LSU EE 7722 Homework 1 Due: 23:59 CDT 10 March 2025

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory . ./hw/gpm/2025/hw01.

If the class account has been set up properly, the code can be built from within Emacs by pressing
when visiting any file in the .../2025/hw01 directory or when in an Emacs shell buffer (which can

be entered using —X shell). The code can be built from the command line using the command
make -j 4 (assuming .../2025/hw01 is the current directory). Either method runs a makefile that builds
all examples in the directory. It builds two versions of each program, one taking the base name of the main
file, such as hwO1 and one with the suffix ~debug, such as hw01-debug. For CUDA assignments, but not this
one, a third version is built, with the suffix -cuda-debug, such as hw02-cuda-debug.

The executables with the suffix ~debug are compiled with host optimization turned off, host debugging
on, but CUDA debugging turned off. Use gdb to debug these. (It is possible to use gdb to debug executable
hw01, but due to optimization the values of certain variables can’t be printed, breakpoints can’t be set at
certain lines, and the order of execution may not match the order of statements in the source code.)

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw01. It should produce extensive
output starting something like

CPU model Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz

CPU has 40 cores at 3.40 GHz. (This run spawns 40 threads.)

L1 Data Per Core 48 kiB, 12-way, line size 64 bytes.

L2 Unif Per Core 1280 kiB, 20-way, line size 64 bytes.

L3 Unif Per Chip 30720 kiB, 12-way, line size 64 bytes.

Vector width 512 bits, 32 vector registers, and

2 vector unit(s) per core. (Assumed.)

Data bw 65.787 GB/s (measured). For 40 threads: comp/comm = 264.6

Matrix 256 256 256 256. Duration simple: 3.923 ms

Stride 256 256 256 256 = 256 x 256. Padding Not Requested

-—-Tile-—- -FP Bandwidth-- Utiliz- ---E-—- ---V---- --—-C-—-- -—-P-—-
tl t2 t3 Dur/ms GFLOPs % Peak Exp Mes %L2 %BW %L2 Y%BW %L2 %BW %L2 %BW
116 1 7.15 2.35 0.06 0 O 0 29 O 0O o0 O 0 0

4 16 4 5.78 2.90 0.07 0 0 0 9 0 0 0 0 0 0

8 16 8 5.54 3.03 0.07 0 0 0 5 0 0 0 0 0 0

8 16 16 2.82 5.94 0.14 0 0 0 7 0 0 0 0 0 0
And finally after lots of output finishing
256 16 8 336.62 102.07 2.34 0 0 1 91 0 0 0 0 0 0
256 16 16 146.72 234.18 5.37 0 0 1 108 0 0 0 0 0 0
256 16 32 82.92 414.39 9.50 0 0 3 101 0 0 0 0 0 0
256 16 64 78.25 439.11 10.07 0 0 5 60 0 0 0 0 0 0
256 16 128 376.42 91.28 2.09 0 0 10 8 0 0 0 0 0 0

The makefile will compile code for the system it was run on. Re-run make when moving to a system
using a different CPU.

Background and Reference Material


https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html

This assignment is written in C4++20, with GNU extensions used for vector types. A good reference for C
and C++ is https://en.cppreference.com/w/.

A solution to these problems requires some understanding of the CPU hardware structure, in particular
how array references such as a[1000] are converted into memory addresses, how memory addresses are
mapped to cache sets, and about the multi-level caches provided on the Intel CPUs (and other CPUs). Some
of that material is reviewed in this assignment.

Assignment Overview

The code in hw01 multiplies app.a, a d; X do matrix (a matrix having d; rows and dy columns), by app.b, a
ds X d3 matrix, where app is a structure holding the matrices and other items relevant to this assignments.
The matrices are initialized with random numbers uniformly selected in [0, 1].

Routine mm_simple multiplies the arrays using a simple three-level loop nest and writes the product to
app.g_simple. Its purpose is to compute an answer that will be considered correct, which is why it is kept
simple.

