
gf31 gf31Case Study: NVIDIA GeForce 3 Series

Overview

Early programmable GPU.

Available 2001, discontinued.

Specifications (GeForce3 Ti 500)

Memory: 64 MiB

Bandwidth: 8 GB/s.

Programmable vertex processor (shader).

gf31 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf31

gf32 gf32References

Description of GeForce 3 Vertex Processor Microarchitecture

Good technical description in top-tier graphics conference.

Erik Lindholm, Mark J. Kilgard, Henry Moreton, “A User-Programmable Vertex Engine,”

SIGGRAPH 2001, p.149-

Product Overview

Manufacturers product description page, http://www.nvidia.com/page/geforce3.html

Slides describing GeForce3 with good coverage of instruction set.

Michael McCool, Mauro Steigleder, “Graphics Accelerators: State of the Art: NVIDIAs
GeForce3”, http://www.cgl.uwaterloo.ca/Projects/rendering/Talks/StateArt2.ppt

gf32 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf32

http://www.nvidia.com/page/geforce3.html
http://www.cgl.uwaterloo.ca/Projects/rendering/Talks/StateArt2.ppt

gf33 gf33

Specification of Vertex Processor API

Ostensibly, an API for programming, not the true set of machine instructions. . .

. . . however Lindholm 2001 strongly implies it is close to true instruction set.

NV Vertex Program specification,

http://www.ece.lsu.edu/gp/refs/nv-vertex-program.txt

gf33 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf33

http://www.ece.lsu.edu/gp/refs/nv-vertex-program.txt

gf34 gf34

GeForce3 Major Units

Command and Data Fetch

Vertex Processor

Single Unit

Programmable

This unit described in detail here.

Primitive Assembly Setup

Texture Shader

Four Units

An important unit, but not covered in detail until good reference found.

Z-Test, Blend, Frame Buffer Update

gf34 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf34

gf35 gf35

Operating Modes

Render Mode:

GPU processing vertices as vertex attributes arrive from CPU.

In render mode when processing string of glVertex OpenGL commands.

Setup Mode:

GPU changing state (configuration) in response to non-vertex data from CPU.

Setup might be needed for change of:

Transformation matrices.

Vertex program.

Lighting parameters.

gf35 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf35

gf36 gf36Preliminaries: Quad Data Type

Quad Data Type

Just one data type, the quad.

Quad:

Set of four 32-bit FP numbers in IEEE 754 format, so total size is 128 bits.

Format follows IEEE 754 standard but arithmetic does not:

Many arithmetic operations not done to full precision.

No arithmetic exceptions.

Just one rounding mode (not four).

0 × x = 0 ∀x, (including non-numbers)

No integer type (with one special-purpose exception).

gf36 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf36

gf37 gf37

Data Type Rationale

Thirty-two bits sufficient for graphics.

Many graphics operations one 4-element vectors, including homogeneous coordinates and
RGBA data.

True IEEE 754 arithmetic adds to cost but not to value (at least before GPGPU applica-
tions).

gf37 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf37

gf38 gf38Preliminaries: Swizzling

Swizzling (Vector Element Rearrangement and Duplication)

Swizzle:

To rearrange or duplicate elements of a vector. For example, (1, 2, 3, 4) can be swizzled to
(4, 2, 2, 3).

Swizzle Notation

Let R1 be the name of something that stores a quad.

The symbols x, y, z, and w denote the four elements (x is first element, etc.).

Name followed by four letters (e.g., R1.zyxx), rearrange as shown. E.g., for R1.zyxx:
(1, 2, 3, 4) −→ (3, 2, 1, 1). (Note duplication of x.)

Vertex Assembly Notation: One letter (e.g., R0.y): duplicate, equivalent to R0.yyyy.
E.g., (1, 2, 3, 4) −→ (2, 2, 2, 2).

GL Shader Language Notation: Name followed by x ∈ [1, 4] letters: vector of length x
swizzled as shown. E.g., let R1 = (1, 2, 3, 4); then R1.y = (2) (note difference with vertex
assembly notation).

gf38 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf38

gf39 gf39Preliminaries: Vertex Attribute

GeForce 3 Vertex Attribute:

One of 16 quads describing some aspect of a vertex.

Attributes are numbered and each has a specific meaning.

