LSU EE 7722 Homework 2 Due: 11 April 2025
Formatted 19:17, 2 April 2025

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory . ./hw/gpm/2025/hw02.

If the class account has been set up properly, the code can be built from within Emacs by pressing
when visiting any file in the .../2025/hw02 directory or when in an Emacs shell buffer (which can

be entered using —X shell). The code can be built from the command line using the command
make -j 4 (assuming .../2025/hw02 is the current directory). Either method runs a makefile that builds
all examples in the directory. It builds two versions of each program, one taking the base name of the main
file, such as hw02 and one with the suffix ~debug, such as hw02-debug. For CUDA assignments, but not this
one, a third version is built, with the suffix —~cuda-debug, such as hw02-cuda-debug.

The executables with the suffix ~debug are compiled with host optimization turned off, host debugging
on, but CUDA debugging turned off. Use gdb to debug these. (It is possible to use gdb to debug executable
hw02, but due to optimization the values of certain variables can’t be printed, breakpoints can’t be set at
certain lines, and the order of execution may not match the order of statements in the source code.)

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw02. It should produce extensive
output starting something like

CPU model Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz

Node has 2 CPUs, CPU has 20 cores, total 40 cores. Measured clock 3.40 GHz.
(This run spawns 18 threads.)

L1 Data Per Core 48 kiB, 12-way, line size 64 bytes.

L2 Unif Per Core 1280 kiB, 20-way, line size 64 bytes.

L3 Unif Per Chip 30720 kiB, 12-way, line size 64 bytes.

Vector width 512 bits, 32 vector registers, and

2 vector unit(s) per core. (Assumed.)

Data bw 33.019 GB/s (measured). For 18 threads: comp/comm = 237.2

Matrix 2048 1024 1024 4096. Duration simple: 455.049 ms
Stride 2048 1040 1024 4112 = 2048 x 4112. 18 thds. HWO1
——————— Tile-———-——- --L2 Occ-——- -FP Throughput- Insn/ Util
tl t3 ml m3 ml*d2 d2*m3 Dur/ms GFLOPs 7% Peak Vec I Mes
16 16 16 4096 0.05 12.80 23.11 371.67 18.98 2.03 69
8 32 8 4096 0.03 12.80 19.95 430.62 21.99 2.22 64

And finally after lots of output finishing

64 456 256 0.05 3.20 289.40 118.73 6.06 2.22 96
64 1824 64 0.05 0.80 343.42 100.05 5.11 2.22 83
128 228 266 0.03 3.20 525.60 65.37 3.34 2.36 96
128 456 128 0.03 1.60 530.45 64.77 3.31 2.36 91
256 114 256 0.01 3.20 856.22 40.13 2.06 2.18 96
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The makefile will compile code for the system it was run on. Re-run make when moving to a system
using a different CPU.


https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html

Background and Reference Material
This assignment is written in C4++20, with GNU extensions used for vector types. A good reference for C
and C++ is https://en.cppreference.com/w/.

Assignment Overview

The code in hw02 is based on the solution to Homework 1. It multiplies app.a, a di X dy matrix (a matrix
having d; rows and ds columns), by app.b, a ds X d3 matrix, where app is a structure holding the matrices
and other items relevant to this assignments. The matrices are initialized with random numbers uniformly
selected in [0, 1]. In members app.a and app.b there is no padding, members app.ap and app.bp hold those
same matrices but with padding. The layout for app.ap has mmd.d1 rows mmd.s2a columns, though only
the first mmd.d2 columns hold useful data, the other columns (the padded columns) hold zeros. Similarly
the layout for app.bp has mmd.d1 rows and mmd.s3 columns, but only the first mmd.d3 columns hold data,
the rest hold zeros. Finally, mmd.gp is a padded version of the output array with mmd.d1 rows and mmd.s3
columns. The strides, mmd.s2a and mmd.s3 are taken from the solution to Homework 1.

Routine mm_simple multiplies the arrays using a simple three-level loop nest and writes the product to
app.g_simple. Its purpose is to compute an answer that will be considered correct, which is why it is kept
simple. Unlike in Homework 1, mm_simple reads and writes the padded arrays.

