV - Converts the red, green, and
 blue components of a previous shader RGBA result into an (s,t,r)
 texture coordinate set to access a 3D non-projective texture.

 34. DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV - Converts the red, green,
 and blue components of a previous shader RGBA result into an
 (s,t,r) texture coordinate set to access a cube map texture.

 <dot product pass through>

 35. DOT_PRODUCT_PASS_THROUGH_NV - Computes a dot product in the
 manner of the DOT_PRODUCT_NV operation and the result is [0,1]
 clamped and smeared to generate the texture unit RGBA result.

 <dot product textures>

 36. DOT_PRODUCT_TEXTURE_1D_NV - Computes a dot product in the manner
 of the DOT_PRODUCT_NV operation and uses the result as the s
 texture coordinate to access a 2D non-projective texture.

 <dot product depth replace>

 37. DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV - Computes a dot product
 in the manner of the DOT_PRODUCT_NV operation and the result
 is [0,1] clamped and replaces the fragment's window-space
 depth value. The texture unit RGBA result is (0,0,0,0).

 Two new internal texture formats have been added: HILO8_NV and
 SIGNED_HILO8_NV. These texture formats allow HILO textures to be
 stored in half the space; still the filtering for these internal
 texture formats is done with 16-bit precision.

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1753

 One new unsigned RGBA dot product mapping mode (FORCE_BLUE_TO_ONE_NV)
 forces the blue component to be 1.0 before computing a dot product.

Issues

 Should a HILO8_NV internal format be added?

 RESOLUTION: Yes. The HILO8_NV format allows HILO textures to
 take up half the space (16-bit HILO8_NV versus 32-bit HILO16_NV).
 Even though the texture is stored with 8-bit components, the
 interpolated precision can be assumed to be 16-bit.

 Should we generalize existing OFFSET_TEXTURE-style operations to
 support HILO textures and projective texturing, or should we just
 add more texture shader operations?

 RESOLUTION: Add more texture shader operations for each distinct
 configuration.

 NV_texture_shader had consistency rules for OFFSET_TEXTURE
 operations that preclude consistency when used with HILO textures.
 Consistency is a defined behavior that should stay defined even with
 future extensions. Adding specific new texture shader operation
 for HILO textures avoids having to redefine the consistency rules
 for DSDT-using OFFSET_TEXTURE operations.

 Rather than add a separate state that decides when OFFSET_TEXTURE
 is projective or not, we just add new operations.

New Procedures and Functions

 None.

New Tokens

 When the <target> and <pname> parameters of TexEnvf, TexEnvfv,
 TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and SHADER_OPERATION_NV
 respectively, then the value of <param> or the value pointed to by
 <params> may be:

 OFFSET_PROJECTIVE_TEXTURE_2D_NV 0x8850
 OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV 0x8851
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV 0x8852
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV 0x8853
 OFFSET_HILO_TEXTURE_2D_NV 0x8854
 OFFSET_HILO_TEXTURE_RECTANGLE_NV 0x8855
 OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV 0x8856
 OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV 0x8857
 DEPENDENT_HILO_TEXTURE_2D_NV 0x8858
 DEPENDENT_RGB_TEXTURE_3D_NV 0x8859
 DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV 0x885A
 DOT_PRODUCT_PASS_THROUGH_NV 0x885B
 DOT_PRODUCT_TEXTURE_1D_NV 0x885C
 DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV 0x885D

 Accepted by the <internalformat> parameter of TexImage1D, TexImage2D,
 and TexImage3D:

 HILO8_NV 0x885E
 SIGNED_HILO8_NV 0x885F

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1754

 When the <target> and <pname> parameters of TexEnvf,
 TexEnvfv, TexEnvi, and TexEnviv are TEXTURE_SHADER_NV and
 RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV respectively, then the value
 of <param> or the value pointed to by <params> may be:

 FORCE_BLUE_TO_ONE_NV 0x8860

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Section 3.8 "Texturing"

 Replace the third paragraph (amended by the NV_texture_shader
 extension) with the following that includes new texture shader
 references:

 "The alternative to conventional texturing is the texture shaders
 mechanism. When texture shaders are enabled, each texture unit uses
 one of thirty-seven texture shader operations. Thirty-three of the
 thirty-seven shader operations map an (s,t,r,q) texture coordinate
 set to an RGBA color. Of these, four texture shader operations
 directly correspond to the 1D, 2D, 3D, and cube map conventional
 texturing operations. Depending on the texture shader operation, the
 mapping from the (s,t,r,q) texture coordinate set to an RGBA color
 may depend on the given texture unit's currently bound texture object
 state and/or the results of previous texture shader operations.
 The four remaining texture shader operations respectively provide
 a fragment culling mechanism based on texture coordinates, a dot
 product operation that computes a floating-point value for use by
 subsequent texture shaders. and two means to replace the fragment
 depth value, The specifics of each texture shader operation are
 described in section 3.8.12."

 -- Section 3.8.1 "Texture Image Specification"

 Add two more rows to table 3.16:

Sized Base R G B A L I HI LO DS DT MAG
Internal Format Internal Format bits bits bits bits bits bits bits bits bits bits bits
------------------------------ -------------------- - ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
HILO8_NV HILO 8 8
SIGNED_HILO8_NV HILO 8* 8*

 Update this paragraph inserted by NV_texture_shader before the last
 sentence in the fifth paragraph to read:

 "The error INVALID_OPERATION is generated if the format is
 HILO_NV and the internalformat is not one of HILO_NV, HILO16_NV,
 HILO8_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV, SIGNED_HILO8_NV;
 or if the internalformat is one of HILO_NV, HILO16_NV, HILO8_NV,
 SIGNED_HILO_NV, SIGNED_HILO16_NV, or SIGNED_HILO8_NV and the format
 is not HILO_NV.

 -- Section 3.8.2 "Alternate Texture Image Specification Commands"

 In the second paragraph (describing CopyTexImage2D), change the
 third to the last sentence (previously amended by NV_texture_shader) to:

 "Parameters level, internalformat, and border are specified using the
 same values, with the same meanings, as the equivalent arguments of
 TexImage2D, except that internalformat may not be specified as 1, 2,

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1755

 3, 4, HILO_NV, HILO16_NV, HILO8_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV,
 SIGNED_HILO8_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV,
 DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY8_NV."

 In the third paragraph (describing CopyTexImage1D), change the second
 to the last sentence (previously amended by NV_texture_shader) to:

 "level, internalformat, and border are specified using the same
 values, with the same meanings, as the equivalent arguments of
 TexImage1D, except that internalformat may not be specified as 1, 2,
 3, 4, HILO_NV, HILO16_NV, HILO8_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV,
 SIGNED_HILO8_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV,
 DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY8_NV."

 Amend the following text inserted by NV_texture_shader after the
 six paragraph to include the HILO8 and UNSIGNED_HILO8 internal
 texture formats:

 "CopyTexSubImage3D, CopyTexSubImage2D, and CopyTexSubImage1D
 generate the error INVALID_OPERATION if the internal format of
 the texture array to which the pixels are to be copied is one of
 HILO_NV, HILO16_NV, HILO8_NV, SIGNED_HILO_NV, SIGNED_HILO16_NV,
 SIGNED_HILO8_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_NV, DSDT8_MAG8_NV,
 DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY8_NV."

 -- Section 3.8.13 "Texture Shaders"

 Amend the designated paragraphs of the NV_texture_shader
 specification to include discussion of new texture shader
 operations.

 1st paragraph (update number of operations):

 "Each texture unit is configured with one of thirty-seven
 texture shader operations. Several texture shader operations
 require additional state. All per-texture shader stage state
 is specified using the TexEnv commands with the target specified
 as TEXTURE_SHADER_NV. The per-texture shader state is replicated
 per texture unit so the texture unit selected by ActiveTextureARB
 determines which texture unit's environment is modified by TexEnv
 calls."

 3rd paragraph (add fourteen new texture shader operations):

 "When TexEnv is called with the target of TEXTURE_SHADER_NV,
 SHADER_OPERATION_NV may be set to one of NONE, TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, PASS_THROUGH_NV,
 CULL_FRAGMENT_NV, OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV,
 OFFSET_PROJECTIVE_TEXTURE_2D_NV,
 OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV,
 OFFSET_HILO_TEXTURE_2D_NV, OFFSET_HILO_TEXTURE_RECTANGLE_NV,
 OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV,
 OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV,
 DEPENDENT_HILO_TEXTURE_2D_NV, DEPENDENT_RGB_TEXTURE_3D_NV,

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1756

 DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_PASS_THROUGH_NV,
 DOT_PRODUCT_TEXTURE_1D_NV, or DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV.
 The semantics of each of these shader operations is described
 in section 3.8.13.1. Not every operation is supported in every
 texture unit. The restrictions for how these shader operations
 can be configured in various texture units are described in section
 3.8.13.2."

 5th paragraph (add FORCE_BLUE_TO_ONE_NV):

 "When TexEnv is called with the target of TEXTURE_SHADER_NV,
 RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV may be set to one of
 UNSIGNED_IDENTITY_NV, EXPAND_NORMAL_NV, or FORCE_BLUE_TO_ONE_NV.
 This RGBA unsigned dot product mapping mode is used by the
 DOT_PRODUCT_NV operation (see section 3.8.13.1.14) and other
 operations that compute dot products."

 3.8.13.1 Texture Shader Operations

 Amend tables 3.A, 3.B, 3.C, and 3.D in the NV_texture_shader
 specification to include these new entries:

 Table 3.A:

texture shader
texture shader operation i previ ous texture input texture shader operation i-1 operation i-2 texture shader operation i+1
== ===== ==================== ============================= == ================ ============================= ===
OFFSET_PROJECTIVE_TEXTURE_2D_NV base internal texture - - -
 form at must be one of
 DSDT _NV, DSDT_MAG_NV, or
 DSDT _MAG_INTENSITY_NV
OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV base internal texture - - -
 form at must be either
 DSDT _MAG_NV or
 DSDT _MAG_INTENSITY_NV
OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV base internal texture - - -
 form at must be one of
 DSDT _NV, DSDT_MAG_NV, or
 DSDT _MAG_INTENSITY_NV
OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV base internal texture - - -
 form at must be either
 DSDT _MAG_NV or
 DSDT _MAG_INTENSITY_NV
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---
OFFSET_HILO_TEXTURE_2D_NV base internal texture - - -
 form at must be HILO
OFFSET_HILO_TEXTURE_RECTANGLE_NV base internal texture - - -
 form at must be HILO
OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV base internal texture - - -
 form at must be HILO
OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV base internal texture - - -
 form at must be HILO
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---
DEPENDENT_HILO_TEXTURE_2D_NV base internal texture - - -
 form at must be HILO
DEPENDENT_RGB_TEXTURE_3D_NV shade r result type must - - -
 all be unsigned RGBA
DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV shade r result type must - - -
 all be RGB or RGBA
 (sig ned RGB components
 are allowed)
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---
DOT_PRODUCT_PASS_THROUGH_NV shade r result type must - - -
 be o ne of signed HILO,
 unsi gned HILO, all
 sign ed RGBA, or all
 unsi gned RGBA
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---
DOT_PRODUCT_TEXTURE_1D_NV shade r result type must - - -
 be o ne of signed HILO,
 unsi gned HILO, all
 sign ed RGBA, or all
 unsi gned RGBA
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---
DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV shade r result type must - - -
 be o ne of signed HILO,
 unsi gned HILO, all
 sign ed RGBA, or all
 unsi gned RGBA
-- ----- -------------------- ----------------------------- -- ---------------- ----------------------------- ---

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1757

 Table 3.B:

texture shader operation i texture unit i
== =======================================
OFFSET_PROJECTIVE_TEXTURE_2D_NV 2D target must be consistent
OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV 2D target must be consistent
 and 2D texture target type must
 be unsigned RGBA
OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV rectangle target must be consistent
OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV rectangle target must be consistent
 and rectangle texture target type must
 be unsigned RGBA
-- ---------------------------------------
OFFSET_HILO_TEXTURE_2D_NV 2D target must be consistent
OFFSET_HILO_TEXTURE_RECTANGLE_NV rectangle target must be consistent
OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV 2D target must be consistent
OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV rectangle target must be consistent
-- ---------------------------------------
DEPENDENT_HILO_TEXTURE_2D_NV 2D target must be consistent
DEPENDENT_RGB_TEXTURE_3D_NV 3D target must be consistent
DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV cube map target must be consistent
-- ---------------------------------------
DOT_PRODUCT_PASS_THROUGH_NV -
-- ---------------------------------------
DOT_PRODUCT_TEXTURE_1D_NV 1D target must be consistent
-- ---------------------------------------
DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV -
-- ---------------------------------------

 Table 3.C:

 uses uses uses uses u ses offset uses
 texture stage stage stage previous uses o ffset texture const
 coordinate te xture result result result texture cull t exture 2D scale eye
texture shader operation i set usage ta rget i-1 i-2 i+1 input modes 2 D matrix and bias vector
=================================== ========== == ======= ====== ====== ====== ======== ===== = ======== ======== ======
OFFSET_PROJECTIVE_TEXTURE_2D_NV s,t,q 2D - - - - - y - -
OFFSET_PROJECTIVE_- s,t,q 2D - - - - - y y -
 TEXTURE_2D_SCALE_NV
OFFSET_PROJECTIVE_- s,t,q re ctangle - - - - - y - -
 TEXTURE_RECTANGLE_NV
OFFSET_PROJECTIVE_- s,t,q re ctangle - - - - - y y -
 TEXTURE_RECTANGLE_SCALE_NV
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------
OFFSET_HILO_TEXTURE_2D_NV s,t 2D - - - - - y - -
OFFSET_HILO_TEXTURE_RECTANGLE_NV s,t re ctangle - - - - - y - -
OFFSET_PROJECTIVE_- s,t,q 2D - - - - - y - -
 HILO_TEXTURE_2D_NV
OFFSET_PROJECTIVE_- s,t,q re ctangle - - - - - y - -
 HILO_TEXTURE_RECTANGLE_NV
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------
DEPENDENT_HILO_TEXTURE_2D_NV - 2D - - - y - - - -
DEPENDENT_RGB_TEXTURE_3D_NV - 3D - - - y - - - -
DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV - cu be map - - - y - - - -
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------
DOT_PRODUCT_PASS_THROUGH_NV s,t,r - - - - y - - - -
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------
DOT_PRODUCT_TEXTURE_1D_NV s,t,r 1D - - - y - - - -
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------
DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV s,t,r - - - - y - - - -
----------------------------------- ---------- -- ------- ------ ------ ------ -------- ----- - -------- -------- ------

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1758

 Table 3.D:

texture shader operation i shader stage res ult type shader stage result texture unit RGBA color result
================================= ================ ============= =================================== ======================================
OFFSET_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
OFFSET_TEXTURE_2D_SCALE_NV unsigned RGBA filtered 2D target texel scaled filtered 2D target texel
OFFSET_TEXTURE_RECTANGLE_NV matches rectangl e target type filtered rectangle target texel if rectangle target texture type is
 RGBA, filtered rectangle target
 texel, else (0,0,0,0)
OFFSET_TEXTURE_RECTANGLE_SCALE_NV unsigned RGBA filtered rectangle target texel scaled filtered rectangle target texel
OFFSET_PROJECTIVE_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
OFFSET_PROJECTIVE_- unsigned RGBA filtered 2D target texel scaled filtered 2D target texel
 TEXTURE_2D_SCALE_NV
OFFSET_PROJECTIVE_- matches rectangl e target type filtered rectangle target texel if rectangle target texture type is
 TEXTURE_RECTANGLE_NV RGBA, filtered rectangle target
 texel, else (0,0,0,0)
OFFSET_PROJECTIVE_- unsigned RGBA filtered rectangle target texel scaled filtered rectangle target texel
 TEXTURE_RECTANGLE_SCALE_NV
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DEPENDENT_HILO_TEXTURE_2D_NV matches 2D targe t type filtered 2D target texel if 2D target texture type is RGBA,
 filtered 2D target texel,
 else (0,0,0,0)
DEPENDENT_RGB_TEXTURE_3D_NV matches 3D targe t type filtered 3D target texel if 3D target texture type is RGBA,
 filtered 3D target texel,
 else (0,0,0,0)
DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV matches cube map target type filtered cube map target texel if cube map target texture type is
 RGBA, filtered cube map target
 texel, else (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_PASS_THROUGH_NV unsigned RGBA (max(0,min(1,[s,t,r]dot[a,b,c])), (max(0,min(1,[s,t,r]dot[a,b,c])),
 max(0,min(1,[s,t,r]dot[a,b,c])), max(0,min(1,[s,t,r]dot[a,b,c])),
 max(0,min(1,[s,t,r]dot[a,b,c])), max(0,min(1,[s,t,r]dot[a,b,c])),
 max(0,min(1,[s,t,r]dot[a,b,c]))) max(0,min(1,[s,t,r]dot[a,b,c])))
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_TEXTURE_1D_NV matches 1D targe t type filtered 1D target texel if 1D target texture type is RGBA,
 filtered 1D target texel,
 else (0,0,0,0)
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------
DOT_PRODUCT_- unsigned RGBA invalid (0,0,0,0)
 AFFINE_DEPTH_REPLACE_NV
--------------------------------- ---------------- ------------- ----------------------------------- --------------------------------------

 3.8.13.1.14 Dot Product

 Add this description of FORCE_BLUE_TO_ONE_NV after the description
 of EXPAND_NORMAL_NV:

 "When the RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV is
 FORCE_BLUE_TO_ONE_NV, then the floating-point result for unsigned
 RGBA components is computed by

 result = s * Rprev + t * Gprev + r

 where Rprev and Gprev are the (unsigned) red and green components
 respectively of the previous texture unit's RGBA texture shader
 result (the previous blue component can be assumed forced to 1.0
 for the purposes of the dot product computation)."

 3.8.13.1.21 Dot Product Depth Replace

 Amend the paragraph meant to avoid multiple depth replaces to read:

 "If any previous texture shader stage operation is
 DOT_PRODUCT_DEPTH_REPLACE_NV or DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV
 and that previous stage is consistent, then this texture shader
 stage is not consistent. (This eliminates the potential for two
 stages to each be performing a depth replace operation.)"

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1759

 Add the following new sections specifying new texture shader
 operations:

 Add the following new texture shader operation descriptions:

 "3.8.13.1.24 Offset Projective Texture 2D

 The OFFSET_PROJECTIVE_TEXTURE_2D_NV shader operation operates
 identically to the OFFSET_TEXTURE_2D_NV shader operation except
 that the perturbed texture coordinates s' and t' are computed with
 floating-point math as follows:

 s' = s/q + a1 * DSprev + a3 * DTprev
 t' = t/q + a2 * DSprev + a4 * DTprev

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.25 Offset Projective Texture 2D Scale

 The OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV shader operation operates
 identically to the OFFSET_TEXTURE_2D_SCALE_NV shader operation except
 that the perturbed texture coordinates s' and t' are computed with
 floating-point math as follows:

 s' = s/q + a1 * DSprev + a3 * DTprev
 t' = t/q + a2 * DSprev + a4 * DTprev

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.26 Offset Projective Texture Rectangle

 The OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV shader operation
 operates identically to the OFFSET_TEXTURE_RECTANGLE_NV shader
 operation except that the perturbed texture coordinates s' and t'
 are computed with floating-point math as follows:

 s' = s/q + a1 * DSprev + a3 * DTprev
 t' = t/q + a2 * DSprev + a4 * DTprev

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.27 Offset Projective Texture Rectangle Scale

 The OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV shader operation
 operates identically to the OFFSET_TEXTURE_RECTANGLE_SCALE_NV shader
 operation except that the perturbed texture coordinates s' and t'
 are computed with floating-point math as follows:

 s' = s/q + a1 * DSprev + a3 * DTprev
 t' = t/q + a2 * DSprev + a4 * DTprev

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.28 Offset HILO Texture 2D

 The OFFSET_HILO_TEXTURE_2D_NV texture shader operation uses the
 transformed result of a previous texture shader stage to perturb
 the current texture shader stage's (s,t) texture coordinates
 (without a projective division by q). The resulting perturbed

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1760

 texture coordinates (s',t') are used to access the texture unit's 2D
 texture object (as described in sections 3.8.4, 3.8.5, and 3.8.6).

 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the accessed texture.

 The perturbed texture coordinates s' and t' are computed with
 floating-point math as follows:

 s' = s + a1 * HIprev + a3 * LOprev
 t' = t + a2 * HIprev + a4 * LOprev

 where a1, a2, a3, and a4 are the texture shader stage's
 OFFSET_TEXTURE_MATRIX_NV values, and HIprev and LOprev are the
 (signed) HI and LO components of a previous texture shader unit's
 texture shader result specified by the current texture shader
 stage's PREVIOUS_TEXTURE_INPUT_NV value.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input texture object specified by the
 current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 has a base internalformat that is not HILO with signed components,
 then this texture shader stage is not consistent.

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 3.8.13.1.29 Offset HILO Texture Rectangle

 The OFFSET_HILO_TEXTURE_RECTANGLE_NV shader operation operates
 identically to the OFFSET_HILO_TEXTURE_2D_NV shader operation except
 that the rectangle texture target is accessed rather than the 2D
 texture target.

 If the texture unit's rectangle texture object (rather than the 2D
 texture object) is not consistent, then this texture shader stage
 is not consistent.

 3.8.13.1.30 Offset Projective HILO Texture 2D

 The OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV shader operation operates
 identically to the OFFSET_HILO_TEXTURE_2D_NV shader operation except
 that the perturbed texture coordinates s' and t' are computed with
 floating-point math as follows:

 s' = s/q + a1 * HIprev + a3 * LOprev
 t' = t/q + a2 * HIprev + a4 * LOprev

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1761

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.31 Offset Projective HILO Texture Rectangle

 The OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV shader operation
 operates identically to the OFFSET_HILO_TEXTURE_RECTANGLE_NV shader
 operation except that the perturbed texture coordinates s' and t'
 are computed with floating-point math as follows:

 s' = s/q + a1 * HIprev + a3 * LOprev
 t' = t/q + a2 * HIprev + a4 * LOprev

 Note the division of s and t by the current texture shader stage's
 q texture coordinate.

 3.8.13.1.32 Dependent HILO Texture 2D

 The DEPENDENT_HILO_TEXTURE_2D_NV texture shader operation accesses
 the texture unit's 2D texture object (as described in section
 3.8.4, 3.8.5, and 3.8.6) using (HIprev, LOprev) for the 2D texture
 coordinates where HIprev and LOprev are the are the hi and lo
 components of a previous texture input's unsigned HILO texture
 shader result specified by the current texture shader stage's
 PREVIOUS_TEXTURE_INPUT_NV value. The result of the texture access
 becomes both the shader result and texture unit RGBA result (see
 table 3.E). The type of the shader result depends on the format
 type of the accessed texture.

 If the texture unit's 2D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input's texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 has a texture shader result type other than HILO with unsigned
 components, then this texture shader stage is not consistent.

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 3.8.13.1.33 Dependent Texture 3D

 The DEPENDENT_RGB_TEXTURE_3D_NV texture shader operation accesses
 the texture unit's 3D texture object (as described in section
 3.8.4, 3.8.5, and 3.8.6) using (Rprev, Gprev, Bprev) for the 3D
 texture coordinates where Rprev, Gprev, and Bprev are the are the
 red, green, and blue components of a previous texture input's RGBA
 texture shader result specified by the current texture shader stage's
 PREVIOUS_TEXTURE_INPUT_NV value. The result of the texture access
 becomes both the shader result and texture unit RGBA result (see

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1762

 table 3.E). The type of the shader result depends on the format
 type of the accessed texture.

 If the texture unit's 3D texture object is not consistent, then
 this texture shader stage is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
 value has a texture shader result type other than RGBA (the
 DSDT_MAG_INTENSITY_NV base internal format does not count as an
 RGBA format type in this context), then this texture shader stage
 is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
 value has a texture shader result type of RGBA but any of the
 RGBA components are signed, then this texture shader stage is not
 consistent.

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 3.8.13.1.34 Dependent Texture Cube Map

 The DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV texture shader operation
 accesses the texture unit's cube map texture object (as described
 in section 3.8.4, 3.8.5, and 3.8.6) using (s',t',r').

 When the RGB components of the previous texture input's RGBA texture
 shader result are all unsigned, s', t', and r' are computed as:

 s' = 2*(Rprev - 0.5)
 t' = 2*(Gprev - 0.5)
 r' = 2*(Bprev - 0.5)

 When the RGB components of the previous texture input's RGBA texture
 shader result are all signed, s', t', and r' are computed as:

 s' = Rprev
 t' = Gprev
 r' = Bprev

 where Rprev, Gprev, and Bprev are the are the red, green,
 and blue components of a previous texture input's RGBA texture
 shader result specified by the current texture shader stage's
 PREVIOUS_TEXTURE_INPUT_NV value. The result of the texture access
 becomes both the shader result and texture unit RGBA result (see
 table 3.E). The type of the shader result depends on the format
 type of the accessed texture.

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1763

 If the texture unit's cube map texture object is not consistent,
 then this texture shader stage is not consistent.

 If the previous texture input's texture shader result specified
 by the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV
 value has a texture shader result type other than RGBA (the
 DSDT_MAG_INTENSITY_NV base internal format does not count as an
 RGBA format type in this context), then this texture shader stage
 is not consistent.

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 3.8.13.1.35 Dot Product Pass Through

 The DOT_PRODUCT_PASS_THROUGH_NV texture shader operation converts a
 dot product result dotC into an RGBA color result (x,x,x,x) where
 x is dotC clamped to [0,1]. The texture shader result and texture
 unit RGBA result of this operation are both
 assigned the clamped RGBA color result.

 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of the DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.14.

 This operation in no way depends on any of the texture unit's
 texture objects.

 3.8.13.1.36 Dot Product Texture 1D

 The DOT_PRODUCT_TEXTURE_1D_NV texture shader operation accesses the
 texture unit's 1D texture object (as described in sections 3.8.4,
 3.8.5, and 3.8.6) using dotC for the 1D texture coordinate.
 The result of the texture access becomes both the shader result and
 texture unit RGBA result (see table 3.E). The type of the shader
 result depends on the format type of the accessed texture.

 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of the DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.14.

 If the previous texture input texture object specified by the
 current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
 a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is not consistent.

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1764

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If the texture unit's 1D texture object is not consistent, then
 this texture shader stage is not consistent.

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 3.8.13.1.37 Dot Product Affine Depth Replace

 The DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV texture shader operation
 replaces the incoming fragments depth (in window coordinates, after
 polygon offset and before conversion to fixed-point, i.e. in the
 [0,1] range) with a new depth value. The new depth is computed
 as follows:

 depth = dotC

 dotC is the floating-point dot product result from the current
 texture shader stage. dotC is computed in the identical manner
 used to compute the floating-point result of the DOT_PRODUCT_NV
 texture shader described in section 3.8.13.1.14. Note that there
 is no divide to project the depth value as is the case with the
 projective DOT_PRODUCT_DEPTH_REPLACE_NV operation.

 If the new depth value is outside of the range of the near and far
 depth range values, the fragment is rejected.

 The texture unit RGBA result generated is always (0,0,0,0).
 The texture shader result is invalid.

 If the previous texture input texture object specified by the
 current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value has
 a format type other than RGBA or HILO (the DSDT_MAG_INTENSITY_NV
 base internal format does not count as an RGBA format type in this
 context), then this texture shader stage is not consistent.

 If the previous texture input texture shader operation specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is DOT_PRODUCT_NV, then this texture shader stage is not consistent.

 If the previous texture input texture shader result specified by
 the current texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value
 is invalid, then this texture shader stage is not consistent.

 If the previous texture input shader stage specified by the current
 texture shader stage's PREVIOUS_TEXTURE_INPUT_NV value is not
 consistent, then this texture shader stage is not consistent.

 If any previous texture shader stage operation is
 DOT_PRODUCT_DEPTH_REPLACE_NV or DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV
 and that previous stage is consistent, then this texture shader

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1765

 stage is not consistent. (This eliminates the potential for two
 stages to each be performing a depth replace operation.)

 If this texture shader stage is not consistent, it operates as if
 it is the NONE operation.

 This operation in no way depends on any of the texture unit's
 texture objects."

 3.8.13.2 Texture Shader Restrictions

 Amend the first two paragraphs in this section to include the new
 texture shader operations:

 "There are various restrictions on possible texture shader
 configurations. These restrictions are described in this section.

 The error INVALID_OPERATION occurs if the SHADER_OPERATION_NV
 parameter for texture unit 0 is assigned one of
 OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV,
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV,
 OFFSET_PROJECTIVE_TEXTURE_2D, OFFSET_PROJECTIVE_TEXTURE_2D_SCALE,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE, OFFSET_HILO_TEXTURE_2D,
 OFFSET_HILO_TEXTURE_RECTANGLE, OFFSET_HILO_PROJECTIVE_TEXTURE_2D,
 OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE, DEPENDENT_HILO_TEXTURE_2D,
 DEPENDENT_RGB_TEXTURE_3D, DEPENDENT_RGB_TEXTURE_CUBE_MAP,
 DOT_PRODUCT_PASS_THROUGH, DOT_PRODUCT_TEXTURE_1D, or
 DOT_PRODUCT_AFFINE_DEPTH_REPLACE. Each of these texture shaders
 requires a previous texture shader result that is not possible for
 texture unit 0. Therefore these shaders are disallowed for texture
 unit 0."

 3.8.13.3 Required State

 Amend the first paragraph in this section to account for the 9 new
 texture shader operations and the new "dot product third component"
 state:

 "The state required for texture shaders consists of a single bit to
 indicate whether or not texture shaders are enabled, a vector of
 three floating-point values for the constant eye vector, and n sets
 of per-texture unit state where n is the implementation-dependent
 number of supported texture units. The set of per-texture unit
 texture shader state consists of the thirty-seven-valued integer
 indicating the texture shader operation, four two-valued integers
 indicating the cull modes, an integer indicating the previous texture
 unit input, a two-valued integer indicating the RGBA unsigned dot
 product mapping mode, a 2x2 floating-point matrix indicating the
 texture offset transform, a floating-point value indicating the
 texture offset scale, a floating-point value indicating the texture
 offset bias, and a bit to indicate whether or not the texture shader
 stage is consistent."

NV_texture_shader3 NVIDIA OpenGL Extension Specifications

 1766

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on other specifications

 Same as the NV_texture_shader extension.

Errors

 INVALID_OPERATION is generated when TexImage1D, TexImage2D,
 or TexImage3D are called and the format is HILO_NV and the
 internalformat is not one of HILO_NV, HILO8_NV, HILO16_NV,
 SIGNED_HILO_NV, SIGNED_HILO8_NV, SIGNED_HILO16_NV; or if
 the internalformat is one of HILO_NV, HILO8_NV, HILO16_NV,
 SIGNED_HILO_NV, SIGNED_HILO8_NV or SIGNED_HILO16_NV and the format
 is not HILO_NV.

 INVALID_OPERATION is generated when CopyTexImage2D, CopyTexImage1D,
 CopyTexSubImage3D, CopyTexSubImage2D, or CopyTexSubImage1D is called
 and the internal format of the texture array to which the pixels are
 to be copied is one of HILO_NV, HILO8_NV, HILO16_NV, SIGNED_HILO_NV,
 SIGNED_HILO8_NV, SIGNED_HILO16_NV, DSDT_NV, DSDT8_NV, DSDT_MAG_NV,
 DSDT8_MAG8_NV, DSDT_MAG_INTENSITY_NV, or DSDT8_MAG8_INTENSITY8_NV.

 INVALID_OPERATION is generated when TexEnv is called and the
 SHADER_OPERATION_NV parameter for texture unit 0 is assigned
 one of OFFSET_TEXTURE_2D_NV, OFFSET_TEXTURE_2D_SCALE_NV,
 OFFSET_TEXTURE_RECTANGLE_NV, OFFSET_TEXTURE_RECTANGLE_SCALE_NV,
 DEPENDENT_AR_TEXTURE_2D_NV, DEPENDENT_GB_TEXTURE_2D_NV,
 DOT_PRODUCT_NV, DOT_PRODUCT_DEPTH_REPLACE_NV,
 DOT_PRODUCT_TEXTURE_2D_NV, DOT_PRODUCT_TEXTURE_RECTANGLE_NV,
 DOT_PRODUCT_TEXTURE_3D_NV, DOT_PRODUCT_TEXTURE_CUBE_MAP_NV,
 DOT_PRODUCT_DIFFUSE_CUBE_MAP_NV, DOT_PRODUCT_REFLECT_CUBE_MAP_NV.
 DOT_PRODUCT_CONST_EYE_REFLECT_CUBE_MAP_NV,
 OFFSET_PROJECTIVE_TEXTURE_2D_NV,
 OFFSET_PROJECTIVE_TEXTURE_2D_SCALE_NV,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_NV,
 OFFSET_PROJECTIVE_TEXTURE_RECTANGLE_SCALE_NV,
 OFFSET_HILO_TEXTURE_2D_NV, OFFSET_HILO_TEXTURE_RECTANGLE_NV,
 OFFSET_HILO_PROJECTIVE_TEXTURE_2D_NV,
 OFFSET_HILO_PROJECTIVE_TEXTURE_RECTANGLE_NV,
 DEPENDENT_HILO_TEXTURE_2D_NV, DEPENDENT_RGB_TEXTURE_3D_NV,
 DEPENDENT_RGB_TEXTURE_CUBE_MAP_NV, DOT_PRODUCT_PASS_THROUGH_NV,
 DOT_PRODUCT_TEXTURE_1D_NV, or DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV."

NVIDIA OpenGL Extension Specifications NV_texture_shader3

 1767

New State

UPDATE lines in Table 6.TextureShaders.

Get Value Type Get Command Initi al Value Description Sec Attri bute
----------------------- ------ ----------- ----- --------------- ------------------- ------ ----- ----
SHADER_OPERATION_NV TxZ37 GetTexEnviv NONE Texture shader 3.8.13 textu re
 operation
RGBA_UNSIGNED_- TxZ3 GetTexEnviv UNSIG NED_IDENTITY_NV Texture shader RGBA 3.8.13 textu re
 DOT_PRODUCT_MAPPING_NV dot product mapping

* SHADER_OPERATION_NV: Z21 in NV_texture_shader (and Z23 in
 NV_texture_shader2) is now Z37 with NV_texture_shader3.

* RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV: Z2 in NV_texture_shader is now
 Z3 with NV_texture_shader3.

[The "Tx" type prefix means that the state is per-texture unit.]

[The "Zn" type is an n-valued integer where n is the
 implementation-dependent number of texture units supported.]

New Implementation State

 None

Revision History

 November 15, 2001 - document that depth replace is after polygon
 offset.

 June 5, 2002 - Driver implementations before this date incorrectly
 swap the HI and LO components of GL_HILO8_NV and GL_SIGNED_HILO8_NV
 textures. Drivers after this date have fixed the problem and match
 the specified behavior.

 March 5, 2007 - Corrected some enum names.

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1768

Name

 NV_transform_feedback

Name Strings

 GL_NV_transform_feedback

Contributors

 Cliff Woolley
 Nick Carter

Contact

 Barthold Lichtenbelt (blichtenbelt 'at' nvidia. com)
 Pat Brown (pbrown 'at' nvidia.com)
 Eric Werness (ewerness 'at' nvidia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 02/04/2008
 NVIDIA Revision: 14

Number

 341

Dependencies

 OpenGL 1.5 is required.

 This extension interacts with EXT_timer_query.

 NV_vertex_program4, NV_geometry_program4 and NV _gpu_program4 affect this
 extension.

 EXT_geometry_shader4 trivially interacts with t his extension.

 This extension has an OpenGL Shading Language c omponent. As such it
 interacts with ARB_shader_objects and OpenGL 2. 0.

 This extension is written against the OpenGL 2. 0 specification.

Overview

 This extension provides a new mode to the GL, c alled transform feedback,
 which records vertex attributes of the primitiv es processed by the GL.
 The selected attributes are written into buffer objects, and can be
 written with each attribute in a separate buffe r object or with all
 attributes interleaved into a single buffer obj ect. If a geometry program
 or shader is active, the primitives recorded ar e those emitted by the
 geometry program. Otherwise, transform feedbac k captures primitives whose

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1769

 vertex are transformed by a vertex program or s hader, or by fixed-function
 vertex processing. In either case, the primiti ves captured are those
 generated prior to clipping. Transform feedbac k mode is capable of
 capturing transformed vertex data generated by fixed-function vertex
 processing, outputs from assembly vertex or geo metry programs, or varying
 variables emitted from GLSL vertex or geometry shaders.

 The vertex data recorded in transform feedback mode is stored into buffer
 objects as an array of vertex attributes. The regular representation and
 the use of buffer objects allows the recorded d ata to be processed
 directly by the GL without requiring CPU interv ention to copy data. In
 particular, transform feedback data can be used for vertex arrays (via
 vertex buffer objects), as the source for pixel data (via pixel buffer
 objects), as program constant data (via the NV_ parameter_buffer_object or
 EXT_bindable_uniform extension), or via any oth er extension that makes use
 of buffer objects.

 This extension introduces new query object supp ort to allow transform
 feedback mode to operate asynchronously. Query objects allow applications
 to determine when transform feedback results ar e complete, as well as the
 number of primitives processed and written back to buffer objects while in
 transform feedback mode. This extension also p rovides a new rasterizer
 discard enable, which allows applications to us e transform feedback to
 capture vertex attributes without rendering any thing.

New Procedures and Functions

 void BindBufferRangeNV(enum target, uint index, uint buffer,
 intptr offset, sizeiptr size)
 void BindBufferOffsetNV(enum target, uint index , uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index, uint buffer)
 void TransformFeedbackAttribsNV(sizei count, co nst int *attribs,
 enum bufferMode)
 void TransformFeedbackVaryingsNV(uint program, sizei count,
 const int *loc ations,
 enum bufferMod e)
 void BeginTransformFeedbackNV(enum primitiveMod e)
 void EndTransformFeedbackNV()

 int GetVaryingLocationNV(uint program, const ch ar *name)
 void GetActiveVaryingNV(uint program, uint inde x,
 sizei bufSize, sizei *l ength, sizei *size,
 enum *type, char *name)
 void ActiveVaryingNV(uint program, const char * name)
 void GetTransformFeedbackVaryingNV(uint program , uint index,
 int *locatio n)

 void GetIntegerIndexedvEXT(enum param, uint ind ex, int *values);
 void GetBooleanIndexedvEXT(enum param, uint ind ex, boolean *values);

 (Note: These indexed query functions are provid ed in the EXT_draw_buffers2
 extension. The boolean query is not useful for any queryable value in
 this extension, but is supported for completene ss and consistency with
 base GL typed "Get" functions.)

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1770

New Tokens

 Accepted by the <target> parameters of BindBuff er, BufferData,
 BufferSubData, MapBuffer, UnmapBuffer, GetBuffe rSubData,
 GetBufferPointerv, BindBufferRangeNV, BindBuffe rOffsetNV and
 BindBufferBaseNV:

 TRANSFORM_FEEDBACK_BUFFER_NV 0x8C8E

 Accepted by the <param> parameter of GetInteger IndexedvEXT and
 GetBooleanIndexedvEXT:

 TRANSFORM_FEEDBACK_BUFFER_START_NV 0x8C84
 TRANSFORM_FEEDBACK_BUFFER_SIZE_NV 0x8C85
 TRANSFORM_FEEDBACK_RECORD_NV 0x8C86

 Accepted by the <param> parameter of GetInteger IndexedvEXT and
 GetBooleanIndexedvEXT, and by the <pname> param eter of GetBooleanv,
 GetDoublev, GetIntegerv, and GetFloatv:

 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV 0x8C8F

 Accepted by the <bufferMode> parameter of Trans formFeedbackAttribsNV and
 TransformFeedbackVaryingsNV:

 INTERLEAVED_ATTRIBS_NV 0x8C8C
 SEPARATE_ATTRIBS_NV 0x8C8D

 Accepted by the <target> parameter of BeginQuer y, EndQuery, and
 GetQueryiv:

 PRIMITIVES_GENERATED_NV 0x8C87
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV 0x8C88

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 RASTERIZER_DISCARD_NV 0x8C89

 Accepted by the <pname> parameter of GetBoolean v, GetDoublev, GetIntegerv,
 and GetFloatv:

 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV 0x8C8A
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV 0x8C8B
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV 0x8C80
 TRANSFORM_FEEDBACK_ATTRIBS_NV 0x8C7E

 Accepted by the <pname> parameter of GetProgram iv:

 ACTIVE_VARYINGS_NV 0x8C81
 ACTIVE_VARYING_MAX_LENGTH_NV 0x8C82
 TRANSFORM_FEEDBACK_VARYINGS_NV 0x8C83

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1771

 Accepted by the <pname> parameter of GetBooleanv , GetDoublev, GetIntegerv,
 GetFloatv, and GetProgramiv:

 TRANSFORM_FEEDBACK_BUFFER_MODE_NV 0x8C7F

 Accepted by the <attribs> parameter of Transform FeedbackAttribsNV:

 BACK_PRIMARY_COLOR_NV 0x8C77
 BACK_SECONDARY_COLOR_NV 0x8C78
 TEXTURE_COORD_NV 0x8C79
 CLIP_DISTANCE_NV 0x8C7A
 VERTEX_ID_NV 0x8C7B
 PRIMITIVE_ID_NV 0x8C7C
 GENERIC_ATTRIB_NV 0x8C7D
 POINT_SIZE 0x0B11
 FOG_COORDINATE 0x8451
 SECONDARY_COLOR_NV 0x852D
 PRIMARY_COLOR 0x8577
 POSITION 0x1203
 LAYER_NV 0x8DAA

 (note: POINT_SIZE, FOG_COORDINATE, PRIMARY_C OLOR, and POSITION are
 defined in the core OpenGL specification; SE CONDARY_COLOR_NV is defined
 in NV_register_combiners.)

 Returned by the <type> parameter of GetActiveVa ryingNV:

 UNSIGNED_INT_VEC2_EXT 0x8DC6
 UNSIGNED_INT_VEC3_EXT 0x8DC7
 UNSIGNED_INT_VEC4_EXT 0x8DC8

 (note: All three of these are defined in the EXT_gpu_shader4
 extension.)

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL
Operation)

 Insert three new sections between Sections 2.11 , Coordinate Transforms and
 2.12, Clipping:

 (Move the "Asynchronous Queries" language out o f Section 4.1.7)

 Section 2.X, Asynchronous Queries

 Asynchronous queries provide a mechanism to ret urn information about the
 processing of a sequence of GL commands. There are two query types
 supported by the GL. Transform feedback querie s (section 2.Y) returns
 information on the number of vertices and primi tives processed by the GL
 and written to one or more buffer objects. Occ lusion queries (section
 4.1.7.1) count the number of fragments or sampl es that pass the depth
 test.

 The results of asynchronous queries are not ret urned by the GL immediately
 after the completion of the last command in the set; subsequent commands
 can be processed while the query results are no t complete. When
 available, the query results are stored in an a ssociated query object.
 The commands described in section 6.1.12 provid e mechanisms to determine

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1772

 when query results are available and return the actual results of the
 query. The name space for query objects is the unsigned integers, with
 zero reserved by the GL.

 Each type of query supported by the GL has an a ctive query object name. If
 the active query object name for a query type i s non-zero, the GL is
 currently tracking the information correspondin g to that query type and
 the query results will be written into the corr esponding query object. If
 the active query object for a query type name i s zero, no such information
 is being tracked.

 A query object is created by calling

 void BeginQuery(enum target, uint id);

 with an unused name <id>. <target> indicates t he type of query to be
 performed; valid values of <target> are defined in subsequent
 sections. When a query object is created, the n ame <id> is marked as used
 and associated with a new query object.

 BeginQuery sets the active query object name fo r the query type given by
 <target> to <id>. If BeginQuery is called with an <id> of zero, if the
 active query object name for <target> is non-ze ro, or if <id> is the
 active query object name for any query type, th e error INVALID OPERATION
 is generated.

 The command

 void EndQuery(enum target);

 marks the end of the sequence of commands to be tracked for the query type
 given by <target>. The active query object for <target> is updated to
 indicate that query results are not available, and the active query object
 name for <target> is reset to zero. When the c ommands issued prior to
 EndQuery have completed and a final query resul t is available, the query
 object, active when EndQuery is, called is upda ted by the GL. The query
 object is updated to indicate that the query re sults are available and to
 contain the query result. If the active query object name for <target> is
 zero when EndQuery is called, the error INVALID _OPERATION is generated.

 The command

 void GenQueries(sizei n, uint *ids);

 returns <n> previously unused query object name s in <ids>. These names are
 marked as used, but no object is associated wit h them until the first time
 they are used by BeginQuery.

 Query objects are deleted by calling

 void DeleteQueries(sizei n, const uint *ids);

 <ids> contains <n> names of query objects to be deleted. After a query
 object is deleted, its name is again unused. U nused names in <ids> are
 silently ignored.

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1773

 Calling either GenQueries or DeleteQueries whil e any query of any target
 is active causes an INVALID_OPERATION error to be generated.

 Query objects contain two pieces of state: a s ingle bit indicating
 whether a query result is available, and an int eger containing the query
 result value. The number of bits used to repre sent the query result is
 implementation-dependent. In the initial state of a query object, the
 result is available and its value is zero.

 The necessary state for each query type is an u nsigned integer holding the
 active query object name (zero if no query obje ct is active), and any
 state necessary to keep the current results of an asynchronous query in
 progress.

 Section 2.Y, Transform Feedback

 In 'transform feedback' mode the vertices of tr ansformed primitives are
 written out to one or more buffer objects. The vertices are fed back after
 the geometry shader stage, if it exists, or oth erwise after vertex
 processing right before clipping (section 2.12) but after color
 clamping. Optionally the transformed vertices c an be discarded after being
 stored into one or more buffer objects, or they can be passed on down to
 the clipping stage for further processing.

 Transform feedback is started and finished by c alling

 void BeginTransformFeedbackNV(enum primitiveM ode)

 and

 void EndTransformFeedbackNV(),

 respectively. Transform feedback is said to be active after a call to
 BeginTransformFeedbackNV and inactive after a c all to
 EndTransformFeedbackNV. Transform feedback is i nitially inactive.
 Transform feedback is performed after color cla mping, but immediately
 before clipping in the OpenGL pipeline. <primit iveMode> is one of
 TRIANGLES, LINES, or POINTS, and specifies the output type of primitives
 that will be recorded into the buffer objects b ound for transform feedback
 (see below). <primitiveMode> places a restricti on on the primitive types
 that may be rendered during an instance of tran sform feedback. See table
 X.1.

 Transform Feedback
 primitiveMode allowed render pr imitive modes
 ---------------------- ----------------- ----------------
 POINTS POINTS
 LINES LINES, LINE_LOOP , and LINE_STRIP
 TRIANGLES TRIANGLES, TRIAN GLE_STRIP,
 TRIANGLE_FAN, QU ADS, QUAD_STRIP,
 and POLYGON

 Table X.1 Legal combinations between the transform feedback primitive
 mode, as passed to BeginTransformFeedbackNV and the current primitive
 mode.

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1774

 If a geometry program or geometry shader is act ive, the output primitive
 type of the currently active program is used as the render primitive in
 table X.1, otherwise the Begin mode is used.

 Quads and polygons will be tessellated and reco rded as triangles (the
 order of tessellation within a primitive is und efined); primitives
 specified in strips or fans will be assembled a nd recorded as individual
 primitives. Incomplete primitives are not recor ded. Begin or any operation
 that implicitly calls Begin (such as DrawElemen ts) will generate
 INVALID_OPERATION if the begin mode is not an a llowed begin mode for the
 current transform feedback buffer state. If a g eometry program or geometry
 shader is active, its output primtive mode is u sed for the error check
 instead of the begin mode.

 It is an invalid operation error to call BeginT ransformFeedbackNV,
 TransformFeedbackBufferNV, TransformFeedbackVar yingsNV,
 TransformFeedbackAttribsNV, or UseProgram or Li nkProgram on the currently
 active program object while transform feedback is active. It is an
 invalid operation error to call EndTransformFee dbackNV while transform
 feedback is inactive.

 Transform feedback can operate in either INTERL EAVED_ATTRIBS_NV or
 SEPARATE_ATTRIBS_NV mode. In the INTERLEAVED_AT TRIBS_NV mode, several
 vertex attributes can be written, interleaved, into a single buffer
 object. In the SEPARATE_ATTRIBS_NV mode, verte x attributes are recorded,
 non-interleaved, into several buffer objects si multaneously.

 It is an INVALID_OPERATION error to call BeginT ransformFeedbackNV if there
 is no buffer object bound to index 0 (see the d escription of the
 BindBuffer* commands below) in INTERLEAVED_ATTR IBS_NV mode. It is also an
 INVALID_OPERATION error to call BeginTransformF eedbackNV if the number of
 buffer objects bound in SEPARATE_ATTRIBS_NV mod e is less than the number
 of buffer objects required, as given by the cur rent transform feedback
 state. It is also an INVALID_OPERATION error t o call
 BeginTransformFeedbackNV if no attributes are s pecified to be captured in
 either separate or interleaved mode.

 Buffer objects are made to be targets of transf orm feedback by calling one
 of

 void BindBufferRangeNV(enum target, uint inde x, uint buffer,
 intptr offset, sizeipt r size)
 void BindBufferOffsetNV(enum target, uint ind ex, uint buffer,
 intptr offset)
 void BindBufferBaseNV(enum target, uint index , uint buffer)

 where <target> is set to TRANSFORM_FEEDBACK_BUF FER_NV. Any of the three
 BindBuffer* commands perform the equivalent of BindBuffer(target,
 buffer). <buffer> specifies which buffer object to bind to the target at
 index number <index>. <index> exists for use wi th the SEPARATE_ATTRIBS_NV
 mode and must be less than the value of
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV. <offset> specifies a starting
 offset into the buffer object <buffer>. <size> specifies the number of
 elements that can be written during transform f eedback mode. This is
 useful to prevent the GL from writing past a ce rtain position in the
 buffer object. Both <offset> and <size> are in basic machine units. The
 error INVALID_VALUE is generated if the value o f <size> is less than or

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1775

 equal to zero. The error INVALID_VALUE is gene rated if <offset> or <size>
 are not word-aligned. The error INVALID_OPERATI ON is generated when any of
 the BindBuffer* commands is called while transf orm feedback is active.

 BindBufferBaseNV is equivalent to calling BindB ufferOffsetNV with an
 <offset> of 0. BindBufferOffsetNV is the equiva lent of calling
 BindBufferRangeNV with <size> = sizeof(buffer) - <offset> and rounding
 <size> down so that it is word-aligned.

 If recording the vertices of a primitive to the buffer objects being used
 for transform feedback purposes would result in either exceeding the
 limits of any buffer object's size, or in excee ding the end position
 <offset> + <size> - 1, as set by BindbufferRang eNV, then no vertices of
 the primitive are recorded, and the counter cor responding to the
 asynchronous query target TRANSFORM_FEEDBACK_PR IMITIVES_WRITTEN_NV (see
 Section 2.Z) is not incremented.

 Two methods exist to specify which transformed vertex attributes are
 streamed to one, or more, buffer objects in tra nsform feedback mode. If
 an OpenGL Shading Language vertex and/or geomet ry shader is active, then
 the state set with the TransformFeedbackVarying sNV() command determines
 which attributes to record. If neither a vertex nor geometry shader is
 active, the state set with the TransformFeedbac kAttribsNV() command
 determines which attributes to record.

 When a program object containing a vertex shade r and/or geometry shader is
 active, the set of vertex attributes recorded i n transform feedback mode
 is specified by

 void TransformFeedbackVaryingsNV(uint program , sizei count,
 const int *l ocations,
 enum bufferM ode)

 This command sets the transform feedback state for <program> and specifies
 which varying variables to record when transfor m feedback is active. The
 array <locations> contains <count> locations of active varying variables,
 as queried with GetActiveVaryingNV(), to stream to a buffer object. See
 section 2.15.3. <bufferMode> is one of INTERLEA VED_ATTRIBS_NV or
 SEPARATE_ATTRIBS_NV. The error INVALID_OPERATI ON is generated if any
 value in <locations> does not reference an acti ve varying variable, or if
 any value in <locations> appears more than once in the array. The same
 error is generated if <program> has not been li nked successfully. The
 program object's state value TRANSFORM_FEEDBACK _BUFFER_MODE_NV will be set
 to <bufferMode> and the program object's state value
 TRANSFORM_FEEDBACK_VARYINGS_NV set to <count>. These values can be queried
 with GetProgramiv (see section 6.1.14).

 In the INTERLEAVED_ATTRIBS_NV mode, varying var iables are written,
 interleaved, into one buffer object. This is th e buffer object bound to
 index 0. Varying variables are written out to t hat buffer object in the
 order that they appear in the array <locations> . The error
 INVALID_OPERATION is generated if the total num ber of components of all
 varying variables specified in the array <locat ions> is greater than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 In the SEPARATE_ATTRIBS_NV mode, varying variab les are recorded,
 non-interleaved, into several buffer objects si multaneously. The first

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1776

 varying variable in the array <locations> is wr itten to the buffer bound
 to index 0. The last varying variable is writte n to the buffer object
 bound to index <count> - 1. No more than
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV buffer objects can be written
 to simultaneously. The error INVALID_VALUE is g enerated if <count> is
 greater than that limit. Furthermore, the numbe r of components for each
 varying variable in the array <locations> canno t exceed
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV. The error INVALID_VALUE is
 generated if any varying variable in <locations > exceeds this limit.

 It is not necessary to (re-)link <program> afte r calling
 TransformFeedbackVaryingsNV(). Changes to the t ransform feedback state
 will be picked up right away after calling Tran sformFeedbackVaryingsNV().

 The value for any attribute specified to be str eamed to a buffer object
 but not actually written by a vertex or geometr y shader is undefined.

 When neither a vertex nor geometry shader is ac tive, the vertex attributes
 produced by fixed-function vertex processing or an assembly vertex or
 geometry program can be recorded in transform f eedback mode. The set of
 attributes to record is specified by

 void TransformFeedbackAttribsNV(sizei count, const int *attribs,
 enum bufferMo de)

 This command specifies which attributes to reco rd into one, or more,
 buffer objects. The value TRANSFORM_FEEDBACK_BU FFER_MODE_NV will be set
 to <bufferMode> and the value TRANSFORM_FEEDBAC K_ATTRIBS_NV set to
 <count>. The array <attribs> contains an inter leaved representation of
 the attributes desired to be fed back containin g 3*count values. For
 attrib i, the value at 3*i+0 is the enum corres ponding to the attrib, as
 given in table X.2. The value at 3*i+1 is the n umber of components of the
 provided attrib to be fed back and is between 1 and 4. The value at 3*i+2
 is the index for attribute enumerants correspon ding to more than one real
 attribute. For an attribute enumerant correspon ding to only one attribute,
 the index is ignored. For an attribute enumeran t corresponding to more
 than one attribute, the error INVALID_VALUE is generated if the index
 value is outside the allowable range for that a ttribute.

 permitted GPU_program_4
 attrib sizes index? result name
 --------------------- -------- -------- --------------
 POSITION 1,2,3,4 no position
 PRIMARY_COLOR 1,2,3,4 no color.front.primary
 SECONDARY_COLOR_NV 1,2,3,4 no color.front.secondary
 BACK_PRIMARY_COLOR_NV 1,2,3,4 no color.back.primary
 BACK_SECONDARY_COLOR_NV 1,2,3,4 no color.back.secondary
 FOG_COORDINATE 1 no fogcoord
 POINT_SIZE 1 no pointsize
 TEXTURE_COORD_NV 1,2,3,4 yes texcoord[index]
 CLIP_DISTANCE_NV 1 yes clip[index]
 VERTEX_ID_NV 1 no vertexid
 PRIMITIVE_ID_NV 1 no primid
 GENERIC_ATTRIB_NV 1,2,3,4 yes attrib[index]
 LAYER_NV 1 no layer

 Table X.2: Transform Feedback Attribute Specifiers.The 'attr ib' column

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1777

 specifies which attribute to record. The 'permi tted sizes' column
 indicates how many components of the attribute can be recorded. The
 'index' column indicates if the attribute is in dexed. The 'gpu program 4'
 column shows which result variable of a vertex or geometry program
 corresponds to the attribute to record.

 The TransformFeedbackAttribsNV() command sets t ransform feedback state
 which is used both when the GL is in fixed-func tion vertex processing
 mode, as well as when an assembly vertex and/or geometry program is
 active.

 The parameter <bufferMode> has the same meaning as described for
 TransformFeedbackVaryingsNV(). Attributes are e ither written interleaved,
 or into separate buffer objects, in the same ma nner as described earlier
 for TransformFeedbackVaryingsNV().

 In the INTERLEAVED_ATTRIBS_NV mode, the error I NVALID_VALUE is generated
 if the sum of the values of elements 3*i+1 in t he array <attribs> is
 greater than MAX_TRANSFORM_FEEDBACK_INTERLEAVED _COMPONENTS_NV.

 In the SEPARATE_ATTRIBS_NV mode, no more than
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV buffer objects can be written
 to simultaneously. The error INVALID_VALUE is g enerated if <count> is
 greater than that limit.

 The error INVALID_OPERATION is generated if any attribute appears more
 than once in the array <attribs>.

 The value for any attribute specified to be str eamed to a buffer object
 but not actually written by a vertex or geometr y program is undefined.
 The values of PRIMITIVE_ID_NV or LAYER_NV for a vertex is defined if and
 only if a geometry program is active and that p rogram writes to the result
 variables "result.primid" or "result.layer", re spectively. The value of
 VERTEX_ID_NV is only defined if and only if a v ertex program is active, no
 geometry program is active, and the vertex prog ram writes to the output
 attribute "result.id".

 Section 2.Z, Primitive Queries

 Primitive queries use query objects to track th e number of primitives
 generated by the GL and to track the number of primitives written to
 transform feedback buffers.

 When BeginQuery is called with a <target> of PR IMITIVES_GENERATED_NV, the
 primitives-generated count maintained by the GL is set to zero. When the
 generated primitive query is active, the primit ives-generated count is
 incremented every time a primitive reaches the Discarding Rasterization
 stage (see Section 3.x) right before rasterizat ion. This counter counts
 the number of primitives emitted by a geometry shader, if active, possibly
 further tessellated into separate primitives du ring the transform-feedback
 stage, if active.

 When BeginQuery is called with a <target> of
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV, the t ransform-feedback-
 primitives-written count maintained by the GL i s set to zero. When the
 transform feedback primitive written query is a ctive, the
 transform-feedback-primitives-written count is incremented every time a

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1778

 primitive is recorded into a buffer object. If transform feedback is not
 active, this counter is not incremented. If the primitive does not fit in
 the buffer object, the counter is not increment ed.

 These two queries can be used together to deter mine if all primitives have
 been written to the bound feedback buffers; if both queries are run
 simultaneously and the query results are equal, all primitives have been
 written to the buffer(s). If the number of prim itives written is less than
 the number of primitives generated, the buffer is full.

 Modify section 2.15.3 "Shader Variables", page 75.

 Change the second sentence in the first paragra ph on p. 84 as follows:

 . . . or read by a fragment shader, will count against this limit. The
 transformed vertex position (gl_Position) does not count against this
 limit.

 Add the following paragraphs on p.84:

 A varying variable is considered active if it i s determined by the linker
 that the varying will actually be used when the executable code in a
 program object is executed. The linker will mak e this determination
 regardless of the transform-feedback state set with the
 TransformFeedbackVaryingsNV() command. In cases where the linker cannot
 make a conclusive determination, the varying wi ll be considered active. It
 is possible to override this determination and force the linker to
 consider a varying variable as active by callin g ActiveVaryingNV(). This
 can be useful in transform feedback mode if the re are varying variables to
 be recorded but not otherwise needed.

 To find the location of an active varying varia ble, call

 int GetVaryingLocationNV(uint program, const char *name)

 This command will return the location of varyin g variable <name>. <name>
 is a null-terminated string without whitespace. If <name> is not the name
 of an active varying variable in <program>, -1 is returned. Locations for
 both user-defined as well as built-in varying v ariables can be queried. If
 <program> has not been successfully linked, the error INVALID_OPERATION is
 generated. After a program is linked, the locat ion will not change, unless
 the program is re- linked. A valid name cannot be any portion of a single
 vector or matrix, but can be a single element o f an array or the whole
 array. Note that varying variables cannot be s tructures.

 To determine the set of active varying variable s used by a program object,
 and their data types, use the command:

 void GetActiveVaryingNV(uint program, uint in dex,
 sizei bufSize, sizei *length, sizei *size,
 enum *type, char *nam e);

 This command provides information about the var ying selected by
 <index>. An <index> of 0 selects the first acti ve varying variable, and an
 <index> of ACTIVE_VARYINGS_NV-1 selects the las t active varying
 variable. The value of ACTIVE_VARYINGS_NV can b e queried with
 GetProgramiv (see section 6.1.14). If <index> i s greater than or equal to

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1779

 ACTIVE_VARYINGS_NV, the error INVALID_VALUE is generated. The parameter
 <program> is the name of a program object for w hich the command
 LinkProgram has been issued in the past. It is not necessary for <program>
 to have been linked successfully. The link coul d have failed because the
 number of active varying variables exceeded the limit.

 The name of the selected varying is returned as a null-terminated string
 in <name>. The actual number of characters writ ten into <name>, excluding
 the null terminator, is returned in <length>. I f <length> is NULL, no
 length is returned. The maximum number of chara cters that may be written
 into <name>, including the null terminator, is specified by <bufSize>. The
 returned varying name can be the name of a user defined varying variable
 or the name of a built- in varying (which begin with the prefix "gl_", see
 the OpenGL Shading Language specification for a complete list). The length
 of the longest varying name in program is given by
 ACTIVE_VARYING_MAX_LENGTH_NV, which can be quer ied with GetProgramiv (see
 section 6.1.14).

 For the selected varying variable, its type is returned into <type>. The
 size of the varying is returned into <size>. Th e value in <size> is in
 units of the type returned in <type>. The type returned can be any of
 FLOAT, FLOAT_VEC2, FLOAT_VEC3, FLOAT_VEC4, INT, INT_VEC2, INT_VEC3,
 INT_VEC4, UNSIGNED_INT, UNSIGNED_INT_VEC2_EXT, UNSIGNED_INT_VEC3_EXT,
 UNSIGNED_INT_VEC4_EXT, FLOAT_MAT2, FLOAT_MAT3, or FLOAT_MAT4. If an error
 occurred, the return parameters <length>, <size >, <type> and <name> will
 be unmodified. This command will return as much information about active
 varying variables as possible. If no informatio n is available, <length>
 will be set to zero and <name> will be an empty string. This situation
 could arise if GetActiveVaryingNV is issued aft er a failed link.

 To force the linker to mark a varying variable as active, call

 void ActiveVaryingNV(uint program, const char *name)

 to specify that the varying variable <name> in <program> should be marked
 as active when the program is next linked. In p articular, it does not
 modify the list of active varying variables in a program object that has
 already been linked. For any varying variable i n <program> not passed to
 ActiveVaryingNV, the linker will determine thei r active status. <name>
 must be a null-terminated string without whites pace. A valid name cannot
 be an element of an array, or any portion of a single vector or
 matrix. ActiveVaryingNV may be issued before an y shader objects are
 attached to <program>. Hence, <name> can contai n any string, including a
 name that is never used as a varying variable i n any shader object. Such
 names are ignored by the GL.

 The application is advised to force any varying variable live that it
 needs for transform feedback purposes. The set of active varying variables
 are linker dependent.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 (Add new section 3.X, Discarding Rasterization)

 Primitives can be optionally discarded before r asterization by calling
 Enable and Disable with RASTERIZER_DISCARD_NV. When enabled, primitives
 are discared right before the rasterization sta ge, but after the optional

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1780

 transform feedback stage. When disabled, primit ives are passed through to
 the rasterization stage to be processed normall y. RASTERIZER_DISCARD_NV
 applies to the DrawPixels, CopyPixels, Bitmap, Clear and Accum commands as
 well.

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 (Replace section 4.1.7, "Occlusion Queries", p. 204, with the following)

 Occlusion queries use query objects to track th e number of fragments or
 samples that pass the depth test. An occlusion query can be started and
 finished by calling BeginQuery and EndQuery, re spectively, with a <target>
 of SAMPLES_PASSED.

 When an occlusion query starts, the samples-pas sed count maintained by the
 GL is set to zero. When an occlusion query is active, the samples-passed
 count is incremented for each fragment that pas ses the depth test. If the
 value of SAMPLE BUFFERS is 0, then the samples- passed count is
 incremented by 1 for each fragment. If the valu e of SAMPLE BUFFERS is 1,
 then the samples-passed count is incremented by the number of samples
 whose coverage bit is set. However, implementat ions, at their discretion,
 may instead increase the samples-passed count b y the value of SAMPLES if
 any sample in the fragment is covered. When an occlusion query finishes
 and all fragments generated by the commands iss ued prior to EndQuery have
 been generated, the samples-passed count is wri tten to the corresponding
 query object as the query result value, and the query result for that
 object is marked as available.

 If the samples-passed count overflows, (i.e., e xceeds the value 2^n - 1,
 where n is the number of bits in the samples-pa ssed count), its value
 becomes undefined. It is recommended, but not required, that
 implementations handle this overflow case by sa turating at 2^n - 1 and
 incrementing no further.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 (Add to section 5.4, Display Lists p. 237)

 On p. 241, add the following to the list of ver tex buffer object commands
 not compiled into a display list: BindBufferRan geNV, BindBufferOffsetNV,
 BindBufferBaseNV, TransformFeedbackAttribsNV,
 TransformFeedbackVaryingsNV, and ActiveVaryingN V.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and State
Requests)

 Modify the second paragraph of section 6.1.1 (S imple Queries) p244 to read
 as follows:

 ...<data> is a pointer to a scalar or array of the indicated type in which
 to place the returned data. The commands

 void GetIntegerIndexedvEXT(enum param, uint i ndex, int *values);
 void GetBooleanIndexedvEXT(enum param, uint i ndex, boolean *values);

 are used to query indexed state. <target> is t he name of the indexed

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1781

 state and <index> is the index of the particula r element being queried.
 <data> is a pointer to a scalar or array of the indicated type in which to
 place the returned data. In addition ...

 (Replace Section 6.1.12, Occlusion Queries, p. 2 54)

 Section 6.1.12, Asynchronous Queries

 The command

 boolean IsQuery(uint id);

 returns TRUE if <id> is the name of a query obj ect. If <id> is zero, or if
 <id> is a non-zero value that is not the name o f a query object, IsQuery
 returns FALSE.

 Information about a query target can be queried with the command

 void GetQueryiv(enum target, enum pname, int *params);

 <target> identifies the query target and can be SAMPLES_PASSED for
 occlusion queries or PRIMITIVES_GENERATED_NV an d
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV for pr imitive queries.

 If <pname> is CURRENT_QUERY, the name of the cu rrently active query for
 <target>, or zero if no query is active, will b e placed in <params>.

 If <pname> is QUERY_COUNTER_BITS, the implement ation-dependent number of
 bits used to hold the query result for <target> will be placed in
 params. The number of query counter bits may be zero, in which case the
 counter contains no useful information.

 For primitive queries (PRIMITIVES_GENERATED_NV and
 TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV) if th e number of bits is
 non-zero, the minimum number of bits allowed is 32.

 For occlusion queries (SAMPLES_PASSED), if the number of bits is non-
 zero, the minimum number of bits allowed is a f unction of the
 implementation's maximum viewport dimensions (M AX_VIEWPORT_DIMS). The
 counter must be able to represent at least two overdraws for every pixel
 in the viewport. The formula to compute the all owable minimum value (where
 n is the minimum number of bits) is:

 n = min(32, ceil(log_2(maxViewportWidth *
 maxViewportHeight * 2))).

 The state of a query object can be queried with the commands

 void GetQueryObjectiv(uint id, enum pname, in t *params);
 void GetQueryObjectuiv(uint id, enum pname, u int *params);

 If <id> is not the name of a query object, or i f the query object named by
 <id> is currently active, then an INVALID_OPERA TION error is generated.

 If <pname> is QUERY_RESULT, then the query obje ct's result value is
 returned as a single integer in <params>. If t he value is so large in
 magnitude that it cannot be represented with th e requested type, then the

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1782

 nearest value representable using the requested type is returned. If the
 number of query counter bits for any <target> i s zero, then the result is
 returned as a single integer with a value of 0.

 There may be an indeterminate delay before the above query returns. If
 <pname> is QUERY_RESULT_AVAILABLE, FALSE is ret urned if such a delay would
 be required, TRUE is returned otherwise. It mus t always be true that if
 any query object returns a result available of TRUE, all queries of the
 same type issued prior to that query must also return TRUE.

 Querying the state for any given query object f orces the corresponding
 query to complete within a finite amount of tim e.

 If multiple queries are issued using the same o bject name prior to calling
 GetQueryObject[u]iv, the result and availabilit y information returned will
 always be from the last query issued. The resu lts from any queries before
 the last one will be lost if they are not retri eved before starting a new
 query on the same <target> and <id>.

 (Add to Section 6.1.13, Buffer Objects, p. 255)

 Add the following paragraph to the bottom of th is section, p. 256.

 To query which buffer objects are the target(s) when transform feedback is
 active, call GetIntegerIndexedvEXT() with <para m> set to
 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV. <index> h as to be in the range 0 to
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV - 1, otherwise the error
 INVALID_VALUE is generated. The name of the buf fer object bound to <index>
 is returned in <values>. If no buffer object is bound for <index>, zero is
 returned in <values>.

 To query the starting offset or size of the ran ge of each buffer object
 binding used for transform feedback, call GetIn tegerIndexedvEXT() with
 <param> set to TRANSFORM_FEEDBACK_BUFFER_START_ NV or
 TRANSFORM_FEEDBACK_BUFFER_SIZE_NV respectively. The error INVALID_VALUE
 is generated if <index> not in the range 0 to
 MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV - 1. If the parameter
 (starting offset or size) was not specified whe n the buffer object was
 bound, zero is returned. If no buffer object i s bound to <index>, -1 is
 returned.

 (Add a new Section 6.1.14 "Transform Feedback " and rename 6.1.14 to
 6.1.15)

 To query the attributes to stream to a buffer o bject when neither an
 OpenGL Shading Language vertex nor geometry sha der is active, call
 GetIntegerIndexedvEXT() with <param> set to
 TRANSFORM_FEEDBACK_RECORD_NV. This will return three values in <values>
 for each <index>. The first value returned is t he attribute. The second
 value the number of components of the attribute , and the third value the
 index of the attribute, if applicable. If the a ttribute is not indexed,
 the third component will return 0. The paramete r <index> has to be in the
 range 0 to TRANSFORM_FEEDBACK_ATTRIBS_NV - 1, o therwise the error
 INVALID_VALUE is generated. If no data exists f or <index> 0 is returned
 three times in <values>.

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1783

 To query the attributes to stream to a buffer o bject when a vertex and/or
 geometry shader is active, use the command
 GetTransformFeedbackVaryingNV(), as explained i n section 6.1.14.

 (add to Section 6.1.14, Shader and Program Quer ies, p. 256)

 Add the following paragraph to the bottom of pa ge 257:

 If <pname> is TRANSFORM_FEEDBACK_BUFFER_MODE_NV , the buffer mode,
 used when transform feedback is active, is retu rned. It can be one of
 SEPARATE_ATTRIBS_NV or INTERLEAVED_ATTRIBS_NV. If <pname> is
 TRANSFORM_FEEDBACK_VARINGS_NV, the number of va rying variables to stream
 to one, or more, buffer objects are returned. I f <pname> is
 ACTIVE_VARYINGS_NV, the number of active varyin g variables is
 returned. If no active varyings exist, 0 is ret urned. If <pname> is
 ACTIVE_VARYINGS_MAX_LENGTH_NV, the length of th e longest active varying
 name, including a null terminator, is returned. If no active varying
 variable exists, 0 is returned.

 The command

 void GetTransformFeedbackVaryingNV(uint progr am, uint index,
 int *locat ion)

 returns, for each <index>, the location of a va rying variable to stream to
 a buffer object in <location>. The <index> elem ent of the array
 <locations>, as passed to TransformFeedbackVary ingsNV, is
 returned. <index> has to be in the program obje ct specific range 0 to
 TRANSFORM_FEEDBACK_VARYINGS_NV - 1, otherwise t he error INVALID_VALUE is
 generated. If no location exists for <index>, - 1 is returned. If <program>
 is not the name of a program object, or if prog ram object has not been
 linked successfully, the error INVALID_OPERATIO N is generated.

Additions to Appendix A of the OpenGL 2.0 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Interactions with EXT_timer_query

 EXT_timer_query is the first extension to gener alize the BeginQuery and
 EndQuery mechanism introduced by ARB_occlusion_ query and OpenGL 1.5 to
 cover an additional query type. This extension is the second. This
 extension is written against the OpenGL 2.0 spe cification and uses most of
 the modifications in the EXT_timer_query specif ication. If
 EXT_timer_query is supported, timer queries nee d to be added as a third
 query type.

Dependencies on NV_geometry_program4 and EXT_geomet ry_shader4

 If NV_geometry_program4 is not supported, delet e the reference to the
 output primitive type in Section 2.Y. Delete t he reference to
 PRIMITIVE_ID_NV and LAYER_NV.

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1784

 If EXT_geometry_shader4 is not supported, delet e any reference to a
 geometry shader.

Dependencies on NV_vertex_program4 and NV_gpu_progr am4

 If NV_vertex_program4 is not supported, delete any reference to
 VERTEX_ID_NV. If NV_gpu_program4 is not suppor ted, table X.2 needs to
 refer to the "result" variables defined in the ARB_vertex_program
 specification instead.

Interactions with ARB_shader_objects and OpenGL 2.0

 If neither ARB_shader_objects nor OpenGL 2.0 is supported, all references
 to shader and program objects, as well as varyi ng variables, should be
 removed. This also means that functions includ ing
 TransformFeedbackVaryingsNV, GetVaryingLocation NV, GetActiveVaryingNV,
 ActiveVaryingNV, and GetTransformFeedbackVaryin gNV will not be
 supported, and enums that are relevant only in the context of shader and
 program objects will not be accepted.

Errors

 The error INVALID_OPERATION is generated by Beg inQuery if called with an
 <id> of zero, if the active query object name f or <target> is non- zero,
 or if <id> is the active query object name for any query type.

 The error INVALID_OPERATION is generated by End Query if the active query
 object name for <target> is zero.

 The error INVALID_OPERATION is generated if Beg in, or any command that
 performs an explicit Begin, is called when:

 * A geometry program or shader is not active AND the begin mode does not
 match the allowed begin modes for the curre nt transform feedback state
 as given by table X.1.

 * A geometry program or shader is active AND the output primitive type
 (of the geometry program / shader) does not match the allowed begin
 modes for the current transform feedback st ate as given by table X.1.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 there is no buffer object bound to index 0 in I NTERLEAVED_ATTRIBS_NV
 mode.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 the number of buffer objects bound in SEPARATE_ ATTRIBS_NV mode is less
 than the number of buffer objects required, as given by the current
 transform feedback state.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV if
 no attributes are specified to be captured.

 The error INVALID_OPERATION is generated by Beg inTransformFeedbackNV,
 TransformFeedbackBufferNV, TransformFeedbackVar yingsNV,
 TransformFeedbackAttribsNV, or UseProgram or Li nkProgram, called on the
 currently in use program object, while transfor m feedback is active.

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1785

 The error INVALID_OPERATION is generated by End TransformFeedbackNV while
 transform feedback is inactive.

 The error INVALID_OPERATION is generated by Bin dBufferRangeNV,
 BindBufferOffsetNV or BindBufferBaseNV if <inde x> is greater or equal
 than MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV if the value of
 <size> <= 0.

 The error INVALID_VALUE is generated by BindBuf ferRangeNV or
 BindBufferOffsetNV if <start> or <end> are not word-aligned.

 The error INVALID_OPERATION is generated when a ny of the BindBuffer*
 commands is called while transform feedback is active.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 commands if any location appears more than once in the array <locations.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 if any location in <locations> references a non -existing varying variable.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 if <program> has not been linked successfully.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackVaryingsNV
 in INTERLEAVED_ATTRIBS_NV mode if the total num ber of components of all
 varying variables specified in the array <locat ions> is greater than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackVaryingsNV or
 TransformFeedbackAttribsNV in SEPARATE_ATTRIBS_ NV mode if <count> is
 greater than MAX_TRANSFORM_FEEDBACK_SEPARATE_AT TRIBS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackVaryingsNV in
 SEPARATE_ATTRIBS_NV mode if the number of compo nents for each varying
 variable in the array <locations> is greater th an
 MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV.

 The error INVALID_VALUE is generated by Transfo rmFeedbackAttribsNV in
 INTERLEAVED_ATTRIBS_NV mode if the sum of the v alues of the components of
 the attributes in the array <attribs> is greate r than
 MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackAttribsNV if
 an enum value is specified more than once in th e array <attribs>.

 The error INVALID_OPERATION is generated by Tra nsformFeedbackAttribsNV if
 the number of components for each attribute in the array <attribs> is
 outside the range [0,4].

 The error INVALID_VALUE is generated by Transfo rmFeedbackAttribsNV if the
 index value is in the array <attribs> is outsid e the allowable range for
 an attribute enumerant corresponding to more th an one real attribute.

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1786

 The error INVALID_OPERATION is generated by Get VaryingLocationNV if
 <program> is not the name of a program object o r if <program> has not been
 linked successfully.

 The error INVALID_OPERATION is generated by Get ActiveVaryingNV or
 ActiveVaryingNV if <program> is not the name of a program object.

 The error INVALID_VALUE is generated by GetActi veVaryingNV if <index> is
 greater than or equal to ACTIVE_VARYINGS_NV.

 The error INVALID_VALUE is generated by GetInte gerIndexedvEXT() or
 GetBooleanIndexedv() with <param> set to TRANSF ORM_FEEDBACK_RECORD_NV if
 <index> is greater than or equal to TRANSFORM_F EEDBACK_ATTRIBS_NV.

 The error INVALID_VALUE is generated by GetInte gerIndexedvEXT() or
 GetBooleanIndexedvEXT() with <param> set to
 TRANSFORM_FEEDBACK_BUFFER_BINDING_NV if <index> is greater than or equal
 to MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV.

 The error INVALID_VALUE is generated by GetTran sformFeedbackVaryingsNV if
 <index> is greater than the program object spec ific value
 TRANSFORM_FEEDBACK_VARYINGS_NV - 1.

 The error INVALID_OPERATION is generated by
 GetTransformFeedbackVaryingsNV if <program> is not the name of a program
 object, or if program object has not been linke d successfully.

New State

 (Add a new table: Table 6.X, Transform Feedba ck State)

 Get Value Type Get Command I nit. Value Description Sec
Attrib
 ------------------ ------ -------------- - ----------- ------------------------- ----- -----
-
 TRANSFORM_FEEDBACK_ Z2 GetIntegerv I NTERLEAVED_ Transform feedback mode 2.Y -
 BUFFER_MODE_NV A TTRIBS_NV
 TRANSFORM_FEEDBACK_ Z2 GetIntegerv 0 Number of attributes to 2.Y -
 ATTRIBS_NV capture in transform
 feedback mode
 TRANSFORM_FEEDBACK_ Z+ GetIntegerv 0 Buffer object bound to 6.1.13 -
 BUFFER_BINDING_NV generic bind point for
 transform feedback.
 TRANSFORM_FEEDBACK_ nx3*Z+ GetInteger- 0 Name, component count, 6.1.14 -
 RECORD_NV IndexedvEXT and index of each
 attribute captured
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Buffer object bound to 6.1.13 -
 BUFFER_BINDING_NV IndexedvEXT each transform feedback
 attribute stream.
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Start offset of binding 6.1.13 -
 BUFFER_START_NV IndexedvEXT range for each transform
 feedback attrib. stream
 TRANSFORM_FEEDBACK_ nxZ+ GetInteger- 0 Size of binding range 6.1.13 -
 BUFFER_SIZE_NV IndexedvEXT for each transform
 feedback attrib. stream

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1787

 (Modify Table 6.37, p 298, updating the query ob ject state to cover
 transform feedback.)

 Get Value Type Get Command Init. Value Description Sec Attribute
 ---------------- ---- ---------------- ----- ------ ------------------------- ----- ---------
 CURRENT_QUERY 3xZ+ GetQueryiv 0 Active query object name 2.X -
 (occlusion, timer, xform
 feedback)
 QUERY_RESULT 3xZ+ GetQueryObjectiv 0 Query object result 2.X -
 (samples passed, Time
 elapsed, feedback data amount)
 QUERY_RESULT_AVAILABLE 3xZ+ GetQueryObjectiv TRUE Query object result 2.X -
 available?

 (Modify Table 6.29, p. 290, Program Object State . Add the following state.)

 Get Value Type Get Command Init. V alue Description Sec Attribute
 ---------------- ---- ------------ ------- ---- ------------------------- ----- ---------
 ACTIVE_VARYINGS_NV Z+ GetProgramiv 0 Number of active varyings 2.15.3 -
 ACTIVE_VARYING_MAX_ Z+ GetProgramiv 0 Maximum active varying 2.15.3 -
 LENGTH_NV name length
 TRANSFORM_FEEDBACK_ Z2 GetProgramiv INTERLE AVED_ Transform feedback mode 6.1.14 -
 BUFFER_MODE_NV ATTRIBS _NV for the program
 TRANSFORM_FEEDBACK_ Z+ GetProgramiv 0 Number of varyings to 6.1.14 -
 VARYINGS_NV stream to buffer object(s)
 - nxZ+ GetVarying- - Location of each active 2.15.3 -
 LocationNV varying variable
 - Z+ GetActive- - Size of each active 2.15.3 -
 VaryingNV varying variable
 - Z+ GetActive- - Type of each active 2.15.3 -
 VaryingNV varying variable
 - 0+x- GetActive- - Name of each active 2.15.3 -
 char VaryingNV varying variable
 - Z+ GetTransform- - Varying location for one 6.1.14 -
 Feedback- of the multiple varyings
 VaryingNV to capture

New Implementation Dependent State

 (Modify Table 6.34, p. 295. Update the query ob ject state to cover
 transform feedback.)

 Get Value Type Get Command Minim um Value Description Sec Attr ibute
 -------------------- ---- ----------- ----- -------- -------------------------- ------ ---- -----
 QUERY_COUNTER_BITS 2xZ+ GetQueryiv see 6 .1.12 Asynchronous query counter 6.1.12 -
 bits (occlusion, timer,
 tranform feedback queries)

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1788

 (Add a new table, Table 6.X. Transform Feedback State.)

 NOTE: In the "GetValue" columns below, MXFB sta nds for
 "MAX_TRANSFORM_FEEDBACK".

 Get Value Type Get Command Minim um Value Description Sec Attr ibute
 -------------------- ---- ----------- ----- -------- -------------------------- ------ ---- -----
 MXFB_INTERLEAVED_ Z+ GetIntegerv 64 Max number of components to 2.Y -
 COMPONENTS_NV write to a single buffer in
 interleaved mode
 MXFB_SEPARATE_ Z+ GetIntegerv 4 Max number of separate 2.Y -
 ATTRIBS_NV attributes or vayings that
 can be captured in transform
 feedback
 MXFB_SEPARATE Z+ GetIntegerv 16 Max number of components 2.Y -
 COMPONENTS_NV per attribute or varying
 in separate mode

Issues

 1. How does transform feedback differ from core GL feedback?

 * Transform feedback writes vertex data to bu ffer objects, which allows
 the data returned to be used directly by ve rtex pulling. GL feedback
 mode writes vertex data to a buffer in syst em memory.

 * Transform feedback is done after transforma tion, but prior to
 clipping. The primitives returned contain the original transformed
 vertices produced by vertex or geometry pro gram execution, and does
 not contain any primitives inserted by clip ping.

 * Transform feedback supports only a single b asic output primitive type
 (points, lines, or triangles), while core G L feedback mode supports
 all primitive types. Since only one primit ive type is supported, the
 data returned does not contain tokens descr ibing each primitive being
 fed back. Primitive tokens make the data r eturned by GL feedback mode
 irregular and unsuitable for vertex pulling .

 2. What should this extension be called?

 RESOLVED: The current name is "NV_transform_f eedback", playing off the
 fact that it is transformed primitives that a re handled and the
 similarities to GL feedback mode.

 3. What happens if you bind a buffer for transf orm feedback that is
 currently bound for other purposes? Should we somehow detect this case
 and produce an error?

 !!! NBC I feel strongly that we should follow the precedent for
 Map/Unmap. The reason that MapBuffer and Unma pBuffer are a precedent
 here is because while a buffer object is in t he mapped state, no GL
 commands are allowed to operate on the buffer object's data. So by
 analogy, while a buffer is being used for tra nsform feedback, no other
 GL commands should be allowed to operate on t he buffer object's data.
 This includes initiating any rendering which would cause the GL to
 source data from an active transform feedback buffer object.

 UNRESOLVED

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1789

 4. Should this extension include any new buffer object binding targets, or
 should it overload ARRAY_BUFFER, or should w e skip the binding target
 altogether in favor of a buffer object name accepted directly by the
 new GL commands?

 RESOLVED: There are new binding points for XF B along with a new API
 (BindBufferBase etc) to set the internal bind ing points. A new binding
 point, TRANSFORM_FEEDBACK_BUFFER_NV is also i ntroduced.

 5. Previous buffer object extensions provided a way to have existing GL
 commands reference a buffer object instead o f a user-supplied buffer.
 Should the new commands introduced here allo w referencing a
 user-supplied buffer in addition to a buffer object?

 RESOLVED: No. A program can get the contents of the feedback buffer back
 to the CPU using MapBuffer and GetBufferSubDa ta

 6. Is BeginTransformFeedback really necessary? Could the query just
 initiate the transform feedback mode?

 RESOLUTION: Using BeginTransformFeedback and EndTransformFeedback gives
 a clean place to spec all of the transform-fe edback-specific issues
 without cluttering up the query language. Als o, the queries don't have
 to be done at the same time as beginning and ending the feedback
 process.

 7. What usage enums should be provided to glBuf ferData for use in
 conjunction with transform feedback?

 RESOLVED: STREAM_COPY or STREAM_READ are expe cted to be the most common
 usages. If a buffer object is being written b y the GL through transform
 feedback, and the contents of the buffer obje ct are subsequently being
 consumed by the GL (e.g. by being used as a v ertex buffer object), then
 this is a *_COPY usage. If the buffer object is being written by the GL
 through transform feedback, but is being cons umed by the application
 (e.g. being mapped for read), this is a *_REA D usage. The temporal
 (STREAM, STATIC, or DYNAMIC) component of the usage enum is determined
 by the ratio between how often the contents o f the buffer object are
 modified and how often operations that source data from the buffer
 object occur.

 8. What should the behavior be when a buffer ob ject is the active target
 of transform feedback, and it is deleted via DeleteBuffers?

 RESOLVED: Deletion is deferred until the EndT ransformFeedback if
 transform feedback is active.

 9. Should we allow more buffers to be bound tha n are used?

 RESOLVED: Yes. The extra buffers are not in t he way and can stay bound.

 10. Should we allow feedback to buffer lists wi th holes (i.e. 0 and 2
 bound)?

 RESOLVED: No. This makes for an ugly API with the potential for bugs,
 without any real benefit. The application can as well bind all buffers

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1790

 needed to incremented indices. It is an inval id operation to not have a
 buffer bound where one is required.

 11. Why only one feedback primitive mode per fe edback invocation?

 RESOLVED: Having primitive tokens breaks up t he stream and makes it less
 amenable to being read back in as a vertex bu ffer. Also, mixing multiple
 primitive types makes the counting of primiti ves less clear for the
 application.

 12. Is RasterPos fed back?

 RESOLVED: No.

 13. Is DrawPixels/CopyPixels/Bitmap fed back?

 RESOLVED: No. Rasterization occurs as normal, but there is no
 output to the feedback buffer. This is consis tent with taking a
 tap out of the pipe before clipping.

 14. Why do we need new BindBuffer* functions?

 RESOLVED: All previous buffer object extensio ns have been retrofits of
 existing pointer-based APIs. New extensions b uilt assuming buffer
 objects don't have that history, so need a ne w API. The functionality of
 these new functions combines the functionalit y of BindBuffer, to set the
 external bind point used by calls like MapBuf fer and BufferSubData, with
 the functionality to set an internal bind poi nt like VertexAttribPointer
 does.

 15. How do the transform feedback indices, passe d to the BindBuffer*
 commands, work with multiple bindings?

 RESOLVED: The same way that they work with ve rtex arrays. There is one
 external bind point, TRANSFORM_FEEDBACK_BUFFE R_NV. There are n internal
 bind points, selected with the <index> parame ter to the BindBuffer*
 commands, where n is some implementation depe ndent limit. The
 BindBuffer* commands take the buffer passed a nd bind it to the external
 bind point, as well as to the selected intern al bind point.