Despite using an OpenMP pragma for parallelization, mm_simple is slow. Also provided in the assign-
ment is a tiled routine, in mm_tiledr. The assignment code will run it at various tile sizes and report results.
Those results will show great variation in run times. Part of this assignment will be to explain the run times,
and to fix a problem that plagues matrices with power-of-two dimensions.

Routine mm_do(app,d1,d2,d3,pad) will construct the d; x dy and ds X d3 arrays and multiply them in
several different ways, each multiplication will use app.nt threads. After preparing the app structure and
constructing the arrays mm_do calls mm_simple to compute the correct answer.

Routine mm_do will then call mm_tiled_do<t1,t2,t3>(app) multiple times, each time with a different
tile shape, specified by t1, t2, and t3. Routine mm_tiled_do spawns app.nt threads, each thread starts with
routine mm_tiled<t1,t2,t3>(tid,&app), where tid is a thread ID, which can range from 0 to app.nt-1.
After the threads complete mm_tiled_do checks the product for correctness, and then prints data about the
run (a row of the table shown in the output examples).

Routine mm_tiled<t1,t2,t3> then calls mm_tiledr<t1,t2,t3,vec\_bits,n\_bytes>, using the cor-
rect vector register size and count. Routine mm_tiledr performs the tiled matrix multiplication.

Using hw01

The assignment program, hwO1, optionally takes a single argument, the number of threads to spawn. If it
is run without an argument the number of threads will be set to the maximum concurrency, which is the
number of cores if SMT (hyperthreading) is turned off.

The program will first print information about the CPU, see the sample below.

CPU model Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz

CPU has 40 cores at 3.40 GHz. (This run spawns 40 threads.)

L1 Data Per Core 48 kiB, 12-way, line size 64 bytes.

L2 Unif Per Core 1280 kiB, 20-way, line size 64 bytes.

L3 Unif Per Chip 30720 kiB, 12-way, line size 64 bytes.

Vector width 512 bits, 32 vector registers, and

2 vector unit(s) per core. (Assumed.)

Data bw 70.306 GB/s (measured). For 40 threads: comp/comm = 247.6

The CPU model is printed on the first line. The second shows the number of cores as of this writing it
actually shows the reported concurrency, the reported clock frequency, and the number of threads requested
on the command line. If no argument is given the number of threads is set equal to the number of cores.

The clock frequency given above after the phrase “cores at”, is the reported clock frequency after
performing a bandwidth test, 3.4 GHz above. Note that this frequency differs from the nominal frequency
reported with the model name CPU @ 2.30GHz in the top line. The reported clock frequency can be higher
or lower than the nominal frequency. In this case it was higher because before hwO1 was run the CPU was
relatively cool, so when it performed the bandwidth test it was able to run at its high (“turbo”) frequency
for the duration of the bandwidth test without getting too hot.
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Normally this reported frequency will be used throughout the run to assess how close the multiplications
were to peak performance. If re_check_cpu_clocks is set to true then the CPU clock frequency will be
checked after each matrix multiplication.

The line starting Vector width shows the number of bits in each vector register, the number of vector
registers, and the number of vector units per core. The sample values above are the same as the lab
computers, which implement AVX512 instructions. Recent consumer-level processors use AVX2 instructions,
which operate on 256-bit registers and have just 16 registers and one vector unit per core.

The line starting Data bw shows the measured GPU-to-memory data bandwidth. The line also shows
the computation to communication ratio, taking into account data bandwidth, clock frequency, and the
vector capabilities. A value of 247 indicates that when both the vector units and off-chip bandwidth are at
saturation (operating at their maximum rate) 247 FP operations will be performed for each operand moved
from or to memory when 40 cores are used. The comp/comm ratio is computed based on the requested number
of threads, not the number of cores.

Next the program will multiply matrix pairs of varying sizes. Each pair will first be multiplied by a
simple routine, and its product will be treated as correct. Then it will be multiplied by a tiled routine called
for a variety of tile sizes.