Routine mm_tiled_hwO1 is a simplified version of the solution to Homework 1, and should not be
modified. It multiplies padded matrix mmd.ap by mmd.bp and writes the result to padded matrix mmd.gp. In
mm_tiled_hwO1 each thread operates on its own set of rows, computing a ¢; x t3 tile ds/t3 times to compute
one set of t; rows. This potentially reuses a t; X do section of matrix a ds times. The routine is described
in more detail further below. In the unmodified assignment mm_tiled_hwO2pl and mm_tiled_hwO2p2 are
identical to mm_tiled_hwO1. In a correct solution to Problem 1, each thread spawned for mm_tiled_hw02p1
should operate on its own set of columns. For each group of t3 columns it should compute a t; x t3 tile dy /1
times, potentially reusing a ds X t3 section of matrix b.

Values of ¢; and ¢3 are chosen so that when computing a ¢ X t3 section of matrix g the section (declared
as ee) can be kept in vector registers. Keeping the ¢; X t3 section of g in registers while it is being computed
helps the rate of computation approach saturation (which on the lab computers means two vector instructions
per cycle per core). This would not be achieved if each multiply/add instruction were preceded by a vector
load and followed by a vector store.

When routine mm_tiled_hw02p2 is correctly solved each thread will compute a m; X mg3 macro tile
consisting of T—f% tiles of size t; X t3. The goal is to see if there is benefit to choosing mgs such that a
ds x mg section of b can fit in the level 2 cache. Further details on mm_tiled_hwO1 and the requirements for

mm_tiled_hw02pl and mm_tiled_hw02p2 are described further below.

Routine mm_do (app,d1,d2,d3,pad) will construct the d; x do and dy x d3 arrays and multiply them in
several different ways, each multiplication will use app.nt threads. After preparing the app structure and
constructing the arrays mm_do calls mm_simple to compute the correct answer.

Routine mm_do will then call mm_tiled_do<t1,t2,t3>(app) multiple times, each time with a different
tile shape, specified by t1, t2, and t3, and for a different kernel using enumeration constants KV_HWO1,
KV_HWO2p1, KV_HWO2p2. The values of t1 and t3 are chosen so that there are enough vector registers for a
t1 X tg tile.

What routine mm_tiled_do does depends upon which kernel it is supposed to launch. In all cases it sets
mmd . m3 to the desired macro tile width, ms. For mm_tiled_hw01 mgs = d3 and for mm_tiled_hw02p1l mg3 = t3.
(Those following things closely will see why m3 was set to those values.) It then calls mm_tiled_do_1. For
Problem 2, mm_tiled_hwO2p2, mm_tiled_do_1 is called several times, each with a different value of ms.

Routinemm_tiled_do_1 callsmm_tiled_do_sample multiple times (determined by the value of mmd.app.n_samples,|]
set to 5 in the unmodified assignment). Each call of mm_tiled_do_sample performs a matrix multiplication.
A line of output is only shown for the multiplication with the median execution time. This should reduce
the variation in execution times, though it still can be high, especially for the smaller matrices.

Routinemm_tiled_do_sample spawns app.nt threads, each thread starts with routine mm_tiled<t1,t2,t3>(tid,&mmd) |
where tid is a thread ID, which can range from 0 to app.nt-1. After the threads complete mm_tiled_do_samplel]
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checks the product for correctness, and then constructs a row of the table. Only the row for the execution
with the median run time is printed.

Routine mm_tiled<t1,t2,t3> then callsmm_tiled_hwO1l, mm_tiled_hwO2pl, or mm_tiled_hw02p2. The
solution for this assignment should be put in mm_tiled_hwO2p1 and mm_tiled_hw02p2, however feel free to
modify other code, for example, to run different configurations or to print additional data in the table.

Using hw02

The assignment program, hw0O2, optionally takes a single argument, the number of threads to spawn. If it is
run without an argument the number of threads will be set to the number of cores (counting all CPUs) minus
two. Unlike Homework 1, in Homework 2 the core count isn’t doubled if SMT (symmetric multiprocessing
which Intel calls hyperthreading) is turned on.

The program will first print information about the CPU, see the sample below.

CPU model Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz

Node has 2 CPUs, CPU has 20 cores, total 40 cores. Measured clock 3.40 GHz.
(This run spawns 40 threads.)