 For example:

 BindBufferOffsetNV(TRANSFORM_FEEDBACK_BUFFE R_NV, 0, 1, 12);
 // XFB index 0 points at buffer 1 with offs et 12

 BindBuffer(TRANSFORM_FEEDBACK_BUFFER_NV, 2) ;
 // Buffer 2 is now bound to the external bi nd point. XFB index 0 still
 // points at buffer 1

 MapBuffer(TRANSFORM_FEEDBACK_BUFFER_NV, ...);
 // Maps buffer 2

 16. How are quads/quadstrips/polygons tesselate d into triangles?

 RESOLVED: In an implementation-dependent mann er. OpenGL doesn't define
 quads or polygons in terms of triangles, so t here is no one correct way
 to do it, and different gpus may implement th e behavior differently. A

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1791

 quad may be split into two triangles in sever al different ways, and an
 application may not rely on this behavior.

 17. How does this extension interact with displ ay lists?

 RESOLVED: Just like the VBO extension, none o f the BindBuffer* commands
 are compiled into a display list.

 18. Does polygon mode state affect the logic th at determines if the
 transform feed back primitive mode and the render mode states are
 valid at the start of transform feedback mo de?

 RESOLVED: PolygonMode has no influence on the BeginTransFormFeedback
 primitiveMode check since it is performed lat er, in raster.

 19. What to do with incomplete primitives?

 RESOLVED: If there is no room to store one or more vertices of a
 primitive in a buffer object, none of the ver tices in that primitive are
 written to the buffer. If a partial primitive enters transform feedback
 (i.e. only two vertices sent in triangles mod e), none of the vertices in
 that primitive are written to the buffer obje ct.

 20. Why does TRANSFORM_FEEDBACK_PRIMITIVES_WRIT TEN_NV have a
 TRANSFORM_FEEDBACK prefix but PRIMITIVES_GE NERATED_NV doesn't?

 RESOLVED: The number of primitives generated is independent of any
 feedback that is active. The number of primit ives that are written is
 only valid for transform feedback - another e xtension could conceivably
 have a different way of writing out primitive s that would require a
 similar but distinct token.

 21. When a GLSL vertex shader is active, what h appens in transform
 feedback mode if non-active varying variabl es are specified?

 DISCUSSION: Active varying variables are vary ing variables, declared in
 the shader, that the linker determined are ac tually needed. As an
 optimization, the linker can discard the ones declared, but not
 needed. If non-active varying variables need to be fed into a buffer
 object, the linker should not perform this op timization.

 There are three suggested resolutions to this problem:

 1. The set of varying variables that need t o be streamed to a buffer
 object in transform feedback mode are se t as a property of the
 program object, and are taken into accou nt during the link step.
 This means that changing the set means t he application will have to
 re-link the program object in order to h ave the change take effect.

 2. The set of varying variables that need t o be streamed to a buffer
 object in transform feedback mode are sp ecified after the program
 object has been linked. This is the most flexible option from the
 applications perspective, but this might mean that a) specifying
 this set could force the GL to re-link ' under the covers', and b)
 could mean that the GL runs out of varyi ng variable slots because
 the combined total of the set of active varyings and the varyings
 to stream in transform feedback mode is too large.

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1792

 3. This solution is a hybrid of the above t wo approaches. The set of
 potential varying variables that need to be streamed to a buffer
 object are set as a property of the prog ram object. These varying
 variables are marked as active by the ap plication and therefore
 cannot be eliminated during the link ste p. However, a sub-set of
 varying variables to actually stream to a buffer object can be
 changed without the application having t o re-link the program
 object. This approach gives the applicat ion flexibility to change
 the set of varying variables to stream, while it eliminates the
 need for the GL to compile 'under the co vers'.

 RESOLUTION: Option 3 offers a good compromise , and therefore we'll go
 with that.

 22. Given option 3 in the previous resolution, how to specify that a
 varying variable has to be considered activ e by the linker?

 DISCUSSION: There are two approaches to the a pplication specifying which
 varying variables are active. We can either p rovide a simple flag that
 specifies that all varying variables are cons idered active, or we can
 provide a more complex mechanism where the ap plication can specify an
 individual varying variable as being active.

 RESOLUTION: RESOLVED. The 'all or nothing' fl ag is a simple idea, but
 has a drawback when used with a 'uber-shader' that implements many paths
 to achieve an effect, but only one path is us ed during any run of the
 shader. In this case, a lot more varying vari ables might be flagged as
 active then really is necessary, running the risk of running out of
 resources. Therefore, we'll provide a mechani sm for the application to
 specify on a per varying variable basis if it is active.

 23. Given the discussion in the previous issues , should a
 GetActiveVarying() command be added, modele d after the existing
 getActiveUniform() command?

 DISCUSSION: Such a command will return the li st of active uniforms,
 after the program object has been linked. As per issue 22's resolution,
 the complete set of varying variables that co uld be streamed to a buffer
 object needs to be specified before the progr am object is linked.

 It can be useful to an application to stream out a subset of the active
 varying variables or to find out the whole se t of active varyings,
 especially since the set can be implementatio n dependent.

 RESOLUTION: YES.

 24. What is proper use of the command ActiveVar yingNV()?

 RESOLVED: The application is well advised to force any varying variable
 live that it needs for transform feedback pur poses. The set of active
 varying variables are linker dependent. For e xample, if a program object
 has no fragment shader, then the LinkProgram command cannot typically
 determine which built-in varying variables, o utput by a geometry or
 vertex shader, are active. This is because th e fragment processing state
 can change, and therefore such a determinatio n cannot be made until a
 render command is issued. Furthermore, any us er-defined varyings are

NVIDIA OpenGL Extension Specifications NV_transform_feedback

 1793

 likely to be marked as non-active if there is no fragment shader because
 they are guaranteed to have no effect on fixe d-function fragment
 processing. If there is both a vertex (or geo metry) and fragment shader
 in a program object, the application can prob ably deduce what will be an
 active varying variable, or not. But beware o f any (static) flow-control
 that the linker can use to do cross vertex- f ragment optimization to
 cull any varying variables.

 25. Are primitives sent down the pipeline after transform feedback, or
 discarded?

 RESOLVED: Primitives can be optionally discar ded before rasterization by
 calling Enable and Disable with RASTERIZER_DI SCARD_NV. When enabled,
 primitives are discarded after vertex attribu tes are recorded into the
 buffer objects bound to transform feedback. When disabled, primitives
 are passed through to the rasterization stage to be clipped and
 rasterized normally. All rasterization operat ions are discarded, not
 just those that are fed back into the buffer.

 This applies to DrawPixels, CopyPixels, Bitma p, Clear, Accum as well.

 26. If a varying is declared as an array, is th e whole array streamed out?

 RESOLVED: No, the application has to specify which elements of an array
 it wants to stream out. Implementations might not be able to stream out
 a large number of components to a single buff er object. If that is the
 case, the application can stream each element of an array to a different
 buffer object in TRANSFORM_FEEDBACK_SEPARATE_ ATTRIBS mode.

 27. Is it possible to capture attributes when u sing the fixed-function
 pipeline?

 RESOLVED: Yes, there is nothing that preclude s this. The application is
 responsible for sending down the needed verte x attributes and setting
 the GL state, as desired, for the attributes it wants to stream to a
 buffer object. Note that VERTEX_ID is not def ined in fixed-function.

 28. Is it possible to record hardware-generated primitive ID values that
 would be available to a pixel shader?

 RESOLVED: Transform feedback can only record the primitive ID values
 emitted per-vertex by a geometry shader or pr ogram. While each
 primitive recorded for transform-feedback has a well-defined primitive
 ID, transform feedback is only capable of rec ording the attributes of
 individual vertices.

 29. Does transform feedback support the abilit y to capture per-vertex
 layer outputs, as provided by EXT_geometry _shader4 and
 NV_geometry_program4?

 RESOLVED: Yes. For GLSL shaders, it is suff icient to reference the
 built-in varying "gl_Layer". For assembly ge ometry programs, the
 original version of the spec did not provide an enum allowing you to
 name "result.layer" in TransformFeedbackAttri bsNV. This was an
 oversight in the original spec, which was fix ed by version 14. An
 updated driver will be required to take advan tage of this capability;
 NVIDIA drivers supporting this extension publ ished prior to February

NV_transform_feedback NVIDIA OpenGL Extension Specifications

 1794

 2008 will not be able to capture "result.laye r". The value captured for
 LAYER_NV will be undefined unless a geometry program that writes
 "result.layer" is active.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- ------------------- ----------------------
 14 02/04/08 pbrown Fixed a problem wit h the spec where we were
 unable to record "r esult.layer" using the
 assembly interface. Added a new enum to
 address.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1795

Name

 NV_vertex_array_range

Name Strings

 GL_NV_vertex_array_range

Notice

 Copyright NVIDIA Corporation, 1999, 2000, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Shipping (version 1.1)

 Existing functionality is augmented by NV_verte x_array_range2.

Version

 NVIDIA Date: September 17, 2001 (version 1.1)

Number

 190

Dependencies

 None

Overview

 The goal of this extension is to permit extreme ly high vertex
 processing rates via OpenGL vertex arrays even when the CPU lacks
 the necessary data movement bandwidth to keep u p with the rate
 at which the vertex engine can consume vertices . CPUs can keep
 up if they can just pass vertex indices to the hardware and
 let the hardware "pull" the actual vertex data via Direct Memory
 Access (DMA). Unfortunately, the current OpenG L 1.1 vertex array
 functionality has semantic constraints that mak e such an approach
 hard. Hence, the vertex array range extension.

 This extension provides a mechanism for deferri ng the pulling of
 vertex array elements to facilitate DMAed pulli ng of vertices for
 fast, efficient vertex array transfers. The Op enGL client need only
 pass vertex indices to the hardware which can D MA the actual index's
 vertex data directly out of the client address space.

 The OpenGL 1.1 vertex array functionality speci fies a fairly strict
 coherency model for when OpenGL extracts vertex data from a vertex
 array and when the application can update the i n memory
 vertex array data. The OpenGL 1.1 specificatio n says "Changes
 made to array data between the execution of Beg in and the

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1796

 corresponding execution of End may affect calls to ArrayElement
 that are made within the same Begin/End period in non-sequential
 ways. That is, a call to ArrayElement that pre cedes a change to
 array data may access the changed data, and a c all that follows
 a change to array data may access the original data."

 This means that by the time End returns (and Dr awArrays and
 DrawElements return since they have implicit En ds), the actual vertex
 array data must be transferred to OpenGL. This strict coherency model
 prevents us from simply passing vertex element indices to the hardware
 and having the hardware "pull" the vertex data out (which is often
 long after the End for the primitive has return ed to the application).

 Relaxing this coherency model and bounding the range from which
 vertex array data can be pulled is key to makin g OpenGL vertex
 array transfers faster and more efficient.

 The first task of the vertex array range extens ion is to relax
 the coherency model so that hardware can indeed "pull" vertex
 data from the OpenGL client's address space lon g after the application
 has completed sending the geometry primitives r equiring the vertex
 data.

 The second problem with the OpenGL 1.1 vertex a rray functionality is
 the lack of any guidance from the API about wha t region of memory
 vertices can be pulled from. There is no size limit for OpenGL 1.1
 vertex arrays. Any vertex index that points to valid data in all
 enabled arrays is fair game. This makes it har d for a vertex DMA
 engine to pull vertices since they can be poten tially pulled from
 anywhere in the OpenGL client address space.

 The vertex array range extension specifies a ra nge of the OpenGL
 client's address space where vertices can be pu lled. Vertex indices
 that access any array elements outside the vert ex array range
 are specified to be undefined. This permits ha rdware to DMA from
 finite regions of OpenGL client address space, making DMA engine
 implementation tractable.

 The extension is specified such that an (error free) OpenGL client
 using the vertex array range functionality coul d no-op its vertex
 array range commands and operate equivalently t o using (if slower
 than) the vertex array range functionality.

 Because different memory types (local graphics memory, AGP memory)
 have different DMA bandwidths and caching behav ior, this extension
 includes a window system dependent memory alloc ator to allocate
 cleanly the most appropriate memory for constru cting a vertex array
 range. The memory allocator provided allows th e application to
 tradeoff the desired CPU read frequency, CPU wr ite frequency, and
 memory priority while still leaving it up to Op enGL implementation
 the exact memory type to be allocated.

Issues

 How does this extension interact with the compi led_vertex_array
 extension?

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1797

 I think they should be independent and not i nterfere with
 each other. In practice, if you use NV_vert ex_array_range,
 you can surpass the performance of compiled_ vertex_array

 Should some explanation be added about what hap pens when an OpenGL
 application updates its address space in region s overlapping with
 the currently configured vertex array range?

 RESOLUTION: I think the right thing is to s ay that you get
 non-sequential results. In practice, you'll be using an old
 context DMA pointing to the old pages.

 If the application change's its address spac e within the
 vertex array range, the application should c all
 glVertexArrayRangeNV again. That will re-ma ke a new vertex
 array range context DMA for the application' s current address
 space.

 If we are falling back to software transformati on, do we still need to
 abide by leaving "undefined" vertices outside t he vertex array range?
 For example, pointers that are not 32-bit align ed would likely cause
 a fall back.

 RESOLUTION: No. The fact that vertex is "u ndefined" means we
 can do anything we want (as long as we send a vertex and do not
 crash) so it is perfectly fine for the softw are puller to
 grab vertex information not available to the hardware puller.

 Should we give a programmer a sense of how big a vertex array
 range they can specify?

 RESOLUTION: No. Just document it if there are limitations.
 Probably very hardware and operating system dependent.

 Is it clear enough that language about ArrayEle ment
 also applies to DrawArrays and DrawElements?

 Maybe not, but OpenGL 1.1 spec is clear that DrawArrays and
 DrawElements are defined in terms of ArrayEl ement.

 Should glFlush be the same as glVertexArrayRang eFlush?

 RESOLUTION: No. A glFlush is cheaper than a glVertexArrayRangeFlush
 though a glVertexArrayRangeFlushNV should do a flush.

 If any the data for any enabled array for a giv en array element index
 falls outside of the vertex array range, what h appens?

 RESOLUTION: An undefined vertex is generate d.

 What error is generated in this case?

 I don't know yet. We should make sure the h ardware really does
 let us know when vertices are undefined.

 Note that this is a little weird for OpenGL since most errors
 in OpenGL result in the command being ignore d. Not in this

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1798

 case though.

 Should this extension support an interface for allocating video
 and AGP memory?

 RESOLUTION: YES. It seems like we should b e able to leave
 the task of memory allocation to DirectDraw, but DirectDraw's
 asynchronous unmapping behavior and having t o hold locks to
 update DirectDraw surfaces makes that mechan ism to cumbersome.

 Plus the API is a lot easier if we do it our selves.

 How do we decide what type of memory to allocat e for the application?

 RESOLUTION: Usage hints. The application r ates the read
 frequency (how often will they read the memo ry), the write
 frequency (how often will they write the mem ory), and the
 priority (how important is this memory relat ive to other
 uses for the memory such as texturing) on a scale of 1.0
 to 0.0. Using these hints and the size of t he memory requsted,
 the OpenGL implementation decides where to a llocate the memory.

 We try to not directly expose particular typ es of memory
 (AGP, local memory, cached/uncached, etc) so future memory
 types can be supported by merely updating th e OpenGL
 implementation.

 Should the memory allocator functionality be av ailable be a part
 of the GL or window system dependent (GLX or WG L) APIs?

 RESOLUTION: The window system dependent API .

 The memory allocator should be considered a window system/
 operating system dependent operation. This also permits
 memory to be allocated when no OpenGL render ing contexts
 exist yet.

New Procedures and Functions

 void VertexArrayRangeNV(sizei length, void *poi nter)
 void FlushVertexArrayRangeNV(void)

New Tokens

 Accepted by the <cap> parameter of EnableClient State,
 DisableClientState, and IsEnabled:

 VERTEX_ARRAY_RANGE_NV 0x851D

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_ARRAY_RANGE_LENGTH_NV 0x851E
 VERTEX_ARRAY_RANGE_VALID_NV 0x851F
 MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV 0x8520

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1799

 Accepted by the <pname> parameter of GetPointer v:

 VERTEX_ARRAY_RANGE_POINTER_NV 0x8521

Additions to Chapter 2 of the OpenGL 1.1 Specificat ion (OpenGL Operation)

 After the discussion of vertex arrays (Section 2.8) add a
 description of the vertex array range:

 "The command

 void VertexArrayRangeNV(sizei length, void * pointer)

 specifies the current vertex array range. When the vertex array
 range is enabled and valid, vertex array vertex transfers from within
 the vertex array range are potentially faster. The vertex array
 range is a contiguous region of (virtual) addre ss space for placing
 vertex arrays. The "pointer" parameter is a po inter to the base of
 the vertex array range. The "length" pointer i s the length of the
 vertex array range in basic machine units (typi cally unsigned bytes).

 The vertex array range address space region ext ends from "pointer"
 to "pointer + length - 1" inclusive. When spec ified and enabled,
 vertex array vertex transfers from within the v ertex array range
 are potentially faster.

 There is some system burden associated with est ablishing a vertex
 array range (typically, the memory range must b e locked down).
 If either the vertex array range pointer or siz e is set to zero,
 the previously established vertex array range i s released (typically,
 unlocking the memory).

 The vertex array range may not be established f or operating system
 dependent reasons, and therefore, not valid. R easons that a vertex
 array range cannot be established include spann ing different memory
 types, the memory could not be locked down, ali gnment restrictions
 are not met, etc.

 The vertex array range is enabled or disabled b y calling
 EnableClientState or DisableClientState with th e symbolic
 constant VERTEX_ARRAY_RANGE_NV.

 The vertex array range is either valid or inval id and this state can
 be determined by querying VERTEX_ARRAY_RANGE_VA LID_NV. The vertex
 array range is valid when the following conditi ons are met:

 o VERTEX_ARRAY_RANGE_NV is enabled.

 o VERTEX_ARRAY is enabled.

 o VertexArrayRangeNV has been called with a non-null pointer and
 non-zero size.

 o The vertex array range has been establishe d.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1800

 o An implementation-dependent validity check based on the
 pointer alignment, size, and underlying me mory type of the
 vertex array range region of memory.

 o An implementation-dependent validity check based on
 the current vertex array state including t he strides, sizes,
 types, and pointer alignments (but not poi nter value) for
 currently enabled vertex arrays.

 o Other implementation-dependent validaity c hecks based on
 other OpenGL rendering state.

 Otherwise, the vertex array range is not valid. If the vertex array
 range is not valid, vertex array transfers will not be faster.

 When the vertex array range is valid, ArrayElem ent commands may
 generate undefined vertices if and only if any indexed elements of
 the enabled arrays are not within the vertex ar ray range or if the
 index is negative or greater or equal to the im plementation-dependent
 value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV. If an undefined vertex
 is generated, an INVALID_OPERATION error may or may not be generated.

 The vertex array cohenecy model specifies when vertex data must be
 be extracted from the vertex array memory. Whe n the vertex array
 range is not valid, (quoting the specification) `Changes made to
 array data between the execution of Begin and t he corresponding
 execution of End may effect calls to ArrayEleme nt that are made
 within the same Begin/End period in non-sequent ial ways. That is,
 a call to ArrayElement that precedes a change t o array data may
 access the changed data, and a call that follow s a change to array
 data may access the original data.'

 When the vertex array range is valid, the verte x array coherency
 model is relaxed so that changes made to array data until the next
 "vertex array range flush" may affects calls to ArrayElement in
 non-sequential ways. That is a call to ArrayEl ement that precedes
 a change to array data (without an intervening "vertex array range
 flush") may access the changed data, and a call that follows a change
 (without an intervening "vertex array range flu sh") to array data
 may access original data.

 A 'vertex array range flush' occurs when one of the following
 operations occur:

 o Finish returns.

 o FlushVertexArrayRangeNV returns.

 o VertexArrayRangeNV returns.

 o DisableClientState of VERTEX_ARRAY_RANGE_ NV returns.

 o EnableClientState of VERTEX_ARRAY_RANGE_N V returns.

 o Another OpenGL context is made current.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1801

 The client state required to implement the vert ex array range
 consists of an enable bit, a memory pointer, an integer size,
 and a valid bit.

 If the memory mapping of pages within the verte x array range changes,
 using the vertex array range may or may not res ult in undefined data
 being fetched from the vertex arrays when the v ertex array range is
 enabled and valid. To ensure that the vertex a rray range reflects
 the address space's current state, the applicat ion is responsible
 for calling VertexArrayRange again after any me mory mapping changes
 within the vertex array range."llo

Additions to Chapter 5 of the OpenGL 1.1 Specificat ion (Special Functions)

 Add to the end of Section 5.4 "Display Lists"

 "VertexArrayRangeNV and FlushVertexArrayRangeNV are not complied
 into display lists but are executed immediately .

 If a display list is compiled while VERTEX_ARRA Y_RANGE_NV is
 enabled, the commands ArrayElement, DrawArrays, DrawElements,
 and DrawRangeElements are accumulated into a di splay list as
 if VERTEX_ARRAY_RANGE_NV is disabled."

Additions to the WGL interface:

 "When establishing a vertex array range, certai n types of memory
 may be more efficient than other types of memor y. The commands

 void *wglAllocateMemoryNV(sizei size,
 float readFrequenc y,
 float writeFrequen cy,
 float priority)
 void wglFreeMemoryNV(void *pointer)

 allocate and free memory that may be more suita ble for establishing
 an efficient vertex array range than memory all ocated by other means.
 The wglAllocateMemoryNV command allocates <size > bytes of contiguous
 memory.

 The <readFrequency>, <writeFrequency>, and <pri ority> parameters are
 usage hints that the OpenGL implementation can use to determine the
 best type of memory to allocate. These paramet ers range from 0.0
 to 1.0. A <readFrequency> of 1.0 indicates tha t the application
 intends to frequently read the allocated memory ; a <readFrequency>
 of 0.0 indicates that the application will rare ly or never read the
 memory. A <writeFrequency> of 1.0 indicates th at the application
 intends to frequently write the allocated memor y; a <writeFrequency>
 of 0.0 indicates that the application will rare ly write the memory.
 A <priority> parameter of 1.0 indicates that me mory type should be
 the most efficient available memory, even at th e expense of (for
 example) available texture memory; a <priority> of 0.0 indicates that
 the vertex array range does not require an effi cient memory type
 (for example, so that more efficient memory is available for other
 purposes such as texture memory).

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1802

 The OpenGL implementation is free to use the <s ize>, <readFrequency>,
 <writeFrequency>, and <priority> parameters to determine what memory
 type should be allocated. The memory types ava ilable and how the
 memory type is determined is implementation dep endent (and the
 implementation is free to ignore any or all of the above parameters).

 Possible memory types that could be allocated a re uncached memory,
 write-combined memory, graphics hardware memory , etc. The intent
 of the wglAllocateMemoryNV command is to permit the allocation of
 memory for efficient vertex array range usage. However, there is
 no requirement that memory allocated by wglAllo cateMemoryNV must be
 used to allocate memory for vertex array ranges .

 If the memory cannot be allocated, a NULL point er is returned (and
 no OpenGL error is generated). An implementati on that does not
 support this extension's memory allocation inte rface is free to
 never allocate memory (always return NULL).

 The wglFreeMemoryNV command frees memory alloca ted with
 wglAllocateMemoryNV. The <pointer> should be a pointer returned by
 wglAllocateMemoryNV and not previously freed. If a pointer is passed
 to wglFreeMemoryNV that was not allocated via w glAllocateMemoryNV
 or was previously freed (without being realloca ted), the free is
 ignored with no error reported.

 The memory allocated by wglAllocateMemoryNV sho uld be available to
 all other threads in the address space where th e memory is allocated
 (the memory is not private to a single thread). Any thread in the
 address space (not simply the thread that alloc ated the memory)
 may use wglFreeMemoryNV to free memory allocate d by itself or any
 other thread.

 Because wglAllocateMemoryNV and wglFreeMemoryNV are not OpenGL
 rendering commands, these commands do not requi re a current context.
 They operate normally even if called within a B egin/End or while
 compiling a display list."

Additions to the GLX Specification

 Same language as the "Additions to the WGL Spec ification" section
 except all references to wglAllocateMemoryNV an d wglFreeMemoryNV
 should be replaced with glXAllocateMemoryNV and glXFreeMemoryNV
 respectively.

 Additional language:

 "OpenGL implementations using GLX indirect rend ering should fail
 to set up the vertex array range (failing to se t the vertex array
 valid bit so the vertex array range functionali ty is not usable).
 Additionally, glXAllocateMemoryNV always fails to allocate memory
 (returns NULL) when used with an indirect rende ring context."

GLX Protocol

 None

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1803

Errors

 INVALID_OPERATION is generated if VertexArrayRa nge or
 FlushVertexArrayRange is called between the exe cution of Begin
 and the corresponding execution of End.

 INVALID_OPERATION may be generated if an undefi ned vertex is
 generated.

New State

 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------------
 VERTEX_ARRAY_RANGE_NV IsEnabled B False vertex-array
 VERTEX_ARRAY_RANGE_POINTER_NV GetPointerv Z+ 0 vertex-array
 VERTEX_ARRAY_RANGE_LENGTH_NV GetIntegerv Z+ 0 vertex-array
 VERTEX_ARRAY_RANGE_VALID_NV GetBooleanv B False vertex-array

New Implementation Dependent State

 Get Value Get Command Type Minimum Value
 --------- ----------- ----- -------------
 MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV GetIntegerv Z+ 65535

NV10 Implementation Details

 This section describes implementation-defined l imits for NV10:

 The value of MAX_VERTEX_ARRAY_RANGE_ELEMEN T_NV is 65535.

 This section describes bugs in the NV10 vertex array range. These
 bugs will be fixed in a future hardware release :

 If VERTEX_ARRAY is enabled with a format o f GL_SHORT and the
 vertex array range is valid, a vertex arra y vertex with an X,
 Y, Z, or W coordinate of -32768 is wrongly interpreted as zero.
 Example: the X,Y coordinate (-32768,-32768) is incorrectly read
 as (0,0) from the vertex array.

 If TEXTURE_COORD_ARRAY is enabled with a f ormat of GL_SHORT
 and the vertex array range is valid, a ver tex array texture
 coord with an S, T, R, or Q coordinate of -32768 is wrongly
 interpreted as zero. Example: the S,T coo rdinate (-32768,-32768)
 is incorrectly read as (0,0) from the text ure coord array.

 This section describes the implementation-depen dent validity
 checks for NV10.

 o For the NV10 implementation-dependent vali dity check for the
 vertex array range region of memory to be true, all of the
 following must be true:

 1. The <pointer> must be 32-byte aligned.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1804

 2. The underlying memory types must all b e the same (all
 standard system memory -OR- all AGP me mory -OR- all video
 memory).

 o For the NV10 implementation-dependent valid ity check for the
 vertex array state to be true, all of the f ollowing must be
 true:

 1. (VERTEX_ARRAY must be enabled -AND-
 The vertex array stride must be less than 256 -AND-
 ((The vertex array type must be FLOAT -AND-
 The vertex array stride must be a multiple of 4 bytes -AND-
 The vertex array pointer must be 4-byte aligned -AND-
 The vertex array size must be 2, 3, or 4) -OR-
 (The vertex array type must be SHORT -AND-
 The vertex array stride must be a multiple of 4 bytes -AND-
 The vertex array pointer must be 4-byte aligned. -AND-
 The vertex array size must be 2) -OR-
 (The vertex array type must be SHORT -AND-
 The vertex array stride must be a multiple of 8 bytes -AND-
 The vertex array pointer must be 8-byte aligned. -AND-
 The vertex array size must be 3 or 4)))

 2. (NORMAL_ARRAY must be disabled.) -OR -
 (NORMAL_ARRAY must be enabled -AND-
 The normal array size must be 3 -AND-
 The normal array stride must be less than 256 -AND-
 ((The normal array type must be FLOAT -AND-
 The normal array stride must be a multiple of 4 bytes -AND-
 The normal array pointer must be 4-byte aligned.) -OR-
 (The normal array type must be SHORT -AND-
 The normal array stride must be a multiple of 8 bytes -AND-
 The normal array pointer must be 8-byte aligned.)))

 3. (COLOR_ARRAY must be disabled.) -OR -
 (COLOR_ARRAY must be enabled -AND-
 The color array type must be FLOAT or UNSIGNED_BYTE -AND-
 The color array stride must be a multiple of 4 bytes -AND-
 The color array stride must be less than 256 -AND-
 The color array pointer must be 4-byte aligned -AND-
 The color array size must be 3 or 4)

 4. (SECONDARY_COLOR_ARRAY must be disabled.) -OR -
 (SECONDARY_COLOR_ARRAY must be enabled -AND-
 The secondary color array type must be FLOAT or UNSIGNED_BYTE -AND-
 The secondary color array stride must be a multiple of 4 bytes -AND-
 The secondary color array stride must be less than 256 -AND-
 The secondary color array pointer must be 4-byte aligned -AND-
 The secondary color array size must be 3 or 4)

 5. For texture units zero and one:

 (TEXTURE_COORD_ARRAY must be disabled.) -OR -
 (TEXTURE_COORD_ARRAY must be enabled -AND-
 The texture coord array stride must be less than 256 -AND-
 ((The texture coord array type must be FLOAT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-
 The texture coord array size must be 1, 2, 3, or 4) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1805

 The texture coord array size must be 1) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-
 The texture coord array size must be 2) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 8-byte aligned.)
 The texture coord array stride must be a multiple of 8 bytes -AND-
 The texture coord array size must be 3) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 8-byte aligned.)
 The texture coord array stride must be a multiple of 8 bytes -AND-
 The texture coord array size must be 4)))

 6. (EDGE_FLAG_ARRAY must be disabled.)

 7. (VERTEX_WEIGHT_ARRAY_NV must be disabled.) -OR -
 (VERTEX_WEIGHT_ARRAY_NV must be enabled. -AND -
 The vertex weight array type must be FLOAT -AND-
 The vertex weight array size must be 1 -AND-
 The vertex weight array stride must be a multiple of 4 bytes -AND-
 The vertex weight array stride must be less than 256 -AND-
 The vertex weight array pointer must be 4-byte aligned)

 8. (FOG_COORDINATE_ARRAY must be disabled.) -OR -
 (FOG_COORDINATE_ARRAY must be enabled -AND-
 The chip in use must be an NV11 or NV15, not NV10 -AND-
 The fog coordinate array type must be FLOAT -AND-
 The fog coordinate array size must be 1 -AND-
 The fog coordinate array stride must be a multiple of 4 bytes -AND-
 The fog coordinate array stride must be less than 256 -AND-
 The fog coordinate array pointer must be 4-byte aligned)

 o For the NV10 the implementation-dependent v alidity check based on
 other OpenGL rendering state is FALSE if an y of the following are true:

 1. (COLOR_LOGIC_OP is enabled -AND-
 The logic op is not COPY), except in the case of Quadro2
 (Quadro2 Pro, Quadro2 MXR) products.

 2. (LIGHT_MODEL_TWO_SIDE is true.)

 3. Either texture unit is enabled and acti ve with a texture
 with a non-zero border.

 4. VERTEX_PROGRAM_NV is enabled.

5. Several other obscure unspecified reasons.

NV20 Implementation Details

 This section describes implementation-defined l imits for NV20:

 The value of MAX_VERTEX_ARRAY_RANGE_ELEMEN T_NV is 1048575.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 1806

 This section describes the implementation-depen dent validity
 checks for NV20.

 o For the NV20 implementation-dependent vali dity check for the
 vertex array range region of memory to be true, all of the
 following must be true:

 1. The <pointer> must be 32-byte aligned.

 2. The underlying memory types must all b e the same (all
 standard system memory -OR- all AGP me mory -OR- all video
 memory).

 o To determine whether the NV20 implementatio n-dependent validity
 check for the vertex array state is true, t he following algorithm
 is used:

 The currently enabled arrays and their poin ters, strides, and
 types are first determined using the value of VERTEX_PROGRAM_NV.
 If VERTEX_PROGRAM_NV is disabled, the stand ard GL vertex arrays
 are used. If VERTEX_PROGRAM_NV is enabled, the vertex attribute
 arrays take precedence over the standard ve rtex arrays. The
 following table, taken from the NV_vertex_p rogram specification,
 shows the aliasing between the standard and attribute arrays:

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter C ommand Mapping
--------- --------------- ---------------------- ------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTU RE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTU RE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTU RE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTU RE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTU RE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTU RE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTU RE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTU RE7_ARB, ...) s,t,r,q

 For the validity check to be TRUE, the foll owing must all be
 true:

 1. Vertex attribute 0's array must be enab led.
 2. EDGE_FLAG_ARRAY must be disabled.
 3. For all enabled arrays, all of the foll owing must be true:
 - the stride must be less than 256
 - the type must be FLOAT, SHORT, or UNS IGNED_BYTE

 o For the NV20 the implementation-dependent v alidity check based on

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 1807

 other OpenGL rendering state is FALSE only for a few obscure and
 unspecified reasons.

Revision History

 January 10, 2001 - Added NV20 implementation de tails. Made several
 corrections to the NV10 implementation details. Specifically, noted
 that on the NV11 and NV15 architectures, the fo g coordinate array may
 be used, and updated the section on other state that may cause the
 vertex array range to be invalid. Only drivers built after this date
 will support fog coordinate arrays on NV11 and NV15. Also fixed a
 few typos in the spec.

 September 17, 2001 - Modified NV20 implementati on details to remove
 all the pointer and stride restrictions, none o f which are actually
 required. Only drivers built after this date w ill support arbitrary
 pointer offsets and strides. Also removed NV10 rules on non-zero
 strides, which cannot be used in OpenGL anyhow, and fixed a few other
 typos.

NV_vertex_array_range2 NVIDIA OpenGL Extension Specifications

 1808

Name

 NV_vertex_array_range2

Name Strings

 GL_NV_vertex_array_range2

Notice

 Copyright NVIDIA Corporation, 2001.

IP Status

 NVIDIA Proprietary.

Status

 Complete

Version

 NVIDIA Date: April 13, 2001
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_a rray_range2.txt#2 $

Number

 232

Dependencies

 Assumes support for the NV_vertex_array_range e xtension (version 1.1).

 Support for NV_fence is recommended but not req uired.

Overview

 Enabling and disabling the vertex array range i s specified by the
 original NV_vertex_array_range extension specif ication to flush the
 vertex array range implicitly. In retrospect, this semantic is
 extremely misconceived and creates terrible per formance problems
 for any application that wishes to mix conventi onal vertex arrays
 with vertex arrange range-enabled vertex arrays .

 This extension provides a new token for enablin g/disabling the
 vertex array range that does NOT perform an imp licit vertex array
 range flush when the enable/disable is performe d.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range2

 1809

Issues

 Should this extension expose a new enable that enables/disables the
 vertex array range enable/disable semantic of p erforming an implicit
 'vertex array range flush' when GL_VERTEX_ARRAY _RANGE_NV is enabled
 or disabled, OR should it add a new enable toke n that acts identically
 to GL_VERTEX_ARRAY_RANGE_NV without the implici t flush?

 RESOLUTION: The second option. Enabling/dis abling
 GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV acts i dentically to
 enabling/disabling GL_VERTEX_ARRAY_RANGE_NV, just without the
 implicit flush.

 Should GL_VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV work with glIsEnabled?

 RESOLUTION: NO. There is still just a singl e state boolean to
 query.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of EnableClient State,
 DisableClientState:

 VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV 0x8533

Additions to Chapter 2 of the OpenGL 1.1 Specificat ion (OpenGL Operation)

 Within the discussion of vertex arrays (Section 2.8) amended by
 the NV_vertex_array_range extension specificati on, change the
 discussion of enabling the vertex array range t o:

 The vertex array range is enabled or disabled b y calling
 EnableClientState or DisableClientState with th e symbolic
 constant VERTEX_ARRAY_RANGE_NV.

 The vertex array range is also enabled or disab led by calling
 EnableClientState or DisableClientState with th e symbolic constant
 VERTEX_ARRAY_RANGE_WITHOUT_FLUSH_NV. This seco nd means to enable
 and disable the vertex array range does not per form an implicit
 vertex array range flush as described subsequen tly."

 Within the discussion of vertex arrays (Section 2.8) amended by the
 NV_vertex_array_range extension specification, change the discussion
 of implicit vertex array range flushes to:

NV_vertex_array_range2 NVIDIA OpenGL Extension Specifications

 1810

 "A 'vertex array range flush' occurs when one o f the following
 operations occur:

 o Finish returns.

 o FlushVertexArrayRangeNV returns.

 o VertexArrayRangeNV returns.

 o DisableClientState of VERTEX_ARRAY_RANGE_ NV returns.

 o EnableClientState of VERTEX_ARRAY_RANGE_N V returns.

 o Another OpenGL context is made current.

 However, use of VERTEX_ARRAY_RANGE_WITHOUT_FLUS H_NV with
 DisableClientState or EnableClientState does NO T perform an implicit
 vertex array range flush."

Additions to Chapter 5 of the OpenGL 1.1 Specificat ion (Special Functions)

 None

Additions to the WGL interface:

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 No new errors.

New State

 None

New Implementation Dependent State

 None

Revision History

 4/13/2001 - token value for GL_VERTEX_ARRAY_RAN GE_WITHOUT_FLUSH_NV
 should be 0x8533 (was incorrectly typed as 0x85 03)

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1811

Name

 NV_vertex_program

Name Strings

 GL_NV_vertex_program

Notice

 Copyright NVIDIA Corporation, 2000, 2001, 2002, 2003, 2004.

IP Status

 NVIDIA Proprietary.

Status

 Version 1.9

Version

 NVIDIA Date: February 24, 2004
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_p rogram.txt#20 $

Number

 233

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification and
 requires OpenGL 1.2.1.

 Requires support for the ARB_multitexture exten sion with at least
 two texture units.

 EXT_point_parameters affects the definition of this extension.

 EXT_secondary_color affects the definition of t his extension.

 EXT_fog_coord affects the definition of this ex tension.

 EXT_vertex_weighting affects the definition of this extension.

 ARB_imaging affects the definition of this exte nsion.

Overview

 Unextended OpenGL mandates a certain set of con figurable per-vertex
 computations defining vertex transformation, te xture coordinate
 generation and transformation, and lighting. S everal extensions
 have added further per-vertex computations to O penGL. For example,
 extensions have defined new texture coordinate generation modes
 (ARB_texture_cube_map, NV_texgen_reflection, NV _texgen_emboss), new
 vertex transformation modes (EXT_vertex_weighti ng), new lighting modes
 (OpenGL 1.2's separate specular and rescale nor mal functionality),

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1812

 several modes for fog distance generation (NV_f og_distance), and
 eye-distance point size attenuation (EXT_point_ parameters).

 Each such extension adds a small set of relativ ely inflexible
 per-vertex computations.

 This inflexibility is in contrast to the typica l flexibility provided
 by the underlying programmable floating point e ngines (whether
 micro-coded vertex engines, DSPs, or CPUs) that are traditionally used
 to implement OpenGL's per-vertex computations. The purpose of this
 extension is to expose to the OpenGL applicatio n writer a significant
 degree of per-vertex programmability for comput ing vertex parameters.

 For the purposes of discussing this extension, a vertex program is
 a sequence of floating-point 4-component vector operations that
 determines how a set of program parameters (def ined outside of
 OpenGL's begin/end pair) and an input set of pe r-vertex parameters
 are transformed to a set of per-vertex output p arameters.

 The per-vertex computations for standard OpenGL given a particular
 set of lighting and texture coordinate generati on modes (along with
 any state for extensions defining per-vertex co mputations) is, in
 essence, a vertex program. However, the sequen ce of operations is
 defined implicitly by the current OpenGL state settings rather than
 defined explicitly as a sequence of instruction s.

 This extension provides an explicit mechanism f or defining vertex
 program instruction sequences for application-d efined vertex programs.
 In order to define such vertex programs, this e xtension defines
 a vertex programming model including a floating -point 4-component
 vector instruction set and a relatively large s et of floating-point
 4-component registers.

 The extension's vertex programming model is des igned for efficient
 hardware implementation and to support a wide v ariety of vertex
 programs. By design, the entire set of existin g vertex programs
 defined by existing OpenGL per-vertex computati on extensions can be
 implemented using the extension's vertex progra mming model.

Issues

 What should this extension be called?

 RESOLUTION: NV_vertex_program. DirectX 8 re fers to its similar
 functionality as "vertex shaders". This is a confusing term
 because shaders are usually assumed to operat e at the fragment or
 pixel level, not the vertex level.

 Conceptually, what the extension defines is a n application-defined
 program (admittedly limited by its sequential execution model) for
 processing vertices so the "vertex program" t erm is more accurate.

 Additionally, some of the API machinery in th is extension for
 describing programs could be useful for exten ding other OpenGL
 operations with programs (though other types of programs would
 likely look very different from vertex progra ms).

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1813

 What terms are important to this specification?

 vertex program mode - when vertex program mod e is enabled, vertices
 are transformed by an application-defined ver tex program.

 conventional GL vertex transform mode - when vertex program mode
 is disabled (or the extension is not supporte d), vertices are
 transformed by GL's conventional texgen, ligh ting, and transform
 state.

 provoke - the verb that denotes the beginning of vertex
 transformation by either vertex program mode or conventional GL
 vertex transform mode. Vertices are provoked when either glVertex
 or glVertexAttribNV(0, ...) is called.

 program target - a type or class of program. This extension
 supports two program targets: the vertex pro gram and the vertex
 state program. Future extensions could add o ther program targets.

 vertex program - an application-defined vert ex program used to
 transform vertices when vertex program mode i s enabled.

 vertex state program - a program similar to a vertex program.
 Unlike a vertex program, a vertex state progr am runs outside of
 a glBegin/glEnd pair. Vertex state programs do not transform
 a vertex. They just update program parameter s.

 vertex attribute - one of 16 4-component per- vertex parameters
 defined by this extension. These attributes alias with the
 conventional per-vertex parameters.

 per-vertex parameter - a vertex attribute or a conventional
 per-vertex parameter such as set by glNormal3 f or glColor3f.

 program parameter - one of 96 4-component reg isters available
 to vertex programs. The state of these regis ters is shared
 among all vertex programs.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1814

 What part of OpenGL do vertex programs specific ally bypass?

 Vertex programs bypass the following OpenGL f unctionality:

 o Normal transformation and normalization

 o Color material

 o Per-vertex lighting

 o Texture coordinate generation

 o The texture matrix

 o The normalization of AUTO_NORMAL evaluat ed normals

 o The modelview and projection matrix tran sforms

 o The per-vertex processing in EXT_point_p arameters

 o The per-vertex processing in NV_fog_dist ance

 o Raster position transformation

 o Client-defined clip planes

 Operations not subsumed by vertex programs

 o The view frustum clip

 o Perspective divide (division by w)

 o The viewport transformation

 o The depth range transformation

 o Clamping the primary and secondary color to [0,1]

 o Primitive assembly and subsequent operat ions

 o Evaluator (except the AUTO_NORMAL normal ization)

 How specific should this specification be about precision?

 RESOLUTION: Reasonable precision requirement s are incorporated
 into the specification beyond the often vague requirements of the
 core OpenGL specification.

 This extension essentially defines an instruc tion set and its
 corresponding execution environment. The ins truction set specified
 may find applications beyond the traditional purposes of 3D vertex
 transformation, lighting, and texture coordin ate generation that
 have fairly lax precision requirements. To f acilitate such
 possibly unexpected applications of this func tionality, minimum
 precision requirements are specified.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1815

 The minimum precision requirements in the spe cification are meant
 to serve as a baseline so that application de velopers can write
 vertex programs with minimal worries about pr ecision issues.

 What about when the "execution environment" inv olves support for
 other extensions?

 This extension assumes support for functional ity that includes
 a fog distance, secondary color, point parame ters, and multiple
 texture coordinates.

 There is a trade-off between requiring suppor t for these extensions
 to guarantee a particular extended execution environment and
 requiring lots of functionality that everyone might not support.

 Application developers will desire a high bas eline of functionality
 so that OpenGL applications using vertex prog rams can work in
 the full context of OpenGL. But if too much is required, the
 implementation burden mandated by the extensi on may limit the
 number of available implementations.

 Clearly we do not want to require support for 8 texture units
 even if the machinery is there for it. Still multitexture is a
 common and important feature for using vertex programs effectively.
 Requiring at least two texture units seems re asonable.

 What do we say about the alpha component of the secondary color?

 RESOLUTION: When vertex program mode is enab led, the alpha
 component of csec used for the color sum stat e is assumed always
 zero. Another downstream extension may actua lly make the alpha
 component written into the COL1 (or BFC1) ver tex result register
 available.

 Should client-defined clip planes operate when vertex program mode is
 enabled?

 RESOLUTION. No.

 OpenGL's client-defined clip planes are speci fied in eye-space.
 Vertex programs generate homogeneous clip spa ce positions.
 Unlike the conventional OpenGL vertex transfo rmation mode, vertex
 program mode requires no semantic equivalent to eye-space.

 Applications that require client-defined clip planes can simulate
 OpenGL-style client-defined clip planes by ge nerating texture
 coordinates and using alpha testing or other per-fragment tests
 such as NV_texture_shader's CULL_FRAGMENT_NV program to discard
 fragments. In many ways, these schemes provi de a more flexible
 mechanism for clipping than client-defined cl ip planes.

 Unfortunately, vertex programs used in conjun ction with selection
 or feedback will not have a means to support client-defined clip
 planes because the per-fragment culling mecha nisms described in the
 previous paragraph are not available in the s election or feedback
 render modes. Oh well.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1816

 Finally, as a practical concern, client-defin ed clip planes
 greatly complicate clipping for various hardw are rasterization
 architectures.

 How are edge flags handled?

 RESOLUTION: Passed through without the abili ty to be modified by
 a vertex program. Applications are free to s end edge flags when
 vertex program mode is enabled.

 Should vertex attributes alias with conventiona l per-vertex
 parameters?

 RESOLUTION. YES.

 This aliasing should make it easy to use vert ex programs with
 existing OpenGL code that transfers per-verte x parameters using
 conventional OpenGL per-vertex calls.

 It also minimizes the number of per-vertex pa rameters that the
 hardware must maintain.

 See Table X.2 for the aliasing of vertex attr ibutes and conventional
 per-vertex parameters.

 How should vertex attribute arrays interact wit h conventional vertex
 arrays?

 RESOLUTION: When vertex program mode is enab led, a particular
 vertex attribute array will be used if enable d, but if disabled,
 and the corresponding aliased conventional ve rtex array is enabled
 (assuming that there is a corresponding alias ed conventional vertex
 array for the particular vertex array), the c onventional vertex
 array will be used.

 This matches the way immediate mode per-verte x parameter aliasing
 works.

 This does slightly complicate vertex array va lidation in program
 mode, but programmers using vertex arrays can simply enable vertex
 program mode without reconfiguring their conv entional vertex arrays
 and get what they expect.

 Note that this does create an asymmetry betwe en immediate mode
 and vertex arrays depending on whether vertex program mode is
 enabled or not. The immediate mode vertex at tribute commands
 operate unchanged whether vertex program mode is enabled or not.
 However the vertex attribute vertex arrays ar e used only when
 vertex program mode is enabled.

 Supporting vertex attribute vertex arrays whe n vertex program mode
 is disabled would create a large implementati on burden for existing
 OpenGL implementations that have heavily opti mized conventional
 vertex arrays. For example, the normal array can be assumed to
 always contain 3 and only 3 components in con ventional OpenGL
 vertex transform mode, but may contain 1, 2, 3, or 4 components
 in vertex program mode.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1817

 There is not any additional functionality gai ned by supporting
 vertex attribute arrays when vertex program m ode is disabled, but
 there is lots of implementation overhead. In any case, it does not
 seem something worth encouraging so it is sim ply not supported.
 So vertex attribute arrays are IGNORED when v ertex program mode
 is not enabled.

 Ignoring VertexAttribute commands or treating VertexAttribute
 commands as an error when vertex program mode is enabled
 would likely add overhead for such a conditio nal check. The
 implementation overhead for supporting Vertex Attribute commands
 when vertex program mode is disabled is not t hat significant.
 Additionally, it is likely that setting persi stent vertex attribute
 state while vertex program mode is disabled m ay be useful to
 applications. So vertex attribute immediate mode commands are
 PERMITTED when vertex program mode is not ena bled.

 Colors and normals specified as ints, uints, sh orts, ushorts, bytes,
 and ubytes are converted to floating-point rang es when supplied to
 core OpenGL as described in Table 2.6. Other p er-vertex attributes
 such as texture coordinates and positions are n ot converted.
 How does this mix with vertex programs where al l vertex attributes
 are supposedly treated identically?

 RESOLUTION: Vertex attributes specified as b ytes and ubytes are
 always converted as described in Table 2.6. All other formats are
 not converted according to Table 2.6 but simp ly converted directly
 to floating-point.

 The ubyte type is converted because those typ es seem more useful
 for passing colors in the [0,1] range.

 If an application desires a conversion, the c onversion can be
 incorporated into the vertex program itself.

 This also applies to vertex attribute arrays. However, by enabling
 a color or normal vertex array and not enabli ng the corresponding
 aliased vertex attribute array, programmers c an get the conventional
 conversions for color and normal arrays (but only for the vertex
 attribute arrays that alias to the convention al color and normal
 arrays and only with the sizes/types supporte d by these color and
 normal arrays).

 Should programs be C-style null-terminated stri ngs?

 RESOLUTION: No. Programs should be specifie d as an array of
 GLubyte with an explicit length parameter. O penGL has no precedent
 for passing null-terminated strings into the API (though glGetString
 returns null-terminated strings). Null-termi nated strings are
 problematic for some languages.

 Should all existing OpenGL transform functional ity and extensions
 be implementable as vertex programs?

 RESOLUTION: Yes. Vertex programs should be a complete superset
 of what you can do with OpenGL 1.2 and existi ng vertex transform

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1818

 extensions.

 To implement EXT_point_parameters, the
 GL_VERTEX_PROGRAM_POINT_SIZE_NV enable is int roduced.

 To implement two-sided lighting, the GL_VERTE X_PROGRAM_TWO_SIDE_NV
 enable is introduced.

 How does glPointSize work with vertex programs?

 RESOLUTION: If GL_VERTEX_PROGRAM_POINT_SIZE_ NV is disabled, the size
 of points is determine by the glPointSize sta te. If enabled,
 the point size is determined per-vertex by th e clamped value of
 the vertex result PSIZ register.

 Can the currently bound vertex program id be de leted or reloaded?

 RESOLUTION. Yes. When a vertex program id i s deleted or reloaded
 when it is the currently bound vertex program , it is as if a rebind
 occurs after the deletion or reload.

 In the case of a reload, the new vertex progr am will be used from
 then on. In the case of a deletion, the curr ent vertex program
 will be treated as if it is nonexistent.

 Should program objects have a mechanism for man aging program
 residency?

 RESOLUTION: Yes. Vertex program instruction memory is a limited
 hardware resource. glBindProgramNV will be f aster if binding to
 a resident program. Applications are likely to want to quickly
 switch between a small collection of programs .

 glAreProgramsResidentNV allows the residency status of a
 group of programs to be queried. This mimics
 glAreTexturesResident.

 Instead of adopting the glPrioritizeTextures mechanism, a new
 glRequestResidentProgramsNV command is specif ied instead.
 Assigning priorities to textures has always b een a problematic
 endeavor and few OpenGL implementations imple mented it effectively.
 For the priority mechanism to work well, it r equires the client
 to routinely update the priorities of texture s.

 The glRequestResidentProgramsNV indicates to the GL that a
 set of programs are intended for use together . Because all
 the programs are requesting residency as a gr oup, drivers
 should be able to attempt to load all the req uested programs
 at once (and remove from residency programs n ot in the group if
 necessary). Clients can use glAreProgramsRes identNV to query the
 relative success of the request.

 glRequestResidentProgramsNV should be superio r to loading programs
 on-demand because fragmentation can be avoide d.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1819

 What happens when you execute a nonexistent or invalid program?

 RESOLUTION: glBegin will fail with a GL_INVA LID_OPERATION if the
 currently bound vertex program is nonexistent or invalid. The same
 applies to glRasterPos and any command that i mplies a glBegin.

 Because the glVertex and glVertexAttribNV(0, ...) are ignored
 outside of a glBegin/glEnd pair (without gene rating an error) it
 is impossible to provoke a vertex program if the current vertex
 program is nonexistent or invalid. Other per -vertex parameters
 (for examples those set by glColor, glNormal, and glVertexAttribNV
 when the attribute number is not zero) are re corded since they
 are legal outside of a glBegin/glEnd.

 For vertex state programs, the problem is sim pler because
 glExecuteProgramNV can immediately fail with a GL_INVALID_OPERATION
 when the named vertex state program is nonexi stent or invalid.

 What happens when a matrix has been tracked int o a set of program
 parameters, but then glTrackMatrixNV(GL_VERTEX_ PROGRAM_NV, addr,
 GL_NONE, GL_IDENTITY_NV) is performed?

 RESOLUTION: The specified program parameters stop tracking a
 matrix, but they retain the values of the mat rix they were last
 tracking.

 Can rows of tracked matrices be queried by quer ying the program
 parameters that track them?

 RESOLUTION: Yes.

 Discussing matrices is confusing because of row -major versus
 column-major issues. Can you give an example o f how a matrix is
 tracked?

 // When loaded, the first row is "1, 2, 3, 4" , because of column-major
 // (OpenGL spec) vs. row-major (C) difference s.
 GLfloat matrix[16] = { 1, 5, 9, 13,
 2, 6, 10, 14,
 3, 7, 11, 15,
 4, 8, 12, 16 };
 GLfloat row1[4], row2[4];

 glMatrixMode(GL_MATRIX0_NV);
 glLoadMatrixf(matrix);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 4, GL_M ATRIX0_NV, GL_IDENTITY_NV);
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, GL_M ATRIX0_NV, GL_TRANSPOSE_NV);
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_N V, 5,
 GL_PROGRAM_PARAMETER_NV, row1);
 /* row1 is now [5 6 7 8] */
 glGetProgramParameterfvNV(GL_VERTEX_PROGRAM_N V, 9,
 GL_PROGRAM_PARAMETER_NV, row2);
 /* row2 is now [2 6 10 14] because the trac ked matrix is transposed */

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1820

 Should evaluators be extended to evaluate arbit rary vertex
 attributes?

 RESOLUTION: Yes. We'll support 32 new maps (16 for MAP1 and 16
 for MAP2) that take priority over the convent ional maps that they
 might alias to (only when vertex program mode is enabled).

 These new maps always evaluate all four compo nents. The rationale
 for this is that if we supported 1, 2, 3, or 4 components, that
 would add 128 (16*4*2) enumerants which is to o many. In addition,
 if you wanted to evaluate two 2-component ver tex attributes, you
 could instead generate one 4-component vertex attribute and use
 the vertex program with swizzling to treat th is as two-components.

 Moreover, we are assuming 4-component vector instructions so less
 than 4-component evaluations might not be any more efficient
 than 4-component evaluations. Implementation s that use vector
 instructions such as Intel's SSE instructions will be easier to
 implement since they can focus on optimizing just the 4-component
 case.

 How should GL_AUTO_NORMAL work with vertex prog rams?

 RESOLUTION: GL_AUTO_NORMAL should NOT guaran tee that the generated
 analytical normal be normalized. In vertex p rogram mode, the
 current vertex program can easily normalize t he normal if required.

 This can lead to greater efficiency if the ve rtex program transforms
 the normal to another coordinate system such as eye-space with a
 transform that preserves vector length. Then a single normalize
 after transform is more efficient than normal izing after evaluation
 and also normalizing after transform.

 Conceptually, the normalize mandated for AUTO _NORMAL in section
 5.1 is just one of the many transformation op erations subsumed by
 vertex programs.

 Should the new vertex program related enables p ush/pop with
 GL_ENABLE_BIT?

 RESOLUTION: Yes. Pushing and popping enable bits is easy.
 This includes the 32 new evaluator map enable bits. These evaluator
 enable bits are also pushed and popped using GL_EVAL_BIT.

 Should all the vertex attribute state push/pop with GL_CURRENT_BIT?

 RESOLUTION: Yes. The state is aliased with t he conventional
 per-vertex parameter state so it really shoul d push/pop.

 Should all the vertex attrib vertex array state push/pop with
 GL_CLIENT_VERTEX_ARRAY_BIT?

 RESOLUTION: Yes.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1821

 Should all the other vertex program-related sta te push/pop somehow?

 RESOLUTION: No.

 The other vertex program doesn't fit well wit h the existing bits.
 To be clear, GL_ALL_ATTRIB_BITS does not push /pop vertex program
 state other than enables.

 Should we generate a GL_INVALID_OPERATION opera tion if updating
 a vertex attribute greater than 15?

 RESOLUTION: Yes.

 The other option would be to mask or modulo t he vertex attribute
 index with 16. This is cheap, but it would m ake it difficult to
 increase the number of vertex attributes in t he future.

 If we check for the error, it should be a wel l predicted branch
 for immediate mode calls. For vertex arrays, the check is only
 required at vertex array specification time.

 Hopefully this will encourage people to use v ertex arrays over
 immediate mode.

 Should writes to program parameter registers du ring a vertex program
 be supported?

 RESOLUTION. No.

 Writes to program parameter registers from wi thin a vertex program
 would require the execution of vertex program s to be serialized
 with respect to each other. This would creat e an unwarranted
 implementation penalty for parallel vertex pr ogram execution
 implementations.

 However vertex state programs may write to pr ogram parameter
 registers (that is the whole point of vertex state programs).

 Should we support variously sized immediate mod e byte and ubyte
 commands? How about for vertex arrays?

 RESOLUTION. Only support the 4ub mode.

 There are simply too many glVertexAttribNV ro utines. Passing less
 than 4 bytes at a time is inefficient. We ex pect the main use
 for bytes to be for colors where these will b e unsigned bytes.
 So let's just support 4ub mode for bytes. Th is applies to
 vertex arrays too.

 Should we support integer, unsigned integer, an d unsigned short
 formats for vertex attributes?

 RESOLUTION: No. It's just too many immediat e mode entry points,
 most of which are not that useful. Signed sh orts are supported
 however. We expect signed shorts to be usefu l for passing compact
 texture coordinates.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1822

 Should we support doubles for vertex attributes ?

 RESOLUTION: Yes. Some implementation of the extension might
 support double precision. Lots of math routi nes output double
 precision.

 Should there be a way to determine where in a l oaded program
 string the first parse error occurs?

 RESOLUTION: Yes. You can query PROGRAM_ERRO R_POSITION_NV.

 Should program objects be shared among renderin g contexts in the
 same manner as display lists and texture object s?

 RESOLUTION: Yes.

 How should this extension interact with color m aterial?

 RESOLUTION: It should not. Color material i s a conventional
 OpenGL vertex transform mode. It does not ha ve a place for vertex
 programs. If you want to emulate color mater ial with vertex
 programs, you would simply write a program wh ere the material
 parameters feed from the color vertex attribu te.

 Should there be a glMatrixMode or glActiveTextu reARB style selector
 for vertex attributes?

 RESOLUTION: No. While this would let us red uce a lot of
 enumerants down, it would make programming a hassle in lots
 of cases. Consider having to change the vert ex attribute
 mode to enable a set of vertex arrays.

 How should gets for vertex attribute array poin ters?

 RESOLUTION: Add new get commands. Using the existing calls
 would require adding 4 sets of 16 enumerants stride, type, size,
 and pointer. That's too many gets.

 Instead add glGetVertexAttribNV and glGetVert exAttribPointervNV.
 glGetVertexAttribNV is also useful for queryi ng the current vertex
 attribute.

 glGet and glGetPointerv will not return verte x attribute array
 pointers.

 Why is the address register numbered and why is it a vector
 register?

 In the future, A0.y and A0.z and A0.w may exi st. For this
 extension, only A0.x is useful. Also in the future, there may be
 more than one address register.

 There's a nice consistency in thinking about all the registers
 as 4-component vectors even if the address re gister has only one
 usable component.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1823

 Should vertex programs and vertex state program s be required to
 have a header token and an end token?

 RESOLUTION: Yes.

 The "!!VP1.0" and "!!VSP1.0" tokens start ver tex programs and
 vertex state programs respectively. Both typ es of programs must
 end with the "END" token.

 The initial header token reminds the programm er what type of program
 they are writing. If vertex programs and ver tex state programs are
 ever read from disk files, the header token c an serve as a magic
 number for identifying vertex programs and ve rtex state programs.

 The target type for vertex programs and verte x state programs can be
 distinguished based on their respective gramm ars independent of the
 initial header tokens, but the initial header tokens will make it
 easier for programmers to distinguish the two program target types.

 We expect programs to often be generated by c oncatenation of
 program fragments. The "END" token will hope fully reduce bugs
 due to specifying an incorrectly concatenated program.

 It's tempting to make these additional header and end tokens
 optional, but if there is a sanity check valu e in header and end
 tokens, that value is undermined if the token s are optional.

 What should be said about rendering invariances ?

 RESOLUTION: See the Appendix A additions bel ow.

 The justification for the two rules cited is to support multi-pass
 rendering when using vertex programs. Differ ent rendering passes
 will likely use different programs so there m ust be some means of
 guaranteeing that two different programs can generate particular
 identical vertex results between different pa sses.

 In practice, this does limit the type of vert ex program
 implementations that are possible.

 For example, consider a limited hardware impl ementation of vertex
 programs that uses a different floating-point implementation
 than the CPU's floating-point implementation. If the limited
 hardware implementation can only run small ve rtex programs (say
 the hardware provides on 4 temporary register s instead of the
 required 12), the implementation is incorrect and non-conformant
 if programs that only require 4 temporary reg isters use the vertex
 program hardware, but programs that require m ore than 4 temporary
 registers are implemented by the CPU.

 This is a very important practical requiremen t. Consider a
 multi-pass rendering algorithm where one pass uses a vertex program
 that uses only 4 temporary registers, but a d ifferent pass uses a
 vertex program that uses 5 temporary register s. If two programs
 have instruction sequences that given the sam e input state compute
 identical resulting vertex positions, the mul ti-pass algorithm
 should generate identically positioned primit ives for each pass.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1824

 But given the non-conformant vertex program i mplementation described
 above, this could not be guaranteed.

 This does not mean that schemes for splitting vertex program
 implementations between dedicated hardware an d CPUs are impossible.
 If the CPU and dedicated vertex program hardw are used IDENTICAL
 floating-point implementations and therefore generated exactly
 identical results, the above described could work.

 While these invariance rules are vital for ve rtex programs operating
 correctly for multi-pass algorithms, there is no requirement that
 conventional OpenGL vertex transform mode wil l be invariant with
 vertex program mode. A multi-pass algorithm should not assume
 that one pass using vertex program mode and a nother pass using
 conventional GL vertex transform mode will ge nerate identically
 positioned primitives.

 Consider that while the conventional OpenGL v ertex program mode
 is repeatable with itself, the exact procedur e used to transform
 vertices is not specified nor is the procedur e's precision
 specified. The GL specification indicates th at vertex coordinates
 are transformed by the modelview matrix and t hen transformed by the
 projection matrix. Some implementations may perform this sequence
 of transformations exactly, but other impleme ntations may transform
 vertex coordinates by the composite of the mo delview and projection
 matrices (one matrix transform instead of two matrix transforms
 in sequence). Given this implementation flex ibility, there is no
 way for a vertex program author to exactly du plicate the precise
 computations used by the conventional OpenGL vertex transform mode.

 The guidance to OpenGL application programs i s clear. If you are
 going to implement multi-pass rendering algor ithms that require
 certain invariances between the multiple pass es, choose either
 vertex program mode or the conventional OpenG L vertex transform
 mode for your rendering passes, but do not mi x the two modes.

 What range of relative addressing offsets shoul d be allowed?

 RESOLUTION: -64 to 63.

 Negative offsets are useful for accessing a t able centered at zero
 without extra bias instructions. Having the offsets support much
 larger magnitudes just seems to increase the required instruction
 widths. The -64 to 63 range seems like a rea sonable compromise.

 When EXT_secondary_color is supported, how does the GL_COLOR_SUM_EXT
 enable affect vertex program mode?

 RESOLUTION: The GL_COLOR_SUM_EXT enable has no affect when vertex
 program mode is enabled.

 When vertex program mode is enabled, the colo r sum operation is
 always in operation. A program can "avoid" t he color sum operation
 by not writing the COL1 (or BFC1 when GL_VERT EX_PROGRAM_TWO_SIDE_NV)
 vertex result registers because the default v alues of all vertex
 result registers is (0,0,0,1). For the color sum operation,
 the alpha value is always assumed zero. So b y not writing the

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1825

 secondary color vertex result registers, the program assures that
 zero is added as part of the color sum operat ion.

 If there is a cost to the color sum operation , OpenGL
 implementations may be smart enough to determ ine at program bind
 time whether a secondary color vertex result is generated and
 implicitly disable the color sum operation.

 Why must RCP of 1.0 always be 1.0?

 This is important for 3D graphics so that non -projective textures
 and orthogonal projections work as expected. Basically when q or
 w is 1.0, things should work as expected.

 Stronger requirements such as "RCP of -1.0 mu st always be -1.0"
 are encouraged, but there is no compelling re ason to state such
 requirements explicitly as is the case for "R CP of 1.0 must always
 be 1.0".

 What happens when the source scalar value for t he ARL instruction
 is an extremely positive or extremely negative floating-point value?
 Is there a problem mapping the value to a const rained integer range?

 RESOLUTION: It is not a problem. Relative a ddressing can by offset
 by a limited range of offsets (-64 to 63). R elative addressing
 that falls outside of the 0 to 95 range of pr ogram parameter
 registers is automatically mapped to (0,0,0,0).

 Clamping the source scalar value for ARL to t he range -64 to 160
 inclusive is sufficient to ensure that relati ve addressing is out
 of range.

 How do you perform a 3-component normalize in t hree instructions?

 #
 # R1 = (nx,ny,nz)
 #
 # R0.xyz = normalize(R1)
 # R0.w = 1/sqrt(nx*nx + ny*ny + nz*nz)
 #
 DP3 R0.w, R1, R1;
 RSQ R0.w, R0.w;
 MUL R0.xyz, R1, R0.w;

 How do you perform a 3-component cross product in two instructions?

 #
 # Cross product | i j k | into R2.
 # | R0.x R0.y R0.z |
 # | R1.x R1.y R1.z |
 #
 MUL R2, R0.zxyw, R1.yzxw;
 MAD R2, R0.yzxw, R1.zxyw, -R2;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1826

 How do you perform a 4-component vector absolut e value in one
 instruction?

 #
 # Absolute value is the maximum of the negati ve and positive
 # components of a vector.
 #
 # R1 = abs(R0)
 #
 MAX R1, R0, -R0;

 How do you compute the determinant of a 3x3 mat rix in three
 instructions?

 #
 # Determinant of | R0.x R0.y R0.z | into R3
 # | R1.x R1.y R1.z |
 # | R2.x R2.y R2.z |
 #
 MUL R3, R1.zxyw, R2.yzxw;
 MAD R3, R1.yzxw, R2.zxyw, -R3;
 DP3 R3, R0, R3;

 How do you transform a vertex position by a 4x4 matrix and then
 perform a homogeneous divide?

 #
 # c[20] = modelview row 0
 # c[21] = modelview row 1
 # c[22] = modelview row 2
 # c[23] = modelview row 3
 #
 # result = R5
 #
 DP4 R5.w, v[OPOS], c[23];
 DP4 R5.x, v[OPOS], c[20];
 DP4 R5.y, v[OPOS], c[21];
 DP4 R5.z, v[OPOS], c[22];
 RCP R11, R5.w;
 MUL R5,R5,R11;

 How do you perform a vector weighting of two ve ctors using a single
 weight?

 #
 # R2 = vector 0
 # R3 = vector 1
 # v[WGHT].x = scalar weight to blend vectors 0 and 1
 # result = R2 * v[WGHT].x + R3 * (1-v[WGHT])
 #
 # this is because A*B + (1-A)*C = A*(B-C) + C
 #
 ADD R4, R2, -R3;
 MAD R4, v[WGHT].x, R4, R3;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1827

 How do you reduce a value to some fundamental p eriod such as 2*PI?

 #
 # c[36] = (1.0/(2*PI), 2*PI, 0.0, 0.0)
 #
 # R1.x = input value
 # R2 = result
 #
 MUL R0, R1, c[36].x;
 EXP R4, R0.x;
 MUL R2, R4.y, c[36].y;

 How do you implement a simple specular and diff use lighting
 computation with an eye-space normal?

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[4-7] = modelview inverse transpose
 # c[32] = normalized eye-space light direction (infinite light)
 # c[33] = normalized constant eye-space half-angle vector (infinite viewer)
 # c[35].x = pre-multiplied monochromatic diffuse light color & diffuse material
 # c[35].y = pre-multiplied monochromatic ambient light color & diffuse material
 # c[36] = specular color
 # c[38].x = specular power
 #
 # outputs homogenous position and color
 #
 DP4 o[HPOS].x, c[0], v[OPOS];
 DP4 o[HPOS].y, c[1], v[OPOS];
 DP4 o[HPOS].z, c[2], v[OPOS];
 DP4 o[HPOS].w, c[3], v[OPOS];
 DP3 R0.x, c[4], v[NRML];
 DP3 R0.y, c[5], v[NRML];
 DP3 R0.z, c[6], v[NRML]; # R0 = n' = transformed normal
 DP3 R1.x, c[32], R0; # R1.x = Lpos DOT n'
 DP3 R1.y, c[33], R0; # R1.y = hHat DOT n'
 MOV R1.w, c[38].x; # R1.w = specular power
 LIT R2, R1; # Compute lighting values
 MAD R3, c[35].x, R2.y, c[35].y; # diffuse + emissive
 MAD o[COL0].xyz, c[36], R2.z, R3; # + specular
 END

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1828

 Can you perturb transformed vertex positions wi th a vertex program?

 Yes. Here is an example that performs an obj ect-space diffuse
 lighting computations and perturbs the vertex position based on
 this lighting result. Do not take this examp le too seriously.

 !!VP1.0
 #
 # c[0-3] = modelview projection (composite) matrix
 # c[32] = normalized light direction in o bject-space
 # c[35] = yellow diffuse material, (1.0, 1.0, 0.0, 1.0)
 # c[64].x = 0.0
 # c[64].z = 0.125, a scaling factor
 #
 # outputs diffuse illumination for color an d perturbed position
 #
 DP3 R0, c[32], v[NRML]; # light direc tion DOT normal
 MUL o[COL0].xyz, R0, c[35];
 MAX R0, c[64].x, R0;
 MUL R0, R0, v[NRML];
 MUL R0, R0, c[64].z;
 ADD R1, v[OPOS], -R0; # perturb obj ect space position
 DP4 o[HPOS].x, c[0], R1;
 DP4 o[HPOS].y, c[1], R1;
 DP4 o[HPOS].z, c[2], R1;
 DP4 o[HPOS].w, c[3], R1;
 END

 What if more exponential precision is needed th an provided by the
 builtin EXP instruction?

 A sequence of vertex program instructions c an be used refine
 the initial EXP approximation. The pseudo- macro below shows an
 example of how to refine the EXP approximat ion.

 The psuedo-macro requires 10 instructions, 1 temp register,
 and 2 constant locations.

 CE0 = { 9.61597636e-03, -1.32823968e-03, 1.47491097e-04, -1.08635004e-05 };
 CE1 = { 1.00000000e+00, -6.93147182e-01, 2.40226462e-01, -5.55036440e-02 };

 /* Rt != Ro && Rt != Ri */
 EXP_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 EXP Rt, Ri.x; /* Use appropriate component of Ri */
 MAD Rt.w, c[CE0].w, Rt.y, c[CE0].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE0].x;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].w;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].z;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].y;
 MAD Rt.w, Rt.w,Rt.y, c[CE1].x;
 RCP Rt.w, Rt.w;
 MUL Ro, Rt.w, Rt.x; /* Apply user write mask to Ro */
 }

 Simulation gives |max abs error| < 3.77e-07 over the range (0.0
 <= x < 1.0). Actual vertex program precisi on may be slightly
 less accurate than this.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1829

 What if more exponential precision is needed th an provided by the
 builtin LOG instruction?

 The pseudo-macro requires 10 instructions, 1 temp register,
 and 3 constant locations.

 CL0 = { 2.41873696e-01, -1.37531206e-01, 5.20646796e-02, -9.31049418e-03 };
 CL1 = { 1.44268966e+00, -7.21165776e-01, 4.78684813e-01, -3.47305417e-01 };
 CL2 = { 1.0, NA, NA, NA };

 /* Rt != Ro && Rt != Ri */
 LOG_MACRO(Ro:vector, Ri:scalar, Rt:vector) {
 LOG Rt, Ri.x; /* Use appropriate component of Ri */
 ADD Rt.y, Rt.y, -c[CL2].x;
 MAD Rt.w, c[CL0].w, Rt.y, c[CL0].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL0].x;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].w;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].z;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].y;
 MAD Rt.w, Rt.w, Rt.y,c[CL1].x;
 MAD Ro, Rt.w, Rt.y, Rt.x; /* Apply user write mask to Ro */
 }

 Simulation gives |max abs error| < 1.79e-07 over the range (1.0
 <= x < 2.0). Actual vertex program precisi on may be slightly
 less accurate than this.

New Procedures and Functions

 void BindProgramNV(enum target, uint id);

 void DeleteProgramsNV(sizei n, const uint *ids) ;

 void ExecuteProgramNV(enum target, uint id, con st float *params);

 void GenProgramsNV(sizei n, uint *ids);

 boolean AreProgramsResidentNV(sizei n, const ui nt *ids,
 boolean *residenc es);

 void RequestResidentProgramsNV(sizei n, uint *i ds);

 void GetProgramParameterfvNV(enum target, uint index,
 enum pname, float *params);
 void GetProgramParameterdvNV(enum target, uint index,
 enum pname, double *params);

 void GetProgramivNV(uint id, enum pname, int *p arams);

 void GetProgramStringNV(uint id, enum pname, ub yte *program);

 void GetTrackMatrixivNV(enum target, uint addre ss,
 enum pname, int *params);

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1830

 void GetVertexAttribdvNV(uint index, enum pname , double *params);
 void GetVertexAttribfvNV(uint index, enum pname , float *params);
 void GetVertexAttribivNV(uint index, enum pname , int *params);

 void GetVertexAttribPointervNV(uint index, enum pname, void **pointer);

 boolean IsProgramNV(uint id);

 void LoadProgramNV(enum target, uint id, sizei len,
 const ubyte *program);

 void ProgramParameter4fNV(enum target, uint ind ex,
 float x, float y, flo at z, float w)
 void ProgramParameter4dNV(enum target, uint ind ex,
 double x, double y, d ouble z, double w)

 void ProgramParameter4dvNV(enum target, uint in dex,
 const double *params);
 void ProgramParameter4fvNV(enum target, uint in dex,
 const float *params) ;

 void ProgramParameters4dvNV(enum target, uint i ndex,
 uint num, const dou ble *params);
 void ProgramParameters4fvNV(enum target, uint i ndex,
 uint num, const flo at *params);

 void TrackMatrixNV(enum target, uint address,
 enum matrix, enum transform) ;

 void VertexAttribPointerNV(uint index, int size , enum type, sizei stride,
 const void *pointer) ;

 void VertexAttrib1sNV(uint index, short x);
 void VertexAttrib1fNV(uint index, float x);
 void VertexAttrib1dNV(uint index, double x);
 void VertexAttrib2sNV(uint index, short x, shor t y);
 void VertexAttrib2fNV(uint index, float x, floa t y);
 void VertexAttrib2dNV(uint index, double x, dou ble y);
 void VertexAttrib3sNV(uint index, short x, shor t y, short z);
 void VertexAttrib3fNV(uint index, float x, floa t y, float z);
 void VertexAttrib3dNV(uint index, double x, dou ble y, double z);
 void VertexAttrib4sNV(uint index, short x, shor t y, short z, short w);
 void VertexAttrib4fNV(uint index, float x, floa t y, float z, float w);
 void VertexAttrib4dNV(uint index, double x, dou ble y, double z, double w);
 void VertexAttrib4ubNV(uint index, ubyte x, uby te y, ubyte z, ubyte w);

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1831

 void VertexAttrib1svNV(uint index, const short *v);
 void VertexAttrib1fvNV(uint index, const float *v);
 void VertexAttrib1dvNV(uint index, const double *v);
 void VertexAttrib2svNV(uint index, const short *v);
 void VertexAttrib2fvNV(uint index, const float *v);
 void VertexAttrib2dvNV(uint index, const double *v);
 void VertexAttrib3svNV(uint index, const short *v);
 void VertexAttrib3fvNV(uint index, const float *v);
 void VertexAttrib3dvNV(uint index, const double *v);
 void VertexAttrib4svNV(uint index, const short *v);
 void VertexAttrib4fvNV(uint index, const float *v);
 void VertexAttrib4dvNV(uint index, const double *v);
 void VertexAttrib4ubvNV(uint index, const ubyte *v);

 void VertexAttribs1svNV(uint index, sizei n, co nst short *v);
 void VertexAttribs1fvNV(uint index, sizei n, co nst float *v);
 void VertexAttribs1dvNV(uint index, sizei n, co nst double *v);
 void VertexAttribs2svNV(uint index, sizei n, co nst short *v);
 void VertexAttribs2fvNV(uint index, sizei n, co nst float *v);
 void VertexAttribs2dvNV(uint index, sizei n, co nst double *v);
 void VertexAttribs3svNV(uint index, sizei n, co nst short *v);
 void VertexAttribs3fvNV(uint index, sizei n, co nst float *v);
 void VertexAttribs3dvNV(uint index, sizei n, co nst double *v);
 void VertexAttribs4svNV(uint index, sizei n, co nst short *v);
 void VertexAttribs4fvNV(uint index, sizei n, co nst float *v);
 void VertexAttribs4dvNV(uint index, sizei n, co nst double *v);
 void VertexAttribs4ubvNV(uint index, sizei n, c onst ubyte *v);

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f BindProgramNV,
 ExecuteProgramNV, GetProgramParameter[df]vNV, G etTrackMatrixivNV,
 LoadProgramNV, ProgramParameter[s]4[df][v]NV, a nd TrackMatrixNV:

 VERTEX_PROGRAM_NV 0x8620

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv, GetFloatv,
 and GetDoublev:

 VERTEX_PROGRAM_POINT_SIZE_NV 0x8642
 VERTEX_PROGRAM_TWO_SIDE_NV 0x8643

 Accepted by the <target> parameter of ExecutePr ogramNV and
 LoadProgramNV:

 VERTEX_STATE_PROGRAM_NV 0x8621

 Accepted by the <pname> parameter of GetVertexA ttrib[dfi]vNV:

 ATTRIB_ARRAY_SIZE_NV 0x8623
 ATTRIB_ARRAY_STRIDE_NV 0x8624
 ATTRIB_ARRAY_TYPE_NV 0x8625
 CURRENT_ATTRIB_NV 0x8626

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1832

 Accepted by the <pname> parameter of GetProgram ParameterfvNV
 and GetProgramParameterdvNV:

 PROGRAM_PARAMETER_NV 0x8644

 Accepted by the <pname> parameter of GetVertexA ttribPointervNV:

 ATTRIB_ARRAY_POINTER_NV 0x8645

 Accepted by the <pname> parameter of GetProgram ivNV:

 PROGRAM_TARGET_NV 0x8646
 PROGRAM_LENGTH_NV 0x8627
 PROGRAM_RESIDENT_NV 0x8647

 Accepted by the <pname> parameter of GetProgram StringNV:

 PROGRAM_STRING_NV 0x8628

 Accepted by the <pname> parameter of GetTrackMa trixivNV:

 TRACK_MATRIX_NV 0x8648
 TRACK_MATRIX_TRANSFORM_NV 0x8649

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_TRACK_MATRIX_STACK_DEPTH_NV 0x862E
 MAX_TRACK_MATRICES_NV 0x862F
 CURRENT_MATRIX_STACK_DEPTH_NV 0x8640
 CURRENT_MATRIX_NV 0x8641
 VERTEX_PROGRAM_BINDING_NV 0x864A
 PROGRAM_ERROR_POSITION_NV 0x864B

 Accepted by the <matrix> parameter of TrackMatr ixNV:

 NONE
 MODELVIEW
 PROJECTION
 TEXTURE
 COLOR (if ARB_imaging is supported)
 MODELVIEW_PROJECTION_NV 0x8629
 TEXTUREi_ARB

 where i is between 0 and n-1 where n is the num ber of texture units
 supported.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1833

 Accepted by the <matrix> parameter of TrackMatr ixNV and by the
 <mode> parameter of MatrixMode:

 MATRIX0_NV 0x8630
 MATRIX1_NV 0x8631
 MATRIX2_NV 0x8632
 MATRIX3_NV 0x8633
 MATRIX4_NV 0x8634
 MATRIX5_NV 0x8635
 MATRIX6_NV 0x8636
 MATRIX7_NV 0x8637

 (Enumerants 0x8638 through 0x863F are reser ved for further matrix
 enumerants 8 through 15.)

 Accepted by the <transform> parameter of TrackM atrixNV:

 IDENTITY_NV 0x862A
 INVERSE_NV 0x862B
 TRANSPOSE_NV 0x862C
 INVERSE_TRANSPOSE_NV 0x862D

 Accepted by the <array> parameter of EnableClie ntState and
 DisableClientState, by the <cap> parameter of I sEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 VERTEX_ATTRIB_ARRAY0_NV 0x8650
 VERTEX_ATTRIB_ARRAY1_NV 0x8651
 VERTEX_ATTRIB_ARRAY2_NV 0x8652
 VERTEX_ATTRIB_ARRAY3_NV 0x8653
 VERTEX_ATTRIB_ARRAY4_NV 0x8654
 VERTEX_ATTRIB_ARRAY5_NV 0x8655
 VERTEX_ATTRIB_ARRAY6_NV 0x8656
 VERTEX_ATTRIB_ARRAY7_NV 0x8657
 VERTEX_ATTRIB_ARRAY8_NV 0x8658
 VERTEX_ATTRIB_ARRAY9_NV 0x8659
 VERTEX_ATTRIB_ARRAY10_NV 0x865A
 VERTEX_ATTRIB_ARRAY11_NV 0x865B
 VERTEX_ATTRIB_ARRAY12_NV 0x865C
 VERTEX_ATTRIB_ARRAY13_NV 0x865D
 VERTEX_ATTRIB_ARRAY14_NV 0x865E
 VERTEX_ATTRIB_ARRAY15_NV 0x865F

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1834

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map1d and Map1f and by the <cap> parameter of E nable, Disable, and
 IsEnabled, and by the <pname> parameter of GetB ooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAP1_VERTEX_ATTRIB0_4_NV 0x8660
 MAP1_VERTEX_ATTRIB1_4_NV 0x8661
 MAP1_VERTEX_ATTRIB2_4_NV 0x8662
 MAP1_VERTEX_ATTRIB3_4_NV 0x8663
 MAP1_VERTEX_ATTRIB4_4_NV 0x8664
 MAP1_VERTEX_ATTRIB5_4_NV 0x8665
 MAP1_VERTEX_ATTRIB6_4_NV 0x8666
 MAP1_VERTEX_ATTRIB7_4_NV 0x8667
 MAP1_VERTEX_ATTRIB8_4_NV 0x8668
 MAP1_VERTEX_ATTRIB9_4_NV 0x8669
 MAP1_VERTEX_ATTRIB10_4_NV 0x866A
 MAP1_VERTEX_ATTRIB11_4_NV 0x866B
 MAP1_VERTEX_ATTRIB12_4_NV 0x866C
 MAP1_VERTEX_ATTRIB13_4_NV 0x866D
 MAP1_VERTEX_ATTRIB14_4_NV 0x866E
 MAP1_VERTEX_ATTRIB15_4_NV 0x866F

 Accepted by the <target> parameter of GetMapdv, GetMapfv, GetMapiv,
 Map2d and Map2f and by the <cap> parameter of E nable, Disable, and
 IsEnabled, and by the <pname> parameter of GetB ooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAP2_VERTEX_ATTRIB0_4_NV 0x8670
 MAP2_VERTEX_ATTRIB1_4_NV 0x8671
 MAP2_VERTEX_ATTRIB2_4_NV 0x8672
 MAP2_VERTEX_ATTRIB3_4_NV 0x8673
 MAP2_VERTEX_ATTRIB4_4_NV 0x8674
 MAP2_VERTEX_ATTRIB5_4_NV 0x8675
 MAP2_VERTEX_ATTRIB6_4_NV 0x8676
 MAP2_VERTEX_ATTRIB7_4_NV 0x8677
 MAP2_VERTEX_ATTRIB8_4_NV 0x8678
 MAP2_VERTEX_ATTRIB9_4_NV 0x8679
 MAP2_VERTEX_ATTRIB10_4_NV 0x867A
 MAP2_VERTEX_ATTRIB11_4_NV 0x867B
 MAP2_VERTEX_ATTRIB12_4_NV 0x867C
 MAP2_VERTEX_ATTRIB13_4_NV 0x867D
 MAP2_VERTEX_ATTRIB14_4_NV 0x867E
 MAP2_VERTEX_ATTRIB15_4_NV 0x867F

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 -- Section 2.10 "Coordinate Transformations"

 Add this initial discussion:

 "Per-vertex parameters are transformed before t he transformation
 results are used to generate primitives for ras terization, establish
 a raster position, or generate vertices for sel ection or feedback.

 Each vertex's per-vertex parameters are transfo rmed by one of
 two vertex transformation modes. The first ver tex transformation mode
 is GL's conventional vertex transformation mode l. The second mode,

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1835

 known as 'vertex program' mode, transforms the vertex's per-vertex
 parameters by an application-supplied vertex pr ogram.

 Vertex program mode is enabled and disabled, re spectively, by

 void Enable(enum target);

 and

 void Disable(enum target);

 with target equal to VERTEX_PROGRAM_NV. When v ertex program mode
 is enabled, vertices are transformed by the cur rently bound vertex
 program as discussed in section 2.14."

 Update the original initial paragraph in the se ction to read:

 "When vertex program mode is disabled, vertices , normals, and texture
 coordinates are transformed before their coordi nates are used to
 produce an image in the framebuffer. We begin with a description
 of how vertex coordinates are transformed and h ow the transformation
 is controlled in the case when vertex program m ode is disabled. The
 discussion that continues through section 2.13 applies when vertex
 program mode is disabled."

 -- Section 2.10.2 "Matrices"

 Change the first paragraph to read:

 "The projection matrix and model-view matrix ar e set and modified
 with a variety of commands. The affected matri x is determined by
 the current matrix mode. The current matrix mo de is set with

 void MatrixMode(enum mode);

 which takes one of the pre-defined constants TE XTURE, MODELVIEW,
 COLOR, PROJECTION, or MATRIXi_NV as the argumen t. In the case
 of MATRIXi_NV, i is an integer between 0 and n- 1 indicating one
 of n tracking matrices where n is the value of the implementation
 defined constant MAX_TRACK_MATRICES_NV. TEXTUR E is described
 later in section 2.10.2, and COLOR is described in section 3.6.3.
 The tracking matrices of the form MATRIXi_NV ar e described in
 section 2.14.5. If the current matrix mode is MODELVIEW, then
 matrix operations apply to the model-view matri x; if PROJECTION,
 then they apply to the projection matrix."

 Change the last paragraph to read:

 "The state required to implement transformation s consists of a n-value
 integer indicating the current matrix mode (whe re n is 4 + the number
 of tracking matrices supported), a stack of at least two 4x4 matrices
 for each of COLOR, PROJECTION, and TEXTURE with associated stack
 pointers, n stacks (where n is at least 8) of a t least one 4x4 matrix
 for each MATRIXi_NV with associated stack point ers, and a stack of at
 least 32 4x4 matrices with an associated stack pointer for MODELVIEW.
 Initially, there is only one matrix on each sta ck, and all matrices
 are set to the identity. The initial matrix mo de is MODELVIEW."

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1836

 -- NEW Section 2.14 "Vertex Programs"

 "The conventional GL vertex transformation mode l described
 in sections 2.10 through 2.13 is a configurable but essentially
 hard-wired sequence of per-vertex computations based on a canonical
 set of per-vertex parameters and vertex transfo rmation related
 state such as transformation matrices, lighting parameters, and
 texture coordinate generation parameters.

 The general success and utility of the conventi onal GL vertex
 transformation model reflects its basic corresp ondence to the
 typical vertex transformation requirements of 3 D applications.

 However when the conventional GL vertex transfo rmation model
 is not sufficient, the vertex program mode prov ides a substantially
 more flexible model for vertex transformation. The vertex program
 mode permits applications to define their own v ertex programs.

 2.14.1 The Vertex Program Execution Model

 A vertex program is a sequence of floating-poin t 4-component vector
 operations that operate on per-vertex attribute s and program
 parameters. Vertex programs execute on a per-v ertex basis and
 operate on each vertex completely independently from the processing
 of other vertices. Vertex programs execute a f inite fixed sequence
 of instructions with no branching or looping. Vertex programs
 execute without data hazards so results compute d in one operation can
 be used immediately afterwards. The result of a vertex program is
 a set of vertex result vectors that becomes the transformed vertex
 parameters used by primitive assembly.

 Vertex programs use a specific well-defined ins truction set, register
 set, and operational model defined in the follo wing sections.

 The vertex program register set consists of fiv e types of registers
 described in the following five sections.

