
LSU EE 7722 Homework 5 Due: 28 April 2025
Formatted 14:00, 25 April 2025

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2025/hw04.

If the class account has been set up properly, the code can be built from within Emacs by pressing
F9 when visiting any file in the .../2025/hw05 directory or when in an Emacs shell buffer (which can be

entered using Alt -x shell Enter ). The code can be built from the command line using the command make

-j 4 (assuming .../2025/hw05 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw05, one with the suffix -debug, such as hw05-debug, and one with the suffix -cuda-debug,
such as hw05-cuda-debug. The versions with the -cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions will
run much more slowly than the regular versions. The executables with the suffix -debug are compiled with
host optimization turned off but CUDA debugging turned off and so CUDA code cannot easily debugged
with these executable files. Use gdb or cuda-gdb to debug hw05-debug.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw05. It should produce output
ending with a line something like this 32 32 0.28 20 9.5 0.2 2.0 54 2791 464 1 ---********.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
system using a different GPU. The Makefile should automatically detect whether the GPU for which the
executable was built matches the GPU on the current system, and re-build if needed.

Background and Reference Material
For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).
For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.9)
or by name (e.g., Ada Lovelace). CC 8.9 GPUs implement Ada Lovelace architecture, and 9.0 implements
Hopper. For this assignment only consider CC 8.9 and 9.0 GPUs. The compute capability (CC) of the lab
GPUs is shown on the system status page.

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. Some of that material is reviewed in this assignment. For additional
description see Chapter 7 of the Programming Guide for the basics (but not including the L1 cache), and
also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
API to collect data. In class an SM (or MP) was described as having several–usually four–warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.
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Using hw05
The code in hw05.cu contains several kernels that multiply matrices. To make sure it compiled correctly
run it with arguments ./hw05.

The first argument is used to specify the number of blocks. When there are zero arguments, ./hw05, or
when the first argument is zero, ./hw05 0, the number of blocks is set equal to the number of SMs. When
the first argument is a positive integer, such as ./hw05 5, the kernels will be launched with that many blocks,
five blocks in the example. When the first argument is a negative integer, such as ./hw05 -5, then each
kernel will be launched with that many blocks per SM. For a GPU with 40 SMs and running with ./hw05

-5, a total of 5 × 40 = 200 blocks will be launched per kernel. Note that there is no guarantee that five
blocks will simultaneously run (be active on) any SM, for example. If the kernels use lots of shared memory
or registers fewer than five will run (and the others will have to wait until enough active blocks finish).

Program Output
Detailed output is obtained by running without command-line arguments:

[hw04]$ ./hw05

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24078 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 102400 B/SM CONST: 65536 B NUM REGS: 65536

GPU 0: SHARED: 49152 B/BL SH RES: 1024 B/BL SH OPT-IN: 101376 B/BL

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

Using GPU 0

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that
the device is of compute capability 8.9 (Ada Lovelace). The MEM<->L2 field shows the off-chip bandwidth.
SM indicates the number of streaming multiprocessors, also just called multiprocessors (MP’s). SP-F32/SM

indicates the number of 32-bit floating point functional units (once called CUDA cores) per SM, DP-FP64/SM
indicates the number of double-precision functional units per SM, and TH/BL is the maximum number of
threads per block.

The amount of shared memory available is shown in several places. The amount of shared memory on
an SM is indicated by B/SM. Whether a block can access that much memory depends on several factors.
The storage indicated by B/SM can be used for both shared memory and the L1 cache. The L1 cache size is
usually the same size or a bit larger than the shared memory size.

The following entries show the amount of constant address space, 65536 B, and the number of registers
on an SM, 65536. These numbers do not indicate whether any particular kernel or block is using that much
storage.

The second SHARED line shows shared memory per block. The first entry, 49152 B/BL, is the maximum
amount of shared memory accessible with the __shared__ qualifier, called statically allocated shared memory.
The last entry, SH OPT-IN is the amount that could be accessed using the extern qualifier, in which the
amount of shared memory is specified by a kernel launch parameter. This assignment (2025 Homework 4)
does not need to use much shared memory, and so statically allocated shared memory is fine.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s one.)
The bandwidth is shown for both the single-precision (FP32) and double-precision (FP64) functional units.
The floating-point bandwidth of the tensor cores is higher, though precision is lower. The COMP/COMM line
gives the computation to communication ratio in floating-point operations per floating-point element trans-
fers. (The information above was collected in part using the runtime library’s cudaGetDeviceProperties

function.)
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Performance Data
The assignment consists of kernels that multiply matrices using either FP32 functional units or tensor cores.
Each kernel is run multiple times, starting with four warps per block, in successive runs increasing the
number of warps per block. A line of performance data is printed for each run. Appearing below is a portion
of the output for an RTX 4090, showing kernel mm_tile_wd_ht_dp.