Attribute 0 is the vertex coordinate, attribute 2 is normal, etc.

Attribute numbers are exposed to the APIs (OpenGL, Direct3D).

Attributes number used as register number in several places.

gf39 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf39

gf310 gf310

Unit: Command and Data Fetch

In rendering mode, reads attributes from CPU.

Data from CPU in variety of formats (8-bit integer, 32-bit float, etc.) . . .

. . . and may not be full 4-element vectors.

Unit coverts data to quads and writes to Vertex Attribute Buffer.

Missing array elements are initialized to 0 or 1.

Vertex Attribute Buffer (VAB):

Set of 16 quad registers, each register corresponds to a vertex attribute.

Hardware implementation of command / data fetch unit not described.

gf310 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf310

gf311 gf311Vertex Processor Overview

Vertex Processor Overview

Purpose: Apply transform & lighting computations.

Operation: Read data from VAB, write to OB.

Implemented as very simple microprogrammed processor.

gf311 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf311

gf312 gf312VP Registers

VP Registers

Input Buffer (implements, Vertex Attribute Registers):

A set of 16 quad registers holding vertex attributes, these registers are read-only by vertex
processor. Each vertex processor has several input buffers.

Number of input buffers not available.

The number might have been chosen to match operation latency.

Constant Registers (implements, Program Parameter Registers):

A set of 96 quad registers that are read only by vertex processor.

Constant registers do not change from vertex to vertex.

They hold data such as transformation matrices and lighting parameters.

gf312 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf312

gf313 gf313VP Registers

Temporary Registers:

A set of 12 quad registers that can be read or written by vertex processor.

Address Register:

Effectively a single 32-bit integer register, but defined as a four-element vector of 32-bit integers.
Can only be written by one instruction, ARL. Value can only be used for indexed addressing of
constant (parameter) registers.

Output Buffer (implements Vertex Result Registers):

A set of 16 quad registers that are write only. Each VP has multiple output buffers.

gf313 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf313

gf314 gf314

Vertex Attribute (Input Buffer) Register Names and Purpose (Table X.2)

Vertex

Attribute Conventional Conventional

Register Per-vertex Conventional Component

Number Parameter Per-vertex Parameter Command Mapping

--------- --------------- ----------------------------------- ------------

0 vertex position Vertex x,y,z,w

1 vertex weights VertexWeightEXT w,0,0,1

2 normal Normal x,y,z,1

3 primary color Color r,g,b,a

4 secondary color SecondaryColorEXT r,g,b,1

5 fog coordinate FogCoordEXT fc,0,0,1

6 - - -

7 - - -

8 texture coord 0 MultiTexCoord(GL_TEXTURE0_ARB, ...) s,t,r,q

9 texture coord 1 MultiTexCoord(GL_TEXTURE1_ARB, ...) s,t,r,q

10 texture coord 2 MultiTexCoord(GL_TEXTURE2_ARB, ...) s,t,r,q

11 texture coord 3 MultiTexCoord(GL_TEXTURE3_ARB, ...) s,t,r,q

12 texture coord 4 MultiTexCoord(GL_TEXTURE4_ARB, ...) s,t,r,q

13 texture coord 5 MultiTexCoord(GL_TEXTURE5_ARB, ...) s,t,r,q

14 texture coord 6 MultiTexCoord(GL_TEXTURE6_ARB, ...) s,t,r,q

15 texture coord 7 MultiTexCoord(GL_TEXTURE7_ARB, ...) s,t,r,q

gf314 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf314

gf315 gf315

Vertex Result (Output Buffer) Register Names and Purpose (Table X.1)

Vertex Result Component

Register Name Description Interpretation

-------------- --------------------------------- --------------

HPOS Homogeneous clip space position (x,y,z,w)

COL0 Primary color (front-facing) (r,g,b,a)

COL1 Secondary color (front-facing) (r,g,b,a)

BFC0 Back-facing primary color (r,g,b,a)

BFC1 Back-facing secondary color (r,g,b,a)

FOGC Fog coordinate (f,*,*,*)

PSIZ Point size (p,*,*,*)

TEX0 Texture coordinate set 0 (s,t,r,q)

TEX1 Texture coordinate set 1 (s,t,r,q)

TEX2 Texture coordinate set 2 (s,t,r,q)

TEX3 Texture coordinate set 3 (s,t,r,q)

TEX4 Texture coordinate set 4 (s,t,r,q)

TEX5 Texture coordinate set 5 (s,t,r,q)

TEX6 Texture coordinate set 6 (s,t,r,q)

TEX7 Texture coordinate set 7 (s,t,r,q)

gf315 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf315

gf316 gf316Vertex Attribute Buffer and Input Buffer

Vertex attribute buffer (VAB) to input buffer (IB) transfer.