For each matrix pair the program starts by printing the following information:

Matrix 2048 2048 2048 4096. Duration simple: 4958.823 ms
Stride 2048 2048 2048 4096 = 2048 x 4096. Padding Not Requested

The line starting Matrix shows the sizes of the a and b matrices, 2048 x 2048 for a and 2048 x 4096
for b. Duration simple indicates the time needed by mm_simple to compute the product (using all cores,
it ignores the requested number of threads).

The line starting Stride shows the strides chosen in a solution to a problem below if Padding Requested
is shown. If Padding Not Requested is shown then the strides should match the matrix dimensions. In the
unmodified assignment the strides will be equal to the matrix dimensions in either case. Strides are shown
for a, b, and g. They are shown for g because they don’t need to be consistent with a and b.

Next, the matrix pairs will be multiplied using various tile sizes. A table will be printed with one row
per tile size:

-—-Tile--- -FP Throughput- Clk- Utiliz- -—-E--- -—-V---- -—-C-—- ——-P-—-
tl t2 t3 Dur/ms GFLOPs Y Peak MHz Exp Mes %L2 %BW %L2 %BW %L2 %BW %L2 %BW

816 8 94.12 182.53 4.41 3230 0 O 0520 O 0o o O o0 ©O
8 16 16 61.51 279.30 7.77 2808 0 0 0597 O 0o o o o0 O
8 16 32 54.36 316.05 8.80 2805 O 0 065663 O o o0 o o0 O
8 16 64 61.16 280.89 7.82 28056 0 O 0451 O o 0 O o0 O
16 16 8 96.61 177.83 4.88 2845 0 0 0380 O o o0 O o0 O
16 16 16 63.61 270.09 7.562 2807 O 0 038 O 0o o O o0 O

The first group of columns show the tile shape. Note that t; is always 16. The Dur/ms column shows
execution time in milliseconds. The pair of columns under FP Throughput show the floating point throughput
in billions of floating-point operations per second, GFLOPs, and as a percent of peak performance of the vector
units. The peak performance is based on the clock frequency reported at the beginning of the run. If for
some reason the clock goes up or down, those peak numbers will be wrong, sort of. A value of 100 for peak
performance is ideal.

The columns under Utiliz, utilization, are to show expected and measured utilization. In the unmod-
ified assignment they are zero, when Problem X is correctly solved they will show the expected and the
measured percentage of time threads are busy.

Their are four column pairs headed with a single letter, E, V, C, and P. The letter refers to a place
in hwO1.cc, for example, Point E. The value under L2 shows the percentage of level 2 cache needed for
perfect reuse by the code at Point x in the program. The value under BW shows the percentage of off-chip
(to memory) bandwidth consumed if there was perfect reuse at Point 2 and nowhere else. See Problem X.
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Problem 1: One reason that performance of our matrix multiplication suffers is due to load imbalance:
some threads sit idle while others are busy. Assume that the number of threads, n,, is equal to the number
of cores. There are two causes for load imbalance in our code. One is due to the way work is assigned to

threads. Each thread is assigned at most [22-]¢; rows of the matrix. Work is evenly divided among threads

tin,
when tldrlzT is an integer. So, for dy = 1024, t; = 16, and n, = 32 we have 12035,)12 = 2, meaning each thread is

assigned 2 x 16 = 32 rows. But suppose d; = 1024, t; = 64, and n, = 32. Then 6}1(;2;12 = % In this case half
the threads will be assigned ¢t; = 64 rows and the rest will be assigned zero rows. Half of our performance
potential is lost (assuming our code is compute bound, which our matrix multiply is if we get the tiling
right).

Define expected utilization as follows. Let w; denote the amount of work assigned to thread i. Then

. Wiy
Ug = ZOSK"T . Define a second metric, measured utilization as follows. Let b; denote the measured

Ny MaxXp<i<n, Wi
0<i<nr

Ny Maxo<i<n, 0i’

amount of time thread 4 is busy (presumably doing useful work). Then Uy =

Modify mm_tiled_do so that the expected utilization is assigned to util_expected and the measured
utilization is assigned to util_measured. Note that an ideal value is 1, not 100. In the unmodified assignment
both are assigned zero.