 2.14.1.1 The Vertex Attribute Registers

 The Vertex Attribute Registers are sixteen 4-co mponent
 vector floating-point registers containing the current vertex's
 per-vertex attributes. These registers are num bered 0 through 15.
 These registers are private to each vertex prog ram invocation and are
 initialized at each vertex program invocation b y the current vertex
 attribute state specified with VertexAttribNV c ommands. These registers
 are read-only during vertex program execution. The VertexAttribNV
 commands used to update the vertex attribute re gisters can be issued
 both outside and inside of Begin/End pairs. Ve rtex program execution
 is provoked by updating vertex attribute zero. Updating vertex
 attribute zero outside of a Begin/End pair is i gnored without
 generating any error (identical to the Vertex c ommand operation).

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1837

 The commands

 void VertexAttrib{1234}{sfd}NV(uint index, T coords);
 void VertexAttrib{1234}{sfd}vNV(uint index, T coords);
 void VertexAttrib4ubNV(uint index, T coords);
 void VertexAttrib4ubvNV(uint index, T coords) ;

 specify the particular current vertex attribute indicated by index.
 The coordinates for each vertex attribute are n amed x, y, z, and w.
 The VertexAttrib1NV family of commands sets the x coordinate to the
 provided single argument while setting y and z to 0 and w to 1.
 Similarly, VertexAttrib2NV sets x and y to the specified values,
 z to 0 and w to 1; VertexAttrib3NV sets x, y, a nd z, with w set
 to 1, and VertexAttrib4NV sets all four coordin ates. The error
 INVALID_VALUE is generated if index is greater than 15.

 No conversions are applied to the vertex attrib utes specified as
 type short, float, or double. However, vertex attributes specified
 as type ubyte are converted as described by Tab le 2.6.

 The commands

 void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
 void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

 specify a contiguous set of n vertex attributes . The effect of

 VertexAttribs{1234}{sfd}vNV(index, n, coords)

 is the same (assuming no errors) as the command sequence

 #define NUM k /* where k is 1, 2, 3, or 4 co mponents */
 int i;
 for (i=n-1; i>=0; i--) {
 VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
 }

 VertexAttribs4ubvNV behaves similarly.

 The VertexAttribNV calls equivalent to VertexAt tribsNV are issued in
 reverse order so that vertex program execution is provoked when index
 is zero only after all the other vertex attribu tes have first been
 specified.

 2.14.1.2 The Program Parameter Registers

 The Program Parameter Registers are ninety-six 4-component
 floating-point vector registers containing the vertex program
 parameters. These registers are numbered 0 thr ough 95. This
 relatively large set of registers is intended t o hold parameters
 such as matrices, lighting parameters, and cons tants required by
 vertex programs. Vertex program parameter regi sters can be updated
 in one of two ways: by the ProgramParameterNV commands outside
 of a Begin/End pair or by a vertex state progra m executed outside
 of a Begin/End pair (vertex state programs are discussed in section
 2.14.3).

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1838

 The commands

 void ProgramParameter4fNV(enum target, uint i ndex,
 float x, float y, f loat z, float w)
 void ProgramParameter4dNV(enum target, uint i ndex,
 double x, double y, double z, double w)

 specify the particular program parameter indica ted by index.
 The coordinates values x, y, z, and w are assig ned to the respective
 components of the particular program parameter. target must be
 VERTEX_PROGRAM_NV.

 The commands

 void ProgramParameter4dvNV(enum target, uint index, double *params);
 void ProgramParameter4fvNV(enum target, uint index, float *params);

 operate identically to ProgramParameter4fNV and ProgramParameter4dNV
 respectively except that the program parameters are passed as an
 array of four components.

 The commands

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, float * params);

 specify a contiguous set of num program paramet ers. target must
 be VERTEX_PROGRAM_NV. The effect is the same (assuming no errors) as

 for (i=index; i<index+num; i++) {
 ProgramParameter4{fd}vNV(target, i, ¶ms [i*4]);
 }

 The program parameter registers are shared to a ll vertex program
 invocations within a rendering context. Progra mParameterNV command
 updates and vertex state program executions are serialized with
 respect to vertex program invocations and other vertex state program
 executions.

 Writes to the program parameter registers durin g vertex state program
 execution can be maskable on a per-component ba sis.

 The error INVALID_VALUE is generated if any Pro gramParameterNV has
 an index is greater than 95.

 The initial value of all ninety-six program par ameter registers is
 (0,0,0,0).

 2.14.1.3 The Address Register

 The Address Register is a single 4-component ve ctor signed 32-bit
 integer register though only the x component of the vector is
 accessible. The register is private to each ve rtex program invocation
 and is initialized to (0,0,0,0) at every vertex program invocation.
 This register can be written during vertex prog ram execution (but

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1839

 not read) and its value can be used for as a re lative offset for
 reading vertex program parameter registers. On ly the vertex program
 parameter registers can be read using relative addressing (writes
 using relative addressing are not supported).

 See the discussion of relative addressing of pr ogram parameters
 in section 2.14.1.9 and the discussion of the A RL instruction in
 section 2.14.1.10.1.

 2.14.1.4 The Temporary Registers

 The Temporary Registers are twelve 4-component floating-point vector
 registers used to hold temporary results during vertex program
 execution. These registers are numbered 0 thro ugh 11. These
 registers are private to each vertex program in vocation and
 initialized to (0,0,0,0) at every vertex progra m invocation. These
 registers can be read and written during vertex program execution.
 Writes to these registers can be maskable on a per-component basis.

 2.14.1.5 The Vertex Result Register Set

 The Vertex Result Registers are fifteen 4-compo nent floating-point
 vector registers used to write the results of a vertex program.
 Each register value is initialized to (0,0,0,1) at the invocation
 of each vertex program. Writes to the vertex r esult registers can
 be maskable on a per-component basis. These re gisters are named in
 Table X.1 and further discussed below.

Vertex Result Component
Register Name Description Interpretation
-------------- --------------------------------- --------------
 HPOS Homogeneous clip space position (x,y,z,w)
 COL0 Primary color (front-facing) (r,g,b,a)
 COL1 Secondary color (front-facing) (r,g,b,a)
 BFC0 Back-facing primary color (r,g,b,a)
 BFC1 Back-facing secondary color (r,g,b,a)
 FOGC Fog coordinate (f,*,*,*)
 PSIZ Point size (p,*,*,*)
 TEX0 Texture coordinate set 0 (s,t,r,q)
 TEX1 Texture coordinate set 1 (s,t,r,q)
 TEX2 Texture coordinate set 2 (s,t,r,q)
 TEX3 Texture coordinate set 3 (s,t,r,q)
 TEX4 Texture coordinate set 4 (s,t,r,q)
 TEX5 Texture coordinate set 5 (s,t,r,q)
 TEX6 Texture coordinate set 6 (s,t,r,q)
 TEX7 Texture coordinate set 7 (s,t,r,q)

 Table X.1: Vertex Result Registers.

 HPOS is the transformed vertex's homogeneous cl ip space position.
 The vertex's homogeneous clip space position is converted to
 normalized device coordinates and transformed t o window coordinates
 as described at the end of section 2.10 and in section 2.11.
 Further processing (subsequent to vertex progra m termination)
 is responsible for clipping primitives assemble d from vertex
 program-generated vertices as described in sect ion 2.10 but all

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1840

 client-defined clip planes are treated as if th ey are disabled when
 vertex program mode is enabled.

 Four distinct color results can be generated fo r each vertex.
 COL0 is the transformed vertex's front-facing p rimary color.
 COL1 is the transformed vertex's front-facing s econdary color.
 BFC0 is the transformed vertex's back-facing pr imary color. BFC1 is
 the transformed vertex's back-facing secondary color.

 Primitive coloring may operate in two-sided col or mode. This behavior
 is enabled and disabled by calling Enable or Di sable with the
 symbolic value VERTEX_PROGRAM_TWO_SIDE_NV. The selection between
 the back-facing colors and the front-facing col ors depends on the
 primitive of which the vertex is a part. If th e primitive is a
 point or a line segment, the front-facing color s are always selected.
 If the primitive is a polygon and two-sided col or mode is disabled,
 the front-facing colors are selected. If it is a polygon and
 two-sided color mode is enabled, then the selec tion is based on the
 sign of the (clipped or unclipped) polygon's si gned area computed in
 window coordinates. This facingness determinat ion is identical to
 the two-sided lighting facingness determination described in section
 2.13.1.

 The selected primary and secondary colors for e ach primitive are
 clamped to the range [0,1] and then interpolate d across the assembled
 primitive during rasterization with at least 8- bit accuracy for each
 color component.

 FOGC is the transformed vertex's fog coordinate . The register's
 first floating-point component is interpolated across the assembled
 primitive during rasterization and used as the fog distance to
 compute per-fragment the fog factor when fog is enabled. However,
 if both fog and vertex program mode are enabled , but the FOGC vertex
 result register is not written, the fog factor is overridden to 1.0.
 The register's other three components are ignor ed.

 Point size determination may operate in program -specified point
 size mode. This behavior is enabled and disabl ed by calling Enable
 or Disable with the symbolic value VERTEX_PROGR AM_POINT_SIZE_NV.
 If the vertex is for a point primitive and the mode is enabled
 and the PSIZ vertex result is written, the poin t primitive's size
 is determined by the clamped x component of the PSIZ register.
 Otherwise (because vertex program mode is disab led, program-specified
 point size mode is disabled, or because the ver tex program did not
 write PSIZ), the point primitive's size is dete rmined by the point
 size state (the state specified using the Point Size command).

 The PSIZ register's x component is clamped to t he range zero through
 either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing
 is disabled or the hi value of the SMOOTH_POINT _SIZE_RANGE if
 point smoothing is enabled. The register's oth er three components
 are ignored.

 If the vertex is not for a point primitive, the value of the
 PSIZ vertex result register is ignored.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1841

 TEX0 through TEX7 are the transformed vertex's texture coordinate
 sets for texture units 0 through 7. These floa ting-point coordinates
 are interpolated across the assembled primitive during rasterization
 and used for accessing textures. If the number of texture units
 supported is less than eight, the values of ver tex result registers
 that do not correspond to existent texture unit s are ignored.

 2.14.1.6 Semantic Meaning for Vertex Attribute s and Program Parameters

 One important distinction between the conventio nal GL vertex
 transformation mode and the vertex program mode is that per-vertex
 parameters and other state parameters in vertex program mode do
 not have dedicated semantic interpretations the way that they do
 with the conventional GL vertex transformation mode.

 For example, in the conventional GL vertex tran sformation mode,
 the Normal command specifies a per-vertex norma l. The semantic that
 the Normal command supplies a normal for lighti ng is established because
 that is how the per-vertex attribute supplied b y the Normal command
 is used by the conventional GL vertex transform ation mode.
 Similarly, other state parameters such as a lig ht source position have
 semantic interpretations based on how the conve ntional GL vertex
 transformation model uses each particular param eter.

 In contrast, vertex attributes and program para meters for vertex
 programs have no pre-defined semantic meanings. The meaning of
 a vertex attribute or program parameter in vert ex program mode is
 defined by how the vertex attribute or program parameter is used by
 the current vertex program to compute and write values to the Vertex
 Result Registers. This is the reason that per- vertex attributes and
 program parameters for vertex programs are numb ered instead of named.

 For convenience however, the existing per-verte x parameters for the
 conventional GL vertex transformation mode (ver tices, normals,
 colors, fog coordinates, vertex weights, and te xture coordinates) are
 aliased to numbered vertex attributes. This al iasing is specified in
 Table X.2. The table includes how the various conventional components
 map to the 4-component vertex attribute compone nts.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1842

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter C ommand Mapping
--------- --------------- ---------------------- ------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTU RE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTU RE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTU RE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTU RE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTU RE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTU RE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTU RE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTU RE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conv entional per-vertex
parameters.

 Only vertex attribute zero is treated specially because it is
 the attribute that provokes the execution of th e vertex program;
 this is the attribute that aliases to the Verte x command's vertex
 coordinates.

 The result of a vertex program is the set of po st-transformation
 vertex parameters written to the Vertex Result Registers.
 All vertex programs must write a homogeneous cl ip space position, but
 the other Vertex Result Registers can be option ally written.

 Clipping and culling are not the responsibility of vertex programs
 because these operations assume the assembly of multiple vertices
 into a primitive. View frustum clipping is per formed subsequent to
 vertex program execution. Clip planes are not supported in vertex
 program mode.

 2.14.1.7 Vertex Program Specification

 Vertex programs are specified as an array of ub ytes. The array is
 a string of ASCII characters encoding the progr am.

 The command

 LoadProgramNV(enum target, uint id, sizei len ,
 const ubyte *program);

 loads a vertex program when the target paramete r is VERTEX_PROGRAM_NV.
 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs i s the positive integers
 (zero is reserved). The error INVALID_VALUE oc curs if a program is
 loaded with an id of zero. The error INVALID_O PERATION is generated
 if a program is loaded for an id that is curren tly loaded with a

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1843

 program of a different program target. Managin g the program name
 space and binding to vertex programs is discuss ed later in section
 2.14.1.8.

 program is a pointer to an array of ubytes that represents the
 program being loaded. The length of the array is indicated by len.

 A second program target type known as vertex st ate programs is
 discussed in 2.14.4.

 At program load time, the program is parsed int o a set of tokens
 possibly separated by white space. Spaces, tab s, newlines, carriage
 returns, and comments are considered whitespace . Comments begin with
 the character "#" and are terminated by a newli ne, a carriage return,
 or the end of the program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically
 valid sequences for vertex programs. The set o f valid tokens can be
 inferred from the grammar. The token "" repres ents an empty string
 and is used to indicate optional rules. A prog ram is invalid if it
 contains any undefined tokens or characters.

 <program> ::= "!!VP1.0" <instructi onSequence> "END"

 <instructionSequence> ::= <instructionSequence > <instructionLine>
 | <instructionLine>

 <instructionLine> ::= <instruction> ";"

 <instruction> ::= <ARL-instruction>
 | <VECTORop-instructio n>
 | <SCALARop-instructio n>
 | <BINop-instruction>
 | <TRIop-instruction>

 <ARL-instruction> ::= "ARL" <addrReg> "," <scalarSrcReg>

 <VECTORop-instruction> ::= <VECTORop> <maskedDs tReg> "," <swizzleSrcReg>

 <SCALARop-instruction> ::= <SCALARop> <maskedDs tReg> "," <scalarSrcReg>

 <BINop-instruction> ::= <BINop> <maskedDstRe g> ","
 <swizzleSrcReg> "," <swizzleSrcReg>

 <TRIop-instruction> ::= <TRIop> <maskedDstRe g> ","
 <swizzleSrcReg> "," <swizzleSrcReg> ","
 <swizzleSrcReg>

 <VECTORop> ::= "MOV"
 | "LIT"

 <SCALARop> ::= "RCP"
 | "RSQ"
 | "EXP"
 | "LOG"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1844

 <BINop> ::= "MUL"
 | "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MIN"
 | "MAX"
 | "SLT"
 | "SGE"

 <TRIop> ::= "MAD"

 <scalarSrcReg> ::= <optionalSign> <srcR eg> <scalarSuffix>

 <swizzleSrcReg> ::= <optionalSign> <srcR eg> <swizzleSuffix>

 <maskedDstReg> ::= <dstReg> <optionalMa sk>

 <optionalMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <optionalSign> ::= "-"
 | ""

 <srcReg> ::= <vertexAttribReg>
 | <progParamReg>
 | <temporaryReg>

 <dstReg> ::= <temporaryReg>
 | <vertexResultReg>

 <vertexAttribReg> ::= "v" "[" vertexAttrib RegNum "]"

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1845

 <vertexAttribRegNum> ::= decimal integer from 0 to 15 inclusive
 | "OPOS"
 | "WGHT"
 | "NRML"
 | "COL0"
 | "COL1"
 | "FOGC"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <progParamReg> ::= <absProgParamReg>
 | <relProgParamReg>

 <absProgParamReg> ::= "c" "[" <progParamRe gNum> "]"

 <progParamRegNum> ::= decimal integer from 0 to 95 inclusive

 <relProgParamReg> ::= "c" "[" <addrReg> "] "
 | "c" "[" <addrReg> "+ " <progParamPosOffset> "]"
 | "c" "[" <addrReg> "- " <progParamNegOffset> "]"

 <progParamPosOffset> ::= decimal integer from 0 to 63 inclusive

 <progParamNegOffset> ::= decimal integer from 0 to 64 inclusive

 <addrReg> ::= "A0" "." "x"

 <temporaryReg> ::= "R0"
 | "R1"
 | "R2"
 | "R3"
 | "R4"
 | "R5"
 | "R6"
 | "R7"
 | "R8"
 | "R9"
 | "R10"
 | "R11"

 <vertexResultReg> ::= "o" "[" vertexResult RegName "]"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1846

 <vertexResultRegName> ::= "HPOS"
 | "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

 The <vertexAttribRegNum> rule matches both regi ster numbers 0 through
 15 and a set of mnemonics that abbreviate the a liasing of conventional
 the per-vertex parameters to vertex attribute r egister numbers.
 Table X.3 shows the mapping from mnemonic to ve rtex attribute register
 number and what the mnemonic abbreviates.

 Vertex Attribute
Mnemonic Register Number Meaning
-------- ---------------- --------------------
 "OPOS" 0 object position
 "WGHT" 1 vertex weight
 "NRML" 2 normal
 "COL0" 3 primary color
 "COL1" 4 secondary color
 "FOGC" 5 fog coordinate
 "TEX0" 8 texture coordinate 0
 "TEX1" 9 texture coordinate 1
 "TEX2" 10 texture coordinate 2
 "TEX3" 11 texture coordinate 3
 "TEX4" 12 texture coordinate 4
 "TEX5" 13 texture coordinate 5
 "TEX6" 14 texture coordinate 6
 "TEX7" 15 texture coordinate 7

Table X.3: The mapping between vertex attribute re gister numbers,
mnemonics, and meanings.

 A vertex programs fails to load if it does not write at least one
 component of the HPOS register.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1847

 A vertex program fails to load if it contains m ore than 128
 instructions.

 A vertex program fails to load if any instructi on sources more than
 one unique program parameter register.

 A vertex program fails to load if any instructi on sources more than
 one unique vertex attribute register.

 The error INVALID_OPERATION is generated if a v ertex program fails
 to load because it is not syntactically correct or for one of the
 semantic restrictions listed above.

 The error INVALID_OPERATION is generated if a p rogram is loaded for
 id when id is currently loaded with a program o f a different target.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified b y its tokenized name.
 The operation of these instructions when execut ed is defined in
 section 2.14.1.10.

 A successfully loaded program replaces the prog ram previously assigned
 to the name specified by id. If the OUT_OF_MEM ORY error is generated
 by LoadProgramNV, no change is made to the prev ious contents of the
 named program.

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte
 offset into the last loaded program string indi cating where the first
 error in the program. If the program fails to load because of a
 semantic restriction that cannot be determined until the program
 is fully scanned, the error position will be le n, the length of
 the program. If the program loads successfully , the value of
 PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

 2.14.1.8 Vertex Program Binding and Program Ma nagement

 The current vertex program is invoked whenever vertex attribute
 zero is updated (whether by a VertexAttributeNV or Vertex command).
 The current vertex program is updated by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV. This b inds the vertex program
 named by id as the current vertex program. The error INVALID_OPERATION
 is generated if id names a program that is not a vertex program
 (for example, if id names a vertex state progra m as described in
 section 2.14.4).

 Binding to a nonexistent program id does not ge nerate an error.
 In particular, binding to program id zero does not generate an error.
 However, because program zero cannot be loaded, program zero is
 always nonexistent. If a program id is success fully loaded with a
 new vertex program and id is also the currently bound vertex program,
 the new program is considered the currently bou nd vertex program.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1848

 The INVALID_OPERATION error is generated when b oth vertex program
 mode is enabled and Begin is called (or when a command that performs
 an implicit Begin is called) if the current ver tex program is
 nonexistent or not valid. A vertex program may not be valid for
 reasons explained in section 2.14.5.

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *id s);

 ids contains n names of programs to be deleted. After a program
 is deleted, it becomes nonexistent, and its nam e is again unused.
 If a program that is currently bound is deleted , it is as though
 BindProgramNV has been executed with the same t arget as the deleted
 program and program zero. Unused names in ids are silently ignored,
 as is the value zero.

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n previously unused program names in id s. These names
 are marked as used, for the purposes of GenProg ramsNV only,
 but they become existent programs only when the are first loaded
 using LoadProgramNV. The error INVALID_VALUE i s generated if n
 is negative.

 An implementation may choose to establish a wor king set of programs on
 which binding and ExecuteProgramNV operations (execute programs are
 explained in section 2.14.4) are performed with higher performance.
 A program that is currently part of this workin g set is said to
 be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *reside nces);

 returns TRUE if all of the n programs named in ids are resident,
 or if the implementation does not distinguish a working set. If at
 least one of the programs named in ids is not r esident, then FALSE is
 returned, and the residence of each program is returned in residences.
 Otherwise the contents of residences are not ch anged. If any of
 the names in ids are nonexistent or zero, FALSE is returned, the
 error INVALID_VALUE is generated, and the conte nts of residences
 are indeterminate. The residence status of a s ingle named program
 can also be queried by calling GetProgramivNV w ith id set to the
 name of the program and pname set to PROGRAM_RE SIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is
 currently resident, not whether it could not be made resident.
 An implementation may choose to make a program resident only on
 first use, for example. The client may guide t he GL implementation
 in determining which programs should be residen t by requesting a
 set of programs to make resident.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1849

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids shoul d be made resident.
 While all the programs are not guaranteed to be come resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher prior ity for residency
 should be given to programs listed earlier in t he ids array.
 RequestResidentProgramsNV silently ignores atte mpts to make resident
 nonexistent program names or zero. ArePrograms ResidentNV can be
 called after RequestResidentProgramsNV to deter mine which programs
 actually became resident.

 2.14.1.9 Vertex Program Register Accesses

 There are 17 vertex program instructions. The instructions and their
 respective input and output parameters are summ arized in Table X.4.

 Output
 Inputs (vector or
Opcode (scalar or vector) replicated scalar) O peration
------ ------------------ ------------------ - -------------------------
 ARL s address register a ddress register load
 MOV v v m ove
 MUL v,v v m ultiply
 ADD v,v v a dd
 MAD v,v,v v m ultiply and add
 RCP s ssss r eciprocal
 RSQ s ssss r eciprocal square root
 DP3 v,v ssss 3 -component dot product
 DP4 v,v ssss 4 -component dot product
 DST v,v v d istance vector
 MIN v,v v m inimum
 MAX v,v v m aximum
 SLT v,v v s et on less than
 SGE v,v v s et on greater equal than
 EXP s v e xponential base 2
 LOG s v l ogarithm base 2
 LIT v v l ight coefficients

Table X.4: Summary of vertex program instructions. "v" indicates a
vector input or output, "s" indicates a scalar inpu t, and "ssss" indicates
a scalar output replicated across a 4-component vec tor.

 Instructions use either scalar source values or swizzled source
 values, indicated in the grammar (see section 2 .14.1.7) by the rules
 <scalarSrcReg> and <swizzleSrcReg> respectively . Either type of
 source value is negated when the <optionalSign> rule matches "-".

 Scalar source register values select one of the source register's
 four components based on the <component> of the <scalarSuffix> rule.
 The characters "x", "y", "z", and "w" match the x, y, z, and
 w components respectively. The indicated compo nent is used as a
 scalar for the particular source value.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1850

 Swizzled source register values may arbitrarily swizzle the source
 register's components based on the <swizzleSuff ix> rule. In the case
 where the <swizzleSuffix> matches (ignoring whi tespace) the pattern
 ".????" where each question mark is one of "x", "y", "z", or "w",
 this indicates the ith component of the source register value should
 come from the component named by the ith compon ent in the sequence.
 For example, if the swizzle suffix is ".yzzx" a nd the source register
 contains [2.0, 8.0, 9.0, 0.0] the swizzled so urce register value
 used by the instruction is [8.0, 9.0, 9.0, 2.0].

 If the <swizzleSuffix> rule matches "", this is treated the same as
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace)
 ".x", ".y", ".z", or ".w", these are treated th e same as ".xxxx",
 ".yyyy", ".zzzz", and ".wwww" respectively.

 The register sourced for either a scalar source register value or a
 swizzled source register value is indicated in the grammar by the rule
 <srcReg>. The <vertexAttribReg>, <progParamReg >, and <temporaryReg>
 sub-rules correspond to one of the vertex attri bute registers,
 program parameter registers, or temporary regis ter respectively.

 The vertex attribute and temporary registers ar e accessed absolutely
 based on the numbered register. In the case of vertex attribute
 registers, if the <vertexAttribRegNum> correspo nds to a mnemonic,
 the corresponding register number from Table X. 3 is used.

 Either absolute or relative addressing can be u sed to access the
 program parameter registers. Absolute addressi ng is indicated by
 the grammar by the <absProgParamReg> rule. Abs olute addressing
 accesses the numbered program parameter registe r indicated by the
 <progParamRegNum> rule. Relative addressing ac cesses the numbered
 program parameter register plus an offset. The offset is the positive
 value of <progParamPosOffset> if the <progParam PosOffset> rule is
 matched, or the offset is the negative value of <progParamNegOffset>
 if the <progParamNegOffset> rule is matched, or otherwise the offset
 is zero. Relative addressing is available only for program parameter
 registers and only for reads (not writes). Rel ative addressing
 reads outside of the 0 to 95 inclusive range al ways read the value
 (0,0,0,0).

 The result of all instructions except ARL is wr itten back to a
 masked destination register, indicated in the g rammar by the rule
 <maskedDstReg>.

 Writes to each component of the destination reg ister can be masked,
 indicated in the grammar by the <optionalMask> rule. If the optional
 mask is "", all components are written. Otherw ise, the optional
 mask names particular components to write. The characters "x",
 "y", "z", and "w" match the x, y, z, and w comp onents respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be written but not the y component.
 The grammar requires that the destination regis ter mask components
 must be listed in "xyzw" order.

 The actual destination register is indicated in the grammar by
 the rule <dstReg>. The <temporaryReg> and <ver texResultReg>

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1851

 sub-rules correspond to either the temporary re gisters or vertex
 result registers. The temporary registers are determined and accessed
 as described earlier.

 The vertex result registers are accessed absolu tely based on the
 named register. The <vertexResultRegName> rule corresponds to
 registers named in Table X.1.

 2.14.1.10 Vertex Program Instruction Set Opera tions

 The operation of the 17 vertex program instruct ions are described in
 this section. After the textual description of each instruction's
 operation, a register transfer level descriptio n is also presented.

 The following conventions are used in each inst ruction's register
 transfer level description. The 4-component ve ctor variables "t",
 "u", and "v" are assigned intermediate results. The destination
 register is called "destination". The three po ssible source registers
 are called "source0", "source1", and "source2" respectively.

 The x, y, z, and w vector components are referr ed to with the suffixes
 ".x", ".y", ".z", and ".w" respectively. The s uffix ".c" is used for
 scalar source register values and c represents the particular source
 register's selected scalar component. Swizzlin g of components is
 indicated with the suffixes ".c***", ".*c**", " .**c*", and ".***c"
 where c is meant to indicate the x, y, z, or w component selected for
 the particular source operand swizzle configura tion. For example:

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;

 This example indicates that t should be assigne d the swizzled
 version of the source0 operand based on the sou rce0 operand's swizzle
 configuration.

 The variables "negate0", "negate1", and "negate 2" are booleans
 that are true when the respective source value should be negated.
 The variables "xmask", "ymask", "zmask", and "w mask" are booleans
 that are true when the destination write mask f or the respective
 component is enabled for writing.

 Otherwise, the register transfer level descript ions mimic ANSI C
 syntax.

 The idiom "IEEE(expression)" represents the s23 e8 single-precision
 result of the expression if evaluated using IEE E single-precision
 floating point operations. The IEEE idiom is u sed to specify the
 maximum allowed deviation from IEEE single-prec ision floating-point
 arithmetic results.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1852

 The following abbreviations are also used:

 +Inf floating-point representation of posi tive infinity
 -Inf floating-point representation of nega tive infinity
 +NaN floating-point representation of posi tive not a number
 -NaN floating-point representation of nega tive not a number
 NA not applicable or not used

 2.14.1.10.1 ARL: Address Register Load

 The ARL instruction moves value of the source s calar into the address
 register. Conceptually, the address register l oad instruction is
 a 4-component vector signed integer register, b ut the only valid
 address register component for writing and inde xing is the x
 component. The only use for A0.x is as a base address for program
 parameter reads. The source value is a float t hat is truncated
 towards negative infinity into a signed integer .

 t.x = source0.c;
 if (negate0) t.x = -t.x;
 A0.x = floor(t.x);

 2.14.1.10.2 MOV: Move

 The MOV instruction moves the value of the sour ce vector into the
 destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 if (xmask) destination.x = t.x;
 if (ymask) destination.y = t.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = t.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1853

 2.14.1.10.3 MUL: Multiply

 The MUL instruction multiplies the values of th e two source vectors
 into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x * u.x;
 if (ymask) destination.y = t.y * u.y;
 if (zmask) destination.z = t.z * u.z;
 if (wmask) destination.w = t.w * u.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1854

 2.14.1.10.4 ADD: Add

 The ADD instruction adds the values of the two source vectors into
 the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x + u.x;
 if (ymask) destination.y = t.y + u.y;
 if (zmask) destination.z = t.z + u.z;
 if (wmask) destination.w = t.w + u.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1855

 2.14.1.10.5 MAD: Multiply and Add

 The MAD instruction adds the value of the third source vector to the
 product of the values of the first and second t wo source vectors,
 writing the result to the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = source2.c***;
 v.y = source2.*c**;
 v.z = source2.**c*;
 v.w = source2.***c;
 if (negate2) {
 v.x = -v.x;
 v.y = -v.y;
 v.z = -v.z;
 v.w = -v.w;
 }
 if (xmask) destination.x = t.x * u.x + v.x;
 if (ymask) destination.y = t.y * u.y + v.y;
 if (zmask) destination.z = t.z * u.z + v.z;
 if (wmask) destination.w = t.w * u.w + v.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1856

 2.14.1.10.6 RCP: Reciprocal

 The RCP instruction inverts the value of the so urce scalar into
 the destination register. The reciprocal of ex actly 1.0 must be
 exactly 1.0.

 Additionally the reciprocal of negative infinit y gives [-0.0, -0.0,
 -0.0, -0.0]; the reciprocal of negative zero gi ves [-Inf, -Inf, -Inf,
 -Inf]; the reciprocal of positive zero gives [+ Inf, +Inf, +Inf, +Inf];
 and the reciprocal of positive infinity gives [0.0, 0.0, 0.0, 0.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (t.x == 1.0f) {
 u.x = 1.0f;
 } else {
 u.x = 1.0f / t.x;
 }
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/t.x) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 2.0f. The intent of this pr ecision requirement is
 that this amount of relative precision apply ov er all values of t.x.

 2.14.1.10.7 RSQ: Reciprocal Square Root

 The RSQ instruction assigns the inverse square root of the
 absolute value of the source scalar into the de stination register.

 Additionally, RSQ(0.0) gives [+Inf, +Inf, +Inf, +Inf]; and both
 RSQ(+Inf) and RSQ(-Inf) give [0.0, 0.0, 0.0, 0. 0];

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 u.x = 1.0f / sqrt(fabs(t.x));
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where

 | u.x - IEEE(1.0f/sqrt(fabs(t.x))) | < 1.0f /(2^22)

 for 1.0f <= t.x <= 4.0f. The intent of this pr ecision requirement is
 that this amount of relative precision apply ov er all values of t.x.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1857

 2.14.1.10.8 DP3: Three-Component Dot Product

 The DP3 instruction assigns the three-component dot product of the
 two source vectors into the destination registe r.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

 2.14.1.10.9 DP4: Four-Component Dot Product

 The DP4 instruction assigns the four-component dot product of the
 two source vectors into the destination registe r.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z + t .w * u.w;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1858

 2.14.1.10.10 DST: Distance Vector

 The DST instructions calculates a distance vect or for the values
 of two source vectors. The first vector is ass umed to be [NA, d*d,
 d*d, NA] and the second source vector is assume d to be [NA, 1.0/d,
 NA, 1.0/d], where the value of a component labe led NA is undefined.
 The destination vector is then assigned [1,d,d* d,1.0/d].

 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.y = -t.y;
 t.z = -t.z;
 }
 u.y = source1.*c**;
 u.w = source1.***c;
 if (negate1) {
 u.y = -u.y;
 u.w = -u.w;
 }
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.y*u.y;
 if (zmask) destination.z = t.z;
 if (wmask) destination.w = u.w;

 2.14.1.10.11 MIN: Minimum

 The MIN instruction assigns the component-wise minimum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? t. x : u.x;
 if (ymask) destination.y = (t.y < u.y) ? t. y : u.y;
 if (zmask) destination.z = (t.z < u.z) ? t. z : u.z;
 if (wmask) destination.w = (t.w < u.w) ? t. w : u.w;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1859

 2.14.1.10.12 MAX: Maximum

 The MAX instruction assigns the component-wise maximum of the two
 source vectors into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? t .x : u.x;
 if (ymask) destination.y = (t.y >= u.y) ? t .y : u.y;
 if (zmask) destination.z = (t.z >= u.z) ? t .z : u.z;
 if (wmask) destination.w = (t.w >= u.w) ? t .w : u.w;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1860

 2.14.1.10.13 SLT: Set On Less Than

 The SLT instruction performs a component-wise a ssignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is less than t he value of the second
 source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x < u.x) ? 1. 0 : 0.0;
 if (ymask) destination.y = (t.y < u.y) ? 1. 0 : 0.0;
 if (zmask) destination.z = (t.z < u.z) ? 1. 0 : 0.0;
 if (wmask) destination.w = (t.w < u.w) ? 1. 0 : 0.0;

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1861

 2.14.1.10.14 SGE: Set On Greater or Equal Than

 The SGE instruction performs a component-wise a ssignment of either
 1.0 or 0.0 into the destination register. 1.0 is assigned if the
 value of the first source vector is greater tha n or equal the value
 of the second source vector; otherwise, 0.0 is assigned.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = (t.x >= u.x) ? 1 .0 : 0.0;
 if (ymask) destination.y = (t.y >= u.y) ? 1 .0 : 0.0;
 if (zmask) destination.z = (t.z >= u.z) ? 1 .0 : 0.0;
 if (wmask) destination.w = (t.w >= u.w) ? 1 .0 : 0.0;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1862

 2.14.1.10.15 EXP: Exponential Base 2

 The EXP instruction generates an approximation of the exponential base
 2 for the value of a source scalar. This appro ximation is assigned
 to the z component of the destination register. Additionally,
 the x and y components of the destination regis ter are assigned
 values useful for determining a more accurate a pproximation. The
 exponential base 2 of the source scalar can be better approximated
 by destination.x*FUNC(destination.y) where FUNC is some user
 approximation (presumably implemented by subseq uent instructions in
 the vertex program) to 2^destination.y where 0. 0 <= destination.y <
 1.0.

 Additionally, EXP(-Inf) or if the exponential r esult underflows
 gives [0.0, 0.0, 0.0, 1.0]; and EXP(+Inf) or if the exponential result
 overflows gives [+Inf, 0.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 q.x = 2^floor(t.x);
 q.y = t.x - floor(t.x);
 q.z = q.x * APPX(q.y);
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent appro ximation of exponential
 base 2 such that

 | exp(q.y*log(2.0))-APPX(q.y) | < 1/(2^11)

 for all 0 <= q.y < 1.0.

 The expression "2^floor(t.x)" should overflow t o +Inf and underflow
 to zero.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1863

 2.14.1.10.16 LOG: Logarithm Base 2

 The LOG instruction generates an approximation of the logarithm base
 2 for the absolute value of a source scalar. T his approximation
 is assigned to the z component of the destinati on register.
 Additionally, the x and y components of the des tination register are
 assigned values useful for determining a more a ccurate approximation.
 The logarithm base 2 of the absolute value of t he source scalar
 can be better approximated by destination.x+FUN C(destination.y)
 where FUNC is some user approximation (presumab ly implemented by
 subsequent instructions in the vertex program) of log2(destination.y)
 where 1.0 <= destination.y < 2.0.

 Additionally, LOG(0.0) gives [-Inf, 1.0, -Inf, 1.0]; and both
 LOG(+Inf) and LOG(-Inf) give [+Inf, 1.0, +Inf, 1.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (fabs(t.x) != 0.0f) {
 if (fabs(t.x) == +Inf) {
 q.x = +Inf;
 q.y = 1.0;
 q.z = +Inf;
 } else {
 q.x = Exponent(t.x);
 q.y = Mantissa(t.x);
 q.z = q.x + APPX(q.y);
 }
 } else {
 q.x = -Inf;
 q.y = 1.0;
 q.z = -Inf;
 }
 if (xmask) destination.x = q.x;
 if (ymask) destination.y = q.y;
 if (zmask) destination.z = q.z;
 if (wmask) destination.w = 1.0;

 where APPX is an implementation dependent appro ximation of logarithm
 base 2 such that

 | log(q.y)/log(2.0) - APPX(q.y) | < 1/(2^11)

 for all 1.0 <= q.y < 2.0.

 The "Exponent(t.x)" function returns the unbias ed exponent between
 -126 and 127. For example, "Exponent(1.0)" equ als 0.0. (Note that
 the IEEE floating-point representation maintain s the exponent as a
 biased value.) Larger or smaller exponents shou ld generate +Inf or
 -Inf respectively. The "Mantissa(t.x)" functio n returns a value
 in the range [1.0f, 2.0). The intent of these functions is that
 fabs(t.x) is approximately "Mantissa(t.x)*2^Exp onent(t.x)".

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1864

 2.14.1.10.17 LIT: Light Coefficients

 The LIT instruction is intended to compute ambi ent, diffuse,
 and specular lighting coefficients from a diffu se dot product,
 a specular dot product, and a specular power th at is clamped to
 (-128,128) exclusive. The x component of the s ource vector is
 assumed to contain a diffuse dot product (unit normal vector dotted
 with a unit light vector). The y component of the source vector is
 assumed to contain a Blinn specular dot product (unit normal vector
 dotted with a unit half-angle vector). The w c omponent is assumed
 to contain a specular power.

 An implementation must support at least 8 fract ion bits in the
 specular power. Note that because 0.0 times an ything must be 0.0,
 taking any base to the power of 0.0 will yield 1.0.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.w = -t.w;
 }
 if (t.w < -(128.0-epsilon)) t.w = -(128.0-e psilon);
 else if (t.w > 128-epsilon) t.w = 128-epsil on;
 if (t.x < 0.0) t.x = 0.0;
 if (t.y < 0.0) t.y = 0.0;
 if (xmask) destination.x = 1.0;
 if (ymask) destination.y = t.x;
 if (zmask) destination.z = (t.x > 0.0) ? EX P(t.w*LOG(t.y)) : 0.0;
 if (wmask) destination.w = 1.0;

 where EXP and LOG are functions that approximat e the exponential base
 2 and logarithm base 2 with the identical accur acy and special case
 requirements of the EXP and LOG instructions. epsilon is 1.0/256.0
 or approximately 0.0039 which would correspond to representing the
 specular power with a s8.8 representation.

 2.14.1.11 Vertex Program Floating Point Requir ements

 All vertex program calculations are assumed to use IEEE single
 precision floating-point math with a format of s1e8m23 (one signed
 bit, 8 bits of exponent, 23 bits of magnitude) or better and the
 round-to-zero rounding mode. The only exceptio ns to this are the RCP,
 RSQ, LOG, EXP, and LIT instructions.

 Note that (positive or negative) 0.0 times anyt hing is (positive)
 0.0.

 The RCP and RSQ instructions deliver results ac curate to 1.0/(2^22)
 and the approximate output (the z component) of the EXP and LOG
 instructions only has to be accurate to 1.0/(2^ 11). The LIT
 instruction specular output (the z component) i s allowed an error
 equivalent to the combination of the EXP and LO G combination to
 implement a power function.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1865

 The floor operations used by the ARL and EXP in structions must
 operate identically. Specifically, the EXP ins truction's floor(t.x)
 intermediate result must exactly match the inte ger stored in the
 address register by the ARL instruction.

 Since distance is calculated as (d^2)*(1/sqrt(d ^2)), 0.0 multiplied
 by anything must be 0.0. This affects the MUL, MAD, DP3, DP4, DST,
 and LIT instructions.

 Because if/then/else conditional evaluation is done by multiplying
 by 1.0 or 0.0 and adding, the floating point co mputations require:

 0.0 * x = 0.0 for all x (including +Inf, - Inf, +NaN, and -NaN)
 1.0 * x = x for all x (including +Inf an d -Inf)
 0.0 + x = x for all x (including +Inf an d -Inf)

 Including +Inf, -Inf, +NaN, and -NaN when apply ing the above three
 rules is recommended but not required. (The re commended inclusion
 of +Inf, -Inf, +NaN, and -NaN when applying the first rule is
 inconsistent with IEEE floating-point requireme nts.)

 For the purpose of comparisons performed by the SGE and SLT
 instructions, -0.0 is less than +0.0, -NaN is l ess than -Inf,
 and +NaN is greater than +Inf. (This is incons istent with IEEE
 floating-point requirements).

 No floating-point exceptions or interrupts are generated. Denorms
 are not supported; if a denorm is input, it is treated as 0.0 (ie,
 denorms are flushed to zero).

 Computations involving +NaN or -NaN generate +N aN, except for the
 requirement that zero times +NaN or -NaN must a lways be zero. (This
 exception is inconsistent with IEEE floating-po int requirements).

 2.14.2 Vertex Program Update for the Current R aster Position

 When vertex programs are enabled, the raster po sition is determined
 by the current vertex program. The raster posi tion specified by
 RasterPos is treated as if they were specified in a Vertex command.
 The contents of vertex result register set is u sed to update respective
 raster position state.

 Assuming an existent program, the homogeneous c lip-space coordinates
 are passed to clipping as if they represented a point and assuming no
 client-defined clip planes are enabled. If the point is not culled,
 then the projection to window coordinates is co mputed (section 2.10)
 and saved as the current raster position and th e valid bit is set.
 If the current vertex program is nonexistent or the "point" is
 culled, the current raster position and its ass ociated data become
 indeterminate and the raster position valid bit is cleared.

 2.14.3 Vertex Arrays for Vertex Attributes

 Data for vertex attributes in vertex program mo de may be specified
 using vertex array commands. The client may sp ecify and enable any
 of sixteen vertex attribute arrays.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1866

 The vertex attribute arrays are ignored when ve rtex program mode
 is disabled. When vertex program mode is enabl ed, vertex attribute
 arrays are used.

 The command

 void VertexAttribPointerNV(uint index, int si ze, enum type,
 sizei stride, cons t void *pointer);

 describes the locations and organizations of th e sixteen vertex
 attribute arrays. index specifies the particul ar vertex attribute
 to be described. size indicates the number of values per vertex
 that are stored in the array; size must be one of 1, 2, 3, or 4.
 type specifies the data type of the values stor ed in the array.
 type must be one of SHORT, FLOAT, DOUBLE, or UN SIGNED_BYTE and these
 values correspond to the array types short, int , float, double, and
 ubyte respectively. The INVALID_OPERATION erro r is generated if
 type is UNSIGNED_BYTE and size is not 4. The I NVALID_VALUE error
 is generated if index is greater than 15. The INVALID_VALUE error
 is generated if stride is negative.

 The one, two, three, or four values in an array that correspond to a
 single vertex attribute comprise an array eleme nt. The values within
 each array element at stored sequentially in me mory. If the stride
 is specified as zero, then array elements are s tored sequentially
 as well. Otherwise points to the ith and (i+1) st elements of an array
 differ by stride basic machine units (typically unsigned bytes),
 the pointer to the (i+1)st element being greate r. pointer specifies
 the location in memory of the first value of th e first element of
 the array being specified.

 Vertex attribute arrays are enabled with the En ableClientState command
 and disabled with the DisableClientState comman d. The value of the
 argument to either command is VERTEX_ATTRIB_ARR AYi_NV where i is an
 integer between 0 and 15; specifying a value of i enables or
 disables the vertex attribute array with index i. The constants
 obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_AR RAY0_NV + i.

 When vertex program mode is enabled, the ArrayE lement command operates
 as described in this section in contrast to the behavior described
 in section 2.8. Likewise, any vertex array tra nsfer commands that
 are defined in terms of ArrayElement (DrawArray s, DrawElements, and
 DrawRangeElements) assume the operation of Arra yElement described
 in this section when vertex program mode is ena bled.

 When vertex program mode is enabled, the ArrayE lement command
 transfers the ith element of particular enabled vertex arrays as
 described below. For each enabled vertex attri bute array, it is
 as though the corresponding command from sectio n 2.14.1.1 were
 called with a pointer to element i. For each v ertex attribute,
 the corresponding command is VertexAttrib[size] [type]v, where size
 is one of [1,2,3,4], and type is one of [s,f,d, ub], corresponding
 to the array types short, int, float, double, a nd ubyte respectively.

 However, if a given vertex attribute array is d isabled, but its
 corresponding aliased conventional per-vertex p arameter's vertex
 array (as described in section 2.14.1.6) is ena bled, then it is

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1867

 as though the corresponding command from sectio n 2.7 or section
 2.6.2 were called with a pointer to element i. In this case, the
 corresponding command is determined as describe d in section 2.8's
 description of ArrayElement.

 If the vertex attribute array 0 is enabled, it is as though
 VertexAttrib[size][type]v(0, ...) is executed l ast, after the
 executions of other corresponding commands. If the vertex attribute
 array 0 is disabled but the vertex array is ena bled, it is as though
 Vertex[size][type]v is executed last, after the executions of other
 corresponding commands.

 2.14.4 Vertex State Programs

 Vertex state programs share the same instructio n set as and a similar
 execution model to vertex programs. While vert ex program are executed
 implicitly when a vertex transformation is prov oked, vertex state
 programs are executed explicitly, independently of any vertices.
 Vertex state programs can write program paramet er registers, but
 may not write vertex result registers.

 The purpose of a vertex state program is to upd ate program parameter
 registers by means of an application-defined pr ogram. Typically,
 an application will load a set of program param eters and then execute
 a vertex state program that reads and updates t he program parameter
 registers. For example, a vertex state program might normalize a
 set of unnormalized vectors previously loaded a s program parameters.
 The expectation is that subsequently executed v ertex programs would
 use the normalized program parameters.

 Vertex state programs are loaded with the same LoadProgramNV command
 (see section 2.14.1.7) used to load vertex prog rams except that the
 target must be VERTEX_STATE_PROGRAM_NV when loa ding a vertex state
 program.

 Vertex state programs must conform to a more li mited grammar than
 the grammar for vertex programs. The vertex st ate program grammar
 for syntactically valid sequences is the same a s the grammar defined
 in section 2.14.1.7 with the following modified rules:

 <program> ::= "!!VSP1.0" <instruct ionSequence> "END"

 <dstReg> ::= <absProgParamReg>
 | <temporaryReg>

 <vertexAttribReg> ::= "v" "[" "0" "]"

 A vertex state program fails to load if it does not write at least
 one program parameter register.

 A vertex state program fails to load if it cont ains more than 128
 instructions.

 A vertex state program fails to load if any ins truction sources more
 than one unique program parameter register.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1868

 A vertex state program fails to load if any ins truction sources
 more than one unique vertex attribute register (this is necessarily
 true because only vertex attribute 0 is availab le in vertex state
 programs).

 The error INVALID_OPERATION is generated if a v ertex state program
 fails to load because it is not syntactically c orrect or for one
 of the other reasons listed above.

 A successfully loaded vertex state program is p arsed into a sequence
 of instructions. Each instruction is identifie d by its tokenized
 name. The operation of these instructions when executed is defined
 in section 2.14.1.10.

 Executing vertex state programs is legal only o utside a Begin/End
 pair. A vertex state program may not read any vertex attribute
 register other than register zero. A vertex st ate program may not
 write any vertex result register.

 The command

 ExecuteProgramNV(enum target, uint id, const float *params);

 executes the vertex state program named by id. The target must be
 VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded
 with a target type of VERTEX_STATE_PROGRAM_NV. params points to
 an array of four floating-point values that are loaded into vertex
 attribute register zero (the only vertex attrib ute readable from a
 vertex state program).

 The INVALID_OPERATION error is generated if the named program is
 nonexistent, is invalid, or the program is not a vertex state
 program. A vertex state program may not be val id for reasons
 explained in section 2.14.5.

 2.14.5 Tracking Matrices

 As a convenience to applications, standard GL m atrix state can be
 tracked into program parameter vectors. This p ermits vertex programs
 to access matrices specified through GL matrix commands.

 In addition to GL's conventional matrices, seve ral additional matrices
 are available for tracking. These matrices hav e names of the form
 MATRIXi_NV where i is between zero and n-1 wher e n is the value
 of the MAX_TRACK_MATRICES_NV implementation dep endent constant.
 The MATRIXi_NV constants obey MATRIXi_NV = MATR IX0_NV + i. The value
 of MAX_TRACK_MATRICES_NV must be at least eight . The maximum
 stack depth for tracking matrices is defined by the
 MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

 The command

 TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

 tracks a given transformed version of a particu lar matrix into
 a contiguous sequence of four vertex program pa rameter registers
 beginning at address. target must be VERTEX_PR OGRAM_NV (though

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1869

 tracked matrices apply to vertex state programs as well because both
 vertex state programs and vertex programs share d the same program
 parameter registers). matrix must be one of NO NE, MODELVIEW,
 PROJECTION, TEXTURE, TEXTUREi_ARB (where i is b etween 0 and n-1
 where n is the number of texture units supporte d), COLOR (if
 the ARB_imaging subset is supported), MODELVIEW _PROJECTION_NV,
 or MATRIXi_NV. transform must be one of IDENTI TY_NV, INVERSE_NV,
 TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV. The INV ALID_VALUE error is
 generated if address is not a multiple of four.

 The MODELVIEW_PROJECTION_NV matrix represents t he concatenation of
 the current modelview and projection matrices. If M is the current
 modelview matrix and P is the current projectio n matrix, then the
 MODELVIEW_PROJECTION_NV matrix is C and compute d as

 C = P M

 Matrix tracking for the specified program param eter register and the
 next consecutive three registers is disabled wh en NONE is supplied
 for matrix. When tracking is disabled the prev iously tracked program
 parameter registers retain the state of their l ast tracked values.
 Otherwise, the specified transformed version of matrix is tracked into
 the specified program parameter register and th e next three registers.
 Whenever the matrix changes, the transformed ve rsion of the matrix
 is updated in the specified range of program pa rameter registers.
 If TEXTURE is specified for matrix, the texture matrix for the current
 active texture unit is tracked. If TEXTUREi_AR B is specified for
 matrix, the <i>th texture matrix is tracked.

 Matrices are tracked row-wise meaning that the top row of the
 transformed matrix is loaded into the program p arameter address,
 the second from the top row of the transformed matrix is loaded into
 the program parameter address+1, the third from the top row of the
 transformed matrix is loaded into the program p arameter address+2,
 and the bottom row of the transformed matrix is loaded into the
 program parameter address+3. The transformed m atrix may be identical
 to the specified matrix, the inverse of the spe cified matrix, the
 transpose of the specified matrix, or the inver se transpose of the
 specified matrix, depending on the value of tra nsform.

 When matrix tracking is enabled for a particula r program parameter
 register sequence, updates to the program param eter using
 ProgramParameterNV commands, a vertex program, or a vertex state
 program are not possible. The INVALID_OPERATIO N error is generated
 if a ProgramParameterNV command is used to upda te a program parameter
 register currently tracking a matrix.

 The INVALID_OPERATION error is generated by Exe cuteProgramNV when
 the vertex state program requested for executio n writes to a program
 parameter register that is currently tracking a matrix because the
 program is considered invalid.

 2.14.6 Required Vertex Program State

 The state required for vertex programs consists of:

 a bit indicating whether or not program mode is enabled;

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1870

 a bit indicating whether or not two-sided col or mode is enabled;

 a bit indicating whether or not program-speci fied point size mode
 is enabled;

 96 4-component floating-point program paramet er registers;

 16 4-component vertex attribute registers (th ough this state is
 aliased with the current normal, primary colo r, secondary color,
 fog coordinate, weights, and texture coordina te sets);

 24 sets of matrix tracking state for each set of four sequential
 program parameter registers, consisting of a n-valued integer
 indicated the tracked matrix or GL_NONE (wher e n is 5 + the number
 of texture units supported + the number of tr acking matrices
 supported) and a four-valued integer indicati ng the transformation
 of the tracked matrix;

 an unsigned integer naming the currently boun d vertex program

 and the state must be maintained to indicate which integers
 are currently in use as program names.

 Each existent program object consists of a targe t, a boolean indicating
 whether the program is resident, an array of typ e ubyte containing the
 program string, and the length of the program st ring array. Initially,
 no program objects exist.

 Program mode, two-sided color mode, and program- specified point size
 mode are all initially disabled.

 The initial state of all 96 program parameter re gisters is (0,0,0,0).

 The initial state of the 16 vertex attribute reg isters is (0,0,0,1)
 except in cases where a vertex attribute registe r aliases to a
 conventional GL transform mode vertex parameter in which case
 the initial state is the initial state of the re spective aliased
 conventional vertex parameter.

 The initial state of the 24 sets of matrix track ing state is NONE
 for the tracked matrix and IDENTITY_NV for the t ransformation of the
 tracked matrix.

 The initial currently bound program is zero.

 The client state required to implement the 16 ve rtex attribute
 arrays consists of 16 boolean values, 16 memory pointers, 16 integer
 stride values, 16 symbolic constants representin g array types,
 and 16 integers representing values per element. Initially, the
 boolean values are each disabled, the memory poi nters are each null,
 the strides are each zero, the array types are e ach FLOAT, and the
 integers representing values per element are eac h four."

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1871

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 -- Section 3.3 "Points"

 Change the first paragraph to read:

 "When program vertex mode is disabled, the point size for rasterizing
 points is controlled with

 void PointSize(float size);

 size specifies the width or diameter of a point. The initial point size
 value is 1.0. A value less than or equal to zer o results in the error
 INVALID_VALUE. When vertex program mode is enab led, the point size for
 rasterizing points is determined as described in section 2.14.1.5."

 -- Section 3.9 "Color Sum"

 Change the first paragraph to read:

 "At the beginning of color sum, a fragment has t wo RGBA colors: a
 primary color cpri (which texturing, if enabled, may have modified)
 and a secondary color csec. If vertex program m ode is disabled, csec
 is defined by the lighting equations in section 2.13.1. If vertex
 program mode is enabled, csec is the fragment's secondary color,
 obtained by interpolating the COL1 (or BFC1 if t he primitive is a
 polygon, the vertex program two-sided color mode is enabled, and the
 polygon is back-facing) vertex result register R GB components for the
 vertices making up the primitive; the alpha comp onent of csec when
 program mode is enabled is always zero. The com ponents of these two
 colors are summed to produce a single post-textu ring RGBA color c.
 The components of c are then clamped to the rang e [0,1]."

 -- Section 3.10 "Fog"

 Change the initial sentences in the second parag raph to read:

 "This factor f may be computed according to one of three equations:

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

 If vertex program mode is enabled, then c is the fragment's fog
 coordinate, obtained by interpolating the FOGC v ertex result register
 values for the vertices making up the primitive. When vertex program
 mode is disabled, the c is the eye-coordinate di stance from the eye,
 (0,0,0,1) in eye-coordinates, to the fragment ce nter." ...

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Framebuffer)

 None

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1872

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 -- Section 5.1 "Evaluators"

 Add the following lines to the end of table 5.1 (page 165):

 target k values
 ------------------------- --- --------------- ---------------
 MAP1_VERTEX_ATTRIB0_4_NV 4 x, y, z, w vert ex attribute 0
 MAP1_VERTEX_ATTRIB1_4_NV 4 x, y, z, w vert ex attribute 1
 MAP1_VERTEX_ATTRIB2_4_NV 4 x, y, z, w vert ex attribute 2
 MAP1_VERTEX_ATTRIB3_4_NV 4 x, y, z, w vert ex attribute 3
 MAP1_VERTEX_ATTRIB4_4_NV 4 x, y, z, w vert ex attribute 4
 MAP1_VERTEX_ATTRIB5_4_NV 4 x, y, z, w vert ex attribute 5
 MAP1_VERTEX_ATTRIB6_4_NV 4 x, y, z, w vert ex attribute 6
 MAP1_VERTEX_ATTRIB7_4_NV 4 x, y, z, w vert ex attribute 7
 MAP1_VERTEX_ATTRIB8_4_NV 4 x, y, z, w vert ex attribute 8
 MAP1_VERTEX_ATTRIB9_4_NV 4 x, y, z, w vert ex attribute 9
 MAP1_VERTEX_ATTRIB10_4_NV 4 x, y, z, w vert ex attribute 10
 MAP1_VERTEX_ATTRIB11_4_NV 4 x, y, z, w vert ex attribute 11
 MAP1_VERTEX_ATTRIB12_4_NV 4 x, y, z, w vert ex attribute 12
 MAP1_VERTEX_ATTRIB13_4_NV 4 x, y, z, w vert ex attribute 13
 MAP1_VERTEX_ATTRIB14_4_NV 4 x, y, z, w vert ex attribute 14
 MAP1_VERTEX_ATTRIB15_4_NV 4 x, y, z, w vert ex attribute 15

 Replace the four paragraphs on pages 167-168 th at explain the
 operation of EvalCoord:

 "EvalCoord operates differently depending on wh ether vertex program
 mode is enabled or not. We first discuss how E valCoord operates when
 vertex program mode is disabled.

 When one of the EvalCoord commands is issued an d vertex program
 mode is disabled, all currently enabled maps (e xcluding the
 maps that correspond to vertex attributes, i.e. maps of the form
 MAPx_VERTEX_ATTRIBn_4_NV). ..."

 Add a paragraph before the initial paragraph di scussing AUTO_NORMAL:

 "When one of the EvalCoord commands is issued a nd vertex program mode
 is enabled, the evaluation and the issuing of p er-vertex parameter commands
 matches the discussion above, except that if an y vertex attribute
 maps are enabled, the corresponding VertexAttri bNV call for each enabled
 vertex attribute map is issued with the map's e valuated coordinates
 and the corresponding aliased per-vertex parame ter map is ignored
 if it is also enabled, with one important diffe rence. As is the case when
 vertex program mode is disabled, the GL uses ev aluated values
 instead of current values for those evaluations that are enabled
 (otherwise the current values are used). The o rder of the effective
 commands is immaterial, except that Vertex or V ertexAttribNV(0,
 ...) (the commands that issue provoke vertex pr ogram execution)
 must be issued last. Use of evaluators has no effect on the current
 vertex attributes or conventional per-vertex pa rameters. If a
 vertex attribute map is disabled, but its corre sponding conventional
 per-vertex parameter map is enabled, the conven tional per-vertex
 parameter map is evaluated and issued as when v ertex program mode
 is not enabled."

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1873

 Replace the two paragraphs discussing AUTO_NORM AL with:

 "Finally, if either MAP2_VERTEX_3 or MAP2_VERTE X_4 is enabled or if
 both MAP2_VERTEX_ATTRIB0_4_NV and vertex progra m mode are enabled,
 then the normal to the surface is computed. An alytic computation,
 which sometimes yields normals of length zero, is one method which
 may be used. If automatic normal generation is enabled, then this
 computed normal is used as the normal associate d with a generated
 vertex (when program mode is disabled) or as ve rtex attribute 2
 (when vertex program mode is enabled). Automat ic normal generation
 is controlled with Enable and Disable with the symbolic constant
 AUTO_NORMAL. If automatic normal generation is disabled and vertex
 program mode is enabled, then vertex attribute 2 is evaluated
 as usual. If automatic normal generation and v ertex program mode
 are disabled, then a corresponding normal map, if enabled, is used
 to produce a normal. If neither automatic norm al generation nor
 a map corresponding to the normal per-vertex pa rameter (or vertex
 attribute 2 in program mode) are enabled, then no normal is sent with
 a vertex resulting from an evaluation (the effe ct is that the current
 normal is used). For MAP_VERTEX3, let q=p. Fo r MAP_VERTEX_4 or
 MAP2_VERTEX_ATTRBI0_4_NV, let q = (x/w, y/w, z/ w) where (x,y,z,w)=p.
 Then let

 m = (partial q / partial u) cross (partial q / partial v)

 Then when vertex program mode is disabled, the generated analytic
 normal, n, is given by n=m/||m||. However, whe n vertex program mode
 is enabled, the generated analytic normal used for vertex attribute
 2 is simply (mx,my,mz,1). In vertex program mo de, the normalization
 of the generated analytic normal can be perform ed by the current
 vertex program."

 Change the respective sentences of the last par agraph discussing
 required evaluator state to read:

 "The state required for evaluators potentially consists of 9
 conventional one-dimensional map specifications , 16 vertex attribute
 one-dimensional map specifications, 9 conventio nal two-dimensional
 map specifications, and 16 vertex attribute two -dimensional map
 specifications indicating which are enabled. . .. All vertex
 coordinate maps produce the coordinates (0,0,0, 1) (or the appropriate
 subset); all normal coordinate maps produce (0, 0,1); RGBA maps produce
 (1,1,1,1); color index maps produce 1.0; textur e coordinate maps
 produce (0,0,0,1); and vertex attribute maps pr oduce (0,0,0,1). ...
 If any evaluation command is issued when none o f MAPn_VERTEX_3,
 MAPn_VERTEX_4, or MAPn_VERTEX_ATTRIB0_NV (where n is the map dimension
 being evaluated) are enabled, nothing happens."

 -- Section 5.4 "Display Lists"

 Add to the list of commands not compiled into d isplay lists in the
 third to the last paragraph:

 "AreProgramsResidentNV, IsProgramNV, GenProgram sNV, DeleteProgramsNV,
 VertexAttribPointerNV"

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1874

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 -- Section 6.1.12 "Saving and Restoring State"

 Only the enables and vertex array state introdu ced by this extension
 can be pushed and popped.

 See the attribute column in table X.5 for deter mining what vertex
 program state can be pushed and popped with Pus hAttrib, PopAttrib,
 PushClientAttrib, and PopClientAttrib.

 The new evaluator enables in table 6.22 can als o be pushed and
 popped.

 -- NEW Section 6.1.13 "Vertex Program Queries"

 "The commands

 void GetProgramParameterfvNV(enum target, uin t index,
 enum pname, floa t *params);
 void GetProgramParameterdvNV(enum target, uin t index,
 enum pname, doub le *params);

 obtain the current program parameters for the g iven program
 target and parameter index into the array param s. target must
 be VERTEX_PROGRAM_NV. pname must be PROGRAM_PA RAMETER_NV.
 The INVALID_VALUE error is generated if index i s greater than 95.
 Each program parameter is an array of four valu es.

 The command

 void GetProgramivNV(uint id, enum pname, int *params);

 obtains program state named by pname for the pr ogram named id
 in the array params. pname must be one of PROG RAM_TARGET_NV,
 PROGRAM_LENGTH_NV, or PROGRAM_RESIDENT_NV. The INVALID_OPERATION
 error is generated if the program named id does not exist.

 The command

 void GetProgramStringNV(uint id, enum pname,
 ubyte *program);

 obtains the program string for program id. pna me must be
 PROGRAM_STRING_NV. n ubytes are returned into the array program
 where n is the length of the program in ubytes. GetProgramivNV with
 PROGRAM_LENGTH_NV can be used to query the leng th of a program's
 string. The INVALID_OPERATION error is generat ed if the program
 named id does not exist.

 The command

 void GetTrackMatrixivNV(enum target, uint add ress,
 enum pname, int *para ms);

 obtains the matrix tracking state named by pnam e for the specified

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1875

 address in the array params. target must be VE RTEX_PROGRAM_NV. pname
 must be either TRACK_MATRIX_NV or TRACK_MATRIX_ TRANSFORM_NV. If the
 matrix tracked is a texture matrix, TEXTUREi_AR B is returned (never
 TEXTURE) where i indicates the texture unit of the particular tracked
 texture matrix. The INVALID_VALUE error is gen erated if address is
 not divisible by four and is not less than 96.

 The commands

 void GetVertexAttribdvNV(uint index, enum pna me, double *params);
 void GetVertexAttribfvNV(uint index, enum pna me, float *params);
 void GetVertexAttribivNV(uint index, enum pna me, int *params);

 obtain the vertex attribute state named by pnam e for the vertex
 attribute numbered index. pname must be one of ATTRIB_ARRAY_SIZE_NV,
 ATTRIB_ARRAY_STRIDE_NV, ATTRIB_ARRAY_TYPE_NV, o r CURRENT_ATTRIB_NV.
 Note that all the queries except CURRENT_ATTRIB _NV return client
 state. The INVALID_VALUE error is generated if index is greater than
 15, or if index is zero and pname is CURRENT_AT TRIB_NV.

 The command

 void GetVertexAttribPointervNV(uint index,
 enum pname, vo id **pointer);

 obtains the pointer named pname in the array pa rams for vertex
 attribute numbered index. pname must be ATTRIB _ARRAY_POINTER_NV.
 The INVALID_VALUE error is generated if index g reater than 15.

 The command

 boolean IsProgramNV(uint id);

 returns TRUE if program is the name of a progra m object. If program
 is zero or is a non-zero value that is not the name of a program
 object, or if an error condition occurs, IsProg ramNV returns FALSE.
 A name returned by GenProgramsNV but not yet lo aded with a program
 is not the name of a program object."

 -- NEW Section 6.1.14 "Querying Current Matrix St ate"

 "Instead of providing distinct symbolic tokens for querying each
 matrix and matrix stack depth, the symbolic tok ens CURRENT_MATRIX_NV
 and CURRENT_MATRIX_STACK_DEPTH_NV in conjunctio n with the GetBooleanv,
 GetIntegerv, GetFloatv, and GetDoublev return t he respective state
 of the current matrix given the current matrix mode.

 Querying CURRENT_MATRIX_NV and CURRENT_MATRIX_ STACK_DEPTH_NV is
 the only means for querying the matrix and matr ix stack depth of
 the tracking matrices described in section 2.14 .5."

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 Add the following rule:

 "Rule X Vertex program and vertex state progra m instructions not
 relevant to the calculation of any result must have no effect on

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1876

 that result.

 Rules X+1 Vertex program and vertex state prog ram instructions
 relevant to the calculation of any result must always produce the
 identical result. In particular, the same inst ruction with the same
 source inputs must produce the identical result whether executed by
 a vertex program or a vertex state program.

 Instructions relevant to the calculation of a r esult are any
 instructions in a sequence of instructions that eventually determine
 the source values for the calculation under con sideration.

 There is no guaranteed invariance between verti ces transformed by
 conventional GL vertex transform mode and verti ces transformed by
 vertex program mode. Multi-pass rendering algo rithms that require
 rendering invariances to operate correctly shou ld not mix conventional
 GL vertex transform mode with vertex program mo de for different
 rendering passes. However such algorithms will operate correctly
 if the algorithms limit themselves to a single mode of vertex
 transformation."

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

Dependencies on EXT_vertex_weighting

 If the EXT_vertex_weighting extension is not su pported, there is no
 aliasing between vertex attribute 1 and the cur rent vertex weight.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

Dependencies on EXT_point_parameters

 When EXT_point_parameters is supported, the ame nded discussion
 of point size determination should be further a mended with the
 language from the EXT_point_parameters specific ation though the point
 parameters functionality only applies when vert ex program mode is
 disabled.

 Even if the EXT_point_parameters extension is n ot supported, the
 PSIZ vertex result register must operate as spe cified.

Dependencies on ARB_multitexture

 ARB_multitexture is required to support NV_vert ex_program and the
 value of MAX_TEXTURE_UNITS_ARB must be at least 2. If more than 8
 texture units are supported, only the first 8 t exture units can be
 assigned texture coordinates when vertex progra m mode is enabled.
 Texture units beyond 8 are implicitly disabled when vertex program
 mode is enabled.

Dependencies on EXT_fog_coord

 If the EXT_fog_coord extension is not supported , there is no

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1877

 aliasing between vertex attribute 5 and the cur rent fog coordinate.
 Replace the contents of the last three columns in row 5 of table
 X.2 with dashes.

 Even if the EXT_fog_coord extension is not supp orted, the FOGC
 vertex result register must operate as specifie d. Note that the
 FOGC vertex result register behaves identically to the EXT_fog_coord
 extension's FOG_COORDINATE_SOURCE_EXT being FOG _COORDINATE_EXT.
 This means that the functionality of EXT_fog_co ord is required to
 implement NV_vertex_program even if the EXT_fog _coord extension is
 not supported.

 If the EXT_fog_coord extension is supported, th e state of
 FOG_COORDINATE_SOURCE_EXT only applies when ver tex program mode is
 disabled and the discussion in section 3.10 is further amended by
 the discussion of FOG_COORDINATE_SOURCE_EXT in the EXT_fog_coord
 specification.

Dependencies on EXT_secondary_color

 If the EXT_secondary_color extension is not sup ported, there is no
 aliasing between vertex attribute 4 and the cur rent secondary color.
 Replace the contents of the last three columns in row 4 of table
 X.2 with dashes.

 Even if the EXT_secondary_color extension is no t supported, the COL1
 and BFC1 vertex result registers must operate a s specified.
 These vertex result registers are required to i mplement OpenGL 1.2's
 separate specular mode within a vertex program.

GLX Protocol

 Forty-five new GL commands are added.

 The following thirty-five rendering commands ar e sent to the sever
 as part of a glXRender request:

 BindProgramNV
 2 12 rendering command length
 2 4180 rendering command opcode
 4 ENUM target
 4 CARD32 id

 ExecuteProgramNV
 2 12+4*n rendering command length
 2 4181 rendering command opcode
 4 ENUM target
 0x8621 n=4 GL_VERTEX_STATE_PROGRAM_NV
 else n=0 command is erroneous
 4 CARD32 id
 4*n LISTofFLOAT32 params

 RequestResidentProgramsNV
 2 8+4*n rendering command length
 2 4182 rendering command opcode
 4 INT32 n
 n*4 CARD32 programs

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1878

 LoadProgramNV
 2 16+n+p rendering command length
 2 4183 rendering command opcode
 4 ENUM target
 4 CARD32 id
 4 INT32 len
 n LISTofCARD8 n
 p unused, p=pad(n)

 ProgramParameter4fvNV
 2 32 rendering command length
 2 4184 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramParameter4dvNV
 2 44 rendering command length
 2 4185 rendering command opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 ProgramParameters4fvNV
 2 16+16*n rendering command length
 2 4186 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 params

 ProgramParameters4dvNV
 2 16+32*n rendering command length
 2 4187 rendering command opcode
 4 ENUM target
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 params

 TrackMatrixNV
 2 20 rendering command length
 2 4188 rendering command opcode
 4 ENUM target
 4 CARD32 address
 4 ENUM matrix
 4 ENUM transform

 VertexAttribPointerNV is an entirely client-side command

 VertexAttrib1svNV
 2 12 rendering command length
 2 4189 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 unused

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1879

 VertexAttrib2svNV
 2 12 rendering command length
 2 4190 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]

 VertexAttrib3svNV
 2 12 rendering command length
 2 4191 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

 VertexAttrib4svNV
 2 12 rendering command length
 2 4192 rendering command opcode
 4 CARD32 index
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 INT16 v[3]

 VertexAttrib1fvNV
 2 12 rendering command length
 2 4193 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]

 VertexAttrib2fvNV
 2 16 rendering command length
 2 4194 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]

 VertexAttrib3fvNV
 2 20 rendering command length
 2 4195 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

 VertexAttrib4fvNV
 2 24 rendering command length
 2 4196 rendering command opcode
 4 CARD32 index
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]
 4 FLOAT32 v[3]

 VertexAttrib1dvNV
 2 16 rendering command length
 2 4197 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1880

 VertexAttrib2dvNV
 2 24 rendering command length
 2 4198 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]

 VertexAttrib3dvNV
 2 32 rendering command length
 2 4199 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 VertexAttrib4dvNV
 2 40 rendering command length
 2 4200 rendering command opcode
 4 CARD32 index
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]
 8 FLOAT64 v[3]

 VertexAttrib4ubvNV
 2 12 rendering command length
 2 4201 rendering command opcode
 4 CARD32 index
 1 CARD8 v[0]
 1 CARD8 v[1]
 1 CARD8 v[2]
 1 CARD8 v[3]

 VertexAttribs1svNV
 2 12+2*n+p rendering command length
 2 4202 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 2*n INT16 v
 p unused, p=pad(2*n)

 VertexAttribs2svNV
 2 12+4*n rendering command length
 2 4203 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n INT16 v

 VertexAttribs3svNV
 2 12+6*n+p rendering command length
 2 4204 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 6*n INT16 v
 p unused, p=pad(6*n)

 VertexAttribs4svNV
 2 12+8*n rendering command length
 2 4205 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n INT16 v

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1881

 VertexAttribs1fvNV
 2 12+4*n rendering command length
 2 4206 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n FLOAT32 v

 VertexAttribs2fvNV
 2 12+8*n rendering command length
 2 4207 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT32 v

 VertexAttribs3fvNV
 2 12+12*n rendering command length
 2 4208 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 12*n FLOAT32 v

 VertexAttribs4fvNV
 2 12+16*n rendering command length
 2 4209 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT32 v

 VertexAttribs1dvNV
 2 12+8*n rendering command length
 2 4210 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 8*n FLOAT64 v

 VertexAttribs2dvNV
 2 12+16*n rendering command length
 2 4211 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 16*n FLOAT64 v

 VertexAttribs3dvNV
 2 12+24*n rendering command length
 2 4212 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 24*n FLOAT64 v

 VertexAttribs4dvNV
 2 12+32*n rendering command length
 2 4213 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 32*n FLOAT64 v

 VertexAttribs4ubvNV
 2 12+4*n rendering command length
 2 4214 rendering command opcode
 4 CARD32 index
 4 CARD32 n
 4*n CARD8 v

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1882

 The remaining twelve commands are non-rendering commands. These commands
 are sent separately (i.e., not as part of a glXRender or glXRenderLarge
 request), using the glXVendorPrivateWithReply request:

 AreProgramsResidentNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1293 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 BOOL32 return value
 20 unused
 n LISTofBOOL programs
 p unused, p=pad(n)

 DeleteProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 1294 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

 GenProgramsNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1295 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 n reply length
 24 unused
 n*4 LISTofCARD322 programs

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1883

 GetProgramParameterfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1296 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramParameterdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1297 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1884

 GetProgramivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1298 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetProgramStringNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1299 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 id
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=pad(n)

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1885

 GetTrackMatrixivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request length
 4 1300 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 address
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 Note that ATTRIB_ARRAY_SIZE_NV, ATTRIB_ARRAY_STRIDE_NV, and
 ATTRIB_ARRAY_TYPE_NV may be queried by GetVertexAttribNV but
 return client-side state.

 GetVertexAttribdvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1301 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1886

 GetVertexAttribfvNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1302 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetVertexAttribivNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request length
 4 1303 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 m reply length, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetVertexAttribPointervNV is an entirely client-side command

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1887

 IsProgramNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 1304 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 BOOL32 return value
 20 unused

Errors

 The error INVALID_VALUE is generated if VertexA ttribNV is called
 where index is greater than 15.

 The error INVALID_VALUE is generated if any Pro gramParameterNV has
 an index is greater than 95.

 The error INVALID_VALUE is generated if VertexA ttribPointerNV
 is called where index is greater than 15.

 The error INVALID_VALUE is generated if VertexA ttribPointerNV
 is called where size is not one of 1, 2, 3, or 4.

 The error INVALID_VALUE is generated if VertexA ttribPointerNV
 is called where stride is negative.

 The error INVALID_OPERATION is generated if Ver texAttribPointerNV
 is called where type is UNSIGNED_BYTE and size is not 4.

 The error INVALID_VALUE is generated if LoadPro gramNV is used to load a
 program with an id of zero.

 The error INVALID_OPERATION is generated if Loa dProgramNV is used
 to load an id that is currently loaded with a p rogram of a different
 program target.

 The error INVALID_OPERATION is generated if the program passed to
 LoadProgramNV fails to load because it is not s yntactically correct
 based on the specified target. The value of PR OGRAM_ERROR_POSITION_NV
 is still updated when this error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a
 target of VERTEX_PROGRAM_NV and the specified p rogram fails to
 load because it does not write the HPOS registe r at least once.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a target
 of VERTEX_STATE_PROGRAM_NV and the specified pr ogram fails to load
 because it does not write at least one program parameter register.
 The value of PROGRAM_ERROR_POSITION_NV is still updated when this
 error is generated.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1888

 The error INVALID_OPERATION is generated if the vertex program
 or vertex state program passed to LoadProgramNV fails to load
 because it contains more than 128 instructions. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is
 generated.

 The error INVALID_OPERATION is generated if a p rogram is loaded with
 LoadProgramNV for id when id is currently loade d with a program of
 a different target.

 The error INVALID_OPERATION is generated if Bin dProgramNV attempts
 to bind to a program name that is not a vertex program (for example,
 if the program is a vertex state program).

 The error INVALID_VALUE is generated if GenProg ramsNV is called
 where n is negative.

 The error INVALID_VALUE is generated if AreProg ramsResidentNV is
 called and any of the queried programs are zero or do not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes
 a program that does not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes
 a program that is not a vertex state program.

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or a
 command that performs an explicit Begin is call ed when vertex program
 mode is enabled and the currently bound vertex program writes program
 parameters that are currently being tracked.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV is called
 and the vertex state program to execute writes program parameters
 that are currently being tracked.

 The error INVALID_VALUE is generated if TrackMa trixNV has a target
 of VERTEX_PROGRAM_NV and attempts to track an a ddress is not a
 multiple of four.

 The error INVALID_VALUE is generated if GetProg ramParameterNV is
 called to query an index greater than 95.

 The error INVALID_VALUE is generated if GetVert exAttribNV is called
 to query an index greater than 15 or equal to z ero.

 The error INVALID_VALUE is generated if GetVert exAttribPointervNV
 is called to query an index greater than 15.

 The error INVALID_OPERATION is generated if Get ProgramivNV is called
 and the program named id does not exist.

 The error INVALID_OPERATION is generated if Get ProgramStringNV is called
 and the program named id does not exist.

 The error INVALID_VALUE is generated if GetTrac kMatrixivNV is called
 with an address that is not divisible by four a nd not less than 96.

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1889

 The error INVALID_VALUE is generated if AreProg ramsResidentNV,
 DeleteProgramsNV, GenProgramsNV, or RequestResi dentProgramsNV are
 called where n is negative.

 The error INVALID_VALUE is generated if LoadPro gramNV is called
 where len is negative.

 The error INVALID_VALUE is generated if Program Parameters4dvNV or
 ProgramParameters4fvNV are called where count i s negative.

 The error INVALID_VALUE is generated if
 VertexAttribs{1,2,3,4}{d,f,s}vNV is called wher e count is negative.

 The error INVALID_ENUM is generated if BindProg ramNV,
 GetProgramParameterfvNV, GetProgramParameterdvN V, GetTrackMatrixivNV,
 ProgramParameter4fNV, ProgramParameter4dNV, Pro gramParameter4fvNV,
 ProgramParameter4dvNV, ProgramParameters4fvNV, ProgramParameters4dvNV,
 or TrackMatrixNV are called where <target> is n ot VERTEX_PROGRAM_NV.

 The error INVALID_ENUM is generated if LoadProg ramNV or
 ExecuteProgramNV are called where <target> is n ot either
 VERTEX_PROGRAM_NV or VERTEX_STATE_PROGRAM_NV.

New State

update table 6.22 (page 212) so that all the "9"s a re "25"s because there
are 9 conventional map targets and 16 vertex attrib ute map targets making
a total of 25.

Get Value Type Get Command Initial Value Description Sec Attribute
---------------------------- ------ ------------- -------------- ------------- ------------------ -------- ------------
VERTEX_PROGRAM_NV B IsEnabled False vertex program 2.10 enable
 enable
VERTEX_PROGRAM_POINT_SIZE_NV B IsEnabled False program-specified 2.14.1.5 enable
 point size mode
VERTEX_PROGRAM_TWO_SIDE_NV B IsEnabled False two-sided color 2.14.1.5 enable
 mode
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 last program 2.14.1.7 -
 error position
PROGRAM_PARAMETER_NV 96xR4 GetProgramPar ameterNV (0,0,0,0) program parameters 2.14.1.2 -
CURRENT_ATTRIB_NV 16xR4 GetVertexAttr ibNV see 2.14.6 vertex attributes 2.14.1.1 current
 but zero cann ot be queried,
 aliased with per-vertex
 parameters
TRACK_MATRIX_NV 24xZ8+ GetTrackMatri xivNV NONE track matrix 2.14.5 -
TRACK_MATRIX_TRANSFORM_NV 24xZ8+ GetTrackMatri xivNV IDENTITY_NV track matrix 2.14.5 -
 transform
VERTEX_PROGRAM_BINDING_NV Z+ GetIntegerv 0 bound vertex 2.14.1.8 -
 program
VERTEX_ATTRIB_ARRAYn_NV 16xB IsEnabled False vertex attrib 2.14.3 vertex-array
 array enable
ATTRIB_ARRAY_SIZE_NV 16xZ GetVertexAttr ibNV 4 vertex attrib 2.14.3 vertex-array
 array size
ATTRIB_ARRAY_STRIDE_NV 16xZ+ GetVertexAttr ibNV 0 vertex attrib 2.14.3 vertex-array
 array stride
ATTRIB_ARRAY_TYPE_NV 16xZ4 GetVertexAttr ibNV FLOAT vertex attrib 2.14.3 vertex-array
 array type

Table X.5. New State Introduced by NV_vertex_progr am.

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1890

Get Value Type Get Command I nitial Value Description Sec
Attribute
------------------- ------ ------------------ - ------------ ------------------ -------- -----

PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV F alse program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramStringNV " " program string 6.1.13 -

Table X.6. Program Object State.

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12xR4 - (0,0,0,0) t emporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) v ertex result registers 2.14.1.4 -
 Z4 - (0,0,0,0) v ertex program 2.14.1.3 -
 a ddress register

Table X.7. Vertex Program Per-vertex Execution Sta te.

Get Value Type Get Com mand Initial Value Description Sec Attribute
----------------------------- -------- ------- ------- ------------- ------------------- ----- -- ---------
CURRENT_MATRIX_STACK_DEPTH_NV m*Z+ GetInte gerv 1 current stack depth 6.1.1 4 -
CURRENT_MATRIX_NV m*n*xM 4̂ GetFloa tv Identity current matrix 6.1.1 4 -

Table X.8. Current matrix state where m is the tot al number of matrices
including texture matrices and tracking matrices an d n is the number of
matrices on each particular matrix stack. Note tha t this state is
aliased with existing matrix state.

New Implementation Dependent State
 Minimum
Get Value Type Get Comma nd Value Description Sec
Attribute
-------------------------------- ---- --------- -- ---------- ------------------ ------ ----
MAX_TRACK_MATRIX_STACK_DEPTH_NV Z+ GetIntege rv 1 maximum tracking 2.14.5 -
 matrix stack depth
MAX_TRACK_MATRICES_NV Z+ GetIntege rv 8 (not to maximum number of 2.14.5 -
 exceed 32) tracking matrices

Table X.9. New Implementation-Dependent Values Int roduced by NV_vertex_program.

Revision History

 Version 1.1:

 Added normalization example to Issues.

 Fix explanation of EXP and ARL floor equivale nce.

 Clarify that vertex state programs fail if th ey load more than
 one vertex attribute (though only one is poss ible).

NVIDIA OpenGL Extension Specifications NV_vertex_program

 1891

 Version 1.2

 Add GLX protocol for VertexAttrib4ubvNV and V ertexAttribs4ubvNV

 Add issue about TrackMatrixNV transform behav ior with example

 Fix the C code specifying VertexAttribsvNV

 Version 1.3

 Dropped support for INT typed vertex attrib a rrays.

 Clarify that when ArrayElement is executed an d vertex program
 mode is enabled and the vertex attrib 0 array is enabled, the
 vertex attrib 0 array command is executed las t. However when
 ArrayElement is executed and vertex program m ode is enabled and the
 vertex attrib 0 array is disabled and the ver tex array is enabled,
 the vertex array command is executed last.

 Version 1.4

 Allow TEXTUREi_ARB for the track matrix. Thi s allows matrix
 tracking of a particular texture matrix witho ut reference to active
 texture (set by glActiveTextureARB) state.

 Early NVIDIA drivers (prior to October 5, 200 1) have a bug
 in their handling of tracking matrices specif ied with TEXTURE.
 Rather than tracking the particular texture m atrix indicated
 by the active texture state when TrackMatrixN V is called, these
 early drivers incorrectly track matrix the ac tive texture's texture
 matrix _at track matrix validation time_. In practice this means,
 every tracked matrix defined with TEXTURE tra cks the same matrix
 values; you cannot track distinct texture mat rices at the same
 time and the texture matrix you actually trac k depends on the
 active texture matrix at validation time. Th is is a driver bug.

 Drivers after October 5, 2001 properly track the texture matrix
 specified by active texture when TrackMatrix is called.

 The new correct drivers can be distinguished from the old drivers
 at run time with the following code:

 while (glGetError() != GL_NO_ERROR); // C lear any pre-existing OpenGL errors.
 glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 8, G L_TEXTURE0_ARB, GL_IDENTITY_NV);
 if (glGetError() != GL_NO_ERROR) {
 // Old buggy pre-version 1.4 drivers wit h GL_TEXTURE
 // glTrackMatrixNV bug.
 } else {
 // Correct new version 1.4 drivers (or l ater) with GL_TEXTURE
 // glTrackMatrixNV bug fixed and GL_TEXT UREi_NV support.

 // Note: you may want to untrack the mat rix at this point.
 }

 Version 1.5

 Earlier versions of this specification claime d for
 GetVertexAttribARB that it is an error to que ry any vertex attrib
 state for vertex attrib array zero. In fact, it should only be

NV_vertex_program NVIDIA OpenGL Extension Specifications

 1892

 an error to query the CURRENT_ATTRIB_ARB stat e for vertex attrib
 zero; the size, stride, and type of vertex at trib array zero may
 be queried. Version 1.5 specifies the correc t behavior.

 Early NVIDIA drivers (prior to January 11, 20 02) did not implement
 generate error when querying vertex attrib ar ray zero state (ie,
 did the right thing for size, stride, and typ e) but not create an
 error when querying the current attribute val ues for vertex attrib
 array zero either.

 Version 1.6

 GLX opcodes and vendorpriv values assigned.

 Version 1.7

 Corrected matrix tracking example in the issu es list to properly
 document row vs. column-major differences.

 Version 1.8

 Corrected EXP instruction; W component of res ult is always 1.0.

 Version 1.9

 Added language that for SGE and SLT, -NaN < - Inf and +NaN > +Inf.

NVIDIA OpenGL Extension Specifications NV_vertex_program1_1

 1893

Name

 NV_vertex_program1_1

Name Strings

 GL_NV_vertex_program1_1

Notice

 Copyright NVIDIA Corporation, 2001, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Version 1.0

Version

 NVIDIA Date: September 3, 2002
 $Id: //sw/main/docs/OpenGL/specs/GL_NV_vertex_p rogram1_1.txt#7 $

Number

 266

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification and
 requires OpenGL 1.2.1.

 Assumes support for the NV_vertex_program exten sion.

Overview

 This extension adds four new vertex program ins tructions (DPH,
 RCC, SUB, and ABS).

 This extension also supports a position-invaria nt vertex program
 option. A vertex program is position-invariant when it generates
 the _exact_ same homogenuous position and windo w space position
 for a vertex as conventional OpenGL transformat ion (ignoring vertex
 blending and weighting).

 By default, vertex programs are _not_ guarantee d to be
 position-invariant because there is no guarante e made that the way
 a vertex program might compute its homogenous p osition is exactly
 identical to the way conventional OpenGL transf ormation computes
 its homogenous positions. In a position-invari ant vertex program,
 the homogeneous position (HPOS) is not output b y the program.
 Instead, the OpenGL implementation is expected to compute the HPOS
 for position-invariant vertex programs in a man ner exactly identical
 to how the homogenous position and window posit ion are computed
 for a vertex by conventional OpenGL transformat ion. In this way

NV_vertex_program1_1 NVIDIA OpenGL Extension Specifications

 1894

 position-invariant vertex programs guarantee co rrect multi-pass
 rendering semantics in cases where multiple pas ses are rendered and
 the second and subsequent passes use a GL_EQUAL depth test.

Issues

 How should options to the vertex program semant ics be handled?

 RESOLUTION: A VP1.1 vertex program can conta in a sequence
 of options. This extension provides a single option
 ("NV_position_invariant"). Specifying an opt ion changes the
 way the program's subsequent instruction sequ ence are parsed,
 may add new semantic checks, and modifies the semantics by which
 the vertex program is executed.

 Should this extension provide SUB and ABS instr uctions even though
 the functionality can be accomplished with ADD and MAX?

 RESOLUTION: Yes. SUB and ABS provide no fun ctionality that could
 not be accomplished in VP1.0 with ADD and MAX idioms, SUB and ABS
 provide more understanable vertex programs.