Data automatically copied from VAB to IB.

Transfer is triggered by a write to VAB attribute 0 (vertex position).

The 16 VAB registers are copied to the 16 registers of one of the IBs.

IB chosen in round-robin fashion.

Dirty bits used to avoid copying data that’s unchanged.

Note automatic triggering of copy by write of attribute 0.

gf316 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf316

gf317 gf317VP Instruction Set Architecture

Instruction Sets

True Instruction Set

Instructions recognized by vertex processor hardware.

These are not documented . . .

. . . but are likely some kind of microinstructions.

Exposed Instruction Set

Instructions recognized by API calls.

Documented in OpenGL NV Vertex Program specification.

Lindholm 2001 implies close match to true instruction set.

NVIDIA-provided software translates exposed instruction set to true one.

Description here is of exposed instruction set.

gf317 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf317

gf318 gf318VP Instruction Set Architecture

Register Name Assembly Syntax

Based on output of NVIDIA compiler.

Input Buffer (Vertex Attribute) Register Names:

vertex program notation: v[0]-v[15] or v[OPOS]-v[TEX7].

NVIDIA compiler: vertex.position, vertex.normal, etc.

Constant Register Names: c[0]-c[95].

Temporary Register Names: R0-R11.

Output Buffer Register Names:

vertex program notation: o[0]-o[15].

NVIDIA compiler: result.position, result.color, etc.

Example:

MAD result.position, vertex.position.w, c[14], R0;

gf318 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf318

gf319 gf319VP Instruction Set Architecture

Instruction Sources

Instructions can have up to three register source operands:

MAD R1, R2, R3, R4;

Any source operand can read IB, temporary, or constant registers:

ADD R1, R2, R3 (Read temporary.)

ADD R1, R2, c[3] (Read constant.)

ADD R1, R2, vertex.position (Read input buffer.)

Any source operand can be arbitrarily swizzled:

ADD R1, R2.x, R3.wzyx (Reverse order of last operand’s components.)

Any source operand can be negated:

ADD R0.y, R0, -R0.z;

Constant register can be indexed using address (not memory) register, A0:

ADD R1, -R2, c[A0];

There are no immediates (instead, place constant in constant register).

gf319 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf319

gf320 gf320VP Instruction Set Architecture

Instruction Destinations

Any instruction can write temporary and output buffer registers.

Un-exposed instructions may be able to write constant memory.

Write can target any subset of components:

DP3 R0.x, R0, R1; (Leave R0’s y, z, and w unchanged.)

gf320 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf320

gf321 gf321VP Instruction Set Architecture

Complete Instruction Set

From 2.14.1.9:
Output

Inputs (vector or

Opcode (scalar or vector) replicated scalar) Operation

------ ------------------ ------------------ --------------------------

ARL s address register address register load

MOV v v move

MUL v,v v multiply

ADD v,v v add

MAD v,v,v v multiply and add

RCP s ssss reciprocal

RSQ s ssss reciprocal square root

DP3 v,v ssss 3-component dot product

DP4 v,v ssss 4-component dot product

DST v,v v distance vector

MIN v,v v minimum

MAX v,v v maximum

SLT v,v v set on less than

SGE v,v v set on greater equal than

EXP s v exponential base 2

LOG s v logarithm base 2

LIT v v light coefficients

gf321 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf321

gf322 gf322Instruction Descriptions

Selected instructions described below.