The values of these variables are printed, as a percentage, in the table under the Utiliz group of
columns. There is no need to modify the code printing their values in the table.

To compute the measured utilization it will be necessary to measure the execution time of each thread.
The best place to do this is inside mm_tiledr. There is a per-thread array, misc\_data, that can be used to
carry duration and other information. That array is already used to carry a value of t1v from mm_tiledr
to mm_tiled_do, use it as an example.

Assign the expected utilization to util_expected.

Its value should be computed using matrix dimensions, tile shape, and the number of threads.

Assign the measured utilization to util measured.

Compute this by measuring the execution time of each thread using the Thd Misc Data structure to hold
execution times, and any other data needed.

The utilization values should reveal that the tiling used in this assignment does not work well for smaller
arrays, especially considering measured utilization.

Problem 2: The point of tiling is to organize the access of data to make good use of the cache.

For a particular tiling there are two quantities of interest: the amount of cache needed, and the amount
of data that will need to be transferred if there is sufficient cache. In this problem those quantities will be
computed and shown in the table.

If this were a classic ¢ x t tiling then the amount of cache needed would be between 3t% and 2 +t + 1
elements, depending on how it was done. With this much cache each element of a and b would be reused
t — 1 times in each tile. To compute each tile 2t? data elements would be read and t? elements of cache
would be used for the output array tile. The total number of tiles computed would be (d/t)? and so 2d3/t
data elements would be read and d? written. With such a tiling ¢ is chosen to be at least the computation
to communication ratio of the device and hope there is enough cache.

The assignment code is different than classic tiling for several reasons. For one thinig there are three
tile dimensions, t1, ts, and t3.

The code in mm_tiledr includes comments Point E, Point P, Point C, and Point V. In mm_tiled_do
are variables starting with point_ that are to be assigned values as described below, except the variables
for Point E, which are assigned correctly and are described below.
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Variable point_e_cache_size_min_elts is assigned to the minimum cache size needed so that elements
of a and b are perfectly reused in the code after Point E. That is, there will be at most one miss to any
particular element of a and b if there is this much cache. For example, if a[7] is accessed multiple times,
only the first access to a[7] will miss the cache.

Consider the code at Point E:

for ( int kk = 0; kk < d2; kk += t2 ) {
/// Point E
for ( int k = kk; k < kk + t2; k++ )
for (int r = rr; r < rr + tl; 1r++ )
for (int ¢ = cc; ¢ < cc + t3; c++ )
ee[r-rr]lc-cc] += a[ r*d2 + k ] * b[ kxd3 + ¢ ];
}

The cache space is needed for ee, a, and b. First, observe that a tile ¢; rows high and ¢ columns wide
is read from a, for a total of ¢1f5 elements. However the amount of cache needed is less than that. In fact
because of the order of the loops, each element of a is read, used t3 consecutive times, and not used again.
So, only one element of space is needed for a. For b only ¢3 elements of space are needed. In the c loop t3
different elements of b are read. Those same elements are accessed in each iteration of the r loop. But each
k loop iteration uses different elements of b so only t3 storage locations are needed. Finally, ¢;t3 elements
are needed for ee. These values have been written before Point E, and are needed after Point E, so space is
needed for all of them.

Based on this:

const size_t point_e_cache_size_min_elts =
tl * t3 // For ee (though registers might be used for ee)
+ t3 // For b[ k*d3 + c ].
+ 1 // For al r*d2 + k ].

Variable point_e_xfer_elts should be set to the maximum number of elements of a, b, and g moved
between memory and caches if perfect reuse is achieved in Point E.

