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GPU Microarchitecture Note Set 1a—Parallelism

Parallel Computation Terminology
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Parallel Computation Idea:

One computer takes t seconds to run a program, which is not fast enough . . .

. . . so try to use c computers to get the program to run in t/c seconds . . .

. . . choose c to fit your performance goal and budget.

Easier said than done.

Example:

Suppose 1 computer takes 1 hour to run program A.

Convert A to a parallel program, Ap.

For c = 2, we hope that Ap will run in 1
2 hour on a system that costs twice as much.

For c = 60, we hope that Ap will run in 1 minute on a system that costs 60 times as much.

For c = 60× 109, we hope that Ap will run in 1 nanosecond on a system that costs c times as
much.
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Parallel Computation:

The use of multiple processor cores to speed the execution of a program.

A parallel program consists of multiple threads that will execute on a parallel system consisting
multiple cores.

The goal is to lower execution time by using multiple cores.

Realizing this goal is often frustrated by the difficulty of parallel programming.
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Definitions

Thread:

A path through the program defined by the programmer, compiler, or some piece of support
software.

The first program you wrote probably consisted of a single thread.

Programs start with a single thread . . .

. . . and can create additional threads as needed.

A program with multiple threads is a parallel program.
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Thread Spawn Example

Pseudocode with ad-hoc instruction labels:

void main() void my_child()

I0: a = 1; Ic0: x = 7;

I1: b = 9; Ic1: y = 9;

I2: thread_create(my_child); Ic2: z = x + y;

I3: c = a + b; ...

...

Execution timing:
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Core:

Hardware needed to execute a thread.

Sometimes called a CPU (central processing unit).

A core has:

Hardware to fetch instructions.

Functional units to perform arithmetic operations.

Register files to hold intermediate (working, temporary) data values.

Hardware to decode and orchestrate instruction execution.
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Execution of Multithreaded Programs

Consider a system with c cores and a program with r threads.

Typically the OS will distribute the r threads evenly over the c cores.

If c < r then c− r cores will sit idle.

If c > r then a core may have more than on thread assigned.
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Computation of Speedup Parallel System

Consider

A parallel program that can spawn any number of threads, as needed.

A computer consisting of c cores.

Let t(1) denote the execution time on 1 core.

Its value is determined by the single-thread performance of the core.

Let t(c) denote the execution time on c cores.

Its value is determined by the parallel program and by t(1).
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Speedup:

[of a parallel program on parallel system]. The ratio of execution time on one core to the time
on the entire system.

Using the notation above:

S(c) =
t(1)

t(c)
.

For example:

A program runs in 10 s on one core and 3 s on 5 cores.

The speedup is then S(5) = 10 s
3 s = 3.33.

1­par­9 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­9



1­par­10 1­par­10

Speedup Special Cases

Speedup Case: Linear Speedup— S(c) = c.

This occurs when t(c) = t(1)/c.

This indicates no duplication of effort by threads, no time lost to communication.

There are some programs with linear speedup. . .

. . . but for many others the speedup is lower.

Example:

A program runs in 10 s on one core and is to be run on 5 cores. What would its run time be

if it achieves linear speedup?

To achieve linear speedup it would need to run in 10 s/5 = 2 s.
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Speedup Special Cases

Speedup Case: No Speedup— S(c) = 1.

This occurs when t(c) = t(1).

This might be the programmer’s fault . . .

. . . or an inherent property of the problem.
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Speedup Special Cases

Speedup Case: Serial Limiter— S(c) = 1
f+(1−f)/c

This is sometimes referred to as Amdahl’s Law.

Cannot parallelize f ∈ [0, 1] of program, f is serial portion.

E.g., for f = 0.2, can’t parallelize 20% of program.

This applies to a program that can be split into two parts. . .

. . . a part with linear speedup. . .

. . . and a part with no speedup (the serial portion).

1− f is the fraction of the program with linear speedup.

When f = 0, all of the program enjoys linear speedup;. . .

. . . when f = 1, no part of the program can be parallelized.
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Limit of Preceding Speedup Analysis

Preceding analysis assumed only one kind of core.

In this class we will compare different kinds of cores.
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