Kernel mm_tile_wd_ht_dp, 117 regs. Shape 5120 x 2064 x 4096. wd=8, ht=8, dp=4 FP32

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: FP++ Insn-- ===========

4 1.44 15 2 0.7 293 1.0 2127 0t 10533 +++----

8 1.44 25 2 0.7 151 1.0 1933 0t 6002 ++++++------

16 1.44 32 2 0.7 81 1.0 1264 1t 4918 +++++++-------

The lines below are fictional and are there to explain the bar graph.

16 1.44 38 2 0.7 81 1.0 1587 0t 3916 +++*******************************

16 1.44 38 2 0.7 81 1.0 1587 0t 3916 ++++++++++++++++++++++++++++++++++

The output above shows the result a kernel, mm_tile_wd_ht_dp.

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is not
set to the number of SMs then there would also be a column headed ac, which would show the number of
resident warps per SM. (The number of resident warps per SM is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of SMs, and in such a case
the value in the ac column would match the wp column.)

The group of columns under the heading Insn show information about machine (SASS) instructions.
The /itr column shows the measured number of machine instructions divided by the number the expected
number of either FMMA (scalar multiply/add) or HMMA (tensor core warp multiply/add) instructions. The
closer the value is to one the better. If it’s less than 1 then something is computed incorrectly. A higher
number might indicate that the compiler is using more instructions than it needs to, perhaps because of the
way the kernel was written. This might slow execution.

The value under Imb shows workload imbalance. A 0 is ideal. A value of 10t indicates that execution
is taking twice as long, 100% longer, based on time measurements. A value of 5i indicates that on block is
using 50% more instructions than the average block.

The columns in the L1 group show how efficiently load instructions are issued to the L1 cache. Briefly,
SW shows the number of sectors requested per warp for a memory instruction. Anything above 4 will likely
result in reduced performance. The value under BXW shows the number of bank conflicts per warp for a load
instruction. Anything above 0 will result in reduced performance.

The columns in the L2-Cache group show how much data is moving between the L1 and L2 caches. The
N*R column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
Its value is determined using a measured amount of data and a computed amount of ideal data. (Data is
measured using the NVIDIA CUPTI profiling API.) A value of 1 is ideal, a value of 2 indicates that on
average each element was read twice.

The t/µs column shows the measured execution time in microseconds. The FP θ column shows floating
point throughput in GFLOPs. To the right of FP θ is a bar graph showing how busy three resources are
(based on certain assumptions). Three resources are tracked, FMA (fused multiply/add) or tensor core
instructions, shown with a +, FMA along with load instructions, shown with a -, and data transfer, shown
with a *. The data transfer shown is either L1/L2, indicated with an L2** in the column heading, or
L2/Mem, indicated with a Mem** in the column heading. The right-most position of a resource’s character
indicates what fraction of the time that resource is busy. A resource is being used 100% of the time if its
character reaches the rightmost position (the last = in the column heading over the bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing in some situations
including the 2025 Homework 4 assignment). Those last two lines are fictional. Consider the line for the 8
warp per SM run. The * is a about halfway to the end. That indicates that L1/L2 data throughput is more
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than half of the peak possible. The instruction utilization, -, includes the FMAs, two loads, and one store
per element.

Assignment Introduction
The assignment code includes several kernels for multiplying matrices, they are taken from the examples in
the cuda/matrix_mult directory in the course repo. A run of the assignment code will launch only three of
those kernels, mm_tile_wd_ht_dp, mm_tc, and mm_hw05.

Kernel mm_tile_wd_ht_dp does not use tensor cores and computes with 32-bit precision. Kernel param-
eters specify the width and height of a tile of C computed by each thread. This is the best of the non-tensor
core kernels presented in class.

Initially mm_tc and mm_hw05 are identical, the solution to this assignment should be put in mm_hw05.
These kernels use tensor cores and read input matrices with 16-bit floating point values. The kernel arguments
(shown ad wd and ht in the output) indicate the width and height of the macro tile computed by each warp.
See Problem 1.

The file contains other kernels for multiplying matrices, but these are not run. Comments explain how
they work and are there for reference.

