
radixsort1 radixsort1

Analysis of a Radix Sort Algorithm on NVIDIA GPUs

Reference

Nadathur Satish, Mark Harris, and Michael Garland, “Designing efficient sorting algo-
rithms for manycore GPUs,” in the Proceedings of the IEEE International Parallel &
Distributed Processing Symposium 2009.

radixsort1 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort1

radixsort2 radixsort2Radix Sort—Symbols

Symbols

Radix-Sort Specific

n Number of elements to sort.

220 Number of elements used in examples here.

h Number of bits in bin.

4 Meaning there are 24 = 16 bins in example histogram.

k Number of bits in sort key.

32

e Number of array elements per thread.

4 Based on efficient techniques to find prefix sum in a block.

radixsort2 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort2

radixsort3 radixsort3

Other Symbols

M Number of multiprocessors.

16 A medium sized CC 1.0 device, also a convenient power of 2.

G Number of blocks in the grid.

4M = 64 Choose so that there are four blocks per MP, which is the maximum number of
active blocks.

B Number of threads in a block.

256

p Number of CUDA cores.

p =

8M for compute capability 1.0 ≤ i ≤ 1.3
32M for compute capability 2.0
48M for compute capability 2.1
192M for compute capability 3.x
128M for compute capability 5.x, 6.1

radixsort3 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort3

radixsort4 radixsort4

Derived Quantities:

k

h
Number of global iterations.

32
4
= 8

eB Number of elements per tile.

4× 256 = 1024

n

eB
Number of tiles in the array.

2202−10 = 210

radixsort4 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort4

radixsort5 radixsort5

Data Analysis

Pass 1

2n Read and write array elements.

221

2h

eB
n Write per-tile histograms (n

eB
tiles times 2h bins per histogram).

21024 = 214

G2h Write per-block histograms.

64× 24 = 210

radixsort5 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort5

radixsort6 radixsort6

Pass 2

2n Read and write array elements.

221

2h

eB
n Read per-tile histograms.

21024 = 214

G22h Read per-block histograms. Note that each block reads every per-block
histogram.

642 × 24 = 216

radixsort6 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort6

radixsort7 radixsort7

Total data transfer for both passes and all global iterations

(

4n+ 2
n

eB
2h +G22h +G2h

) k

h

(
222 + 2× 21024 + 64224 + 64× 24

) 32

4

(
222 + 215 + 216 + 210

)
8

(
222 + 2112h + 2122h + 282h

) 32

h

radixsort7 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort7

radixsort8 radixsort8

Choice of h to Minimize Data Transfer

Minimize expression of form (a+ 2h)/h.

If a = 0 then h = 1/ ln 2 ≈ 1.443.

For a corresponding to tile sizes:

Tile Bin Size

Size To Minimize

Data

---- ---------

1024, h = 7.33

512, h = 7.01

256, h = 6.55

128, h = 6.00

radixsort8 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort8

radixsort9 radixsort9

Computation Analysis

Pass 1

csnh

Prefix
︷ ︸︸ ︷

lg(eB) Sort within block.

cs2
20 × 4× 10

cc1n+ cc2
n

eB
2h Compute histograms.

cc12
20 + cc22

1024

Pass 2

cghG(G2h + h2h) Compute global histogram.

cgh64(64× 24 + 26) ≈ 214

cof
n

eB
h2h Compute tile digit offsets.

cof2
1026

cscn Scatter.

csc2
20

radixsort9 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort9

radixsort10 radixsort10

Total for both passes and all global iterations

[

n (csh lg(eB) + cc1 + csc) +
n

eB
2h (cc2 + cofh) + cghG(G2h + h2h)

] k

h

=

[

n
(

cs lg(eB) +
cc1
h

+
csc
h

)

+
n

eB
2h

(cc2
h

+ cof

)

+ cghG2h
(
G

h
+ 1

)]

k

Analysis

Dominant term using default values is sort within block:

csnh lg(eB) or cs2
20 × 4× 10

Note that this makes h irrelevant for computation:

All iterations: (csnh lg(eB)) k

h
= (csn lg(eB)) k.

radixsort10 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort10

radixsort11 radixsort11

Block Size Effect

Smaller blocks reduce block sort time (which dominates).

Smaller blocks increase time spent on histograms and offsets.

Offset time: cof
n

eB
h2h or cof2

1026.

Solving for block size that makes offset and block sort time equal:

csnh lg(eB) = cof
n

eB
h2h

eB lg(eB) =
cof
cs

2h

For sample values eB = 7.79 or B = 1.95.

radixsort11 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort11

radixsort12 radixsort12

Block Size Analysis Conclusions

Dominant term reduced with smaller block size, until block size 1.95.

We know making block smaller than 32 (warp size) will hurt efficiency.

So block size should be 32.

Other benefits: less use of shared memory so more blocks can be active.

radixsort12 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort12

radixsort13 radixsort13Computation vs. Communication

Computation vs. Memory Bandwidth

Should we focus on minimizing data access (communication)?

Should we focus on minimizing computation?

Some Background

For a Pascal GTX 1080 GPUs: 14 insn / B or 55 insn / int . . .

. . . assuming an instruction mix with a throughput of 128 thd / cyc / MP.

radixsort13 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort13

radixsort14 radixsort14

Analysis

Dominant term for computation: csnh lg(eB) (block sort time).

Dominant term for data access: 4n.

Code is compute-bound if:

1

55
csnh lg(eB) > 4n

csh lg(eB) > 220

With example values:

cs40 > 220

Computation and data accessed balanced if:

Block sort is very tightly coded so that cs < 5.5.

Tile size (eB) is smaller.

radixsort14 EE 7722 Lecture Transparency. Formatted 16:55, 1 May 2017 from set-radix. radixsort14

