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Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2025/hw04.

If the class account has been set up properly, the code can be built from within Emacs by pressing
F9 when visiting any file in the .../2025/hw04 directory or when in an Emacs shell buffer (which can be

entered using Alt -x shell Enter ). The code can be built from the command line using the command make

-j 4 (assuming .../2025/hw04 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw04, one with the suffix -debug, such as hw04-debug, and one with the suffix -cuda-debug,
such as hw04-cuda-debug. The versions with the -cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions will
run much more slowly than the regular versions. The executables with the suffix -debug are compiled with
host optimization turned off but CUDA debugging turned off and so CUDA code cannot easily debugged
with these executable files. Use gdb or cuda-gdb to debug hw04-debug.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw04. It should produce output
ending with a line something like this 32 32 0.28 20 9.5 0.2 2.0 54 2791 464 1 ---********.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
system using a different GPU. The Makefile should automatically detect whether the GPU for which the
executable was built matches the GPU on the current system, and re-build if needed.

Background and Reference Material
For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).
For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.9)
or by name (e.g., Ada Lovelace). CC 8.9 GPUs implement Ada Lovelace architecture, and 9.0 implements
Hopper. For this assignment only consider CC 8.9 and 9.0 GPUs. The compute capability (CC) of the lab
GPUs is shown on the system status page.

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. Some of that material is reviewed in this assignment. For additional
description see Chapter 7 of the Programming Guide for the basics (but not including the L1 cache), and
also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
API to collect data. In class an SM (or MP) was described as having several–usually four–warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.
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Using hw04
The code in hw04.cu contains several kernels that normalize vectors. The hw04 program takes up to three
command-line arguments: ./hw04 NBLOCKS BLOCKSIZE INPUTSIZE. The first indicates how many blocks to
launch, the second indicates the number of threads per block, and the last indicates the input size.

To make sure it compiled correctly run it with arguments ./hw04 0 32, that runs the kernels fewer
times (explained below). To run it while working on your solution usually run it as ./hw04.

The first argument is used to specify the number of blocks. When there are zero arguments, ./hw04, or
when the first argument is zero, ./hw04 0, the number of blocks is set equal to the number of SMs. When
the first argument is a positive integer, such as ./hw04 5, the kernels will be launched with that many blocks,
five blocks in the example. When the first argument is a negative integer, such as ./hw04 -5, then each
kernel will be launched with that many blocks per SM. For a GPU with 40 SMs and running with ./hw04

-5, a total of 5 × 40 = 200 blocks will be launched per kernel. Note that there is no guarantee that five
blocks will simultaneously run (be active on) any SM, for example. If the kernels use lots of shared memory
or registers fewer than five will run (and the others will have to wait until enough active blocks finish).

The second argument specifies the number of threads per block. A positive value indicates the exact
number of threads, for example, ./hw04 -3 64, will run each kernel with a block size of 64 threads (4 warps)
and also launch 3 blocks per SM.

In many cases one wants to quickly compare the performance with different block sizes. For that omit
the second argument or set it to zero, for example, ./hw04. The program will launch each kernel multiple
times, starting with 4 warps per block, up to 32 warps per block. Also, because the first argument was also
omitted, the number of blocks is set equal to the number of SMs. Run time and other information will be
shown for each launch.

The third argument specifies the input size. If the argument is positive, is specifies the input size in MiB
(220 bytes). For example, ./hw04 0 0 3.6, specifies that the input size should be 3.6 MiB. If the argument
is negative then it specifies the input size in multiples of the L2 cache size. For example, ./hw04 0 0 -0.5

indicates that the input size should be half the size of the L2 cache (and so the input itself will easily fit in
the L2 cache). For this assignment (Homework 4 2025) the default is 1

4 the L2 cache size, so that the input
and output can both comfortably fit.