For descriptions of all instructions see vertex program Section 2.14.1.10.

gf322 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf322

gf323 gf323

Instruction: RCP destination, source0

Reciprocal
t.x = source0.c;

if (negate0) {t.x = -t.x;}

if (t.x == 1.0f) {u.x = 1.0f;} else {u.x = 1.0f / t.x;}

if (xmask) destination.x = u.x;

if (ymask) destination.y = u.x;

if (zmask) destination.z = u.x;

if (wmask) destination.w = u.x;

Precision: u.x− IEEE(1.0/t.x) < 2−22.

gf323 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf323

gf324 gf324

Instruction: EXP destination, source0

Exponential Base 2

t.x = source0.c;

if (negate0) {t.x = -t.x;}

q.x = 2^floor(t.x);

q.y = t.x - floor(t.x);

q.z = q.x * APPX(q.y); // Approximation of 2^q.y

if (xmask) destination.x = q.x;

if (ymask) destination.y = q.y;

if (zmask) destination.z = q.z;

if (wmask) destination.w = 1.0;

x component holds approximate result, y and z hold values needed to compute exact result.

gf324 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf324

gf325 gf325VP ISA: Sample Code

Vertex transformation only (no lighting).

Source Code (OpenGL Shader Language):

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vertex program Assembler Code (Output of NVIDIA compiler)

PARAM c[5] = { program.local[0],

state.matrix.mvp.transpose };

TEMP R0;

MUL R0, vertex.position.y, c[2];

MAD R0, vertex.position.x, c[1], R0;

MAD R0, vertex.position.z, c[3], R0;

MAD result.position, vertex.position.w, c[4], R0;

END

4 instructions, 1 R-regs

gf325 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf325

gf326 gf326

Transformation and Lighting

Source Code (OpenGL Shader Language):

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vec4 vertex_e = gl_ModelViewMatrix * gl_Vertex;

vec3 norm_e = gl_NormalMatrix * gl_Normal;

vec4 light_pos = gl_LightSource[1].position;

float phase_light = dot(norm_e, normalize(light_pos - vertex_e).xyz);

float phase_user = dot(norm_e, -vertex_e.xyz);

float phase = sign(phase_light) == sign(phase_user) ? abs(phase_light) : 0.0;

const vec3 ambient = gl_LightSource[1].ambient.rgb;

const vec3 diffuse = gl_LightSource[1].diffuse.rgb;

vec4 new_color;

new_color.rgb = gl_Color.rgb * (phase * diffuse + ambient);

new_color.a = gl_Color.a;

gl_FrontColor = new_color;

gl_BackColor = gl_Color;

gf326 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf326

gf327 gf327

vertex program Assembler Code (Output of NVIDIA compiler)

PARAM c[15] = { { 0 },

state.matrix.modelview.transpose,

state.matrix.modelview.inverse.row[0..2],

state.light[1].ambient,

state.light[1].diffuse,

state.light[1].position,

state.matrix.mvp.transpose };

TEMP R0; TEMP R1; TEMP R2;

MUL R0, vertex.position.y, c[2];

MAD R0, vertex.position.x, c[1], R0;

MAD R0, vertex.position.z, c[3], R0;

MAD R2, vertex.position.w, c[4], R0;

ADD R1, -R2, c[10];

DP4 R0.w, R1, R1;

RSQ R0.w, R0.w;

MUL R0.xyz, vertex.normal.y, c[6];

MAD R0.xyz, vertex.normal.x, c[5], R0;

MAD R0.xyz, vertex.normal.z, c[7], R0;

MUL R1.xyz, R0.w, R1;

DP3 R0.w, R0, -R2;

DP3 R0.x, R0, R1;

gf327 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf327

gf328 gf328

SLT R0.y, R0.w, c[0].x;

SLT R0.z, c[0].x, R0.w;

ADD R0.w, R0.z, -R0.y;

SLT R0.z, R0.x, c[0].x;

SLT R0.y, c[0].x, R0.x;

ADD R0.y, R0, -R0.z;

ADD R0.y, R0, -R0.w;

ABS R0.y, R0;

SGE R0.y, c[0].x, R0;

ABS R0.y, R0;

ABS R0.x, R0;

SGE R0.y, c[0].x, R0;

MAD R1.x, -R0, R0.y, R0;

MUL R0, vertex.position.y, c[12];

MUL R1.xyz, R1.x, c[9];

MAD R0, vertex.position.x, c[11], R0;

ADD R1.xyz, R1, c[8];

MAD R0, vertex.position.z, c[13], R0;

MUL result.color.xyz, vertex.color, R1;

MAD result.position, vertex.position.w, c[14], R0;

MOV result.color.back, vertex.color;

MOV result.color.w, vertex.color;

END

gf328 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf328

gf329 gf329

35 instructions, 3 R-regs

gf329 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf329

gf330 gf330VP Instruction Set Architecture

Instruction Set Design Choices

Based on analysis of fixed-functionality vertex processing code:

Used about 50% of time: MOV, MUL, ADD, MAD

Used about 40% of time: DP3, DP4.