L1 Data Per Core 48 kiB, 12-way, line size 64 bytes.

L2 Unif Per Core 1280 kiB, 20-way, line size 64 bytes.

L3 Unif Per Chip 30720 kiB, 12-way, line size 64 bytes.

Vector width 512 bits, 32 vector registers, and

2 vector unit(s) per core. (Assumed.)

Data bw 33.870 GB/s (measured). For 40 threads: comp/comm = 514.0

The CPU model is printed on the first line. The second shows the number of cores, the reported clock
frequency, and the number of threads requested on the command line. If no argument is given the number
of threads is set equal to the number of cores minus two.

The clock frequency given above after the phrase “cores at”, is the reported clock frequency after
performing a bandwidth test, 3.40 GHz above. Note that this frequency differs from the nominal frequency
reported with the model name CPU @ 2.30GHz in the top line. The reported clock frequency can be higher
or lower than the nominal frequency. In this case it was higher because before hwO2 was run the CPU was
relatively cool, so when it performed the bandwidth test it was able to run at its high (“turbo”) frequency
for the duration of the bandwidth test without getting hot enough to end the sprint.

Normally this reported frequency will be used throughout the run to assess how close the multiplications
were to peak performance. If re_check_cpu_clocks is set to true then the CPU clock frequency will be
checked after each matrix multiplication.

The line starting Vector width shows the number of bits in each vector register, the number of vector
registers, and the number of vector units per core. The sample values above are the same as the lab
computers, which implement AVX512 instructions. Recent consumer-level processors use AVX2 instructions,
which operate on 256-bit registers and have just 16 registers and one vector unit per core.

The line starting Data bw shows the measured GPU-to-memory data bandwidth. The line also shows
the computation to communication ratio, taking into account data bandwidth, clock frequency, and the
vector capabilities. A value of 514 indicates that when both the vector units and off-chip bandwidth are at
saturation (operating at their maximum rate) 514 FP operations will be performed for each operand moved
from or to memory when 40 cores are used. The comp/comn ratio is computed based on the requested number
of threads, not the number of cores.

Next the program will multiply matrix pairs of varying sizes. Each pair will first be multiplied by a
simple routine, and its product will be treated as correct. Then it will be multiplied by a tiled routine called
for a variety of tile sizes.

For each matrix pair the program starts by printing the following information:

Matrix 2048 2048 2048 4096. Duration simple: 899.435 ms
Stride 2048 2064 2048 4112 = 2048 x 4112. 18 thds. HWO1

The line starting Matrix shows the sizes of the a and b matrices, 2048 x 2048 for a and 2048 x 4096
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for b. Duration simple indicates the time needed by mm_simple to compute the product (using all cores,
it ignores the requested number of threads).

The line starting Stride shows the strides chosen for the matrices. That is followed by the number of
threads requested, 18 in the example, and the routine (abbreviated) for which results are to be shown, HW01,
in the example above. Next, the matrix pairs will be multiplied using various tile shapes and for HW02p2
various macro tile shapes. A table will be printed with one row per tile shape. The table is shown twice,
first in the order in which they were run, and the second sorted showing the fastest tile shape first:

——————— Tile-———-——- --L2 Occ--- -FP Throughput- Insn/ Util
tl t3 ml m3 m1*d2 d2*m3 Dur/ms GFLOPs % Peak Vec I Mes
16 16 16 4096 0.10 25.60 79.08 217.25 11.09 2.62 82

8 32 8 4096 0.05 25.60 83.41 205.96 10.52 2.36 89
4 64 4 4096 0.03 25.60 139.17 123.44 6.30 2.23 98
2 128 2 4096 0.01 25.60 240.83 71.34 3.64 2.36 93
1 256 1 4096 0.01 25.60 407.02 42.21 2.16 2.18 97
** Sorted by Execution Time *x*
------- Tile------- --L2 Occ--- -FP Throughput- Insn/ Util

t1 t3 ml m3 mi1*d2 d2*m3 Dur/ms GFLOPs J, Peak Vec I Mes
16 16 16 4096 0.10 25.60 79.08 217.25 11.09 2.62 82
8 32 8 4096 0.05 25.60 83.41 205.96 10.52 2.36 89
4 64 4 4096 0.03 25.60 139.17 123.44 6.30 2.23 98
2 128 2 4096 0.01 25.60 240.83 71.34 3.64 2.36 93
1 256 1 4096 0.01 25.60 407.02 42.21 2.16 2.18 97

The first group of columns show the tile and macro tile shape. Note that 5 is not shown, its value is
always 16. The values under t1, t3, and m3 are chosen by the code calling the kernels. The value under m1
is chosen by the kernel.