 Should the optionalSign in a VP1.1 accept both "-" and "+"?

 RESOLUTION: Yes. The "+" does not negate it s operand but is
 available for symetry.

 Is relative addressing available to position-in variant version 1.1
 vertex programs?

 RESOLUTION: No. This reflects a hardware re striction.

 Should something be said about the relative per formance of
 position-invariant vertex programs and conventi onal vertex programs?

 RESOLUTION: For architectural reasons, posit ion-invariant vertex
 programs may be _slightly_ faster than conven tional vertex programs.
 This is true in the GeForce3 architecture. I f your vertex program
 transforms the object-space position to clip- space with four DP4
 instructions using the tracked GL_MODELVIEW_P ROJECTION_NV matrix,
 consider using position-invariant vertex prog rams. Do not expect a
 measurable performance improvement unless ver tex program processing
 is your bottleneck and your vertex program is relatively short.

 Should position-invariant vertex programs have a lower limit on the
 maximum instructions?

 RESOLUTION: Yes, the driver takes care to ma tch the same
 instructions used for position transformation used by conventional
 transformation and this requires a few vertex program instructions.

New Procedures and Functions

 None.

NVIDIA OpenGL Extension Specifications NV_vertex_program1_1

 1895

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 2.14.1.9 Vertex Program Register Accesses

 Replace the first two sentences and update Tabl e X.4:

 "There are 21 vertex program instructions. The instructions and their
 respective input and output parameters are summ arized in Table X.4."

 Output
 Inputs (vector or
Opcode (scalar or vector) replicated scalar) O peration
------ ------------------ ------------------ - -------------------------
 ARL s address register a ddress register load
 MOV v v m ove
 MUL v,v v m ultiply
 ADD v,v v a dd
 MAD v,v,v v m ultiply and add
 RCP s ssss r eciprocal
 RSQ s ssss r eciprocal square root
 DP3 v,v ssss 3 -component dot product
 DP4 v,v ssss 4 -component dot product
 DST v,v v d istance vector
 MIN v,v v m inimum
 MAX v,v v m aximum
 SLT v,v v s et on less than
 SGE v,v v s et on greater equal than
 EXP s v e xponential base 2
 LOG s v l ogarithm base 2
 LIT v v l ight coefficients
 DPH v,v ssss h omogeneous dot product
 RCC s ssss r eciprocal clamped
 SUB v,v v s ubtract
 ABS v v a bsolute value

Table X.4: Summary of vertex program instructions. "v" indicates a
vector input or output, "s" indicates a scalar inpu t, and "ssss" indicates
a scalar output replicated across a 4-component vec tor.

NV_vertex_program1_1 NVIDIA OpenGL Extension Specifications

 1896

 Add four new sections describing the DPH, RCC, SUB, and ABS
 instructions.

 "2.14.1.10.18 DPH: Homogeneous Dot Product

 The DPH instruction assigns the four-component dot product of the
 two source vectors where the W component of the first source vector
 is assumed to be 1.0 into the destination regis ter.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 v.x = t.x * u.x + t.y * u.y + t.z * u.z + u .w;
 if (xmask) destination.x = v.x;
 if (ymask) destination.y = v.x;
 if (zmask) destination.z = v.x;
 if (wmask) destination.w = v.x;

NVIDIA OpenGL Extension Specifications NV_vertex_program1_1

 1897

 2.14.1.10.19 RCC: Reciprocal Clamped

 The RCC instruction inverts the value of the so urce scalar, clamps
 the result as described below, and stores the c lamped result into
 the destination register. The reciprocal of ex actly 1.0 must be
 exactly 1.0.

 Additionally (before clamping) the reciprocal o f negative infinity
 gives [-0.0, -0.0, -0.0, -0.0]; the reciprocal of negative zero gives
 [-Inf, -Inf, -Inf, -Inf]; the reciprocal of pos itive zero gives
 [+Inf, +Inf, +Inf, +Inf]; and the reciprocal of positive infinity
 gives [0.0, 0.0, 0.0, 0.0].

 t.x = source0.c;
 if (negate0) {
 t.x = -t.x;
 }
 if (t.x == 1.0f) {
 u.x = 1.0f;
 } else {
 u.x = 1.0f / t.x;
 }
 if (Positive(u.x)) {
 if (u.x > 1.884467e+019) {
 u.x = 1.884467e+019; // the IEEE 32-b it binary value 0x5F800000
 } else if (u.x < 5.42101e-020) {
 u.x = 5.42101e-020; // the IEEE 32-b it bindary value 0x1F800000
 }
 } else {
 if (u.x < -1.884467e+019) {
 u.x = -1.884467e+019; // the IEEE 32-b it binary value 0xDF800000
 } else if (u.x > -5.42101e-020) {
 u.x = -5.42101e-020; // the IEEE 32-b it binary value 0x9F800000
 }
 }
 if (xmask) destination.x = u.x;
 if (ymask) destination.y = u.x;
 if (zmask) destination.z = u.x;
 if (wmask) destination.w = u.x;

 where Positive(x) is true for +0 and other posi tive values and false
 for -0 and other negative values; and

 | u.x - IEEE(1.0f/t.x) | < 1.0f/(2^22)

 for 1.0f <= t.x <= 2.0f. The intent of this pr ecision requirement is
 that this amount of relative precision apply ov er all values of t.x."

NV_vertex_program1_1 NVIDIA OpenGL Extension Specifications

 1898

 2.14.1.10.20 SUB: Subtract

 The SUB instruction subtracts the values of the one source vector
 from another source vector and stores the resul t into the destination
 register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (negate0) {
 t.x = -t.x;
 t.y = -t.y;
 t.z = -t.z;
 t.w = -t.w;
 }
 u.x = source1.c***;
 u.y = source1.*c**;
 u.z = source1.**c*;
 u.w = source1.***c;
 if (negate1) {
 u.x = -u.x;
 u.y = -u.y;
 u.z = -u.z;
 u.w = -u.w;
 }
 if (xmask) destination.x = t.x - u.x;
 if (ymask) destination.y = t.y - u.y;
 if (zmask) destination.z = t.z - u.z;
 if (wmask) destination.w = t.w - u.w;

 2.14.1.10.21 ABS: Absolute Value

 The ABS instruction assigns the component-wise absolute value of a
 source vector into the destination register.

 t.x = source0.c***;
 t.y = source0.*c**;
 t.z = source0.**c*;
 t.w = source0.***c;
 if (xmask) destination.x = (t.x >= 0) ? t.x : -t.x;
 if (ymask) destination.y = (t.y >= 0) ? t.y : -t.y;
 if (zmask) destination.z = (t.z >= 0) ? t.z : -t.z;
 if (wmask) destination.w = (t.w >= 0) ? t.w : -t.w;

 Insert sections 2.14.A and 2.14.B after section 2.14.4

 "2.14.A Version 1.1 Vertex Programs

 Version 1.1 vertex programs provide support for the DPH, RCC, SUB,
 and ABS instructions (see sections 2.14.1.10.18 through 2.14.1.10.21).

 Version 1.1 vertex programs are loaded with the LoadProgramNV command
 (see section 2.14.1.7). The target must be VER TEX_PROGRAM_NV to
 load a version 1.1 vertex program. The initial "!!VP1.1" token
 designates the program should be parsed and tre ated as a version 1.1
 vertex program.

NVIDIA OpenGL Extension Specifications NV_vertex_program1_1

 1899

 Version 1.1 programs must conform to a more exp anded grammar than
 the grammar for vertex programs. The version 1 .1 vertex program
 grammar for syntactically valid sequences is th e same as the grammar
 defined in section 2.14.1.7 with the following modified rules:

 <program> ::= "!!VP1.1" <optionSequence> <instructionSequence> "END"

 <optionSequence> ::= <optionSequence> <option>
 | ""

 <option> ::= "OPTION" "NV_position_invariant" ";"

 <VECTORop> ::= "MOV"
 | "LIT"
 | "ABS"

 <SCALARop> ::= "RCP"
 | "RSQ"
 | "EXP"
 | "LOG"
 | "RCC"

 <BINop> ::= "MUL"
 | "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MIN"
 | "MAX"
 | "SLT"
 | "SGE"
 | "DPH"
 | "SUB"

 <optionalSign> ::= "-"
 | "+"
 | ""

 Except for supporting the additional DPH, RCC, SUB, and ABS
 instructions, version 1.1 vertex programs with no options specified
 otherwise behave in the same manner as version 1.0 vertex programs.

 2.14.B Position-invariant Vertex Program Optio n

 By default, vertex programs are _not_ guarantee d to be
 position-invariant because there is no guarante e made that the
 way a vertex program might compute its homogeno us position is
 exactly identical to the way conventional OpenG L transformation
 computes its homogenous positions. However in a position-invariant
 vertex program, the homogeneous position (HPOS) is not output by
 the program. Instead, the OpenGL implementatio n is expected to
 compute the HPOS for position-invariant vertex programs in a manner
 exactly identical to how the homogenous positio n and window position
 are computed for a vertex by conventional OpenG L transformation
 (assuming vertex weighting and vertex blending are disabled). In this
 way position-invariant vertex programs guarante e correct multi-pass
 rendering semantics in cases where multiple pas ses are rendered with
 conventional OpenGL transformation and position -invariant vertex
 programs and the second and subsequent passes u se a EQUAL depth test.

NV_vertex_program1_1 NVIDIA OpenGL Extension Specifications

 1900

 If an <option> with the identifier "NV_position _invariant" is
 encountered during the parsing of the program, the specified program
 is presumed to be position-invariant.

 When a position-invariant vertex program is spe cified, the
 <vertexResultRegName> rule is replaced with the following rule
 (that does not provide "HPOS"):

 <vertexResultRegName> ::= "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 While position-invariant version 1.1 vertex pro grams provide
 position-invariance, such programs do not provi de support for
 relative program parameter addressing. The <re lProgParamReg> rule
 for version 1.1 position-invariant vertex progr ams is replaced by
 (eliminating the relative addressing cases):

 <relProgParamReg> ::= "c" "[" <addrReg> "] "

 Note that while the ARL instruction is still av ailable to
 position-invariant version 1.1 vertex programs, it provides no
 meaningful functionality without support for re lative addressing.

 The semantic restriction for vertex program ins truction length is
 changed in the case of position-invariant verte x programs to the
 following: A position-invariant vertex program fails to load if it
 contains more than 124 instructions.

 "

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Framebuffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None

NVIDIA OpenGL Extension Specifications NV_vertex_program1_1

 1901

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 None

Errors

 None

New State

 None

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1902

Name

 NV_vertex_program2

Name Strings

 GL_NV_vertex_program2

Notice

 Copyright NVIDIA Corporation, 2000-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/05/12 $
 NVIDIA Revision: Revision: #30

Number

 287

Dependencies

 Written based on the wording of the OpenGL 1.3 Specification and requires
 OpenGL 1.3.

 Written based on the wording of the NV_vertex_p rogram extension
 specification, version 1.0.

 NV_vertex_program is required.

Overview

 This extension further enhances the concept of vertex programmability
 introduced by the NV_vertex_program extension, and extended by
 NV_vertex_program1_1. These extensions create a separate vertex program
 mode where the configurable vertex transformati on operations in unextended
 OpenGL are replaced by a user-defined program.

 This extension introduces the VP2 execution env ironment, which extends the
 VP1 execution environment introduced in NV_vert ex_program. The VP2
 environment provides several language features not present in previous
 vertex programming execution environments:

 * Branch instructions allow a program to jump to another instruction
 specified in the program.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1903

 * Branching support allows for up to four lev els of subroutine
 calls/returns.

 * A four-component condition code register al lows an application to
 compute a component-wise write mask at run time and apply that mask to
 register writes.

 * Conditional branches are supported, where t he condition code register
 is used to determine if a branch should be taken.

 * Programmable user clipping is supported sup port (via the CLP0-CLP5
 clip distance registers). Primitives are c lipped to the area where
 the interpolated clip distances are greater than or equal to zero.

 * Instructions can perform a component-wise a bsolute value operation on
 any operand load.

 The VP2 execution environment provides a number of new instructions, and
 extends the semantics of several instructions a lready defined in
 NV_vertex_program.

 * ARR: Operates like ARL, except that float- to-int conversion is done
 by rounding. Equivalent results could be a chieved (less efficiently)
 in NV_vertex program using an ADD/ARL seque nce and a program parameter
 holding the value 0.5.

 * BRA, CAL, RET: Branch, subroutine call, an d subroutine return
 instructions.

 * COS, SIN: Adds support for high-precision sine and cosine
 computations.

 * FLR, FRC: Adds support for computing the f loor and fractional portion
 of floating-point vector components. Equiv alent results could be
 achieved (less efficiently) in NV_vertex_pr ogram using the EXP
 instruction to compute the fractional porti on of one component at a
 time.

 * EX2, LG2: Adds support for high-precision exponentiation and
 logarithm computations.

 * ARA: Adds pairs of components of an addres s register; useful for
 looping and other operations.

 * SEQ, SFL, SGT, SLE, SNE, STR: Add six new "set on" instructions,
 similar to the SLT and SGE instructions def ined in NV_vertex_program.
 Equivalent results could be achieved (less efficiently) in
 NV_vertex_program with multiple SLT, SGE, a nd arithmetic instructions.

 * SSG: Adds a new "set sign" operation, whic h produces a vector holding
 negative one for negative components, zero for components with a value
 of zero, and positive one for positive comp onents. Equivalent results
 could be achieved (less efficiently) in NV_ vertex_program with
 multiple SLT, SGE, and arithmetic instructi ons.

 * The ARL instruction is extended to operate on four components instead
 of a single component.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1904

 * All instructions that produce integer or fl oating-point result vectors
 have variants that update the condition cod e register based on the
 result vector.

 This extension also raises some of the resource limitations in the
 NV_vertex_program extension.

 * 256 program parameter registers (versus 96 in NV_vertex_program).

 * 16 temporary registers (versus 12 in NV_ver tex_program).

 * Two four-component integer address register s (versus one
 single-component register in NV_vertex_prog ram).

 * 256 total vertex program instructions (vers us 128 in
 NV_vertex_program).

 * Including loops, programs can execute up to 64K instructions.

Issues

 This extension builds upon the NV_vertex_progra m extension. Should this
 specification contain selected edits to the NV_ vertex_program
 specification or should the specs be unified?

 RESOLVED: Since NV_vertex_program and NV_ver tex_program2 programs share
 many features, the main section of this speci fication is unified and
 describes both types of programs. Other sect ions containing
 NV_vertex_program features that are unchanged by this extension will not
 be edited.

 How can a program use condition codes to avoid extra computations?

 Consider the example of evaluating the OpenGL lighting model for a
 given light. If the diffuse dot product is n egative (roughly 1/2 the
 time for random geometry), the only contribut ion to the light is
 ambient. In this case, condition codes and b ranching can skip over a
 number of unneeded instructions.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1905

 # R0 holds accumulated light color
 # R2 holds normal
 # R3 holds computed light vector
 # R4 holds computed half vector
 # c[0] holds ambient light/material produ ct
 # c[1] holds diffuse light/material produ ct
 # c[2].xyz holds specular light/material product
 # c[2].w holds specular exponent
 DP3C R1.x, R2, R3; # diffuse d ot product
 ADD R0, R0, c[0]; # accumulat e ambient
 BRA pointsAway (LT.x) # skip rest if diffuse dot < 0
 MOV R1.w, c[2].w;
 DP3 R1.y, R2, R4; # specular dot product
 LIT R1, R1; # compute e xpontiated specular
 MAD R4, c[1], R0.y; # accumulat e diffuse
 MAD R4, c[2], R0.z; # accumulat e specular
 pointsAway:
 ... # continue execution

 How can a program use subroutines and branch ta bles?

 With subroutines, a program can encapsulate a small piece of
 functionality into a subroutine and call it m ultiple times, as in CPU
 code. Applications will need to identify the registers used to pass
 data to and from the subroutine.

 Subroutines could be used for applications li ke evaluating lighting
 equations for a single light. With condition al branching and
 subroutines, a variable number of lights (whi ch could even vary
 per-vertex) can be easily supported.

 accumulate:
 # R0 holds the accumulated result
 # R1 holds the value to add
 ADD R0, R1;
 RET;

 # Compute floor(A)*B by repeated addition using a subroutine. Yes,
 # this is a stupid example.
 #
 # c[0] holds (A,B,0,1).
 # R0 holds the accumulated result
 # R1 holds B, the value to accumulate.
 # R2 holds the number of iterations remai ning.
 MOV R0, c[0].z; # start wit h zero
 MOV R1, c[0].y;
 FLRC R2.x, c[0].x;
 BRA done (LE.x);
 top:
 CAL accumulate;
 ADDC R2.x, R2.x, -c[0].w; # decrement count
 BRA top (GT.x);
 done:
 ...

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1906

 How can conventional OpenGL clip planes be supp orted in vertex programs?

 The clip distance in the OpenGL specification can be evaluated with a
 simple DP4 instruction that writes to one of the six clip distance
 registers. Primitives will automatically be clipped to the half-space
 where o[CLPx] >= 0, which matches the definit ion in the spec.

 # R0 holds eye coordinates
 # c[0] holds eye-space clip plane coeffic ients
 DP4 o[CLP0].x, R0, c[0];

 Note that the clip plane or clip distance vol ume corresponding to the
 o[CLPn] register used must be enabled, or no clipping will be performed.

 The clip distance registers allow for clip di stance volumes to be
 computed more-or-less arbitrarily. To approx imate clipping to a sphere
 of radius <n>, the following code can be used .

 # R0 holds eye coordinates
 # c[0].xyz holds sphere center
 # c[0].w holds the square of the sphere r adius
 SUB R1.xyz, R0, c[0]; # distan ce vector
 DP3 R1.w, R1, R1; # comput e distance squared
 SUB o[CLP0].x, c[0].w, R1.w; # comput e r^2 - d^2

 Since the clip distance is interpolated linea rly over a primitive, the
 clip distance evaluated at a point will repre sent a piecewise-linear
 approximation of the true distance. The appr oximation will become
 increasingly more accurate as the primitive i s tesselated more finely.

 How can looping be achieved in vertex programs?

 Simple loops can be achieved using a general purpose floating-point
 register component as a counter. The followi ng code calls a function
 named "function" <n> times, where <n> is spec ified in a program
 parameter register component.

 # c[0].x holds the number of iterations t o execute.
 # c[1].x holds the constant 1.0.
 MOVC R15.x, c[0].x;
 startLoop:
 CAL function (GT.x); # if (c ounter > 0) function();
 SUBC R15.x, R15.x, c[1].x; # count er = counter - 1;
 BRA startLoop (GT.x); # if (c ounter > 0) goto start;
 endLoop:
 ...

 More complex loops (where a separate index ma y be needed for indexed
 addressing into the program parameter array) can be achieved using the
 ARA instruction, which will add the x/z and y /w components of an address
 register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1907

 # c[0].x holds the number of iterations t o execute
 # c[0].y holds the initial index value
 # c[0].z holds the constant -1.0 (used fo r the iteration count)
 # c[0].w holds the index step value
 ARLC A1, c[0];
 startLoop:
 CAL function (GT.x); # if (c ounter > 0) function();
 # Note: A1.y can be used for
 # index ing in function().
 ARAC A1.xy, A1; # count er = counter - 1;
 # index += loopStep;
 BRA startLoop (GT.x); # if (c ounter > 0) goto start;
 endLoop:
 ...

 Should this specification add support for verte x state programs beyond the
 VP1 execution environment?

 No. Vertex state programs are a little-used feature of
 NV_vertex_program and don't perform particula rly well. They are still
 supported for compatibility with the original NV_vertex_program spec,
 but they will not be extended to support new features.

 How are NaN's be handled in the "set on" instru ctions (SEQ, SGE, SGT, SLE,
 SLT, SNE)? What about MIN, MAX? SSG? When do ing condition code tests?

 Any of these instructions involving a NaN ope rand will produce a NaN
 result. This behavior differs from the NV_fr agment_program extension.
 There, SEQ, SGE, SGT, SLE, and SLT will produ ce 0.0 if either operand is
 a NaN, and SNE will produce 1.0 if either ope rand is a NaN.

 For condition code updates, NaN values will r esult in "UN" condition
 codes. All conditionals using a "UN" conditi on code, except "TR" and
 "NE" will evaluate to false. This behavior i s identical to the
 functionality in NV_fragment_program.

 How can the various features of this extension be used to provide skinning
 functionality similar to that in ARB_vertex_ble nd and ARB_matrix_palette?
 And how can that functionality be extended?

 Assume an implementation that allows applicat ion of up to 8 matrices at
 once. Further assume that v[12].xyzw and v[1 3].xyzw hold the set of 8
 weights, and v[14].xyzw and v[15].xyzw hold t he set of 8 matrix indices.
 Furthermore, assume that the palette of matri ces are stored/tracked at
 c[0], c[4], c[8], and so on. As an additiona l optimization, an
 application can specify that fewer than 8 mat rices should be applied by
 storing a negative palette index immediately after the last index is
 applied.

 Skinning support in this example can be provi ded by the following code:

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1908

 ARLC A0, v[14]; # load 4 palette indices at once
 DP4 R1.x, c[A0.x+0], v[0]; # 1st mat rix transform
 DP4 R1.y, c[A0.x+1], v[0];
 DP4 R1.z, c[A0.x+2], v[0];
 DP4 R1.w, c[A0.x+3], v[0];
 MUL R0, R1, v[12].x; # accumul ate weighted sum in R0
 BRA end (LT.y); # stop on a negative matrix index
 DP4 R1.x, c[A0.y+0], v[0]; # 2nd mat rix transform
 DP4 R1.y, c[A0.y+1], v[0];
 DP4 R1.z, c[A0.y+2], v[0];
 DP4 R1.w, c[A0.y+3], v[0];
 MAD R0, R1, v[12].y, R0; # accumul ate weighted sum in R0
 BRA end (LT.z); # stop on a negative matrix index

 ... # 3rd and 4th matrix transform

 ARLC A0, v[15]; # load ne xt four palette indices
 BRA end (LT.x);
 DP4 R1.x, c[A0.x+0], v[0]; # 5th mat rix transform
 DP4 R1.y, c[A0.x+1], v[0];
 DP4 R1.z, c[A0.x+2], v[0];
 DP4 R1.w, c[A0.x+3], v[0];
 MAD R0, R1, v[13].x, R0; # accumul ate weighted sum in R0
 BRA end (LT.y); # stop on a negative matrix index

 ... # 6th, 7t h, and 8th matrix transform

 end:
 ... # any add itional instructions

 The amount of code used by this example could further be reduced using a
 subroutine performing four transformations at a time:

 ARLC A0, v[14]; # load first four indice s
 CAL skin4; # do first four transfor mations
 BRA end (LT); # end if any of the firs t 4 indices was < 0
 ARLC A0, v[15]; # load second four indic es
 CAL skin4; # do second four transfo rmations
 end:
 ... # any additional instruc tions

 Why does the RCC instruction exist?

 RESOLVED: To perform numeric operations that will avoid overflow and
 underflow issues.

 Should the specification provide more examples?

 RESOLVED: It would be nice.

New Procedures and Functions

 None.

New Tokens

 None.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1909

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Modify Section 2.11, Clipping (p. 39)

 (modify last paragraph, p. 39) When the GL is n ot in vertex program mode

 (section 2.14), this view volume may be further restricted by as many as n
 client-defined clip planes to generate the clip volume. ...

 (add before next-to-last paragraph, p. 40) When the GL is in vertex
 program mode, the view volume may be restricted to the individual clip
 distance volumes derived from the per-vertex cl ip distances (o[CLP0] -
 o[CLP5]). Clip distance volumes are applied if and only if per-vertex
 clip distances are not supported in the vertex program execution
 environment. A point P belonging to the primit ive under consideration is
 in the clip distance volume numbered n if and o nly if

 c_n(P) >= 0,

 where c_n(P) is the interpolated value of the c lip distance CLPn at the
 point P. For point primitives, c_n(P) is simpl y the clip distance for the
 vertex in question. For line and triangle prim itives, per-vertex clip
 distances are interpolated using a weighted mea n, with weights derived
 according to the algorithms described in sectio ns 3.4 and 3.5.

 (modify next-to-last paragraph, p.40) Client-de fined clip planes or clip
 distance volumes are enabled with the generic E nable command and disabled
 with the Disable command. The value of the argu ment to either command is
 CLIP PLANEi where i is an integer between 0 and n; specifying a value of i
 enables or disables the plane equation with ind ex i. The constants obey
 CLIP PLANEi = CLIP PLANE0 + i.

 Add Section 2.14, Vertex Programs (p. 57). This section supersedes the
 similar section added in the NV_vertex_program extension and extended in
 the NV_vertex_program1_1 extension.

 The conventional GL vertex transformation model described in sections 2.10
 through 2.13 is a configurable, but essentially hard-wired, sequence of
 per-vertex computations based on a canonical se t of per-vertex parameters
 and vertex transformation related state such as transformation matrices,
 lighting parameters, and texture coordinate gen eration parameters.

 The general success and utility of the conventi onal GL vertex
 transformation model reflects its basic corresp ondence to the typical
 vertex transformation requirements of 3D applic ations.

 However when the conventional GL vertex transfo rmation model is not
 sufficient, the vertex program mode provides a substantially more flexible
 model for vertex transformation. The vertex pr ogram mode permits
 applications to define their own vertex program s.

 Section 2.14.1, Vertex Program Execution Enviro nment

 The vertex program execution environment is an operational model that
 defines how a program is executed. The executi on environment includes a
 set of instructions, a set of registers, and se mantic rules defining how

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1910

 operations are performed. There are three vert ex program execution
 environments, VP1, VP1.1, and VP2. The environ ment names are taken from
 the mandatory program prefix strings found at t he beginning of all vertex
 programs. The VP1.1 execution environment is a minor addition to the VP1
 execution environment, so references to the VP1 execution environment
 below apply to both VP1 and VP1.1 execution env ironments except where
 otherwise noted.

 The vertex program instruction set consists pri marily of floating-point
 4-component vector operations operating on per- vertex attributes and
 program parameters. Vertex programs execute on a per-vertex basis and
 operate on each vertex completely independently from the processing of
 other vertices. Vertex programs execute withou t data hazards so results
 computed in one operation can be used immediate ly afterwards. Vertex
 programs produce a set of vertex result vectors that becomes the set of
 transformed vertex parameters used by primitive assembly.

 In the VP1 environment, vertex programs execute a finite fixed sequence of
 instructions with no branching or looping. In the VP2 environment, vertex
 programs support conditional and unconditional branches and four levels of
 subroutine calls.

 The vertex program register set consists of six types of registers
 described in the following sections.

 Section 2.14.1.1, Vertex Attribute Registers

 The Vertex Attribute Registers are sixteen 4-co mponent vector
 floating-point registers containing the current vertex's per-vertex
 attributes. These registers are numbered 0 thr ough 15. These registers
 are private to each vertex program invocation a nd are initialized at each
 vertex program invocation by the current vertex attribute state specified
 with VertexAttribNV commands. These registers are read-only during vertex
 program execution. The VertexAttribNV commands used to update the vertex
 attribute registers can be issued both outside and inside of Begin/End
 pairs. Vertex program execution is provoked by updating vertex attribute
 zero. Updating vertex attribute zero outside o f a Begin/End pair is
 ignored without generating any error (identical to the Vertex command
 operation).

 The commands

 void VertexAttrib{1234}{sfd}NV(uint index, T coords);
 void VertexAttrib{1234}{sfd}vNV(uint index, T coords);
 void VertexAttrib4ubNV(uint index, T coords);
 void VertexAttrib4ubvNV(uint index, T coords) ;

 specify the particular current vertex attribute indicated by index.
 The coordinates for each vertex attribute are n amed x, y, z, and w.
 The VertexAttrib1NV family of commands sets the x coordinate to the
 provided single argument while setting y and z to 0 and w to 1.
 Similarly, VertexAttrib2NV sets x and y to the specified values,
 z to 0 and w to 1; VertexAttrib3NV sets x, y, a nd z, with w set
 to 1, and VertexAttrib4NV sets all four coordin ates. The error
 INVALID_VALUE is generated if index is greater than 15.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1911

 No conversions are applied to the vertex attrib utes specified as
 type short, float, or double. However, vertex attributes specified
 as type ubyte are converted as described by Tab le 2.6.

 The commands

 void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
 void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

 specify a contiguous set of n vertex attributes . The effect of

 VertexAttribs{1234}{sfd}vNV(index, n, coords)

 is the same (assuming no errors) as the command sequence

 #define NUM k /* where k is 1, 2, 3, or 4 co mponents */
 int i;
 for (i=n-1; i>=0; i--) {
 VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
 }

 VertexAttribs4ubvNV behaves similarly.

 The VertexAttribNV calls equivalent to VertexAt tribsNV are issued in
 reverse order so that vertex program execution is provoked when index
 is zero only after all the other vertex attribu tes have first been
 specified.

 The set and operation of vertex attribute regis ters are identical for both
 VP1 and VP2 execution environment.

 Section 2.14.1.2, Program Parameter Registers

 The Program Parameter Registers are a set of 4- component floating-point
 vector registers containing the vertex program parameters. In the VP1
 execution environment, there are 96 registers, numbered 0 through 95. In
 the VP2 execution environment, there are 256 re gisters, numbered 0 through
 255. This relatively large set of registers is intended to hold
 parameters such as matrices, lighting parameter s, and constants required
 by vertex programs. Vertex program parameter r egisters can be updated in
 one of two ways: by the ProgramParameterNV com mands outside of a
 Begin/End pair or by a vertex state program exe cuted outside of a
 Begin/End pair (vertex state programs are discu ssed in section 2.14.3).

 The commands

 void ProgramParameter4fNV(enum target, uint i ndex,
 float x, float y, f loat z, float w)
 void ProgramParameter4dNV(enum target, uint i ndex,
 double x, double y, double z, double w)

 specify the particular program parameter indica ted by index.
 The coordinates values x, y, z, and w are assig ned to the respective
 components of the particular program parameter. target must be
 VERTEX_PROGRAM_NV.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1912

 The commands

 void ProgramParameter4dvNV(enum target, uint index, double *params);
 void ProgramParameter4fvNV(enum target, uint index, float *params);

 operate identically to ProgramParameter4fNV and ProgramParameter4dNV
 respectively except that the program parameters are passed as an
 array of four components.

 The error INVALID_VALUE is generated if the spe cified index is greater
 than or equal to the number of program paramete rs in the execution
 environment (96 for VP1, 256 for VP2).

 The commands

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, float * params);

 specify a contiguous set of num program paramet ers. The effect is
 the same (assuming no errors) as

 for (i=index; i<index+num; i++) {
 ProgramParameter4{fd}vNV(target, i, ¶ms [i*4]);
 }

 The error INVALID_VALUE is generated if sum of <index> and <num> is
 greater than the number of program parameters i n the execution environment
 (96 for VP1, 256 for VP2).

 The program parameter registers are shared to a ll vertex program
 invocations within a rendering context. Progra mParameterNV command
 updates and vertex state program executions are serialized with respect to
 vertex program invocations and other vertex sta te program executions.

 Writes to the program parameter registers durin g vertex state program
 execution can be maskable on a per-component ba sis.

 The initial value of all 96 (VP1) or 256 (VP2) program parameter registers
 is (0,0,0,0).

 Section 2.14.1.3, Address Registers

 The Address Registers are 4-component vector re gisters with signed 10-bit
 integer components. In the VP1 execution envir onment, there is only a
 single address register (A0) and only the x com ponent of the register is
 accessible. In the VP2 execution environment, there are two address
 registers (A0 and A1), of which all four compon ents are accessible. The
 address registers are private to each vertex pr ogram invocation and are
 initialized to (0,0,0,0) at every vertex progra m invocation. These
 registers can be written during vertex program execution (but not read)
 and their values can be used for as a relative offset for reading vertex
 program parameter registers. Only the vertex p rogram parameter registers
 can be read using relative addressing (writes u sing relative addressing
 are not supported).

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1913

 See the discussion of relative addressing of pr ogram parameters in section
 2.14.2.1 and the discussion of the ARL instruct ion in section 2.14.3.4.

 Section 2.14.1.4, Temporary Registers

 The Temporary Registers are 4-component floatin g-point vector registers
 used to hold temporary results during vertex pr ogram execution. In the
 VP1 execution environment, there are 12 tempora ry registers, numbered 0
 through 11. In the VP2 execution environment, there are 16 temporary
 registers, numbered 0 through 15. These regist ers are private to each
 vertex program invocation and initialized to (0 ,0,0,0) at every vertex
 program invocation. These registers can be rea d and written during vertex
 program execution. Writes to these registers c an be maskable on a
 per-component basis.

 In the VP2 execution environment, there is one additional temporary
 pseudo-register, "CC". CC is treated as unnumb ered, write-only temporary
 register, whose sole purpose is to allow instru ctions to modify the
 condition code register (section 2.14.1.6) with out overwriting the
 contents of any temporary register.

 Section 2.14.1.5, Vertex Result Registers

 The Vertex Result Registers are 4-component flo ating-point vector
 registers used to write the results of a vertex program. There are 15
 result registers in the VP1 execution environme nt, and 21 in the VP2
 execution environment. Each register value is initialized to (0,0,0,1) at
 the invocation of each vertex program. Writes to the vertex result
 registers can be maskable on a per-component ba sis. These registers are
 named in Table X.1 and further discussed below.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1914

 Vertex Result Component
 Register Name Description Interpretation
 -------------- ------------------------------- -- --------------
 HPOS Homogeneous clip space positio n (x,y,z,w)
 COL0 Primary color (front-facing) (r,g,b,a)
 COL1 Secondary color (front-facing) (r,g,b,a)
 BFC0 Back-facing primary color (r,g,b,a)
 BFC1 Back-facing secondary color (r,g,b,a)
 FOGC Fog coordinate (f,*,*,*)
 PSIZ Point size (p,*,*,*)
 TEX0 Texture coordinate set 0 (s,t,r,q)
 TEX1 Texture coordinate set 1 (s,t,r,q)
 TEX2 Texture coordinate set 2 (s,t,r,q)
 TEX3 Texture coordinate set 3 (s,t,r,q)
 TEX4 Texture coordinate set 4 (s,t,r,q)
 TEX5 Texture coordinate set 5 (s,t,r,q)
 TEX6 Texture coordinate set 6 (s,t,r,q)
 TEX7 Texture coordinate set 7 (s,t,r,q)
 CLP0(*) Clip distance 0 (d,*,*,*)
 CLP1(*) Clip distance 1 (d,*,*,*)
 CLP2(*) Clip distance 2 (d,*,*,*)
 CLP3(*) Clip distance 3 (d,*,*,*)
 CLP4(*) Clip distance 4 (d,*,*,*)
 CLP5(*) Clip distance 5 (d,*,*,*)

 Table X.1: Vertex Result Registers. (*) Regis ters CLP0 through CLP5, are
 available only in the VP2 execution environment .

 HPOS is the transformed vertex's homogeneous cl ip space position. The
 vertex's homogeneous clip space position is con verted to normalized device
 coordinates and transformed to window coordinat es as described at the end
 of section 2.10 and in section 2.11. Further p rocessing (subsequent to
 vertex program termination) is responsible for clipping primitives
 assembled from vertex program-generated vertice s as described in section
 2.10 but all client-defined clip planes are tre ated as if they are
 disabled when vertex program mode is enabled.

 Four distinct color results can be generated fo r each vertex. COL0 is the
 transformed vertex's front-facing primary color . COL1 is the transformed
 vertex's front-facing secondary color. BFC0 is the transformed vertex's
 back-facing primary color. BFC1 is the transfo rmed vertex's back-facing
 secondary color.

 Primitive coloring may operate in two-sided col or mode. This behavior is
 enabled and disabled by calling Enable or Disab le with the symbolic value
 VERTEX_PROGRAM_TWO_SIDE_NV. The selection betw een the back-facing colors
 and the front-facing colors depends on the prim itive of which the vertex
 is a part. If the primitive is a point or a li ne segment, the
 front-facing colors are always selected. If th e primitive is a polygon
 and two-sided color mode is disabled, the front -facing colors are
 selected. If it is a polygon and two-sided col or mode is enabled, then
 the selection is based on the sign of the (clip ped or unclipped) polygon's
 signed area computed in window coordinates. Th is facingness determination
 is identical to the two-sided lighting facingne ss determination described
 in section 2.13.1.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1915

 The selected primary and secondary colors for e ach primitive are clamped
 to the range [0,1] and then interpolated across the assembled primitive
 during rasterization with at least 8-bit accura cy for each color
 component.

 FOGC is the transformed vertex's fog coordinate . The register's first
 floating-point component is interpolated across the assembled primitive
 during rasterization and used as the fog distan ce to compute per-fragment
 the fog factor when fog is enabled. However, i f both fog and vertex
 program mode are enabled, but the FOGC vertex r esult register is not
 written, the fog factor is overridden to 1.0. The register's other three
 components are ignored.

 Point size determination may operate in program -specified point size mode.
 This behavior is enabled and disabled by callin g Enable or Disable with
 the symbolic value VERTEX_PROGRAM_POINT_SIZE_NV . If the vertex is for a
 point primitive and the mode is enabled and the PSIZ vertex result is
 written, the point primitive's size is determin ed by the clamped x
 component of the PSIZ register. Otherwise (bec ause vertex program mode is
 disabled, program-specified point size mode is disabled, or because the
 vertex program did not write PSIZ), the point p rimitive's size is
 determined by the point size state (the state s pecified using the
 PointSize command).

 The PSIZ register's x component is clamped to t he range zero through
 either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing is
 disabled or the hi value of the SMOOTH_POINT_SI ZE_RANGE if point smoothing
 is enabled. The register's other three compone nts are ignored.

 If the vertex is not for a point primitive, the value of the PSIZ vertex
 result register is ignored.

 TEX0 through TEX7 are the transformed vertex's texture coordinate sets for
 texture units 0 through 7. These floating-poin t coordinates are
 interpolated across the assembled primitive dur ing rasterization and used
 for accessing textures. If the number of textu re units supported is less
 than eight, the values of vertex result registe rs that do not correspond
 to existent texture units are ignored.

 CLP0 through CLP5, available only in the VP2 ex ecution environment, are
 the transformed vertex's clip distances. These floating-point coordinates
 are used by post-vertex program clipping proces s (see section 2.11).

 Section 2.14.1.6, The Condition Code Register

 The VP2 execution environment provides a single four-component vector
 called the condition code register. Each compo nent of this register is
 one of four enumerated values: GT (greater tha n), EQ (equal), LT (less
 than), or UN (unordered). The condition code r egister can be used to mask
 writes to registers and to evaluate conditional branches.

 Most vertex program instructions can optionally update the condition code
 register. When a vertex program instruction up dates the condition code
 register, a condition code component is set to LT if the corresponding
 component of the result is less than zero, EQ i f it is equal to zero, GT
 if it is greater than zero, and UN if it is NaN (not a number).

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1916

 The condition code register is initialized to a vector of EQ values each
 time a vertex program executes.

 There is no condition code register available i n the VP1 execution
 environment.

 Section 2.14.1.7, Semantic Meaning for Vertex Attributes and Program
 Parameters

 One important distinction between the conventio nal GL vertex
 transformation mode and the vertex program mode is that per-vertex
 parameters and other state parameters in vertex program mode do not have
 dedicated semantic interpretations the way that they do with the
 conventional GL vertex transformation mode.

 For example, in the conventional GL vertex tran sformation mode, the Normal
 command specifies a per-vertex normal. The sem antic that the Normal
 command supplies a normal for lighting is estab lished because that is how
 the per-vertex attribute supplied by the Normal command is used by the
 conventional GL vertex transformation mode. Si milarly, other state
 parameters such as a light source position have semantic interpretations
 based on how the conventional GL vertex transfo rmation model uses each
 particular parameter.

 In contrast, vertex attributes and program para meters for vertex programs
 have no pre-defined semantic meanings. The mea ning of a vertex attribute
 or program parameter in vertex program mode is defined by how the vertex
 attribute or program parameter is used by the c urrent vertex program to
 compute and write values to the Vertex Result R egisters. This is the
 reason that per-vertex attributes and program p arameters for vertex
 programs are numbered instead of named.

 For convenience however, the existing per-verte x parameters for the
 conventional GL vertex transformation mode (ver tices, normals,
 colors, fog coordinates, vertex weights, and te xture coordinates) are
 aliased to numbered vertex attributes. This al iasing is specified in
 Table X.2. The table includes how the various conventional components
 map to the 4-component vertex attribute compone nts.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1917

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter C ommand Mapping
--------- --------------- ---------------------- ------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTU RE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTU RE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTU RE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTU RE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTU RE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTU RE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTU RE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTU RE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conv entional per-vertex
parameters.

 Only vertex attribute zero is treated specially because it is
 the attribute that provokes the execution of th e vertex program;
 this is the attribute that aliases to the Verte x command's vertex
 coordinates.

 The result of a vertex program is the set of po st-transformation
 vertex parameters written to the Vertex Result Registers.
 All vertex programs must write a homogeneous cl ip space position, but
 the other Vertex Result Registers can be option ally written.

 Clipping and culling are not the responsibility of vertex programs because
 these operations assume the assembly of multipl e vertices into a
 primitive. View frustum clipping is performed subsequent to vertex
 program execution. Clip planes are not support ed in the VP1 execution
 environment. Clip planes are supported indirec tly via the clip distance
 (o[CLPx]) registers in the VP2 execution enviro nment.

 Section 2.14.1.8, Vertex Program Specification

 Vertex programs are specified as an array of ub ytes. The array is a
 string of ASCII characters encoding the program .

 The command

 LoadProgramNV(enum target, uint id, sizei len ,
 const ubyte *program);

 loads a vertex program when the target paramete r is VERTEX_PROGRAM_NV.
 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs i s the positive integers
 (zero is reserved). The error INVALID_VALUE oc curs if a program is loaded
 with an id of zero. The error INVALID_OPERATIO N is generated if a program

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1918

 is loaded for an id that is currently loaded wi th a program of a different
 program target. Managing the program name spac e and binding to vertex
 programs is discussed later in section 2.14.1.8 .

 program is a pointer to an array of ubytes that represents the program
 being loaded. The length of the array is indic ated by len.

 A second program target type known as vertex st ate programs is discussed
 in 2.14.4.

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for several types of vertex programs. The set of valid tokens
 can be inferred from the grammar. The token "" represents an empty string
 and is used to indicate optional rules. A prog ram is invalid if it
 contains any undefined tokens or characters.

 The grammar provides for three different vertex program types,
 corresponding to the three vertex program execu tion environments. VP1,
 VP1.1, and VP2 programs match the grammar rules <vp1-program>,
 <vp11-program>, and <vp2-program>, respectively . Some grammar rules
 correspond to features or instruction forms ava ilable only in certain
 execution environments. Rules beginning with t he prefix "vp1-" are
 available only to VP1 and VP1.1 programs. Rule s beginning with the
 prefixes "vp11-" and "vp2-" are available only to VP1.1 and VP2 programs,
 respectively.

 <program> ::= <vp1-program>
 | <vp11-program>
 | <vp2-program>

 <vp1-program> ::= "!!VP1.0" <programBo dy> "END"

 <vp11-program> ::= "!!VP1.1" <programBo dy> "END"

 <vp2-program> ::= "!!VP2.0" <programBo dy> "END"

 <programBody> ::= <optionSequence> <pr ogramText>

 <optionSequence> ::= <option> <optionSequ ence>
 | ""

 <option> ::= "OPTION" <vp11-optio n> ";"
 | "OPTION" <vp2-option > ";"

 <vp11-option> ::= "NV_position_invaria nt"

 <vp2-option> ::= "NV_position_invaria nt"

 <programText> ::= <programTextItem> <p rogramText>
 | ""

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1919

 <programTextItem> ::= <instruction> ";"
 | <vp2-instructionLabe l>

 <instruction> ::= <ARL-instruction>
 | <VECTORop-instructio n>
 | <SCALARop-instructio n>
 | <BINop-instruction>
 | <TRIop-instruction>
 | <vp2-BRA-instruction >
 | <vp2-RET-instruction >
 | <vp2-ARA-instruction >

 <ARL-instruction> ::= <vp1-ARL-instruction >
 | <vp2-ARL-instruction >

 <vp1-ARL-instruction> ::= "ARL" <maskedAddrReg > "," <scalarSrc>

 <vp2-ARL-instruction> ::= <vp2-ARLop> <maskedA ddrReg> "," <vectorSrc>

 <vp2-ARLop> ::= "ARL" | "ARLC"
 | "ARR" | "ARRC"

 <VECTORop-instruction> ::= <VECTORop> <maskedDs tReg> "," <vectorSrc>

 <VECTORop> ::= "LIT"
 | "MOV"
 | <vp11-VECTORop>
 | <vp2-VECTORop>

 <vp11-VECTORop> ::= "ABS"

 <vp2-VECTORop> ::= "ABSC"
 | "FLR" | "FLRC"
 | "FRC" | "FRCC"
 | "LITC"
 | "MOVC"
 | "SSG" | "SSGC"

 <SCALARop-instruction> ::= <SCALARop> <maskedDs tReg> "," <scalarSrc>

 <SCALARop> ::= "EXP"
 | "LOG"
 | "RCP"
 | "RSQ"
 | <vp2-SCALARop>

 <vp2-SCALARop> ::= "COS" | "COSC"
 | "EX2" | "EX2C"
 | "LG2" | "LG2C"
 | "EXPC"
 | "LOGC"
 | "RCPC"
 | "RSQC"

 <BINop-instruction> ::= <BINop> <maskedDstRe g> "," <vectorSrc> ","
 <vectorSrc>

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1920

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | <vp11-BINop>
 | <vp2-BINop>

 <vp11-BINop> ::= "DPH"

 <vp2-BINop> ::= "ADDC"
 | "DP3C"
 | "DP4C"
 | "DPHC"
 | "DSTC"
 | "MAXC"
 | "MINC"
 | "MULC"
 | "SEQ" | "SEQC"
 | "SFL" | "SFLC"
 | "SGEC"
 | "SGT" | "SGTC"
 | "SLTC"
 | "SLE" | "SLEC"
 | "SNE" | "SNEC"
 | "STR" | "STRC"

 <TRIop-instruction> ::= <TRIop> <maskedDstRe g> "," <vectorSrc> ","
 <vectorSrc> "," <vec torSrc>

 <TRIop> ::= "MAD"
 | <vp2-TRIop>

 <vp2-TRIop> ::= "MADC"

 <vp2-BRA-instruction> ::= <vp2-BRANCHop> <vp2- branchLabel>
 <vp2-branchConditi on>

 <vp2-BRANCHop> ::= "BRA"
 | "CAL"

 <vp2-RET-instruction> ::= "RET" <vp2-branchCon dition>

 <vp2-ARA-instruction> ::= <vp2-ARAop> <maskedA ddrReg> "," <addrRegister>

 <vp2-ARAop> ::= "ARA" | "ARAC"

 <scalarSrc> ::= <baseScalarSrc>
 | <vp2-absScalarSrc>

 <vp2-absScalarSrc> ::= <optionalSign> "|" < baseScalarSrc> "|"

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1921

 <baseScalarSrc> ::= <optionalSign> <srcR egister> <scalarSuffix>

 <vectorSrc> ::= <baseVectorSrc>
 | <vp2-absVectorSrc>

 <vp2-absVectorSrc> ::= <optionalSign> "|" < baseVectorSrc> "|"

 <baseVectorSrc> ::= <optionalSign> <srcR egister> <swizzleSuffix>

 <srcRegister> ::= <vtxAttribRegister>
 | <progParamRegister>
 | <tempRegister>

 <maskedDstReg> ::= <dstRegister> <optio nalWriteMask>
 <optionalCCMask>

 <dstRegister> ::= <vtxResultRegister>
 | <tempRegister>
 | <vp2-nullRegister>

 <vp2-nullRegister> ::= "CC"

 <vp2-branchCondition> ::= <optionalCCMask>

 <vtxAttribRegister> ::= "v" "[" vtxAttribReg Num "]"

 <vtxAttribRegNum> ::= decimal integer from 0 to 15 inclusive
 | "OPOS"
 | "WGHT"
 | "NRML"
 | "COL0"
 | "COL1"
 | "FOGC"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <progParamRegister> ::= <absProgParamReg>
 | <relProgParamReg>

 <absProgParamReg> ::= "c" "[" <progParamRe gNum> "]"

 <progParamRegNum> ::= <vp1-progParamRegNum >
 | <vp2-progParamRegNum >

 <vp1-progParamRegNum> ::= decimal integer from 0 to 95 inclusive

 <vp2-progParamRegNum> ::= decimal integer from 0 to 255 inclusive

 <relProgParamReg> ::= "c" "[" <scalarAddr> <relProgParamOffset> "]"

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1922

 <relProgParamOffset> ::= ""
 | "+" <progParamPosOff set>
 | "-" <progParamNegOff set>

 <progParamPosOffset> ::= <vp1-progParamPosOff >
 | <vp2-progParamPosOff >

 <vp1-progParamPosOff> ::= decimal integer from 0 to 63 inclusive

 <vp2-progParamPosOff> ::= decimal integer from 0 to 255 inclusive

 <progParamNegOffset> ::= <vp1-progParamNegOff >
 | <vp2-progParamNegOff >

 <vp1-progParamNegOff> ::= decimal integer from 0 to 64 inclusive

 <vp2-progParamNegOff> ::= decimal integer from 0 to 256 inclusive

 <tempRegister> ::= "R0" | "R1" | "R2" | "R3"
 | "R4" | "R5" | "R6" | "R7"
 | "R8" | "R9" | "R10 " | "R11"

 <vp2-tempRegister> ::= "R12" | "R13" | "R14 " | "R15"

 <vtxResultRegister> ::= "o" "[" <vtxResultRe gName> "]"

 <vtxResultRegName> ::= "HPOS"
 | "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"
 | <vp2-resultRegName>

 <vp2-resultRegName> ::= "CLP0"
 | "CLP1"
 | "CLP2"
 | "CLP3"
 | "CLP4"
 | "CLP5"

 <scalarAddr> ::= <addrRegister> "." < addrRegisterComp>

 <maskedAddrReg> ::= <addrRegister> <addr WriteMask>

 <addrRegister> ::= "A0"
 | <vp2-addrRegister>

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1923

 <vp2-addrRegister> ::= "A1"

 <addrRegisterComp> ::= "x"
 | <vp2-addrRegisterCom p>

 <vp2-addrRegisterComp> ::= "y"
 | "z"
 | "w"

 <addrWriteMask> ::= "." "x"
 | <vp2-addrWriteMask>

 <vp2-addrWriteMask> ::= ""
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <optionalSign> ::= ""
 | "-"
 | <vp2-optionalSign>

 <vp2-optionalSign> ::= "+"

 <vp2-instructionLabel> ::= <vp2-branchLabel> ": "

 <vp2-branchLabel> ::= <identifier>

 <optionalWriteMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1924

 <optionalCCMask> ::= ""
 | <vp2-ccMask>

 <vp2-ccMask> ::= "(" <vp2-ccMaskRule> <swizzleSuffix> ")"

 <vp2-ccMaskRule> ::= "EQ" | "GE" | "GT" | "LE" | "LT" | "NE"
 | "TR" | "FL"

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z", and "_") and digi ts ("0" through "9); the
 first character must be a letter. The undersco re ("_") counts as a
 letter. Upper and lower case letters are diffe rent (names are
 case-sensitive).

 The <vertexAttribRegNum> rule matches both regi ster numbers 0 through 15
 and a set of mnemonics that abbreviate the alia sing of conventional
 per-vertex parameters to vertex attribute regis ter numbers. Table X.3
 shows the mapping from mnemonic to vertex attri bute register number and
 what the mnemonic abbreviates.

 Vertex Attribute
 Mnemonic Register Number Meaning
 -------- ---------------- ------------ --------
 "OPOS" 0 object posit ion
 "WGHT" 1 vertex weigh t
 "NRML" 2 normal
 "COL0" 3 primary colo r
 "COL1" 4 secondary co lor
 "FOGC" 5 fog coordina te
 "TEX0" 8 texture coor dinate 0
 "TEX1" 9 texture coor dinate 1
 "TEX2" 10 texture coor dinate 2
 "TEX3" 11 texture coor dinate 3
 "TEX4" 12 texture coor dinate 4
 "TEX5" 13 texture coor dinate 5
 "TEX6" 14 texture coor dinate 6
 "TEX7" 15 texture coor dinate 7

 Table X.3: The mapping between vertex attr ibute register numbers,
 mnemonics, and meanings.

 A vertex program fails to load if it does not w rite at least one component
 of the HPOS register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1925

 A vertex program fails to load in the VP1 execu tion environment if it
 contains more than 128 instructions. A vertex program fails to load in
 the VP2 execution environment if it contains mo re than 256 instructions.
 Each block of text matching the <instruction> r ule counts as an
 instruction.

 A vertex program fails to load if any instructi on sources more than one
 unique program parameter register. An instruct ion can match the
 <progParamRegister> rule more than once only if all such matches are
 identical.

 A vertex program fails to load if any instructi on sources more than one
 unique vertex attribute register. An instructi on can match the
 <vtxAttribRegister> rule more than once only if all such matches refer to
 the same register.

 The error INVALID_OPERATION is generated if a v ertex program fails to load
 because it is not syntactically correct or for one of the semantic
 restrictions listed above.

 The error INVALID_OPERATION is generated if a p rogram is loaded for id
 when id is currently loaded with a program of a different target.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified b y its tokenized name. The
 operation of these instructions when executed i s defined in section
 2.14.1.10.

 A successfully loaded program replaces the prog ram previously assigned to
 the name specified by id. If the OUT_OF_MEMORY error is generated by
 LoadProgramNV, no change is made to the previou s contents of the named
 program.

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte offset
 into the last loaded program string indicating where the first error in
 the program. If the program fails to load beca use of a semantic
 restriction that cannot be determined until the program is fully scanned,
 the error position will be len, the length of t he program. If the program
 loads successfully, the value of PROGRAM_ERROR_ POSITION_NV is assigned the
 value negative one.

 Section 2.14.1.9, Vertex Program Binding and P rogram Management

 The current vertex program is invoked whenever vertex attribute zero is
 updated (whether by a VertexAttributeNV or Vert ex command). The current
 vertex program is updated by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV. This b inds the vertex program
 named by id as the current vertex program. The error INVALID_OPERATION
 is generated if id names a program that is not a vertex program
 (for example, if id names a vertex state progra m as described in
 section 2.14.4).

 Binding to a nonexistent program id does not ge nerate an error.
 In particular, binding to program id zero does not generate an error.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1926

 However, because program zero cannot be loaded, program zero is
 always nonexistent. If a program id is success fully loaded with a
 new vertex program and id is also the currently bound vertex program,
 the new program is considered the currently bou nd vertex program.

 The INVALID_OPERATION error is generated when b oth vertex program
 mode is enabled and Begin is called (or when a command that performs
 an implicit Begin is called) if the current ver tex program is
 nonexistent or not valid. A vertex program may not be valid for
 reasons explained in section 2.14.5.

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *id s);

 ids contains n names of programs to be deleted. After a program
 is deleted, it becomes nonexistent, and its nam e is again unused.
 If a program that is currently bound is deleted , it is as though
 BindProgramNV has been executed with the same t arget as the deleted
 program and program zero. Unused names in ids are silently ignored,
 as is the value zero.

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n previously unused program names in id s. These names
 are marked as used, for the purposes of GenProg ramsNV only,
 but they become existent programs only when the are first loaded
 using LoadProgramNV. The error INVALID_VALUE i s generated if n
 is negative.

 An implementation may choose to establish a wor king set of programs on
 which binding and ExecuteProgramNV operations (execute programs are
 explained in section 2.14.4) are performed with higher performance.
 A program that is currently part of this workin g set is said to
 be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *reside nces);

 returns TRUE if all of the n programs named in ids are resident,
 or if the implementation does not distinguish a working set. If at
 least one of the programs named in ids is not r esident, then FALSE is
 returned, and the residence of each program is returned in residences.
 Otherwise the contents of residences are not ch anged. If any of
 the names in ids are nonexistent or zero, FALSE is returned, the
 error INVALID_VALUE is generated, and the conte nts of residences
 are indeterminate. The residence status of a s ingle named program
 can also be queried by calling GetProgramivNV w ith id set to the
 name of the program and pname set to PROGRAM_RE SIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is
 currently resident, not whether it could not be made resident.
 An implementation may choose to make a program resident only on

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1927

 first use, for example. The client may guide t he GL implementation
 in determining which programs should be residen t by requesting a
 set of programs to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids shoul d be made resident.
 While all the programs are not guaranteed to be come resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher prior ity for residency
 should be given to programs listed earlier in t he ids array.
 RequestResidentProgramsNV silently ignores atte mpts to make resident
 nonexistent program names or zero. ArePrograms ResidentNV can be
 called after RequestResidentProgramsNV to deter mine which programs
 actually became resident.

 Section 2.14.2, Vertex Program Operation

 In the VP1 execution environment, there are twe nty-one vertex program
 instructions. Four instructions (ABS, DPH, RCC , and SUB) are available
 only in the VP1.1 execution environment. The i nstructions and their
 respective input and output parameters are summ arized in Table X.4.

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS(*) v v absolute valu e
 ADD v,v v add
 ARL v as address regis ter load
 DP3 v,v ssss 3-component d ot product
 DP4 v,v ssss 4-component d ot product
 DPH(*) v,v ssss homogeneous d ot product
 DST v,v v distance vect or
 EXP s v exponential b ase 2 (approximate)
 LIT v v compute light coefficients
 LOG s v logarithm bas e 2 (approximate)
 MAD v,v,v v multiply and add
 MAX v,v v maximum
 MIN v,v v minimum
 MOV v v move
 MUL v,v v multiply
 RCC(*) s ssss reciprocal (c lamped)
 RCP s ssss reciprocal
 RSQ s ssss reciprocal sq uare root
 SGE v,v v set on greate r than or equal
 SLT v,v v set on less t han
 SUB(*) v,v v subtract

 Table X.4: Summary of vertex program instructi ons in the VP1 execution
 environment. "v" indicates a floating-point ve ctor input or output, "s"
 indicates a floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component vector, "as" in dicates a single component
 of an address register.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1928

 In the VP2 execution environment, are thirty-ni ne vertex program
 instructions. Vertex program instructions may have an optional suffix of
 "C" to allow an update of the condition code re gister (section 2.14.1.6).
 For example, there are two instructions to perf orm vector addition, "ADD"
 and "ADDC". The vertex program instructions av ailable in the VP2
 execution environment and their respective inpu t and output parameters are
 summarized in Table X.5.
 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS[C] v v absolute valu e
 ADD[C] v,v v add
 ARA[C] av av address regis ter add
 ARL[C] v av address regis ter load
 ARR[C] v av address regis ter load (with round)
 BRA as none branch
 CAL as none subroutine ca ll
 COS[C] s ssss cosine
 DP3[C] v,v ssss 3-component d ot product
 DP4[C] v,v ssss 4-component d ot product
 DPH[C] v,v ssss homogeneous d ot product
 DST[C] v,v v distance vect or
 EX2[C] s ssss exponential b ase 2
 EXP[C] s v exponential b ase 2 (approximate)
 FLR[C] v v floor
 FRC[C] v v fraction
 LG2[C] s ssss logarithm bas e 2
 LIT[C] v v compute light coefficients
 LOG[C] s v logarithm bas e 2 (approximate)
 MAD[C] v,v,v v multiply and add
 MAX[C] v,v v maximum
 MIN[C] v,v v minimum
 MOV[C] v v move
 MUL[C] v,v v multiply
 RCC[C] s ssss reciprocal (c lamped)
 RCP[C] s ssss reciprocal
 RET none none subroutine ca ll return
 RSQ[C] s ssss reciprocal sq uare root
 SEQ[C] v,v v set on equal
 SFL[C] v,v v set on false
 SGE[C] v,v v set on greate r than or equal
 SGT[C] v,v v set on greate r than
 SIN[C] s ssss sine
 SLE[C] v,v v set on less t han or equal
 SLT[C] v,v v set on less t han
 SNE[C] v,v v set on not eq ual
 SSG[C] v v set sign
 STR[C] v,v v set on true
 SUB[C] v,v v subtract

 Table X.5: Summary of vertex program instructi ons in the VP2 execution
 environment. "v" indicates a floating-point ve ctor input or output, "s"
 indicates a floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component vector, "av" in dicates a full address
 register, "as" indicates a single component of an address register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1929

 Section 2.14.2.1, Vertex Program Operands

 Most vertex program instructions operate on flo ating-point vectors,
 floating-point scalars, or integer scalars as, indicated in the grammar
 (see section 2.14.1.8) by the rules <vectorSrc> , <scalarSrc>, and
 <scalarAddr>, respectively.

 The basic set of floating-point scalar operands is defined by the grammar
 rule <baseScalarSrc>. Scalar operands are sing le components of vertex
 attribute, program parameter, or temporary regi sters, as allowed by the
 <srcRegister> rule. A vector component is sele cted by the <scalarSuffix>
 rule, where the characters "x", "y", "z", and " w" select the x, y, z, and
 w components, respectively, of the vector.

 The basic set of floating-point vector operands is defined by the grammar
 rule <baseVectorSrc>. Vector operands can be o btained from vertex
 attribute, program parameter, or temporary regi sters as allowed by the
 <srcRegister> rule.

 Basic vector operands can be swizzled according to the <swizzleSuffix>
 rule. In its most general form, the <swizzleSu ffix> rule matches the
 pattern ".????" where each question mark is rep laced with one of "x", "y",
 "z", or "w". For such patterns, the x, y, z, a nd w components of the
 operand are taken from the vector components na med by the first, second,
 third, and fourth character of the pattern, res pectively. For example, if
 the swizzle suffix is ".yzzx" and the specified source contains {2,8,9,0},
 the swizzled operand used by the instruction is {8,9,9,2}.

 If the <swizzleSuffix> rule matches "", it is t reated as though it were
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace) ".x",
 ".y", ".z", or ".w", these are treated the same as ".xxxx", ".yyyy",
 ".zzzz", and ".wwww" respectively.

 Floating-point scalar or vector operands can op tionally be negated
 according to the <negate> rules in <baseScalarS rc> and <baseVectorSrc>.
 If the <negate> matches "-", each operand or op erand component is negated.

 In the VP2 execution environment, a component-w ise absolute value
 operation is performed on an operand if the <sc alarSrc> or <vectorSrc>
 rules match <vp2-absScalarSrc> or <vp2-absVecto rSrc>. In this case, the
 absolute value of each component of the operand is taken. In addition, if
 the <negate> rule in <vp2-absScalarSrc> or <vp2 -absVectorSrc> matches "-",
 each component is subsequently negated.

 Integer scalar operands are single components o f one of the address
 register vectors, as identified by the <addrReg ister> rule. A vector
 component is selected by the <scalarSuffix> rul e in the same manner as
 floating-point scalar operands. Negation and a bsolute value operations
 are not available for integer scalar operands.

 The following pseudo-code spells out the operan d generation process. In
 the pseudo-code, "float" and "int" are floating -point and integer scalar
 types, while "floatVec" and "intVec" are four-c omponent vectors. "source"
 is the register used for the operand, matching the <srcRegister> or
 <addrRegister> rules. "absolute" is TRUE if th e operand matches the
 <vp2-absScalarSrc> or <vp2-absVectorSrc> rules, and FALSE otherwise.
 "negateBase" is TRUE if the <negate> rule in <b aseScalarSrc> or

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1930

 <baseVectorSrc> matches "-" and FALSE otherwise . "negateAbs" is TRUE if
 the <negate> rule in <vp2-absScalarSrc> or <vp2 -absVectorSrc> matches "-"
 and FALSE otherwise. The ".c***", ".*c**", ".* *c*", ".***c" modifiers
 refer to the x, y, z, and w components obtained by the swizzle operation.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (negateBase) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }
 if (absolute) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negateAbs) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c***;
 if (negateBase) {
 operand = -operand;
 }
 if (absolute) {
 operand = abs(operand);
 }
 if (negateAbs) {
 operand = -operand;
 }

 return operand;
 }

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1931

 intVec AddrVectorLoad(intVec addrReg)
 {
 intVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;

 return operand;
 }

 int AddrScalarLoad(intVec addrReg)
 {
 return source.c***;
 }

 If an operand is obtained from a program parame ter register, by matching
 the <progParamRegister> rule, the register numb er can be obtained by
 absolute or relative addressing.

 When absolute addressing is used, by matching t he <absProgParamReg> rule,
 the program parameter register number is the nu mber matching the
 <progParamRegNum>.

 When relative addressing is used, by matching t he <relProgParamReg> rule,
 the program parameter register number is comput ed during program
 execution. An index is computed by adding the integer scalar operand
 specified by the <scalarAddr> rule to the posit ive or negative offset
 specified by the <progParamOffset> rule. If <p rogParamOffset> matches "",
 an offset of zero is used.

 The following pseudo-code spells out the proces s of loading a program
 parameter. "addrReg" refers to the address reg ister used for relative
 addressing, "absolute" is TRUE if the operand u ses absolute addressing and
 FALSE otherwise. "paramNumber" is the program parameter number for
 absolute addressing; "paramOffset" is the progr am parameter offset for
 relative addressing. "paramRegiser" is an arra y holding the complete set
 of program parameter registers.

 floatVec ProgramParameterLoad(intVec addrReg)
 {
 int index;

 if (absolute) {
 index = paramNumber;
 } else {
 index = AddrScalarLoad(addrReg) + paramOf fset
 }

 return paramRegister[index];
 }

 Section 2.14.2.2, Vertex Program Destination R egister Update

 Most vertex program instructions write a 4-comp onent result vector to a
 single temporary, vertex result, or address reg ister. Writes to

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1932

 individual components of the destination regist er are controlled by
 individual component write masks specified as p art of the instruction. In
 the VP2 execution environment, writes are addit ionally controlled by the a
 condition code write mask, which is computed at run time.

 The component write mask is specified by the <o ptionalWriteMask> rule
 found in the <maskedDstReg> or <maskedAddrReg> rule. If the optional mask
 is "", all components are enabled. Otherwise, the optional mask names the
 individual components to enable. The character s "x", "y", "z", and "w"
 match the x, y, z, and w components respectivel y. For example, an
 optional mask of ".xzw" indicates that the x, z , and w components should
 be enabled for writing but the y component shou ld not. The grammar
 requires that the destination register mask com ponents must be listed in
 "xyzw" order.

 In the VP2 execution environment, the condition code write mask is
 specified by the <optionalCCMask> rule found in the <maskedDstReg> and
 <maskedAddrReg> rules. If the condition code m ask matches "", all
 components are enabled. Otherwise, the conditi on code register is loaded
 and swizzled according to the swizzle codes spe cified by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to the
 rule given by <ccMaskRule>. <ccMaskRule> may h ave the values "EQ", "NE",
 "LT", "GE", LE", or "GT", which mean to enable writes if the corresponding
 condition code field evaluates to equal, not eq ual, less than, greater
 than or equal, less than or equal, or greater t han, respectively.
 Comparisons involving condition codes of "UN" (unordered) evaluate to true
 for "NE" and false otherwise. For example, if the condition code is
 (GT,LT,EQ,GT) and the condition code mask is "(NE.zyxw)", the swizzle
 operation will load (EQ,LT,GT,GT) and the mask will thus will enable
 writes on the y, z, and w components. In addit ion, "TR" always enables
 writes and "FL" always disables writes, regardl ess of the condition code.

 Each component of the destination register is u pdated with the result of
 the vertex program instruction if and only if t he component is enabled for
 writes by the component write mask, and the opt ional condition code mask
 (if applicable). Otherwise, the component of t he destination register
 remains unchanged.

 In the VP2 execution environment, a vertex prog ram instruction can also
 optionally update the condition code register. The condition code is
 updated if the condition code register update s uffix "C" is present in the
 instruction. The instruction "ADDC" will updat e the condition code; the
 otherwise equivalent instruction "ADD" will not . If condition code
 updates are enabled, each component of the dest ination register enabled
 for writes is compared to zero. The correspond ing component of the
 condition code is set to "LT", "EQ", or "GT", i f the written component is
 less than, equal to, or greater than zero, resp ectively. Condition code
 components are set to "UN" if the written compo nent is NaN. Values of
 -0.0 and +0.0 both evaluate to "EQ". If a comp onent of the destination
 register is not enabled for writes, the corresp onding condition code
 component is also unchanged.

 In the following example code,

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1933

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the condition
 code to (LT,EQ,GT,UN). The second instruction, only the "x", "y", and "z"
 components of R0 and the condition code are upd ated, so R0 ends up with
 (0,2,NaN,NaN) and the condition code ends up wi th (EQ,GT,UN,UN). In the
 third instruction, the condition code mask disa bles writes to the x
 component (its condition code field is "EQ"), s o R0 ends up with
 (0,0,NaN,-2) and the condition code ends up wit h (EQ,EQ,UN,LT).
 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask" refers
 to the component write mask given by the <optio nalWriteMask> rule. In the
 VP1 execution environment, "ccMaskRule" is alwa ys "" and "updatecc" is
 always FALSE. In the VP2 execution environment , "ccMaskRule" refers to
 the condition code mask rule given by <vp2-opti onalCCMask> and "updatecc"
 is TRUE if and only if condition code updates a re enabled. "result",
 "destination", and "cc" refer to the result vec tor, the register selected
 by <dstRegister> and the condition code, respec tively. Condition codes do
 not exist in the VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1934

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 Section 2.14.2.3, Vertex Program Execution

 In the VP1 execution environment, vertex progra ms consist of a sequence of
 instructions without no support for branching. Vertex programs begin by
 executing the first instruction in the program, and execute instructions
 in the order specified in the program until the last instruction is
 reached.

 VP2 vertex programs can contain one or more ins truction labels, matching
 the grammar rule <vp2-instructionLabel>. An in struction label can be
 referred to explicitly in branch (BRA) or subro utine call (CAL)
 instructions. Instruction labels can be define d or used at any point in
 the body of a program, and can be used in instr uctions before being
 defined in the program string.

 VP2 vertex program branching instructions can b e conditional. The branch
 condition is specified by the <vp2-conditionMas k> and may depend on the
 contents of the condition code register. Branc h conditions are evaluated
 by evaluating a condition code write mask in ex actly the same manner as
 done for register writes (section 2.14.2.2). I f any of the four
 components of the condition code write mask are enabled, the branch is
 taken and execution continues with the instruct ion following the label
 specified in the instruction. Otherwise, the i nstruction is ignored and
 vertex program execution continues with the nex t instruction. In the
 following example code,

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1935

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 BRA label1 (LT.xyzw);
 MOV R0,R1; # not executed
 label1:
 BRA label2 (LT.wyzw);
 MOV R0,R2; # executed
 label2:

 the first BRA instruction loads a condition cod e of (LT,EQ,GT,UN) while
 the second BRA instruction loads a condition co de of (UN,EQ,GT,UN). The
 first branch will be taken because the "x" comp onent evaluates to LT; the
 second branch will not be taken because no comp onent evaluates to LT.

 VP2 vertex programs can specify subroutine call s. When a subroutine call
 (CAL) instruction is executed, a reference to t he instruction immediately
 following the CAL instruction is pushed onto th e call stack. When a
 subroutine return (RET) instruction is executed , an instruction reference
 is popped off the call stack and program execut ion continues with the
 popped instruction. A vertex program will term inate if a CAL instruction
 is executed with four entries already in the ca ll stack or if a RET
 instruction is executed with an empty call stac k.

 If a VP2 vertex program has an instruction labe l "main", program execution
 begins with the instruction immediately followi ng the instruction label.
 Otherwise, program execution begins with the fi rst instruction of the
 program. Instructions will be executed sequent ially in the order
 specified in the program, although branch instr uctions will affect the
 instruction execution order, as described above . A vertex program will
 terminate after executing a RET instruction wit h an empty call stack. A
 vertex program will also terminate after execut ing the last instruction in
 the program, unless that instruction was a take n branch.

 A vertex program will fail to load if an instru ction refers to a label
 that is not defined in the program string.

 A vertex program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally, a vertex
 program will terminate abnormally after executi ng 65536 instructions to
 prevent hangs caused by infinite loops in the p rogram.

 When a vertex program terminates, normally or a bnormally, it will emit a
 vertex whose attributes are taken from the fina l values of the vertex
 result registers (section 2.14.1.5).

 Section 2.14.3, Vertex Program Instruction Set

 The following sections describe the set of supp orted vertex program
 instructions. Instructions available only in t he VP1.1 or VP2 execution
 environment will be noted in the instruction de scription.

 Each section will contain pseudocode describing the instruction.
 Instructions will have up to three operands, re ferred to as "op0", "op1",
 and "op2". The operands are loaded using the m echanisms specified in
 section 2.14.2.1. Most instructions will gener ate a result vector called
 "result". The result vector is then written to the destination register
 specified in the instruction using the mechanis ms specified in section
 2.14.2.2.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1936

 Operands and results are represented as 32-bit single-precision
 floating-point numbers according to the IEEE 75 4 floating-point
 specification. IEEE denorm encodings, used to represent numbers smaller
 than 2^-126, are not supported. All such numbe rs are flushed to zero.
 There are three special encodings referred to i n this section: +INF means
 "positive infinity", -INF means "negative infin ity", and NaN refers to
 "not a number".

 Arithmetic operations are typically carried out in single precision
 according to the rules specified in the IEEE 75 4 specification. Any
 exceptions and special cases will be noted in t he instruction description.

 Section 2.14.3.1, ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value operation on
 the single operand to yield a result vector.

 tmp = VectorLoad(op0);
 result.x = abs(tmp.x);
 result.y = abs(tmp.y);
 result.z = abs(tmp.z);
 result.w = abs(tmp.w);

 The following special-case rules apply to absol ute value operation:

 1. abs(NaN) = NaN.
 2. abs(-INF) = abs(+INF) = +INF.
 3. abs(-0.0) = abs(+0.0) = +0.0.

 The ABS instruction is available only in the VP 1.1 and VP2 execution
 environments.

 In the VP1.0 execution environment, the same fu nctionality can be achieved
 with "MAX result, src, -src".

 In the VP2 execution environment, the ABS instr uction is effectively
 obsolete, since instructions can take the absol ute value of each operand
 at no cost.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1937

 Section 2.14.3.2, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following special-case rules apply to addit ion:

 1. "A+B" is always equivalent to "B+A".
 2. NaN + <x> = NaN, for all <x>.
 3. +INF + <x> = +INF, for all <x> except NaN and -INF.
 4. -INF + <x> = -INF, for all <x> except NaN and +INF.
 5. +INF + -INF = NaN.
 6. -0.0 + <x> = <x>, for all <x>.
 7. +0.0 + <x> = <x>, for all <x> except -0.0.

 Section 2.14.3.3, ARA: Address Register Add

 The ARA instruction adds two pairs of component s of a vector address
 register operand to produce an integer result v ector. The "x" and "z"
 components of the result vector contain the sum of the "x" and "z"
 components of the operand; the "y" and "w" comp onents of the result vector
 contain the sum of the "y" and "w" components o f the operand. Each
 component of the result vector is clamped to [- 512, +511], the range of
 representable address register components.

 itmp = AddrVectorLoad(op0);
 iresult.x = itmp.x + itmp.z;
 iresult.y = itmp.y + itmp.w;
 iresult.z = itmp.x + itmp.z;
 iresult.w = itmp.y + itmp.w;
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 Component swizzling is not supported when the o perand is loaded.

 The ARA instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1938

 Section 2.14.3.4, ARL: Address Register Load

 In the VP1 execution environment, the ARL instr uction loads a single
 scalar operand and performs a floor operation t o generate an integer
 scalar to be written to the address register.

 tmp = ScalarLoad(op0);
 iresult.x = floor(tmp);

 In the VP2 execution environment, the ARL instr uction loads a single
 vector operand and performs a component-wise fl oor operation to generate
 an integer result vector. Each component of th e result vector is clamped
 to [-512, +511], the range of representable add ress register components.
 The ARL instruction applies all masking operati ons to address register
 writes as are described in section 2.14.2.2.

 tmp = VectorLoad(op0);
 iresult.x = floor(tmp.x);
 iresult.y = floor(tmp.y);
 iresult.z = floor(tmp.z);
 iresult.w = floor(tmp.w);
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1939

 Section 2.14.3.5, ARR: Address Register Load (with round)

 The ARR instruction loads a single vector opera nd and performs a
 component-wise round operation to generate an i nteger result vector. Each
 component of the result vector is clamped to [- 512, +511], the range of
 representable address register components. The ARR instruction applies
 all masking operations to address register writ es as described in section
 2.14.2.2.

 tmp = VectorLoad(op0);
 iresult.x = round(tmp.x);
 iresult.y = round(tmp.y);
 iresult.z = round(tmp.z);
 iresult.w = round(tmp.w);
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 The rounding function, round(x), returns the ne arest integer to <x>. If
 the fractional portion of <x> is 0.5, round(x) selects the nearest even
 integer.

 The ARR instruction is available only in the VP 2 execution environment.

 Section 2.14.3.6, BRA: Branch

 The BRA instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. The following
 pseudocode describes the operation of the instr uction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the instruction
 matching the <vp2-branchLabel> grammar rule.

 The BRA instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1940

 Section 2.14.3.7, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing the
 matching RET instruction. The following pseudo code describes the
 operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= 4) {
 // terminate vertex program
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the instruction
 matching the <vp2-branchLabel> grammar rule, <c allStackDepth> is the
 current depth of the call stack, <callStack> is an array holding the call
 stack, and <nextInstruction> is a reference to the instruction immediately
 following the present one in the program string .

 The CAL instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1941

 Section 2.14.3.8, COS: Cosine

 The COS instruction approximates the cosine of the angle specified by the
 scalar operand and replicates the approximation to all four components of
 the result vector. The angle is specified in r adians and does not have to
 be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 The approximation function ApproxCosine is accu rate to at least 22 bits
 with an angle in the range [0,2*PI].

 | ApproxCosine(x) - cos(x) | < 1.0 / 2^22, if 0.0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxCosine(NaN) = NaN.
 2. ApproxCosine(+/-INF) = NaN.
 3. ApproxCosine(+/-0.0) = +1.0.

 The COS instruction is available only in the VP 2 execution environment.

 Section 2.14.3.9, DP3: 3-component Dot Produc t

 The DP3 instruction computes a three component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1942

 Section 2.14.3.10, DP4: 4-component Dot Produ ct

 The DP4 instruction computes a four component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);

 Section 2.14.3.11, DPH: Homogeneous Dot Produ ct

 The DPH instruction computes a four-component d ot product of the two
 operands, except that the W component of the fi rst operand is assumed to
 be 1.0. The instruction replicates the dot pro duct to all four components
 of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;

 The DPH instruction is available only in the VP 1.1 and VP2 execution
 environments.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1943

 Section 2.14.3.12, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-vertex l ight attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 Section 2.14.3.13, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | Approx2ToX(x) - 2^x | < 1.0 / 2^22, if 0.0 <= x < 1.0,

 and, in general,

 | Approx2ToX(x) - 2^x | < (1.0 / 2^22) * (2^f loor(x)).

 The following special-case rules apply to expon ential approximation:

 1. Approx2ToX(NaN) = NaN.
 2. Approx2ToX(-INF) = +0.0.
 3. Approx2ToX(+INF) = +INF.
 4. Approx2ToX(+/-0.0) = +1.0.

 The EX2 instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1944

 Section 2.14.3.14, EXP: Exponential Base 2 (a pproximate)

 The EXP instruction computes a rough approximat ion of 2 raised to the
 power of the scalar operand. The approximation is returned in the "z"
 component of the result vector. A vertex progr am can also use the "x" and
 "y" components of the result vector to generate a more accurate
 approximation by evaluating

 result.x * f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [0.0, 1.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = ScalarLoad(op0);
 result.x = 2^floor(tmp);
 result.y = tmp - floor(tmp);
 result.z = RoughApprox2ToX(tmp);
 result.w = 1.0;

 The approximation function is accurate to at le ast 11 bits:

 | RoughApprox2ToX(x) - 2^x | < 1.0 / 2^11, if 0.0 <= x < 1.0,

 and, in general,

 | RoughApprox2ToX(x) - 2^x | < (1.0 / 2^11) * (2^floor(x)).

 The following special cases apply to the EXP in struction:

 1. RoughApprox2ToX(NaN) = NaN.
 2. RoughApprox2ToX(-INF) = +0.0.
 3. RoughApprox2ToX(+INF) = +INF.
 4. RoughApprox2ToX(+/-0.0) = +1.0.

 The EXP instruction is present for compatibilit y with the original
 NV_vertex_program instruction set; it is recomm ended that applications
 using NV_vertex_program2 use the EX2 instructio n instead.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1945

 Section 2.14.3.15, FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is defined as
 the largest integer less than or equal to the v alue. The floor of 2.3 is
 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

 The FLR instruction is available only in the VP 2 execution environment.

 Section 2.14.3.16, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.00, 1.00).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = tmp.x - floor(tmp.x);
 result.y = tmp.y - floor(tmp.y);
 result.z = tmp.z - floor(tmp.z);
 result.w = tmp.w - floor(tmp.w);

 The following special-case rules, which can be derived from the rules for
 FLR and ADD apply to fraction computation:

 1. fraction(NaN) = NaN.
 2. fraction(+/-INF) = NaN.
 3. fraction(+/-0.0) = +0.0.

 The FRC instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1946

 Section 2.14.3.17, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxLog2(x) - log_2(x) | < 1.0 / 2^22.

 The following special-case rules apply to logar ithm approximation:

 1. ApproxLog2(NaN) = NaN.
 2. ApproxLog2(+INF) = +INF.
 3. ApproxLog2(+/-0.0) = -INF.
 4. ApproxLog2(x) = NaN, -INF < x < -0.0.
 5. ApproxLog2(-INF) = NaN.

 The LG2 instruction is available only in the VP 2 execution environment.

 Section 2.14.3.18, LIT: Compute Light Coeffic ients

 The LIT instruction accelerates per-vertex ligh ting by computing lighting
 coefficients for ambient, diffuse, and specular light contributions. The
 "x" component of the operand is assumed to hold a diffuse dot product (n
 dot VP_pli, as in the vertex lighting equations in Section 2.13.1). The
 "y" component of the operand is assumed to hold a specular dot product (n
 dot h_i). The "w" component of the operand is assumed to hold the
 specular exponent of the material (s_rm), and i s clamped to the range
 (-128, +128) exclusive.

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1947

 tmp = VectorLoad(op0);
 if (t.x < 0) t.x = 0;
 if (t.y < 0) t.y = 0;
 if (t.w < -(128.0-epsilon)) t.w = -(128.0-eps ilon);
 else if (t.w > 128-epsilon) t.w = 128-epsilon ;
 result.x = 1.0;
 result.y = t.x;
 result.z = (t.x > 0) ? RoughApproxPower(t.y, t.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation function is de fined in terms of the base
 2 exponentiation and logarithm approximation op erations in the EXP and LOG
 instructions, including errors and the processi ng of any special cases.
 In particular,

 RoughApproxPower(a,b) = RoughApproxExp2(b * R oughApproxLog2(a)).

 The following special-case rules, which can be derived from the rules in
 the LOG, MUL, and EXP instructions, apply to ex ponentiation:

 1. RoughApproxPower(NaN, <x>) = NaN,
 2. RoughApproxPower(<x>, <y>) = NaN, if x <= -0.0,
 3. RoughApproxPower(+/-0.0, <x>) = +0.0, if x > +0.0, or
 +INF, if x < -0.0,
 4. RoughApproxPower(+1.0, <x>) = +1.0, if x i s not NaN,
 5. RoughApproxPower(+INF, <x>) = +INF, if x > +0.0, or
 +0.0, if x < -0.0,
 6. RoughApproxPower(<x>, +/-0.0) = +1.0, if x >= -0.0
 7. RoughApproxPower(<x>, +INF) = +0.0, if -0. 0 <= x < +1.0,
 +INF, if x > +1.0,
 8. RoughApproxPower(<x>, +INF) = +INF, if -0. 0 <= x < +1.0,
 +0.0, if x > +1.0,
 9. RoughApproxPower(<x>, +1.0) = <x>, if x >= +0.0, and
 10. RoughApproxPower(<x>, NaN) = NaN.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1948

 Section 2.14.3.19, LOG: Logarithm Base 2 (App roximate)

 The LOG instruction computes a rough approximat ion of the base 2 logarithm
 of the absolute value of the scalar operand. T he approximation is
 returned in the "z" component of the result vec tor. A vertex program can
 also use the "x" and "y" components of the resu lt vector to generate a
 more accurate approximation by evaluating

 result.x + f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [1.0, 2.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = fabs(ScalarLoad(op0));
 result.x = floor(log2(tmp));
 result.y = tmp / (2^floor(log2(tmp)));
 result.z = RoughApproxLog2(tmp);
 result.w = 1.0;

 The approximation function is accurate to at le ast 11 bits:

 | RoughApproxLog2(x) - log_2(x) | < 1.0 / 2^1 1.

 The following special-case rules apply to the L OG instruction:

 1. RoughApproxLog2(NaN) = NaN.
 2. RoughApproxLog2(+INF) = +INF.
 3. RoughApproxLog2(+0.0) = -INF.

 The LOG instruction is present for compatibilit y with the original
 NV_vertex_program instruction set; it is recomm ended that applications
 using NV_vertex_program2 use the LG2 instructio n instead.

 Section 2.14.3.20, MAD: Multiply And Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 All special case rules applicable to the ADD an d MUL instructions apply to
 the individual components of the MAD operation as well.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1949

 Section 2.14.3.21, MAX: Maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = max(tmp0.x, tmp1.x);
 result.y = max(tmp0.y, tmp1.y);
 result.z = max(tmp0.z, tmp1.z);
 result.w = max(tmp0.w, tmp1.w);

 The following special cases apply to the maximu m operation:

 1. max(A,B) is always equivalent to max(B,A).
 2. max(NaN, <x>) == NaN, for all <x>.

 Section 2.14.3.22, MIN: Minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = min(tmp0.x, tmp1.x);
 result.y = min(tmp0.y, tmp1.y);
 result.z = min(tmp0.z, tmp1.z);
 result.w = min(tmp0.w, tmp1.w);

 The following special cases apply to the minimu m operation:

 1. min(A,B) is always equivalent to min(B,A).
 2. min(NaN, <x>) == NaN, for all <x>.

 Section 2.14.3.23, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1950

 Section 2.14.3.24, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following special-case rules apply to multi plication:

 1. "A*B" is always equivalent to "B*A".
 2. NaN * <x> = NaN, for all <x>.
 3. +/-0.0 * +/-INF = NaN.
 4. +/-0.0 * <x> = +/-0.0, for all <x> except -INF, +INF, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 5. +/-INF * <x> = +/-INF, for all <x> except -0.0, +0.0, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 6. +1.0 * <x> = <x>, for all <x>.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1951

 Section 2.14.3.25, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped result
 to all four components of the result vector.

 If the approximate reciprocal is greater than 0 .0, the result is clamped
 to the range [2^-64, 2^+64]. If the approximat e reciprocal is not greater
 than zero, the result is clamped to the range [-2^+64, -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ClampApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ClampApproxReciprocal(NaN) = NaN.
 2. ClampApproxReciprocal(+INF) = +2^-64.
 3. ClampApproxReciprocal(-INF) = -2^-64.
 4. ClampApproxReciprocal(+0.0) = +2^64.
 5. ClampApproxReciprocal(-0.0) = -2^64.
 6. ClampApproxReciprocal(x) = +2^-64, if -2^6 4 < x < +INF.
 7. ClampApproxReciprocal(x) = -2^-64, if -INF < x < -2^-64.
 8. ClampApproxReciprocal(x) = +2^64, if +0.0 < x < +2^-64.
 9. ClampApproxReciprocal(x) = -2^64, if -2^-6 4 < x < -0.0.

 The RCC instruction is available only in the VP 1.1 and VP2 execution
 environments.

 Section 2.14.3.26, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ApproxReciprocal(NaN) = NaN.
 2. ApproxReciprocal(+INF) = +0.0.
 3. ApproxReciprocal(-INF) = -0.0.
 4. ApproxReciprocal(+0.0) = +INF.
 5. ApproxReciprocal(-0.0) = -INF.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1952

 Section 2.14.3.27, RET: Subroutine Call Retur n

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction by popping an instruction refer ence off the top of the
 call stack and transferring control to the refe renced instruction. The
 following pseudocode describes the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate vertex program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is a
 reference to an instruction previously pushed o nto the call stack.

 The RET instruction is available only in the VP 2 execution environment.

 Section 2.14.3.28, RSQ: Reciprocal Square Roo t

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxRSQRT(x) - (1/x) | < 1.0 / 2^22, if 1 .0 <= x < 4.0.

 The following special-case rules apply to recip rocal square roots:

 1. ApproxRSQRT(NaN) = NaN.
 2. ApproxRSQRT(+INF) = +0.0.
 3. ApproxRSQRT(-INF) = NaN.
 4. ApproxRSQRT(+0.0) = +INF.
 5. ApproxRSQRT(-0.0) = -INF.
 6. ApproxRSQRT(x) = NaN, if -INF < x < -0.0.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1953

 Section 2.14.3.29, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SEQ:

 1. (<x> == <y>) and (<y> == <x>) always produ ce the same result.
 1. (NaN == <x>) is FALSE for all <x>, includi ng NaN.
 2. (+INF == +INF) and (-INF == -INF) are TRUE .
 3. (-0.0 == +0.0) and (+0.0 == -0.0) are TRUE .