Program Output
Detailed output is obtained by running without command-line arguments:

[koppel@grace hw04]$ ./hw04

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24078 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 102400 B/SM CONST: 65536 B NUM REGS: 65536

GPU 0: SHARED: 49152 B/BL SH RES: 1024 B/BL SH OPT-IN: 101376 B/BL

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

Using GPU 0

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that
the device is of compute capability 8.9 (Ada Lovelace). The MEM<->L2 field shows the off-chip bandwidth.
SM indicates the number of streaming multiprocessors, also just called multiprocessors (MP’s). SP-F32/SM

indicates the number of 32-bit floating point functional units (once called CUDA cores) per SM, DP-FP64/SM
indicates the number of double-precision functional units per SM, and TH/BL is the maximum number of
threads per block.

The amount of shared memory available is shown in several places. The amount of shared memory on
an SM is indicated by B/SM. Whether a block can access that much memory depends on several factors.
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The storage indicated by B/SM can be used for both shared memory and the L1 cache. The L1 cache size is
usually the same size or a bit larger than the shared memory size.

The following entries show the amount of constant address space, 65536 B, and the number of registers
on an SM, 65536. These numbers do not indicate whether any particular kernel or block is using that much
storage.

The second SHARED line shows shared memory per block. The first entry, 49152 B/BL, is the maximum
amount of shared memory accessible with the __shared__ qualifier, called statically allocated shared memory.
The last entry, SH OPT-IN is the amount that could be accessed using the extern qualifier, in which the
amount of shared memory is specified by a kernel launch parameter. This assignment (2025 Homework 4)
does not need to use much shared memory, and so statically allocated shared memory is fine.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s one.)
The bandwidth is shown for both the single-precision (FP32) and double-precision (FP64) functional units.
The floating-point bandwidth of the tensor cores is higher, though precision is lower. The COMP/COMM line
gives the computation to communication ratio in floating-point operations per floating-point element trans-
fers. (The information above was collected in part using the runtime library’s cudaGetDeviceProperties

function.)

Performance Data
Each kernel is run multiple times, starting with one warp per block, in successive runs increasing the number
of warps per block. A line of performance data is printed for each run. Appearing below is a portion of the
output for an RTX 4090, showing kernel norm_group.

(norm_group<0,32>): Uses 40 registers. L1 Avail 101376 B (gp=32)

n_l 2304 d_l 2048 L2 Occ 25% + 25%

--L2-Cache---

wp gp Imm t/s I/el BXW N*R %pk GB/s FP BG === Util: FP++ Insn-- L2** ===

1 1 0.94 35 8.9 0.1 1.0 21 1085 267 == -******

2 1 0.93 20 8.9 0.1 1.1 37 1897 462 == ---********

4 1 0.84 16 9.0 0.1 1.4 55 2827 595 == ---************

8 1 0.82 16 9.2 0.1 1.5 59 3061 601 2 ---************

16 1 0.76 18 9.6 0.1 1.9 60 3115 537 4 ---**********

32 1 0.45 18 10.2 0.1 2.0 60 3077 511 8 ---**********

The lines below are fictional and are there to explain the bar graph.

32 1 0.45 18 10.2 0.1 2.0 60 3077 511 8 +++*****************************

32 1 0.45 18 10.2 0.1 2.0 60 3077 511 8 ++++++++++++++++++++++++++++++++

The output above shows the result a kernel, norm_group<0,32>. (The name shown is how the function
was named, including the template parameters.)

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is not
set to the number of SMs then there would also be a column headed ac, which would show the number of
resident warps per SM. (The number of resident warps per SM is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of SMs, and in such a case
the value in the ac column would match the wp column.)

The Imm column shows workload balance. A value of 1 is ideal and indicates that all blocks finished at
the same time. A value of 0.3 indicates that the average block run time is 0.3 times the maximum run time
(which is bad).

For a description of the I/el, BXW, N*R, and N*W columns see the Base Code Performance section further
below.

The columns in the L2-Cache group show how much data is moving between the L1 and L2 caches. The
N*R column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
Its value is determined using a measured amount of data and a computed amount of ideal data. (Data is
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measured using the NVIDIA CUPTI profiling API.) A value of 1 is ideal, a value of 2 indicates that on
average each element was read twice.