The values under m1*d2 shows the size of a section mj rows by ds columns of the a matrix divided by
the size of the level 2 cache. A value of 0.10, for example, indicates that it is one tenth the L2 cache size.
Similarly, the values under d2*m3 show how large a ds row by mgs column section of matrix b is compared
to the L2 cache. In the output above it is 25.6 times as large. The code in mm_tiled_hwO1 iterates across
columns, and so the value under m1*d2 is relevant for interpreting performance. When Problem 1 is correctly
solved the value under d2*m3 will be relevant for interpreting mm_tiled_hwO2p1. For Problem 2 the values
under both columns will be relevant.

The Dur/ms column shows execution time in milliseconds. The pair of columns under FP Throughput
show the floating point throughput in billions of floating-point operations per second, GFLOPs, and as a
percent of peak performance of the vector units. The peak performance is based on the clock frequency
reported at the beginning of the run. If for some reason the clock goes up or down, those peak numbers will
be wrong, sort of. A value of 100 for peak performance is ideal.

The column headed Insn/ Vec I (that’s over two lines) show the number of executed instructions scaled
to the number of vector multiply/add instructions. Lower values are better, but a value of one or lower is
impossible. Let w denote the number of elements per vector register. For the lab machines w = 16 and for
lower-line processors w = 8. (The assignment code has not been tested on many machines and will not not
work if the vector registers are less than 256 bits.) Note that it takes djdads multiply/add operations to
multiply the matrices. If vector instructions are used, and each vector holds w elements then d; dads /w vector
multiply /add instructions are needed, plus of course instructions to load and store values, keep track of loop
iterations, etc. Let ny denote the number of instructions executed when computing a matrix multiplication.
Dividing these two scales the number of instructions to the lower bound on the number needed: m#’gds. A
value of 1 would mean that there are only multiply/add instructions, which is impossible. Values less than
1 are of course also impossible. A value of 2.6 indicates that for each multiply/add instruction there are 1.6
other instructions. The value is shown in the column is RI#M'

Note that the scaled instruction count, Insn/ Vec I, varies based on the tile size. This is because the
code was written so that the compiler can unroll the ¢, r, and k loops in the kernels and for some values of
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t; and t3 the compiler can compute memory addresses with fewer instructions (or more reuse) than others.

The Util Mes column is measured utilization shown as a percentage. A value of 100% means all threads
are busy all the time. A value of 50% means on average half the threads are busy.

Description of mm tiled hwO1

Routine mm_tiled_hwO1 is a simplified version of the solution to Homework 1, see the excerpt below. The
outer loop, rr, iterates over rows. The loop start, tid+t1, and increment, mmd.app.nt*t1, are chosen so
that no two threads have the same value of rr. In each rr iteration a thread computes a series of t; X t3
tiles, the first at column 0 (cc=0), the second at column t3 (cc=t3), the third at 2¢3, and so on. The cc loop
iterates ds/t3 times.

for ( int rr = tid * tl; rr < dl; rr += mmd.app.nt * t1 )
for ( int cc = 0; cc <d3; cc +=t3 ) {

// One Complete tl * t3 Output Tile (of g) Computed Below
vE eel[t1] [t3/vec_wid_elts]{}; // Output tile.
for (int k = 0; k < d2; k++ )
{
vi* brow = (vf*)assume_aligned<64>( &bv[ k*s3/vec_wid_elts ] );
for ( int ¢ = cc; ¢ < cc + t3; ¢ += vec_wid_elts )
for (int r = rr; r < rr + tl; r++ )
ee[r-rr] [(c-cc)/vec_wid_elts] +=
al r*s2a + k ] * brow[ ¢ / vec_wid_elts 1;
}
// Write completed tl * t3 tile to g.
for (int r = rr; r < rr + tl; 1r++ )
for ( int ¢ = cc; ¢ < cc + t3; ¢ += vec_wid_elts )
gvl r * s3 / vec_wid_elts + ¢ / vec_wid_elts ] = eelr-rr][(c-cc)/vec_wid_elts];]}

