
1­par­1 1­par­1

GPU Microarchitecture Note Set 1a—Parallelism

Parallel Computation Terminology

1­par­1 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­1



1­par­2 1­par­2Parallel Computation

Parallel Computation Idea:

One computer takes t seconds to run a program, which is not fast enough . . .

. . . so try to use c computers to get the program to run in t/c seconds . . .

. . . choose c to fit your performance goal and budget.

Easier said than done.

Example:

Suppose 1 computer takes 1 hour to run program A.

Convert A to a parallel program, Ap.

For c = 2, we hope that Ap will run in 1
2 hour on a system that costs twice as much.

For c = 60, we hope that Ap will run in 1 minute on a system that costs 60 times as much.

For c = 60× 109, we hope that Ap will run in 1 nanosecond on a system that costs c times as
much.

1­par­2 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­2



1­par­3 1­par­3

Parallel Computation:

The use of multiple processor cores to speed the execution of a program.

A parallel program consists of multiple threads that will execute on a parallel system consisting
multiple cores.

The goal is to lower execution time by using multiple cores.

Realizing this goal is often frustrated by the difficulty of parallel programming.

Core

Core

Core

I0 I1 I2 I99

I49

I50I51

I0 I1 I2

I99

Serial

System
(1 core)

Parallel

System
(2 cores)

Hardware
Threads

Place in Program

 (Instruction Numbers)

Time

Program nishes at I99

1­par­3 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­3



1­par­4 1­par­4

Definitions

Thread:

A path through the program defined by the programmer, compiler, or some piece of support
software.

The first program you wrote probably consisted of a single thread.

Programs start with a single thread . . .

. . . and can create additional threads as needed.

A program with multiple threads is a parallel program.

Core

0

Core

1

I0 I1 I2 I3

Ic0 Ic1 Ic2

Main thread.

Child thread.

Created by OS when program started

Child thread created by main at instruction I2.

I4 I5 I6 I7

Ic4

1­par­4 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­4



1­par­5 1­par­5

Thread Spawn Example

Pseudocode with ad-hoc instruction labels:

void main() void my_child()

I0: a = 1; Ic0: x = 7;

I1: b = 9; Ic1: y = 9;

I2: thread_create(my_child); Ic2: z = x + y;

I3: c = a + b; ...

...

Execution timing:

Core

0

Core

1

I0 I1 I2 I3

Ic0 Ic1 Ic2

Main thread.

Child thread.

Created by OS when program started

Child thread created by main at instruction I2.

I4 I5 I6 I7

Ic4

1­par­5 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­5



1­par­6 1­par­6

Core:

Hardware needed to execute a thread.

Sometimes called a CPU (central processing unit).

A core has:

Hardware to fetch instructions.

Functional units to perform arithmetic operations.

Register files to hold intermediate (working, temporary) data values.

Hardware to decode and orchestrate instruction execution.

1­par­6 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­6



1­par­7 1­par­7

Execution of Multithreaded Programs

Consider a system with c cores and a program with r threads.

Typically the OS will distribute the r threads evenly over the c cores.

If c < r then c− r cores will sit idle.

If c > r then a core may have more than on thread assigned.

1­par­7 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­7



1­par­8 1­par­8

Computation of Speedup Parallel System

Consider

A parallel program that can spawn any number of threads, as needed.

A computer consisting of c cores.

Let t(1) denote the execution time on 1 core.

Its value is determined by the single-thread performance of the core.

Let t(c) denote the execution time on c cores.

Its value is determined by the parallel program and by t(1).

1­par­8 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­8



1­par­9 1­par­9

Speedup:

[of a parallel program on parallel system]. The ratio of execution time on one core to the time
on the entire system.

Using the notation above:

S(c) =
t(1)

t(c)
.

For example:

A program runs in 10 s on one core and 3 s on 5 cores.

The speedup is then S(5) = 10 s
3 s = 3.33.

1­par­9 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­9



1­par­10 1­par­10

Speedup Special Cases

Speedup Case: Linear Speedup— S(c) = c.

This occurs when t(c) = t(1)/c.

This indicates no duplication of effort by threads, no time lost to communication.

There are some programs with linear speedup. . .

. . . but for many others the speedup is lower.

Example:

A program runs in 10 s on one core and is to be run on 5 cores. What would its run time be

if it achieves linear speedup?

To achieve linear speedup it would need to run in 10 s/5 = 2 s.

1­par­10 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­10



1­par­11 1­par­11

Speedup Special Cases

Speedup Case: No Speedup— S(c) = 1.

This occurs when t(c) = t(1).

This might be the programmer’s fault . . .

. . . or an inherent property of the problem.

1­par­11 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­11



1­par­12 1­par­12

Speedup Special Cases

Speedup Case: Serial Limiter— S(c) = 1
f+(1−f)/c

This is sometimes referred to as Amdahl’s Law.

Cannot parallelize f ∈ [0, 1] of program, f is serial portion.

E.g., for f = 0.2, can’t parallelize 20% of program.

This applies to a program that can be split into two parts. . .

. . . a part with linear speedup. . .

. . . and a part with no speedup (the serial portion).

1− f is the fraction of the program with linear speedup.

When f = 0, all of the program enjoys linear speedup;. . .

. . . when f = 1, no part of the program can be parallelized.

1­par­12 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­12



1­par­13 1­par­13

Limit of Preceding Speedup Analysis

Preceding analysis assumed only one kind of core.

In this class we will compare different kinds of cores.

1­par­13 EE 7722 Lecture Transparency. Formatted 13:59, 5 November 2018 from lsli01-par. 1­par­13