The value under the GB/s in the L2 group shows the measured data throughput between the L1 and L2
caches (in either direction, but L2 to L1 dominates). The number includes all SMs. The pk column shows
this L1/L2 data movement as a percentage of peak. If visible, the DRAM GB/s column shows the measured
data throughput between the L2 cache and off-chip memory. For the 2025 Homework 4 assignment the DRAM

column is only visible if the input does not comfortably fit in the L2 cache.

The t/µs column shows the measured execution time in microseconds. The FP θ column shows floating
point throughput in GFLOPs. To the right of FP θ is a bar graph showing how busy three resources are
(based on certain assumptions). Three resources are tracked, FMA (fused multiply/add) instructions, shown
with a +, FMA along with load instructions, shown with a -, and data transfer, shown with a *. The data
transfer shown is either L1/L2, indicated with an L2** in the column heading, or L2/Mem, indicated with
a Mem** in the column heading. The right-most position of a resource’s character indicates what fraction
of the time that resource is busy. A resource is being used 100% of the time if its character reaches the
rightmost position (the last = in the column heading over the bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing in some situations
including the 2025 Homework 4 assignment). Those last two lines are fictional. Consider the line for the 8
warp per SM run. The * is a about halfway to the end. That indicates that L1/L2 data throughput is more
than half of the peak possible. The instruction utilization, -, includes the FMAs, two loads, and one store
per element.

Assignment Introduction
The code for this assignment normalizes vectors, which for this assignment means subtracting the average
component value from each component. Consider x ∈ Rd, a d-component vector of real numbers. Let
x0, x1, . . . xd−1 denote the d components of vector x. Then a = 1

d

∑d−1
i=0 xi is the mean (average) component

value. Vector y ∈ Rd is a normalized version of x if yi = xi − a for i ∈ [0, d).

Each kernel is to normalize n_l vectors of d_l components, the x vectors are read from l_in and the y
vectors are written to l_out. (The letter l is for layer.) The starting point is the base kernel, norm_base, in
which each thread normalizes one vector:

template< int D_L = 0 > __global__ void

norm_base(elt_t* __restrict__ l_out, const elt_t* __restrict__ l_in)

{

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int n_threads = blockDim.x * gridDim.x;

const int d_l = D_L ?: c_app.d_l;

const int n_l = c_app.n_l;

for ( int h = tid; h < n_l; h += n_threads )

{

elt_t sum = 0;

// The Sum Loop

for ( int i = 0; i < d_l; i++ ) sum += l_in[ h * d_l + i ];

const elt_t avg = sum / d_l;

// The Norm Loop

for ( int i = 0; i < d_l; i++ ) l_out[ h * d_l + i ] = l_in[ h * d_l + i ] - avg;

}

}

The code will be run for values of dl ∈ 1024, 2048, 4096 and for nl chosen so that the l_in and l_out
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arrays can both fit in the L2 cache (the default, but input size can be changed from the command line).

2024 Base Code Performance
The description below is for the 2024 assignment. In the 2025 assignment norm_group is complete. The base
code runs acceptably for dl = 4 and dl = 8, but does horribly for dl ≥ 32:

Kernel (norm_base<4>). Uses 26 registers. n_h 1179648 d_h 4

-----L2-Cache----- DRAM

wp t/µs I/el BXW N*R N*W %pk GB/s GB/s FP θ === Util: FP++ Insn-- L2** ====

1 33 5.4 3.0 1.0 1.0 22 1149 64 287 --*****

2 19 5.4 3.1 1.0 1.0 39 2029 126 507 ---**********

4 12 5.5 3.3 1.0 1.0 62 3192 107 798 +---****************

8 11 5.6 3.3 1.0 1.0 64 3288 237 821 +----****************

16 14 5.9 3.3 1.0 1.2 56 2913 162 655 +---*************

24 29 6.2 3.2 1.0 2.5 44 2272 44 327 --******

32 35 6.4 3.2 1.0 3.1 43 2207 66 266 -******

Kernel (norm_group<8,1>). Uses 32 registers. n_h 589824 d_h 8

-----L2-Cache----- DRAM

wp t/µs I/el BXW N*R N*W %pk GB/s GB/s FP θ === Util: FP++ Insn-- L2** ====

1 68 5.3 6.5 1.0 1.0 11 559 462 140 -***

2 20 5.3 7.0 1.0 1.0 36 1854 83 464 ---*********

4 13 5.3 7.1 1.0 1.0 57 2943 185 735 +---***************

8 15 5.4 7.1 1.0 1.1 49 2547 168 614 ---*************

16 71 5.5 6.3 1.0 6.3 37 1929 31 133 -**

24 78 5.6 6.3 1.0 6.8 36 1876 28 121 -**

32 80 5.8 6.3 1.0 6.9 36 1868 28 118 -**

Kernel (norm_base<32>). Uses 48 registers. n_h 147456 d_h 32

-----L2-Cache----- DRAM

wp t/µs I/el BXW N*R N*W %pk GB/s GB/s FP θ === Util: FP++ Insn-- L2** ====

1 149 4.4 24.1 1.0 8.0 22 1136 49 63 **

2 156 4.4 24.0 1.0 8.0 21 1088 9 60 **

4 141 4.4 24.3 1.0 8.0 23 1202 17 67 **

8 142 4.5 24.9 1.0 8.0 23 1199 17 67 **

16 144 4.6 26.2 1.0 8.0 23 1180 15 66 **

24 147 4.7 26.6 1.0 8.0 23 1161 10 64 **

32 174 4.8 23.4 3.4 8.0 24 1238 13 54 *

Kernel (norm_base<0>). Uses 40 registers. n_h 4608 d_h 1024

-----L2-Cache----- DRAM

wp t/µs I/el BXW N*R N*W %pk GB/s GB/s FP θ === Util: FP++ Insn-- L2** ====

1 235 6.5 24.3 2.0 8.0 16 805 24 40 *

2 228 6.5 24.2 2.0 8.0 16 829 153 41 *

4 209 6.5 25.2 2.0 8.0 18 905 12 45 *

8 393 6.5 25.9 2.0 8.0 9 480 7 24 *

16 771 6.6 27.1 2.1 8.0 5 247 4 12

24 1166 6.6 28.0 2.4 8.0 3 168 4 8

32 1577 6.7 27.2 3.7 8.0 3 140 3 6

There appears to be two possible culprits: premature writebacks, seen in the N*W column, and bank
conflicts, seen in the BXW column. At dl = 1024 there are additional problems: not every thread has something
to do (workload imbalance), and cache pressure.
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Recent NVIDIA devices’ L1 cache have what I’ll call a nearly write through policy. In a write through
cache, every write to a cache results in a write to the next layer (L2, say), even if the write hits the cache.
The advantage is that one does not need to keep track of which lines are dirty (holding data different than
the next layer or memory) or clean holding the same data as memory. (It would be more correct to use
the term sector rather than line, but this description is long enough.) In a write back cache, when a store
instruction hits the cache it writes only the cache line (making it dirty), the data is not propagated to the
next level. Dirty cache lines will need to be written to the next layer eventually, usually when the line is
evicted (kicked out because the space is needed). The NVIDIA L1 caches use a nearly write through policy.
On a write hit the line becomes dirty. It will remain dirty for a short time, only a few clock cycles, then it
will be written back. Suppose there is a second write to the same line shortly later. If that second write
occurs after the line is written back, the line will need to be written back a second time. This situation is
called a premature writeback here (it’s not a standard term). If that second write occurs a very short time
after the first the block is written back just once. Consider the N*W column for the dl = 4 case. When there
are fewer warps the amount of written data is ideal (the value in the column is 1.0). When there are more
warps the SM is busier and so those second writes arrive too late, and so the amount of data leaving the
L1 cache is higher than the ideal, reaching 3.1. The NVIDIA caches manage cache lines in units of sectors.
In current devices a sector is 32 bytes. That’s why the high value in the N*W column is 8 (a 32-byte sector
holds 8 4-byte values).