 The SEQ instruction is available only in the VP 2 execution environment.

 Section 2.14.3.30, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to
 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 The SFL instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1954

 Section 2.14.3.31, SGE: Set on Greater Than o r Equal

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than or equal that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SGE:

 1. (NaN >= <x>) and (<x> >= NaN) are FALSE fo r all <x>.
 2. (+INF >= +INF) and (-INF >= -INF) are TRUE .
 3. (-0.0 >= +0.0) and (+0.0 >= -0.0) are TRUE .

 Section 2.14.3.32, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than that of the second, and
 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SGT:

 1. (NaN > <x>) and (<x> > NaN) are FALSE for all <x>.
 2. (-0.0 > +0.0) and (+0.0 > -0.0) are FALSE.

 The SGT instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1955

 Section 2.14.3.33, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by the
 scalar operand and replicates it to all four co mponents of the result
 vector. The angle is specified in radians and does not have to be in the
 range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 The approximation function is accurate to at le ast 22 bits with an angle
 in the range [0,2*PI].

 | ApproxSine(x) - sin(x) | < 1.0 / 2^22, if 0 .0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxSine(NaN) = NaN.
 2. ApproxSine(+/-INF) = NaN.
 3. ApproxSine(+/-0.0) = +/-0.0. The sign of the result is equal to the
 sign of the single operand.

 The SIN instruction is available only in the VP 2 execution environment.

 Section 2.14.3.34, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than or equal to that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SLE:

 1. (NaN <= <x>) and (<x> <= NaN) are FALSE fo r all <x>.
 2. (+INF <= +INF) and (-INF <= -INF) are TRUE .
 3. (-0.0 <= +0.0) and (+0.0 <= -0.0) are TRUE .

 The SLE instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1956

 Section 2.14.3.35, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than tha t of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SLT:

 1. (NaN < <x>) and (<x> < NaN) are FALSE for all <x>.
 2. (-0.0 < +0.0) and (+0.0 < -0.0) are FALSE.

 Section 2.14.3.36, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is not equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SNE:

 1. (<x> != <y>) and (<y> != <x>) always produ ce the same result.
 2. (NaN != <x>) is TRUE for all <x>, includin g NaN.
 3. (+INF != +INF) and (-INF != -INF) are FALS E.
 4. (-0.0 != +0.0) and (+0.0 != -0.0) are TRUE .

 The SNE instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1957

 Section 2.14.3.37, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of each
 component of the single operand. Each componen t of the result vector is
 1.0 if the corresponding component of the opera nd is greater than zero,
 0.0 if the corresponding component of the opera nd is equal to zero, and
 -1.0 if the corresponding component of the oper and is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 The following special-case rules apply to SSG:

 1. SetSign(NaN) = NaN.
 2. SetSign(-0.0) = SetSign(+0.0) = 0.0.
 3. SetSign(-INF) = -1.0.
 4. SetSign(+INF) = +1.0.
 5. SetSign(x) = -1.0, if -INF < x < -0.0.
 6. SetSign(x) = +1.0, if +0.0 < x < +INF.

 The SSG instruction is available only in the VP 2 execution environment.

 Section 2.14.3.38, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

 The STR instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1958

 Section 2.14.3.39, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 The SUB instruction is completely equivalent to an identical ADD
 instruction in which the negate operator on the second operand is
 reversed:

 1. "SUB R0, R1, R2" is equivalent to "ADD R0, R1, -R2".
 2. "SUB R0, R1, -R2" is equivalent to "ADD R0 , R1, R2".
 3. "SUB R0, R1, |R2|" is equivalent to "ADD R 0, R1, -|R2|".
 4. "SUB R0, R1, -|R2|" is equivalent to "ADD R0, R1, |R2|".

 The SUB instruction is available only in the VP 1.1 and VP2 execution
 environments.

 2.14.4 Vertex Arrays for Vertex Attributes

 Data for vertex attributes in vertex program mo de may be specified
 using vertex array commands. The client may sp ecify and enable any
 of sixteen vertex attribute arrays.

 The vertex attribute arrays are ignored when ve rtex program mode
 is disabled. When vertex program mode is enabl ed, vertex attribute
 arrays are used.

 The command

 void VertexAttribPointerNV(uint index, int si ze, enum type,
 sizei stride, cons t void *pointer);

 describes the locations and organizations of th e sixteen vertex
 attribute arrays. index specifies the particul ar vertex attribute
 to be described. size indicates the number of values per vertex
 that are stored in the array; size must be one of 1, 2, 3, or 4.
 type specifies the data type of the values stor ed in the array.
 type must be one of SHORT, FLOAT, DOUBLE, or UN SIGNED_BYTE and these
 values correspond to the array types short, int , float, double, and
 ubyte respectively. The INVALID_OPERATION erro r is generated if
 type is UNSIGNED_BYTE and size is not 4. The I NVALID_VALUE error
 is generated if index is greater than 15. The INVALID_VALUE error
 is generated if stride is negative.

 The one, two, three, or four values in an array that correspond to a
 single vertex attribute comprise an array eleme nt. The values within
 each array element at stored sequentially in me mory. If the stride
 is specified as zero, then array elements are s tored sequentially
 as well. Otherwise points to the ith and (i+1) st elements of an array
 differ by stride basic machine units (typically unsigned bytes),

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1959

 the pointer to the (i+1)st element being greate r. pointer specifies
 the location in memory of the first value of th e first element of
 the array being specified.

 Vertex attribute arrays are enabled with the En ableClientState command
 and disabled with the DisableClientState comman d. The value of the
 argument to either command is VERTEX_ATTRIB_ARR AYi_NV where i is an
 integer between 0 and 15; specifying a value of i enables or
 disables the vertex attribute array with index i. The constants
 obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_AR RAY0_NV + i.

 When vertex program mode is enabled, the ArrayE lement command operates
 as described in this section in contrast to the behavior described
 in section 2.8. Likewise, any vertex array tra nsfer commands that
 are defined in terms of ArrayElement (DrawArray s, DrawElements, and
 DrawRangeElements) assume the operation of Arra yElement described
 in this section when vertex program mode is ena bled.

 When vertex program mode is enabled, the ArrayE lement command
 transfers the ith element of particular enabled vertex arrays as
 described below. For each enabled vertex attri bute array, it is
 as though the corresponding command from sectio n 2.14.1.1 were
 called with a pointer to element i. For each v ertex attribute,
 the corresponding command is VertexAttrib[size] [type]v, where size
 is one of [1,2,3,4], and type is one of [s,f,d, ub], corresponding
 to the array types short, int, float, double, a nd ubyte respectively.

 However, if a given vertex attribute array is d isabled, but its
 corresponding aliased conventional per-vertex p arameter's vertex
 array (as described in section 2.14.1.6) is ena bled, then it is
 as though the corresponding command from sectio n 2.7 or section
 2.6.2 were called with a pointer to element i. In this case, the
 corresponding command is determined as describe d in section 2.8's
 description of ArrayElement.

 If the vertex attribute array 0 is enabled, it is as though
 VertexAttrib[size][type]v(0, ...) is executed l ast, after the
 executions of other corresponding commands. If the vertex attribute
 array 0 is disabled but the vertex array is ena bled, it is as though
 Vertex[size][type]v is executed last, after the executions of other
 corresponding commands.

 2.14.5 Vertex State Programs

 Vertex state programs share the same instructio n set as and a similar
 execution model to vertex programs. While vert ex programs are executed
 implicitly when a vertex transformation is prov oked, vertex state programs
 are executed explicitly, independently of any v ertices. Vertex state
 programs can write program parameter registers, but may not write vertex
 result registers. Vertex state programs have n ot been extended beyond the
 the VP1.0 execution environment, and are offere d solely for compatibility
 with that execution environment.

 The purpose of a vertex state program is to upd ate program parameter
 registers by means of an application-defined pr ogram. Typically, an
 application will load a set of program paramete rs and then execute a
 vertex state program that reads and updates the program parameter

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1960

 registers. For example, a vertex state program might normalize a set of
 unnormalized vectors previously loaded as progr am parameters. The
 expectation is that subsequently executed verte x programs would use the
 normalized program parameters.

 Vertex state programs are loaded with the same LoadProgramNV command (see
 section 2.14.1.8) used to load vertex programs except that the target must
 be VERTEX_STATE_PROGRAM_NV when loading a verte x state program.

 Vertex state programs must conform to a more li mited grammar than the
 grammar for vertex programs. The vertex state program grammar for
 syntactically valid sequences is the same as th e grammar defined in
 section 2.14.1.8 with the following modified ru les:

 <program> ::= <vp1-program>

 <vp1-program> ::= "!!VSP1.0" <programB ody> "END"

 <dstReg> ::= <absProgParamReg>
 | <temporaryReg>

 <vertexAttribReg> ::= "v" "[" "0" "]"

 A vertex state program fails to load if it does not write at least
 one program parameter register.

 A vertex state program fails to load if it cont ains more than 128
 instructions.

 A vertex state program fails to load if any ins truction sources more
 than one unique program parameter register.

 A vertex state program fails to load if any ins truction sources
 more than one unique vertex attribute register (this is necessarily
 true because only vertex attribute 0 is availab le in vertex state
 programs).

 The error INVALID_OPERATION is generated if a v ertex state program
 fails to load because it is not syntactically c orrect or for one
 of the other reasons listed above.

 A successfully loaded vertex state program is p arsed into a sequence
 of instructions. Each instruction is identifie d by its tokenized
 name. The operation of these instructions when executed is defined
 in section 2.14.1.10.

 Executing vertex state programs is legal only o utside a Begin/End
 pair. A vertex state program may not read any vertex attribute
 register other than register zero. A vertex st ate program may not
 write any vertex result register.

 The command

 ExecuteProgramNV(enum target, uint id, const float *params);

 executes the vertex state program named by id. The target must be
 VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1961

 with a target type of VERTEX_STATE_PROGRAM_NV. params points to
 an array of four floating-point values that are loaded into vertex
 attribute register zero (the only vertex attrib ute readable from a
 vertex state program).

 The INVALID_OPERATION error is generated if the named program is
 nonexistent, is invalid, or the program is not a vertex state
 program. A vertex state program may not be val id for reasons
 explained in section 2.14.5.

 2.14.6, Program Options

 In the VP1.1 and VP2.0 execution environment, v ertex programs may specify
 one or more program options that modify the exe cution environment,
 according to the <option> grammar rule. The se t of options available to
 the program is described below.

 Section 2.14.6.1, Position-Invariant Vertex Pro gram Option

 If <vp11-option> or <vp2-option> matches "NV_po sition_invariant", the
 vertex program is presumed to be position-invar iant. By default, vertex
 programs are not position-invariant. Even if p rograms emulate the
 conventional OpenGL transformation model, they may still not produce the
 exact same transform results, due to rounding e rrors or different
 operation orders. Such programs may not work w ell for multi-pass
 rendering algorithms where the second and subse quent passes use an EQUAL
 depth test.

 Position-invariant vertex programs do not compu te a final vertex position;
 instead, the GL computes vertex coordinates as described in section 2.10.
 This computation should produce exactly the sam e results as the
 conventional OpenGL transformation model, assum ing vertex weighting and
 vertex blending are disabled.

 A vertex program that specifies the position-in variant option will fail to
 load if it writes to the HPOS result register.

 Additionally, in the VP1.1 execution environmen t, position-invariant
 programs can not use relative addressing for pr ogram parameters. Any
 position-invariant VP1.1 program matches the gr ammar rule
 <relProgParamReg>, will fail to load. No such restriction exists for
 VP2.0 programs.

 For position-invariant programs, the limit on t he number of instructions
 allowed in a program is reduced by four: posit ion-invariant VP1.1 and
 VP2.0 programs may have no more than 124 or 252 instructions,
 respectively.

 2.14.7 Tracking Matrices

 As a convenience to applications, standard GL m atrix state can be
 tracked into program parameter vectors. This p ermits vertex programs
 to access matrices specified through GL matrix commands.

 In addition to GL's conventional matrices, seve ral additional matrices
 are available for tracking. These matrices hav e names of the form
 MATRIXi_NV where i is between zero and n-1 wher e n is the value

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1962

 of the MAX_TRACK_MATRICES_NV implementation dep endent constant.
 The MATRIXi_NV constants obey MATRIXi_NV = MATR IX0_NV + i. The value
 of MAX_TRACK_MATRICES_NV must be at least eight . The maximum
 stack depth for tracking matrices is defined by the
 MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

 The command

 TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

 tracks a given transformed version of a particu lar matrix into
 a contiguous sequence of four vertex program pa rameter registers
 beginning at address. target must be VERTEX_PR OGRAM_NV (though
 tracked matrices apply to vertex state programs as well because both
 vertex state programs and vertex programs share d the same program
 parameter registers). matrix must be one of NO NE, MODELVIEW,
 PROJECTION, TEXTURE, TEXTUREi_ARB (where i is b etween 0 and n-1
 where n is the number of texture units supporte d), COLOR (if
 the ARB_imaging subset is supported), MODELVIEW _PROJECTION_NV,
 or MATRIXi_NV. transform must be one of IDENTI TY_NV, INVERSE_NV,
 TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV. The INV ALID_VALUE error is
 generated if address is not a multiple of four.

 The MODELVIEW_PROJECTION_NV matrix represents t he concatenation of
 the current modelview and projection matrices. If M is the current
 modelview matrix and P is the current projectio n matrix, then the
 MODELVIEW_PROJECTION_NV matrix is C and compute d as

 C = P M

 Matrix tracking for the specified program param eter register and the
 next consecutive three registers is disabled wh en NONE is supplied
 for matrix. When tracking is disabled the prev iously tracked program
 parameter registers retain the state of their l ast tracked values.
 Otherwise, the specified transformed version of matrix is tracked into
 the specified program parameter register and th e next three registers.
 Whenever the matrix changes, the transformed ve rsion of the matrix
 is updated in the specified range of program pa rameter registers.
 If TEXTURE is specified for matrix, the texture matrix for the current
 active texture unit is tracked. If TEXTUREi_AR B is specified for
 matrix, the <i>th texture matrix is tracked.

 Matrices are tracked row-wise meaning that the top row of the
 transformed matrix is loaded into the program p arameter address,
 the second from the top row of the transformed matrix is loaded into
 the program parameter address+1, the third from the top row of the
 transformed matrix is loaded into the program p arameter address+2,
 and the bottom row of the transformed matrix is loaded into the
 program parameter address+3. The transformed m atrix may be identical
 to the specified matrix, the inverse of the spe cified matrix, the
 transpose of the specified matrix, or the inver se transpose of the
 specified matrix, depending on the value of tra nsform.

 When matrix tracking is enabled for a particula r program parameter
 register sequence, updates to the program param eter using
 ProgramParameterNV commands, a vertex program, or a vertex state
 program are not possible. The INVALID_OPERATIO N error is generated

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1963

 if a ProgramParameterNV command is used to upda te a program parameter
 register currently tracking a matrix.

 The INVALID_OPERATION error is generated by Exe cuteProgramNV when
 the vertex state program requested for executio n writes to a program
 parameter register that is currently tracking a matrix because the
 program is considered invalid.

 2.14.8 Required Vertex Program State

 The state required for vertex programs consists of:

 a bit indicating whether or not program mode is enabled;

 a bit indicating whether or not two-sided col or mode is enabled;

 a bit indicating whether or not program-speci fied point size mode
 is enabled;

 256 4-component floating-point program parame ter registers;

 16 4-component vertex attribute registers (th ough this state is
 aliased with the current normal, primary colo r, secondary color,
 fog coordinate, weights, and texture coordina te sets);

 24 sets of matrix tracking state for each set of four sequential
 program parameter registers, consisting of a n-valued integer
 indicated the tracked matrix or GL_NONE (wher e n is 5 + the number
 of texture units supported + the number of tr acking matrices
 supported) and a four-valued integer indicati ng the transformation
 of the tracked matrix;

 an unsigned integer naming the currently boun d vertex program

 and the state must be maintained to indicate which integers
 are currently in use as program names.

 Each existent program object consists of a targe t, a boolean indicating
 whether the program is resident, an array of typ e ubyte containing the
 program string, and the length of the program st ring array. Initially,
 no program objects exist.

 Program mode, two-sided color mode, and program- specified point size
 mode are all initially disabled.

 The initial state of all 256 program parameter r egisters is (0,0,0,0).

 The initial state of the 16 vertex attribute reg isters is (0,0,0,1)
 except in cases where a vertex attribute registe r aliases to a
 conventional GL transform mode vertex parameter in which case
 the initial state is the initial state of the re spective aliased
 conventional vertex parameter.

 The initial state of the 24 sets of matrix track ing state is NONE
 for the tracked matrix and IDENTITY_NV for the t ransformation of the
 tracked matrix.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1964

 The initial currently bound program is zero.

 The client state required to implement the 16 ve rtex attribute
 arrays consists of 16 boolean values, 16 memory pointers, 16 integer
 stride values, 16 symbolic constants representin g array types,
 and 16 integers representing values per element. Initially, the
 boolean values are each disabled, the memory poi nters are each null,
 the strides are each zero, the array types are e ach FLOAT, and the
 integers representing values per element are eac h four."

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 All relevant protocol is defined in the NV_vert ex_program extension.

Errors

 This list includes the errors specified in the NV_vertex_program
 extension, modified as appropriate.

 The error INVALID_VALUE is generated if VertexA ttribNV is called where
 index is greater than 15.

 The error INVALID_VALUE is generated if any Pro gramParameterNV has an
 index is greater than 255 (was 95 in NV_vertex_ program).

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where index is greater than 15.

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where size is not one of 1, 2, 3, or 4.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1965

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where stride is negative.

 The error INVALID_OPERATION is generated if Ver texAttribPointerNV is
 called where type is UNSIGNED_BYTE and size is not 4.

 The error INVALID_VALUE is generated if LoadPro gramNV is used to load a
 program with an id of zero.

 The error INVALID_OPERATION is generated if Loa dProgramNV is used to load
 an id that is currently loaded with a program o f a different program
 target.

 The error INVALID_OPERATION is generated if the program passed to
 LoadProgramNV fails to load because it is not s yntactically correct based
 on the specified target. The value of PROGRAM_ ERROR_POSITION_NV is still
 updated when this error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a target of
 VERTEX_PROGRAM_NV and the specified program fai ls to load because it does
 not write the HPOS register at least once. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a target of
 VERTEX_STATE_PROGRAM_NV and the specified progr am fails to load because it
 does not write at least one program parameter r egister. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is generated.

 The error INVALID_OPERATION is generated if the vertex program or vertex
 state program passed to LoadProgramNV fails to load because it contains
 more than 128 instructions (VP1 programs) or 25 6 instructions (VP2
 programs). The value of PROGRAM_ERROR_POSITION _NV is still updated when
 this error is generated.

 The error INVALID_OPERATION is generated if a p rogram is loaded with
 LoadProgramNV for id when id is currently loade d with a program of a
 different target.

 The error INVALID_OPERATION is generated if Bin dProgramNV attempts to bind
 to a program name that is not a vertex program (for example, if the
 program is a vertex state program).

 The error INVALID_VALUE is generated if GenProg ramsNV is called where n is
 negative.

 The error INVALID_VALUE is generated if AreProg ramsResidentNV is called
 and any of the queried programs are zero or do not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes a
 program that does not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes a
 program that is not a vertex state program.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 1966

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or a command
 that performs an explicit Begin is called when vertex program mode is
 enabled and the currently bound vertex program writes program parameters
 that are currently being tracked.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV is called and
 the vertex state program to execute writes prog ram parameters that are
 currently being tracked.

 The error INVALID_VALUE is generated if TrackMa trixNV has a target of
 VERTEX_PROGRAM_NV and attempts to track an addr ess is not a multiple of
 four.

 The error INVALID_VALUE is generated if GetProg ramParameterNV is called to
 query an index greater than 255 (was 95 in NV_v ertex_program).

 The error INVALID_VALUE is generated if GetVert exAttribNV is called to
 query an <index> greater than 15, or if <index> is zero and <pname> is
 CURRENT_ATTRIB_NV.

 The error INVALID_VALUE is generated if GetVert exAttribPointervNV is
 called to query an index greater than 15.

 The error INVALID_OPERATION is generated if Get ProgramivNV is called and
 the program named id does not exist.

 The error INVALID_OPERATION is generated if Get ProgramStringNV is called
 and the program named <program> does not exist.

 The error INVALID_VALUE is generated if GetTrac kMatrixivNV is called with
 an <address> that is not divisible by four or g reater than or equal to 256
 (was 96 in NV_vertex_program).

 The error INVALID_VALUE is generated if AreProg ramsResidentNV,
 DeleteProgramsNV, GenProgramsNV, or RequestResi dentProgramsNV are called
 where <n> is negative.

 The error INVALID_VALUE is generated if LoadPro gramNV is called where
 <len> is negative.

 The error INVALID_VALUE is generated if Program Parameters4dvNV or
 ProgramParameters4fvNV are called where <count> is negative.

 The error INVALID_VALUE is generated if VertexA ttribs{1,2,3,4}{d,f,s}vNV
 is called where <count> is negative.

 The error INVALID_ENUM is generated if BindProg ramNV,
 GetProgramParameterfvNV, GetProgramParameterdvN V, GetTrackMatrixivNV,
 ProgramParameter4fNV, ProgramParameter4dNV, Pro gramParameter4fvNV,
 ProgramParameter4dvNV, ProgramParameters4fvNV, ProgramParameters4dvNV,
 or TrackMatrixNV are called where <target> is n ot VERTEX_PROGRAM_NV.

 The error INVALID_ENUM is generated if LoadProg ramNV or
 ExecuteProgramNV are called where <target> is n ot either
 VERTEX_PROGRAM_NV or VERTEX_STATE_PROGRAM_NV.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 1967

New State

(Modify Table X.5, New State Introduced by NV_verte x_program from the
 NV_vertex_program specification.)

Get Value Type Get Command Initial Value Description Sec At tribute
--------------------- ------ --------------------- -- ------------- ------------------ -------- -- ----------
PROGRAM_PARAMETER_NV 256xR4 GetProgramParameterNV (0,0,0,0) program parameters 2.14.1.2 -

(Modify Table X.7. Vertex Program Per-vertex Execu tion State. "VP1" and
"VP2" refer to the VP1 and VP2 execution environmen ts, respectively.)

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12xR4 - (0,0,0,0) V P1 temporary registers 2.14.1.4 -
- 16xR4 - (0,0,0,0) V P2 temporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) v ertex result registers 2.14.1.4 -
 Z4 - (0,0,0,0) V P1 address register 2.14.1.3 -
 2xZ4 - (0,0,0,0) V P2 address registers 2.14.1.3 -

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1968

Name

 NV_vertex_program2_option

Name Strings

 GL_NV_vertex_program2_option

Status

 Shipping.

Version

 Last Modified: 06/23/2004
 NVIDIA Revision: 3

Number

 305

Dependencies

 ARB_vertex_program is required.

Overview

 This extension provides additional vertex progr am functionality
 to extend the standard ARB_vertex_program langu age and execution
 environment. ARB programs wishing to use this added functionality
 need only add:

 OPTION NV_vertex_program2;

 to the beginning of their vertex programs.

 The functionality provided by this extension, w hich is roughly
 equivalent to that provided by the NV_vertex_pr ogram2 extension,
 includes:

 * general purpose dynamic branching,

 * subroutine calls,

 * data-dependent conditional write masks,

 * programmable user clip distances,

 * address registers with four components (ins tead of just one),

 * absolute value operator on scalar and swizz led operand loads,

 * rudimentary address register math,

 * SIN and COS trigonometry instructions, and

 * fully orthogonal "set on" instructions, inc luding a "set sign"

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1969

 instruction.

Issues

 Why is this a separate extension, rather than j ust an additional
 feature of NV_vertex_program2?

 RESOLVED: The NV_vertex_program2 specificati on was completed
 (with a published implementation) prior to th e completion of
 ARB_vertex_program. Future NVIDIA vertex pro gram extensions should
 contain extensions to the ARB_vertex_program execution environment
 as a standard feature.

 NV_vertex_program1_1 contains one feature not f ound in
 ARB_vertex_program: the "RCC" (reciprocal clamp ed) instruction.
 Should a "NV_vertex_program1_1" program option be provided to expose
 this small amount of missing functionality?

 RESOLVED: No. By itself, that functionality is not all that
 interesting.

 Should this extension provide a mechanism to sp ecify an "ARB"
 version of NV_vertex_program state programs (!! VSP1.0)?

 RESOLVED: No.

 Should a similar option be provided to expose A RB_vertex_program
 features not found in NV_vertex_program (e.g., local parameters, state
 bindings, certain "macro" instructions) under t he NV_vertex_program
 interface?

 RESOLVED: No. Why not just write an ARB pro gram in that case?

 The ARB_vertex_program spec has a minor grammar bug that requires
 that inline scalar constants used as scalar ope rands include a
 component selector. In other words, you have t o say "11.0.x" to
 use the constant "11.0". What should we do her e?

 RESOLVED: The NV_vertex_program2_option gram mar will correct
 this problem, which should be fixed in future revisions to the
 ARB language.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_EXEC_INSTRUCTIONS_NV 0x88F4
 MAX_PROGRAM_CALL_DEPTH_NV 0x88F5

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1970

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 Modify Section 2.11, Clipping (p. 42)

 (insert before the second paragraph, p. 43) In vertex program mode,
 conventional user clipping is performed if the vertex program is
 position-invariant (section 2.14.4.5.1). When the vertex program
 is not position-invariant, it can write a singl e floating-point clip
 distance for each supported clip plane. The ha lf-space corresponding
 to clip plane <n> is given by the set of points that satisfy the
 inequality

 c_n(P) >=0,

 where c_n(P) is the value of clip distance <n> at point P. For point
 primitives, c_n(P) is simply the clip distance for the vertex in
 question. For line and triangle primitives, pe r-vertex clip distances
 are interpolated using a weighted mean, with we ights derived according
 to the algorithms described in sections 3.4 and 3.5.

 Modify Section 2.14.2, Vertex Program Grammar a nd Restrictions

 (mostly add to existing grammar rules, modify a few existing grammar
 rules -- changes marked with "***")

 <optionName> ::= "NV_vertex_program2 "

 <statement> ::= <branchLabel> ":"

 <instruction> ::= <FlowInstruction>

 <ALUInstruction> ::= <ARAop_instruction>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>

 <VECTORop> ::= "SSG"

 <SCALARop> ::= "COS"
 | "RCC"
 | "SIN"

 <BINop> ::= "SEQ"
 | "SFL"
 | "SGT"
 | "SLE"
 | "SNE"
 | "STR"

 <ARLop> ::= "ARR"

 <ARLop_src> ::= <instOperandV>
 (*** instead of < instOperandS>)

 <ARAop_instruction> ::= <ARAop> <instResult Addr> ","
 <instOperandAddrVNS >

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1971

 <ARAop> ::= "ARA"

 <BRAop_instruction> ::= <BRAop> <branchLabe l> <optBranchCond>

 <BRAop> ::= "BRA"
 | "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <optBran chCond>

 <FLOWCCop> ::= "RET"

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <instOperandV> ::= <instOperandAbsV>

 <instOperandAbsV> ::= <optSign> "|" <inst OperandBaseV> "|"

 <instOperandS> ::= <instOperandAbsS>

 <instOperandAbsS> ::= <optSign> "|" <inst OperandBaseS> "|"

 <instOperandAddrVNS> ::= <addrUseVNS>

 <instResult> ::= <instResultCC>

 <instResultCC> ::= <instResultBase> <c cMask>

 <instResultAddr> ::= <instResultAddrCC>

 <instResultAddrCC> ::= <instResultAddrBase > <ccMask>

 <branchLabel> ::= <identifier>

 <paramUseV> ::= <constantScalar>
 (*** instead of < constantScalar>
 <swizzleSuff ix>)

 <paramUseS> ::= <constantScalar>
 (*** instead of < constantScalar>
 <scalarSuffi x>)

 <resultVtxBasic> ::= "clip" "[" <clipPla neNum> "]"

 <addrUseVNS> ::= <addrVarName>

 <addrUseW> ::= <addrVarName> <optA ddrWriteMask>
 (*** instead of < addrVarName>
 <addrWriteMa sk>)

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1972

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"
 | "TR"
 | "FL"

 <optAddrWriteMask> ::= <optWriteMask>
 (*** instead of " ." "x")

 <addrComponent> ::= <xyzwComponent>
 (*** instead of " x")

 (modify description of reserved identifiers)

 ... The following strings are reserved keywords and may not be used
 as identifiers:

 ABS, ADD, ADDRESS, ALIAS, ARA, ARL, ARR, AT TRIB, BRA, CAL, COS,
 DP3, DP4, DPH, DST, END, EX2, EXP, FLR, FRC , LG2, LIT, LOG, MAD,
 MAX, MIN, MOV, MUL, OPTION, OUTPUT, PARAM, POW, RCC, RCP, RET,
 RSQ, SEQ, SFL, SGE, SGT, SIN, SLE, SLT, SNE , SUB, SSG, STR, SWZ,
 TEMP, XPD, program, result, state, and vert ex.

 Add to Section 2.14.3.4, Vertex Program Results

 (add to binding table)

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.clip[n] (d,*,*,*) cl ip plane distance

 (add a paragraph before the last one) If a resu lt variable binding
 matches "result.clip[n]", updates to the "x" co mponent of the result
 variable set the clip distance for clip plane < n>.

 (modify last paragraph) When in vertex program mode, all attributes
 of a transformed vertex, except for clip distan ces, are undefined
 at each vertex program invocation. Any results , or even individual
 components of results, that are not written to during vertex program
 execution remain undefined. All clip distances are initially zero,
 and remain zero if not written by the vertex pr ogram.

 Modify Section 2.14.3.5, Vertex Program Address Registers

 (modify first paragraph) Vertex program address register variables are
 a set of four-component signed integer vectors. Address registers
 are used as indices when performing relative ad dressing in program
 parameter arrays (section 2.14.4.2).

 (modify third paragraph) Vertex program address register variables are
 undefined at each vertex program invocation. A ddress registers can
 be written by the ARA, ARL, and ARL instruction s (section 2.14.5),
 and will be read by the ARA instruction and whe n a program uses
 relative addressing in program parameter arrays .

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1973

 Add New Section 2.14.3.X, Condition Code Regist er (insert after
 Section 2.14.3.5, Vertex Program Address Regist ers)

 The vertex program condition code register is a single four-component
 vector. Each component of this register is one of four enumerated
 values: GT (greater than), EQ (equal), LT (less than), or UN
 (unordered). The condition code register can b e used to mask writes
 to registers and to evaluate conditional branch es.

 Most vertex program instructions can optionally update the condition
 code register. When a vertex program instructi on updates the
 condition code register, a condition code compo nent is set to LT if
 the corresponding component of the result is le ss than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN
 (not a number).

 The condition code register is initialized to a vector of EQ values
 each time a vertex program executes.

 Modify Section 2.14.4, Vertex Program Execution Environment

 (modify 3rd paragraph) Vertex programs execute a sequence of
 instructions, with support for conditional and unconditional branches,
 subroutine calls, and returns. Vertex programs begin by executing
 the instruction following the label "main". If no label "main" is
 defined, execution begins at the first instruct ion in the program.
 Instructions are executed in the order specifie d in the program,
 jumping when specified in branch instructions, until the end of the
 program is reached.

 (modify instruction table) There are forty-two vertex program
 instructions. Vertex program instructions may have an optional
 suffix of "C" to allow an update of the conditi on code register
 (section 2.14.3.X). For example, there are two instructions to
 perform vector addition, "ADD" and "ADDC". The instructions and their
 respective input and output parameters are summ arized in Table X.5.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1974

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS[C] v v absolute valu e
 ADD[C] v,v v add
 ARA[C] a a address regis ter add
 ARL[C] s a address regis ter load
 ARR[C] v a address regis ter load (round)
 BRA c - branch
 CAL c - subroutine ca ll
 COS[C] s ssss cosine
 DP3[C] v,v ssss 3-component d ot product
 DP4[C] v,v ssss 4-component d ot product
 DPH[C] v,v ssss homogeneous d ot product
 DST[C] v,v v distance vect or
 EX2[C] s ssss exponential b ase 2
 EXP[C] s v exponential b ase 2 (approximate)
 FLR[C] v v floor
 FRC[C] v v fraction
 LG2[C] s ssss logarithm bas e 2
 LIT[C] v v compute light coefficients
 LOG[C] s v logarithm bas e 2 (approximate)
 MAD[C] v,v,v v multiply and add
 MAX[C] v,v v maximum
 MIN[C] v,v v minimum
 MOV[C] v v move
 MUL[C] v,v v multiply
 POW[C] s,s ssss exponentiate
 RCC[C] s ssss reciprocal (c lamped)
 RCP[C] s ssss reciprocal
 RET c - subroutine re turn
 RSQ[C] s ssss reciprocal sq uare root
 SEQ[C] v,v v set on equal
 SFL[C] v,v v set on false
 SGE[C] v,v v set on greate r than or equal
 SGT[C] v,v v set on greate r than
 SIN[C] s ssss sine
 SLE[C] v,v v set on less t han or equal
 SLT[C] v,v v set on less t han
 SNE[C] v,v v set on not eq ual
 SSG[C] v v set sign
 STR[C] v,v v set on true
 SUB[C] v,v v subtract
 SWZ[C] v v extended swiz zle
 XPD[C] v,v v cross product

 Table X.5: Summary of vertex program instruc tions. "[C]" indicates
 that the opcode supports the condition code u pdate modifier. "v"
 indicates a floating-point vector input or ou tput, "s" indicates
 a floating-point scalar input, "ssss" indicat es a scalar output
 replicated across a 4-component result vector , "a" indicates a
 vector address register, and "c" indicates a condition code test.

 Modify Section 2.14.4.1, Vertex Program Operand s

 (add prior to the discussion of negation) A com ponent-wise absolute
 value operation can optionally performed on the operand if the operand
 is surrounded with two "|" characters. For exa mple, "|src|" indicates

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1975

 that a component-wise absolute value operation should be performed on
 the variable named "src". In terms of the gram mar, this operation
 is performed if the <instOperandV> or <instOper andS> grammar rules
 match <instOperandAbsV> or <instOperandAbsS>, r espectively.

 (modify operand load pseudo-code) The following pseudo-code spells
 out the operand generation process. In the exa mple, "float" is a
 floating-point scalar type, while "floatVec" is a four-component
 vector. "source" refers to the register used f or the operand,
 matching the <srcReg> rule. "abs" is TRUE if a n absolute value
 operation should be performed on the operand (< instOperandAbsV> or
 <instOperandAbsS> rules) "negate" is TRUE if th e <optionalSign> rule
 in <scalarSrcReg> or <swizzleSrcReg> matches "- " and FALSE otherwise.
 The ".c***", ".*c**", ".**c*", ".***c" modifier s refer to the x,
 y, z, and w components obtained by the swizzle operation; the ".c"
 modifier refers to the single component selecte d for a scalar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (abs) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (abs) {
 operand = abs(operand);
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1976

 Rewrite Section 2.14.4.3, Vertex Program Desti nation Register Update

 Most vertex program instructions write a 4-comp onent result vector to
 a single temporary or vertex result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order.

 The condition code write mask is specified by t he <ccMask> rule found
 in the <instResultCC> and <instResultAddrCC> ru les. The condition
 code register is loaded and swizzled according to the swizzle
 codes specified by <swizzleSuffix>. Each compo nent of the swizzled
 condition code is tested according to the rule given by <ccMaskRule>.
 <ccMaskRule> may have the values "EQ", "NE", "L T", "GE", LE", or "GT",
 which mean to enable writes if the correspondin g condition code field
 evaluates to equal, not equal, less than, great er than or equal, less
 than or equal, or greater than, respectively. Comparisons involving
 condition codes of "UN" (unordered) evaluate to true for "NE" and
 false otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the vertex program instruction if and only i f the component is
 enabled for writes by both the component write mask and the condition
 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A vertex program instruction can also optionall y update the condition
 code register. The condition code is updated i f the condition
 code register update suffix "C" is present in t he instruction.
 The instruction "ADDC" will update the conditio n code; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates
 are enabled, each component of the destination register enabled
 for writes is compared to zero. The correspond ing component of
 the condition code is set to "LT", "EQ", or "GT ", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1977

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"
 refers to the component write mask given by the <optWriteMask>
 rule. "ccMaskRule" refers to the condition cod e mask rule given
 by <ccMask> and "updatecc" is TRUE if and only if condition code
 updates are enabled. "result", "destination", and "cc" refer to
 the result vector, the register selected by <ds tRegister> and the
 condition code, respectively. Condition codes do not exist in the
 VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1978

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 While this rule describes floating-point result s, the same logic
 applies to the integer results generated by the ARA, ARL, and ARR
 instructions.

 Add Section 2.14.4.X, Vertex Program Branching (before Section
 2.14.4.4, Vertex Program Result Processing)

 Vertex programs can contain one or more instruc tion labels, matching
 the grammar rule <branchLabel>. An instruction label can be referred
 to explicitly in branch (BRA) or subroutine cal l (CAL) instructions.
 Instruction labels can be defined or used at an y point in the body
 of a program, and can be used in instructions b efore being defined
 in the program string.

 Branching instructions can be conditional. The branch condition
 is specified by the <optBranchCond> grammar rul e and may depend on
 the contents of the condition code register. B ranch conditions are
 evaluated by evaluating a condition code write mask in exactly the
 same manner as done for register writes (sectio n 2.14.2.2). If any
 of the four components of the condition code wr ite mask are enabled,
 the branch is taken and execution continues wit h the instruction
 following the label specified in the instructio n. Otherwise, the
 instruction is ignored and vertex program execu tion continues with
 the next instruction. In the following example code,

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1979

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 BRA label1 (LT.xyzw);
 MOV R0,R1; # not executed
 label1:
 BRA label2 (LT.wyzw);
 MOV R0,R2; # executed
 label2:

 the first BRA instruction loads a condition cod e of (LT,EQ,GT,UN)
 while the second BRA instruction loads a condit ion code of
 (UN,EQ,GT,UN). The first branch will be taken because the "x"
 component evaluates to LT; the second branch wi ll not be taken
 because no component evaluates to LT.

 Vertex programs can specify subroutine calls. When a subroutine
 call (CAL) instruction is executed, a reference to the instruction
 immediately following the CAL instruction is pu shed onto the
 call stack. When a subroutine return (RET) ins truction is
 executed, an instruction reference is popped of f the call stack
 and program execution continues with the popped instruction.
 A vertex program will terminate if a CAL instru ction is executed
 with MAX_PROGRAM_CALL_DEPTH_NV entries already in the call stack or
 if a RET instruction is executed with an empty call stack.

 If a vertex program has an instruction label "m ain", program
 execution begins with the instruction immediate ly following the
 instruction label. Otherwise, program executio n begins with the
 first instruction of the program. Instructions will be executed
 sequentially in the order specified in the prog ram, although
 branch instructions will affect the instruction execution order,
 as described above. A vertex program will term inate after executing
 a RET instruction with an empty call stack. A vertex program will
 also terminate after executing the last instruc tion in the program,
 unless that instruction was a taken branch.

 A vertex program will fail to load if an instru ction refers to a
 label that is not defined in the program string .

 A vertex program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally,
 a vertex program will terminate abnormally afte r executing
 MAX_PROGRAM_EXEC_INSTRUCTIONS instructions to p revent hangs caused
 by infinite loops in the program.

 When a vertex program terminates, normally or a bnormally, it will
 emit a vertex whose attributes are taken from t he final values of
 the vertex result registers (section 2.14.1.5).

 Modify Section 2.14.4.4, Vertex Program Result Processing

 (modify 3rd paragraph) Transformed vertices are then assembled into
 primitives and clipped as described in section 2.11. Clip distance
 results are used to control user clip planes.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1980

 Add to Section 2.14.4.5, Vertex Program Options :

 Section 2.14.4.5.2, NV_vertex_program2 Option

 If a vertex program specifies the "NV_vertex_pr ogram2" program option,
 the grammar will be extended to support the fea tures found in the
 NV_vertex_program2 extension not present in the ARB_vertex_program
 extension, including:

 * the availability of the following instructi ons:

 - ARA (address register add, useful for l ooping),
 - ARR (address register load with round),
 - BRA (branch),
 - CAL (subroutine call),
 - COS (cosine),
 - RET (subroutine return),
 - SEQ (set on equal),
 - SFL (set on false),
 - SGT (set on greater than),
 - SIN (sine),
 - SLE (set on less than or equal),
 - SNE (set on not equal),
 - SSG (set sign), and
 - STR (set on true).

 * up to MAX_CALL_DEPTH_NV levels of subroutin e calls/returns,

 * a four-component condition code register to hold the sign of
 result vector components (useful for compar isons),

 * a condition code update opcode suffix "C", where the results of
 the instruction are used to update the cond ition code register,

 * a condition code write mask operator, where the condition code
 register is swizzled and tested, and the te st results are used
 to mask register writes,

 * six clip distance result bindings that can be used to perform
 more complicated user clipping operations t han those provided
 with the position invariant program option,

 * four-component address registers (instead o f one-component
 registers in ARB_vertex_program), with the "ARL" instruction
 extended to produce a vector result,

 * an absolute value operator on scalar and sw izzled operands.

 The added functionality is identical to that pr ovided by
 NV_vertex_program2 extension specification.

 Modify Section 2.14.5.3, ARL: Address Registe r Load

 The ARL instruction loads a single vector opera nd and performs a
 component-wise floor operation to generate a si gned integer result
 vector.

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1981

 tmp = VectorLoad(op0);
 iresult.x = floor(tmp.x);
 iresult.y = floor(tmp.y);
 iresult.z = floor(tmp.z);
 iresult.w = floor(tmp.w);

 The floor operation returns the largest integer less than or equal
 to the operand. For example floor(-1.7) = -2.0 , floor(+1.0) = +1.0,
 and floor(+3.7) = +3.0.

 Note that in the unextended ARB_vertex_program specification, the ARL
 instruction loads a scalar operand and generate s a scalar result.

 Add to Section 2.14.5, Vertex Program Instruct ion Set

 Section 2.14.5.28, ARA: Address Register Add

 The ARA instruction adds two pairs of component s of a vector address
 register operand to produce an integer result v ector. The "x" and "z"
 components of the result vector contain the sum of the "x" and "z"
 components of the operand; the "y" and "w" comp onents of the result
 vector contain the sum of the "y" and "w" compo nents of the operand.

 itmp = AddrVectorLoad(op0);
 iresult.x = itmp.x + itmp.z;
 iresult.y = itmp.y + itmp.w;
 iresult.z = itmp.x + itmp.z;
 iresult.w = itmp.y + itmp.w;

 Component swizzling is not supported when the o perand is loaded.

 Section 2.14.5.29, ARR: Address Register Load (with round)

 The ARR instruction loads a single vector opera nd and performs a
 component-wise round operation to generate a si gned integer result
 vector.

 tmp = VectorLoad(op0);
 iresult.x = round(tmp.x);
 iresult.y = round(tmp.y);
 iresult.z = round(tmp.z);
 iresult.w = round(tmp.w);

 The round operation returns the nearest integer to the operand. If the
 fractional portion of the operand is 0.5, round () selects the nearest even
 integer. For example round(-1.7) = -2.0, round (+1.0) = +1.0, and
 round(+3.7) = +4.0.

 Section 2.14.5.30, BRA: Branch

 The BRA instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. The following
 pseudocode describes the operation of the instr uction:

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1982

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the
 instruction according to the <branchLabel> gram mar rule.

 Section 2.14.5.31, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing
 the matching RET instruction. The following ps eudocode describes
 the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 // terminate vertex program
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the
 instruction matching the <branchLabel> grammar rule, <callStackDepth>
 is the current depth of the call stack, <callSt ack> is an array
 holding the call stack, and <nextInstruction> i s a reference to the
 instruction immediately following the present o ne in the program
 string.

 If the call stack overflows, the vertex program terminates abnormally and
 all vertex program results are undefined.

 Section 2.14.5.32, COS: Cosine

 The COS instruction approximates the cosine of the angle specified
 by the scalar operand and replicates the approx imation to all four
 components of the result vector. The angle is specified in radians
 and does not have to be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1983

 Section 2.14.5.33, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped
 result to all four components of the result vec tor.

 If the approximated reciprocal is greater than 0.0, the result is
 clamped to the range [2^-64, 2^+64]. If the ap proximate reciprocal
 is not greater than zero, the result is clamped to the range [-2^+64,
 -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 The following rule applies to reciprocation:

 1. ApproxReciprocal(+1.0) = +1.0.

 Section 2.14.5.34, RET: Subroutine Call Retur n

 The RET instruction conditionally returns from a subroutine initiated
 by a CAL instruction by popping an instruction reference off the
 top of the call stack and transferring control to the referenced
 instruction. The following pseudocode describe s the operation of
 the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate vertex program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is
 a reference to an instruction previously pushed onto the call stack.

 If the call stack is empty when RET executes, t he vertex program
 terminates normally.

 Section 2.14.5.35, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is equal to that of
 the second, and 0.0 otherwise.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1984

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.36, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 Section 2.14.5.37, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operands i s greater than that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.38, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by
 the scalar operand and replicates it to all fou r components of the
 result vector. The angle is specified in radia ns and does not have
 to be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 Section 2.14.5.39, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is less than or equal
 to that of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1985

 Section 2.14.5.40, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is not equal to that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.41, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of
 each component of the single vector operand. E ach component of the
 result vector is 1.0 if the corresponding compo nent of the operand
 is greater than zero, 0.0 if the corresponding component of the
 operand is equal to zero, and -1.0 if the corre sponding component
 of the operand is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 Section 2.14.5.42, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and State
Requests)

 None.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1986

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_vertex_program

 This specification is based on a modified versi on of the grammar
 published in the ARB_vertex_program specificati on. This modified
 grammar (see below) includes a few structural c hanges to better
 accommodate new functionality from this and oth er extensions, but
 should be functionally equivalent to the ARB_ve rtex_program grammar.

 <program> ::= <optionSequence> <s tatementSequence> "END"

 <optionSequence> ::= <optionSequence> <o ption>
 | /* empty */

 <option> ::= "OPTION" <optionNam e> ";"

 <optionName> ::= "ARB_position_invar iant"

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"

 <instruction> ::= <ALUInstruction>

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZop_instruction>
 | <ARLop_instruction>

 <VECTORop_instruction> ::= <VECTORop> <instRes ult> "," <instOperandV>

 <VECTORop> ::= "ABS"
 | "FLR"
 | "FRC"
 | "LIT"
 | "MOV"

 <SCALARop_instruction> ::= <SCALARop> <instRes ult> "," <instOperandS>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1987

 <SCALARop> ::= "EX2"
 | "EXP"
 | "LG2"
 | "LOG"
 | "RCP"
 | "RSQ"

 <BINSCop_instruction> ::= <BINSCop> <instResu lt> "," <instOperandS> ","
 <instOperandS>

 <BINSCop> ::= "POW"

 <BINop_instruction> ::= <BINop> <instResult > "," <instOperandV> ","
 <instOperandV>

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | "SUB"
 | "XPD"

 <TRIop_instruction> ::= <TRIop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV>

 <TRIop> ::= "MAD"

 <SWZop_instruction> ::= <SWZop> <instResult > "," <instOperandVNS> ","
 <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <ARLop_instruction> ::= <ARLop> <instResult Addr> "," <ARLop_src>

 <ARLop> ::= "ARL"

 <ARLop_src> ::= <instOperandS>

 <instOperandV> ::= <instOperandBaseV>

 <instOperandBaseV> ::= <optSign> <attribUs eV>
 | <optSign> <tempUseV >
 | <optSign> <paramUse V>

 <instOperandS> ::= <instOperandBaseS>

 <instOperandBaseS> ::= <optSign> <attribUs eS>
 | <optSign> <tempUseS >
 | <optSign> <paramUse S>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1988

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>

 <instResult> ::= <instResultBase>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <instResultAddr> ::= <instResultAddrBase >

 <instResultAddrBase> ::= <addrUseW>

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>
 | <ADDRESS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> "[" <optArraySize> "]"
 <paramMultipleInit>

 <optArraySize> ::= /* empty */
 | <integer> /* [1,MAX _PROGRAM_PARAMETERS_ARB]*/

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <establishedName> ::= <tempVarName>
 | <addrVarName>
 | <attribVarName>
 | <paramArrayVarName>
 | <paramSingleVarName >
 | <resultVarName>

 <ADDRESS_statement> ::= "ADDRESS" <varNameL ist>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1989

 <establishName> ::= <identifier>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribBasic> ::= "vertex" "." <attri bVtxBasic>

 <attribVtxBasic> ::= "position"
 | "weight" <vtxOptWei ghtNum>
 | "normal"
 | "fogcoord"
 | "texcoord" <optTexC oordNum>
 | "matrixindex" "[" < vtxWeightNum> "]"
 | "attrib" "[" <vtxAt tribNum> "]"

 <attribColor> ::= "vertex" "." "color "

 <paramUseV> ::= <paramSingleVarName > <swizzleSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar> <s wizzleSuffix>

 <paramUseS> ::= <paramSingleVarName > <scalarSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar> <s calarSuffix>

 <paramUseVNS> ::= <paramSingleVarName >
 | <paramArrayVarName> "[" <arrayMem> "]"
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1990

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exGenItem>
 | "state" "." <stateC lipPlaneItem>
 | "state" "." <stateP ointItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" "[" <stateL ightNumber> "]" "."
 <stateLightProperty >

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <state LModProperty>

 <stateLModProperty> ::= "." "ambient"
 | "." "scenecolor"
 | "." <faceType> "." "scenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <st ateLightNumber> "]" "."
 <stateLProdProperty >
 | "lightprod" "[" <st ateLightNumber> "]" "."
 <faceType> "." <sta teLProdProperty>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1991

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> /* [0,MAX _LIGHTS-1] */

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> ".." <stateMatrixRowNum>
 "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> ".."
 <stateMatrixRowNum> "]"

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> "]"

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixName> ::= "modelview" <stateO ptModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCo ordNum>
 | "palette" "[" <stat ePaletteMatNum> "]"
 | "program" "[" <stat eProgramMatNum> "]"

 <stateMatrixRowNum> ::= <integer> /* [0,3] */

 <stateOptModMatNum> ::= /* empty */
 | "[" <stateModMatNum > "]"

 <stateModMatNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1]*/

 <statePaletteMatNum> ::= <integer> /*[0,MAX_ PALETTE_MATRICES_ARB-1]*/

 <stateProgramMatNum> ::= <integer> /*[0,MAX_ PROGRAM_MATRICES_ARB-1]*/

 <stateTexGenItem> ::= "texgen" <optTexCoo rdNum> "."
 <stateTexGenType> " ." <stateTexGenCoord>

 <stateTexGenType> ::= "eye"
 | "object"

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1992

 <stateTexGenCoord> ::= "s"
 | "t"
 | "r"
 | "q"

 <stateClipPlaneItem> ::= "clip" "[" <clipPla neNum> "]" "." "plane"

 <statePointItem> ::= "point" "." <stateP ointProperty>

 <statePointProperty> ::= "size"
 | "attenuation"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" "[" <progEnvParamNums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> " .." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env" "[" <progEnvParamNum> "]"

 <progLocalParams> ::= "program" "." "loca l" "[" <progLocalParamNums>
 "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "loca l" "[" <progLocalParamNum>
 "]"

 <progEnvParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_EN V_PARAMETERS_ARB-1]*/

 <progLocalParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_LO CAL_PARAMETERS_ARB-1]*/

 <constantVector> ::= "{" <constantVector List> "}"

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1993

 <floatConstant> ::= <float>

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>
 | <resultVtxColor> <o ptWriteMask>
 | <resultVtxColor> ". " <colorType>
 <optWriteMask>
 | <resultVtxColor> ". " <faceType> <optWriteMask>
 | <resultVtxColor> ". " <faceType> "."
 <colorType> "." <op tWriteMask>

 <resultUseD> ::= <resultBasic>
 | <resultVtxColor>
 | <resultVtxColor> ". " <colorType>
 | <resultVtxColor> ". " <faceType>
 | <resultVtxColor> ". " <faceType> "."
 <colorType>

 <resultBasic> ::= "result" "." <resul tVtxBasic>

 <resultVtxBasic> ::= "position"
 | "fogcoord"
 | "pointsize"
 | "texcoord" <optTexC oordNum>

 <resultVtxColor> ::= "result" "." "color "

 <arrayMem> ::= <arrayMemAbs>
 | <arrayMemRel>

 <arrayMemRel> ::= <addrUseS> <arrayMe mRelOffset>

 <arrayMemAbs> ::= <integer>

 <arrayMemRelOffset> ::= /* empty */
 | "+" <integer>
 | "-" <integer>

 <addrUseS> ::= <addrVarName> <scal arAddrSuffix>

 <addrUseW> ::= <addrVarName> <addr WriteMask>

 <addrWriteMask> ::= "." "x"

 <optWriteMask> ::= /* empty */
 | <xyzwMask>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1994

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xy zwComponent>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <scalarAddrSuffix> ::= "." <addrComponent>

 <addrComponent> ::= "x"

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <vtxAttribNum> ::= <integer> /*[0,MAX_ VERTEX_ATTRIBS_ARB-1]*/

 <vtxOptWeightNum> ::= /* empty */
 | "[" <vtxWeightNum> "]"

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 1995

 <vtxWeightNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1] must be
 divisible by four * /

 <optTexCoordNum> ::= /* empty */
 | "[" <texCoordNum> "]"

 <texCoordNum> ::= <integer> /*[0,MAX_ TEXTURE_COORDS_ARB-1]*/

 <clipPlaneNum> ::= <integer> /*[0,MAX_ CLIP_PLANES-1]*/

 The <integer>, <float>, and <identifier> gramma r rules match
 integer constants, floating point constants, an d identifier names
 as described in the ARB_vertex_program specific ation. The <float>
 grammar rule here is identical to the <floatCon stant> grammar rule
 in ARB_vertex_program.

 The grammar rules <tempVarName>, <addrVarName>, <attribVarName>,
 <paramArrayVarName>, <paramSingleVarName>, <res ultVarName> refer
 to the names of temporary, address register, at tribute, program
 parameter array, program parameter, and result variables declared
 in the program text.

GLX Protocol

 None.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Min
Get Value Type Get Command Value Description Sec Attrib
-------------------------------- ---- ----------- ---- ------ --------------- -------- ------
MAX_PROGRAM_EXEC_INSTRUCTIONS_NV Z+ GetProgrami vARB 65536 maximum program 2.14.4.4 -
 execution inst-
 ruction count
MAX_PROGRAM_CALL_DEPTH_NV Z+ GetProgrami vARB 4 maximum program 2.14.4.4 -
 call stack depth

 (add to Table X.11. New Implementation-Depende nt Values Introduced
 by ARB_vertex_program. Values queried by GetPr ogramivARB require
 a <pname> of VERTEX_PROGRAM_ARB.)

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 1996

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 3 06/23/04 pbrown Documented that vertex results are undefined
 if the call stack over flows, and clarified that
 RET with an empty call stack is not an error.

 2 05/16/04 pbrown Documented terminals i n modified vertex
 program grammar.

 1 -------- pbrown Internal pre-release r evisions.

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 1997

Name

 NV_vertex_program3

Name Strings

 GL_NV_vertex_program3

Status

 Shipping.

Version

 Last Modified Data: 09/27/2006
 NVIDIA Revision: 6

Number

 306

Dependencies

 ARB_vertex_program is required.
 NV_vertex_program2_option is required.
 This extension interacts with ARB_fragment_prog ram_shadow.

Overview

 This extension, like the NV_vertex_program2_opt ion extension,
 provides additional vertex program functionalit y to extend the
 standard ARB_vertex_program language and execut ion environment.
 ARB programs wishing to use this added function ality need only add:

 OPTION NV_vertex_program3;

 to the beginning of their vertex programs.

 New functionality provided by this extension, a bove and beyond that
 already provided by NV_vertex_program2_option e xtension, includes:

 * texture lookups in vertex programs,

 * ability to push and pop address registers on the stack,

 * address register-relative addressing for vertex attribute and
 result arrays, and

 * a second four-component condition code.

Issues

 Should we provided a separate "!!VP3.0" program type, like the
 "!!VP2.0" type defined in NV_vertex_program2?

 RESOLVED: No. Since ARB_vertex_program has been fully defined
 (it wasn't in the !!VP2.0 time-frame), we wil l simply define

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 1998

 language extensions to !!ARBvp1.0 that expose new functionality.
 The NV_vertex_program2_option specification f ollowed this same
 pattern for the NV3X family (GeForce FX, Quad ro FX).

 Should this be called "NV_vertex_program3_optio n"?

 RESOLVED: No. The similar extension to !!AR Bvp1.0 called
 "NV_vertex_program2_option" got that name onl y because the simpler
 "NV_vertex_program2" name had already been us ed.

 Is there a limit on the number of texture units that can be accessed
 by a vertex program?

 RESOLVED: Yes. The limit may be lower than the total number of texture
 image units available and is given by the imp lementation-dependent
 constant MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB. Any program that attempts
 to use more unique texture image units will f ail to load. Programs can
 use any texture image unit number, as long as they don't use too many
 simultaneously. As an example, the GeForce 6 series of GPUs provides 16
 texture image units accessible to vertex prog rams, but no more than four
 can be used simultaneously. It is not an err or to use texture image
 units 12-15 in a program.

 This limitation is identical to the one in th e ARB_vertex_shader
 extensions -- both extensions use the same en um to query the number of
 available image units. Violating this limit in GLSL results in a link
 error.

 Is there a restriction on the texture targets t hat can be accessed by a
 vertex program?

 RESOLVED: Yes -- for any texture image unit, vertex and fragment
 processing can not use different targets. If they do, an
 INVALID_OPERATION is generated at Begin-time. This resolution is
 consistent with resultion of the same issue i n the ARB_vertex_shader
 extension and OpenGL 2.0.

 Since vertices don't have screen space partial derivatives, how is
 the LOD used for texture accesses defined?

 RESOLVED: The TXL instruction allows a progr am to explicitly
 set an LOD; the LOD for all other texture ins tructions is zero.
 The texture LOD bias specified in the texture object and environment
 do apply to all vertex texture lookups.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB 0x8B4C

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 1999

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 Modify Section 2.14.2, Vertex Program Grammar a nd Restrictions

 (mostly add to existing grammar rules, as exten ded by
 NV_vertex_program2_option)

 <optionName> ::= "NV_vertex_program3 "

 <instruction> ::= <TexInstruction>

 <ALUInstruction> ::= <ASTACKop_instructi on>

 <TexInstruction> ::= <TEXop_instruction>

 <ASTACKop_instruction> ::= <ASTACKop> <instOpe randAddrVNS>

 <ASTACKop> ::= "PUSHA"
 | "POPA"

 <TEXop_instruction> ::= <TEXop> <instResult > "," <instOperandV> ","
 <texTarget>

 <TEXop> ::= "TEX"
 | "TXP"
 | "TXB"
 | "TXL"

 <texTarget> ::= <texImageUnit> "," <texTargetType>

 <texImageUnit> ::= "texture" <optTexIm ageUnitNum>

 <optTexImageUnitNum> ::= /* empty */
 | "[" <texImageUnitNu m> "]"

 <texImageUnitNum> ::= <integer>
 /*[0,MAX_TEXTURE_IM AGE_UNITS_ARB-1]*/

 <texTargetType> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <attribVtxBasic> ::= "texcoord" "[" <arr ayMemRel> "]"
 | "attrib" "[" <array MemRel> "]"

 <resultVtxBasic> ::= "texcoord" "[" <arr ayMemRel> "]"

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2000

 <ccMaskRule> ::= "EQ0"
 | "GE0"
 | "GT0"
 | "LE0"
 | "LT0"
 | "NE0"
 | "TR0"
 | "FL0"
 | "EQ1"
 | "GE1"
 | "GT1"
 | "LE1"
 | "LT1"
 | "NE1"
 | "TR1"
 | "FL1"

 (modify description of reserved identifiers)

 ... The following strings are reserved keywords and may not be used
 as identifiers:

 ABS, ADD, ADDRESS, ALIAS, ARA, ARL, ARR, AT TRIB, BRA, CAL, COS,
 DP3, DP4, DPH, DST, END, EX2, EXP, FLR, FRC , LG2, LIT, LOG, MAD,
 MAX, MIN, MOV, MUL, OPTION, OUTPUT, PARAM, POPA, POW, PUSHA, RCC,
 RCP, RET, RSQ, SEQ, SFL, SGE, SGT, SIN, SLE , SLT, SNE, SUB, SSG,
 STR, SWZ, TEMP, TEX, TXB, TXL, TXP, XPD, pr ogram, result, state,
 and vertex.

 Modify Section 2.14.3.1, Vertex Attributes

 (add new bindings to binding table)

 Vertex Attribute Binding Components Underly ing State
 ------------------------ ---------- ------- -------------------------
 ...
 vertex.texcoord[A+n] (s,t,r,q) indexed texture coordinate
 vertex.attrib[A+n] (x,y,z,w) indexed generic vertex attribute

 If a vertex attribute binding matches "vertex.t excoord[A+n]", where
 "A" is a component of an address register (Sect ion 2.14.3.5), a
 texture coordinate number <c> is computed by ad ding the current
 value of the address register component and <n> . The "x", "y",
 "z", and "w" components of the vertex attribute variable are
 filled with the "s", "t", "r", and "q" componen ts, respectively,
 of the vertex texture coordinates for texture u nit <c>. If <c>
 is negative or greater than or equal to MAX_TEX TURE_COORDS_ARB,
 the vertex attribute variable is undefined.

 If a vertex attribute binding matches "vertex.a ttrib[A+n]", where
 "A" is a component of an address register (Sect ion 2.14.3.5), a
 vertex attribute number <a> is computed by addi ng the current value
 of the address register component and <n>. The "x", "y", "z", and
 "w" components of the vertex attribute variable are filled with the
 "x", "y", "z", and "w" components, respectively , of generic vertex
 attribute <a>. If <a> is negative or greater t han or equal to
 MAX_VERTEX_ATTRIBS_ARB, the vertex attribute va riable is undefined.

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2001

 Modify Section 2.14.3.4, Vertex Program Results

 (add new binding to binding table)

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 ...
 result.texcoord[A+n] (s,t,r,q) in dexed texture coordinate

 If a result variable binding matches "result.te xcoord[A+n]", where "A"
 is a component of an address register (Section 2.14.3.5), a texture
 coordinate number <c> is computed by adding the current value of
 the address register component and <n>. Update s to the "x", "y",
 "z", and "w" components of the result variable set the "s", "t",
 "r" and "q" components, respectively, of the tr ansformed vertex's
 texture coordinates for texture unit <c>. If < c> is negative or
 greater than or equal to MAX_TEXTURE_COORDS_ARB , the effects of
 updates to vertex attribute variable are undefi ned and may overwrite
 other programs results.

 Modify Section 2.14.3.X, Condition Code Registe rs (added in
 NV_Vertex_program2_option)

 The vertex program condition code registers are two four-component
 vectors, called CC0 and CC1. Each component of this register is one
 of four enumerated values: GT (greater than), E Q (equal), LT (less
 than), or UN (unordered). The condition code r egister can be used
 to mask writes to registers and to evaluate con ditional branches.

 Most vertex program instructions can optionally update one of the
 two condition code registers. When a vertex pr ogram instruction
 updates a condition code register, a condition code component is set
 to LT if the corresponding component of the res ult is less than zero,
 EQ if it is equal to zero, GT if it is greater than zero, and UN if
 it is NaN (not a number).

 The condition code registers are initialized to vectors of EQ values
 each time a vertex program executes.

 Modify Section 2.14.3.7, Vertex Program Resourc e Limits

 (add new paragraph to end of section) In additi on to the previous limits,
 the number of unique texture image units that c an be accessed
 simultaneously by a vertex program is limited. The limit is given by the
 implementation-dependent constant MAX_VERTEX_TE XTURE_IMAGE_UNITS_ARB, and
 may be lower than the total number of texture i mage units provided. If
 the number of texture image units referenced by a vertex program exceeds
 this limit, the program will fail to load.

 Modify Section 2.14.4, Vertex Program Execution Environment

 (modify Begin-time error language for vertex pr ogram execution to cover
 invalid texture uses)

 If vertex program mode is enabled and the curre ntly bound program object
 does not contain a valid vertex program, the er ror INVALID_OPERATION will

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2002

 be generated by Begin, RasterPos, and any comma nd that implicitly calls
 Begin (e.g., DrawArrays).

 If vertex program mode is enabled and the curre ntly bound program object
 accesses a texture image unit, the texture targ et used must be consistent
 with the target (if any) used for fragment proc essing. If vertex and
 fragment processing require the use of differen t texture targets on the
 same texture image unit, the error INVALID_OPER ATION will be generated by
 Begin, RasterPos, and any command that implicit ly calls Begin.

 (modify instruction table) There are forty-eigh t vertex program
 instructions. Vertex program instructions may have up to eight
 variants, including a suffix of "C" or "C0" to allow an update of
 condition code register zero (section 2.14.3.X) , a suffix of "C1"
 to allow an update of condition code register o ne, and a suffix of
 "_SAT" to clamp the result vector components to the range [0,1].
 For example, the eight forms of the "ADD" instr uction are "ADD",
 "ADDC", "ADDC0", "ADDC1", "ADD_SAT", "ADDC_SAT" , "ADDC0_SAT", and
 "ADDC1_SAT". The instructions and their respec tive input and output
 parameters are summarized in Table X.5.

 Modifiers
 Instruction C S Inputs Output Descript ion
 ----------- - - ------ ------ -------- ------------------------
 ABS X X v v absolute value
 ADD X X v,v v add
 ARA X - a a address register add
 ARL X - s a address register load
 ARR X - v a address register load (round)
 BRA - - c - branch
 CAL - - c - subrouti ne call
 COS X X s ssss cosine
 DP3 X X v,v ssss 3-compon ent dot product
 DP4 X X v,v ssss 4-compon ent dot product
 DPH X X v,v ssss homogene ous dot product
 DST X X v,v v distance vector
 EX2 X X s ssss exponent ial base 2
 EXP X X s v exponent ial base 2 (approximate)
 FLR X X v v floor
 FRC X X v v fraction
 LG2 X X s ssss logarith m base 2
 LIT X X v v compute light coefficients
 LOG X X s v logarith m base 2 (approximate)
 MAD X X v,v,v v multiply and add
 MAX X X v,v v maximum
 MIN X X v,v v minimum
 MOV X X v v move
 MUL X X v,v v multiply
 POPA - - - a pop addr ess register
 POW X X s,s ssss exponent iate
 PUSHA - - a - push add ress register
 RCC X X s ssss reciproc al (clamped)
 RCP X X s ssss reciproc al
 RET - - c - subrouti ne return

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2003

 Modifiers
 Instruction C S Inputs Output Descript ion
 ----------- - - ------ ------ -------- ------------------------
 RSQ X X s ssss reciproc al square root
 SEQ X X v,v v set on e qual
 SFL X X v,v v set on f alse
 SGE X X v,v v set on g reater than or equal
 SGT X X v,v v set on g reater than
 SIN X X s ssss sine
 SLE X X v,v v set on l ess than or equal
 SLT X X v,v v set on l ess than
 SNE X X v,v v set on n ot equal
 SSG X X v v set sign
 STR X X v,v v set on t rue
 SUB X X v,v v subtract
 SWZ X X v v extended swizzle
 TEX X X v v texture lookup
 TXB X X v v texture lookup with LOD bias
 TXL X X v v texture lookup with explicit LOD
 TXP X X v v projecti ve texture lookup
 XPD X X v,v v cross pr oduct

 Table X.5: Summary of vertex program instruc tions. The columns
 "C" and "S" indicate whether the "C", "C0", a nd "C1" condition code
 update modifiers, and the "_SAT" saturation m odifiers, respectively,
 are supported for the opcode. "v" indicates a floating-point vector
 input or output, "s" indicates a floating-poi nt scalar input,
 "ssss" indicates a scalar output replicated a cross a 4-component
 result vector, "a" indicates a vector address register, and "c"
 indicates a condition code test.

 Rewrite Section 2.14.4.3, Vertex Program Desti nation Register Update

 A vertex program instruction can optionally cla mp the results of
 a floating-point result vector to the range [0, 1]. The components
 of the result vector are clamped to [0,1] if th e saturation suffix
 "_SAT" is present in the instruction.

 Most vertex program instructions write a 4-comp onent result vector to
 a single temporary or vertex result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order. The condition code write
 mask is specified by the <ccMask> rule found in the <instResultCC>
 and <instResultAddrCC> rules. Otherwise, the s elected condition
 code register is loaded and swizzled according to the swizzle
 codes specified by <swizzleSuffix>. Each compo nent of the swizzled
 condition code is tested according to the rule given by <ccMaskRule>.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2004

 <ccMaskRule> may have the values "EQ", "NE", "L T", "GE", LE", or "GT",
 which mean to enable writes if the correspondin g condition code field
 evaluates to equal, not equal, less than, great er than or equal, less
 than or equal, or greater than, respectively. Comparisons involving
 condition codes of "UN" (unordered) evaluate to true for "NE" and
 false otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the vertex program instruction if and only i f the component is
 enabled for writes by both the component write mask and the condition
 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A vertex program instruction can also optionall y update the condition
 code register. The condition code is updated i f the condition
 code register update suffix "C" is present in t he instruction.
 The instruction "ADDC" will update the conditio n code; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates
 are enabled, each component of the destination register enabled
 for writes is compared to zero. The correspond ing component of
 the condition code is set to "LT", "EQ", or "GT ", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a
 result vector to the destination register. In the pseudocode,
 "instrSaturate" is TRUE if and only if result s aturation is
 enabled, "instrMask" refers to the component wr ite mask given by
 the <optWriteMask> rule. "ccMaskRule" refers t o the condition code
 mask rule given by <ccMask> and "updatecc" is T RUE if and only if
 condition code updates are enabled. "result", "destination", and "cc"
 refer to the result vector, the register select ed by <dstRegister>

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2005

 and the condition code, respectively. Conditio n codes do not exist
 in the VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2006

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Clamp result components to [0,1] if re quested in the instruction.
 if (instrSaturate) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 While this rule describes floating-point result s, the same logic
 applies to the integer results generated by the ARA, ARL, and ARR
 instructions.

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2007

 Add to Section 2.14.4.5, Vertex Program Options

 Section 2.14.4.5.3, NV_vertex_program3 Program Option

 If a vertex program specifies the "NV_vertex_pr ogram3" option, the
 ARB_vertex_program grammar and execution enviro nment are extended
 to take advantage of all the features of the "N V_vertex_program2"
 option, plus the following features:

 * several new instructions:

 * POPA -- pop address register off stack
 * PUSHA -- push address register onto sta ck
 * TEX -- texture lookup
 * TXB -- texture lookup w/LOD bias
 * TXL -- texture lookup w/explicit LOD
 * TXP -- projective texture lookup

 * address register-relative addressing for vertex texture
 coordinate and generic attribute arrays,

 * address register-relative addressing for vertex texture
 coordinate result array, and

 * a second four-component condition code.

 Modify Section 2.14.5.34, RET: Subroutine Cal l Return

 The RET instruction conditionally returns from a subroutine initiated
 by a CAL instruction by popping an instruction reference off the
 top of the call stack and transferring control to the referenced
 instruction. The following pseudocode describe s the operation of
 the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate vertex program normally
 } else {
 callStackDepth--;
 if (callStack[callStackDepth] is a instru ction reference) {
 instruction = callStack[callStackDepth] ;
 } else {
 // terminate vertex program abnormally
 }
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is
 a reference to an instruction previously pushed onto the call stack.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2008

 If the call stack is empty when RET executes, t he vertex program
 terminates normally.

 The vertex program terminates abnormally if the entry at the top of the
 call stack is not an instruction reference push ed by CAL. When a vertex
 program terminates abnormally, all of the verte x program results are
 undefined.

 Add to Section 2.14.5, Vertex Program Instruct ion Set

 Section 2.14.5.43, POPA: Pop Address Register Stack

 The POPA instruction generates a integer result vector by popping
 an entry off of the call stack.

 if (callStackDepth <= 0) {
 terminate vertex program;
 } else {
 callStackDepth--;
 if (callStack[callStackDepth] is an address register) {
 iresult = callStack[callStackDepth];
 } else {
 terminate vertex program;
 }
 }

 In the pseudocode, <callStackDepth> is the curr ent depth of the call
 stack and <callStack> is an array holding the c all stack.

 The vertex program terminates abnormally if it executes a POPA instruction
 when the call stack is empty, or when the entry at the top of the call
 stack is not an address register pushed by PUSH A. When a vertex program
 terminates abnormally, all of the vertex progra m results are undefined.

 Section 2.14.5.44, PUSHA: Push Address Registe r Stack

 The PUSHA instruction pushes the address regist er operand onto the
 call stack, which is also used for subroutine c alls. The PUSHA
 instruction does not generate a result vector.

 tmp = AddrVectorLoad(op0);
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPTH_ NV) {
 terminate vertex program;
 } else {
 callStack[callStackDepth] = tmp;
 callStackDepth++;
 }

 In the pseudocode, <callStackDepth> is the curr ent depth of the call
 stack and <callStack> is an array holding the c all stack.

 The vertex program terminates abnormally if it executes a PUSHA
 instruction when the call stack is full. When a vertex program terminates
 abnormally, all of the vertex program results a re undefined.

 Component swizzling is not supported when the o perand is loaded.

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2009

 Section 2.14.5.45, TEX: Texture Lookup

 The TEX instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 1 .0, 0.0, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias).

 Section 2.14.5.46, TXB: Texture Lookup (With L OD Bias)

 The TXB instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand. The w compon ent of the operand
 is used as an additional LOD bias.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 1 .0, tmp.w, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias + tmp.w).

 Since the base LOD value is zero, the TXB instr uction is completely
 equivalent to the TXL instruction, where the w component contains
 an explicit base LOD value.

 Section 2.14.5.47, TXL: Texture Lookup (With E xplicit LOD)

 The TXL instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2010

 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand. The w compon ent of the operand
 is used as the base LOD for the texture lookup.

 tmp = VectorLoad(op0);
 result = TextureSampleLOD(tmp.x, tmp.y, tmp.z , 1.0, tmp.w, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 The value of lambda' used in equation 3.16 will be simply tmp.w +
 clamp(texobj_bias + texunit_bias), where tmp.w is the base LOD.

 Section 2.14.5.48, TXP: Texture Lookup (Projec tive)

 The TXP instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,w), wher e x, y, z, and w are
 the four components of the vector operand.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, t mp.w, 0.0, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias).

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 None.

NVIDIA OpenGL Extension Specifications NV_vertex_program3

 2011

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_vertex_program

 ARB_vertex_program is required.

 This specification and NV_vertex_program2_optio n are based on a
 modified version of the grammar published in th e ARB_vertex_program
 specification. This modified grammar includes a few structural
 changes to better accommodate new functionality from this and
 other extensions, but should be functionally eq uivalent to the
 ARB_vertex_program grammar. See NV_vertex_prog ram2_option for
 details on the base grammar.

Dependencies on NV_vertex_program2_option

 NV_vertex_program2_option is required.

 If the NV_vertex_program3 program option is spe cified, all
 the functionality described in both this extens ion and the
 NV_vertex_program2_option specification is avai lable.

Dependencies on ARB_fragment_program_shadow

 If this extension and ARB_fragment_program shad ow are both supported,
 vertex programs may include the option statemen t:

 OPTION ARB_fragment_program_shadow;

 which enables the use of the SHADOW1D and SHADO W2D texture targets in
 texture lookup instructions, as described in th e
 ARB_fragment_program_shadow specification.

 NVIDIA NOTE: Drivers prior to September 2006 d o not support the use of
 this option, and will not accept texture lookup s with SHADOW1D and
 SHADOW2D targets. Shadow mapping in vertex pro grams will result in
 software fallbacks on GeForce 6 and GeForce 7 s eries GPUs, but may be done
 in hardware on future GPUs.

Errors

 None.

New State

 None.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications

 2012

New Implementation Dependent State:

 Minimu m
 Get Value Type Get Command Value Description Section Attr.
 --------- ---- ----------- ------ - -------------------------- -------- -----
 MAX_VERTEX_TEXTURE_ Z+ GetIntegerv 1 Number of separate texture 2.14.3.7 -
 IMAGE_UNITS_ARB image units that can be
 accessed by a vertex program

Revision History

 Rev. Date Author Changes
 ---- -------- -------- --------------------- -----------------------
 6 09/27/06 pbrown Document that ARB_fra gment_program_shadow is
 allowed, to enable th e use of "SHADOW1D" and
 "SHADOW2D" targets fo r texture lookups.

 5 11/07/05 pbrown Fix PUSHA documentati on to specify the right
 constant name used fo r overflow testing.

 4 09/01/05 pbrown Fix spec language to document that a vertex
 program will fail to compile if it uses "too
 many" textures -- pre viously only documented
 in the issues section .

 3 08/25/05 pbrown Document that using a different texture target
 than fragment process ing on the same texture
 unit results in an IN VALID_OPERATION error at
 Begin time. This is consistent with GLSL
 language in the ARB_s hader_objects and OpenGL
 2.0 specifications. The implementation has

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2013

Name

 NV_vertex_program4

Name Strings

 (none)

Contact

 Pat Brown, NVIDIA Corporation (pbrown 'at' nvid ia.com)

Status

 Shipping for GeForce 8 Series (November 2006)

Version

 Last Modified Date: 10/06/06
 NVIDIA Revision: 5

Number

 325

Dependencies

 OpenGL 1.1 is required.

 This extension is written against the OpenGL 2. 0 specification.

 ARB_vertex_program is required.

 NV_gpu_program4 is required. This extension is supported if
 "GL_NV_gpu_program4" is found in the extension string.

 NVX_instanced_arrays affects the definition of this extension.

Overview

 This extension builds on the common assembly in struction set
 infrastructure provided by NV_gpu_program4, add ing vertex program-specific
 features.

 This extension provides the ability to specify integer vertex attributes
 that are passed to vertex programs using intege r data types, rather than
 being converted to floating-point values as in existing vertex attribute
 functions. The set of input and output binding s provided includes all
 bindings supported by ARB_vertex_program. This extension provides
 additional input bindings identifying the index of the vertex when vertex
 arrays are used ("vertex.id") and the instance number when instanced
 arrays are used ("vertex.instance", requires EX T_draw_instanced). It
 also provides output bindings allowing vertex p rograms to directly specify
 clip distances (for user clipping) plus a set o f generic attributes that
 allow programs to pass a greater number of attr ibutes to subsequent
 pipeline stages than is possible using only the pre-defined fixed-function
 vertex outputs.

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2014

 By and large, programs written to ARB_vertex_pr ogram can be ported
 directly by simply changing the program header from "!!ARBvp1.0" to
 "!!NVvp4.0", and then modifying instructions to take advantage of the
 expanded feature set. There are a small number of areas where this
 extension is not a functional superset of previ ous vertex program
 extensions, which are documented in the NV_gpu_ program4 specification.

New Procedures and Functions

 void VertexAttribI1iEXT(uint index, int x);
 void VertexAttribI2iEXT(uint index, int x, int y);
 void VertexAttribI3iEXT(uint index, int x, int y, int z);
 void VertexAttribI4iEXT(uint index, int x, int y, int z, int w);

 void VertexAttribI1uiEXT(uint index, uint x);
 void VertexAttribI2uiEXT(uint index, uint x, ui nt y);
 void VertexAttribI3uiEXT(uint index, uint x, ui nt y, uint z);
 void VertexAttribI4uiEXT(uint index, uint x, ui nt y, uint z, uint w);

 void VertexAttribI1ivEXT(uint index, const int *v);
 void VertexAttribI2ivEXT(uint index, const int *v);
 void VertexAttribI3ivEXT(uint index, const int *v);
 void VertexAttribI4ivEXT(uint index, const int *v);

 void VertexAttribI1uivEXT(uint index, const uin t *v);
 void VertexAttribI2uivEXT(uint index, const uin t *v);
 void VertexAttribI3uivEXT(uint index, const uin t *v);
 void VertexAttribI4uivEXT(uint index, const uin t *v);

 void VertexAttribI4bvEXT(uint index, const byte *v);
 void VertexAttribI4svEXT(uint index, const shor t *v);
 void VertexAttribI4ubvEXT(uint index, const uby te *v);
 void VertexAttribI4usvEXT(uint index, const ush ort *v);

 void VertexAttribIPointerEXT(uint index, int si ze, enum type,
 sizei stride, const void *pointer);

 void GetVertexAttribIivEXT(uint index, enum pna me, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pn ame, uint *params);

 (note: all these functions are shared with the EXT_gpu_shader4
 extension.)

New Tokens

 Accepted by the <pname> parameters of GetVertex Attribdv,
 GetVertexAttribfv, GetVertexAttribiv, GetVertex AttribIivEXT, and
 GetVertexAttribIuivEXT:

 VERTEX_ATTRIB_ARRAY_INTEGER_EXT 0x88FD

 (note: this token is shared with the EXT_gpu_s hader4 extension.)

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2015

Additions to Chapter 2 of the OpenGL 2.0 Specificat ion (OpenGL Operation)

 Modify Section 2.7 (Vertex Specification), p.20

 (insert before last paragraph, p.22) The comman ds

 void VertexAttribI[1234]{i,ui}EXT(uint index, T values);
 void VertexAttribI[1234]{i,ui}vEXT(uint index , T values);
 void VertexAttribI4{b,s,ub,us}vEXT(uint index , T values);

 specify fixed-point coordinates that are not co nverted to floating-point
 values, but instead are represented as signed o r unsigned integer values.
 Vertex programs that use integer instructions m ay read these attributes
 using integer data types. A vertex program tha t attempts to read a vertex
 attribute as a float will get undefined results if the attribute was
 specified as an integer, and vice versa.

 (modify second paragraph, p.23) Setting generic vertex attribute zero
 specifies a vertex; the four vertex coordinates are taken from the values
 of attribute zero. A Vertex2, Vertex3, or Verte x4 command is completely
 equivalent to the corresponding VertexAttrib* o r VertexAttribI* command
 with an index of zero. ...

 (insert at end of function list, p.24)

 void VertexAttribIPointerEXT(uint index, int size, enum type,
 sizei stride, con st void *pointer);

 (modify last paragraph, p.24) The <index> param eter in the
 VertexAttribPointer and VertexAttribIPointerEXT commands identify the
 generic vertex attribute array being described. The error INVALID_VALUE
 is generated if <index> is greater than or equa l to MAX_VERTEX_ATTRIBS.
 Generic attribute arrays with integer <type> ar guments can be handled in
 one of three ways: converted to float by norma lizing to [0,1] or [-1,1]
 as specified in table 2.9, converted directly t o float, or left as integer
 values. Data for an array specified by VertexA ttribPointer will be
 converted to floating-point by normalizing if t he <normalized> parameter
 is TRUE, and converted directly to floating-poi nt otherwise. Data for an
 array specified by VertexAttribIPointerEXT will always be left as integer
 values.

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2016

 (modify Table 2.4, p. 25)

 Integer
 Command Sizes Handling Types
 ---------------------- ------- --------- -----------------
 VertexPointer 2,3,4 cast ...
 NormalPointer 3 normalize ...
 ColorPointer 3,4 normalize ...
 SecondaryColorPointer 3 normalize ...
 IndexPointer 1 cast ...
 FogCoordPointer 1 n/a ...
 TexCoordPointer 1,2,3,4 cast ...
 EdgeFlagPointer 1 integer ...
 VertexAttribPointer 1,2,3,4 flag ...
 VertexAttribIPointerEXT 1,2,3,4 integer byte, ubyte, short,
 ushort, int, uint

 Table 2.4: Vertex array sizes (values per vertex) and data t ypes. The
 "integer handling" column indicates how fixed -point data types are
 handled: "cast" means that they converted to floating-point directly,
 "normalize" means that they are converted to floating-point by
 normalizing to [0,1] (for unsigned types) or [-1,1] (for signed types),
 "integer" means that they remain as integer v alues, and "flag" means
 that either "cast" or "normalized" applies, d epending on the setting of
 the <normalized> flag in VertexAttribPointer.

 (modify end of pseudo-code, pp. 27-28)

 for (j = 1; j < genericAttributes; j++) {
 if (generic vertex attribute j array enable d) {
 if (generic vertex attribute j array is a pure integer array) {
 VertexAttribI[size][type]vEXT(j, generi c vertex attribute j
 array element i);
 } else if (generic vertex attribute j arr ay normalization flag
 is set and <type> is not FLOAT or DOUBLE) {
 VertexAttrib[size]N[type]v(j, generic v ertex attribute j
 array ele ment i);
 } else {
 VertexAttrib[size][type]v(j, generic ve rtex attribute j
 array elem ent i);
 }
 }
 }

 if (generic vertex attribute 0 array enabled) {
 if (generic vertex attribute 0 array is a p ure integer array) {
 VertexAttribI[size][type]vEXT(0, generic vertex attribute 0
 array el ement i);
 } else if (generic vertex attribute 0 array normalization flag
 is set and <type> is not FLOAT o r DOUBLE) {
 VertexAttrib[size]N[type]v(0, generic ver tex attribute 0
 array eleme nt i);
 } else {
 VertexAttrib[size][type]v(0, generic vert ex attribute 0
 array elemen t i);
 }
 }

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2017

 Modify Section 2.X, GPU Programs

 (insert after second paragraph)

 Vertex Programs

 Vertex programs are used to compute the transfo rmed attributes of a
 vertex, in lieu of the set of fixed-function op erations described in
 sections 2.10 through 2.13. Vertex programs ar e run on a single vertex at
 a time, and the state of neighboring vertices i s not available. The
 inputs available to a vertex program are the ve rtex attributes described
 in section 2.7. The results of the program are the attributes of a
 transformed vertex, which include (among other things) a transformed
 position, colors, and texture coordinates. The vertices transformed by a
 vertex program are then processed normally by t he remainder of the GL
 pipeline.

 Modify Section 2.X.2, Program Grammar

 (replace third paragraph)

 Vertex programs are required to begin with the header string "!!NVvp4.0".
 This header string identifies the subsequent pr ogram body as being a
 vertex program and indicates that it should be parsed according to the
 base NV_gpu_program4 grammar plus the additions below. Program string
 parsing begins with the character immediately f ollowing the header string.

 (add the following grammar rules to the NV_gpu_ program4 base grammar)

 <resultUseW> ::= <resultVarName> <ar rayMem> <optWriteMask>
 | <resultColor> <optW riteMask>
 | <resultColor> "." < colorType> <optWriteMask>
 | <resultColor> "." < faceType> <optWriteMask>
 | <resultColor> "." < faceType> "." <colorType>
 "." <optWriteMask>

 <resultUseD> ::= <resultColor>
 | <resultColor> "." < colorType>
 | <resultColor> "." < faceType>
 | <resultColor> "." < faceType> "." <colorType>
 | <resultMulti>

 <attribBasic> ::= <vtxPrefix> "positi on"
 | <vtxPrefix> "weight " <optArrayMemAbs>
 | <vtxPrefix> "normal "
 | <vtxPrefix> "fogcoo rd"
 | <attribTexCoord> <o ptArrayMemAbs>
 | <attribGeneric> <ar rayMemAbs>
 | <vtxPrefix> "id"
 | <vtxPrefix> "instan ce"

 <attribColor> ::= <vtxPrefix> "color"

 <attribMulti> ::= <attribTexCoord> <a rrayRange>
 | <attribGeneric> <ar rayRange>

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2018

 <attribTexCoord> ::= <vtxPrefix> "texcoo rd"

 <attribGeneric> ::= <vtxPrefix> "attrib "

 <vtxPrefix> ::= "vertex" "."

 <resultBasic> ::= <resPrefix> "positi on"
 | <resPrefix> "fogcoo rd"
 | <resPrefix> "points ize"
 | <resultTexCoord> <o ptArrayMemAbs>
 | <resultClip> <array MemAbs>
 | <resultGeneric> <ar rayMemAbs>
 | <resPrefix> "id"

 <resultColor> ::= <resPrefix> "color"

 <resultMulti> ::= <resultTexCoord> <a rrayRange>
 | <resultClip> <array Range>
 | <resultGeneric> <ar rayRange>

 <resultTexCoord> ::= <resPrefix> "texcoo rd"

 <resultClip> ::= <resPrefix> "clip"

 <resultGeneric> ::= <resPrefix> "attrib "

 <resPrefix> ::= "result" "."

 (add the following subsection to Section 2.X.3. 2, Program Attribute
 Variables)

 Vertex program attribute variables describe the attributes of the vertex
 being transformed, as specified by the applicat ion. The set of available
 bindings is enumerated in Table X.X. Except wh ere otherwise noted, all
 vertex program attribute bindings are four-comp onent floating-point
 vectors.