Here is sample output of the unmodified code:

Kernel mm_tile_wd_ht_dp, 117 regs. Shape 5120 x 2064 x 4096. wd=8, ht=8, dp=4 FP32

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: FP++ Insn-- ===========

4 1.44 15 2 0.7 293 1.0 2127 0t 10533 +++----

8 1.44 25 2 0.7 151 1.0 1933 0t 6002 ++++++------

16 1.44 32 2 0.7 81 1.0 1264 1t 4918 +++++++-------

Kernel mm_tc, 38 regs. Shape 5120 x 2064 x 4096. wd=1 ht=1 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 7.09 5 8 0.9 89 1.0 1323 0t 5178 --

8 7.09 9 8 0.9 80 1.0 2236 0t 2761 +---

16 7.10 10 8 0.9 81 1.0 2344 1t 2666 +---

32 7.10 11 8 0.9 77 1.0 2413 0t 2464 +----

Kernel mm_tc, 96 regs. Shape 5120 x 2064 x 4096. wd=8 ht=1 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 3.90 9 8 0.9 27 1.0 766 0t 2757 +--

8 3.90 20 8 0.9 18 1.0 1072 0t 1340 ++---

16 3.90 29 8 0.9 13 1.0 1269 0t 871 +++-----

In the unmodified code the tensor core kernel outperforms the scalar kernel, taking 871
4918 = 1

5.65 the
amount of time based on the best runs above. That sounds good but actually they should take 1

16 based
on NVIDIA specifications and the fact that the tensor core is using operands of only 16 bits. Notice that
though the best mm_tc run is faster than the mm_tile_wd_hp_dp runs, the bar graphs are shorter. That’s
because the bar graphs show the fraction of full potential and the mm_tc run is not getting as much out of
the tensor cores as the mm_tile_wd_hp_dp is getting out of FP32 functional units.

In this assignment two causes of reduced performance are to be addressed. The first is load dispatch
bandwidth. It takes four cycles to dispatch the threads in each load, and so it is better that the loaded
values be used as many times as possible. See Problem 1.

The other issue is the time needed to move data. See Problem 2.

One culprit for lower performance mentioned in class was bank conflicts. That is not part of this
assignment. That problem does not occur here because the number of columns of the A matrix is set to a
convenient value (so that no padding is needed). There is still about one bank conflict per access but that
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can’t be avoided with tensor cores as far as I know.

Appearing below are some sample kernels from a correctly solved solution.

Kernel mm_tc, 38 regs. Shape 5120 x 2064 x 4096. wd=1 ht=1 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 7.09 5 8 0.9 89 1.0 1315 0t 5207 --

8 7.09 9 8 0.9 80 1.0 2226 0t 2773 +---

16 7.10 10 8 0.9 83 1.0 2394 0t 2665 +---

32 7.10 11 8 0.9 77 1.0 2437 0t 2446 +----

Kernel mm_hw05, 42 regs. Shape 5120 x 2064 x 4096. wd=1 ht=1 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 7.13 3 8 0.9 71 1.0 648 0t 8478 -

8 7.13 6 8 0.9 53 1.0 925 0t 4479 --

16 7.13 10 8 0.9 36 1.0 1100 0t 2540 +---

32 7.14 14 8 0.9 27 1.0 1704 0t 1247 ++-------

Kernel mm_hw05, 255 regs, 632 LOCAL. Shape 5120 x 2064 x 4096. wd=8 ht=4 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 5.91 10 5 0.3 46 39.2 2459 1t 2754 +

8 5.91 11 5 0.3 60 39.3 3309 2i 2382 +-

Kernel mm_hw05, 234 regs. Shape 5120 x 2064 x 4096. wd=8 ht=2 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 2.54 30 8 1.0 18 1.0 1681 0t 855 +++---

8 2.54 47 8 1.0 14 1.0 1967 0t 566 ++++-----

Kernel mm_hw05, 212 regs. Shape 5120 x 2064 x 4096. wd=4 ht=4 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 2.36 30 8 1.0 18 1.0 1687 0t 853 +++--

8 2.36 44 8 1.0 16 1.0 2273 0t 570 ++++----

The first two kernels, for 1×1 tiles per warp, show the benefit of assigning tiles to improve reuse within
a block. The values under N-Rd are clearly better for mm_hw05 for larger blocks. The performance for 4-
and 8-warp blocks is not as good due to some other reasons which at the moment are unknown. The third
kernel computes 8 × 4 tiles per warp. There are not enough registers (the maximum is 255 per thread) and
so some values, perhaps of C, have to be spilled and filled to local memory. That can be seen on the part
of the heading line reading 632 LOCAL which indicates that 632 memory locations are used for values that
would have been in registers if there were enough registers. As a result instruction usage is high, 5.91, but
not terrible.