First, consider a and b. As stated earlier, the code at Point E uses t1t5 elements of a and tot3 elements
of b. Because there is perfect reuse those values will be transferred once, for a total size of t1ts 4 tot3. The

code at Point E executes %%f—: times. (The ’Z—ll factor accounts for all threads. It is ndil for each thread.)
. . . dy do d-
So the total xfer including a and b is §$2 $2(t1t2 + tats).
Since we are assuming sufficient cache there are no transfers from and to memory for ee. But, ee is

written to g. Since each element of g is written once the total transfer is dids. Based on this:

const size_t point_e_n_executions = (dl / t1 ) *x (d2 / t2 ) *x (d3 / t3);
const size_t point_e_xfer_elts =

tl * t3 x (dl / t1 ) *x (d3/ t3 ) // Yes, it’s just dl = d3.

+ point_e_n_executions * ( tl * t2 + t2 * t3 );

The value of point_e_cache_size_min_elts is used to compute the value of L2 under the E group in
the table. The value is the percentage of the L2 cache that is needed for perfect reuse, computed by dividing
point_e_cache_size_min_elts by the level 2 cache size (in units of elements).

The value of point_e_xfer_elts is used to compute the value under %BW. The number of elements
that could have been transferred to or from memory during the matrix multiplication, data_limit_elts,
is computed. Then point_e_xfer_elts is divided by data_limit_elts. If the value is, say 0.5 (or 50%)
then half of the bandwidth would be needed to transfer point_e_xfer_elts. If the value is 2 (or 200%)
then twice the bandwidth would be needed, which means that fewer than point_e_xfer_elts were actually
transferred during execution.

const double data_limit_elts = data_bw_eps * duration_s;
mmd . table.header_span_start("E");
mnd. table.entry( "%L2", "%3.0f",



le2 * point_e_cache_size_min_elts / 12_size_elts );
mmd.table.entry( "%BW", "%3.0f", 1le2 * point_e_xfer_elts / data_limit_elts );
mmd . table.header_span_end();

For Point E, the values under L2 will be very low, meaning not much cache is needed. The values under
BW will be greater than 100%, meaning that fewer elements were transferred and so there must be some other
kind of reuse.

Point V is similar to Point E, except it is in the vector part of the code. Also, Point V operates along all
of do, not just a length to tile. The code at Point V operates on a t1, X t3 tile. The value of ¢1, is chosen so
that there will be enough vector registers for the ee array. Each element of the ee array is a vector register
of vec_wid_elts elements. The number of columns in ee is t3/vec_wid_elts vectors or t3 elements. Array
a is accessed in the same way as at Point E, as scalars. Array b is accessed as vectors. This access is done
through pointer brow. For purposes of analysis consider brow[ ccc / vec_wid_elts ] equivalent to bv[
( k*¥d3 + ccc ) / vec_wid_elts ]. This accesses elements in row k, from column ccc to column ccc +
vec_wid_elts-1.

Assign variable point_v_cache_size min elts to the minimum cache size in units of elements needed so
that elements of a and b are perfectly reused in the code after Point V until the end of the block.

Point C is just above Point V. Point C handles the full ¢; x t3 tile. The amount of cache needed for
Point C is not just t1/t1v times the amount needed for Point V.

Assign variable point_c_cache_size min elts to the minimum cache size in units of elements needed so
that elements of a and b are perfectly reused in the code after Point V until the end of the block.

Assign variable point_c_xfer_elts to the the maximum number of elements of a, b, and g moved between
memory and caches if perfect reuse is achieved in Point C.

Points E, C, and V are at places in the code that operate on tiles. Point P is different because the code
iterates a t; X t3 tile along an entire row. The questions below ask about the amount of cache needed to
achieve perfect reuse for Point P. In effect, that makes it a t; x d3 tile, which potentially is very wide. In
such a tile elements of a are reused d3 times, which sounds great, but elements of b are reused only #; times.
The cache needed to achieve this could have been used more effectively in a tile closer to square in shape.
That said:

Assign variable point_p_cache_size min_elts to the minimum cache size in units of elements needed so
that elements of a and b are perfectly reused in the code after Point P until the end of the block.