 Vertex Attribute Binding Components Underly ing State
 ------------------------ ---------- ------- -----------------------
 vertex.position (x,y,z,w) object coordinates
 vertex.normal (x,y,z,1) normal
 vertex.color (r,g,b,a) primary color
 vertex.color.primary (r,g,b,a) primary color
 vertex.color.secondary (r,g,b,a) seconda ry color
 vertex.fogcoord (f,0,0,1) fog coo rdinate
 vertex.texcoord (s,t,r,q) texture coordinate, unit 0
 vertex.texcoord[n] (s,t,r,q) texture coordinate, unit n
 vertex.attrib[n] (x,y,z,w) generic vertex attribute n
 vertex.id (id,-,-,-) vertex identifier (integer)
 vertex.instance (i,-,-,-) primiti ve instance number (integer)
 vertex.texcoord[n..o] (x,y,z,w) array o f texture coordinates
 vertex.attrib[n..o] (x,y,z,w) array o f generic vertex attributes

 Table X.X, Vertex Program Attribute Bindings. <n> and <o> re fer to
 integer constants. Only the "vertex.texcoord " and "vertex.attrib"
 bindings are available in arrays.

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2019

 NVIDIA Note: The "vertex.weight" and "vertex .matrixindex" bindings
 described in ARB_vertex_program use state pro vided only by extensions
 not supported by NVIDIA implementations and a re not available.

 If a vertex attribute binding matches "vertex.p osition", the "x", "y", "z"
 and "w" components of the vertex attribute vari able are filled with the
 "x", "y", "z", and "w" components, respectively , of the vertex position.

 If a vertex attribute binding matches "vertex.n ormal", the "x", "y", and
 "z" components of the vertex attribute variable are filled with the "x",
 "y", and "z" components, respectively, of the v ertex normal. The "w"
 component is filled with 1.

 If a vertex attribute binding matches "vertex.c olor" or
 "vertex.color.primary", the "x", "y", "z", and "w" components of the
 vertex attribute variable are filled with the " r", "g", "b", and "a"
 components, respectively, of the vertex color.

 If a vertex attribute binding matches "vertex.c olor.secondary", the "x",
 "y", "z", and "w" components of the vertex attr ibute variable are filled
 with the "r", "g", "b", and "a" components, res pectively, of the vertex
 secondary color.

 If a vertex attribute binding matches "vertex.f ogcoord", the "x" component
 of the vertex attribute variable is filled with the vertex fog coordinate.
 The "y", "z", and "w" coordinates are filled wi th 0, 0, and 1,
 respectively.

 If a vertex attribute binding matches "vertex.t excoord" or
 "vertex.texcoord[n]", the "x", "y", "z", and "w " components of the vertex
 attribute variable are filled with the "s", "t" , "r", and "q" components,
 respectively, of the vertex texture coordinate set <n>. If "[n]" is
 omitted, texture coordinate set zero is used.

 If a vertex attribute binding matches "vertex.i nstance", the "x" component
 of the vertex attribute variable is filled with the integer instance
 number for the primitive to which the vertex be longs. The "y", "z", and
 "w" components are undefined.

 If a vertex attribute binding matches "vertex.a ttrib[n]", the "x", "y",
 "z" and "w" components of the generic vertex at tribute variable are filled
 with the "x", "y", "z", and "w" components, res pectively, of generic
 vertex attribute <n>. Note that "vertex.attrib [0]" and "vertex.position"
 are equivalent. Generic vertex attribute bindi ngs are typeless, and can
 be interpreted as having floating-point, signed integer, or unsigned
 integer values, depending on how they are used in the program text. If a
 vertex attribute is read using a data type diff erent from the one used to
 specify the generic attribute, the values corre sponding to the binding are
 undefined.

 As described in section 2.7, setting a generic vertex attribute may leave
 a corresponding conventional vertex attribute u ndefined, and vice versa.
 To prevent inadvertent use of attribute pairs w ith undefined attributes, a
 vertex program will fail to load if it binds bo th a conventional vertex
 attribute and a generic vertex attribute listed in the same row of Table
 X.X.

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2020

 Conventional Attribute Binding Generic A ttribute Binding
 ------------------------------ --------- ----------------
 vertex.position vertex.at trib[0]
 vertex.normal vertex.at trib[2]
 vertex.color vertex.at trib[3]
 vertex.color.primary vertex.at trib[3]
 vertex.color.secondary vertex.at trib[4]
 vertex.fogcoord vertex.at trib[5]
 vertex.texcoord vertex.at trib[8]
 vertex.texcoord[0] vertex.at trib[8]
 vertex.texcoord[1] vertex.at trib[9]
 vertex.texcoord[2] vertex.at trib[10]
 vertex.texcoord[3] vertex.at trib[11]
 vertex.texcoord[4] vertex.at trib[12]
 vertex.texcoord[5] vertex.at trib[13]
 vertex.texcoord[6] vertex.at trib[14]
 vertex.texcoord[7] vertex.at trib[15]
 vertex.texcoord[n] vertex.at trib[8+n]

 Table X.X: Invalid Vertex Attribute Binding Pairs. Vertex p rograms
 may not bind both attributes listed in any ro w. The <n> in the last row
 matches the number of any valid texture unit.

 If a vertex attribute binding matches "vertex.t excoord[n..o]" or
 "vertex.attrib[n..o]", a sequence of 1+<o>-<n> texture coordinate bindings
 are created. For texture coordinates, it is as though the sequence
 "vertex.texcoord[n], vertex.texcoord[n+1], ... vertex.texcoord[o]" were
 specfied. These bindings are available only in explicit declarations of
 array variables. A program will fail to load i f <n> is greater than <o>.

 When doing vertex array rendering using buffer objects, a vertex ID is
 also available. If a vertex attribute binding matches "vertex.id", the
 "x" component of this vertex attribute is fille d with the integer index
 <i> implicitly passed to ArrayElement() to spec ify the vertex. The vertex
 ID is defined if and only if:

 * the vertex comes from a vertex array comman d that specifies a complete
 primitive (e.g., DrawArrays, DrawElements),

 * all enabled vertex arrays have non-zero buf fer object bindings, and

 * the vertex does not come from a display lis t (even if the display list
 was compiled using DrawArrays/DrawElements using buffer objects).

 The "y", "z", and "w" components of the vertex attribute are always
 undefined.

 (add the following subsection to section 2.X.3. 5, Program Results.)

 Vertex programs produce vertices, and the set o f result variables
 available to such programs correspond to the at tributes of a transformed
 vertex. The set of allowable result variable b indings for vertex and
 fragment programs is given in Table X.4.

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2021

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.position (x,y,z,w) po sition in clip coordinates
 result.color (r,g,b,a) fr ont-facing primary color
 result.color.primary (r,g,b,a) fr ont-facing primary color
 result.color.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.front (r,g,b,a) fr ont-facing primary color
 result.color.front.primary (r,g,b,a) fr ont-facing primary color
 result.color.front.secondary (r,g,b,a) fr ont-facing secondary color
 result.color.back (r,g,b,a) ba ck-facing primary color
 result.color.back.primary (r,g,b,a) ba ck-facing primary color
 result.color.back.secondary (r,g,b,a) ba ck-facing secondary color
 result.fogcoord (f,*,*,*) fo g coordinate
 result.pointsize (s,*,*,*) po int size
 result.texcoord (s,t,r,q) te xture coordinate, unit 0
 result.texcoord[n] (s,t,r,q) te xture coordinate, unit n
 result.attrib[n] (x,y,z,w) ge neric interpolant n
 result.clip[n] (d,*,*,*) cl ip plane distance
 result.texcoord[n..o] (s,t,r,q) te xture coordinates n thru o
 result.attrib[n..o] (x,y,z,w) ge neric interpolants n thru o
 result.clip[n..o] (d,*,*,*) cl ip distances n thru o
 result.id (id,*,*,*) ve rtex id

 Table X.4: Vertex Program Result Variable Bindings. Compone nts labeled
 "*" are unused.

 If a result variable binding matches "result.po sition", updates to the
 "x", "y", "z", and "w" components of the result variable modify the "x",
 "y", "z", and "w" components, respectively, of the transformed vertex's
 clip coordinates. Final window coordinates wil l be generated for the
 vertex as described in section 2.14.4.4.

 If a result variable binding match begins with "result.color", updates to
 the "x", "y", "z", and "w" components of the re sult variable modify the
 "r", "g", "b", and "a" components, respectively , of the corresponding
 vertex color attribute in Table X.4. Color bin dings that do not specify
 "front" or "back" are consided to refer to fron t-facing colors. Color
 bindings that do not specify "primary" or "seco ndary" are considered to
 refer to primary colors.

 If a result variable binding matches "result.fo gcoord", updates to the "x"
 component of the result variable set the transf ormed vertex's fog
 coordinate. Updates to the "y", "z", and "w" c omponents of the result
 variable have no effect.

 If a result variable binding matches "result.po intsize", updates to the
 "x" component of the result variable set the tr ansformed vertex's point
 size. Updates to the "y", "z", and "w" compone nts of the result variable
 have no effect.

 If a result variable binding matches "result.te xcoord" or
 "result.texcoord[n]", updates to the "x", "y", "z", and "w" components of
 the result variable set the "s", "t", "r" and " q" components,
 respectively, of the transformed vertex's textu re coordinates for texture
 unit <n>. If "[n]" is omitted, texture unit ze ro is selected.

 If a result variable binding matches "result.at trib[n]", updates to the

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2022

 "x", "y", "z", and "w" components of the result variable set the "x", "y",
 "z", and "w" components of the generic interpol ant <n>. Generic
 interpolants may be used by subsequent geometry or fragment program
 invocations, but are not available to fixed-fun ction fragment processing.

 If a result variable binding matches "result.cl ip[n]", updates to the "x"
 component of the result variable set the clip d istance for clip plane <n>.

 If a result variable binding matches "result.te xcoord[n..o]",
 "result.attrib[n..o]", or "result.clip[n..o]", a sequence of 1+<o>-<n>
 bindings is created. For texture coordinates, it is as though the
 sequence "result.texcoord[n], result.texcoord[n +1],
 ... result.texcoord[o]" were specfied. This bi nding is available only in
 explicit declarations of array variables. A pr ogram will fail to load if
 <n> is greater than <o>.

 If a result variable binding matches "result.id ", updates to the "x"
 component of the result variable provide a inte ger vertex identifier
 available to geometry programs using the "verte x[m].id" attribute binding.
 If a geometry program using vertex IDs is activ e and a vertex program is
 active, the vertex program must write "result.i d" or the vertex ID number
 is undefined.

 (add the following subsection to section 2.X.5, Program Options.)

 Section 2.X.5.Y, Vertex Program Options

 + Position-Invariant Vertex Programs (ARB_posit ion_invariant)

 If a vertex program specifies the "ARB_position _invariant" option, the
 program is used to generate all transformed ver tex attributes except for
 position. Instead, clip coordinates are comput ed as specified in section
 2.10. Additionally, user clipping is performed as described in section
 2.11. Use of position-invariant vertex program s should generally
 guarantee that the transformed position of a ve rtex should be the same
 whether vertex program mode is enabled or disab led, allowing for correct
 mixed multi-pass rendering semantics.

 When the position-invariant option is specified in a vertex program,
 vertex programs can no longer declare (explicit ly or implicitly) a result
 variable bound to "result.position". A semanti c restriction is added to
 indicate that a vertex program will fail to loa d if the number of
 instructions it contains exceeds the implementa tion-dependent limit minus
 four.

 (add the following subsection to section 2.X.6, Program Declarations.)

 Section 2.X.6.1, Vertex Program Declarations

 No declarations are supported at present for ve rtex programs.

Additions to Chapter 3 of the OpenGL 2.0 Specificat ion (Rasterization)

 None.

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2023

Additions to Chapter 4 of the OpenGL 2.0 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 2.0 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 2.0 Specificat ion (State and
State Requests)

 Modify Section 6.1.14, Shader and Program Queri es (p. 256)

 (modify 2nd paragraph, p.259) The commands

 ...
 void GetVertexAttribIivEXT(uint index, enum p name, int *params);
 void GetVertexAttribIuivEXT(uint index, enum pname, uint *params);

 obtain the... <pname> must be one of VERTEX_AT TRIB_ARRAY_ENABLED,
 ... VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTR IB_ARRAY_INTEGER_EXT, or
 CURRENT_VERTEX_ATTRIB. ...

 (split 3rd paragraph, p.259) ... The size, stri de, type, normalized flag,
 and unconverted integer flag are set by the com mands VertexAttribPointer
 and VertexAttribIPointerEXT. The normalized fl ag is always set to FALSE by
 by VertexAttribIPointerEXT. The unconverted in teger flag is always set to
 FALSE by VertexAttribPointer and TRUE by Vertex AttribIPointerEXT.

 The query CURRENT_VERTEX_ATTRIB returns the cur rent value for the generic
 attribute <index>. GetVertexAttribdv and GetVe rtexAttribfv read and
 return the current attribute values as floating -point values;
 GetVertexAttribiv reads them as floating-point values and converts them to
 integer values; GetVertexAttribIivEXT reads and returns them a signed
 integers; GetVertexAttribIuivEXT reads and retu rns them as unsigned
 integers. The results of the query are undefin ed if the current attribute
 values are read using one data type but specifi ed using a different one.
 The error INVALID_OPERATION is generated if <in dex> is zero.

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 TBD

Errors

 None.

Dependencies on EXT_draw_instanced

 If EXT_draw_instanced or a similar extension is not supported,
 references to the "vertex.instance" attribute b inding and a
 primitive's instance number should be eliminate d.

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2024

New State

 (add to table 6.7, p. 268)
 In itial
 Get Value Type Get Command Va lue Description Sec. Attribute
 --------- ---- --------------- -- ----- -------------------- ---- ---------
 VERTEX_ATTRIB_ARRAY 16+xB GetVertexAttrib FA LSE vertex attrib array 2.8 vertex-array
 INTEGER_EXT has unconverted ints

New Implementation Dependent State

 None.

Issues

 (1) Should a new set of immediate-mode function s be provided for "real
 integer" attributes? If so, which ones should be provided?

 RESOLVED: Yes, although an incomplete subset is provided. This
 extension provides vector and non-vector func tions that accept 1-, 2-,
 3-, and 4-component "int" and "uint" values. Additionally, we provide
 only 4-component vector versions of functions that accept "byte",
 "ubyte", "short", and "ushort" values. Note that the ARB_vertex_program
 extension provided a similar incomplete subse t.

 Since existing VertexAttrib functions include versions that take integer
 values and convert them to float, it was nece ssary to create a different
 way to specify integer values that are not co nverted. We created a new
 set of functions using capital letter "I" to denote "real integer"
 values.

 This "I" approach is consistent with a simila r choice made by
 ARB_vertex_program for the existing integer a ttribute functions. There
 are two methods of converting to floating poi nt -- straight casts and
 normalization to [0,1] or [-1,+1]. The norma lization version of the
 attribute functions use the capital letter "N " to denote normalization.

 (2) For vertex arrays with "real integer" attri butes, should we provide a
 new function to specify the array or re-use the existing one?

 RESOLVED: Provide a new function, VertexAttr ibIPointerEXT. This
 function and VertexAttribPointer both set the same attribute state --
 state set by VertexAttribPointer for a given <index> will be overwritten
 by VertexAttribIPointerEXT() and vice versa. There is one new piece of
 state per array (VERTEX_ATTRIB_ARRAY_INTEGER_ EXT) which is set to TRUE
 for VertexAttribIPointerEXT() and FALSE by Ve rtexAttribPointer. The use
 of a new function with capital "I" in the nam e is consistent with the
 choice made for immediate-mode integer attrib utes.

 We considered reusing the existing VertexAttr ibPointer function by
 hijacking the <normalized> parameter, which s pecifies whether the
 provided arrays are converted to float by nor malizing or a straight
 cast. It would have been possible to add a t hird setting to indicate
 unconverted integer values, but that has two problems: (a) it doesn't
 agree with the <normalized> flag being specif ied as a "boolean" (which
 only has two values), and (b) the enum value that would be used would be

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2025

 outside the range [0,255] and "boolean" may b e represented using
 single-byte data types.

 One other possibility would have been to crea te a new set of <type>
 values to indicate integer values that are ne ver converted to floating
 point -- for example, GL_INTEGER_INT.

 (3) Should we provide a whole new set of generi c integer vertex
 attributes?

 RESOLVED: No. This extension makes the exis ting generic vertex
 attributes "typeless", where they can store e ither integer or
 floating-point data. This avoids the need to introduce new hardware
 resources for integer vertex attributes or so ftware overhead in juggling
 integer and floating-point generic attributes .

 Vertex programs and any queries that access t hese attributes are
 responsible for ensuring that they are read u sing the same data type
 that they were specified using, and will get undefined results on type
 mismatches. Checking for such mismatches wou ld be an excellent feature
 for an instrumented OpenGL driver, or other d ebugging tool.

 (4) Should we provide integer forms of existing conventional attributes?

 RESOLVED: No. We could have provided "integ er" versions of Color,
 TexCoord, MultiTexCoord, and other functions, but it didn't seem useful.
 The use of generic attributes for such values is perfectly acceptable,
 and fixed-function vertex processing paths wo n't know what to do with
 integer values for position, color, normal, a nd so on.

 (5) With integers throughout the pipeline, shou ld we provide automatic
 identifiers that can be read to get a "vertex n umber"? If so, how should
 this functionality be provided?

 RESOLVED: The "vertex.id" binding provides a n integer "vertex number"
 for each vertex called the "vertex ID".

 When using vertex arrays in vertex buffer obj ects (VBOs), the vertex ID
 is defined to be the index of the vertex in t he array -- the value
 implicitly passed to ArrayElement() when Draw Arrays() or DrawElements()
 is called. In practice, vertex arrays in buf fer objects will be stored
 in memory that is directly accessible by the GPU. When functions such
 as DrawArrays() or DrawElements() are called, a set of vertex indices
 are passed to the GPU to identify the vertice s to pull out of the buffer
 objects. These same indices can be easily pa ssed to the vertex program.

 Vertex IDs can be used by applications in a v ariety of ways, for example
 to compute or look up some property of the ve rtex based on its position
 in the data set.

 Note: The EXT_texture_buffer_object extensio n can be used to bind a
 buffer object as a texture resource, which ca n the be used for lookups
 in a vertex program. If the amount of memory required for each vertex
 is very large or is variable, the existing ve rtex array model might not
 work very well. However, with TexBOs (textur e buffer objects), the
 vertex program can be used to compute an offs et into the buffer object
 holding the vertex data and fetch the data ne eded using texture lookups.

NV_vertex_program4 NVIDIA OpenGL Extension Specifications

 2026

 This approach blurs the line between texture and vertex pulling, and
 treats the "texture" in question as a simple array.

 (6) Should vertex IDs be provided for vertices in immediate mode?
 Vertices in display lists? Vertex arrays compi led into a display list?

 RESOLVED: No to all.

 A different definition would be needed for im mediate mode vertices,
 since the vertex attributes are not specified with an index. It would
 have been possible to implement some sort of counter where the vertex ID
 indicates that the vertex is the <N>th one si nce the previous Begin
 command.

 Vertex arrays compiled into a display list ar e an even more complicated
 problem, since either the "array element" def inition or the alternate
 "immediate mode" definition could be used. I f the "array element"
 definition were used, it would additionally b e necessary to compile the
 array element values into the display list. This would introduce
 additional overhead into the display list, an d the storage space for the
 array element numbers would be wasted if no p rogram using vertex ID were
 ever used.

 While such functionality may be useful, it is left to a subsequent
 extension.

 If such functionality is required, immediate mode VertexAttribI1i()
 calls can be used to specify the desired "ver tex ID" values as integer
 generic attributes. In this case, the vertex program needs to refer to
 the specified generic attribute, and not "ver tex.id".

 (7) Should vertex identifiers be provided for n on-VBO vertex arrays? For
 vertex arrays that are a mix of VBO and non-VBO arrays?

 RESOLVED: Non-VBO arrays are generally not s tored in memory directly
 accessible by the GPU; the data are instead c opied from the
 application's memory as they are passed to th e GPU. Additionally, the
 index ordering may not be preserved by the co py. For example, if a
 DrawElements() call passes vertices numbered 30, 20, 10, and 0 in order,
 the GPU might see vertex 30's data first, imm ediately followed by vertex
 20's data, and so on.

 It would be possible for the driver to provid e per-vertex ID values to
 the GPU during the copy, but defining such fu nctionality is left to a
 subsequent extension.

 For vertices with a mix of VBO arrays and non -VBO arrays, the non-VBO
 arrays still have the same copy issues, so th e automatic vertex ID is
 not provided.

 If such functionality is required, a generic vertex attribute array can
 be set up using VertexAttribIPointerEXT(), ho lding integer values 0
 through <maxSize>-1, where <maxSize> is the m aximum vertex index used.
 For each vertex, the appropriate "vertex ID" value will be taken from
 this array. In this case, the vertex program needs to refer to the
 specified generic attribute, and not "vertex. id".

NVIDIA OpenGL Extension Specifications NV_vertex_program4

 2027

 (8) Should vertex IDs be available to geometry programs, and if so, how?

 RESOLVED: Yes, vertex IDs can be passed to g eometry programs using the
 "result.id" binding in a vertex program. Not e there is no requirement
 that the "result.id" written for a vertex mus t match the "vertex.id"
 originally provided.

 Vertex IDs are not automatically provided to geometry programs; if a
 vertex program doesn't write to "result.id" o r if fixed-function vertex
 processing is used, the vertex ID visible to the geometry program is
 undefined.

 (9) For instanced arrays (EXT_draw_instanced), should a vertex program
 be able to read the instance number? If so, ho w?

 RESOLVED: Yes, instance IDs are available to vertex programs using the
 "vertex.instance" attribute. The instance ID is available in the "x"
 component and should be read as an integer.

 (10) Should instance IDs be available to geomet ry and fragment programs,
 and if so, how?

 UNRESOLVED: No. If a geometry or fragment p rogram needs the instance
 ID, the value read in the vertex program can be passed down using a
 generic integer vertex attribute.

 It would be possible to provide a named outpu t binding (e.g.,
 "result.instance") that could be used to pass the instance ID to the
 next pipeline stage. Using such a binding wo uld have no functional
 differences from using a generic attribute, e xcept for a name.

 In any event, instance IDs are not automatica lly available to geometry
 or fragment programs; they must be passed fro m earlier pipeline stages.

 (11) This is an NV extension (NV_vertex_program 4). Why do all the new
 functions and tokens have an "EXT" extension?

 RESOLVED: These functions and tokens are sha red between this extension
 and the comparable high-level GLSL programmab ility extension
 (EXT_gpu_shader4). Rather than provide a dup licate set of functions, we
 simply use the EXT version here.

Revision History

 None

SGIS_generate_mipmap NVIDIA OpenGL Extension Specifications

 2028

Name

 SGIS_generate_mipmap

Name Strings

 GL_SGIS_generate_mipmap

Version

 SGI Date: 1997/02/26 03:36:30 SGI Revision: 1. 6
 $Id: //sw/main/docs/OpenGL/specs/GL_SGIS_genera te_mipmap.txt#2 $

Number

 32

Dependencies

 EXT_texture is required
 EXT_texture3D affects the definition of this ex tension
 EXT_texture_object affects the definition of th is extension
 SGIS_texture_lod affects the definition of this extension

Overview

 This extension defines a mechanism by which Ope nGL can derive the
 entire set of mipmap arrays when provided with only the base level
 array. Automatic mipmap generation is particul arly useful when
 texture images are being provided as a video st ream.

Issues

 * How are edges handled?

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameter of TexParamet eri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameter iv, and GetTexParameterfv:

 GENERATE_MIPMAP_SGIS 0x8191

 Accepted by the <target> parameter of Hint, and by the <pname>
 parameter of GetBooleanv, GetIntegerv, GetFloat v, and GetDoublev:

 GENERATE_MIPMAP_HINT_SGIS 0x8192

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

NVIDIA OpenGL Extension Specifications SGIS_generate_mipmap

 2029

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 GL Specification Table 3.7 is updated as follow s:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT
 TEXTURE_WRAP_T integer CLAMP, REPEAT
 TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD_SGIS float any value
 TEXTURE_MAX_LOD_SGIS float any value
 TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
 TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer
 GENERATE_MIPMAP_SGIS boolean TRUE or FALSE

 Table 3.7: Texture parameters and their val ues.

 This extension introduces a side effect to the modification of the
 base level mipmap array. The side effect is en abled on a per-texture
 basis by calling TexParameteri, TexParameterf, TexParameteriv, or
 TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, <pname> set to GENERATE_MIPMAP_ SGIS, and <param>
 set to TRUE (or <params> pointing to TRUE). It is disabled using the
 same call, with <param> set to FALSE, or <param s> pointing to FALSE.
 If SGIS_texture_lod is supported, the base leve l array is the array
 number TEXTURE_BASE_LEVEL_SGIS. Otherwise the base level array is
 array zero.

 If GENERATE_MIPMAP_SGIS is enabled, the side ef fect occurs whenever
 any change is made to the interior or edge imag e values of the base
 level texture array. The side effect is comput ation of a complete
 set of mipmap arrays, all derived from the modi fied base level array.
 Array levels BASE+1 through BASE+p are replaced with derived arrays,
 regardless of their previous contents. All oth er texture arrays,
 including the base array, are left unchanged by this mipmap computation.

 The internal formats and border widths of the d erived mipmap arrays
 all match those of the base array, and the dime nsions of the derived
 arrays follow the requirements described in the Mipmapping section of
 the GL Specification. The result is that the s et of mipmap arrays is

SGIS_generate_mipmap NVIDIA OpenGL Extension Specifications

 2030

 complete as defined by the GL Specification. T he contents of the
 derived image arrays are computed by repeated, filtered reduction of
 the base level image array. This specification does not require any
 particular filter algorithm, though a simple 2x 2 box filter is
 recommended as the default filter. Hint variab le
 GENERATE_MIPMAP_HINT_SGIS can be changed from i ts default value of
 DONT_CARE to either FASTEST or NICEST, indicati ng to the implementation
 that either the fastest or highest quality filt er operation is desired.
 These operations are not defined by this specif ication, however. The
 single hint value controls the filtering of all the textures, and is
 evaluated when the filtering operation takes pl ace.

 Automatic mipmap generation is available for te xture targets TEXTURE_1D,
 TEXTURE_2D, and TEXTURE_3D_EXT only.

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on EXT_texture

 EXT_texture is required.

Dependencies on EXT_texture3D

 If EXT_texture3D is not supported, references t o 3D texture mapping and
 to TEXTURE_3D_EXT in this document are invalid and should be ignored.

Dependencies on EXT_texture_object

 If EXT_texture_object is implemented, the state value named

 GENERATE_MIPMAP_SGIS

 is added to the state vector of each texture ob ject. When an attribute
 set that includes texture information is popped , the bindings and
 enables are first restored to their pushed valu es, then the bound
 textures have their GENERATE_MIPMAP_SGIS parame ters restored to their
 pushed values.

Dependencies on SGIS_texture_lod

 If SGIS_texture_lod is not supported, the base array level is always
 level zero. References in this document to TEX TURE_BASE_LEVEL_SGIS

NVIDIA OpenGL Extension Specifications SGIS_generate_mipmap

 2031

 should be ignored.

Errors

 None

New State

 Initial
 Get Value Get Command T ype Value Attrib
 --------- ----------- - --- ------- ------
 GENERATE_MIPMAP_SGIS GetTexParameteriv B FALSE texture
 GENERATE_MIPMAP_HINT_SGIS GetIntegerv Z 3 DONT_CARE hint

New Implementation Dependent State

 None

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

2032

Name

 SGIS_texture_lod

Name Strings

 GL_SGIS_texture_lod

Version

 $Date: 1997/05/30 01:34:44 $ $Revision: 1.8 $

Number

 24

Dependencies

 EXT_texture is required
 EXT_texture3D affects the definition of this ex tension
 EXT_texture_object affects the definition of th is extension
 SGI_detail_texture affects the definition of th is extension
 SGI_sharpen_texture affects the definition of t his extension

Overview

 This extension imposes two constraints related to the texture level of
 detail parameter LOD, which is represented by t he Greek character lambda
 in the GL Specification. One constraint clamps LOD to a specified
 floating point range. The other limits the sel ection of mipmap image
 arrays to a subset of the arrays that would oth erwise be considered.

 Together these constraints allow a large textur e to be loaded and
 used initially at low resolution, and to have i ts resolution raised
 gradually as more resolution is desired or avai lable. Image array
 specification is necessarily integral, rather t han continuous. By
 providing separate, continuous clamping of the LOD parameter, it is
 possible to avoid "popping" artifacts when high er resolution images
 are provided.

 Note: because the shape of the mipmap array is always determined by
 the dimensions of the level 0 array, this array must be loaded for
 mipmapping to be active. If the level 0 array is specified with a
 null image pointer, however, no actual data tra nsfer will take
 place. And a sufficiently tuned implementation might not even
 allocate space for a level 0 array so specified until true image
 data were presented.

Issues

 * Should detail and sharpen texture operate w hen the level 0 image
 is not being used?

 A: Sharpen yes, detail no.

 * Should the shape of the mipmap array be det ermined by the
 dimensions of the level 0 array, regardless of the base level?

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 2033

 A: Yes, this is the better solution. Drivi ng everything from
 the base level breaks the proxy query pr ocess, and allows
 mipmap arrays to be placed arbitrarily. The issues of
 requiring a level 0 array are partially overcome by the use
 of null-point loads, which avoid data tr ansfer and,
 potentially, data storage allocation.

 * With the arithmetic as it is, a linear filt er might access an
 array past the limit specified by MAX_LEVEL or p. But the
 results of this access are not significant, because the blend
 will weight them as zero.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameter of TexParamet eri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameter iv, and GetTexParameterfv:

 TEXTURE_MIN_LOD_SGIS 0x813A
 TEXTURE_MAX_LOD_SGIS 0x813B
 TEXTURE_BASE_LEVEL_SGIS 0x813C
 TEXTURE_MAX_LEVEL_SGIS 0x813D

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 2034

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 GL Specification Table 3.7 is updated as follow s:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT
 TEXTURE_WRAP_T integer CLAMP, REPEAT
 TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD_SGIS float any value
 TEXTURE_MAX_LOD_SGIS float any value
 TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
 TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer

 Table 3.7: Texture parameters and their val ues.

 Base Array

 Although it is not explicitly stated, it is the clear intention
 of the OpenGL specification that texture minifi cation filters
 NEAREST and LINEAR, and all texture magnificati on filters, be
 applied to image array zero. This extension in troduces a
 parameter, BASE_LEVEL, that explicitly specifie s which array
 level is used for these filter operations. Bas e level is specified
 for a specific texture by calling TexParameteri , TexParameterf,
 TexParameteriv, or TexParameterfv with <target> set to TEXTURE_1D,
 TEXTURE_2D, or TEXTURE_3D_EXT, <pname> set to T EXTURE_BASE_LEVEL_SGIS,
 and <param> set to (or <params> pointing to) th e desired value. The
 error INVALID_VALUE is generated if the specifi ed BASE_LEVEL is
 negative.

 Level of Detail Clamping

 The level of detail parameter LOD is defined in the first paragraph
 of Section 3.8.1 (Texture Minification) of the GL Specification, where
 it is represented by the Greek character lambda . This extension
 redefines the definition of LOD as follows:

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 2035

 LOD'(x,y) = log_base_2 (Q(x,y))

 / MAX_LOD LOD' > MAX_LOD
 LOD = (LOD' LOD' >= MIN_LOD and LOD' <= MAX_LOD
 \ MIN_LOD LOD' < MIN_LOD
 \ undefined MIN_LOD > MAX_LOD

 The variable Q in this definition represents th e Greek character rho,
 as it is used in the OpenGL Specification. (Re call that Q is computed
 based on the dimensions of the BASE_LEVEL image array.) MIN_LOD is the
 value of the per-texture variable TEXTURE_MIN_L OD_SGIS, and MAX_LOD is
 the value of the per-texture variable TEXTURE_M AX_LOD_SGIS.

 Initially TEXTURE_MIN_LOD_SGIS and TEXTURE_MAX_ LOD_SGIS are -1000 and
 1000 respectively, so they do not interfere wit h the normal operation of
 texture mapping. These values are respecified for a specific texture
 by calling TexParameteri, TexParemeterf, TexPar ameteriv, or
 TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, <pname> set to TEXTURE_MIN_LOD_ SGIS or
 TEXTURE_MAX_LOD_SGIS, and <param> set to (or <p arams> pointing to) the
 new value. It is not an error to specify a max imum LOD value that is
 less than the minimum LOD value, but the result ing LOD values are
 not defined.

 LOD is clamped to the specified range prior to any use. Specifically,
 the mipmap image array selection described in t he Mipmapping Subsection
 of the GL Specification is based on the clamped LOD value. Also, the
 determination of whether the minification or ma gnification filter is
 used is based on the clamped LOD.

 Mipmap Completeness

 The GL Specification describes a "complete" set of mipmap image arrays
 as array levels 0 through p, where p is a well defined function of the
 dimensions of the level 0 image. This extensio n modifies the notion
 of completeness: instead of requiring that all arrays 0 through p
 meet the requirements, only arrays 0 and arrays BASE_LEVEL through
 MAX_LEVEL (or p, whichever is smaller) must mee t these requirements.
 The specification of BASE_LEVEL was described a bove. MAX_LEVEL is
 specified by calling TexParameteri, TexParemete rf, TexParameteriv, or
 TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, <pname> set to TEXTURE_MAX_LEVE L_SGIS, and <param> set
 to (or <params> pointing to) the desired value. The error
 INVALID_VALUE is generated if the specified MAX _LEVEL is negative.
 If MAX_LEVEL is smaller than BASE_LEVEL, or if BASE_LEVEL is greater
 than p, the set of arrays is incomplete.

 Array Selection

 Magnification and non-mipmapped minification ar e always performed
 using only the BASE_LEVEL image array. If the minification filter
 is one that requires mipmapping, one or two arr ay levels are
 selected using the equations in the table below , and the LOD value
 is clamped to a maximum value that insures that no array beyond

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 2036

 the limits specified by MAX_LEVEL and p is acce ssed.

 Minification Filter Maximum LOD Array level(s)
 ------------------- ----------- --------------
 NEAREST_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
 LINEAR_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
 NEAREST_MIPMAP_LINEAR M floor(B), floor(B)+1
 LINEAR_MIPMAP_LINEAR M floor(B), floor(B)+1

 where:

 M = min(MAX_LEVEL,p) - BASE_LEVEL
 B = BASE_LEVEL + LOD

 For NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_NE AREST the specified
 image array is filtered according to the rules for NEAREST or
 LINEAR respectively. For NEAREST_MIPMAP_LINEAR and
 LINEAR_MIPMAP_LINEAR both selected arrays are f iltered according to
 the rules for NEAREST or LINEAR, respectively. The resulting values
 are then blended as described in the Mipmapping section of the
 OpenGL specification.

 Additional Filters

 Sharpen filters (described in SGIS_sharpen_text ure) operate on array
 levels BASE_LEVEL and BASE_LEVEL+1. If the min imum of MAX_LEVEL and p
 is not greater than BASE_LEVEL, then sharpen te xture reverts to a
 LINEAR magnification filter. Detail filters (d escribed in
 SGIS_detail_texture) operate only when BASE_LEV EL is zero.

 Texture Capacity

 In Section 3.8 the OpenGL specification states:

 "In order to allow the client to meaningful ly query the maximum
 image array sizes that are supported, an i mplementation must not
 allow an image array of level one or great er to be created if a
 `complete' set of image arrays consistent with the requested
 array could not be supported."

 Given this extension's redefinition of complete ness, the above
 paragraph should be rewritten to indicate that all levels of the
 `complete' set of arrays must be supportable. E.g.

 "In order to allow the client to meaningful ly query the maximum
 image array sizes that are supported, an i mplementation must not
 allow an image array of level one or great er to be created if a
 `complete' set of image arrays (all levels 0 through p) consistent
 with the requested array could not be supp orted."

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 2037

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on EXT_texture

 EXT_texture is required.

Dependencies on EXT_texture3D

 If EXT_texture3D is not supported, references t o 3D texture mapping and
 to TEXTURE_3D_EXT in this document are invalid and should be ignored.

Dependencies on EXT_texture_object

 If EXT_texture_object is implemented, the state values named

 TEXTURE_MIN_LOD_SGIS
 TEXTURE_MAX_LOD_SGIS
 TEXTURE_BASE_LEVEL_SGIS
 TEXTURE_MAX_LEVEL_SGIS

 are added to the state vector of each texture o bject. When an attribute
 set that includes texture information is popped , the bindings and
 enables are first restored to their pushed valu es, then the bound
 textures have their LOD and LEVEL parameters re stored to their pushed
 values.

Dependencies on SGIS_detail_texture

 If SGIS_detail_texture is not supported, refere nces to detail texture
 mapping in this document are invalid and should be ignored.

Dependencies on SGIS_sharpen_texture

 If SGIS_sharpen_texture is not supported, refer ences to sharpen texture
 mapping in this document are invalid and should be ignored.

Errors

 INVALID_VALUE is generated if an attempt is mad e to set
 TEXTURE_BASE_LEVEL_SGIS or TEXTURE_MAX_LEVEL_SG IS to a negative value.

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 2038

New State

 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------
 TEXTURE_MIN_LOD_SGIS GetTexParameterfv n x R -1000 texture
 TEXTURE_MAX_LOD_SGIS GetTexParameterfv n x R 1000 texture
 TEXTURE_BASE_LEVEL_SGIS GetTexParameteriv n x R 0 texture
 TEXTURE_MAX_LEVEL_SGIS GetTexParameteriv n x R 1000 texture

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications SGIX_depth_texture

 2039

Name

 SGIX_depth_texture

Name Strings

 GL_SGIX_depth_texture

Version

 $Date: 1997/02/26 03:36:29 $ $Revision: 1.5 $
 $Id: //sw/main/docs/OpenGL/specs/GL_SGIX_depth_ texture.txt#3 $

Number

 63

Dependencies

 EXT_texture is required
 EXT_subtexture affects the definition of this e xtension
 EXT_copy_texture affects the definition of this extension

Overview

 This extension defines a new depth texture form at. An important
 application of depth texture images is shadow c asting, but separating
 this from the shadow extension allows for the p otential use of
 depth textures in other applications such as im age-based rendering
 or displacement mapping. This extension does n ot define new
 depth-texture environment functions, such as fi ltering or applying
 the depth values computed from a texture, but l eaves this to other
 extensions, such as the shadow extension.

New Procedures and Functions

 None

New Tokens

 Accepted by the <components> parameters of TexI mage1D and
 TexImage2D, and by the <internalformat> paramet ers of TexImage3DEXT,
 CopyTexImage1DEXT, and CopyTexImage2DEXT:

 DEPTH_COMPONENT16_SGIX 0x81A5
 DEPTH_COMPONENT24_SGIX 0x81A6
 DEPTH_COMPONENT32_SGIX 0x81A7

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 XXX - lots

 Notes:

SGIX_depth_texture NVIDIA OpenGL Extension Specifications

 2040

 * Defines DEPTH_COMPONENT as a new base inter nal format for
 textures. Defines 16, 24, and 32 bit speci fic internal formats
 for texture. Just as for the specific colo r internal formats,
 an implementation can choose whether to imp lement them or not.

 * Texture commands that accept images from me mory now allow the
 internal format to be DEPTH_COMPONENT or DE PTH_COMPONENT*_SGIX
 when the format of the image data is DEPTH_ COMPONENT. Depth,
 not color pixel transfer operations are app lied to depth images.

 * Texture commands that accept images from th e framebuffer now
 take their data from the depth buffer when the internal format is
 DEPTH_COMPONENT or DEPTH_COMPONENT*_SGIX, o r when no internal
 format is specified, and the internal forma t of the target
 texture is DEPTH_COMPONENT or DEPTH_COMPONE NT*_SGIX.

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on EXT_texture

 EXT_texture is required.

Dependencies on EXT_texture3D

 EXT_texture3D is not required, but if it is not supported, the
 implementation must compute the R texture coord inate as if it were.
 If EXT_texture3D is not supported, references t o TexImage3DEXT and
 TexSubImage3DEXT in this document are invalid a nd should be ignored.

Dependencies on EXT_subtexture

 If EXT_subtexture is not supported, references to TexSubImage1DEXT,
 TexSubImage2DEXT, and TexSubImage3DEXT in this document are invalid
 and should be ignored. If EXT_subtexture is su pported, the operations
 of these three commands are affected by this ex tension.

Dependencies on EXT_copy_texture

 If EXT_copy_texture is not supported, reference s to CopyTexImage1DEXT
 and CopyTexImage2DEXT in this document are inva lid and should be
 ignored. If EXT_copy_texture is supported, the operations of these

NVIDIA OpenGL Extension Specifications SGIX_depth_texture

 2041

 two commands, and of CopyTexSubImage1DEXT, Copy TexSubImage2DEXT,
 and CopyTexSubImage3DEXT are affected by this e xtension.

Errors

 INVALID_OPERATION is generated if TexImage1D or TexImage2D parameter
 <format> is DEPTH_COMPONENT and parameter <comp onents> is not
 DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
 or DEPTH_COMPONENT32_SGI.

 INVALID_OPERATION is generated if TexImage3DEXT parameter
 <format> is DEPTH_COMPONENT and parameter <inte rnalformat> is not
 DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
 or DEPTH_COMPONENT32_SGI.

 INVALID_OPERATION is generated if CopyTexImage1 DEXT
 or CopyTexImage2DEXT parameter <internalformat> is
 DEPTH_COMPONENT, DEPTH_COMPONENT16_SGI, DEPTH_COMPONENT24_SGI,
 or DEPTH_COMPONENT32_SGI, and there is no depth buffer.

New State

 None

New Implementation Dependent State

 None

SGIX_shadow NVIDIA OpenGL Extension Specifications

 2042

Name

 SGIX_shadow

Name Strings

 GL_SGIX_shadow

Version

 $Date: 1997/08/27 19:54:45 $ $Revision: 1.1 5 $
 $Id: //sw/main/docs/OpenGL/specs/GL_SGIX_sh adow.txt#4 $

Number

 34

Dependencies

 None.

Overview

 This extension defines two new operations t o be performed
 on texture values before they are passed on to the filtering
 subsystem. These operations perform either a <= or >= test
 on the value from texture memory and the it erated R value,
 and return 1.0 or 0.0 if the test passes or fails, respectively.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameter of TexPar ameterf, TexParameteri,
 TexParameterfv, TexParameteriv, GetTexParam eterfv, and
 GetTexParameteriv, with the <pname> paramet er of TRUE or FALSE:

 TEXTURE_COMPARE_SGIX

 Accepted by the <pname> parameter of TexPar ameterf, TexParameteri,
 TexParameterfv, TexParameteriv, GetTexParam eterfv, and
 GetTexParameteriv:

 TEXTURE_COMPARE_OPERATOR_SGIX

 Accepted by the <param> parameter of TexPar ameterf and
 TexParameteri, and by the <params> paramete r of TexParameterfv
 and TexParameteriv, when their <pname> para meter is
 TEXTURE_COMPARE_OPERATOR_SGIX:

 TEXTURE_LEQUAL_R_SGIX
 TEXTURE_GEQUAL_R_SGIX

NVIDIA OpenGL Extension Specifications SGIX_shadow

 2043

Additions to Chapter 2 of the 1.0 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Ra sterization)

 XXX - lots

 GL Specification Table 3.8 is updated as fo llows:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT
 TEXTURE_WRAP_T integer CLAMP, REPEAT
 TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS,
 LINEAR_CLIPMAP_LINEAR_SGIX
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS,
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD_SGIS float any value
 TEXTURE_MAX_LOD_SGIS float any value
 TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
 TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer
 GENERATE_MIPMAP_SGIS boolean TRUE or FALSE
 TEXTURE_CLIPMAP_OFFSET_SGIX 2 floats any 2 values
 TEXTURE_COMPARE_SGIX boolean TRUE or FALSE
 TEXTURE_COMPARE_OPERATOR_SGIX integer TEXTURE_LEQUAL_R_SGIX,
 TEXTURE_GEQUAL_R_SGIX

 Table 3.8: Texture parameters and their val ues.

 Notes:

 * Two new texture operators are defined whi ch alter the sampled
 texture values before they are filtered. T hese operators are
 defined only for textures with internal for mat DEPTH_COMPONENT
 or DEPTH_COMPONENTS*_SGI.

 * The new operators compare the sample texe l value to the value
 of the third texture coordinate, R. The te xture components are
 treated as though they range from 0.0 throu gh 1.0. The value
 of the test is zero if the test fails, and one if it passes.

 * The test for operator TEXTURE_LEQUAL_R_SG IX passes if the texel
 value is less than or equal to R. The test for operator

SGIX_shadow NVIDIA OpenGL Extension Specifications

 2044

 TEXTURE_GEQUAL_R_SGIX passes if the texel v alue is greater than
 or equal to R.

 * The modified texels (with value 0.0 or 1. 0 depending on the
 test result) are treated as if the texture internal format were
 LUMINANCE.

Additions to Chapter 4 of the 1.0 Specification (Pe r-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (St ate and State Requests)

 The texture compare operator is queried by calling GetTexParameteriv
 and GetTexParameterfv with <pname> set to
 TEXTURE_COMPARE_OPERATOR_SGIX. Texture com pare enable/disable state
 is queried by calling GetTexParameteriv or GetTexParameterif with
 <pname> TEXTURE_COMPARE_SGIX.

Additions to the GLX Specification

 None

Errors

 INVALID_OPERATION is generated if TexParame ter[if] parameter <pname>
 is TEXTURE_COMPARE_OPERATOR_SGIX and parame ter <param> is not
 TEXTURE_LEQUAL_R_SGIX,or TEXTURE_GEQUAL_R_S GIX.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
TEXTURE_COMPARE_SGIX GetTexParameter[if] v B False texture
TEXTURE_COMPARE_OPERATOR_SGIX GetTexParameter[if] v Z_2 TEXTURE_LEQUAL_R_SGIX texture

New Implementation Dependent State

 None

NVIDIA Implementation Details

 The specification is unclear if the R textu re coordinate is
 clamped to the range [0,1]. NVIDIA hardwar e supporting this
 extension does clamp the R texture coordina te to the range [0,1]
 on a per-fragment basis.

 The behavior of the NV_register_combiners S IGNED_NEGATE_NV mapping
 mode is undefined when used to map the init ial value of a texture
 register corresponding to an enabled textur e with a base internal
 format of GL_DEPTH_COMPONENT and a true TEX TURE_COMPARE_SGIX
 mode when multiple enabled textures have di fferent values for
 TEXTURE_COMPARE_OPERATOR_SGIX. . Values s ubsequently assigned

NVIDIA OpenGL Extension Specifications SGIX_shadow

 2045

 to such registers and then mapped with SIGN ED_NEGATIE_NV operate
 as expected.

SUN_slice_accum NVIDIA OpenGL Extension Specifications

 2046

Name

 SUN_slice_accum

Name Strings

 GL_SUN_slice_accum

Contact

 Jack Middleton, Sun (Jack.Middleton 'at' sun.co m)

Status

 Shipping (version 1.3)

Version

 $Date: 02/03/13 15:15:35 $Revision: 1.3 $

Number

 258

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

Overview

 This extension defines a new accumulation operati on which enables the
 accumulation buffer to be used for alpha composit ing. This enables
 higher precision alpha blending than what can be accomplished using
 the blend operation.

IP Status

 There are no known IP issues.

Issues

 None

New Procedures and Functions

 None

New Tokens

 Accepted by the <op> parameter of Accum,

 SLICE_ACCUM_SUN 0x85CC

Additions to Chapter 2 of the 1.3 GL Specification (OpenGL Operation)

 None

NVIDIA OpenGL Extension Specifications SUN_slice_accum

 2047

Additions to Chapter 3 of the 1.3 GL Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.3 GL Specification (Per-Fragment Operations
and the Framebuffer)

 Section 4.2.4 The Accumulation Buffer:

 The possible operations are ACCUM, LOAD, RETURN , MULT, ADD and
 SLICE_ACCUM_SUN.

 The SLICE_ACCUM_SUN operation has the same effe ct as ACCUM except
 that the accumulation buffer color value is com puted:

 AccumRGB = (FrameBuffAlpha * FrameBuffRGB) + ((1 - FrameBuffAlpha) * AccumRGB)

Additions to Chapter 5 of the 1.3 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.3 GL Specification (State and State Requests)

 None

Additions to the GLX / WGL / AGL Specifications

 None

GLX Protocol

 None

Errors

 None

New State

 None

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2048

Name

 EXT_texture_from_pixmap

Name Strings

 GLX_EXT_texture_from_pixmap

Status

 Complete

Version

 16 (12 Sep 2006)

Number

 344

Dependencies

 OpenGL 1.1 is required.
 GLX 1.3 is required.
 GL_EXT_framebuffer_object affects the definitio n of this extension.
 GL_ARB_texture_rectangle affects the definition of this extension.
 GL_ARB_texture_non_power_of_two affects the def inition of this extension.
 GL_SGIS_generate_mipmap affects the definition of this extension.

Overview

 This extension allows a color buffer to be used for both rendering and
 texturing.

 Only color buffers of pixmaps can be used for t exturing by this extension
 but other types of drawables can be supported b y future extensions layered
 on top of this extension.

 The functionality of this extension is similar to WGL_ARB_render_texture.
 However, the purpose of this extension is not t o provide
 "render to texture" like functionality but rath er the ability to bind
 an existing X drawable to a texture. Though, th ere is nothing that
 prohibits it from being used for "render to tex ture".

 - Windows are problematic as they can change size and therefore are not
 supported by this extension.

 - Only a color buffer of a GLX pixmap created using an FBConfig with
 attribute GLX_BIND_TO_TEXTURE_RGB_EXT or GL X_BIND_TO_TEXTURE_RGBA_EXT
 set to TRUE can be bound as a texture.

 - The texture internal format is determined w hen the color buffer
 is associated with the texture, guaranteein g that the color
 buffer format is equivalent to the texture internal format.

 - A client can create a complete set of mipma p images if
 EXT_framebuffer_object is supported.

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2049

IP Status

 There are no known IP issues.

Issues

 1. What should this extension be called?

 Even though it is very similar to WGL_ARB_rende r_texture that name is
 not appropriate as the intention of this extens ion is not
 "render to texture" like functionality.

 EXT_texture_from_pixmap seams most appropriate. Layering of future
 extensions on top of this extension for using o ther type of drawables
 as textures follows the same conventions as ver tex/pixel buffer objects
 and vertex/fragment programs.

 2. Should we allow applications to render to di fferent mipmap levels and
 cube map faces?

 In order to discourage the use of this extensio n as a render to texture
 mechanism, cube maps and rendering directly to mip-map levels > 0 will
 not be supported. A new FBConfig attribute is introduced that specifies
 whether or not drawables created with that conf ig will support multiple
 mipmap levels when bound to a texture. The oth er mipmap levels can be
 filled in by the EXT_framebuffer_object Generat eMipmapEXT function.

 Specifying which level of a pixmap was being re ndered to on a per-drawable
 basis, as was done in the WGL_ARB_render_textur e extension, also
 introduces concurrency issues. The state of th e drawable when it was
 being rendered two by two separate threads of e xecution and both were
 changing the mipmap level was difficult to defi ne.

 It is also desireable to keep this extension as simple as possible.
 Adding functionality that complicates the imple mentation and that is not
 directly relevenat to the goal of exposing a me chanism for texturing from
 arbitrary X pixmaps is not productive. If the ability to render directly
 to all levels of a texture is needed, EXT_frame buffer_object is the
 extension that should be used.

 3. Should 1D textures be supported?

 X servers layered on top of an OpenGL implement ation might not be able
 to support this. A new FBConfig attribute is i ntroduced specifying
 which texture targets a drawable created with t he given FBConfig can
 be bound to.

 4. What should the default value for GLX_TEXTUR E_TARGET_EXT be? Should
 users be required to set this value if GLX_TEXT URE_FORMAT_EXT is not
 GLX_TEXTURE_FORMAT_NONE_EXT?

 The implementation is capable of choosing a rea sonable default, we simply
 need to specify the correct way to do so. We c an base the ordering on

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2050

 the properties of the pixmap and the texturing capabilities of the
 pixmap's FBConfig and the implementation.

 The order is:

 - If GL_ARB_texture_non_power_of_two is support ed GL_TEXTURE_2D will
 be used for all pixmap sizes.

 - If only GL_ARB_texture_rectangle is supported GL_TEXTURE_2D will
 be used for all power of two pixmap sizes and GL_TEXTURE_RECTANGLE_ARB
 will be used for all non power of two pixmap sizes.

 5. Should users be required to re-bind the draw able to a texture after
 the drawable has been rendered to?

 It is difficult to define what the contents of the texture would be if
 we don't require this. Also, requiring this wo uld allow implementations
 to perform an implicit copy at this point if th ey could not support
 texturing directly out of renderable memory.

 The problem with defining the contents of the t exture after rendering
 has occured to the associated drawable is that there is no way to
 synchronize the use of the buffer as a source a nd as a destination.
 Direct OpenGL rendering is not necessarily done in the same command
 stream as X rendering. At the time the pixmap is used as the source
 for a texturing operation, it could be in a sta te halfway through a
 copyarea operation in which half of it is say, white, and half is the
 result of the copyarea operation. How is this defined? Worse, some
 other OpenGL application could be halfway throu gh a frame of rendering
 when the composite manager sources from it. Th e buffer might just
 contain the results of a "glClear" operation at that point.

 To gurantee tear-free rendering, a composite ma nager would run as follows:

 -receive request for compositing:
 XGrabServer()
 glXWaitX() or XSync()
 glXBindTexImageEXT()

 <Do rendering/compositing>

 glXReleaseTexImageEXT()
 XUngrabServer()

 Apps that don't synchronize like this would get what's available,
 and that may or may not be what they expect.

 6. What is the result of calling GenerateMipmap EXT on a drawable that
 was not created with mipmap levels?

 The results are undefined.

 7. Rendering done by the window system may be y -inverted compared
 to the standard OpenGL texture representation. More specifically:

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2051

 the X Window system uses a coordinate system wh ere the origin is in
 the upper left; however, the GL uses a coordina te system where the
 origin is in the lower left. Should we define the contents of the
 texture as the y-inverted contents of the drawa ble?

 X implementations may represent their drawables differently internally,
 so y-inversion should be exposed as an FBConfig attribute.
 Applications will need to query this attribute and adjust their rendering
 appropriately.

 If a drawables is y-inverted and is bound to a texture, the contents of the
 texture will be y-inverted with respect to the standard GL memory layout.
 This means the contents of a pixmap of size (wi dth, height) at pixmap
 coordinate (x, y) will be at location (x, heigh t-y-1) in the texture.
 Applications will need to adjust their texture coordinates accordingly to
 avoid drawing the texture contents upside down.

 8. Why wasn't this extension based on FBO inste ad of ARB_render_texture?
 Isn't the render_texture extension deprecated?

 At first glance, FBO may seem like the perfect framework to base a spec
 for texturing from pixmap surfaces on. It repl aced the
 WGL_ARB_render_texture specification, which pro vided a mechanism to
 texture from pbuffer surfaces. However, this t rain of thought is another
 side affect of the unfortunate naming of the WG L_ARB_render_texture
 specification. FBO and the orginal render_text ure specification were
 two different solutions to the problem of how t o render to and texture
 from the same surface. WGL_ARB_render_texture provided a method to bind
 a texture to a drawable surface, as this extens ion does. FBO provides the
 opposite solution, allowing rendering to arbitr ary surfaces including
 textures. In the case of FBO, the application doing the rendering knows
 that it needs to render to an alternate surface . In our usage case, the
 application doing the rendering is arbitrary, a nd has no knowledge that
 another application wants to use the surface it is rendering to as a
 texture. The only application able to name the surface is the one texturing
 from it. Therefore, it makes sense to prov ide a mechanism for binding a
 texture to an arbitrary surface in general, and a pixmap in this particular
 case.

 9. Why not allow binding directly to an X pixma p without creating an
 intermediate GLX pixmap?

 Architecturally, GLX has moved away from operat ing directly on X
 drawables. This allows GLX specific attributes to be associated with the
 GLX drawables. In this case, it is important t o associate an FBConfig
 with the drawable. The FBConfig contains attri butes specifying the
 internal format the GL will use when utilizing the drawable's framebuffer
 as a texture.

New Procedures and Functions

 void glXBindTexImageEXT (Display *display,
 GLXDrawable drawable,
 int buffer,
 const int *attrib_li st)

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2052

 void glXReleaseTexImageEXT (Display *displa y,
 GLXDrawable drawabl e,
 int buffer)

New Tokens

 Accepted by the <Attribute> parameter of glXGet FBConfigAttrib and
 the <attrib_list> parameter of glXChooseFBConfi g:

 GLX_BIND_TO_TEXTURE_RGB_EXT 0x20D0
 GLX_BIND_TO_TEXTURE_RGBA_EXT 0x20D1
 GLX_BIND_TO_MIPMAP_TEXTURE_EXT 0x20D2
 GLX_BIND_TO_TEXTURE_TARGETS_EXT 0x20D3
 GLX_Y_INVERTED_EXT 0x20D4

 Accepted as an attribute in the <attrib_list> p arameter of
 glXCreatePixmap, and by the <attribute> paramet er of glXQueryDrawable:

 GLX_TEXTURE_FORMAT_EXT 0x20D5
 GLX_TEXTURE_TARGET_EXT 0x20D6
 GLX_MIPMAP_TEXTURE_EXT 0x20D7

 Accepted as a value in the <attrib_list> parame ter of glXCreatePixmap
 and returned in the <value> parameter of glXQue ryDrawable when
 <attribute> is GLX_TEXTURE_FORMAT_EXT:

 GLX_TEXTURE_FORMAT_NONE_EXT 0x20D8
 GLX_TEXTURE_FORMAT_RGB_EXT 0x20D9
 GLX_TEXTURE_FORMAT_RGBA_EXT 0x20DA

 Accepted as bits in the GLX_BIND_TO_TEXTURE_TAR GETS_EXT variable:

 GLX_TEXTURE_1D_BIT_EXT 0x000000 01
 GLX_TEXTURE_2D_BIT_EXT 0x000000 02
 GLX_TEXTURE_RECTANGLE_BIT_EXT 0x000000 04

 Accepted as a value in the <attrib_list> parame ter of glXCreatePixmap
 and returned in the <value> parameter of glXQue ryDrawable when
 <attribute> is GLX_TEXTURE_TARGET_EXT:

 GLX_TEXTURE_1D_EXT 0x20DB
 GLX_TEXTURE_2D_EXT 0x20DC
 GLX_TEXTURE_RECTANGLE_EXT 0x20DD

 Accepted by the <Buffer> parameter of glXBindTe xImageEXT and
 glXReleaseTexImageEXT:

 GLX_FRONT_LEFT_EXT 0x20DE
 GLX_FRONT_RIGHT_EXT 0x20DF
 GLX_BACK_LEFT_EXT 0x20E0
 GLX_BACK_RIGHT_EXT 0x20E1
 GLX_FRONT_EXT GLX_FRON T_LEFT_EXT
 GLX_BACK_EXT GLX_BACK _LEFT_EXT
 GLX_AUX0_EXT 0x20E2
 GLX_AUX1_EXT 0x20E3
 GLX_AUX2_EXT 0x20E4

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2053

 GLX_AUX3_EXT 0x20E5
 GLX_AUX4_EXT 0x20E6
 GLX_AUX5_EXT 0x20E7
 GLX_AUX6_EXT 0x20E8
 GLX_AUX7_EXT 0x20E9
 GLX_AUX8_EXT 0x20EA
 GLX_AUX9_EXT 0x20EB

GLX Protocol

 Two new GLX protocol commands are added.

 BindTexImageEXT
 1 CARD8 opc ode (X assigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 6+n req uest length
 4 1330 ven dor specific opcode
 4 CARD32 con text tag
 4 GLX_DRAWABLE dra wable
 4 INT32 buf fer
 4 CARD32 num _attributes
 4*n LISTofATTRIBUTE_PAIR att ribute, value pairs.

 ReleaseTexImageEXT
 1 CARD8 opcode (X a ssigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 5 request len gth
 4 1331 vendor spec ific opcode
 4 CARD32 context tag
 4 GLX_DRAWABLE drawable
 4 INT32 buffer

Errors

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2054

Additions to the GLX Specification

 Add to table 3.1, GLXFBConfig Attributes:

 Attribute Type Notes
 ------------------------------- ------- ------- --- ---------
 GLX_BIND_TO_TEXTURE_RGB_EXT boolean True if color buffers can be bound to RGB texture
 GLX_BIND_TO_TEXTURE_RGBA_EXT boolean True if color buffers can be bound to RGBA texture
 GLX_BIND_TO_MIPMAP_TEXTURE_EXT boolean True if color buffers can be bound to textures with multip le levels
 GLX_BIND_TO_TEXTURE_TARGETS_EXT bitmask Bitmask of texture targets color buffers can be bound to
 GLX_Y_INVERTED_EXT boolean True if the drawable's framebuffer is y-inverted. This ca n be used to determine
 if y-in verted texture coordinates need to be used when tex turing from this
 drawabl e when it is bound to a texture target.

 Additions to table 3.4, Default Match Criteria for GLXFBConfig attributes:

 Attribute Default Selection Criteria Priority
 ------------------------------- -------------------- ------------------ ---------
 GLX_BIND_TO_TEXTURE_RGB_EXT GLX_DONT_CARE Exact
 GLX_BIND_TO_TEXTURE_RGBA_EXT GLX_DONT_CARE Exact
 GLX_BIND_TO_MIPMAP_TEXTURE_EXT GLX_DONT_CARE Exact
 GLX_BIND_TO_TEXTURE_TARGETS_EXT - Mask
 GLX_Y_INVERTED_EXT GLX_DONT_CARE Exact

 Modifications to 3.3.3, "Configuration Manageme nt"

 Add after paragraph 17 in the description of FB Configs:

 GLX_Y_INVERTED_EXT is a boolean describing the memory layout used for
 drawables created with the GLXFBConfig. The at tribute is True if the
 drawable's framebuffer will be y-inverted. Thi s can be used to determine
 if y-inverted texture coordinates need to be us ed when texturing from this
 drawable when it is bound to a texture target.

 Modifications to 3.3.5, "Offscreen Rendering"

 Modify paragraph 3 of the description of glXCre atePixmap:

 <attrib_list> specifies a list of attributes fo r the pixmap. The list has
 the same structure as described for glXChooseFB Config. Currently the
 following attributes can be specified in attrib _list:
 GLX_TEXTURE_FORMAT_EXT, GLX_TEXTURE_TARGET_EXT, GLX_MIPMAP_TEXTURE_EXT,
 attrib_list may be NULL or empty (first attribu te of None), in which case
 all attributes assume their default values as d escribed below.

 GLX_TEXTURE_FORMAT_EXT describes the texture fo rmat this pixmap can be
 bound to. Valid values are GLX_TEXTURE_FORMAT_ RGB_EXT,
 GLX_TEXTURE_FORMAT_RGBA_EXT, and GLX_TEXTURE_FORMAT_NONE_EXT.

 GLX_TEXTURE_TARGET_EXT can be set to GLX_TEXTUR E_1D_EXT,
 GLX_TEXTURE_2D_EXT, or GLX_TEXTURE_RECTANGLE_EX T; it indicates the type
 of texture that will be created when GLX_TEXTUR E_FORMAT_EXT is not
 GLX_TEXTURE_FORMAT_NONE_EXT. The default value of GLX_TEXTURE_TARGET_EXT
 depends on the capabilities in <config> and the dimensions of the pixmap.

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2055

 If <config> has GLX_TEXTURE_2D_BIT set and one or more of the following is
 true:

 * GLX_TEXTURE_RECTANGLE_BIT_EXT is not set in <config>

 * GL_ARB_texture_non_power_of_two is suppor ted

 * the pixmap's width and height are powers of 2

 the default value for GLX_TEXTURE_TARGET_EXT is GLX_TEXTURE_2D_EXT.

 Otherwise, the first supported target is chosen in this order:
 GLX_TEXTURE_RECTANGLE_EXT, GLX_TEXTURE_1D_EXT.

 GLX_MIPMAP_TEXTURE_EXT indicates that storage f or mipmaps should be
 allocated. Space for mipmaps will be set aside if GLX_TEXTURE_FORMAT_EXT
 is not GLX_TEXTURE_FORMAT_NONE_EXT and GLX_MIPM AP_TEXTURE_EXT is TRUE.
 The default value is FALSE.

 Modify paragraph 5 of the description of glXCre atePixmap:

 ...If <pixmap> is not a valid Pixmap XID, then a BadPixmap error is
 generated. A BadConfig error is generated if a ny of the following
 conditions are true:

 * GLX_TEXTURE_FORMAT_EXT is GLX_TEXTURE_FOR MAT_RGB_EXT and
 <config> does not have GLX_BIND_TO_TEXTUR E_RGB set to TRUE.

 * GLX_TEXTURE_FORMAT_EXT is GLX_TEXTURE_FOR MAT_RGBA_EXT and
 <config> does not have GLX_BIND_TO_TEXTUR E_RGBA set to TRUE.

 * GLX_MIPMAP_TEXTURE_EXT is set to TRUE and <config> does not
 have GLX_BIND_TO_MIPMAP_EXT set to TRUE.

 * GLX_TEXTURE_TARGET_EXT is set to GLX_TEXT URE_1D_EXT
 and <config> does not have GLX_TEXTURE_1D _BIT_EXT set.

 * GLX_TEXTURE_TARGET_EXT is set to GLX_TEXT URE_2D_EXT
 and <config> does not have GLX_TEXTURE_2D _BIT_EXT set.

 * GLX_TEXTURE_TARGET_EXT is set to GLX_TEXT URE_RECTANGLE_EXT
 and <config> does not have GLX_TEXTURE_RE CTANGLE_BIT_EXT set.

 A BadValue error is generated if GLX_TEXTURE_FO RMAT_EXT is not
 GLX_TEXTURE_FORMAT_NONE_EXT and the width or he ight of <pixmap> are
 incompatible with the specified value of GLX_TE XTURE_TARGET_EXT on this
 implementation. (e.g., the pixmap size is not a power of 2 and
 GL_ARB_texture_rectangle is not supported).

 Modify paragraph 1 of the description of glXDes troyPixmap:

 ...The storage for the GLX pixmap will be freed when it is not current
 to any client and all color buffers that are bo und to a texture object
 have been released.

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2056

 Modifications to seciton 3.3.6, "Querying Attri butes"

 Modify paragraph 1 of the description of glXQue ryDrawable:

 ...<attribute> must be set to one of GLX_WIDTH, GLX_HEIGHT,
 GLX_PRESERVED_CONTENTS, GLX_LARGEST_PBUFFER, GLX_FBCONFIG_ID,
 GLX_TEXTURE_FORMAT_EXT, GLX_TEXTURE_TARGET_EXT or GLX_MIPMAP_TEXTURE_EXT
 or a BadValue error is generated.

 Modify paragraph 3 of the description of glXQue ryDrawable:

 ...If <draw> is a GLXWindow or GLXPixmap and <a ttribute> is set to
 GLX_PRESERVED_CONTENTS or GLX_LARGEST_PBUFFER, or if <draw> is a
 GLXWindow or GLXPbuffer and <attribute> is set to GLX_TEXTURE_FORMAT_EXT,
 GLX_TEXTURE_TARGET_EXT, or GLX_MIPMAP_TEXTURE_E XT, the contents of <value>
 are undefined.

 Add a new section 3.3.6.1, "Texturing From Draw ables"

 The command

 void glXBindTexImageEXT (Display *dpy,
 GLXDrawable draw,
 int buffer,
 int *attrib_list);

 defines a one- or two-dimensional texture image . The texture image is taken
 from <buffer> and need not be copied. The text ure target, the texture
 format, and the size of the texture components are derived from attributes
 of <draw>.

 The drawable attribute GLX_TEXTURE_FORMAT_EXT d etermines the base internal
 format of the texture. The component sizes are also determined by drawable
 attributes as shown in table 3.4a.

 Add new table 3.4a: Size of texture components:

 Texture component Size
 ----------------- --------------
 R GLX_RED_SIZE
 G GLX_GREEN_SIZE
 B GLX_BLUE_SIZE
 A GLX_ALPHA_SIZE

 The texture target is derived from the GLX_TEXT URE_TARGET_EXT attribute of
 <draw>. If the texture target for the drawable is GLX_TEXTURE_2D_EXT or
 GLX_TEXTURE_RECTANGLE_EXT, then buffer defines a 2D texture for the current
 2D or rectangle texture object respectively; if the texture target is
 GLX_TEXTURE_1D_EXT, then buffer defines a 1D te xture for the current 1D
 texture object.

 If <buffer> is not one of GLX_FRONT_LEFT_EXT, G LX_FRONT_RIGHT_EXT,
 GLX_BACK_LEFT_EXT, GLX_BACK_RIGHT_EXT, or GLX_A UX0_EXT through
 GLX_AUXn_EXT, where n is one less than the numb er of AUX buffers supported
 by the FBConfig used to create <draw>, or if th e requested buffer is
 missing, a BadValue error is generated.

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2057

 <attrib_list> specifies a list of attributes fo r the texture. The list has
 the same structure as described for glXChooseFB Config. If <attrib_list> is
 NULL or empty (first attribute of None), then a ll attributes assume their
 default values. <attrib_list> must be NULL or empty.

 If <dpy> and <draw> are the display and drawabl e for the calling thread's
 current context, glXBindTexImageEXT performs an implicit glFlush.

 The contents of the texture after the drawable has been bound are defined
 as the result of all rendering that has complet ed before the call to
 glXBindTexImageEXT. In other words, the result s of any operation which
 has caused damage on the drawable prior to the glXBindTexImageEXT call
 will be represented in the texture.

 Rendering to the drawable while it is bound to a texture will leave the
 contents of the texture in an undefined state. However, no
 synchronization between rendering and texturing is done by GLX. It is
 the application's responsibility to implement a ny synchronization
 required.

 If a texture object is deleted before glXReleas eTexImageEXT is called,
 the color buffer is released.

 It is not an error to call TexImage2D, TexImage 1D, CopyTexImage1D, or
 CopyTexImage2D to replace an image of a texture object that has a color
 buffer bound to it. However, these calls will cause the color buffer to be
 released and new memory to be allocated for the texture. Note that the
 color buffer is released even if the image that is being defined is a mipmap
 level that was not defined by the color buffer. GenerateMipmapEXT is an
 exception. GenerateMipmapEXT can be used to de fine mipmap levels for
 drawables that have been created with GLX_MIPMA P_TEXTURE_EXT set. Calling
 GenerateMipmapEXT on a drawable that was create d without
 GLX_MIPMAP_TEXTURE_EXT is undefined.

 The results of calling glXBindTexImageEXT when GENERATE_MIPMAP_SGIS is TRUE
 are undefined.

 If glXBindTexImageEXT is called and the drawabl e attribute
 GLX_TEXTURE_FORMAT_EXT is GLX_TEXTURE_FORMAT_NONE_EXT, then a BadMatch
 error is generated.

 Currently, only pixmaps can be bound to texture s. If <draw> is not a
 valid GLXPixmap, then a GLXBadPixmap error is g enerated.

 glXBindTexImageEXT is ignored if there is no cu rrent GLX rendering context.

 To release a color buffer that is being used as a texture, call

 void glXReleaseTexImageEXT (Dislpay *dpy, GL XDrawable draw, int buffer);

 <buffer> must be one of GLX_FRONT_LEFT_EXT, GLX _FRONT_RIGHT_EXT,
 GLX_BACK_LEFT_EXT, GLX_BACK_RIGHT_EXT, and GLX_ AUX0_EXT through
 GLX_AUXn_EXT, where n is one less than the numb er of AUX buffers
 supported by the FBConfig used to create <draw> or a BadValue error
 is generated.

 The contents of the color buffer are unaffected by glXReleaseTexImageEXT.

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2058

 If the specified color buffer is no longer boun d to a texture (e.g.,
 because the texture object was deleted), then g lXReleaseTexImageEXT has no
 effect; no error is generated.

 When a color buffer is released (e.g., by calli ng glXReleaseTexImageEXT or
 implicitly by calling a routine such as TexImag e2D), all textures that were
 defined by the color buffer become NULL.

 If glXReleaseTexImageEXT is called and the draw able attribute
 GLX_TEXTURE_FORMAT_EXT is GLX_TEXTURE_FORMAT_NONE_EXT, then a BadMatch
 error is generated.

 Currently, only pixmaps can be bound to texture s. If <draw> is not a
 valid GLXPixmap, then a GLXBadPixmap error is g enerated.

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2059

Usage Examples

 Example 1: Bind redirected window to texture:

 XGetWindowAttributes (display, window, &attrib) ;

 visualid = XVisualIDFromVisual (attrib.visual);

 fbconfigs = glXGetFBConfigs (display, screen, & nfbconfigs);
 for (i = 0; i < nfbconfigs; i++)
 {
 visinfo = glXGetVisualFromFBConfig (display , fbconfigs[i]);
 if (!visinfo || visinfo->visualid != visual id)
 continue;

 glXGetFBConfigAttrib (display, fbconfigs[i] , GLX_DRAWABLE_TYPE, &value);
 if (!(value & GLX_PIXMAP_BIT))
 continue;

 glXGetFBConfigAttrib (display, fbconfigs[i] ,
 GLX_BIND_TO_TEXTURE_T ARGETS_EXT,
 &value);
 if (!(value & GLX_TEXTURE_2D_BIT_EXT))
 continue;

 glXGetFBConfigAttrib (display, fbconfigs[i] ,
 GLX_BIND_TO_TEXTURE_R GBA_EXT,
 &value);
 if (value == FALSE)
 {
 glXGetFBConfigAttrib (display, fbconfig s[i],
 GLX_BIND_TO_TEXTU RE_RGB_EXT,
 &value);
 if (value == FALSE)
 continue;
 }

 glXGetFBConfigAttrib (display, fbconfigs[i] ,
 GLX_Y_INVERTED_EXT,
 &value);
 if (value == TRUE)
 {
 top = 0.0f;
 bottom = 1.0f;
 }
 else
 {
 top = 1.0f;
 bottom = 0.0f;
 }

 break;
 }

 if (i == nfbconfigs)
 /* error 1 */

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2060

 pixmap = XCompositeNameWindowPixmap (display, w indow);
 pixmapAttribs = { GLX_TEXTURE_TARGET_EXT, GLX_T EXTURE_2D_EXT,
 GLX_TEXTURE_FORMAT_EXT, GLX_T EXTURE_FORMAT_RGBA_EXT,
 None };
 glxpixmap = glXCreatePixmap (display, fbconfigs [i], pixmap, pixmapAttribs);

 glGenTextures (1, &texture);
 glBindTexture (GL_TEXTURE_2D, texture);

 glXBindTexImageEXT (display, glxpixmap, GLX_FRO NT_LEFT_EXT, NULL);

 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_ FILTER, GL_LINEAR);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_ FILTER, GL_LINEAR);

 /* draw using pixmap as texture */
 glBegin (GL_QUADS);

 glTexCoord2d (0.0f, bottom);
 glVertex2d (0.0f, 0.0f);

 glTexCoord2d (0.0f, top);
 glVertex2d (0.0f, 1.0f);

 glTexCoord2d (1.0f, top);
 glVertex2d (1.0f, 1.0f);

 glTexCoord2d (1.0f, bottom);
 glVertex2d (1.0f, 0.0f);

 glEnd ();

 glXReleaseTexImageEXT (display, glxpixmap, GLX_ FRONT_LEFT_EXT);

Version History

 1. 26 Nov 2005 - DavidR
 Initial version
 2. 01 Dec 2005 - JamesJ
 -Adapted spec language from draft version o f GLX_ARB_render_texture.
 -Added glXDrawableAttribute to set attribut es.
 -Modified glXBindTexImageEXT to take an att rib_list parameter.
 -Added support for cubemap and 1D texture t argets.
 -Added attribute to set the texture target when creating the
 drawable.
 -Updated the issues section.
 -Added mipmap support. Support is not requ ired.
 -Specified results of texturing from a draw able when it has been
 rendered to while bound to a texture as un defined until
 glXReleaseTexImageEXT has been called. Al lows implementations
 that need to perform an implicit copy afte r rendering occurs
 to be compatible with this specification.
 3. 04 Dec 2005 - DavidR
 -Changed name to GLX_EXT_texture_from_pixma p.
 -Changed spec regarding what happens when a pixmap that is bound
 to a texture is rendered to. Having textur es be undefined once
 they are rendered to makes it useless for a compositing manager,
 which is a major use case for this extensi on.

NVIDIA OpenGL Extension Specifications GLX_EXT_texture_from_pixmap

 2061

 -Added support for not specifying texture t arget when creating a
 pixmap. Allows implementations to select w hatever target it
 finds most suitable.
 4. 05 Dec 2005 - JamesJ
 -Changed the default value of GLX_TEXTURE_T ARGET_EXT from
 GLX_NO_TEXTURE_EXT to something usable. E liminated
 GLX_NO_TEXTURE_EXT.
 -Eliminated GLX_TEXTURE_NONE_EXT.
 -Removed language referring to sharing of c olor buffers when
 pixmaps are bound to textures.
 -Updated issues.

 5. 13 Dec 2005 - JamesJ
 -Removed cube map support and rendering to multiple mipmap
 levels support.

 6. 20 Jan 2006 - JamesJ
 -Specified textures are y-inverted.

 7. 23 Jan 2006 - AaronP
 -Fix typos, make some things clearer. Repl ace ocurrences of "released
 back to the drawable" with "released".

 8. 01 Feb 2006 - AndyR
 -Fix minor typos.

 9. 03 Feb 2006 - JamesJ
 -Added some new issues and their resolution s.
 -Finalized some issues that had been in dis cussion.
 -Made drawable y-inversion a queryable attr ibute of the drawable.
 -Moved detailed explanation of y-inverted a ddressing to the issues
 section
 -Updated example to demonstrate proper use of the y-inverted
 attribute.

 10. 06 Feb 2006 - DavidR
 -Made GLX_Y_INVERTED_EXT an FBConfig attrib ute instead of a drawable
 attribute.
 -Removed GLX_TEXTURE_CUBE_MAP_EXT.
 -Fix minor typo.

 11. 07 Feb 2006 - JamesJ
 -Added description of GLX_Y_INVERTED_EXT GL XFBConfig attribute, based
 on description of the drawable attribute o f the same name from
 and earlier version of the specification.
 -Removed language requiring applications to re-bind a pixmap to a
 texture to gurantee contents of the textur e are updated after a
 pixmap has been rendered to.
 -Added Aaron Plattner and Andy Ritger to co ntributors section.

 12. 14 Feb 2006 - JamesJ
 -Disallowed rendering to a drawable while i t is bound as a texture
 and defined the exact contents of a textur e after a drawable has
 been bound to it.

GLX_EXT_texture_from_pixmap NVIDIA OpenGL Extension Specifications

 2062

 13. 09 Mar 2006 - JamesJ
 -Add a context tag member to the vendor pri vate requests. This field
 is part of the vendor private header, and is needed to specify which
 context the BindTexImageEXT and ReleaseTex ImageEXT requests correspond
 to.
 -Changed texture target bitfield values to not skip numbers removed in
 earlier updates.

 14. 13 Mar 2006 - JamesJ
 -Only require GLX_SGIX_fbconfig + GLX 1.2.
 -Clarify language regarding the result of r endering to drawables bound
 to textures.
 -Added GLX_FRONT_EXT and GLX_BACK_EXT token s.

 15. 18 Apr 2006 - JamesJ
 -Allocated enum values and opcodes.
 -Require GLX 1.3. GLX_SGIX_fbconfig doesn' t allow creating pixmaps
 with attributes.
 -Added more arguments for not supporting re ndering to multiple levels
 of a texture with this extension.
 -Fixed the inconsistencies in the return ty pe of glXBindTexImageEXT
 and glXReleaseTexImageEXT. It is now list ed as void throughout.

 16. 12 Sep 2006 - JamesJ
 -Fix ordering of GLX protocol

NVIDIA OpenGL Extension Specifications GLX_NV_swap_group

 2063

Name

 NV_swap_group

Name Strings

 GLX_NV_swap_group

Status

 Shipping since 2003 on Quadro GPUs with framelo ck support

Version

 Date: 02/20/2008 Revision: 1.0

Number

 350

Dependencies

 Written based on the wording of the GLX_SGIX_sw ap_group and
 GLX_SGIX_swap_barrier specifications.

 SGIX_swap_control affects the definition of thi s extension

Overview

 This extension provides the capability to synch ronize the buffer
 swaps of a group of OpenGL windows. A swap grou p is created, and
 windows are added as members to the swap group. Buffer swaps to
 members of the swap group will then take place concurrently.

 This extension also provides the capability to sychronize the buffer
 swaps of different swap groups, which may resid e on distributed
 systems on a network. For this purpose swap gro ups can be bound to
 a swap barrier.

 This extension extends the set of conditions th at must be met before
 a buffer swap can take place.

Issues

 An implementation can not guarantee that the in itialization of the swap
 groups or barriers will succeed because the sta te of the window system may
 restrict the usage of these features. Once a sw ap group or barrier has
 been sucessfully initialized, the implementatio n can only guarantee to
 sustain swap group functionality as long as the state of the window system
 does not restrict this. An example for a state that does typically not
 restrict swap group usage is the use of one ful lscreen sized window per
 desktop.

GLX_NV_swap_group NVIDIA OpenGL Extension Specifications

 2064

New Procedures and Functions

 Bool glXJoinSwapGroupNV(Display *dpy,
 GLXDrawable drawable,
 GLuint group);

 Bool glXBindSwapBarrierNV(Display *dpy,
 GLuint group,
 GLuint barrier);

 Bool glXQuerySwapGroupNV(Display *dpy,
 GLXDrawable drawable,
 GLuint *group,
 GLuint *barrier);

 Bool glXQueryMaxSwapGroupsNV(Display *dpy,
 int screen,
 GLuint *maxGroups,
 GLuint *maxBarrier s);

 Bool glXQueryFrameCountNV(Display *dpy,
 int screen,
 GLuint *count);

 Bool glXResetFrameCountNV(Display *dpy,
 int screen);

New Tokens

 none

Additions to the GLX Specification

 Add to section 3.2.6, Double Buffering:

 glXJoinSwapGroupNV adds <drawable> to the swap group specified by
 <group>. If <drawable> is already a member of a different group,
 it is implicitly removed from that group first. A swap group is
 specified as an integer value between 0 and the value returned in
 <maxGroups> by glXQueryMaxSwapGroupsNV. If <gro up> is zero, the
 drawable is unbound from its current group, if any. If <group> is
 larger than <maxGroups>, glXJoinSwapGroupNV fai ls.

 glXJoinSwapGroupNV returns True if <drawable> h as been
 successfully bound to <group> and False if it f ails.

 glXBindSwapBarrierNV binds the swap group speci fied by <group> to
 <barrier>. <barrier> is an integer value betwe en 0 and the value
 returned in <maxBarriers> by glXQueryMaxSwapGro upsNV. If <barrier>
 is zero, the group is unbound from its current barrier, if any. If
 <barrier> is larger than <maxBarriers>, glXBind SwapBarrierNV
 fails. Subsequent buffer swaps for that group will be subject to
 this binding, until the group is unbound from < barrier>.

 glXBindSwapBarrierNV returns True if <group> ha s been successfully
 bound to <barrier> and False if it fails.

NVIDIA OpenGL Extension Specifications GLX_NV_swap_group

 2065

 glXQuerySwapGroupNV returns in <group> and <bar rier> the group and
 barrier currently bound to <drawable,>, if any.

 glXQuerySwapGroupNV returns True if <group> and <barrier> could be
 successfully queried for <drawable> and False i f it fails. If it
 fails, the values of <group> and <barrier> are undefined.

 glXQueryMaxSwapGroupsNV returns in <maxGroups> and <maxBarriers>
 the maximum number of swap groups and barriers supported by an
 implementation which drives <screen> and <dpy>.

 glXQueryMaxSwapGroupsNV returns True if <maxGro ups> and <maxBarriers>
 could be successfully queried for <screen> and <dpy>, and False if
 it fails. If it fails, the values of <maxGroup s> and <maxBarriers>
 are undefined.

 Before a buffer swap can take place, a set of c onditions must be
 satisfied. The conditions are defined in terms of the notions of
 when a drawable is ready to swap and when a gro up is ready to swap.

 GLX drawables except windows are always ready t o swap.

 When a window is unmapped, it is always ready.

 A window is ready when all of the following are true:

 1. A buffer swap command has been issued for it .

 2. Its swap interval has elapsed.

 A group is ready when the following is true:

 1. All windows in the group are ready.

 All of the following must be satisfied before a buffer swap for a
 window can take place:

 1. The window is ready.

 2. If the window belongs to a group, the group is ready.

 3. If the window belongs to a group and that gr oup is bound to a
 barrier, all groups using that barrier are r eady.

 Buffer swaps for all windows in a swap group wi ll take place
 concurrently after the conditions are satisfied for every window in
 the group.

 Buffer swaps for all groups using a barrier wil l take place
 concurrently after the conditions are satisfied for every window of
 every group using the barrier, if and only if t he vertical retraces
 of the screens of all the groups are synchroniz ed. If they are not
 synchronized, there is no guarantee of concurre ncy between groups.

 An implementation may support a limited number of swap groups and
 barriers, and may have restrictions on where th e users of a barrier
 can reside. For example, an implementation may allow the users to

GLX_NV_swap_group NVIDIA OpenGL Extension Specifications

 2066

 reside on different display devices or even hos ts.

 An implementation may return zero for any of <m axGroups> and
 <maxBarriers> returned by glXQueryMaxSwapGroups NV if swap groups or
 barriers are not available in that implementati on or on that host.

 The implementation provides a universal counter , the so called
 frame counter, among all systems that are locke d together by swap
 groups/barriers. It is based on the internal sy nchronization
 signal which triggers the buffer swap.

 glXQueryFrameCountNV returns in <count> the cur rent frame counter
 for <swapGroup>.

 glXQueryFrameCountNV returns TRUE if the frame counter could be
 successfully retrieved. Otherwise it returns FA LSE.

 glXResetFrameCountNV resets the frame counter o f <swapGroup> to zero.

 glXResetFrameCountNV returns TRUE if the frame counter could be
 successfully reset, otherwise it returns FALSE. In a system that
 has an NVIDIA framelock add-on adapter installe d and enabled,
 glXResetFrameCountNV will only succeed when the framelock is
 configured as a Master system.

 glXJoinSwapGroupNV, glXBindSwapBarrierNV, glXQu erySwapGroupNV,
 glXQueryMaxSwapGroupsNV, glXQueryFrameCountNV a nd
 glXResetFrameCountNV are part of the X stream.

Errors

 glXJoinSwapGroupNV, glXQuerySwapGroupNV and glX QueryMaxSwapGroupsNV
 generate GLXBadDrawable if <drawable> is an inv alid GLX drawable.

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications GLX_NV_video_output

 2067

Name

 NV_video_output

Name Strings

 GLX_NV_video_output

Status

 Shipping since 2004 for NVIDIA Quadro SDI (Seri al Digital Interface)

Version

 Last Modified: $Date: 2008/02/20 $
 NVIDIA Revision: $Revision: #5 $

Number

 348

Dependencies

 OpenGL 1.1 is required.
 GLX 1.3 is required.

Overview

 This extension permits a color and or depth buf fer of a pbuffer to
 be used for rendering and subsequent video outp ut. After a pbuffer
 has been bound to a video device, subsequent co lor and or depth
 rendering into that buffer may be displayed on the video output.

 This is intended for use with NVIDIA products s uch as the Quadro FX
 4000 SDI.

Issues

 1. Should the new pbuffer attributes be available through GL queries?

 No, like other pbuffer attributes you need to q uery them through the
 window system extension. This extension does no t make any changes to
 OpenGL.

 2. Should glXSendPbufferToVideoNV require that the pbuffer be current?

Implementation Notes

 1. Any created pbuffers must be the same resolutio n as that specified
 by the state of the video output device. The c urrent state of the
 video output device can be queried via the NV-C ONTROL X extension.

 2. Applications may use a single pbuffer or a coll ection of pbuffers
 to send frames/fields to a video device. In th e first case, an
 application should block on the call to glXSend PbufferToVideoNV() to
 ensure synchronization. In the second case, an application should

GLX_NV_video_output NVIDIA OpenGL Extension Specifications

 2068

 utilize glXGetVideoInfoNV() in order to query v blank and
 buffer counters for synchronization.

Intended Usage

 1) Configure the video output device via the NV -CONTROL X extension.

 2) Use glXGetFBConfigs or glXChooseFBConfig to find a suitable
 FBConfig for rendering images. GLX_DRAWABLE _TYPE must have
 GLX_PBUFFER_BIT set. The per-component pixe l depth of the pbuffer
 must be equal to or greater than the per-com ponent depth of the
 video output.

 3) Create a GLXPbuffer for each stream of video by calling
 glXCreatePbuffer. Set the width and height for each GLXPbuffer
 to match that of the intended video output d evice.