Recall that bank conflicts occur when more than one thread in a warp attempts to load or store the
same bank. There are 32 banks, and the bank number required by a load or store is equal to bits 6:2 of the
address. Because elt_t is four bytes, the bank number of access l_in[ idx ] is just idx modulo 32. For
example l_in[4] needs bank 4, l_in[31] needs bank 31, l_in[32], needs bank 0, and l_in[36] needs bank
4. If these were accessed by threads in the same warp (at the same time) there would be a bank conflict on
bank 0. As a result the load would have to be issued twice (assuming there were no further bank conflicts).
A best case is when the loads made by the 32 threads are l_in[0], l_in[1], l_in[2], . . ., l_in[31]. The
worst case is an access like l_in[0], l_in[32], l_in[64], l_in[96], . . ., l_in[992]. All of these threads
access bank 0, and so the instruction would need to be issued 32 times (rather than once). If the data for
all these threads were in the L1 cache the load would take a painful 32 times longer (4× 32 = 128 cycles on
recent devices). But, if the load missed the cache then the issue time would still be 128 cycles, but the code
might still need to wait 300 cycles or so for the data to arrive, reducing the impact of bank conflicts. The
number in the BXW column shows the number of bank conflicts. The ideal value is 0, the worst case is 31.

Workload imbalance is not directly shown, but it can be inferred. For the dl = 1024 case there are
nl = 4608 vectors, which works out to 36 vectors per SM on an RTX 4090. Consider the 4-warp case. The
code (by default) will set the number of blocks to the number of SMs, 128 on the RTX 4090. Block 0 starts
with vectors 0 to 127, block 1 starts with vectors 128-255, . . ., block 35 operates on vectors 4480 to 4607,
and blocks 36-128 have nothing to do. Launching with just one warp per block keeps all SMs busy on the
first iteration of the h loop, but on the second iteration only the first few blocks will be busy.

Cache pressure can be seen in the N*R column. Note that each element of l_in is read twice, once when
computing the sum, and a second time to compute l_out. We would like that second read to hit the L1
cache. For the dl = 4 and dl = 8 cases it looks like it does, since N*R is 1. But for dl = 1024 it looks like
each element of l_in is read at least twice. That’s because the L1 cache isn’t big enough to hold all the
elements read when computing the sum, so they have to be read a second time. Note that the cache must
be large enough to hold dlB elements, where B is the number of threads per block. Even for the one warp
case (B = 32) the number of elements is 32768 occupying 128 kiB, larger than the L1 on a 4090.

Another factor which can affect performance is instruction efficiency. It doesn’t in the base executions
shown above, but it should be a factor in the solution. Instruction efficiency is the number of instructions per
element (more generally per unit work) shown in column I/el. (Each vector has dl elements, a run of the
kernel operates on nl vectors, for a total of dlnl elements.) Smaller numbers are better. First, lets estimate
a lower bound. The Sum Loop (see the comments in the code above) requires at least two instructions per
element: a load instruction and an add instruction. (For one thing that assumes that the memory address
of l_in[h*d_l] is computed before the loop starts, and that constant offsets are used in the unrolled loop.)
Here is an excerpt for dl = 4 showing only the load and add instructions (found in hw04.sass):
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LDG.E.CONSTANT R6, [R2.64] ;

LDG.E.CONSTANT R8, [R2.64+0x4] ;

LDG.E.CONSTANT R10, [R2.64+0x8] ;

LDG.E.CONSTANT R12, [R2.64+0xc] ;

FADD R5, RZ, R6 ;

FADD R5, R5, R8 ;

FADD R5, R5, R10 ;

FADD R7, R5, R12 ;

The Norm Loop might need another load, a subtract, and a store. It turns out that for the dl = 4
case, a second load is not needed. Also note that for the dl = 4 case sum/d_l and l_in[..] - avg are
implemented together using a multiply/add (FFMA) with R7 holding the sum:

FFMA R9, R7.reuse, -0.25, R6 ;

FFMA R11, R7.reuse, -0.25, R8 ;