Assign variable point P_xfer_elts to the the maximum number of elements of a, b, and g moved between
memory and caches if perfect reuse is achieved in Point P.

Problem 3: In the unmodified code the performance on larger matrices suffers due to conflict misses
caused by power-of-two strides. Consider the multiplication of a 1024 x 1024 with a 1024 x 1024 matrix.
On a lab computer with Xeon Silver 4316 the best tiling reaches about 21% of peak performance. But the
multiplication of a 2048 x 2048 with a 2048 x 4096 matrix reaches only 11.4% of peak. One might assume
that there is not enough cache for the larger matrix, but as other problems in this assignment will show
there’s plenty. The problem is that cache space is wasted due to conflict misses.

The caches used in most processors, including the Intel processors in the lab, are set-associative. The
cache manages memory addresses in units called lines. A typical line size is 64 bytes, meaning that 64 memory
addresses map to the same line. For such a line size memory addresses 12001, 120114, 120215, . . . 123 f16 are all
on the same line, and address 124016 is on a different line. Note that 120016 + 6419 = 120016 + 4016 = 1240+¢.

Each memory address is mapped to a set. The associativity of a cache (number of ways) is the number
of different lines a set can hold. Let L = 2! denote the line size, S = 2° denote the number of sets, and a
denote the associativity.



For address A define the tag of A to be Ci(A) — \_S—ALL where S is the number of sets and L is the line
size. Define the index of A to be Cingex(4) = L%J mod S. The value of the index is in the range 0 to S — 1.

Two addresses are in the same set if they have the same index. Two addresses are part of the same line
if they have the same tag and index. A set in an a-way cache can hold at most a lines. When a processor
issues a load or store instruction for address A is will perform a lookup for a line in set Ciygex(A4) with a
tag equal to Ciag(A). If such a line is found the lookup will be said to hit, otherwise it is a miss. On a miss
the cache controller will issue a read request for the data, either in the next level of the cache or memory.
When the requested data arrives it will be placed in set Cipdex(A). If that set had already held a lines then
one of those lines would be replaced or evicted (the two terms are similar) by the arriving line. The choice
of line to replace is determined by the replacement policy. A common replacement policy is least-recently
used (LRU), in which the line accessed longest ago is replaced.

Suppose the line size is L = 2* = 16 (one hexadecimal digit), the number of sets is S = 28 = 256 (two
hexadecimal digits), and the cache is a = 3 or three-way set associative. Because the line size and number
of sets are both multiples of 16 one can determine the set and tag by looking at an address in hexadecimal.
Address 123416 maps to set 2316 (the second and third hex digit), or put another way Cindex(123416) = 2316.
The tag of this address is 1, it is the value of the digits to the left of the index. Addresses 123414 and 123814
are both in set 2314 and because they differ only in the least significant bits are the same line.

Consider a thread that executes loads to the following addresses
100016, 103016, 200016, 200416, 300016, 400016, 500016, 103c16

in the cache described above. Address 103046 is in set 3, and all the others are in set 0. Starting from a
cold (empty) cache and after executing loads for 100016, 103016, 200016, 200416 set 0 of the cache will hold
two lines, one for 100014 (spanning addresses 100016 to 100f16) and one for 200016, and set 3 will hold one
line, for 103016. No problem, because the cache is 3-way. After 300014 set 0 will hold 3 lines. Next 400014
is accessed. This line will be put into set 0, but some other line will have to be evicted. Assuming an LRU
replacement policy line 100016 will be evicted. Next, 500014 is accessed, evicting 2000;4. Finally for access,
103c16 the lookup to set 3 will hit since a line with tag 1 is there, the line brought in by the earlier access
of 103016-

The cache above has 256 sets. A really bad access pattern is 100016, 200016, 300016, - . ., because all of
the addresses are in set 0 but have different tags. Though the capacity of the cache is 3 x 256 lines for
this sequence the cache only holds 3 of them. Is this some freak unlucky occurrence? Not for us. Consider
accesses to a dy x dp matrix of 4-byte elements. Let a, . denote the element in row r and column c. Our code
actually stores the data in a one-dimensional array, and computes the index as a[ r*dl + ¢ ]. Suppose
the address of ag,0 is 100016. Then the address of a, . would be 100016 + 4(d17 + ¢). Let di = 1024. Then
4d; = 4096 = 100016. So the address of a; o is 200046, the address of as ¢ is 300016, and so on. All of these
addresses are in the same set. Can this cause problems for us?