 4) Call glXGetVideoDeviceNV to retrieve the han dles for all
 video devices available. A video device han dle is required
 for each video stream. glXGetVideoDeviceNV will lock the
 video device for exclusive use by this GLX c lient. The NV-CONTROL
 X extension will not be able to update video out attributes until
 the video device is released with glXRelease VideoDeviceNV.

 5) Call glXBindVideoImageNV to bind each GLXPbu ffer to a
 corresponding video device handle. Multiple pbuffers can
 be bound, at the same time, to the same vide o device.

 6) Render the current frame/field for each stre am to one of the bound
 GLXPbuffers. Once rendering is complete, cal l
 glXSendPbufferToVideoNV to send each frame/f ield to the video
 device.

 7) Render subsequent video frames or fields cal ling
 glXSendPbufferToVideoNV() at the completion of rendering for
 each frame/field.

 8) Call glXReleaseVideoImageNV to unbind each G LXPbuffer
 from its associated video device.

 9) Call glXReleaseVideoDeviceNV to release the video device.

New Types

 /*
 * GLXVideoDeviceNV is an opaque handle to a vi deo device.
 */
 typedef struct unsigned int GLXVideoDeviceNV;

New Procedures and Functions

 int glXGetVideoDeviceNV(Display *dpy, int scree n, int numVideoDevices,
 GLXVideoDeviceNV *pVide oDevice);

 int glXReleaseVideoDeviceNV(Display *dpy, int s creen,
 GLXVideoDeviceNV Vi deoDevice);

NVIDIA OpenGL Extension Specifications GLX_NV_video_output

 2069

 int glXBindVideoImageNV(Display *dpy, GLXVideoD eviceNV VideoDevice,
 GLXPbuffer pbuf, int iV ideoBuffer);

 int glXReleaseVideoImageNV(Display *dpy, GLXPbu ffer pbuf);

 int glXSendPbufferToVideoNV(Display *dpy, GLXPb uffer pbuf,
 int iBufferType,
 unsigned long *pulC ounterPbuffer,
 GLboolean bBlock);

 int glXGetVideoInfoNV(Display *dpy, int screen,
 GLXVideoDeviceNV VideoDev ice,
 unsigned long *pulCounter OutputPbuffer,
 unsigned long *pulCounter OutputVideo);

New Tokens

 Accepted by the <iVideoBuffer> parameter of glX BindVideoImageNV:

 GLX_VIDEO_OUT_COLOR_NV 0x20C3
 GLX_VIDEO_OUT_ALPHA_NV 0x20C4
 GLX_VIDEO_OUT_DEPTH_NV 0x20C5
 GLX_VIDEO_OUT_COLOR_AND_ALPHA_NV 0x20C6
 GLX_VIDEO_OUT_COLOR_AND_DEPTH_NV 0x20C7

 Accepted by the <iBufferType> parameter of glXS endPbufferToVideoNV:

 GLX_VIDEO_OUT_FRAME_NV 0x20C8
 GLX_VIDEO_OUT_FIELD_1_NV 0x20C9
 GLX_VIDEO_OUT_FIELD_2_NV 0x20CA
 GLX_VIDEO_OUT_STACKED_FIELDS_1_2_NV 0x20CB
 GLX_VIDEO_OUT_STACKED_FIELDS_2_1_NV 0x20CC

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

GLX_NV_video_output NVIDIA OpenGL Extension Specifications

 2070

Additions to the GLX 1.3 Specification

 [Add new section, Video Out]

 Video out functions permit color and depth buff ers from a
 pbuffer to be sent to a video output device.

 The command

 int glXGetVideoDeviceNV(Display *dpy, int s creen, int numVideoDevices,
 GLXVideoDeviceNV *p VideoDevice);

 fills in the array <pVideoDevice> with up to <n umVideoDevices>
 handles to the available video devices. <numVi deoDevices> must be
 non-negative, and <pVideoDevice> must not be NU LL.

 It is not an error if the number of available v ideo devices is larger
 that <numVideoDevices>; in that case the first <numVideoDevices>
 device handles are returned. It is an error if <numVideoDevices>
 is larger than the number of available video de vices. The order of
 devices returned in <pVideoDevice> is implement ation dependent.

 If glXGetVideoDeviceNV succeeds, 0 is returned. Otherwise, a non-zero
 error code is returned.

 The command

 int glXReleaseVideoDeviceNV(Display *dpy, i nt screen,
 GLXVideoDeviceN V VideoDevice);

 releases all resources associated with <VideoDe vice>.

 If glXReleaseVideoDeviceNV succeeds, 0 is retur ned. Otherwise,
 a non-zero error code is returned.

 The command

 int glXBindVideoImageNV(Display *dpy, GLXVi deoDeviceNV VideoDevice,
 GLXPbuffer pbuf, in t iVideoBuffer);

 binds <pbuf> to <VideoDevice> for subsequent sc anout where
 <iVideoBuffer> specifies that <pbuf> contains c olor, alpha and/or
 depth data. Valid values for <iVideoBuffer> ar e:

 GLX_VIDEO_OUT_COLOR_NV 0x20C3
 GLX_VIDEO_OUT_ALPHA_NV 0x20C4
 GLX_VIDEO_OUT_DEPTH_NV 0x20C5
 GLX_VIDEO_OUT_COLOR_AND_ALPHA_NV 0x20C6
 GLX_VIDEO_OUT_COLOR_AND_DEPTH_NV 0x20C7

 <pbuf> cannot be None, and <VideoDevice> must b e a VideoDevice
 returned by glXGetVideoDeviceNV().

NVIDIA OpenGL Extension Specifications GLX_NV_video_output

 2071

 A pbuffer can only be bound to one GLXVideoDevi ceNV at a time.
 If <pbuf> is already bound to a different GLXVi deoDeviceNV, then
 glXBindVideoImageNV will fail.

 If glXBindVideoImageNV succeeds, 0 is returned. Otherwise,
 a non-zero error code is returned.

 The command

 int glXReleaseVideoImageNV(Display *dpy, GL XPbuffer pbuf);

 releases <pbuf> from a previously bound video d evice. <pbuf> may
 not be None.

 If glXReleaseVideoImageNV succeeds, 0 is return ed. Otherwise,
 a non-zero error code is returned.

 The command

 int glXSendPbufferToVideoNV(Display *dpy, G LXPbuffer pbuf,
 int iBufferType ,
 unsigned long * pulCounterPbuffer,
 Bool bBlock);

 indicates that rendering to the <pbuf> is compl ete and that the
 completed frame/field contained with <pbuf> is ready for scan out by
 the video device where <iBufferType> specifies that <pbuf> contains
 the first field, second field or a complete fra me. Valid values
 for <iBufferType> are:

 GLX_VIDEO_OUT_FRAME_NV 0x20C8
 GLX_VIDEO_OUT_FIELD_1_NV 0x20C9
 GLX_VIDEO_OUT_FIELD_2_NV 0x20CA

 The color buffer controlled by glReadBuffer is used as the color
 buffer input to glXSendPbufferToVideoNV(). <pb uf> cannot be None.
 The <bBlock> argument specifies whether or not the call should
 block until scan out of the specified frame/fie ld is complete.
 <pulCounterPbuffer> returns the total number of frames/fields sent
 to the video device.

 If glXSendPbufferToVideoNV succeeds, 0 is retur ned. Otherwise,
 a non-zero error code is returned.

 The command

 int glXGetVideoInfoNV(GLXVideoDeviceNV Vide oDevice,
 unsigned long *pulCou nterOutputPbuffer,
 unsigned long *pulCou nterOutputVideo);

 returns in <pulCounterOutputVideo> the absolute count of vertical
 blanks on <VideoDevice> since transfers were st arted while

GLX_NV_video_output NVIDIA OpenGL Extension Specifications

 2072

 <pulCounterOutputPbuffer> returns the count of the current pbuffer
 being scanned out by <VideoDevice>.

 If glXGetVideoInfoNV succeeds, 0 is returned. Otherwise, a non-zero
 error code is returned.

GLX Protocol

 Six new GLX protocol commands are added.

 GetVideoDeviceNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 5 request length
 4 1313 vendor specific opcode
 4 unused
 4 CARD32 num_devices
 4 CARD32 screen
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 n reply length
 4 CARD32 status
 4 CARD32 num_devices
 16 unused
 4 * n CARD32 video_device handles

 Where n is the number of device handles returne d.

 ReleaseVideoDeviceNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 5 request length
 4 1314 vendor specific opcode
 4 unused
 4 CARD32 video_device
 4 CARD32 screen
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 CARD32 status
 20 unused

NVIDIA OpenGL Extension Specifications GLX_NV_video_output

 2073

 BindVideoImageNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 6 request length
 4 1314 vendor specific opcode
 4 unused
 4 GLX_PBUFFER pbuffer
 4 CARD32 video_device
 4 CARD32 video_buffer
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 CARD32 status
 20 unused

 ReleaseVideoImageNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 4 request length
 4 1315 vendor specific opcode
 4 GLX_PBUFFER pbuffer
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 CARD32 status
 20 unused

 SendPbufferToVideoNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 6 request length
 4 1316 vendor specific opcode
 4 unused
 4 GLX_PBUFFER pbuffer
 4 CARD32 buffer_type
 1 BOOL block
 1 unused
 2 unused
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 CARD32 status
 4 CARD32 counter_pbuffer
 16 unused

GLX_NV_video_output NVIDIA OpenGL Extension Specifications

 2074

 GetVideoInfoNV
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPr ivateWithReply)
 2 5 request length
 4 1317 vendor specific opcode
 4 CARD32 screen
 4 CARD32 video_device
 =>
 1 CARD8 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 CARD32 status
 4 CARD32 counter_video
 4 CARD32 counter_pbuffer
 12 unused

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 2075

Name

 WGL_ARB_buffer_region

Name Strings

 WGL_ARB_buffer_region

Status

 Complete. Approved by ARB on 12/8/1999

Version

 Last Modified Date: December 10, 2000
 Intergraph Revision 1.0

Number

 ARB Extension #4

Dependencies

 The extension is written against the OpenGL 1.2 .1 Specification
 although it should work on any previous OpenGL specification.

 The WGL_EXT_extensions_string extension is requ ired.

Overview

 The buffer region extension is a mechanism that allows an area of
 an OpenGL window to be saved in off-screen memo ry for quick
 restores. The off-screen memory can either be frame buffer memory
 or system memory, although frame buffer memory might offer optimal
 performance.

 A buffer region can be created for the front co lor, back color,
 depth, and/or stencil buffer. Multiple buffer regions for the same
 buffer type can exist.

IP Status

 None

Issues

 1. Do we need the glBufferRegionEnabled call th at is in the
 Kinetix extensions?

 The reason behind this function was so that a single driver
 could be used on adapters with various amoun ts of memory -- the
 extension would always be present but its us e would depend on a
 separate call. The same functionality could be achieved by not
 advertising this extension or always returni ng a value of NULL
 from wglCreateBufferRegionARB.

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 2076

 2. Should the width/height be specified on the create.

 Because applications create regions that are not used, it would
 be better to leave the size as a parameter o n the save.

 3. Should information be added to the create to allow for layer
 support?

 Layer support has been added.

 4. Which DC gets used for buffer region operati ons?

 The DC that was allocated on the CreateBuffe rRegionARB call is
 saved and used for subsequent save and resto re operations. It
 must remain valid during the life of the buf fer region. This is
 analogous to the RC method for handling the DC.

 5. Does the driver do a flush before the save a nd restore?

 In keeping with the same paradigm as SwapBuf fers, a flush will
 be made by the driver for the RC bound to th e calling thread
 before the save and restore operations.

 6. Which coordinate system is used?

 The KTX_buffer_region and WIN_swap_hint exte nsions specify the
 (x,y) origin as the lower left corner of the rectangle. This
 extension adopts the same philosophy.

New Procedures and Functions

 HANDLE wglCreateBufferRegionARB(HDC hDC,
 int iLayerPlane ,
 UINT uType)

 VOID wglDeleteBufferRegionARB(HANDLE hRegion)

 BOOL wglSaveBufferRegionARB(HANDLE hRegion,
 int x,
 int y,
 int width,
 int height)

 BOOL wglRestoreBufferRegionARB(HANDLE hRegion,
 int x,
 int y,
 int width,
 int height,
 int xSrc,
 int ySrc)

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 2077

New Tokens

 Accepted by the <uType> parameter of wglCreateB ufferRegionARB is the
 bitwise OR of any of the following values:

 WGL_FRONT_COLOR_BUFFER_BIT_ARB 0x000 00001
 WGL_BACK_COLOR_BUFFER_BIT_ARB 0x000 00002
 WGL_DEPTH_BUFFER_BIT_ARB 0x000 00004
 WGL_STENCIL_BUFFER_BIT_ARB 0x000 00008

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Additions to the WGL Specification

 A buffer region can be created with wglCreateBu fferRegionARB
 which returns a handle associated with the buff er region.

 HANDLE wglCreateBufferRegionARB(HDC hDC,
 INT iLayerPla ne,
 UINT uType)

 <hDC> specifies a device context for the device on which the buffer
 region is created. <iLayerPlane> specifies the layer. Positive
 values identify overlay planes, negative values identify underlay
 planes. A value of 0 identifies the main plane .

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 2078

 <uType> is a bitwise OR of any of the following values indicating
 which buffers can be saved or restored. Multip le bits can be set
 and may result in better performance if multipl e buffers are saved
 or restored.

 WGL_FRONT_COLOR_BUFFER_BIT_ARB
 WGL_BACK_COLOR_BUFFER_BIT_ARB
 WGL_DEPTH_BUFFER_BIT_ARB
 WGL_STENCIL_BUFFER_BIT_ARB

 For stereo windows, WGL_FRONT_COLOR_BUFFER_BIT_ ARB implies both the
 left and right front buffers, and WGL_BACK_COLO R_BUFFER_BIT_ARB
 implies both the left and right back buffers.

 When wglCreateBufferRegionARB fails to create a buffer region, a
 value of NULL is returned. To get extended err or information, call
 GetLastError.

 Image, depth, and stencil data can be saved int o the buffer region
 by calling wglSaveBufferRegionARB.

 BOOL wglSaveBufferRegionARB(HANDLE hRegion,
 int x,
 int y,
 int width,
 int height)

 <hRegion> is a handle to a buffer region previo usly created with
 wglCreateBufferRegionARB. The DC specified whe n the region was
 created is used as the device context specifyin g the window.

 <x> and <y> specify the window position for the source rectangle.
 <width> and <height> specify the width and heig ht of the source
 rectangle. Data outside the window for the spe cified rectangle is
 undefined. The OpenGL coordinate system is use d for specifying the
 rectangle (<x> and <y> specify the lower-left c orner of the
 rectangle).

 If an RC is current to the calling thread, a fl ush will occur
 before the save operation.

 The saved buffer region area can be freed by ca lling
 wglSaveBufferRegionARB with <width> or <height> set to a value
 of 0.

 If the call to wglSaveBufferRegionARB is succes sful, a value of
 TRUE is returned. Otherwise, a value of FALSE is returned. To
 get extended error information, call GetLastErr or.

NVIDIA OpenGL Extension Specifications WGL_ARB_buffer_region

 2079

 A previously saved region can be restored (mult iple times) with
 the wglRestoreBufferRegionARB function.

 BOOL wglRestoreBufferRegionARB(HANDLE hRegion ,
 int x,
 int y,
 int width,
 int height,
 int xSrc,
 int ySrc)

 <hRegion> is a handle to a buffer region previo usly created with
 wglCreateBufferRegionARB. The DC specified whe n the region was
 created is used as the device context specifyin g the window.

 <x> and <y> specify the window position for the destination
 rectangle. <width> and <height> specify the wi dth and height of
 the destination rectangle. The OpenGL coordina te system is used
 for specifying the rectangle (<x> and <y> speci fy the lower-left
 corner of the rectangle).

 <xSrc> and <ySrc> specify the position in the b uffer region for
 the source of the data. Any portion of the rec tangle outside of
 the saved region is ignored.

 If an RC is current to the calling thread, a fl ush will occur
 before the restore operation.

 If the call to wglRestoreBufferRegionARB is suc cessful, a value of
 TRUE is returned. Otherwise, a value of FALSE is returned. To
 get extended error information, call GetLastErr or.

 The buffer region can be deleted with wglDelete BufferRegionARB.

 VOID wglDeleteBufferRegionARB(HANDLE hRegion)

 <hRegion> is a handle to a buffer region previo usly created with
 wglCreateBufferRegionARB. Any saved data assoc iated with <hRegion>
 is discarded. The DC used to create the region must still be valid
 for the delete to work.

Dependencies on WGL_EXT_extensions_string

 Because there is no way to extend wgl, these ca lls are defined in
 the ICD and can be called by obtaining the addr ess with
 wglGetProcAddress. Because this extension is a WGL extension, it
 is not included in the GL_EXTENSIONS string. I ts existence can be
 determined with the WGL_EXT_extensions_string e xtension.

Errors

 ERROR_NO_SYSTEM_RESOURCES is generated if memor y cannot be
 allocated for storing the saved data.

 ERROR_INVALID_HANDLE is generated if <hRegion> is not a valid
 handle that was previously returned by wglCreat eBufferRegionARB.

WGL_ARB_buffer_region NVIDIA OpenGL Extension Specifications

 2080

 ERROR_INVALID_DATA is generated if <uType> is z ero or includes
 an undefined bit.

 ERROR_INVALID_DATA is generated if <width> or < height> is negative.

New State

 None

New Implementation Dependent State

 None

Conformance Test

 1. Clear the window to blue.
 2. Save an area of the window using wglSaveBuff erRegionARB.
 3. Clear the window to red.
 4. Restore the area of the window using wglRest oreBufferRegionARB.
 5. Verify that the area was restored.
 6. Repeat for the depth buffer.
 7. Repeat for the stencil buffer.
 8. Repeat for image and depth buffer.

Revision History

 12/10/99 1.0 ARB extension - based on the wgl _buffer_region
 extension.

NVIDIA OpenGL Extension Specifications WGL_ARB_extensions_string

 2081

Name

 WGL_ARB_extensions_string

Name Strings

 WGL_ARB_extensions_string

Status

 Complete. Approved by ARB on March 15, 2000

Version

 Last Modified Date: March 22, 2000
 Author Revision: 1.0

Number

 ARB Extension #8

Dependencies

 None

Overview

 This extension provides a way for applications to determine which
 WGL extensions are supported by a device. This is the foundation
 upon which other WGL extensions are built.

IP Status

 No issues.

Issues

 1. Note that extensions that were previously adve rtised via
 glGetString (e.g., the swap interval extension) should continue to
 be advertised there so existing applications d on't break. They
 should also be advertised via wglGetExtensions StringARB so new
 applications can make one call to find out whi ch WGL extensions are
 supported.

 2. Should this function take an hdc? It seems lik e a good idea. At
 some point MS may want to incorporate this int o OpenGL32. If they
 do this and and they want to support more than one ICD, then an HDC
 would be needed.

New Procedures and Functions

 const char *wglGetExtensionsStringARB(HDC hdc);

New Tokens

 None

WGL_ARB_extensions_string NVIDIA OpenGL Extension Specifications

 2082

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the WGL Specification

 Advertising WGL Extensions

 Applications should call wglGetProcAddress to s ee whether or not
 wglGetExtensionsStringARB is supported. If it i s supported then it
 can be used to determine which WGL extensions a re supported by the
 device.

 const char *wglGetExtensionsStringARB(HDC hdc);

 <hdc> device context to query extensions fo r

 If the function succeeds, it returns a list of supported extensions
 to WGL. Although the contents of the string is implementation
 specific, the string will be NULL terminated an d will contain a
 space-separated list of extension names. (The e xtension names
 themselves do not contain spaces.) If there are no extensions then
 the empty string is returned.

 If <hdc> does not indicate a valid device conte xt then the function
 fails and the error ERROR_DC_NOT_FOUND is gener ated. If the function
 fails, the return value is NULL. To get extende d error information,
 call GetLastError.

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications WGL_ARB_extensions_string

 2083

Revision History

 Changes from EXT_extension_string:

 Added hdc parameter to facilitate moving this f unction into OPENGL32
 Added WGL to name to avoid name collisions with GL and GLX

WGL_ARB_make_current_read NVIDIA OpenGL Extension Specifications

 2084

Name

 WGL_ARB_make_current_read

Name Strings

 WGL_ARB_make_current_read

Status

 Complete. Approved by ARB on March 15, 2000.

Version

 Last Modified Date: 03/22/2000
 Author Revision: 1.0

 Based on: WGL_EXT_pbuffer specification
 Date: 3/1/1999 Version: 1.5

Number

 ARB Extension #10

Dependencies

 WGL_ARB_extensions_string is required.

Overview

 The association of a separate "read" and "draw" DC with the current
 context allows for preprocessing of image data in an "off screen"
 DC which is then read into a visible DC for fin al display.

New Procedures and Functions

 BOOL wglMakeContextCurrentARB(HDC hDrawDC,
 HDC hReadDC,
 HGLRC hglrc);

 HDC wglGetCurrentReadDCARB(VOID);

New Tokens

 New errors returned by GetLastError:

 ERROR_INVALID_PIXEL_TYPE_ARB 0x2 043
 ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB 0x2 054

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

 None

NVIDIA OpenGL Extension Specifications WGL_ARB_make_current_read

 2085

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 This specification is written for WGL.

GLX Protocol

 This specification is written for WGL.

Additions to the WGL specification

 The function wglMakeContextCurrentARB associate s the context <hglrc>
 with the device <hDrawDC> for draws and the dev ice <hReadDC> for
 reads. All subsequent OpenGL calls made by the calling thread are
 drawn on the device identified by <hDrawDC> and read on the device
 identified by <hReadDC>.

 The <hDrawDC> and <hReadDC> parameters must ref er to drawing
 surfaces supported by OpenGL. These parameter s need not be the
 same <hdc> that was passed to wglCreateContext when <hglrc> was
 created. <hDrawDC> must have the same pixel for mat and be created
 on the same physical device as the <hdc> that w as passed into
 wglCreateContext. <hReadDC> must be created on the same device as
 the <hdc> that was passed to wglCreateContext a nd it must support
 the same pixel type as the pixel format of the <hdc> that was
 passed to wglCreateContext.

 If wglMakeContextCurrentARB is used to associat e a different device
 for reads than for draws, the "read" device wil l be used for the
 following OpenGL operations:

 1. Any pixel data that are sourced based on th e value of READ_BUFFER.
 Note, that accumulation operations use the value of READ_BUFFER,
 but are not allowed when a different device context is used
 for reads. In this case, the accumulation operation will
 generate INVALID_OPERATION.

 2. Any depth values that are retrieved by Read Pixels, CopyPixels,
 or any OpenGL extension that sources depth images from the frame
 buffer in the manner of ReadPixels and Copy Pixels.

 3. Any stencil values that are retrieved by Re adPixels, CopyPixels,
 or any OpenGL extension that sources stenci l images from the
 framebuffer in the manner of ReadPixels and CopyPixels.

WGL_ARB_make_current_read NVIDIA OpenGL Extension Specifications

 2086

 These frame buffer values are taken from the su rface associated with
 the device context specified by <hReadDC>.

 No error will be generated if the value of READ _BUFFER at the time
 the wglMakeContextCurrentARB call is made does not correspond to a
 valid color buffer in <hReadDC>. Also, no erro r due to READ_BUFFER
 mismatch will be generated by subsequent calls to any of the
 operations enumerated above, but the pixels val ues used will be
 undefined until READ_BUFFER is set to a color b uffer that is valid
 in the <hReadDC>. Operations that query the va lue of READ_BUFFER
 (i.e., Get, PushAttrib) use the value set last in the context,
 independent of whether it is a valid buffer in <hReadDC>.

 Error conditions set by ReadBuffer and by the o perations enumerated
 above are with respect to color and ancillary b uffers available in
 <hReadDC> (i.e., ReadBuffer(BACK_BUFFER) will g enerate an error
 when <hReadDC> is single buffered, and so will an operation that
 tries to source stencil images when <hReadDC> d oes not have a
 stencil buffer). When the read buffer is set i mplicitly via
 PopAttrib to a state not supported by the pixel format, an error
 may be generated.

 If wglMakeContextCurrentARB succeeds, the retur n value is TRUE.
 If the function fails, the return value is FALS E. To get extended
 error information, call GetLastError. Possible errors are as follows:

 ERROR_INVALID_PIXEL_FORMAT The pixel form at associated with
 <hDrawDC> does not match the pixel
 format associa ted with the render
 context.

 ERROR_INVALID_PIXEL_TYPE_ARB The pixel type for <hReadDC> is
 different than the pixel type
 associated wit h the <hdc> that was
 passed to wglC reateContext.

 ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB
 The device con texts specified by
 <hReadDC> and <hDrawDC> are not
 compatible. T his can occur if the
 device context s are managed by
 different driv ers or possibly on
 different grap hics adapters.

 ERROR_DC_NOT_FOUND <hReadDC> or < hDrawDC> is not a valid
 device context .

 ERROR_NO_SYSTEM_RESOURCES The device con texts specified by
 <hReadDC> and <hDrawDC> cannot exist
 in the framebu ffer simultaneously.

 wglGetCurrentReadDC returns a handle to the "re ad" device context that
 is associated with the current OpenGL rendering context of the calling
 thread. If the calling thread does not have a current context, the
 return value is NULL.

NVIDIA OpenGL Extension Specifications WGL_ARB_make_current_read

 2087

Dependencies on WGL_ARB_extensions_string

 Because there is no way to extend wgl, these ca lls are defined in
 the ICD and can be called by obtaining the addr ess with
 wglGetProcAddress. Because this extension is a WGL extension, it
 is not included in the GL_EXTENSIONS string. I ts existence can be
 determined with the WGL_ARB_extensions_string e xtension.

New State

 None

New Implementation Dependent State

 None

Conformance Testing

 1. Create two non-overlapping windows (windows 1 and 2).
 2. Create three contexts (context A, B, and C).
 3. Set context A to draw to window 1 and read f rom window 1.
 4. Set context B to draw to window 2 and read f rom window 1.
 5. Set context C to draw to window 2 and read f rom window 2.
 6. For a conformance test (TBD),
 a. Draw using context A.
 b. Blit from window to window using context B.
 c. Test conformance using context C.
 7. If pixel buffers are supported, repeat using a pixel buffer.

Revision History

 12/16/1999 0.1
 - First ARB draft based on the EXT specific ation.

 03/15/2000 0.2
 - Removed the changes to Chapter 4.
 - Added a discussion that accumulation oper ations may
 generate INVALID_OPERATION.
 - PopAttrib may (not will) generate an erro r.
 - Added an error if the read and draw DCs a re not managed
 on the same driver.

 03/22/2000 1.0
 - Changed rendering context to device conte xt.
 - Added the new error conditions values.
 - Approved by ARB: 10-0-0.

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 2088

Name

 WGL_ARB_pbuffer

Name Strings

 WGL_ARB_pbuffer

Status

 Complete. Approved by ARB on March 15, 2000

Version

 Last Modified Date: 03/22/2000
 Author Revision: 1.0

 Based on: WGL_EXT_pbuffer specification
 Date: 4/21/1999 Version 1.8

Number

 ARB Extension #11

Dependencies

 WGL_ARB_extensions_string is required.
 WGL_ARB_pixel_format is required.
 WGL_ARB_make_current_read affects the definitio n of this extension.

Overview

 This extension defines pixel buffers (pbuffer f or short). Pbuffers
 are additional non-visible rendering buffers fo r an OpenGL
 renderer. Pbuffers are equivalent to a window t hat has the same
 pixel format descriptor with the following exce ptions:

 1. There is no rendering to a pbuffer by GDI.

 2. The pixel format descriptors used for a pbu ffer can only be
 those that are supported by the ICD. Gener ic formats are not
 valid.

 3. The allocation of a pbuffer can fail if the re are insufficient
 resources (i.e., all the pbuffer memory has been allocated).

 4. The pixel buffer might be lost if a display mode change occurs.
 A query is provided that can be called afte r a display mode
 change to determine the state of the pixel buffer.

 The intent of the pbuffer semantics is to enabl e implementations to
 allocate pbuffers in non-visible frame buffer m emory. These
 pbuffers are intended to be "static" resources in that a program
 will typically allocate them only once rather t han as a part of its
 rendering loop. (Pbuffers should be deallocate d when the program
 is no longer using them -- for example, if the program is
 iconified.)

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 2089

 The frame buffer resources that are associated with a pbuffer are
 also static and are deallocated when the pbuffe r is destroyed or
 possibly when a display mode change occurs.

IP Status

 TBD

Issues

 1. Should the OPTIMUM width and heights and PBU FFER_LARGEST_ARB be
 taken out of the spec since they may be misl eading or hard for
 some implementations to support?

 PBUFFER_LARGEST_ARB has been left in the ext ension. It was
 originally requested by an application. The OPTIMUM queries
 have been removed to match the GLX pixel buf fer specification.

New Procedures and Functions

 DECLARE_HANDLE(HPBUFFERARB);

 HPBUFFERARB wglCreatePbufferARB(HDC hDC,
 int iPixelForma t,
 int iWidth,
 int iHeight,
 const int *piAt tribList);

 HDC wglGetPbufferDCARB(HPBUFFERARB hPbuffer);

 int wglReleasePbufferDCARB(HPBUFFERARB hPbuffer ,
 HDC hDC);

 BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuffer) ;

 BOOL wglQueryPbufferARB(HPBUFFERARB hPbuffer,
 int iAttribute,
 int *piValue);

New Tokens

 Accepted by the <attribute> parameter of wglCho osePixelFormatEXT:

 WGL_DRAW_TO_PBUFFER_ARB 0x202D

 Accepted by the <attribute> parameter of
 wglGetPixelFormatAttribivEXT, and wglGetPixelFo rmatAttribfvEXT:

 WGL_DRAW_TO_PBUFFER_ARB 0x202D
 WGL_MAX_PBUFFER_PIXELS_ARB 0x202E
 WGL_MAX_PBUFFER_WIDTH_ARB 0x202F
 WGL_MAX_PBUFFER_HEIGHT_ARB 0x2030

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 2090

 Accepted by the <piAttribList> parameter of wgl CreatePbufferARB:

 WGL_PBUFFER_LARGEST_ARB 0x2033

 Accepted by the <iAttribute> parameter of wglQu eryPbufferARB:

 WGL_PBUFFER_WIDTH_ARB 0x2034
 WGL_PBUFFER_HEIGHT_ARB 0x2035
 WGL_PBUFFER_LOST_ARB 0x2036

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the GLX Specification

 This specification is written for WGL.

GLX Protocol

 This specification is written for WGL.

Additions to the WGL Specification

 A pixel buffer (pbuffer) can be created with wg lCreatePbufferARB
 which returns a handle associated with the pbuf fer.

 HPBUFFERARB wglCreatePbufferARB(HDC hDC,
 int iPixelFor mat,
 int iWidth,
 int iHeight,
 const int *pi AttribList);

 <hDC> specifies a device context for the device on which the
 pbuffer is created. <iPixelFormat> specifies a non-generic pixel
 format descriptor index. Support for pbuffers may be restricted
 to specific pixel formats. Use wglGetPixelForm atAttribivEXT or
 wglGetPixelFormatAttribfvEXT to query the WGL_D RAW_TO_PBUFFER_ARB
 attribute to determine which pixel formats supp ort the creation of
 pbuffers.

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 2091

 <iWidth> and <iHeight> specify the pixel width and height of the
 rectangular pbuffer.

 <piAttribList> is a list of attributes {type, v alue} pairs
 containing integer attribute values. All of th e attributes in the
 <piAttribList> are followed by the correspondin g required value.
 The list is terminated with a value of 0.

 The following attributes are supported by wglCr eatePbufferARB:

 WGL_PBUFFER_LARGEST_ARB If this attribute is set to a
 non-zero value, t he largest
 available pbuffer is allocated
 when the allocati on of the pbuffer
 would otherwise f ail due to
 insufficient reso urces. The width
 or height of the allocated pbuffer
 never exceeds <iW idth> and <iHeight>,
 respectively. Us e wglQueryPbufferARB
 to retrieve the d imensions of the
 allocated pbuffer .

 The resulting pbuffer will contain color buffer s and ancillary
 buffers as specified by <iPixelFormat>. Note t hat pbuffers use
 framebuffer resources so applications should co nsider deallocating
 them when they are not in use.

 It is possible to create a pbuffer with back bu ffers and to swap
 the front and back buffers by calling wglSwapLa yerBuffers. The
 contents of the back buffers after the swap dep ends on the
 <iPixelFormat>. (Pbuffers are the same as wind ows in this respect.)

 When wglCreatePbufferARB fails to create a pbuf fer, NULL is
 returned. To get extended error information, c all GetLastError.
 Possible errors are as follows:

 ERROR_INVALID_PIXEL_FORMAT Pixel format i s not valid.

 ERROR_NO_SYSTEM_RESOURCES Insufficient r esources exist.

 ERROR_INVALID_DATA <iWidth> or <i Height> is negative
 or zero.

 ERROR_INVALID_DATA <piAttribList> is not a valid
 attribute.

 To create a device context for the pbuffer, cal l

 HDC wglGetPbufferDCARB(HPBUFFERARB hPbuffer);

 where <hPbuffer> is a handle returned from a pr evious call to
 wglCreatePbufferARB. A device context is retur ned by
 wglGetPbufferDCARB which can be used to associa te a rendering
 context with the pbuffer. Any rendering contex t created with
 a wglCreateContext that is "compatible" with th e <iPixelFormat> may
 be used to render into the pbuffer. (See the de scription of

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 2092

 wglCreateContext, wglMakeCurrent, and wglMakeCu rrentReadEXT for a
 definition of "compatible".)

 When wglGetPbufferDCARB fails, NULL is returned . To get extended
 error information, call GetLastError. Possible errors are as
 follows:

 ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.

 To release a device context obtained from a pre vious call to
 wglGetPbufferDCARB, call

 int wglReleasePbufferDCARB(HPBUFFERARB hPbu ffer,
 HDC hDC);

 If the return value is a value of 1, the device context was released.
 If the device context was not released, the ret urn value is 0. To
 get extended error information, call GetLastErr or. Possible errors
 are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.
 ERROR_DC_NOT_FOUND <hDC> is not a valid DC.

 A pbuffer is destroyed by calling

 BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuffe r);

 The pbuffer is destroyed once it is no longer c urrent to any
 rendering context. When a pbuffer is destroyed , any memory
 resources that are attached to it are freed and its handle is no
 longer valid.

 If wglDestroyPbufferARB fails, FALSE is returne d. To get extended
 error information, call GetLastError. Possible errors are as
 follows:

 ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.

 To query the maximum width, height, or number o f pixels in any
 given pbuffer for a specific pixel format, use
 wglGetPixelFormatAttribivEXT or wglGetPixelForm atAttribfvEXT with
 <attribute> set to one of WGL_MAX_PBUFFER_WIDTH _ARB,
 WGL_MAX_PBUFFER_HEIGHT_ARB, or WGL_MAX_PBUFFER_PIXELS_ARB.

 WGL_MAX_PBUFFER_WIDTH_ARB and WGL_MAX_PBUFFER_HEIGHT_ARB indicate
 the maximum width and height that can be passed into
 wglCreatePbufferARB and WGL_MAX_PBUFFER_PIXELS_ ARB indicates the
 maximum number of pixels (width x height) for a pbuffer. Note
 that an implementation may return a value for
 WGL_MAX_PBUFFER_PIXELS_ARB that is less than th e maximum width
 times the maximum height. Also, the value for
 WGL_MAX_PBUFFER_PIXELS_ARB is static and assume s that no other
 pbuffers are contending for the framebuffer mem ory. Thus it may
 not be possible to allocate a pbuffer of the si ze given by
 WGL_MAX_PBUFFER_PIXELS_ARB.

NVIDIA OpenGL Extension Specifications WGL_ARB_pbuffer

 2093

 To query an attribute associated with a specifi c pbuffer, call

 BOOL wglQueryPbufferARB(HPBUFFERARB hPbuffer,
 int iAttribute,
 int *piValue);

 with <hPbuffer> set to a previously returned pb uffer handle.
 <iAttribute> must be set to one of WGL_PBUFFER_ WIDTH_ARB,
 WGL_PBUFFER_HEIGHT_ARB, or WGL_PBUFFER_LOST_ARB.

 The WGL_PBUFFER_LOST_ARB query can be used to d etermine if the
 pixel buffer memory was lost due to a display m ode change. A value
 of TRUE is returned in <iAttribute> if the disp lay mode change lost
 the memory for the pixel buffer. It is not an error to render to
 a pixel buffer in this state, but the effect of rendering to it is
 the same as if the pixel buffer was destroyed: the context state
 will be updated, but the values of the returned pixels are
 undefined. The pixel buffer must be destroyed and recreated if
 the pixel buffer memory has been lost. A value of FALSE is
 returned to indicate that the contents of the p ixel buffer are
 unaffected by the display mode change.

 If wglQueryPbufferARB fails, FALSE is returned. To get extended
 error information, call GetLastError. Possible errors are as
 follows:

 ERROR_INVALID_HANDLE <hPbuffer> is not a valid handle.
 ERROR_INVALID_DATA <iAttribute> is not a valid attribute.

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format that can be used to create the pix el buffer.

Dependencies on WGL_ARB_extensions_string

 Because there is no way to extend wgl, these ca lls are defined in
 the ICD and can be called by obtaining the addr ess with
 wglGetProcAddress. Because this extension is a WGL extension, it
 is not included in the GL_EXTENSIONS string. I ts existence can be
 determined with the WGL_ARB_extensions_string e xtension.

New State

 None

New Implementation Dependent State

 None

Conformance Testing

 All of the current conformance tests can be run on a pixel buffer
 to validate its conformance. The only change t o the conformance
 tests would be to create a context for the pixe l buffer.

WGL_ARB_pbuffer NVIDIA OpenGL Extension Specifications

 2094

Revision History

 12/16/1999 0.1
 - First ARB draft based on the EXT specific ation.

 02/28/2000 0.2
 - Added a query for a damaged pixel buffer due to a display
 mode change.

 03/15/2000 0.3
 - Changed the lost definition of a pixel bu ffer.
 - Removed the OPTIMAL size queries.
 - Added a dependency on WGL_ARB_pixel_forma t.

 03/22/2000 1.0
 - Changed "mode change" to "display mode ch ange".
 - Added the condition that the resources as sociated with a
 pbuffer may be lost due to a display mode change.
 - Fixed issue 1 to address the OPTIMUM valu es.
 - Added the declaration of HPBUFFERARB in t he Procedures and
 Functions section.
 - Changed the wording of "undamaged" to "un affected"
 - Approved by ARB: 10-0-0.

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2095

Name

 WGL_ARB_pixel_format

Name Strings

 WGL_ARB_pixel_format

Status

 Complete. Approved by ARB on 3/15/2000.

Version

 Last Modified Date: March 22, 2000
 Author Revision: 1.0

Number

 ARB Extension #9

Dependencies

 WGL_ARB_extensions_string is required.

Overview

 This extension adds functions to query pixel fo rmat attributes and
 to choose from the list of supported pixel form ats.

 These functions treat pixel formats as opaque t ypes: attributes are
 specified by name rather than by accessing them directly as fields
 in a structure. Thus the list of attributes can be easily extended.

 Attribute names are defined which correspond to all of the values in
 the PIXELFORMATDESCRIPTOR and LAYERPLANEDESCRIP TOR data structures.
 Additionally this interface allows pixel format s to be supported
 which have attributes that cannot be represente d using the standard
 pixel format functions, i.e. DescribePixelForma t,
 DescribeLayerPlane, ChoosePixelFormat, SetPixel Format, and
 GetPixelFormat.

IP Status

 No issues.

Issues and Notes

 1. No provision is made to support extended pixel format attributes in
 metafiles.
 2. Should the transparent value pixel format attr ibute have separate red,
 green and blue values? Yes.
 3. What data type should the transparent value be ? This is no longer an
 issue since the transparent value is no longer a packed pixel value (it
 has separate r,g,b,a and index values).
 4. Should we add DONT_CARE values for some of the pixel format attributes?
 No we should just ignore attributes that aren' t specified in the list

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2096

 passed to wglChoosePixelFormatARB.
 5. Should wglGetPixelFormatAttrib*vARB ignore the <iLayerPlane> parameter
 when the attribute specified only applies to t he main planes (e.g.,
 when the attribute is set to WGL_NUMBER_OVERLA YS) or should it require
 <iLayerPlane> to be set to zero? It will just ignore the parameter.
 This allows these attributes to be queried at the same time as
 attributes of the overlay planes.
 6. Should wglGetPixelFormatAttribivARB convert fl oating point values to
 fixed point? No, wglChoosePixelFormatARB needs a way to accept floating
 point values. pfAttribFList accomplishes this.
 7. Should wglChoosePixelFormatARB take an <iLayer Plane> parameter?
 Typically <iLayerPlane> would be set to zero a nd a pixel format would
 be selected based on the attributes of the mai n plane, so there is no
 <iLayerPlane> parameter. This should be OK; ap plications won't
 typically select a pixel format on the basis o f overlay attributes.
 They can always call wglGetPixelFormatAttrib*v ARB to get a pixel format
 that has the desired overlay values.
 8. Application programmers must check to see if a particular extension is
 supported before using any pixel format attrib utes associated with the
 extension. For example, if WGL_ARB_pbuffer is not supported then it is
 an error to specify WGL_DRAW_TO_PBUFFER_ARB in the attribute list to
 wglGetPixelFormatAttrib*vARB or wglChoosePixel FormatARB.
 9. Should WGLChoosePixelFormatARB consider pixel formats at other display
 depths? It would be useful to have an argument to
 WGLChoosePixelFormatARB indicating what displa y depth should be used.
 However, there is no good way to implement thi s in the ICD since pixel
 format handles are sequential indices and the pixel format for index n
 differs depending on the display mode.
 10. Should we allow non-displayable pixel formats for pbuffers? Yes,
 although many (most?) implementations will use displayable pixel
 formats for pbuffers, this is a useful feature and the spec should
 allow for it.
 11. Should we create all new calls for pixel forma ts, specifically should
 we introduce SetPixelFormatARB? No, this doesn 't offer any value over
 the existing SetPixelFormat call.
 12. Should we add support for triple buffering? No , triple buffering needs
 to be covered by a separate extension.

New Procedures and Functions

 BOOL wglGetPixelFormatAttribivARB(HDC hdc,
 int iPixelFor mat,
 int iLayerPla ne,
 UINT nAttribu tes,
 const int *pi Attributes,
 int *piValues);

 BOOL wglGetPixelFormatAttribfvARB(HDC hdc,
 int iPixelFor mat,
 int iLayerPla ne,
 UINT nAttribu tes,
 const int *pi Attributes,
 FLOAT *pfValu es);

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2097

 BOOL wglChoosePixelFormatARB(HDC hdc,
 const int *piAttri bIList,
 const FLOAT *pfAtt ribFList,
 UINT nMaxFormats,
 int *piFormats,
 UINT *nNumFormats) ;

New Tokens

 Accepted in the <piAttributes> parameter array of
 wglGetPixelFormatAttribivARB, and wglGetPixelFo rmatAttribfvARB, and
 as a type in the <piAttribIList> and <pfAttribF List> parameter
 arrays of wglChoosePixelFormatARB:

 WGL_NUMBER_PIXEL_FORMATS_ARB 0x2 000
 WGL_DRAW_TO_WINDOW_ARB 0x2 001
 WGL_DRAW_TO_BITMAP_ARB 0x2 002
 WGL_ACCELERATION_ARB 0x2 003
 WGL_NEED_PALETTE_ARB 0x2 004
 WGL_NEED_SYSTEM_PALETTE_ARB 0x2 005
 WGL_SWAP_LAYER_BUFFERS_ARB 0x2 006
 WGL_SWAP_METHOD_ARB 0x2 007
 WGL_NUMBER_OVERLAYS_ARB 0x2 008
 WGL_NUMBER_UNDERLAYS_ARB 0x2 009
 WGL_TRANSPARENT_ARB 0x2 00A
 WGL_TRANSPARENT_RED_VALUE_ARB 0x2 037
 WGL_TRANSPARENT_GREEN_VALUE_ARB 0x2 038
 WGL_TRANSPARENT_BLUE_VALUE_ARB 0x2 039
 WGL_TRANSPARENT_ALPHA_VALUE_ARB 0x2 03A
 WGL_TRANSPARENT_INDEX_VALUE_ARB 0x2 03B
 WGL_SHARE_DEPTH_ARB 0x2 00C
 WGL_SHARE_STENCIL_ARB 0x2 00D
 WGL_SHARE_ACCUM_ARB 0x2 00E
 WGL_SUPPORT_GDI_ARB 0x2 00F
 WGL_SUPPORT_OPENGL_ARB 0x2 010
 WGL_DOUBLE_BUFFER_ARB 0x2 011
 WGL_STEREO_ARB 0x2 012
 WGL_PIXEL_TYPE_ARB 0x2 013
 WGL_COLOR_BITS_ARB 0x2 014
 WGL_RED_BITS_ARB 0x2 015
 WGL_RED_SHIFT_ARB 0x2 016
 WGL_GREEN_BITS_ARB 0x2 017
 WGL_GREEN_SHIFT_ARB 0x2 018
 WGL_BLUE_BITS_ARB 0x2 019
 WGL_BLUE_SHIFT_ARB 0x2 01A
 WGL_ALPHA_BITS_ARB 0x2 01B
 WGL_ALPHA_SHIFT_ARB 0x2 01C
 WGL_ACCUM_BITS_ARB 0x2 01D
 WGL_ACCUM_RED_BITS_ARB 0x2 01E
 WGL_ACCUM_GREEN_BITS_ARB 0x2 01F
 WGL_ACCUM_BLUE_BITS_ARB 0x2 020
 WGL_ACCUM_ALPHA_BITS_ARB 0x2 021
 WGL_DEPTH_BITS_ARB 0x2 022
 WGL_STENCIL_BITS_ARB 0x2 023
 WGL_AUX_BUFFERS_ARB 0x2 024

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2098

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_NO_ACCELERATION_ARB 0x2 025
 WGL_GENERIC_ACCELERATION_ARB 0x2 026
 WGL_FULL_ACCELERATION_ARB 0x2 027

 WGL_SWAP_EXCHANGE_ARB 0x2 028
 WGL_SWAP_COPY_ARB 0x2 029
 WGL_SWAP_UNDEFINED_ARB 0x2 02A

 WGL_TYPE_RGBA_ARB 0x2 02B
 WGL_TYPE_COLORINDEX_ARB 0x2 02C

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations and
the Frame buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the WGL Specification

 Pixel Formats

 WGL uses pixel format indices to refer to the p ixel formats
 supported by a device. The standard pixel forma t functions
 DescribePixelFormat, DescribeLayerPlane, Choose PixelFormat,
 SetPixelFormat, and GetPixelFormat specify pixe l format attributes
 using the PIXELFORMATDESCRIPTOR and LAYERPLANED ESCRIPTOR data
 structures.

 An additional set of functions may be used to q uery and specify
 pixel format attributes by name.

 Querying Pixel Format Attributes

 The following two functions can be used to quer y pixel format
 attributes by specifying a list of attributes t o be queried and
 providing a buffer in which to receive the resu lts from the query.

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2099

 These functions can be used to query the attrib utes of both the main
 plane and layer planes of a given pixel format.

 BOOL wglGetPixelFormatAttribivARB(HDC hdc,
 int iPixelFor mat,
 int iLayerPla ne,
 UINT nAttribu tes,
 const int *pi Attributes,
 int *piValues);

 <hdc> specifies the device context on which the pixel format is
 supported.

 <iPixelFormat> is an index that specifies the p ixel format. The
 pixel formats that a device context supports ar e identified by
 positive one-based integer indexes.

 <iLayerPlane> specifies which plane is being qu eried. Positive
 values of <iLayerPlane> identify overlay planes , where 1 is the
 first overlay plane over the main plane, 2 is t he second overlay
 plane over the first overlay plane, and so on. Negative values
 identify underlay planes, where -1 is the first underlay plane under
 the main plane, -2 is the second underlay plane under the first
 underlay plane and so on. Use zero for the main plane.

 <nAttributes> number of attributes being querie d.

 <piAttributes> list containing an array of pixe l format attribute
 identifiers which specify the attributes to be queried. The
 following values are accepted:

 WGL_NUMBER_PIXEL_FORMATS_ARB
 The number of pixel formats for the device context. The
 <iLayerPlane> and <iPixelFormat> parameters are ignored if this
 attribute is specified.

 WGL_DRAW_TO_WINDOW_ARB
 True if the pixel format can be used with a window. The
 <iLayerPlane> parameter is ignored if this attribute is
 specified.

 WGL_DRAW_TO_BITMAP_ARB
 True if the pixel format can be used with a memory bitmap. The
 <iLayerPlane> parameter is ignored if this attribute is
 specified.

 WGL_ACCELERATION_ARB
 Indicates whether the pixel format is suppo rted by the driver.
 If this is set to WGL_NO_ACCELERATION_ARB t hen only the software
 renderer supports this pixel format; if thi s is set to
 WGL_GENERIC_ACCELERATION_ARB then the pixel format is supported
 by an MCD driver; if this is set to WGL_FUL L_ACCELERATION_ARB
 then the pixel format is supported by an IC D driver.

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2100

 WGL_NEED_PALETTE_ARB
 A logical palette is required to achieve th e best results for
 this pixel format. The <iLayerPlane> parame ter is ignored if
 this attribute is specified.

 WGL_NEED_SYSTEM_PALETTE_ARB
 The hardware supports one hardware palette in 256-color mode
 only. The <iLayerPlane> parameter is ignore d if this attribute
 is specified.

 WGL_SWAP_LAYER_BUFFERS_ARB
 True if the pixel format supports swapping layer planes
 independently of the main planes. If the pi xel format does not
 support a back buffer then this is set to F ALSE. The
 <iLayerPlane> parameter is ignored if this attribute is
 specified.

 WGL_SWAP_METHOD_ARB
 If the pixel format supports a back buffer, then this indicates
 how they are swapped. If this attribute is set to
 WGL_SWAP_EXCHANGE_ARB then swapping exchang es the front and back
 buffer contents; if it is set to WGL_SWAP_C OPY_ARB then swapping
 copies the back buffer contents to the fron t buffer; if it is
 set to WGL_SWAP_UNDEFINED_ARB then the back buffer contents are
 copied to the front buffer but the back buf fer contents are
 undefined after the operation. If the pixel format does not
 support a back buffer then this parameter i s set to
 WGL_SWAP_UNDEFINED_ARB. The <iLayerPlane> p arameter is ignored
 if this attribute is specified.

 WGL_NUMBER_OVERLAYS_ARB
 The number of overlay planes. The <iLayerPl ane> parameter is
 ignored if this attribute is specified.

 WGL_NUMBER_UNDERLAYS_ARB
 The number of underlay planes. The <iLayerP lane> parameter is
 ignored if this attribute is specified.

 WGL_TRANSPARENT_ARB
 True if transparency is supported.

 WGL_TRANSPARENT_RED_VALUE_ARB
 Specifies the transparent red color value. Typically this value
 is the same for all layer planes. This valu e is undefined if
 transparency is not supported.

 WGL_TRANSPARENT_GREEN_VALUE_ARB
 Specifies the transparent green value. Typi cally this value is
 the same for all layer planes. This value i s undefined if
 transparency is not supported.

 WGL_TRANSPARENT_BLUE_VALUE_ARB
 Specifies the transparent blue color value. Typically this value
 is the same for all layer planes. This valu e is undefined if
 transparency is not supported.

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2101

 WGL_TRANSPARENT_ALPHA_VALUE_ARB
 Specifies the transparent alpha value. This is reserved for
 future use.

 WGL_TRANSPARENT_INDEX_VALUE_ARB
 Specifies the transparent color index value . Typically this
 value is the same for all layer planes. Thi s value is undefined
 if transparency is not supported.

 WGL_SHARE_DEPTH_ARB
 True if the layer plane shares the depth bu ffer with the main
 planes. If <iLayerPlane> is zero, this is a lways true.

 WGL_SHARE_STENCIL_ARB
 True if the layer plane shares the stencil buffer with the main
 planes. If <iLayerPlane> is zero, this is a lways true.

 WGL_SHARE_ACCUM_ARB
 True if the layer plane shares the accumula tion buffer with the
 main planes. If <iLayerPlane> is zero, this is always true.

 WGL_SUPPORT_GDI_ARB
 True if GDI rendering is supported.

 WGL_SUPPORT_OPENGL_ARB
 True if OpenGL is supported.

 WGL_DOUBLE_BUFFER_ARB
 True if the color buffer has back/front pai rs.

 WGL_STEREO_ARB
 True if the color buffer has left/right pai rs.

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB or
 WGL_TYPE_COLORINDEX_ARB.

 WGL_COLOR_BITS_ARB
 The number of color bitplanes in each color buffer. For RGBA
 pixel types, it is the size of the color bu ffer, excluding the
 alpha bitplanes. For color-index pixels, it is the size of the
 color index buffer.

 WGL_RED_BITS_ARB
 The number of red bitplanes in each RGBA co lor buffer.

 WGL_RED_SHIFT_ARB
 The shift count for red bitplanes in each R GBA color buffer.

 WGL_GREEN_BITS_ARB
 The number of green bitplanes in each RGBA color buffer.

 WGL_GREEN_SHIFT_ARB
 The shift count for green bitplanes in each RGBA color buffer.

 WGL_BLUE_BITS_ARB
 The number of blue bitplanes in each RGBA c olor buffer.

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2102

 WGL_BLUE_SHIFT_ARB
 The shift count for blue bitplanes in each RGBA color buffer.

 WGL_ALPHA_BITS_ARB
 The number of alpha bitplanes in each RGBA color buffer.

 WGL_ALPHA_SHIFT_ARB
 The shift count for alpha bitplanes in each RGBA color buffer.

 WGL_ACCUM_BITS_ARB
 The total number of bitplanes in the accumu lation buffer.

 WGL_ACCUM_RED_BITS_ARB
 The number of red bitplanes in the accumula tion buffer.

 WGL_ACCUM_GREEN_BITS_ARB
 The number of green bitplanes in the accumu lation buffer.

 WGL_ACCUM_BLUE_BITS_ARB
 The number of blue bitplanes in the accumul ation buffer.

 WGL_ACCUM_ALPHA_BITS_ARB
 The number of alpha bitplanes in the accumu lation buffer.

 WGL_DEPTH_BITS_ARB
 The depth of the depth (z-axis) buffer.

 WGL_STENCIL_BITS_ARB
 The depth of the stencil buffer.

 WGL_AUX_BUFFERS_ARB
 The number of auxiliary buffers.

 <piValues> points to a buffer into which the re sults of the query
 will be placed. Floating point attribute values are rounded to the
 nearest integer value. The caller must allocate this array and it
 must have at least <nattributes> entries.

 If the function succeeds, the return value is T RUE. If the function
 fails, the return value is FALSE. To get extend ed error information,
 call GetLastError.

 An error is generated if <piAttributes> contain s an invalid
 attribute, if <iPixelFormat> is not a positive integer or is larger
 than the number of pixel formats, if <iLayerPla ne> doesn't refer to
 an existing layer plane, or if <hdc> is invalid .

 If FALSE is returned, the contents of <piValues > are undefined.

 BOOL wglGetPixelFormatAttribfvARB(HDC hdc,
 int iPixelFor mat,
 int iLayerPla ne,
 UINT nAttribu tes,
 const int *pi Attributes,
 FLOAT *pfValu es);

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2103

 <hdc> specifies the device context on which the pixel format is
 supported.

 <iPixelFormat> is an index that specifies the p ixel format. The
 pixel formats that a device context supports ar e identified by
 positive one-based integer indexes.

 <iLayerPlane> specifies which plane is being qu eried. Positive
 values of <iLayerPlane> identify overlay planes , where 1 is the
 first overlay plane over the main plane, 2 is t he second overlay
 plane over the first overlay plane, and so on. Negative values
 identify underlay planes, where -1 is the first underlay plane under
 the main plane, -2 is the second underlay plane under the first
 underlay plane and so on. Use zero for the main plane.

 <nAttributes> number of attributes being querie d.

 <piAttributes> list containing an array of pixe l format attribute
 identifiers which specify the attributes to be queried. The values
 accepted are the same as for wglGetPixelFormatA ttribivARB.

 <pfValues> is a pointer to a buffer into which the results of the
 query will be placed. Integer attribute values are converted
 floating point The caller must allocate this ar ray and it must have
 at least at least <nAttributes> entries.

 If the function succeeds, the return value is T RUE. If the function
 fails, the return value is FALSE. To get extend ed error information,
 call GetLastError.

 An error is generated if <piAttributes> contain s an invalid
 attribute, if <iPixelFormat> is not a positive integer or is larger
 than the number of pixel formats, if <iLayerPla ne> doesn't refer to
 an existing layer plane, or if <hdc> is invalid .

 If FALSE is returned, the contents of <pfValues > are undefined.

 Supported Pixel Formats

 The maximum index of the pixel formats which ca n be referenced by
 the standard pixel format functions is returned by a successful call
 to DescribePixelFormat. This may be less than t he maximum index of
 the pixel formats which can be referenced by
 wglGetPixelFormatAttribivARB and wglGetPixelFor matAttribfvARB.
 (determined by querying WGL_NUMBER_PIXEL_FORMAT S_ARB).

 The pixel format of a "displayable" object (e.g . window, bitmap) is
 specified by passing its index to SetPixelForma t. Therefore, pixel
 formats which cannot be referenced by the stand ard pixel format
 functions are "non displayable".

 Indices are assigned to pixel formats in the fo llowing order:

 1. Accelerated pixel formats that are displayab le

 2. Accelerated pixel formats that are displayab le and which have
 extended attributes

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2104

 3. Generic pixel formats

 4. Accelerated pixel formats that are non displ ayable

 ChoosePixelFormat will never select pixel forma ts from either group
 2 or group 4. Each pixel format in group 2 is r equired to appear
 identical to some pixel format in group 1 when queried by
 DescribePixelFormat. Consequently, ChoosePixelF ormat will always
 select a format from group 1 when it might othe rwise have selected a
 format from group 2. Pixel formats in group 4 c annot be accessed by
 ChoosePixelFormat at all.

 SetPixelFormat and DescribePixelFormat will onl y accept pixel
 formats from groups 1-3. If a non-displayable p ixel format is
 specified to SetPixelFormat or DescribePixelFor mat an error will
 result. These pixel formats are only for use wi th WGL extensions,
 such as WGLCreatePbufferARB.

 The following function may be used to select fr om among all of the
 available pixel formats (including both acceler ated and generic
 formats and non-displayable formats). This func tion accepts
 attributes for the main planes. A list of pixel formats that match
 the specified attributes is returned with the " best" pixel formats
 at the start of the list (order is device depen dent).

 BOOL wglChoosePixelFormatARB(HDC hdc,
 const int *piAttri bIList,
 const FLOAT *pfAtt ribFList,
 UINT nMaxFormats,
 int *piFormats,
 UINT *nNumFormats) ;

 <hdc> specifies the device context.

 <piAttribIList> specifies a list of attribute { type, value} pairs
 containing integer attribute values. All the at tributes in
 <piAttribIList> are followed by the correspondi ng desired value. The
 list is terminated with 0. If <piAttribList> is NULL then the result
 is the same as if <piAttribList> was empty.

 <pfAttribFList> specifies a list of attribute { type, value} pairs
 containing floating point attribute values. All the attributes in
 <pfAttribFList> are followed by the correspondi ng desired value. The
 list is terminated with 0. If <pfAttribList> is NULL then the result
 is the same as if <pfAttribList> was empty.

 <nMaxFormats> specifies the maximum number of p ixel formats to be
 returned.

 <piFormats> points to an array of returned indi ces of the matching
 pixel formats. The best pixel formats (i.e., cl osest match and best
 format for the hardware) are at the head of the list. The caller
 must allocate this array and it must have at le ast <nMaxFormats>
 entries.

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2105

 <nNumFormats> returns the number of matching fo rmats. This value may
 be larger than <nMaxFormats>.

 If the function succeeds, the return value is T RUE. If the function
 fails the return value is FALSE. To get extende d error information,
 call GetLastError. If no matching formats are f ound then nNumFormats
 is set to zero and the function returns TRUE.

 If FALSE is returned, the contents of <piFormat s> are undefined.

 wglChoosePixelFormatARB selects pixel formats t o return based on the
 attribute values specified in <piAttribIList> a nd <pfAttribFList>.
 Some attribute values must match the pixel form at value exactly when
 the attribute is specified while others specify a minimum criteria,
 meaning that the pixel format value must meet o r exceed the
 specified value. See the table below for detail s.

 Attribute Type Mat ch Criteria

 WGL_DRAW_TO_WINDOW_ARB boolean exa ct
 WGL_DRAW_TO_BITMAP_ARB boolean exa ct
 WGL_ACCELERATION_ARB enum exa ct
 WGL_NEED_PALETTE_ARB boolean exa ct
 WGL_NEED_SYSTEM_PALETTE_ARB boolean exa ct
 WGL_SWAP_LAYER_BUFFERS_ARB boolean exa ct
 WGL_SWAP_METHOD_ARB enum exa ct
 WGL_NUMBER_OVERLAYS_ARB integer min imum
 WGL_NUMBER_UNDERLAYS_ARB integer min imum
 WGL_SHARE_DEPTH_ARB boolean exa ct
 WGL_SHARE_STENCIL_ARB boolean exa ct
 WGL_SHARE_ACCUM_ARB boolean exa ct
 WGL_SUPPORT_GDI_ARB boolean exa ct
 WGL_SUPPORT_OPENGL_ARB boolean exa ct
 WGL_DOUBLE_BUFFER_ARB boolean exa ct
 WGL_STEREO_ARB boolean exa ct
 WGL_PIXEL_TYPE_ARB enum exa ct
 WGL_COLOR_BITS_ARB integer min imum
 WGL_RED_BITS_ARB integer min imum
 WGL_GREEN_BITS_ARB integer min imum
 WGL_BLUE_BITS_ARB integer min imum
 WGL_ALPHA_BITS_ARB integer min imum
 WGL_ACCUM_BITS_ARB integer min imum
 WGL_ACCUM_RED_BITS_ARB integer min imum
 WGL_ACCUM_GREEN_BITS_ARB integer min imum
 WGL_ACCUM_BLUE_BITS_ARB integer min imum
 WGL_ACCUM_ALPHA_BITS_ARB integer min imum
 WGL_DEPTH_BITS_ARB integer min imum
 WGL_STENCIL_BITS_ARB integer min imum
 WGL_AUX_BUFFERS_ARB integer min imum

 All attributes except WGL_NUMBER_OVERLAYS_ARB, WGL_NUMBER_UNDERLAYS_ARB,
 WGL_SHARE_DEPTH_ARB, WGL_SHARE_STENCIL_ARB, and WGL_SHARE_ACCUM_ARB
 apply to the main planes and not to any layer p lanes. If
 WGL_SHARE_DEPTH_ARB, WGL_SHARE_STENCIL_ARB, and WGL_SHARE_ACCUM_ARB are
 specified in either <piAttribList> or <pfAttrib List>, then a pixel
 format will only be selected if it has no overl ays or underlays or if

WGL_ARB_pixel_format NVIDIA OpenGL Extension Specifications

 2106

 all of its overlays and underlays match the spe cified value.
 Applications that need to find a pixel format t hat supports a layer
 plane with other buffer attributes (such as WGL _SUPPORT_OPENGL_ARB set
 to TRUE), must go through the list that is retu rned and call
 wglGetPixelFormatAttrib*vARB to find one with t he appropriate
 attributes.

 Attributes that are specified in neither <piAtt ribIList> nor
 <pfAttribFList> are ignored (i.e., they are not looked at during the
 selection process). In addition the following a ttributes are always
 ignored, even if specified: WGL_NUMBER_PIXEL_FO RMATS_ARB,
 WGL_RED_SHIFT_ARB, WGL_GREEN_SHIFT_ARB, WGL_BLU E_SHIFT_ARB,
 WGL_ALPHA_SHIFT_ARB, WGL_TRANSPARENT_ARB,
 WGL_TRANSPARENT_RED_VALUE_ARB,WGL_TRANSPARENT_GREEN_VALUE_ARB,
 WGL_TRANSPARENT_BLUE_VALUE_ARB, WGL_TRANSPARENT_ALPHA_VALUE_ARB, and
 WGL_TRANSPARENT_INDEX_ARB.

 If both <piAttribIList> and <pfAttribFList> are NULL or empty then all
 pixel formats for this device are returned.

 An error is generated if <piAttribIList> or <pf AttribFList> contain an
 invalid attribute or if <hdc> is invalid.

 Although it is not an error, wglChoosePixelForm at and
 wglChoosePixelFormatARB should not be used toge ther. It is not necessary
 to change existing OpenGL programs but applicat ion writers should use
 wglChoosePixelFormatARB whenever possible. New pixel format attributes
 introduced by extensions (such as the number of multisample buffers)
 will only be known to the new calls, wglChooseP ixelFormatARB and
 wglGetPixelFormatAttrib*vARB..

New State

 None

New Implementation Dependent State

 None

Dependencies on WGL_ARB_extensions_string

 Because there is no way to extend WGL, these ca lls are defined in the
 ICD and can be called by obtaining the address with wglGetProcAddress.
 Because this extension is a WGL extension, it i s not included in the
 extension string returned by glGetString. Its e xistence can be
 determined with the WGL_ARB_extensions_string e xtension.

Revision History

Changes from EXT_pixel_format:

 * Added WGL prefix to name to avoid possible nam e collisions
 * EXT suffix changed to ARB
 * Updated to new template, adding contact, statu s and revision sections
 * Version is no longer an RCS version
 * Attribute list passed to wglGetPixelFormatAttr ib*v is type const
 * Separate red,green,blue,alpha and index transp arent values

NVIDIA OpenGL Extension Specifications WGL_ARB_pixel_format

 2107

 * WGL_SWAP_LAYER_BUFFERS and WGL_SWAP_METHOD values defined for single
 buffered pixel formats
 * Array of return values for wglGetPixelFormatAt trib*v and
 wglChoosePixelFormatARB is undefined if functi on fails
 * Error returned if iPixelFormat is zero or nega tive in
 wglGetPixelFormat*v
 * Under "Supported Pixel Formats", indicate that SetPixelFormat and
 DescribePixelFormat do not accept non displaya ble pixel formats.
 Passing one in results in an error
 * If either piAttribIList of pfAttribFList are N ULL when
 wglChoosePixelFormatARB is called then it is a s if they were empty
 * Clarify that wglChoosePixelFormatARB returns T RUE even if no matching
 formats found
 * wglChoosePixelFormatARB will only match an ove rlay attribute (eg,
 WGL_SHARE_DEPTH_ARB) if there are no overlay p lanes or if all
 overlay/underlay plane attributes match the sp ecified criteria
 * Be careful about using term hardware (change t o pixel format where
 appropriate)
 * wglChoosePixelFormatARB now ignores the follow ing attributes (in
 addition to WGL_NUMBER_PIXEL_FORMATS_ARB): WGL _*_SHIFT_ARB,
 WGL_TRANSPARENT_ARB, WGL_TRANSPARENT_*_VALUE_ARB.
 * Clarify that new pixel format attributes (eg, attributes introduced by
 extensions such as multisampling) are only kno wn to the new pixel
 format calls, wglChoosePixelFormatARB and wglG etPixelFormat*vARB.
 * Add dependency on WGL_ARB_extensions_string

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2108

Name

 ARB_render_texture

Name Strings

 WGL_ARB_render_texture

Status

 Complete. Approved by ARB on June 13, 2001

Version

 Last Modified Date: July 16, 2001

Number

 ARB Extension #20

Dependencies

 OpenGL 1.1 is required.
 WGL_ARB_extension_string is required.
 WGL_ARB_pixel_format is required.
 WGL_ARB_pbuffer is required.
 WGL_ARB_make_current_read affects the definitio n of this extension.
 GL_ARB_texture_cube_map affects the definition of this extension
 The extension is written against the OpenGL 1.2 .1 Specification.

Overview

 This extension allows a color buffer to be used for both rendering and
 texturing. When a color buffer is bound to a te xture target it cannot
 be rendered to. Once it has been released from the texture it can be
 rendered to once again.

 This extension may provide a performance boost and reduce memory
 requirements on architectures that support rend ering to the same
 memory where textures reside and in the same me mory format and layout
 required by texturing. The functionality is sim ilar to CopyTexImage1D
 and CopyTexImage2D. However, some changes were made to make it easier
 to avoid copying data:

 - Only color buffers of a pbuffer can be boun d as a texture. It is
 not possible to use the color buffer of a w indow as a texture.

 - The texture internal format is determined w hen the color buffer
 is associated with the texture, guaranteein g that the color
 buffer format is equivalent to the texture internal format.

 - When a color buffer of a pbuffer is being u sed as a texture,
 the pbuffer can not be used for rendering; this makes it
 easier for implementations to avoid a copy of the image
 since the semantics of the pointer swap are clear.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2109

 - The application must release the color buff er from the texture
 before it can render to the pbuffer again. When the color buffer
 is bound as a texture, draw and read operat ions on the pbuffer
 are undefined.

 - A mipmap attribute can be set, in which cas e memory will be
 allocated up front for mipmaps. The applica tion can render
 the mipmap images or, if SGIS_generate_mipm ap is supported,
 they can be automatically generated when th e color buffer is
 bound as a texture.

 - A texture target is associated with the pbu ffer, so that cubemap
 images can be rendered into a single color buffer.

 Note that this extension may be used in conjunc tion with other
 extensions to associate video images/buffers to pbuffers. Once the
 video image is associated with a pbuffer it can be used as a texture.
 Also, if SGIX_generate_mipmap is supported, it is possible to
 create a complete set of mipmap images from a s ingle color buffer.

IP Status

 There are no known IP issues.

Issues

 1. Should we support 3D textures? What about 1D te xtures?

 3D textures - No. This adds a lot of implementa tion burden without
 having a good usage model.

 1D textures - Yes. Just a special case of 2D te xture.

 2. Should we allow a portion of the color buffer t o be used as a texture?
 No, if a different size texture is needed the a pplication can just
 create another pbuffer.

 3. Do we need the MIPMAP_TEXTURE attribute?

 Yes this is good to have since some architectur es may require all or
 some of the mipmaps to be stored together in me mory.

 4. Should we require power of 2 textures?

 Yes, we will allow an implementation to fail if the texture size is
 not a power of 2. This restriction can be relax ed later by the
 exension that allows non-power of 2 texture.

 5. Should the render texture attributes be per col or buffer or per drawable?

 There really isn't a mechanism for associating attributes with the color
 buffer. Also, allowing different render texture attributes for each
 color buffer makes the extension more difficult to implement without
 providing a very useful tool for applications.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2110

 6. What should happen if the color buffer is used for rendering before it
 is released from the texture?

 There are three reasonable options: generate an error, create another
 buffer or have the rendering results be undefin ed. Since this is an
 error condition, and not a useful feature, we s hould pick the option
 that is easiest to implement. For now, we choo se to have the rendering
 results be undefined--the rendering commands wi ll be processed and the
 context will be updated but the pbuffer may or may not be updated.
 Note that the pbuffer that contains the color b uffer can be bound to a
 different context, so the invalid state must be stored with the pbuffer,
 not the context.. (Also the texture object that contains the
 color buffer's image may be released from the c urrent context).

 7. Should the new pbuffer attributes be available through GL queries?

 No, like other pbuffer attributes you need to q uery them through the
 window system extension. This extension does no t make any changes to
 OpenGL.

 8. Should we allow a subset of mipmaps to be defin ed?

 No.

 9. What happens when a pbuffer is bound as a textu re and then a mode
 change occurs and the pbuffer is lost?

 The texture is not lost in this case. OpenGL do esn't have the notion
 of volatile textures and this extension should not introduce them.
 (It may be an interesting additional extension) . When a color buffer
 is bound to a texture, it must be saved and res tored by the driver,
 whenever texture memory is lost (even on a wind ows mode change).

10. Should there be any restrictions on the texture operations that
 can be performed on a color buffer?

 Yes. We allow TexSubImage and CopyTexSubImage c alls but disallow
 TexImage and CopyTexImage calls. When a TexImag e or CopyTexImage call
 is made then the color buffer is released back to the pbuffer and
 new memory is allocated for the texture. No mix ing and matching of
 images is allowed. In other words, it is not po ssible to render a
 non-mipmapped image to a pbuffer, bind it to a texture and then
 call TexImage2D to create the other mipmap leve ls. Modifying any
 mipmap level via TexImage or CopyTexImage will cause the color
 buffer to be released back to the pbuffer, even if that level
 was not defined by the color buffer.

 Also, if DeleteTextures is called on the textur e target, then the
 color buffer that is bound to the texture targe t is released back
 to the pbuffer.

 The implicit release of the color buffer is int ended to work just
 like an explicit release - i.e. the color buffe r is available for
 rendering without the app having to call Releas eTexImage.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2111

11. When the color buffer is released from the text ure (back to the pbuffer)
 should the contents be preserved?

 No, this may prove difficult to implement on so me architectures.

12. Should releasing the color buffer from the text ure (back to the pbuffer)
 affect the scissor or viewport?

 No, since releasing the color buffer, does not change its size, it
 should not affect the scissor or viewport. The application is also
 responsible for updating the viewport and sciss or when changing which
 mipmap level it is rendering to (this is simila r to window resize,
 where the application is responsible for updati ng the scissor and
 viewport).

13. How should swap buffers work when a color buffe r is bound as a texture?

 Since a color buffer (not a pbuffer) is bound t o a texture, swap buffers
 should be a no-op. Otherwise the name of the bo und buffer (FRONT, BACK)
 will change while it is bound. Note that swap b uffers works just as
 for a pbuffer when the color buffer is not boun d as a texture.

14. What happens when the application binds one col or buffer of a pbuffer
 to a texture and then tries to render to anothe r color buffer of the
 pbuffer?

 If any of the pbuffer's color buffers are bound to a texture, then
 rendering results are undefined for all color b uffers of the pbuffer.

15. Should it be an error to bind a color buffer of a pbuffer to a
 texture, if that pbuffer is current to another thread?

 No. It is not an error to make a drawable curre nt to two threads right
 now. Read and draw operations produce indetermi nate results when the
 pbuffer is bound to a texture.

16. Should we allow color buffers of all drawables (pbuffers and windows)
 to be bound to textures?

 For now we just allow pbuffers. This is simpler since they are not
 shared with the window system and the color buf fers are not part of the
 visible framebuffer. Also, windows can be resiz ed at any time and
 handling this resize would unnecessarily compli cate this extension.

17. Should we allow depth buffers to be bound as te xtures?

 This extension does not provide for this but it would be an interesting
 additional extension. When a color buffer is bo und to a texture, only
 the color buffer is moved--ancillary buffers co ntinue to be bound to
 the pbuffer.

 This extension is written such that adding dept h textures should
 be very easy.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2112

18. What happens when a color buffer is bound to a shared texture object?

 Since the color buffer is associated with the t exture object itself,
 it should be shared.

19. Should we specify how this extension interacts with SGIS_generate_mipmap?

 No, since this is a potential ARB extension and SGIS_generate_mipmap
 is not. If SGIS_generate_mipmap is supported al ong with this extension,
 then if wglBindTexImageARB is called and both G ENERATE_MIPMAP_SGIS and
 WGL_MIPMAP_TEXTURE_ARB are TRUE, then a set of mipmaps should be
 generated. This behaviour needs to be documente d in the
 SGIS_generate_mipmap (or equivalent) extension.

20. Should we support borders on render textures?

 No. Although borders are part of 1.2.1, they ar e often not supported
 and better techniques (such as virtual textures) are starting to
 become available for paging in large textures.

21. Should wglBindTexImageARB take an attribute ind icating whether
 mipmaps are defined or should this be implied f rom the
 WGL_MIPMAP_TEXTURE_ARB attribute of the pbuffer ?

 This should be implied from the WGL_MIPMAP_TEXT URE_ARB attribute
 since GL allows controls for the applications t o use only level zero
 image even if the pbuffer has been defined larg e enough to
 store mipmaps.

22. This extension introduces pbuffer attributes th at can be modified.
 (Previously all pbuffer attributes were static and could not be
 changed.) Should we allow the non-static attrib utes to be set when the
 pbuffer is created or should we require the app lication to call
 wglSetPbufferAttribARB?

 We require the application to call wglSetPbuffe rAttribARB to set
 non-static Pbuffer attributes since this seems to be more consistent
 with OpenGL specification.

23. Do we need WGL_TEXTURE_FORMAT_ARB or is WGL_ALP HA_BITS_ARB enough
 to distinguish between selecting RGB vs. RGBA t extures? Additionally,
 how is this parameter defined for non texture b uffers.

 Resolved: In order to accommodate RGBA visuals to support RGB textures
 (i.e. ignore alpha) and to allow the specificat ion to be extensible
 for depth textures, WGL_TEXTURE_FORMAT_ARB is r equired in this
 specification. This parameter is defined as WGL _NO_TEXTURE_ARB for
 non texture buffers.

24. Should luminance and Intensity texture formats be allowed?

 No. WGL doesn't support single-channel framebuf fer formats. Allowing
 these formats would require a copy to reformat a RGB/RGBA framebuffer
 to a Luminance or Intensity format. If luminanc e framebuffer gets
 added to WGL, then this feature can be added at that time.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2113

Implementation Notes

 1. In order to prevent releases of a pbuffer from the texture object
 and to deal with implicit release followed by a n explicit release,
 the GL implementation can keep a reference to a ny texture pbuffer
 in the texture object. When the pbuffer is rele ased, this handle
 is set to NULL. Subsequent requests for releasi ng the texture
 pbuffer are ignored.

 2. The implicit release of the color buffers has b een specifed to
 work just like the explicit release so that the implementation
 can delete a texture object (one of the implici t free cases) without
 having to track whether the texture was associa ted with any color buffers.

Intended Usage

 To define a cube map texture, single threaded c ase

 1) Create the rendering window. Call wglChoose PixelFormatARB and
 find a suitable pixel format for rendering the image. Set the pixel
 format for the rendering window to this pix el format.

 2) Create the pbuffer. Call wglChoosePixelForm atARB and find a
 suitable pixel format for rendering the tex ture.
 WGL_DRAW_TO_PBUFFER and WGL_BIND_TO_TEXTURE _RGB_ARB or
 WGL_BIND_TO_TEXTURE_RGBA_ARB must be TRUE. Create the pbuffer
 with this pixel format. Set the pbuffer wid th and height to the
 width and height of the level zero image. S et WGL_TEXTURE_FORMAT_ARB
 to be WGL_TEXTURE_RGB_ARB or WGL_TEXTURE_RG BA_ARB. Also set
 WGL_TEXTURE_TARGET_ARB to WGL_TEXTURE_CUBE_ MAP_ARB.

 3) Create a context for the pbuffer. Make the context current to the
 pbuffer and initialize the context's attrib utes.

 4) Render all the cube map faces to the pbuffe r. Call
 wglSetPbufferAttribARB to set the cube map face before rendering
 each face. Call glFlush.

 5) Create a context for the window. Make the c ontext current to the
 window and intialize the contexts attribute s. Bind a texture object
 to the TEXTURE_CUBE_MAP_ARB target and set the texture parameters
 to the desired values.

 6) Call wglBindTexImageARB to bind the pbuffer drawable to the cube
 map texture. Set <iBuffer> to WGL_FRONT or WGL_BACK depending upon
 which color buffer was used for rendering t he cube map.

 7) Render to the window using the cube map tex ture.

 8) Call wglReleaseTexImageARB to release the c olor buffer of the
 pbuffer. Goto step 4 to generate more frame s.

 To define a 2D texture, single threaded case

 In step 2, set the WGL_TEXTURE_TARGET_ARB to WG L_TEXTURE_2D_ARB.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2114

 Since a 2D texture does not have multiple faces , in step 5
 there is no need to call wglSetPbufferAttribARB .

 In addition, if mipmaps are to be generated, th e step 5 should
 be repeated multiple times with calls to wglSet PbufferAttribARB
 to set different mip levels.

New Procedures and Functions

 BOOL wglBindTexImageARB (HPBUFFERARB hPbuffer, int iBuffer)

 BOOL wglReleaseTexImageARB (HPBUFFERARB hPbuffe r, int iBuffer)

 BOOL wglSetPbufferAttribARB (HPBUFFERARB hPbuff er,
 const int *piAttribList)

New Tokens

 Accepted by the <piAttributes> parameter of wgl GetPixelFormatAttribivARB,
 wglGetPixelFormatAttribfvARB, and the <piAttrib IList> and <pfAttribIList>
 parameters of wglChoosePixelFormatARB:

 WGL_BIND_TO_TEXTURE_RGB_ARB 0x2070
 WGL_BIND_TO_TEXTURE_RGBA_ARB 0x2071

 Accepted by the <piAttribList> parameter of wgl CreatePbufferARB and
 by the <iAttribute> parameter of wglQueryPbuffe rARB:

 WGL_TEXTURE_FORMAT_ARB 0x2072
 WGL_TEXTURE_TARGET_ARB 0x2073
 WGL_MIPMAP_TEXTURE_ARB 0x2074

 Accepted as a value in the <piAttribList> param eter of
 wglCreatePbufferARB and returned in the value p arameter of
 wglQueryPbufferARB when <iAttribute> is WGL_TEX TURE_FORMAT_ARB:

 WGL_TEXTURE_RGB_ARB 0x2075
 WGL_TEXTURE_RGBA_ARB 0x2076
 WGL_NO_TEXTURE_ARB 0x2077

 Accepted as a value in the <piAttribList> param eter of
 wglCreatePbufferARB and returned in the value p arameter of
 wglQueryPbufferARB when <iAttribute> is WGL_TEX TURE_TARGET_ARB:

 WGL_TEXTURE_CUBE_MAP_ARB 0x2078
 WGL_TEXTURE_1D_ARB 0x2079
 WGL_TEXTURE_2D_ARB 0x207A
 WGL_NO_TEXTURE_ARB 0x2077

 Accepted by the <piAttribList> parameter of wgl SetPbufferAttribARB and
 by the <iAttribute> parameter of wglQueryPbuffe rARB:

 WGL_MIPMAP_LEVEL_ARB 0x207B
 WGL_CUBE_MAP_FACE_ARB 0x207C

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2115

 Accepted as a value in the <piAttribList> param eter of
 wglSetPbufferAttribARB and returned in the valu e parameter of
 wglQueryPbufferARB when <iAttribute> is WGL_CUB E_MAP_FACE_ARB:

 WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB 0x2 07D
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB 0x2 07E
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB 0x2 07F
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB 0x2 080
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB 0x2 081
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB 0x2 082

 Accepted by the <iBuffer> parameter of wglBindT exImageARB and
 wglReleaseTexImageARB:

 WGL_FRONT_LEFT_ARB 0x2083
 WGL_FRONT_RIGHT_ARB 0x2084
 WGL_BACK_LEFT_ARB 0x2085
 WGL_BACK_RIGHT_ARB 0x2086
 WGL_AUX0_ARB 0x2087
 WGL_AUX1_ARB 0x2088
 WGL_AUX2_ARB 0x2089
 WGL_AUX3_ARB 0x208A
 WGL_AUX4_ARB 0x208B
 WGL_AUX5_ARB 0x208C
 WGL_AUX6_ARB 0x208D
 WGL_AUX7_ARB 0x208E
 WGL_AUX8_ARB 0x208F
 WGL_AUX9_ARB 0x2090

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2116

Additions to the WGL Specification

 Add to the description of <piAttributes> in wgl GetPixelFormatAttribivARB
 and <pfAttributes> in wglGetPixelFormatfv:

 WGL_BIND_TO_TEXTURE_RGB_ARB
 WGL_BIND_TO_TEXTURE_RGBA_ARB

 True if the color buffers can be bound to a RGB/RGBA texture.
 Currently only pbuffers can be bound as tex tures so this attribute
 will only be TRUE if WGL_DRAW_TO_PBUFFER is also TRUE. It is
 possible to bind a RGBA visual to a RGB tex ture in
 which case the values in the alpha componen t of the visual
 are ignored when the color buffer is used a s a RGB texture.

 Implementations may choose not to support W GL_BIND_TO_TEXTURE_RGB_ARB
 for RGBA visuals.

 Add new table entries to match criteria in desc ription of
 wglChoosePixelFormatARB:

 Attribute Type Match Criteria

 WGL_BIND_TO_TEXTURE_RGB_ARB boolean exact
 WGL_BIND_TO_TEXTURE_RGBA_ARB boolean exact

 Modify wglCreatePbufferARB:

 HPBUFFERARB wglCreatePbufferARB (HDC hDC, i nt iPixelFormat,
 int iWidth, int iHeight, const int *piA ttribList);

 ...

 <iWidth> and <iHeight> specify the pixel wi dth and height of the
 rectangular pbuffer. If the texture format is set to
 WGL_TEXTURE_RGB_ARB or WGL_TEXTURE_RGBA_ARB using
 WGL_TEXTURE_FORMAT_ARB, then the pbuffer wi dth and height
 specify the size of the level zero texture image or, in the
 case of a cube map texture, each level zero image.

 <piAttribList> is a list of attribute {type , value} pairs containing
 integer attribute values. All of the attri butes in <piAttribList>
 are followed by the corresponding required value. The list is
 terminated with a value of 0.

 <piAttribList> may be NULL or empty in whic h case all attributes assume
 their default values as described below.

 The following attributes are supported by w glCreatePbufferARB:

 WGL_TEXTURE_FORMAT_ARB

 This attribute indicates the format of the texture that will be
 created when a pbuffer is bound to a textur e map.
 It can be set to WGL_TEXTURE_RGB_ARB, WGL_T EXTURE_RGBA_ARB or
 WGL_NO_TEXTURE_ARB. The default value is WG L_NO_TEXTURE_ARB.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2117

 WGL_TEXTURE_TARGET_ARB

 This attribute indicates the target for the texture that will be
 created when the pbuffer is created with a texture format of
 WGL_TEXTURE_RGB_ARB or WGL_TEXTURE_RGBA_ARB . This attribute can
 be set to WGL_NO_TEXTURE_ARB, WGL_TEXTURE_1 D_ARB, WGL_TEXTURE_2D_ARB
 or WGL_TEXTURE_CUBE_MAP_ARB. The default va lue is WGL_NO_TEXTURE_ARB.

 WGL_MIPMAP_TEXTURE_ARB

 If this attribute is set to a non-zero valu e, and the texture format
 is set to WGL_TEXTURE_RGB_ARB or WGL_TEXTUR E_RGBA_ARB, then storage
 for mipmaps will be allocated. The default value is FALSE.

 WGL_PBUFFER_LARGEST_ARB

 If this attribute is set to a non-zero valu e, the largest
 available pbuffer is allocated when the all ocation of the pbuffer
 would otherwise fail due to insufficient re sources. The width or
 height of the allocated pbuffer never excee ds <iWidth> and <iHeight>,
 respectively. Also, if the pbuffer will be used as a texture
 (i.e., the value of the WGL_TEXTURE_TARGET_ ARB attribute is
 WGL_TEXTURE_1D_ARB, WGL_TEXTURE_2D_ARB or W GL_TEXTURE_CUBE_MAP_ARB
 and texture format is WGL_TEXTURE_RGB_ARB o r WGL_TEXTURE_RGBA_ARB),
 then the aspect ratio will be preserved and the new width and
 height will be valid sizes for the correspo nding texture target.
 (e.g. Both the width and height will be a p ower of 2 if the
 implementation only supports power of 2 tex tures. Similarily,
 the width and height will be equal for a cu be map texture).
 Use wglQueryPbufferARB to retrieve the dime nsions of the
 allocated pbuffer. The default value for th is attribute is FALSE.

 The resulting pbuffer will contain color bu ffers and ancillary
 buffers as specified by <iPixelFormat>. No te that pbuffers use
 framebuffer resources so applications shoul d consider deallocating
 them when they are not in use.

 It is possible to create a pbuffer with bac k buffers and to swap the
 front and back buffers by calling wglSwapLa yerBuffers. The
 contents of the back buffers after the swap depends on the
 <iPixelFormat>. (Pbuffers are the same as windows in this respect.)

 The contents of the depth and stencil buffe rs may not be preserved
 when rendering a texture to the pbuffer and switching which image
 of the texture is rendered to (e.g., switch ing from rendering one
 mipmap level to rendering another).

 When wglCreatePbufferARB fails to create a pbuffer, NULL is returned.
 To get extended error information, call Get LastError. Possible
 errors are as follows:

 ERROR_INVALID_PIXEL_FORMAT Pixel format is not valid.

 ERROR_NO_SYSTEM_RESOURCES Insufficient re sources exist.

 ERROR_INVALID_DATA <iWidth> or <iH eight> is negative or zero.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2118

 ERROR_INVALID_DATA WGL_TEXTURE_TAR GET_ARB attribute is
 set to WGL_TEXT URE_CUBE_MAP_ARB, and
 iWidth does not equal iHeight.

 ERROR_INVALID_DATA WGL_TEXTURE_TAR GET_ARB attribute is set
 to WGL_TEXTURE_ 1D_ARB, and iHeight is
 not set to one.

 ERROR_INVALID_DATA The pixel forma t attribute
 WGL_TEXTURE_FOR MAT_ARB is
 WGL_TEXTURE_RBG _ARB or WGL_TEXTURE_RGBA_ARB
 and WGL_PBUFFER _WIDTH and/or
 WGL_PBUFFER_HEI GHT specify an invalid
 size for the im plementation (e.g., the
 texture size is not a power of 2).