}

The value of t3 will always be a factor of d3. Furthermore, the value of t3 will always be a multiple of
the number of array elements that can fit in a vector register on an AVX512 system (the lab computers) and
AVX2 (midrange and lower Intel chips). So for the lab ¢3 will be a multiple of 16 and if run on AVX2 chips
t3 will be a multiple of 8. The values of ¢; and t3 are chosen so that there are enough vector registers for
a t1 X t3 tile. This is important for matrix multiplication because a good implementation will be compute-
bound and so a high proportion of instructions should be multiply /adds. This would not be achieved if each
multiply /add instruction were preceded by a vector load and followed by a vector store.

Note that each iteration of the cc loop applies a t; X t3 tile to compute g somewhere on row rr. Each
iteration reads the same t; X do elements of a. If these elements of a could be kept in the L2 cache then
execution would be faster since the access to a in the second cc iteration would hit the L2 cache. Based
on plotted data (under column m1*d2) this is certainly the case. However because d2*m3 (where mg = d3
for the mm_tiled_hw01) is 25 times larger than the L2 cache the values brought to the L2 cache for one rr
iteration will likely not be there for a subsequent rr iteration.
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Problem 1: Initially mm_tiled_hw02p1 is identical to mm_tiled_hwO1.

Modify mm_tiled_hwO2p1l so that a thread computes a t; X t3 tile along the d; rows in a group of t3
columns. That is, after a thread computes a t; X t3 tile consisting of rows r to r +t; — 1 and columns ¢ to
¢+t — 1, it should next compute a tile consisting of rows r + ¢ to r 4+ 2¢; — 1 and columns ¢ to ¢+ t3 — 1.
The initial row for a thread is » = 0, the initial column should be chosen based on the thread id. (In the
unmodified code a thread computes a ¢1 X t3 tile along the ds columns in a group of ¢; rows.)

Because in most cases t3 > t; a correctly solved routine should have better cache performance and so
run faster.

Modify mm_tiled hw02p1l so that a thread applies tiles across the columns of a row, as described above.

Discuss whether the difference in performance is explained by the program output, in particular the data
under L2 Occ and Insn/ Vec I.

Problem 2: A thread in mm_tiled_hwO1 computes a t; X t3 tile along the columns of a group of ¢; rows,
so to achieve reuse the cache would need to hold ¢; x dy elements of a. If this reuse were achieved the
number of times the a matrix would be read (to L2) would be once and the number of times the b matrix
were read would be d; /t; (or f—tll times per thread, where n is the number of threads). In a correctly solved
mm_tiled_hw02p1l a thread computes a t; X t3 tile along rows in a group of t3 columns, so to achieve reuse
the cache would need to hold ds X t3 elements. Each element of b would be read once, and each element of

a would be read d3/t3 times (counting all threads).

Modify mm_tiled_hw02p2 so that each thread computes g in one or more macro tiles of size my x ms.
Note that each macro tile consists of T—f’f—; tiles of size t; X t3. The value of mg is given in variable mmd .m3,
and should not be changed. The value of m; should be chosen as part of the problem, and of course the
chosen value should be a multiple of ¢;. Suppose m; = 2t;. First the code would compute mg/ts tiles of
size t1 X t3 all on the same t; rows. If the L2 cache is large enough to hold dy x mg elements of b then those
elements will be found in the cache when doing the second set of ms/t3 tiles. If mg is too large this benefit
would be lost. Of course if m; = t; the benefit is lost too. One simple solution is to set m; = dy, but that

would result in workload imbalance when ds/mg is not a multiple of n (the number of threads).
Modify mm_tiled hw02p2 so that it computes macro tiles as described above.

Try to do this in a way that improves on mm_tiled hw02p1 by taking advantage of the fact that more values
of a are being reused when mg > t3.

Try to avoid workload imbalance.

Discuss whether the difference in performance is explained by the program output, in particular the data
under L2 Occ and Insn/ Vec I7
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