Consider the level 2 cache provided for each core in the Xeons in the lab. They are 20-way set associative,
have a line size of L = 2% = 64 bytes and S = 2! = 1024 sets. Their total capacity is aSL = 20 x 21926 B =
20 x 216 B = 1280 kiB. In this cache there are 6 line bits and 10 set bits, meaning that the tag starts at the
16th bit, or conveniently for us, the fith hexadecimal digit. That is, the tag of address 76543211¢ is 7651¢.
Consider the execution of our tiled code from routine mm_simple on this cache:

for ( int r=0; r<dl; r++ )
for ( int c=0; c<d3; c++ )
{
elt_t e = 0;
for ( int k=0; k<d2; k++ ) e += al r*d2 + k ] * b[ k*d3 + ¢ ];
g_simple[ r*d3 + ¢ ] = e;
}

The k loop will access d2 elements of b, each element on its own line. We would hope that in the second
iteration of the ¢ loop accesses to b should hit the cache because its likely that element b[ k*d3 + 0 ] and
b[ k*d3 + 1 ] are on the same line. Note to non-native English speakers: The phrase “we would hope” is
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preparing us for disappointment. Consider again square arrays with d; = dy = ds = 2'° = 1024. The cache
has 1024 sets, and each of these can hold 20 lines, so that’s more than enough for the 1024 iterations of the
k loop. Suppose &b[0] = 0x100000. This address is in set 0, tag 0x10. Then &b[ 1*d3 ] = &b[ 1024 ]
= 0x100000 + 1024%4 = 0x100000 + 0x1000 = 0x101000. That’s set 0x40 (64) and tag 0x10. Next, &b[
2%d3 ] = &b[ 2048 ] = 0x102000. That’s set 0x80 (128) and tag 0x10. Notice that the set number will
always be a multiple of 64. That mean, out of 1024 sets available only 12% = 16 will be used. That’s enough
space for 16 x 20 = 320 lines. But the k loop will access 1024 lines of b, and we would like to have those
lines present for the second iteration of the ¢ loop. But the level 2 cache in a Xeon core won’t accommodate
us. As a result accesses to b in the second c iteration will miss the level 2 cache. Such misses are called
conflict misses because they would not have happened in a cache with a higher associativity. These conflict
misses slow the simple code due to the latency of accessing the level 3 cache (which is large enough). True,
the level 3 cache is shared by all cores on the chip, but it is large enough for multiplying two 1024 x 1024
square matrices so no problem.

What about accesses to a? They are not a problem in the loop above.

Tiled execution can forestall conflict misses, but the underlying problem remains. Consider this loop
from mm_tilder:

for ( int k = kk; k < kk + t2; k++ )
for (int r = rr; r < rr + tl; 1r++ )
for (int ¢ = cc; ¢ < cc + t3; c++ )
ee[r-rr]llc-cc] += al r*d2 + k ] * b[ kxd3 + c ];

If t2 < a (a = 20 for the Xeon L2 caches) then certainly their can’t be a conflict miss in accesses to b.
For d3 = 1024 based on the analysis for the simple code we know the cache can hold 320 lines to that allows
a large tile, to < 320. Though that’s true for this inner tile, there is potential reuse of elements of b from
one cc iteration to the next, so even with tiling conflict misses should be avoided.