FFMA R13, R7.reuse, -0.25, R10 ;

FFMA R15, R7, -0.25, R12 ;

STG.E [R4.64], R9 ;

STG.E [R4.64+0x4], R11 ;

STG.E [R4.64+0x8], R13 ;

STG.E [R4.64+0xc], R15 ;

So for the dl = 4 cases a lower bound is just four instructions per element: the LDG, FADD, FFMA, and
STG. The best reported number for dl = 4 is 5.4, accounting for other instructions before and after these
loops, including the instructions to compute the addresses in R2 and R4. Since the number of these other
instructions shouldn’t change with dl, the reported I/elt number goes down with higher dl. For dl = 32 we
reach 4.4, close to our lower bound.

The template parameter D_L is used for dl = 4, dl = 8, and dl = 32, so the code will use a small number
of instructions. (When dl is specified as a template parameter the compiler will know its value and will
perfectly unroll the loop and otherwise optimize the code. When the D_L template parameter is zero the
code gets the value of dl from c_app.d_l, a constant variable set at runtime, and so the compiler won’t
know dl.)

For dl > 32 the template parameter is set to zero. (That was my choice, there is no reason why it could
not be set for dl = 128, etc.) Regardless of whether the D_L template parameter was used for dl = 1024,
there would have to be two loads for each element of l_in because there are not enough registers to hold
1024 values. (The limit is 255 registers per thread.) This pushes the lower bound up to 5 instructions per
element. The measured number of instructions per element is as low as 6.5 for dl = 1024, which isn’t bad.
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2025 Assignment Background
In the 2024 assignment group size was limited to no more than 32 threads (one warp). In this assignment
(2025) group size will be set to multiples of 32. A run of the assignment code runs three kernels, norm_base
and norm_group from the solution to the 2024 assignment and norm_hw04 which is new for this assignment.
Kernel norm_group is run only with a group size of 32. Kernel norm_hw04 is run on group sizes from 32
(1 warp) up to 1024 (32 warps). These kernels will be run with input vectors of size 1024, 2048, and 4096
elements. These vectors are long enough to risk level-1 cache misses when making a second access to the
vector. Something that can be fixed with group sizes larger than 32.

(The number of vectors is chosen so that the entire input fits in the level 2 cache when the code is run
with the default parameters. Because of this any miss experienced by a kernel can be satisfied by data in the
level 2 cache. If the inputs did not fit in the level 2 cache, for example if the code were run using command
hw04 0 0 -2, then the performance benefits of properly choosing the group size would be much smaller.)

The norm_hw04 kernel is run with each possible group size and block size. Consider output from a
correctly solved assignment:

(norm_hw04<0,32>): Uses 40 registers. L1 Avail 101248 B (gp=64)