 ERROR_INVALID_DATA An attribute in <piAttribList> is not a
 valid attribute .

 ERROR_INVALID_DATA The texture for mat is set to
 WGL_NO_TEXTURE_ ARB and texture target
 is set to somet hing other than
 WGL_NO_TEXTURE_ ARB.

 ERROR_INVALID_DATA The texture for mat is set to some target
 besides WGL_NO_ TEXTURE_ARB and texture
 target is set t o WGL_NO_TEXTURE_ARB.

 Modify wglDestroyPbufferARB:

 A pbuffer is destroyed by calling

 BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuf fer);

 The pbuffer is destroyed once it is no long er current to any
 rendering context and once all color buffer s that are bound to a
 texture object have been released. When a pbuffer is destroyed,
 any memory resources that are attached to i t are freed
 and its handle is no longer valid.

 Add wglSetPbufferAttribARB:

 To set an attribute of a pbuffer call

 BOOL wglSetPbufferAttribARB (HPBUFFERARB hP buffer,
 const int *piA ttribList);

 with <hPbuffer> set to a previously returne d pbuffer handle.
 <piAttribList> is a list of attribute {type , value} pairs containing
 integer values. All the attributes in <piAt tribList> are followed by
 the corresponding desired value. The list i s terminated with 0.
 If <piAttribList> is NULL or empty then thi s function is a no-op.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2119

 The following values are accepted:

 WGL_MIPMAP_LEVEL_ARB

 For mipmap textures, this attribute indicat es which level of the
 mipmap should be rendered. The default valu e is zero. If the value
 of this attribute is outside the range of s upported mipmap level,
 the closest valid mipmap level is selected for rendering.

 WGL_CUBE_MAP_FACE_ARB

 For cube map textures, this attribute indic ates which face of the
 cube map should be rendered; it must be set to one of

 WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB.

 The default value is WGL_TEXTURE_CUBE_MAP_P OSITIVE_X_ARB.

 If wglSetPbufferAttribARB fails, FALSE is r eturned. To get extended
 error information, call GetLastError. Possi ble errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA Bad attribute s pecified in <piAttribList>.

 ERROR_INVALID_DATA WGL_MIPMAP_LEVE L_ARB does not specify
 a valid mipmap level.

 ERROR_INVALID_DATA WGL_CUBE_MAP_IM AGE_ARB is not set to a
 valid value.

 Modify wglQueryPbufferARB:

 To query an attribute associated with a spe cific pbuffer, call

 BOOL wglQueryPbufferARB(HPBUFFERARB hPbuffe r, int iAttribute,
 int *piValue);

 with <hPbuffer> set to a previously returne d pbuffer handle.
 <iAttribute> must be set to one of WGL_PBUF FER_WIDTH_ARB,
 WGL_PBUFFER_HEIGHT_ARB, WGL_PBUFFER_LOST_AR B, WGL_TEXTURE_TARGET_ARB,
 WGL_MIPMAP_TEXTURE_ARB, WGL_MIPMAP_LEVEL_AR B, WGL_CUBE_MAP_FACE_ARB
 or WGL_TEXTURE_FORMAT_ARB.

 The WGL_PBUFFER_LOST_ARB query can be used to determine if the pixel
 buffer memory was lost due to a display mod e change. A value of
 TRUE is returned in buffer <piValue> if the display mode change lost
 the memory for the pixel buffer. It is not an error to render to a
 pixel buffer in this state, but the effect of rendering to it is the
 same as if the pixel buffer was destroyed: the context state will

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2120

 be updated, but the values of the returned pixels are undefined.
 The pixel buffer must be destroyed and recr eated if the pixel buffer
 memory has been lost. A value of FALSE is returned to indicate
 that the contents of the pixel buffer are u naffected by the display
 mode change.

 When a color buffer of a pbuffer is bound a s a texture, then the
 contents of that texture must be preserved until the color buffer is
 released. If the pbuffer is lost, any color buffers that are bound
 to textures will be freed when they are rel eased back to the pbuffer
 by calling wglReleaseTexImage.

 If wglPbufferAttribARB fails, FALSE is ret urned. To get extended
 error information, call GetLastError. Possi ble errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA <iAttribute> is not a valid attribute.

 Add wglBindTexImageARB and wglReleaseTexImageAR B:

 The command

 BOOL wglBindTexImageARB (HPBUFFERARB hPbuff er, int iBuffer)

 defines a one-dimensional texture image or two-dimensional
 texture image or a set of two-dimensional c ube map texture images.
 The texture image or images consist of the image data in <iBuffer>
 for the specified pbuffer, <hPbuffer>, and need not be copied.
 The texture target, the texture format and the size of the
 texture components are derived from attribu tes of pbuffer
 specified by <hPbuffer>.

 Note that any existing images associated wi th the different
 mipmap levels of the texture object are fre ed (it is as if
 TexImage was called with an image of zero w idth).

 The pbuffer attribute WGL_TEXTURE_FORMAT_AR B determines the base
 internal format of the texture. The compone nt sizes are also
 determined by pbuffer attributes as shown i n the table below.

 Texture Component Size

 R WGL_RED_BITS_ARB
 G WGL_GREEN_BITS_ARB
 B WGL_BLUE_BITS_ARB
 A WGL_ALPHA_BITS_ARB

 Table x.x: Size of texture components

 The texture targets are derived from the WG L_TEXTURE_TARGET_ARB
 attribute of <hPbuffer>. If the texture tar get for the pbuffer is
 WGL_TEXTURE_CUBE_MAP_ARB then <iBuffer> def ines a set of cubemap
 images for the cube map texture objects whi ch are bound to the
 current context (hereafter referred to as t he current texture

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2121

 object). Note that when the texture target is
 WGL_TEXTURE_CUBE_MAP_ARB, all cube map text ure targets are defined
 by a single call to wglBindTexImageARB. If the texture target is
 WGL_TEXTURE_2D_ARB, then <iBuffer> defines a 2D texture for the
 current 2D texture object; if the texture t arget is WGL_TEXTURE_1D_ARB,
 then <iBuffer> defines a 1D texture for the current 1D texture object.

 The possible values for <iBuffer> are WGL_F RONT_LEFT_ARB,
 WGL_FRONT_RIGHT_ARB, WGL_BACK_LEFT_ARB, WGL _BACK_RIGHT_ARB, and
 WGL_AUX0_ARB through WGL_AUXn_ARB.

 If <hPbuffer> is the calling thread's curre nt drawable,
 wglBindTexImageARB performs an implicit glF lush.

 After this function is called, the pbuffer associated with <iBuffer>
 is no longer available for reading or writi ng. Any read
 operation, such as glReadPixels, which read s values from any of the
 pbuffer's color buffers or ancillary buffer s, will produce
 indeterminate results. In addition, any dra w operation that is
 done to the pbuffer prior to wglReleaseTexI mageARB being called,
 produces indeterminant results. Specifical ly, if the pbuffer is
 current to a context and thread then render ing commands will be
 processed and the context state will be upd ated but the pbuffer may
 or may not be written. Also, SwapBuffers is a no-op if it is called
 on this pbuffer.

 Note that the color buffer is bound to a te xture object. If the
 texture object is shared between contexts, then the
 color buffer is also shared. If a texture o bject is deleted
 before wglReleaseTexImageARB is called, the n the color buffer is
 released and the pbuffer is made available for reading and writing.

 It is not an error to call TexImage2D, TexI mage1D,
 CopyTexImage1D or CopyTexImage2D to replace an image of a texture
 object that has a color buffer bound to it. However, these calls
 will cause the color buffer to be released back to the pbuffer and
 new memory will be allocated for the textur e. Note that the color
 buffer is released even if the image that i s being defined is a
 mipmap level that was not defined by the co lor buffer.

 wglBindTexImageARB is ignored if there is n o current rendering
 context.

 If wglBindTexImageARB fails, FALSE is retu rned. To get extended
 error information, call GetLastError. Possi ble errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA <iBuffer> is no t a valid value.

 ERROR_INVALID_OPERATION The pbuffer att ribute
 WGL_TEXTURE_FOR MAT_ARB is set to
 WGL_NO_TEXTURE_ ARB.

 ERROR_INVALID_OPERATION <iBuffer> is al ready bound to the texture

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2122

 To release a color buffer that is being used as a texture call

 BOOL wglReleaseTexImageARB (HPBUFFERARB hPb uffer, int iBuffer)

 This releases the specified color buffer ba ck to the pbuffer. The
 pbuffer is made available for reading and w riting when it no
 longer has any color buffers bound as textu res.

 <iBuffer> must be one of WGL_FRONT_LEFT_ARB , WGL_FRONT_RIGHT_ARB,
 WGL_BACK_LEFT_ARB, WGL_BACK_RIGHT_ARB, or W GL_AUX0_ARB through
 WGL_AUXn_ARB.

 The contents of the color buffer are undefi ned when it is first
 released. In particular there is no guarant ee that the texture
 image is still present. However, the conten ts of other color
 buffers is unaffected by this call. Also, t he contents of the depth,
 stencil and accumulation buffers are not af fected by
 wglBindTexImageARB and wglReleaseTexImageAR B.

 If the specified color buffer is no longer bound to a texture (e.g.,
 because the texture object was deleted) the n this call is a
 noop; no error is generated.

 After a color buffer is released from a tex ture (either explicitly
 by calling wglReleaseTexImageARB or implici tly by calling a
 routine such as TexImage2D), all texture im ages that were defined
 by the color buffer become NULL (it is as i f TexImage was
 called with an image of zero width).

 If wglReleaseTexImageARB fails, FALSE is r eturned. To get extended
 error information, call GetLastError. Possi ble errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA <iBuffer> is no t a valid value.

 ERROR_INVALID_OPERATION The pbuffer att ribute
 WGL_TEXTURE_FOR MAT_ARB is set to
 WGL_NO_TEXTURE_ ARB.

New State

 None

Dependencies on GL_ARB_texture_cube_map

 If GL_ARB_texture_cube_map is not supported the n all references to
 WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, WGL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, WGL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
 WGL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, WGL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
 WGL_TEXTURE_CUBE_MAP_ARB and WGL_CUBE_MAP_FACE_ARB are deleted.

NVIDIA OpenGL Extension Specifications WGL_ARB_render_texture

 2123

Revision History

 07/16/01 bpoddar 1. Added WGL_TEXTURE_CU BE_MAP_POSITIVE_*_ARB
 enums to the new tok ens section.
 2. Added clarification on MIPMAP_LEVEL_ARB usage.
 3. Removed 1 invalid er ror condition from
 wglBindTexImage.
 4. Changed parameter re ferences to <parameter>.

 07/12/01 bpoddar Fixed minor typos and a dded enum values.

 06/22/01 bpoddar Minor language edits fr om ARB participants.

 04/09/01 bpoddar 1. Renamed WGL_TEXTURE_ TYPE_ARB to
 WGL_TEXTURE_TARGET_A RB.
 2. Cleaned up behavior of WGL_TEXTURE_FORMAT_ARB.

 03/23/01 bpoddar 1. Updated the implemen tation notes section
 with the discussion at the ARB.
 2. Replaced ERROR_??? w ith specified errors
 3. Clarified width and height selection rules
 for WGL_PBUFFER_LARG EST.
 4. Added policy for dea ling with mip levels
 both on Bind and Rel ease.
 5. Specified behavior f or implicit release and
 added comment to imp lementation section.
 6. Added couple of erro rs to SetPbufferAttrib.

 03/06/01 bpoddar 1. Deleted references t o 3D texture
 2. Deleted references t o LUMINANCE, INTENSITY
 textures.
 3. wglBindTexImageARB n o longer provides a
 separate mipmap attr ibute (issue #21).
 4. Removed references t o multiple texture
 objects for cube map s.
 5. Added issue # 23.
 6. Added implementation notes section.

 12/01/00 pwomack Updated issues list. Re quire non-static pbuffer
 attributes to be set vi a SetPbufferAttrib (they
 cannot be set when the pbuffer is created.)
 The WGL_TEXTURE_TARGET_ ARB attribute now takes
 WGL_NO_TEXTURE_ARB as a value, so the app can
 indicate that the pbuff er will never be bound
 as a texture. If a pbuf fer is created with
 WGL_TEXTURE_TARGET_ARB set to WGL_NO_TEXTURE_ARB,
 then an error results i f an attempt is made to
 bind it as a texture. S pecified default values
 for all attribute lists . When a color buffer is
 bound as a texture then drawing to the pbuffer
 gives undefined results (previously the
 rendering was lost). Wh en a color buffer is
 bound as a texture, cal ling TexImage or
 CopyTexImage releases t he color buffer back to
 the pbuffer.

WGL_ARB_render_texture NVIDIA OpenGL Extension Specifications

 2124

 11/12/00 pwomack Created. Copied from GL X extension. Added WGL
 calls and removed all G LX-centric stuff.

NVIDIA OpenGL Extension Specifications WGL_ATI_pixel_format_float

 2125

Name

 WGL_ATI_pixel_format_float

Name Strings

 WGL_ATI_pixel_format_float

Contact

 Rob Mace, ATI Research (mace 'at' ati.com)

Status

 Complete.

Version

 Last Modified Date: December 4, 2002
 Revision: 5

Number

 278

Dependencies

 WGL_ARB_pixel_format is required.

 This extension is written against the OpenGL 1. 3 Specification.

Overview

 This extension adds pixel formats with floating -point RGBA color
 components.

 The size of each float components is specified using the same
 WGL_RED_BITS_ARB, WGL_GREEN_BITS_ARB, WGL_BLUE_ BITS_ARB and
 WGL_ALPHA_BITS_ARB pixel format attributes that are used for
 defining the size of fixed-point components. 3 2 bit floating-
 point components are in the standard IEEE float format. 16 bit
 floating-point components have 1 sign bit, 5 ex ponent bits,
 and 10 mantissa bits.

 In standard OpenGL RGBA color components are no rmally clamped to
 the range [0,1]. The color components of a flo at buffer are
 clamped to the limits of the range representabl e by their format.

Issues

 1. Should we expose a GL_FLOAT16_ATI pixel type ?

 RESOLUTION: This will be exposed in a separ ate extension.

New Procedures and Functions

 None

WGL_ATI_pixel_format_float NVIDIA OpenGL Extension Specifications

 2126

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 RGBA_FLOAT_MODE_ATI 0x8 820
 COLOR_CLEAR_UNCLAMPED_VALUE_ATI 0x8 835

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_TYPE_RGBA_FLOAT_ATI 0x2 1A0

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL
Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16 Bit Floating-Point

 A 16 bit floating-point number has 1 sign bit (s), 5 exponent
 bits (e), and 10 mantissa bits (m). The valu e (v) of a 16 bit
 floating-point number is determined by the fo llowing pseudo code:

 if (e != 0)
 v = (-1)^s * 2^(e-15) * 1.m # normaliz ed
 else if (f == 0)
 v = (-1)^s * 0 # zero
 else
 v = (-1)^s * 2^(e-14) * 0.m # denormal ized

 It is acceptable for an implementation to tre at denormalized 16
 bit floating-point numbers as zero.

 There are no NAN or infinity values for 16 bi t floating-point.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Section 3.6.4, (p. 92), Add to figure 3.7 a blo ck to "final
 conversion" for "RGBA float pixel data out" tha t says "clamp
 to float format range".

 Section 3.6.4, (p. 102), change the first parag raph of the "Final
 Conversion" to:

 For a color index, final conversion consists of masking the bits
 of the index to the left of the binary point by 2^n - 1, where n
 is the number of bits in an index buffer. Fo r RGBA components the
 conversion is based on whether the components in the destination
 color buffer are fixed-point or floating-poin t. For fixed-point
 destination buffers components are clamped to [0,1]. The resulting
 values are converted to fixed-point according to the rules given in
 section 2.13.9 (Final Color Processing). For floating-point

NVIDIA OpenGL Extension Specifications WGL_ATI_pixel_format_float

 2127

 destination buffers components are clamped to the limits of the
 range representable by the destination format .

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Chapter 4 Introduction, (p. 156), change the fi rst line of the third
 paragraph to:

 Color buffers consist of either unsigned inte ger color indices,
 RGB and optionally A unsigned integer values, of RGBA floating-
 point values.

 Section 4.1.7, (p. 162), change the third parag raph of the page to:

 Fixed-point destination (framebuffer) compone nts and source
 (fragment) components are taken to be values represented according
 to the scheme given in section 2.13.9 (Final Color Processing).
 Floating-point destination and source compone nts are taken as is.
 Constant color components are taken to be flo ating-point values.

 Section 4.1.7, (p. 163), change the forth line of the second paragraph
 of "Using BlendFunc" to:

 If destination color components are fixed-poi nt, each floating-
 point value in this quadruplet is clamped to [0,1] and converted
 back to a fixed-point value in the manner des cribed in section
 2.13.9.

 Section 4.1.8, (p. 165), insert after the first sentence:

 Dithering has no effect if the destination co lor buffer components
 are floating-point.

 Section 4.1.9, (p. 165), insert after the first sentence:

 Logical operation has no effect if the destin ation color buffer
 components are floating-point.

 Section 4.2.3, (p. 170), change the third parag raph to:

 void ClearColor(float r, float g, float b , float a);

 sets the clear value for the color buffers in RGBA mode. When
 clearing a fixed-point color buffer each of t he specified
 components is clamped to [0; 1] and converted to fixed-point
 according to the rules of section 2.13.9. Wh en clearing a
 floating-point color buffer the specified com ponents are not
 clamped.

 Section 4.3.2, (p. 176), change the "Conversion of RGBA values" to:

 This step applies only if the GL is in RGBA m ode, and then only
 if format is neither STENCIL INDEX nor DEPTH COMPONENT. The R,
 G, B, and A values form a group of elements. When reading from a
 fixed-point color buffer each element is take n to be a fixed-point
 value in [0; 1] with m bits, where m is the n umber of bits in the

WGL_ATI_pixel_format_float NVIDIA OpenGL Extension Specifications

 2128

 corresponding color component of the selected buffer (see section
 2.13.9).

 Section 4.3.2, (p. 177), change the second para graph of the "Final
 Conversion" to:

 For a fixed-point RGBA color buffer, each com ponent is first
 clamped to [0,1]. For floating-point RGBA co lor buffer, components
 are not clamped if the <type> is FLOAT, clamp ed to [0,1] if the
 <type> is unsigned, and clamped to [-1,1] if the <type> is signed.
 After clamping the appropriate conversion for mula from table 4.7
 is applied to the component.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None

Additions to the GLX Specification

 This specification is written for WGL.

GLX Protocol

 This specification is written for WGL.

Additions to the WGL Specification

 Modify the values accepted by WGL_PIXEL_TYPE_AR B to:

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,
 WGL_TYPE_RGBA_FLAOT_ARB, or WGL_TYPE_COLORI NDEX_ARB.

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format with float components.

Dependencies on WGL_ARB_extensions_string

 Because this extension is a WGL extension, it i s not included in
 the GL_EXTENSIONS string. Its existence can be determined with
 the WGL_ARB_extensions_string extension.

Errors

 None

NVIDIA OpenGL Extension Specifications WGL_ATI_pixel_format_float

 2129

New State

 (table 6.19, p227) modify COLOR_CLEAR_VALUE and add
 COLOR_CLEAR_UNCLAMPED_VALUE:

Get Value Type Get Command Initial Value Description Section Attri bute
------------------------------- ----- ----------- ------------- ------------------ ------- ----- -------
COLOR_CLEAR_VALUE C GetFloatv 0,0,0,0 Color buffer clear 4.2.3 color -buffer
 value (RGBA mode)
 clamped to [0,1]
COLOR_CLEAR_UNCLAMPED_VALUE_ATI 4 x R GetFloatv 0,0,0,0 Color buffer clear 4.2.3 color -buffer
 value (RGBA mode)
 unclamped

 (table 6.28, p236) add the following entry:

Get Value Type Get Command Minimum V alue Description Section Attribute
------------------- ----- ------------ --------- ---- --------------- -------- ---------
RGBA_FLOAT_MODE_ATI B GetBooleanv - True if RGBA 2.7 -
 components are
 floats

New Implementation Dependent State

 None

Revision History

 Date: 12/4/2002
 Revision: 5
 - Added Section 2.1.2 16 Bit Floating-Point.

 Date: 9/12/2002
 Revision: 4
 - Fixed typo, CLEAR_COLOR_VALUE is really COL OR_CLEAR_VALUE.

 Date: 9/11/2002
 Revision: 3
 - Added enum numbers to New Tokens.
 - Added CLEAR_COLOR_UNCLAMPED_VALUE_ATI and d efined behavior of
 CLEAR_COLOR_VALUE.
 - Added description of change to figure 3.7.
 - Clarified float clamping in section 3.6.4.

 Date: 9/9/2002
 Revision: 2
 - Changed wording of how float clamping is de scribed in Overview.

 Date: 9/6/2002
 Revision: 1
 - First draft for circulation.

WGL_EXT_extensions_string NVIDIA OpenGL Extension Specifications

 2130

Name

 EXT_extensions_string

Name Strings

 WGL_EXT_extensions_string

Version

 $Date: 1999/04/03 08:41:12 $ $Revision: 1.3 $

Number

 168

Dependencies

 None

Overview

 This extension provides a way for applications to determine which
 WGL extensions are supported by a device. This is the foundation
 upon which other WGL extensions are built.

Issues

 Note that extensions that were previously adver tised via glGetString
 (e.g., the swap interval extension) should cont inue to be advertised
 there so existing applications don't break. Th ey should also be
 advertised via wglGetExtensionsStringEXT so new applications can make
 one call to find out which WGL extensions are s upported.

New Procedures and Functions

 const char *wglGetExtensionsStringEXT(void);

New Tokens

 None

Additions to Chapter 2 of the 1.2 Specification (Op enGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Ra sterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Pe r-Fragment Operations
and the Frame buffer)

 None

NVIDIA OpenGL Extension Specifications WGL_EXT_extensions_string

 2131

Additions to Chapter 5 of the 1.2 Specification (Sp ecial Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (St ate and State Requests)

 None

Additions to the WGL Specification

 Advertising WGL Extensions

 Applications should call wglGetProcAddress to s ee whether or not
 wglGetExtensionsStringEXT is supported. If it is supported then it
 can be used to determine which WGL extensions a re supported by the device.

 const char *wglGetExtensionsString(void);

 If the function succeeds, it returns a list of supported
 extensions to WGL. Although the contents of th e string is
 implementation specific, the string will be NUL L terminated and
 will contain a space-separated list of extensio n names. (The
 extension names themselves do not contain space s.) If there are no
 extensions then the empty string is returned.

 If the function fails, the return value is NULL . To get extended
 error information, call GetLastError.

New State

 None

New Implementation Dependent State

 None

WGL_EXT_swap_control NVIDIA OpenGL Extension Specifications

 2132

Name

 EXT_swap_control

Name Strings

 WGL_EXT_swap_control

Version

 Date: 1/27/1999 Revision: 1.3

Number

 172

Dependencies

 WGL_EXT_extensions_string is required.

Overview

 This extension allows an application to specify a minimum periodicity
 of color buffer swaps, measured in video frame periods.

New Procedures and Functions

 BOOL wglSwapIntervalEXT(int interval)

 int wglGetSwapIntervalEXT(void)

New Tokens

 None

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.2 GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.2 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

 None

NVIDIA OpenGL Extension Specifications WGL_EXT_swap_control

 2133

Additions to the WGL Specification

 wglSwapIntervalEXT specifies the minimum number of video frame periods
 per buffer swap for the window associated with the current context.
 The interval takes effect when SwapBuffers or w glSwapLayerBuffer
 is first called subsequent to the wglSwapInterv alEXT call.

 The parameter 'interval' specifies the minimum number of video frames
 that are displayed before a buffer swap will oc cur.

 A video frame period is the time required by th e monitor to display a
 full frame of video data. In the case of an in terlaced monitor,
 this is typically the time required to display both the even and odd
 fields of a frame of video data. An interval s et to a value of 2
 means that the color buffers will be swapped at most every other video
 frame.

 If 'interval' is set to a value of 0, buffer sw aps are not synchron-
 ized to a video frame. The 'interval' value is silently clamped to
 the maximum implementation-dependent value supp orted before being
 stored.

 The swap interval is not part of the render con text state. It cannot
 be pushed or popped. The current swap interval for the window
 associated with the current context can be obta ined by calling
 wglGetSwapIntervalEXT. The default swap interv al is 1.

 Because there is no way to extend wgl, this cal l is defined in the ICD
 and can be called by obtaining the address with wglGetProcAddress.
 Because this is not a GL extension, it is not i ncluded in the
 GL_EXTENSIONS string.

Errors

 If the function succeeds, the return value is T RUE. If the function
 fails, the return value is FALSE. To get exten ded error information,
 call GetLastError.

 ERROR_INVALID_DATA The 'interval' param eter is negative.

New State

 None

New Implementation Dependent State

 None

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2134

Name

 WGL_NV_gpu_affinity

Name Strings

 WGL_NV_gpu_affinity

Contact

 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'a t' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2005-2006.

Status

 Completed.

Version

 Last Modified Date: 11/08/2006
 Author revision: 11

Number

 Unassigned

Dependencies

 WGL_ARB_extensions_string is required.

 This extension interacts with WGL_ARB_make_cu rrent_read.

 This extension interacts with WGL_ARB_pbuffer .

 This extension interacts with GL_EXT_framebuf fer_object

Overview

 On systems with more than one GPU it is desir able to be able to
 select which GPU(s) in the system become the target for OpenGL
 rendering commands. This extension introduces the concept of a GPU
 affinity mask. OpenGL rendering commands are directed to the
 GPU(s) specified by the affinity mask. GPU af finity is immutable.
 Once set, it cannot be changed.

 This extension also introduces the concept ca lled affinity-DC. An
 affinity-DC is a device context with a GPU af finity mask embedded
 in it. This restricts the device context to o nly allow OpenGL
 commands to be sent to the GPU(s) in the affi nity mask.

 Handles for the GPUs present in a system are enumerated with the
 command wglEnumGpusNV. An affinity-DC is crea ted by calling
 wglCreateAffinityDCNV. This function takes a list of GPU handles,
 which make up the affinity mask. An affinity- DC can also

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2135

 indirectly be created by obtaining a DC from a pBuffer handle, by
 calling wglGetPbufferDC, which in turn was cr eated from an
 affinity-DC by calling wglCreatePbuffer.

 A context created from an affinity DC will in herit the GPU
 affinity mask from the DC. Once inherited, it cannot be changed.
 Such a context is called an affinity-context. This restricts the
 affinity-context to only allow OpenGL command s to be sent to those
 GPU(s) in its affinity mask. Once created, th is context can be
 used in two ways:

 1. Make the affinity-context current to an affinity-DC. This
 will only succeed if the context's affin ity mask is the same
 as the affinity mask in the DC. There is no window
 associated with an affinity DC, therefor e this is a way to
 achieve off-screen rendering to an OpenG L context. This can
 either be rendering to a pBuffer, or an application created
 framebuffer object. In the former case, the affinity-mask of
 the pBuffer DC, which is obtained from a pBuffer handle,
 will be the same affinity-mask as the DC used to created the
 pBuffer handle. In the latter case, the default framebuffer
 object will be incomplete because there is no window-system
 created framebuffer. Therefore, the appl ication will have to
 create and bind a framebuffer object as the target for
 rendering.
 2. Make the affinity-context current to a D C obtained from a
 window. Rendering only happens to the su b rectangles(s) of
 the window that overlap the parts of the desktop that are
 displayed by the GPU(s) in the affinity mask of the context.

 Sharing OpenGL objects between affinity-conte xts, by calling
 wglShareLists, will only succeed if the conte xts have identical
 affinity masks.

 It is not possible to make a regular context (one without an
 affinity mask) current to an affinity-DC. Thi s would mean a way
 for a context to inherit affinity information , which makes the
 context affinity mutable, which is counter to the premise of this
 extension.

New Procedures, Functions and Structures:

 DECLARE_HANDLE(HGPUNV);

 typedef struct _GPU_DEVICE {
 DWORD cb;
 CHAR DeviceName[32];
 CHAR DeviceString[128];
 DWORD Flags;
 RECT rcVirtualScreen;
 } GPU_DEVICE, *PGPU_DEVICE;

 BOOL wglEnumGpusNV(UINT iGpuIndex,
 HGPUNV *phGpu);

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2136

 BOOL wglEnumGpuDevicesNV(HGPUNV hGpu,
 UINT iDeviceIndex,
 PGPU_DEVICE lpGpuDev ice);

 HDC wglCreateAffinityDCNV(const HGPUNV *phGpu List);

 BOOL wglEnumGpusFromAffinityDCNV(HDC hAffinit yDC,
 UINT iGpuInd ex,
 HGPUNV *hGpu);

 BOOL wglDeleteDCNV(HDC hdc);

New Tokens

 New error codes set by wglShareLists, wglMake Current and
 wglMakeContextCurrentARB:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV 0x20D 0

 New error codes set by wglMakeCurrent and
 wglMakeContextCurrentARB:

 ERROR_MISSING_AFFINITY_MASK_NV 0x20D 1

Additions to the WGL Specification

 GPU Affinity

 To query handles for all GPUs in a system cal l:

 BOOL wglEnumGpusNV(UINT iGpuIndex, HGPUN V *phGPU);

 <iGpuIndex> is an index value that specifies a GPU.

 <phGPU> upon return will contain a handle for GPU number
 <iGpuIndex>. The first GPU will be index 0.

 By looping over wglEnumGpusNV and incrementin g <iGpuIndex>,
 starting at index 0, all GPU handles can be q ueried. If the
 function succeeds, the return value is TRUE. If the function
 fails, the return value is FALSE and <phGPU> will be unmodified.
 The function fails if <iGpuIndex> is greater or equal than the
 number of GPUs supported by the system.

 To retrieve information about the display dev ices supported by a
 GPU call:

 BOOL wglEnumGpuDevicesNV(HGPUNV hGpu,
 UINT iDeviceInde x,
 PGPU_DEVICE lpGp uDevice);

 <hGpu> is a handle to the GPU to query.

 <iDeviceIndex> is an index value that specifi es a display device,
 supported by <hGpu>, to query. The first disp lay device will be
 index 0.

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2137

 <lpGpuDevice> pointer to a GPU_DEVICE structu re which will receive
 information about the display device at index <iDeviceIndex>.

 By looping over the function wglEnumGpuDevice sNV and incrementing
 <iDeviceIndex>, starting at index 0, all disp lay devices can be
 queried. If the function succeeds, the return value is TRUE. If
 the function fails, the return value is FALSE and <lpGpuDevice>
 will be unmodified. The function fails if <iD eviceIndex> is
 greater or equal than the number of display d evices supported by
 <hGpu>.

 The GPU_DEVICE structure has the following me mbers:

 typedef struct _GPU_DEVICE {
 DWORD cb;
 CHAR DeviceName[32];
 CHAR DeviceString[128];
 DWORD Flags;
 RECT rcVirtualScreen;
 } GPU_DEVICE, *PGPU_DEVICE;

 <cb> is the size of the GPU_DEVICE structure. Before calling
 wglEnumGpuDevicesNV, set <cb> to the size, in bytes, of
 GPU_DEVICE.

 <DeviceName> is a string identifying the disp lay device name. This
 will be the same string as stored in the <Dev iceName> field of the
 DISPLAY_DEVICE structure, which is filled in by
 EnumDisplayDevices.

 <DeviceString> is a string describing the GPU for this display
 device. It is the same string as stored in th e <DeviceString>
 field in the DISPLAY_DEVICE structure that is filled in by
 EnumDisplayDevices when it describes a displa y adapter (and not a
 monitor).

 <Flags> Indicates the state of the display de vice. It can be a
 combination of any of the following:

 DISPLAY_DEVICE_ATTACHED_TO_DESKTOP If se t, the device is part
 of the desktop.

 DISPLAY_DEVICE_PRIMARY_DEVICE If se t, the primary
 desktop is on this device. Only one device in the system can have
 this set.

 <rcVirtualScreen> specifies the display devic e rectangle, in
 virtual screen coordinates. The value of <rcV irtualScreen> is
 undefined if the device is not part of the de sktop, i.e.
 DISPLAY_DEVICE_ATTACHED_TO_DESKTOP is not set in the <Flags>
 field.

 The function wglEnumGpuDevicesNV can fail for a variety of
 reasons. Call GetLastError to get extended er ror information.
 Possible errors are as follows:

 ERROR_INVALID_HANDLE <hGpu> is not a valid GPU handle.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2138

 A new type of DC, called an affinity-DC, can be used to direct
 OpenGL commands to a specific GPU or set of G PUs. An affinity-DC
 is a device context with a GPU affinity mask embedded in it. This
 restricts the device context to only allow Op enGL commands to be
 sent to the GPU(s) in the affinity mask. An a ffinity-DC can be
 created directly, using the new function wglC reateAffinityDCNV and
 also indirectly by calling wglCreatePbufferAR B followed by
 wglGetPbufferDCARB. To create an affinity-DC directly call:

 HDC wglCreateAffinityDCNV(const HGPUNV * phGpuList);

 <phGpuList> is a NULL-terminated array of GPU handles to which the
 affinity-DC will be restricted. If an element in the list is not a
 GPU handle, as returned by wglEnumGpusNV, it is silently ignored.

 If successful, the function returns an affini ty-DC. If it fails,
 NULL will be returned.

 To create an affinity-DC indirectly, first ca ll
 wglCreatePbufferARB passing it an affinity-DC . Next, pass the
 handle returned by the call to wglCreatePbuff erARB to
 wglGetPbufferDCARB to create an affinity-DC f or the pBuffer. The
 DC returned by wglGetPbufferDCARB will have t he same affinity mask
 as the DC used to create the pBuffer handle b y calling
 wglCreatePbufferARB.

 An affinity-DC has no window associated with it, and therefore it
 has no default window-system-provided framebu ffer. (Note: This is
 terminology borrowed from EXT_framebuffer_obj ect). A context made
 current to an affinity-DC will only be able t o render into an
 application-created framebuffer object, or a pBuffer. The default
 window-system-framebuffer object, when bound, will be incomplete.
 The EXT_framebuffer_object specification defi nes what 'incomplete'
 means exactly.

 A context created from an affinity-DC, by cal ling wglCreateContext
 and passing it an affinity-DC, is called an a ffinity-context. This
 context will inherit the affinity mask from t he DC. This affinity-
 mask cannot be changed. The affinity mask res tricts the affinity-
 context to only allow OpenGL commands to be s ent to those GPU(s)
 in its affinity mask.

 The function wglCreateAffinityDCNV can fail f or a variety of
 reasons. Call GetLastError to get extended er ror information.
 Possible errors are as follows:

 ERROR_NO_SYSTEM_RESOURCES Insufficient res ources exist to
 create the affinity-DC.

 ERROR_INVALID_DATA <phGpuList> is e mpty or contains no
 valid GPU handles

 An affinity-context can only be made current to an affinity-DC
 with the same affinity-mask, otherwise wglMak eCurrent and
 wglMakeContextCurrentARB will fail and return FALSE. In the case

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2139

 of wglMakeContextCurrentARB, the affinity mas ks of both the "read"
 and "draw" DCs need to match the affinity-mas k of the context.

 If a context that has no affinity mask is mad e current to an
 affinity-DC, wglMakeCurrent and wglMakeContex tCurrentARB will fail
 and return FALSE. In the case of wglMakeConte xtCurrentARB it will
 fail if either the "read" or "draw" DC is an affinity-DC.

 If an affinity-context is made current to a D C obtained from a
 window, by calling GetDC, then rendering will only happen to the
 subrectangle(s) of the window that overlap th e parts of the
 desktop that are displayed by the GPU(s) in t he affinity-mask of
 the context. Note that a DC obtained from a w indow does not have
 an affinity mask set.

 The following error codes are added to the de scription of
 wglMakeCurrent and wglMakeContextCurrentARB:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV The d evice context(s) and
 rendering context have non-matching affinity masks.

 ERROR_MISSING_AFFINITY_MASK_NV The r endering context does
 not have an affinity mask set.

 Sharing OpenGL objects between affinity-conte xts, by calling
 wglShareLists, will only succeed if the conte xts have identical
 affinity masks. The following error codes are added to the
 description of wglShareLists:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV The c ontexts have non-
 matching affinity masks.

 To delete an affinity-DC call:

 BOOL wglDeleteDCNV(HDC hdc)

 <hdc> Is a handle of an affinity-DC to delete .

 If the function succeeds, TRUE is returned. I f the function fails,
 FALSE is returned. Call GetLastError to get e xtended error
 information. Possible errors are as follows:

 ERROR_INVALID_HANDLE <hdc> is not a handle of an affinity-DC.

 To retrieve a list of GPU handles that make u p the affinity-mask
 of an affinity-DC, call:

 BOOL wglEnumGpusFromAffinityDCNV(HDC hAf finityDC,
 UINT iGp uIndex,
 HGPUNV * phGpu);

 <hAffinityDC> is a handle of the affinity-DC to query.

 <iGpuIndex> is an index value of the GPU hand le in the affinity
 mask of <hAffinityDC> to query.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2140

 <phGpu> upon return will contain a handle for GPU number
 <iGpuIndex>. The first GPU will be at index 0 .

 By looping over wglEnumGpusFromAffinityDCNV a nd incrementing
 <iGpuIndex>, starting at index 0, all GPU han dles associated with
 the DC can be queried. If the function succee ds, the return value
 is TRUE. If the function fails, the return va lue is FALSE and
 <phGPU> will be unmodified. The function fail s if <iGpuIndex> is
 greater or equal than the number of GPUs asso ciated with
 <hAffinityDC>.

 Call GetLastError to get extended error infor mation. Possible
 errors are as follows:

 ERROR_INVALID_HANDLE <hAffinityDC> is not a handle of an
 affinity-DC.

Interactions with WGL_ARB_make_current_read

 If the make current read extension is not sup ported, all language
 referring to wglMakeContextCurrentARB is dele ted.

Interactions with WGL_ARB_pbuffer

 If the pbuffer extension is not supported, al l language referring
 to puffers, wglGetPbuferDC and wglCreatePbuff er are deleted.

Interactions with GL_EXT_framebuffer_object

 If the framebuffer object extension is not su pported, all language
 referring to framebuffer objects is deleted.

Usage examples

 // Example 1 - Normal window creation, DC setup and
 // context creation.

 PIXELFORMATDESCRIPTOR pfd;
 int pf;
 HDC hDC;
 HGLRC hRC;
 HWND hWnd;

 hWnd = CreateWindow(...);
 hDC = GetDC(hWnd);

 memset(&pfd, 0, sizeof(pfd));
 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_S UPPORT_OPENGL;
 pfd.iPixelType = PFD_TYPE_RGBA;
 pfd.cColorBits = 32;

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2141

 // Note, for ease of code reading no error ch ecking is done.
 pf = ChoosePixelFormat(hDC, &pfd);
 SetPixelFormat(hDC, pf, &pfd);
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORM ATDESCRIPTOR),
 &pfd);

 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 // Example 2 - Offscreen rendering to one GPU using a FBO
 // It is assumed that a context already has b een created (and
 // possibly destroyed) and was used to query the proc addresses
 // of the WGL affinity related entrypoints.

 #define MAX_GPU 4

 PIXELFORMATDESCRIPTOR pfd;
 int pf, gpuIndex = 0;
 HGPUNV hGPU[MAX_GPU];
 HGPUNV GpuMask[MAX_GPU];
 HDC affDC;
 HGLRC affRC;

 // Get a list of the first MAX_GPU GPUs in th e system
 while ((gpuIndex < MAX_GPU) && wglEnumGpusNV(gpuIndex,
 &hGPU[gpuIndex])) {
 gpuIndex++;
 }

 // Create an affinity-DC associated with the first GPU
 GpuMask[0] = hGPU[0];
 GpuMask[1] = NULL;

 affDC = wglCreateAffinityDCNV(GpuMask);

 // Set a pixelformat on the affinity-DC
 pf = ChoosePixelFormat(affDC, &pfd);
 SetPixelFormat(affDC, pf, &pfd);
 DescribePixelFormat(affDC, pf, sizeof(PIXELFO RMATDESCRIPTOR),
 &pfd);

 affRC = wglCreateContext(affDC);
 wglMakeCurrent(affDC, affRC);

 // Make a previously created FBO current so w e have something
 // to render into. Since there's no window, t he default system
 // created FBO is incomplete.
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 <Now draw>

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2142

 // Example 3 - Offscreen rendering to one GPU using a pBuffer
 // It is assumed that a context already has b een created (and
 // possibly destroyed) and was used to query the proc addresses
 // of the WGL affinity and pbuffer related en trypoints.

 #define MAX_GPU 4

 int gpuIndex = 0;
 HGPUNV hGPU[MAX_GPU];
 HGPUNV GpuMask[MAX_GPU];
 HDC affDC, pBufferAffDC;
 HGLRC affRC;

 // Get a list of the first MAX_GPU GPUs in th e system
 while ((gpuIndex < MAX_GPU) && wglEnumGpusNV(gpuIndex,
 &hGPU[gpuIndex])) {
 gpuIndex++;
 }

 // Create an affinity-DC associated with the first GPU
 GpuMask[0] = hGPU[0];
 GpuMask[1] = NULL;

 affDC = wglCreateAffinityDCNV(GpuMask);

 // Setup desired pixelformat attributes for t he pbuffer
 // including WGL_DRAW_TO_PBUFFER_ARB.
 HPBUFFERARB handle;
 int width = 512, height = 512, forma t = 0;
 unsigned int nformats;

 int attribList[] =
 {
 WGL_RED_BITS_ARB, 8,
 WGL_GREEN_BITS_ARB, 8,
 WGL_BLUE_BITS_ARB, 8,
 WGL_ALPHA_BITS_ARB, 8,
 WGL_STENCIL_BITS_ARB, 0,
 WGL_DEPTH_BITS_ARB, 0,
 WGL_DRAW_TO_PBUFFER_ARB, true,
 0,
 };

 wglChoosePixelFormatARB(affDC, attribList, NU LL, 1,
 &format, &nformats);

 handle = wglCreatePbufferARB(affDC, format, w idth, height, NULL);

 // pbufferAffDC will have the same affinity-m ask as affDC.
 pBufferAffDC = wglGetPbufferDCARB(handle);

 // affRC will inherit the affinity-mask from pBufferAffDC.
 affRC = wglCreateContext(pBufferAffDC);
 wglMakeCurrent(pBufferAffDC, affRC);

 <Now draw into the pBuffer>

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2143

Issues

 1) Do we really need an affinity-DC, or can w e do with just an
 affinity context?

 DISCUSSION: If affinity is not part of a DC, a new function will
 need to be defined to create an affinity-cont ext or set an
 affinity-mask for an existing context. Passin g NULL as a HDC to
 wglMakeCurrent will then be one way to create an off-screen
 rendering context, where rendering will have to go to a FBO. If
 the HDC passed to wglMakeCurrent is one for a pBuffer, the
 affinity-mask in the affinity-context dictate s where rendering is
 direct to. This might mean pBuffer resources will have to move, or
 alternatively, duplicated across all GPUs in a system. That is
 counter to the whole idea of this extension. Thus an affinity-DC
 is definitely needed for a pBuffer.

 Thus the question reduces to, do we need an a ffinity-DC in order
 to facilitate off-screen rendering to a FBO? Having an affinity-DC
 has the following advantages:

 a) It is consistent with making current to a pBuffer or window,
 that does need a DC.
 b) passing NULL as a HDC to wglMakeCurrent mi ght be filtered out
 by the MS layer on future OSes.
 c) The driver implementation might benefit fr om knowing at DC
 creation time what the affinity-mask is, rath er than at
 wglMakeCurrent time.

 RESOLUTION: Yes.

 2) Should the GPU affinity concept also apply to D3D and/or GDI
 commands?

 DISCUSSION: It could be especially desirable to apply the
 affinity concept to D3D. However, D3D is suff iciently different
 that this extension doesn't directly apply.

 RESOLUTION: That falls outside this extension .

 3) Should setting a pixelformat on an affinit y-DC be required?

 DISCUSSION: Setting a pixelformat on an affin ity-DC is not
 strictly necessary if the application does of f-screen rendering to
 a FBO. However, the Microsoft layer of wglMak eCurrent requires
 that the pixelformats of the DC and RC passed to it match. This
 becomes an issue when making an affinity-cont ext current to a DC
 obtained from a window. The DC has a pixelfor mat set by the
 application, and therefore the affinity-conte xt needs to have the
 same pixelformat. This means the affinity-DC, that the affinity-
 context is created from, needs to have the sa me pixelformat set.

 RESOLUTION: YES. Setting a pixelformat on an affinity-DC is
 required.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications

 2144

 4) Is it allowed to make an affinity-context current to an
 affinity-DC where the mask of the context spa ns more GPUs than the
 mask in the DC?

 5) Is it allowed to make an affinity-context current to an
 affinity-DC where the mask of the context spa ns less GPUs than the
 mask in the DC?

 DISCUSSION: Issues 4 and 5 are lumped togethe r in this discussion.
 For example, is this scenario something we wa nt to support: An
 application wants to share objects across two contexts and have
 these two contexts each render to a different GPU. It can do this
 by creating two affinity-DCs. One has an affi nity mask for the
 first GPU, the other for the second GPU. It a lso creates two
 affinity-contexts that both have an affinity- mask that spans both
 GPUs. Making one context current to the first affinity-DC will
 lock the context to the GPU in the mask of th at affinity-DC. Make
 another context current to the second affinit y-DC will lock that
 context to the second GPU. This is effectivel y what issue 4) is
 asking. . The simplest solution is to disallo w these cases, and
 that is how the spec is currently written.

 RESOLUTION: NO, we will not allow this to kee p the spec simple. If
 necessary, these restrictions can always be l ifted later.

 6) What should an application do if the enum functions that return
 BOOL fail for another reason than they are do ne? For example, if
 they fail because they run out of memory?

 RESOLUTION: An application will have to call GetLastError to find
 out the reason of failure.

 7) The "Enum" API commands in this extension assume that the list
 of things being enumerated does not change dy namically. Is that
 reasonable?

 DISCUSSION: Display devices, and possibly GPU s in the future, can
 be changed dynamically and/or hotplugged. Thu s yes, this is a
 potential issue. Existing OS functionality li ke EnumDisplayDevices
 and even wglMakeCurrent will suffer from this too. In the latter
 case, the application could make a context cu rrent to a device
 that was removed from the system. A possible solution would be
 some sort of notification mechanism to the ap plication. Possibly
 combined with being able to snapshot state fi rst, then enumerate
 that snapshot. That snapshot of state might i mmediately become
 invalid, but at least the enumeration will wa lk a consistent list.

 RESOLUTION: This is a wider issue than just t his specification,
 and not currently addressed.

 8) How do I transfer data efficiently between two affinity-
 contexts?

 DISCUSSION: It is desired for an application to render in one
 context, and transfer the result of that rend ering to another
 context. These two contexts can be on differe nt GPUs. If they are,

NVIDIA OpenGL Extension Specifications WGL_NV_gpu_affinity

 2145

 how does the application efficiently transfer this data? Currently
 OpenGL provides two mechanisms, neither of wh ich are ideal:

 1) The application can do a ReadPixels follow ed by a DrawPixels /
 TexImage call. This involves transfer through host memory, which
 can be slow.

 2) The application can share objects among th e two contexts using
 wglShareLists(). This will work, but is count er to the premise of
 this extension where each GPU has its own set of resources, not
 shared with another GPU.

 RESOLUTION: This is a hole which needs to be addressed separately.

Revision history

 None

WGL_NV_render_depth_texture NVIDIA OpenGL Extension Specifications

 2146

Name

 NV_render_depth_texture

Name Strings

 WGL_NV_render_depth_texture

Notice

 Copyright NVIDIA Corporation, 2001, 2002.

Status

 Shipping, March 2002.

Version

 Last Modified Date: $Date: 2002/03/22 $
 NVIDIA Revision: $Revision: #5 $

Number

 263

Dependencies

 OpenGL 1.1 is required.

 ARB_render_texture is required.

 SGIX_depth_texture is required.

 NV_render_texture_rectangle affects the definit ion of this extension.

Overview

 This extension allows a depth buffer to be used for both rendering and
 texturing. It is built upon the ARB_render_tex ture extension; the only
 addition in this extension is the ability to us e a depth buffer as a
 DEPTH_COMPONENT texture map.

Issues

 In the ARB_render_texture spec, the number and size of physical depth
 buffers in a rendered texture is left undefined . From the
 ARB_render_texture specification:

 The contents of the depth and stencil buffe rs may not be preserved
 when rendering a texture to the pbuffer and switching which image
 of the texture is rendered to (e.g., switch ing from rendering one
 mipmap level to rendering another).

NVIDIA OpenGL Extension Specifications WGL_NV_render_depth_texture

 2147

 That behavior is clearly unacceptable in an imp lementation where the
 rendered texture IS the depth buffer.

 RESOLVED: Yes, it needs to be fixed. This e xtension specifies that
 each mipmap level and cube map face gets its own depth buffer, whose
 contents are preserved when switching render targets.

 Should there be separate pixel format attribute s for BIND_TO_TEXTURE_DEPTH
 and BIND_TO_TEXTURE_RECTANGLE_DEPTH? Or is a s ingle attribute sufficient?

 RESOLVED: We should support separate capabil ities, as done with the
 other formats. See the NV_render_texture_rec tangle spec for more info.

 Should it be possible to have a single pbuffer support binding both color
 and depth buffers to textures?

 RESOLVED: Yes. This means that we must prov ide a separate
 DEPTH_TEXTURE_FORMAT attribute that must be s et at pbuffer creation
 time, since using only the TEXTURE_FORMAT att ribute would allow you to
 create a pbuffer supporting either color or d epth textures, but not
 both.

 For double-buffered or stereo pixel formats tha t support binding to depth
 textures, how many depth buffers do you have?

 RESOLVED: There is only a single depth buffe r for double-buffered or
 stereo pixel formats. Double buffering refer s only to the number of
 color buffers. There will be multiple depth buffers only if the pbuffer
 is specified to support mipmaps or cube maps.

 What happens with multisample pixel formats, wh ere the only depth buffer
 contains multiple samples per pixel? This issu e is slightly different for
 rendered depth textures, since multisample pixe l formats do contain
 "normal" color buffers in addition to the multi sample buffer.

 UNRESOLVED.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <piAttributes> parameter of wgl GetPixelFormatAttribivARB,
 wglGetPixelFormatAttribfvARB, and the <piAttrib IList> and <pfAttribIList>
 parameters of wglChoosePixelFormatARB:

 WGL_BIND_TO_TEXTURE_DEPTH_NV 0x20A3
 WGL_BIND_TO_TEXTURE_RECTANGLE_DEPTH_NV 0x20A4

 Accepted by the <piAttribList> parameter of wgl CreatePbufferARB and
 by the <iAttribute> parameter of wglQueryPbuffe rARB:

 WGL_DEPTH_TEXTURE_FORMAT_NV 0x20A5

WGL_NV_render_depth_texture NVIDIA OpenGL Extension Specifications

 2148

 Accepted as a value in the <piAttribList> param eter of wglCreatePbufferARB
 and returned in the value parameter of wglQuery PbufferARB when
 <iAttribute> is WGL_DEPTH_TEXTURE_FORMAT_NV:

 WGL_TEXTURE_DEPTH_COMPONENT_NV 0x20A6
 WGL_NO_TEXTURE_ARB 0x2077

 Accepted by the <iBuffer> parameter of wglBindT exImageARB:

 WGL_DEPTH_COMPONENT_NV 0x20A7

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

Additions to the WGL Specification

 First, close your eyes and pretend that a WGL s pecification actually
 existed. Maybe if we all concentrate hard enou gh, one will magically
 appear.

 (Add to the description of <piAttributes> in wg lGetPixelFormatAttribivARB
 and <pfAttributes> in wglGetPixelFormatfv:)

 WGL_BIND_TO_TEXTURE_DEPTH_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_DEPTH_NV

 True if the depth buffer can be bound to a DEPTH_COMPONENT texture or
 texture rectangle. Currently only pbuffers can be bound as textures
 so this attribute will only be TRUE if WGL_ DRAW_TO_PBUFFER is also
 TRUE.

NVIDIA OpenGL Extension Specifications WGL_NV_render_depth_texture

 2149

 (Add new table entries to match criteria in des cription of
 wglChoosePixelFormatARB:)

 Attribute Typ e Match Criteria

 WGL_BIND_TO_TEXTURE_DEPTH_NV boo lean exact
 WGL_BIND_TO_TEXTURE_RECTANGLE_DEPTH_NV boo lean exact

 (In the wglCreatePbufferARB section, modify the attribute list)

 WGL_TEXTURE_FORMAT_ARB

 This attribute indicates the base internal format of the texture that
 will be created when a color buffer of a pb uffer is bound to a texture
 map. It can be set to WGL_TEXTURE_RGB_ARB (indicating an internal
 format of RGB), WGL_TEXTURE_RGBA_ARB (indic ating a base internal
 format of RGBA), or WGL_NO_TEXTURE_ARB. The default value is
 WGL_NO_TEXTURE_ARB.

 WGL_DEPTH_TEXTURE_FORMAT_NV

 This attribute indicates the base internal format of the texture that
 will be created when the depth buffer of a pbuffer is bound to a
 texture map. It can be set to WGL_TEXTURE_ DEPTH_COMPONENT_NV
 (indicating an internal format of DEPTH_COM PONENT), or
 WGL_NO_TEXTURE_ARB. The default value is WG L_NO_TEXTURE_ARB.

 (In the wglCreatePbufferARB section, modify the discussion of what happens
 to the depth/stencil/accum buffers when switchi ng between mipmap levels or
 cube map faces.)

 For pbuffers with a texture format of WGL_TEXTU RE_RGB_ARB or
 WGL_TEXTURE_RGBA_ARB, there will be a separate set of color buffers for
 each mipmap level and cube map face in the pbuf fer. Otherwise, the WGL
 implementation is free to share a single set of color, auxillary, and
 accumulation buffers between levels or faces.

 For pbuffers with a depth texture format of
 WGL_TEXTURE_DEPTH_COMPONENT_NV, there will be a separate depth buffer for
 each mipmap level and cube map face. Otherwise , the WGL implementation is
 free to share a single depth buffer between lev els or faces.

 The contents of any color or depth buffer that may be shared between faces
 are undefined after switching between mipmap le vels or cube map faces.

 (In the wglCreatePbufferARB section, add to the error list)

 ERROR_INVALID_DATA WGL_DEPTH_TEXTURE_FO RMAT_NV is
 WGL_TEXTURE_DEPTH_CO MPONENT_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_DEPTH_NV
 attribute is not set in the pixel format.

WGL_NV_render_depth_texture NVIDIA OpenGL Extension Specifications

 2150

 ERROR_INVALID_DATA WGL_DEPTH_TEXTURE_FO RMAT_NV is
 WGL_TEXTURE_DEPTH_CO MPONENT_NV,
 WGL_TEXTURE_TARGET_A RB is not
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ DEPTH_NV attribute is not
 set in the pixel for mat.

 (In the wglCreatePbufferARB section, modify the error list, replacing the
 errors concerning texture format/target combina tions with the following.)

 ERROR_INVALID_DATA WGL_TEXTURE_TARGET_A RB is WGL_NO_TEXTURE_ARB
 and either WGL_TEXTU RE_FORMAT_ARB or
 WGL_DEPTH_TEXTURE_FO RMAT_NV is not
 WGL_NO_TEXTURE_ARB.

 ERROR_INVALID_DATA WGL_TEXTURE_TARGET_A RB is not
 WGL_NO_TEXTURE_ARB a nd both
 WGL_TEXTURE_FORMAT_A RB and
 WGL_DEPTH_TEXTURE_FO RMAT_NV are
 WGL_NO_TEXTURE_ARB.

 Modify wglDestroyPbufferARB:

 A pbuffer is destroyed by calling

 BOOL wglDestroyPbufferARB(HPBUFFERARB hPbuf fer);

 The pbuffer is destroyed once it is no long er current to any rendering
 context and once all color and depth buffer s that are bound to a
 texture object have been released. When a pbuffer is destroyed, any
 memory resources that are attached to it ar e freed and its handle is
 no longer valid.

 Modify wglBindTexImageARB:

 ...

 The pbuffer attribute WGL_DEPTH_TEXTURE_FOR MAT_NV determines the base
 internal format of the depth texture. The f ormat-specific component
 sizes are also determined by pbuffer attrib utes as shown in the table
 below. The component sizes are dependent o n the format of the
 texture.

 Texture Component Size Format

 D WGL_DEPTH_BITS_ARB DEPTH_COMPONENT

 Table x.x: Size of texture components

 ...

 The possible values for <iBuffer> are WGL_F RONT_LEFT_ARB,
 WGL_FRONT_RIGHT_ARB, WGL_BACK_LEFT_ARB, WGL _BACK_RIGHT_ARB,
 WGL_DEPTH_COMPONENT_NV, and WGL_AUX0_ARB th rough WGL_AUXn_ARB.

NVIDIA OpenGL Extension Specifications WGL_NV_render_depth_texture

 2151

 ...

 (Modify paragraphs in wglBindTexImageARB sectio n to include language about
 allowing depth buffers)

 Note that the color or depth buffer is bound to a texture object. If the
 texture object is shared between contexts, then the color or depth buffers
 are also shared. If a texture object is delete d before
 wglReleaseTexImageARB is called, then the color buffer is released and the
 pbuffer is made available for reading and writi ng.

 It is not an error to call TexImage2D, TexImage 1D, CopyTexImage1D or
 CopyTexImage2D to replace an image of a texture object that has a color or
 depth buffer bound to it. However, these calls will cause the color or
 depth buffers to be released back to the pbuffe r and new memory will be
 allocated for the texture. Note that the color or depth buffer is released
 even if the image that is being defined is a mi pmap level that was not
 defined by the color buffer.

 (Modify wglReleaseTexImageARB section to includ e language allowing the
 binding of depth buffers)

 To release a color or depth buffer that is bein g used as a texture call

 BOOL wglReleaseTexImageARB (HPBUFFERARB hPb uffer, int iBuffer)

 This releases the specified color or depth buff er back to the pbuffer. The
 pbuffer is made available for reading and writi ng when it no longer has
 any color or depth buffers bound as textures.

 <iBuffer> must be one of WGL_FRONT_LEFT_ARB, WG L_FRONT_RIGHT_ARB,
 WGL_BACK_LEFT_ARB, WGL_BACK_RIGHT_ARB, WGL_DEPTH_COMPONENT_NV, or
 WGL_AUX0_ARB through WGL_AUXn_ARB.

 The contents of the color or depth buffer being released are undefined
 when it is first released. In particular, there is no guarantee that the
 texture image is still present. However, the co ntents of other color,
 depth, stencil, or accumulation buffers are una ffected when the color or
 depth buffer is released.

 If the specified color or depth buffer is no lo nger bound to a texture
 (e.g., because the texture object was deleted) then this call is a noop;
 no error is generated.

 After a color or depth buffer is released from a texture (either
 explicitly by calling wglReleaseTexImageARB or implicitly by calling a
 routine such as TexImage2D), all texture images that were defined by the
 color buffer become NULL (it is as if TexImage was called with an image of
 zero width).

New State

 None

WGL_NV_render_depth_texture NVIDIA OpenGL Extension Specifications

 2152

Dependencies on NV_render_texture_rectangle

 If NV_render_texture_rectangle is not supported , all references to texture
 rectangles and WGL_BIND_TO_TEXTURE_RECTANGLE_DE PTH_NV should be deleted.

NVIDIA OpenGL Extension Specifications WGL_NV_render_texture_rectangle

 2153

Name

 NV_render_texture_rectangle

Name Strings

 WGL_NV_render_texture_rectangle

Notice

 Copyright NVIDIA Corporation, 2001, 2002.

Status

 Shipping, March 2002.

Version

 Last Modified Date: $Date: 2003/01/08 $
 NVIDIA Revision: $Revision: #7 $

Number

 264

Dependencies

 OpenGL 1.1 is required.

 WGL_ARB_render_texture is required.

 GL_NV_texture_rectangle is required.

 The extension is written against the OpenGL 1.2 .1 Specification.

Overview

 This extension allows a color buffer with non-p ower-of-two dimensions to
 be used for both rendering and texturing. It i s built upon the
 ARB_render_texture extension; the only addition in this extension is the
 ability to bind a texture to a texture rectangl e target, as provided
 through the NV_texture_rectangle extension.

Issues

 What is the interaction of this spec and the WG L_MIPMAP_TEXTURE_ARB
 attribute?

 RESOLVED: NV_texture_rectangle doesn't suppo rt mipmaps, so it's kind of
 stupid to allocate them. Trying will result in an error.

 Should there be separate pixel format attribute s for
 BIND_TO_TEXTURE_RECTANGLE_RGB and RGBA? Or is a simple
 BIND_TO_TEXTURE_RECTANGLE attribute sufficient?

 RESOLVED: Separate capabilities. There may be pixel formats where
 rendered texture rectangles are supported, bu t conventional textures are

WGL_NV_render_texture_rectangle NVIDIA OpenGL Extension Specifications

 2154

 not. If a single BIND_TO_TEXTURE_RECTANGLE a ttribute were used, there
 would be no cue for RGB/RGBA binding support, and the existing
 attributes would signal the ability to render to conventional textures.

 Alternately, pixel formats could be constrain ed so that the only
 render-texture capable formats are those that support all allowable
 targets.

Implementation Notes

 None.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <piAttributes> parameter of wgl GetPixelFormatAttribivARB,
 wglGetPixelFormatAttribfvARB, and the <piAttrib IList> and <pfAttribIList>
 parameters of wglChoosePixelFormatARB:

 WGL_BIND_TO_TEXTURE_RECTANGLE_RGB_NV 0x20A0
 WGL_BIND_TO_TEXTURE_RECTANGLE_RGBA_NV 0x20A1

 Accepted as a value in the <piAttribList> param eter of wglCreatePbufferARB
 and returned in the value parameter of wglQuery PbufferARB when
 <iAttribute> is WGL_TEXTURE_TARGET_ARB:

 WGL_TEXTURE_RECTANGLE_NV 0x20A2

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

NVIDIA OpenGL Extension Specifications WGL_NV_render_texture_rectangle

 2155

Additions to the WGL Specification

 First, close your eyes and pretend that a WGL s pecification actually
 existed. Maybe if we all concentrate hard enou gh, one will magically
 appear.

 These modifications are relative to the ARB_ren der_texture spec.

 Add to the description of <piAttributes> in wgl GetPixelFormatAttribivARB
 and <pfAttributes> in wglGetPixelFormatfv:

 WGL_BIND_TO_TEXTURE_RECTANGLE_RGB_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_RGBA_NV

 True if the color buffers can be bound as R GB/RGBA textures using the
 texture rectangle target. Currently only p buffers can be bound as
 textures so this attribute will only be TRU E if WGL_DRAW_TO_PBUFFER is
 also TRUE. It is possible to bind a RGBA vi sual to a RGB texture in
 which case the values in the alpha componen t of the visual are ignored
 when the color buffer is used as a RGB text ure.

 Add new table entries to match criteria in desc ription of
 wglChoosePixelFormatARB:

 Attribute Typ e Match Criteria

 WGL_BIND_TO_TEXTURE_RECTANGLE_RGB_NV boo lean exact
 WGL_BIND_TO_TEXTURE_RECTANGLE_RGBA_NV boo lean exact

 Modify wglCreatePbufferARB:

 The following attributes are supported by w glCreatePbufferARB:

 ...

 WGL_TEXTURE_TARGET_ARB

 This attribute indicates the target for the texture that will be
 created when the pbuffer is created with a texture format other than
 WGL_NO_TEXTURE_ARB. This attribute can be set to WGL_NO_TEXTURE_ARB,
 WGL_TEXTURE_1D_ARB, WGL_TEXTURE_2D_ARB, WGL _TEXTURE_CUBE_MAP_ARB, or
 WGL_TEXTURE_RECTANGLE_NV. The default value is WGL_NO_TEXTURE_ARB.

 (Modify power-of-two error for wglCreatePbuffer ARB)

 ERROR_INVALID_DATA The pixel format att ribute
 WGL_TEXTURE_TARGET_A RB is WGL_TEXTURE_1D_ARB,
 WGL_TEXTURE_2D_ARB, or
 WGL_TEXTURE_CUBE_MAP _ARB, and WGL_PBUFFER_WIDTH
 and/or WGL_PBUFFER_H EIGHT is not a power of
 two.

 (Add new wglCreatePbufferARB error)

 ERROR_INVALID_DATA WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV
 and WGL_MIPMAP_TEXTU RE_ARB is non-zero.

WGL_NV_render_texture_rectangle NVIDIA OpenGL Extension Specifications

 2156

 (Add wglCreatePbufferARB errors missing from th e ARB_render_texture spec)

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is WGL_TEXTURE_RGB_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_RGB_NV attribute
 is not set in the pi xel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is WGL_TEXTURE_RGB_NV,
 WGL_TEXTURE_TARGET_A RB is not
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RGB_NV attribute is not set
 in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is WGL_TEXTURE_RGBA_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_RGBA_NV attribute
 is not set in the pi xel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is WGL_TEXTURE_RGBA_NV,
 WGL_TEXTURE_TARGET_A RB is not
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RGBA_NV attribute is not
 set in the pixel for mat.

 Modify wglBindTexImageARB (only adding verbiage for supporting texture
 rectangles):

 The command

 BOOL wglBindTexImageARB (HPBUFFERARB hPbuff er, int iBuffer)

 defines a one-dimensional texture image, a two-dimensional
 texture image, a two-dimensional texture re ctangle image, or a set of
 two-dimensional cube map texture images...

 The texture targets are derived... If the texture target is
 WGL_TEXTURE_2D_ARB, then <iBuffer> defines a 2D texture for the
 current 2D texture object. If the texture target is
 WGL_TEXTURE_RECTANGLE_NV, then <iBuffer> de fines a texture rectangle
 for the current texture rectangle object. If the texture target is
 WGL_TEXTURE_1D_ARB, then <iBuffer> defines a 1D texture for the
 current 1D texture object.

New State

 None

NVIDIA OpenGL Extension Specifications WGL_NV_swap_group

 2157

Name

 NV_swap_group

Name Strings

 WGL_NV_swap_group

Status

 Shipping since 2003 on Quadro GPUs with framelo ck support

Version

 Date: 02/20/2008 Revision: 1.0

Number

 351

Dependencies

 Written based on the wording of the GLX_SGIX_sw ap_group and
 GLX_SGIX_swap_barrier specifications.

 WGL_EXT_swap_control affects the definition of this extension.
 WGL_EXT_swap_frame_lock affects the definition of this extension.

Overview

 This extension provides the capability to synch ronize the buffer swaps
 of a group of OpenGL windows. A swap group is c reated, and windows are
 added as members to the swap group. Buffer swa ps to members of the swap
 group will then take place concurrently.

 This extension also provides the capability to sychronize the buffer
 swaps of different swap groups, which may resid e on distributed systems
 on a network. For this purpose swap groups can be bound to a swap barrier.

 This extension extends the set of conditions th at must be met before
 a buffer swap can take place.

Issues

 An implementation can not guarantee that the in itialization of the swap
 groups or barriers will succeed because the sta te of the window system may
 restrict the usage of these features. Once a sw ap group or barrier has
 been sucessfully initialized, the implementatio n can only guarantee to
 sustain swap group functionality as long as the state of the window system
 does not restrict this. An example for a state that does typically not
 restrict swap group usage is the use of one ful lscreen sized window per
 windows desktop.

New Procedures and Functions

 BOOL wglJoinSwapGroupNV(HDC hDC,
 GLuint group);

WGL_NV_swap_group NVIDIA OpenGL Extension Specifications

 2158

 BOOL wglBindSwapBarrierNV(GLuint group,
 GLuint barrier);

 BOOL wglQuerySwapGroupNV(HDC hDC,
 GLuint *group);
 GLuint *barrier);

 BOOL wglQueryMaxSwapGroupsNV(HDC hDC,
 GLuint *maxGroups,
 GLuint *maxBarriers);

 BOOL wglQueryFrameCountNV(HDC hDC,
 GLuint *count);

 BOOL wglResetFrameCountNV(HDC hDC);

New Tokens

 none

Additions to the WGL Specification

 Add to section 3.2.6, Double Buffering:

 wglJoinSwapGroupNV adds <hDC> to the swap group specified by <group>.
 If <hDC> is already a member of a different group, it is
 implicitly removed from that group first. A swap group is specified as
 an integer value between 0 and the value returned in <maxGroups> by
 wglQueryMaxSwapGroupsNV. If <group> is zero, the hDC is unbound from its
 current group, if any. If <group> is larger than <maxGroups>,
 wglJoinSwapGroupNV fails.

 wglJoinSwapGroupNV returns True if <hDC> has been successfully bound to
 <group> and False if it fails.

 wglBindSwapBarrierNV binds the swap group specified by <group> to <barrier>.
 <barrier> is an integer value between 0 and the value returned in
 <maxBarriers> by wglQueryMaxSwapGroupsNV. If <barrier> is zero, the group is
 unbound from its current barrier, if any. If <barrier> is larger than
 <maxBarriers>, wglBindSwapBarrierNV fails.
 Subsequent buffer swaps for that group will be subject to this binding,
 until the group is unbound from <barrier>.

 wglBindSwapBarrierNV returns True if <group> has been successfully bound to
 <barrier> and False if it fails.

 wglQuerySwapGroupNV returns in <group> and <barrier> the group and barrier
 currently bound to hDC, if any.

 wglQuerySwapGroupNV returns True if <group> and <barrier> could be successfully
 queried for <hDC> and False if it fails.
 If it fails, the values of <group> and <barrier> are undefined.

 wglQueryMaxSwapGroupsNV returns in <maxGroups> and <maxBarriers> the maximum
 number of swap groups and barriers supported by an implementation which
 drives window <hDC>.

 wglQueryMaxSwapGroupsNV returns True if <maxGroups> and <maxBarriers> could be
 successfully queried for <hDC> and False if it fails.
 If it fails, the values of <maxGroups> and <maxBarriers> are undefined.

NVIDIA OpenGL Extension Specifications WGL_NV_swap_group

 2159

 Before a buffer swap can take place, a set of conditions must be
 satisfied. The conditions are defined in terms of the notions of when
 a window is ready to swap and when a group is ready to swap.

 Any hDC that is not a window (i.e. a non-visible rendering buffer) is always
 ready.

 A window is ready when all of the following are true:

 1. A buffer swap command has been issued for it.

 2. Its swap interval has elapsed.

 A group is ready when the following is true:

 1. All windows in the group are ready.

 All of the following must be satisfied before a buffer swap for a window
 can take place:

 1. The window is ready.

 2. If the window belongs to a group, the group is ready.

 3. If the window belongs to a group and that group is bound to a
 barrier, all groups using that barrier are ready.

 Buffer swaps for all windows in a swap group will take place concurrently
 after the conditions are satisfied for every window in the group.

 Buffer swaps for all groups using a barrier will take place concurrently
 after the conditions are satisfied for every window of every group using
 the barrier, if and only if the vertical retraces of the screens of all
 the groups are synchronized. If they are not synchronized, there is no
 guarantee of concurrency between groups.

 An implementation may support a limited number of swap groups and barriers,
 and may have restrictions on where the users of a barrier can reside.
 For example, an implementation may allow the users to reside on different
 display devices or even hosts.
 An implementation may return zero for any of <maxGroups> and <maxBarriers>
 returned by wglQueryMaxSwapGroupsNV if swap groups or barriers are not
 available in that implementation or on that host.

 The implementation provides a universal counter, the so called frame counter,
 among all systems that are locked together by swap groups/barriers. It is
 based on the internal synchronization signal which triggers the buffer swap.

 wglQueryFrameCountNV returns in <count> the current frame counter for
 <swapGroup>.

 wglQueryFrameCountNV returns TRUE if the frame counter could be successfully
 retrieved. Otherwise it returns FALSE.

 wglResetFrameCountNV resets the frame counter of <swapGroup> to zero.

 wglResetFrameCountNV returns TRUE if the frame counter could be successfully
 reset, otherwise it returns FALSE. In a system that has an NVIDIA framelock
 add-on adapter installed and enabled, wglResetFrameCountNV will only succeed when
 the framelock is configured as a Master system.

WGL_NV_swap_group NVIDIA OpenGL Extension Specifications

 2160

Errors

 wglJoinSwapGroupNV, wglQuerySwapGroupNV and wgl QueryMaxSwapGroupsNV generate
 ERROR_DC_NOT_FOUND if <hDC> is not a valid HDC.

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications

 2161

Name

 NV_video_output

Name Strings

 WGL_NV_video_output

Status

 Shipping since 2004 for NVIDIA Quadro SDI (Seri al Digital Interface)

Version

 Last Modified Date: February 20, 2008

Number

 349

Dependencies

 OpenGL 1.1 is required.
 WGL_ARB_extension_string is required.
 WGL_ARB_pixel_format is required.
 WGL_ARB_pbuffer is required.

Overview

 This extension permits a color and or depth buf fer of a pbuffer to
 be used for rendering and subsequent video outp ut. After a pbuffer
 has been bound to a video device, subsequent co lor and or depth
 rendering into that buffer is displayed on the video output.

Issues

 1. Should the new pbuffer attributes be available through GL queries?

 No, like other pbuffer attributes you need to q uery them through the
 window system extension. This extension does no t make any changes to
 OpenGL.

Implementation Notes

 1. Any created pbuffers must be the same resolutio n as that specified
 by the state of the video output device.

 2. Applications may use a single pbuffer or a coll ection of pbuffers
 to send frames/fields to a video device. In th e first case, an
 application should block on the call to wglSend PbufferToVideoNV()
 to ensure synchronization. In the second caes, an application
 should utilize wglGetVideoInfoNV() in order to query vblank and
 buffer counters for synchronization.

 NVIDIA OpenGL Extension Specifications

 2162

Intended Usage

 1) Configure the video output device via the NV CPL API or via
 the control panel which uses the NVCPL API.

 2) Call wglChoosePixelFormatARB and find a suit able pixel format
 for rendering images. WGL_DRAW_TO_PBUFFER a nd one of
 WGL_BIND_TO_VIDEO_RGB_NV, WGL_BIND_TO_VIDEO_ RGBA_NV or
 WGL_BIND_TO_VIDEO_RGB_AND_DEPTH_NV must be T RUE. The
 per-component pixel depth of the pbuffer mus t be equal to or
 greater than the per-component depth of the video output.

 3) Create pbuffers and associated rendering con texts for each
 channel of video by calling wglCreatePbuffer ARB with one
 of WGL_BIND_TO_VIDEO_RGB_NV, WGL_BIND_TO_VID EO_RGBA_NV or
 WGL_BIND_TO_VIDEO_RGB_AND_DEPTH_NV tokens in the attribute
 list set to TRUE. Set the width and height for each pbuffer
 to match that of the intended video output d evice.

 4) Call wglGetVideoDeviceNV to retrieve the han dles for all
 video devices available. A video device han dle is required
 for each video stream.

 5) Call wglBindVideoImageNV to bind each pbuffe r drawable to a
 corresponding video device handle.

 6) Start transfers on each video device using t he appropriate
 NVCPL API function call.

 7) Render the current frame/field for each stre am to a
 pbuffer. Once rendering is complete, call
 wglSendPbufferToVideoNV() to send each frame /field to the video
 device.

 9) Render subsequent video frames or fields cal ling
 wglSendPbufferToVideoNV() at the completion of rendering for
 each frame/field.

 10) Stop transfers on the video device via the appropriate NVCPL
 API function call.

 11) Call wglReleaseVideoImageNV to unbind each pbuffer drawable
 from its associated video device.

New Procedures and Functions

 DECLARE_HANDLE(HPVIDEODEV);

 BOOL wglGetVideoDeviceNV(HDC hDC, int numDevice s,
 HPVIDEODEV *hVideoDevi ce);

 BOOL wglReleaseVideoDeviceNV(HPVIDEODEV hVideoD evice);

 BOOL wglBindVideoImageNV (HPVIDEODEV hVideoDevi ce,
 HPBUFFERARB hPbuffer, int iVideoBuffer);

 BOOL wglReleaseVideoImageNV (HPBUFFERARB hPbuff er, int iVideoBuffer);

NVIDIA OpenGL Extension Specifications

 2163

 BOOL wglSendPbufferToVideoNV (HPBUFFERARB hPbuf fer, int iBufferType,
 unsigned long *pu lCounterPbuffer,
 BOOL bBlock);

 BOOL wglGetVideoInfoNV (HPVIDEODEV hpVideoDevic e,
 unsigned long *pulCount erOutputPbuffer,
 unsigned long *pulCount erOutputVideo);

New Tokens

 Accepted by the <piAttributes> parameter of wgl GetPixelFormatAttribivARB,
 wglGetPixelFormatAttribfvARB, and the <piAttrib IList> and <pfAttribIList>
 parameters of wglChoosePixelFormatARB and wglCr eatePbufferARB:

 WGL_BIND_TO_VIDEO_RGB_NV 0x20C0
 WGL_BIND_TO_VIDEO_RGBA_NV 0x20C1
 WGL_BIND_TO_VIDEO_RGB_AND_DEPTH_NV 0x20C2

 Accepted by the <iVideoBuffer> parameter of wgl BindVideoImageNV and
 wglReleaseVideoImageNV:

 WGL_VIDEO_OUT_COLOR_NV 0x20C3
 WGL_VIDEO_OUT_ALPHA_NV 0x20C4
 WGL_VIDEO_OUT_DEPTH_NV 0x20C5
 WGL_VIDEO_OUT_COLOR_AND_ALPHA_NV 0x20C6
 WGL_VIDEO_OUT_COLOR_AND_DEPTH_NV 0x20C7

 Accepted by the <iBufferType> parameter of wglS endPbufferToVideoNV:

 WGL_VIDEO_OUT_FRAME 0x20C8
 WGL_VIDEO_OUT_FIELD_1 0x20C9
 WGL_VIDEO_OUT_FIELD_2 0x20CA
 WGL_VIDEO_OUT_STACKED_FIELDS_1_2 0x20CB
 WGL_VIDEO_OUT_STACKED_FIELDS_2_1 0x20CC

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and State
Requests)

 None.

 NVIDIA OpenGL Extension Specifications

 2164

Additions to the WGL Specification

 Add to the description of <piAttributes> in wgl GetPixelFormatAttribivARB
 and <pfAttributes> in wglGetPixelFormatfv:

 WGL_BIND_TO_VIDEO_RGB_NV
 WGL_BIND_TO_VIDEO_RGBA_NV
 WGL_BIND_TO_VIDEO_RGB_AND_DEPTH_NV

 Add new table entries to match criteria in desc ription of
 wglChoosePixelFormatARB:

 Attribute Type Match Criteria

 WGL_BIND_TO_VIDEO_RGB_NV boolean exact
 WGL_BIND_TO_VIDEO_RGBA_NV boolean exact
 WGL_BIND_TO_VIDEO_RGB_AND_DEPTH_NV boolean exact

 Add wglGetVideoDeviceNV:

 The command

 BOOL wglGetVideoDeviceNV(HDC hDC, int numDe vices,
 HPVIDEODEV hpVideo Device)

 returns an array of upto <numDevices> handles to the available video
 devices in the array <hpVideoDevice>. <numDev ices> must be
 non-negative, and <hpVideoDevice> must not be NULL.

 It is not an error if the number of available video devices is larger
 that <numDevices>; in that case the first <num Devices> device handles
 are returned. It is an error if <numDevices> is larger than the
 number of available video devices. The order of devices returned in
 <hpVideoDevice> is implementation dependent.

 if wglGetVideoDeviceNV fails, FALSE is returne d. To get extended
 error information, call GetLastError. Possibl e errors are as follows:

 ERROR_INVALID_HANDLE <hDC> is not a valid handle.

 ERROR_INVALID_HANDLE <hpVideoDevice> is NULL.

 ERROR_INVALID_VALUE <numDevices> is negative.

 ERROR_INVALID_OPERATION The video devic es are not configured.

 ERROR_RESOURCE_NOT_AVAILABLE The number of v ideo devices requested
 are not availab le.

 Add wglReleaseVideoDeviceNV:

 The command

 BOOL wglReleaseVideoDeviceNV(HPVIDEODEV hVi deoDevice)

NVIDIA OpenGL Extension Specifications

 2165

 releases all resources associated with <hpVideo Device>.

 If wglReleaseVideoDeviceNV fails, FALSE is retu rned. To get extended
 error information, call GetLastError. Possible errors are as follows:

 ERROR_INVALID_HANDLE <hpVideoDevice> is not a valid handle.

 ERROR_INVALID_OPERATION The video devic e is not allocated.

 Add wglBindVideoImageNV and wglReleaseVideoImag eNV:

 The command

 BOOL wglBindVideoImageNV (HPVIDEODEV hpVide oDevice,
 HPBUFFERARB hPbuf fer,
 int iVideoBuffer) ;

 binds <hPbuffer> to <hpVideoDevice> for subsequ ent scanout where
 <iVideoBuffer> specifies that <pbuffer> contain s color, alpha or
 depth data. Neither <pbuffer> nor <hpVideoDevi ce) can be NULL.

 If wglBindVideoImageNV fails, FALSE is returne d. To get extended
 error information, call GetLastError. Possible errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA The pbuffer siz e is not correct.

 ERROR_INVALID_OPERATION The video devic e is not yet configured.

 The command

 BOOL wglReleaseVideoImageNV (HPBUFFERARB hPb uffer,
 int iVideoBuffe r);

 releases <hPbuffer> from a previously bound vid eo device. The
 parameter <iVideoBuffer> specifies that the pbu ffer contains
 color, alpha or depth data. <hPbuffer> may not be NULL.

 If wglReleaseVideoImageNV fails, FALSE is retu rned. To get extended
 error information, call GetLastError. Possible errors are as follows:

 ERROR_INVALID_HANDLE <hPbuffer> is n ot a valid handle.

 ERROR_INVALID_DATA <iBuffer> is no t a valid value.

 Add wglSendPbufferToVideoNV and wglGetVideoInfo NV:

 The command

 BOOL wglSendPbufferToVideoNV (HPBUFFER hPbuf fer, int iBufferType,
 unsigned long *pulCounterPbuffer,
 BOOL bBlock);

 NVIDIA OpenGL Extension Specifications

 2166

 indicates that rendering to the <hPbuffer> is c omplete and that the
 completed frame/field contained within <hPbuffe r> is ready for scan out
 by the video device where <iBufferType> specifi es that <hPbuffer>
 contains the first field, second field, two sta cked fields or a complete
 frame. <hPbuffer> cannot be NULL.
 An <iBufferType> of WGL_VIDEO_OUT_STACKED_FIELD S_1_2 indicates that
 <hPbuffer> does contain field1 and field2 with field1 in the upper half
 of <hPbuffer> and filed2 in the lower half, whi le
 WGL_VIDEO_OUT_STACKED_FIELDS_2_1 indicates fiel d2 in the upper half
 of <hPbuffer> and filed1 in the lower half.
 The flag <bBlock> specifies whether or not the call should block until
 scan out of the specified frame/field is comple te.
 <pulCounterPbuffer> returns the total number of frames/fields sent to
 the video device.

 If wglSendPbufferToVideoNV fails, FALSE is ret urned. To get extended
 error information, call GetLastError. Possible errors are as follows:

 ERROR_INVALID_HANDLE <HPBUFFER> is n ot a valid handle.

 ERROR_INVALID_DATA <iBufferType> i s not a valid value.

 The command

 BOOL wglGetVideoInfoNV (HPVIDEODEV hpVideoD evice,
 unsigned long *pulC ounterOutputPbuffer,
 unsigned long *pulC ounterOutputVideo);

 returns in <pulCounterOutputVideo> the absolute count of vertical
 blanks on <hpVideoDevice> since transfers were started while
 <pulCounterOutputPbuffer> returns the count of the current pbuffer
 being scanned out by <hpVideoDevice>.

 If wglGetVideoInfoNV fails, FALSE is returned. To get extended error
 information, call GetLastError. Possible error s include:

 ERROR_INVALID_HANDLE <hPVIDEODEVICE > is not a valid handle.

New State

 None

Usage Examples

 TBD

Revision History:

 20 February 2008
 public release

	Table of NVIDIA OpenGL Extension Support
	ARB_color_buffer_float
	ARB_depth_texture
	ARB_draw_buffers
	ARB_fragment_program
	ARB_fragment_program_shadow
	ARB_half_float_pixel
	ARB_imaging
	ARB_multisample
	ARB_multitexture
	ARB_occlusion_query
	ARB_pixel_buffer_object
	ARB_point_parameters
	ARB_point_sprite
	ARB_shadow
	ARB_texture_border_clamp
	ARB_texture_compression
	ARB_texture_cube_map
	ARB_texture_env_add
	ARB_texture_env_combine
	ARB_texture_env_crossbar
	ARB_texture_env_dot3
	ARB_texture_float
	ARB_texture_mirrored_repeat
	ARB_texture_non_power_of_two
	ARB_texture_rectangle
	ARB_transpose_matrix
	ARB_vertex_buffer_object
	ARB_vertex_program
	ARB_window_pos
	ATI_draw_buffers
	ATI_texture_float
	ATI_texture_mirror_once
	EXT_abgr
	EXT_bgra
	EXT_bindable_uniform
	EXT_blend_color
	EXT_blend_equation_separate
	EXT_blend_func_separate
	EXT_blend_minmax
	EXT_blend_subtract
	EXT_clip_volume_hint
	EXT_compiled_vertex_array
	EXT_depth_bounds_test
	EXT_draw_buffers2
	EXT_draw_instanced
	EXT_draw_range_elements
	EXT_framebuffer_blit
	EXT_framebuffer_multisample
	EXT_framebuffer_object
	EXT_framebuffer_sRGB
	EXT_fog_coord
	EXT_geometry_shader4
	EXT_gpu_program_parameters
	EXT_gpu_shader4
	EXT_multi_draw_arrays
	EXT_packed_float
	EXT_packed_pixels
	EXT_paletted_texture
	EXT_pixel_buffer_object
	EXT_point_parameters
	EXT_rescale_normal
	EXT_secondary_color
	EXT_separate_specular_color
	EXT_shadow_funcs
	EXT_shared_texture_palette
	EXT_stencil_clear_tag
	EXT_stencil_two_side
	EXT_stencil_wrap
	EXT_texture3D
	EXT_texture_array
	EXT_texture_buffer_object
	EXT_texture_compression_latc
	EXT_texture_compression_rgtc
	EXT_texture_compression_s3tc
	EXT_texture_cube_map
	EXT_texture_edge_clamp
	EXT_texture_env_add
	EXT_texture_env_combine
	EXT_texture_env_dot3
	EXT_texture_filter_anisotropic
	EXT_texture_integer
	EXT_texture_lod_bias
	EXT_texture_mirror_clamp
	EXT_texture_object
	EXT_texture_shared_exponent
	EXT_texture_sRGB
	EXT_timer_query
	EXT_vertex_array
	EXT_vertex_weighting
	HP_occlusion_test
	IBM_rasterpos_clip
	IBM_texture_mirrored_repeat
	NV_blend_square
	NV_conditional_render
	NV_copy_depth_to_color
	NV_depth_buffer_float
	NV_depth_clamp
	NV_evaluators
	NV_fence
	NV_float_buffer
	NV_fog_distance
	NV_fragment_program
	NV_fragment_program_option
	NV_fragment_program2
	NV_fragment_program4
	NV_framebuffer_multisample_coverage
	NV_geometry_program4
	NV_geometry_shader4
	NV_gpu_program4
	NV_half_float
	NV_light_max_exponent
	NV_multisample_filter_hint
	NV_occlusion_query
	NV_packed_depth_stencil
	NV_parameter_buffer_object
	NV_pixel_data_range
	NV_point_sprite
	NV_present_video
	NV_primitive_restart
	NV_register_combiners
	NV_register_combiners2
	NV_texgen_emboss
	NV_texgen_reflection
	NV_texture_compression_vtc
	NV_texture_env_combine4
	NV_texture_expand_normal
	NV_texture_rectangle
	NV_texture_shader
	NV_texture_shader2
	NV_texture_shader3
	NV_transform_feedback
	NV_vertex_array_range
	NV_vertex_array_range2
	NV_vertex_program
	NV_vertex_program1_1
	NV_vertex_program2
	NV_vertex_program2_option
	NV_vertex_program3
	NV_vertex_program4
	SGIS_generate_mipmap
	SGIS_texture_lod
	SGIX_depth_texture
	SGIX_shadow
	SUN_slice_accum
	GLX_EXT_texture_from_pixmap
	GLX_NV_swap_group
	GLX_NV_video_output
	WGL_ARB_buffer_region
	WGL_ARB_extensions_string
	WGL_ARB_make_current_read
	WGL_ARB_pbuffer
	WGL_ARB_pixel_format
	WGL_ARB_render_texture
	WGL_ATI_pixel_format_float
	WGL_EXT_extensions_string
	WGL_EXT_swap_control
	WGL_NV_gpu_affinity
	WGL_NV_render_depth_texture
	WGL_NV_render_texture_rectangle
	WGL_NV_swap_group