The last two kernels are the best performing of the preliminary solution. Notice that the 8 × 2 tile
version is slightly better than 4 × 4 despite make less efficient uses of loads.
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Problem 1: Kernel mm_hw05 (and mm_tc) have template parameters m_wd_n and m_ht_n which indicate
that a warp should compute a macro tile which is m_wd_n tensor core tiles wide (along a row) and m_ht_n

tensor core tiles high (along a column), for a total of m_wd_n * m_ht_n tensor core tiles. A tensor core tile is
the tile computed by an execution of mma_sync. In the unmodified assignment both kernels correctly honor
m_wd_n but ignore m_ht_n (in affect assuming m_ht_n=1).

The code computing a macro tile in the unmodified assignment is:

fragment<matrix_a, tm, tn, tk, ab_elt_t, aorg> tile_a;

fragment<matrix_b, tm, tn, tk, ab_elt_t, borg> tile_b;

fragment<accumulator, tm, tn, tk, float> tile_C_acc[m_wd_n];

for ( auto& tca: tile_C_acc ) fill_fragment(tca, 0);

for ( ssize_t i_k = 0; i_k < A_ncols; i_k += tk )

{

load_matrix_sync

( tile_a, a_ptr + C_row_0 * a_row_stride + i_k * a_col_stride, a_stride );

for ( ssize_t i_wd = 0; i_wd < m_wd_n; i_wd++ )

{

load_matrix_sync

( tile_b, b_ptr + i_k * b_row_stride

+ ( C_col_0 + i_wd * tn ) * b_col_stride,

b_stride );

mma_sync( tile_C_acc[i_wd], tile_a, tile_b, tile_C_acc[i_wd] );

}

}

for ( int i_wd = 0; i_wd < m_wd_n; i_wd++ )

store_matrix_sync

( &ld.CT_dev[ C_row_0 + ( C_col_0 + i_wd * tn ) * A_nrows ],

tile_C_acc[i_wd], A_nrows, mem_col_major );

}

In the code above the data loaded into tile_a is used for m_wd_n computations of an mma_sync, which is
a good thing because load instructions take four cycles to dispatch (on CC 8.9 and other recent generations).
The larger m_wd_n is, the lower the impact of the dispatch time of those loads.

Regardless of the value of m_wd_n tile_b will be used for just one mma_sync in the code above.

(a) Modify mm_hw05 so that tile_b will be used for m_ht_n calls to mma_sync, and (as is currently the case)
so that tile_a is used for m_wd_n calls to mma_sync.

To correctly solve this one must change the code shown above and also the code computing C_row_0

and C_col_0.

(b) The unmodified code will run mm_hw05 with a variety of macro tile shapes (values of m_wd_n and m_ht_n).
Those shapes are specified in the SPECIALIZE_KERNEL macro, such as 1,1, and 8,2. Both m_wd_n and m_ht_n

must be a power of 2. Try finding shapes that will yield better performance by adding lines to the macro.
(One might want to do this after solving the next problem.) Search for SPECIALIZE_KERNEL and look for
the comment explaining how to modify it.
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Problem 2: As we should know effective tiling can reduce the amount of data movement in matrix mul-
tiplication. Tiling is effective when the compute devices sharing storage and communication operate on a
square tile of the output matrix. Modify mm_hw05 so that the warps in a block operate on a roughly square
part of C.

In the unmodified code a simple method is used to assign macro tiles to warps:

constexpr int wp_sz = 32;

const int tid = blockIdx.x * blockDim.x + threadIdx.x;

const int wp = tid / wp_sz;

const int n_warps = blockDim.x * gridDim.x / wp_sz;

for ( int i = wp; true; i += n_warps )

{

const ssize_t C_row_0 = i % C_nrow_tiles * tm;

const int C_col_0_raw = i / C_nrow_tiles * m_wd;

if ( C_col_0_raw >= B_ncols ) break;

const bool partial_cols = C_col_0_raw + m_wd > B_ncols;

const ssize_t C_col_0 = partial_cols ? B_ncols - m_wd : C_col_0_raw;

With the code above warps in a block are assigned macro tiles along a column. This is ideal when
m_wd_n is equal to the number of warps, but a value of m_wd_n that large may cause problems with larger
blocks. Also, the code above does not work well when m_ht_n is larger.

(a) Modify the kernel so that macro tiles operated on by all the warps in a block form a square or close to it
for each iteration of the i loop above. Assume that the number of rows of A and number of columns of B
are a multiple of 128. Also assume that the number of threads in a block is always a power of 2.

It is possible to take this a step further and assign rows and columns so that all of the macro tiles from
all of the warps in all of the blocks collectively form something close to a square during an i iteration. What
makes this more tedious is that the number of blocks need not be a power of 2, and in fact it can be prime.
For that reason, in this assignment only try to arrange the macrotiles from a block into a square, not all the
blocks collectively. See mm_tile_wd_ht_dp for an example of how to assign rows and columns to threads so
that rows and columns operated on by all threads in a kernel approximately form a square.
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