n_l 2304 d_l 2048 L2 Occ 25% + 25%

--L2-Cache---

wp gp Imm t/s I/el BXW N*R %pk GB/s FP BG === Util: FP++ Insn-- L2** ===

1 1 0.94 41 9.3 0.0 1.1 18 950 231 == -*****

2 1 0.94 26 9.4 0.0 1.2 31 1591 366 == --*******

2 2 0.96 26 11.0 0.0 1.1 29 1486 361 1 --*******

4 1 0.84 19 9.5 0.1 1.4 47 2433 505 == ---**********

4 2 0.94 17 11.1 0.1 1.2 46 2384 552 1 ---***********

4 4 0.97 19 13.9 0.1 1.1 40 2071 503 1 ---*********

8 1 0.79 17 9.7 0.0 1.6 54 2770 539 2 ---**********

8 2 0.89 15 11.3 0.1 1.1 52 2699 627 == ---*************

8 4 0.95 15 14.0 0.1 1.1 50 2558 622 2 ---************

8 8 0.93 15 19.7 0.1 1.0 48 2474 616 2 ---************

16 1 0.76 19 10.1 0.1 1.9 57 2922 497 4 ---*********

16 2 0.84 15 11.8 0.1 1.5 61 3151 623 4 ---************

16 4 0.91 14 14.5 0.1 1.1 54 2784 673 == +---*************

16 8 0.94 13 20.0 0.1 1.0 56 2893 718 4 +---**************

16 16 0.94 16 30.2 0.0 1.0 45 2337 583 4 ---***********

32 1 0.46 19 10.7 0.1 2.0 59 3060 508 8 ---**********

32 2 0.76 20 12.7 0.1 1.9 55 2854 484 8 ---*********

32 4 0.83 15 15.4 0.1 1.4 60 3090 630 8 ---*************

32 8 0.90 14 21.0 0.1 1.1 53 2712 654 == +---************

32 16 0.94 15 31.0 0.1 1.0 49 2528 629 8 ---*************

32 32 0.97 18 51.1 0.1 1.0 40 2069 514 8 ---**********

In addition to the columns described in the background sections, this assignment includes two assignment-
specific columns: gp and BG. Column gp shows the group size, measured in warps. Column BG shows a guess
of what the group size should be (Problem 2) for the particular block size. A value of == in the BG column
means that the kernel is being run with the group size returned by hw04_group_size_choose. Notice that
the BG column in the excerpt above is not always correct, such as for a block size of 16 warps.

One parameter of hw04_group_size_choose is the amount of level 1 cache space available. The amount
of space varies by kernel. The end of the first line in the excerpt above reads L1 Avail 101248 B (gp=64).
That shows the amount of L1 space available to the kernel that has the least L1 space available. The
amount of L1 space available to a kernel depends on how much shared memory is declared. The more
memory declared, such as __shared__ int my_array[4096];, the less L1 cache space available.

In the runs above all possible group sizes are tried for each block size. Notice that as group size increases
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instruction overhead, shown in I/el, increases (a bad thing). However, as group size increases, the number
of times an element is transferred from the L2 cache to the L1 cache, shown in N*R, decreases, a good thing.
This means one must choose a group size that’s large enough so that the vectors fit in the cache, but no
larger to avoid inflating instruction overhead. That’s the goal of Problem 2.

Problem 1: In the unmodified code kernel norm_hw04 works correctly when template parameter GRP_SIZE
is a power of two from 1 to 32. Larger values of GRP_SIZE won’t cause an error, but the value will be ignored
and instead a size of 32 will be used. That is, the kernel will use the smaller of GRP_SIZE or 32 threads to
normalize each vector. Modify norm_hw04 so that it works correctly when template parameter GRP_SIZE is
set to a value ≥ 32. The value will still be a power of 2 and will not be larger than the block size. The
kernel does not have to work for GRP_SIZE values less than 32.

Note that routine group_sum won’t work when parameter group_size is greater than 32. Solve this
problem using shared memory. Do not rely on library functions to compute the sum.

In a correct solution the fastest norm_hw04 runs should be faster than the fastest norm_group runs,
especially at larger vector sizes.

Problem 2: A larger group size has two benefits. It reduces workload imbalance when the number of
vectors is small. It also can reduce the number of level 1 (L1) cache misses. The disadvantage of larger
groups sizes is that it increases overhead.

Recall that the normalization code reads a vector twice. Once when finding the sum of its elements,
and a second time when those elements are normalized. Cache misses are reduced because as group size
is increased the number of vectors being normalized by a block at any particular time drops. For a large
enough group size all vectors will fit in the L1 cache.

Modify routine hw04_group_size_choose so that it returns a good group size (number of threads) to
use for the given L1 cache size, block size, and vector length. The returned group size must be a power of
two and can’t be smaller than 32, nor larger than the block size, nor larger than the vector length. It is okay
if a tuning constant (informally, fudge factor) is used to account for the fact that data other than the input
and output vectors might occupy the cache, and other factors.

For your convenience, the unmodified code includes a sample use of C++20 standard library function
bit_ceil, which rounds an unsigned integer up to a power of two. For example, bit_ceil(12) returns 16,
bit_ceil(16) also returns 16, and bit_ceil(17) returns 32. (There is also a bit_floor function.)
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