RCP: Instead of divide because it’s faster.

RSQ: Within 1.5 bits of IEEE precision.

gf330 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf330

gf331 gf331VP Microarchitecture

Register sets listed above.

Instruction memory has room for 128 instructions.

Executes at rate of one instruction per cycle.

200 MHz clock.

Two functional units.

gf331 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf331

gf332 gf332

Functional Units:

Two exposed functional units (SIMD, Special).

SIMD Vector Unit

Three source operands.

MOV, MUL, ADD, MAD, DP3, DP4, DST, MIN, MAX, SLT, SGE

Special Functional Unit

Single source operand.

RCP, RSQ, LOG, EXP, LIT

Possible additional units for fixed-function use.

All instructions have same latency.

gf332 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf332

gf333 gf333

Program Sequencing

In setup mode:

Program loaded to program memory.

Constants loaded into constant registers.

In render mode:

Program run for particular IB/OB pair.

Program starts each time an IB fills.

Program completion signals primitive assembly unit to proceed.

Execution multithreaded.

gf333 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf333

gf334 gf334

Program Execution

Assumed Stages (Timing and number of stages unknown, µ-insn fetch omitted):

RR: Register Read.

SN: Swizzle and Negate.

Ei: Execute stage i. This likely takes multiple cycles and fully pipelined.

WB: Writeback.

Multithreaded execution is used in GeForce 3.

gf334 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf334

gf335 gf335

Single Thread (Not Multithreaded) Execution

A design option not used for GeForce 3.

Finish data from one IB before starting another.

Consider a pair of dependent instructions:

ADD r1, c[2], v[3] RR SN E1 E2 WB

MUL o[4], r1, c[5] RR ----> SN E1 E2 WB

MUL stalls two cycles waiting for result of ADD.

In GF3 number of stalls would be higher since there are more Ei.

+Just need one µPC and one set of temporary registers.

-Multi-cycle stalls.

-To avoid stalls need bypass paths or scheduling opportunities.

gf335 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf335

gf336 gf336

Multithreaded Execution

Used in GeForce 3 (and most if not all modern GPUs).

Work on data from several input buffers simultaneously.

Each thread accesses data from one input buffer.

Let ti denote thread i.

Thread i has its own set of temporary registers and µPC.

Thread i reads IB i registers, writes output buffer i registers.

gf336 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf336

gf337 gf337

Same pair of dependent instructions as last example.

Five threads active.

Cycle 0 1 2 3 4 5 6 7 8 9

t0: ADD r1, c[2], v[3] RR SN E1 E2 WB <- v[3] in IB 0 r1 in set 0

t1: ADD r1, c[2], v[3] RR SN E1 E2 WB <- v[3] in IB 1 r1 in set 1

t2: ADD r1, c[2], v[3] RR SN E1 E2 WB

t3: ADD r1, c[2], v[3] RR SN E1 E2 WB

t4: ADD r1, c[2], v[3] RR SN E1 E2 WB

t0: MUL o[4], r1, c[5] RR SN E1 E2 WB <- Also for t1-t4

Cycle 0 1 2 3 4 5 6 7 8 9

+No stalls.

+No bypass paths needed.

-Need multiple sets of temporary registers.

Number of IB chosen to cover execution latency.

gf337 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf337

gf338 gf338Vertex Processor Design Factors

Exploits vertex program code characteristics:

No memory access: no memory port.

Small program size: tiny program memory.

Limited purpose: specialized instructions.

Vertex independence: easy multithreaded execution.

Repeated execution: data-triggered sequencing.

gf338 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf338

gf339 gf339

Vertex Processors in More Recent GPUs

Limited control-transfer instructions (branching).

Access to memory.

Features carefully controlled to preserve multithreading and simplify memory access.

gf339 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf339