Conflict misses in matrices can be avoided by using a padded layout. Consider again b[ k*d3 + c].
This was a problem because d3 was a power of 2. Suppose d; = 1040. The sequence of memory addresses for
b[ 0%xd3 1, b[ 1*d3 ], b[ 2%xd3 1, b[ 3*d3 ], will be 0x100000, 0x101040, 0x102080, 0x1030c0 accessing
sets 0, 65, 130, 195, .... It can be shown that the sets for addresses in the sequence from k£ = 0 to k£ = 1023
will be different, so each access will bring a line into its own set. Dimension d; was chosen so that it is the
smallest number > d; for which the greatest common divisor of L%J and S is 1, where e is the number of
bytes per element. In the examples helc“le7 e = 4. The easy way to compute this is to find a value of d; for

eay

which the number of lines of storage, </*, is odd.

So using the method above we could replace a 1024 x 1024 matrix with a 1024 x 1040 column matrix
and avoid some conflict misses. But, what if the matrices we need to multiply are 1024 x 10247 No problem,
allocate a 1024 x 1040 matrix but copy the data into just the first 1024 columns. The matrix has dimensions
1024 x 1024 but the rows are stored at a stride of 1040. The remaining 1040 — 1024 = 16 columns are
called padding and the matrix is said to be padded. The code computing the matrix product will ignore the
padding columns.

(a) Modify the code is hwO1.cc so that it uses padded matrices as described below. Accomplishing this
requires several changes:

In mm_do set the correct strides to variables s1a, etc.
In mm_do copy data from a and b into their padded counterparts, ap and bp.
In mm_tiledr modify the code so that it correctly reads and writes the padded matrices.

In mm_tiled_do modify the code so that it accesses the correct matrix product.

It is probably a good idea to do this for one matrix at a time, for example, start with a, get it working,
then move on to b and g. Details on what needs to be done are described below.
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Matrices are allocated by the MM_Data object, this is done in routine mm_do where an MM_Data object
is constructed. Routine mm_do is called with matrix dimensions d1, d2, and d3. When this problem is
completed the routine will compute strides sla, etc. The constructor for MM_Data is invoked with an app
data structure, the array dimensions and strides:

void mm_do( App_Data& app, int dl, int d2, int d3, bool pad = false ) {

// Initially set strides equal to dimensions. This results in a matrix without padding.
int sla = d1, s2a = d2, s3b = d3;
int slg = d1, s2b = d2, s3g = d3;

if ( pad )
{

// Set sla, etc to avoid conflict misses.

}

// Construct a Matrix Multiply Data Object
MM_Data mmd(app,dl,d2,d3,sla,slg,s2a,s2b,s3b,s3g);

The constructor will allocate arrays a, b, and g in both padded and unpadded forms. The unpadded
matrix dimension are of course a: d; x da, b: dy X d3, and g: d; x d3. The padded matrices are of size: ap:
S1a X S2q, bP: S2p X S3p, and gp: S14 X S34.

The values of d1, d2, and d3 are call arguments and can’t be changed. The values of sia through s3g
are set to default values but they should be changed to the smallest values needed to avoid conflict misses.
Set these values in the block guarded by the if ( pad ) statement.

After MM_Data is constructed mm_do initializes matrices a and b with random numbers and then copies
a and b into their padded counterparts. This copy code however is not correct. Modify the code so that it
correctly copies the arrays.

// Fill a and b matrices with random numbers.
ranges: :generate(mmd.a,rand_pml);
ranges: :generate(mmd.b,rand_pml) ;

// Copy data from the a and b matrices to their padded counterparts.
//
// [ 1 Modify the code for strided storage in ap and bp.
//
for ( int r=0; r<dl; r++ )
for ( int c=0; c<d2; c++ )
mnd.ap[ r * d2 + ¢ ] = mmd.al r * d2 + ¢ ];
for ( int r=0; r<d2; r++ )
for ( int c=0; c<d3; c++ )
mnd.bpl r * d3 + ¢ ] = mmd.b[ r * d3 + ¢ ];

Next, mm_do calls mm_simple to compute a product and put it in array g_simple. It prints matrix sizes
and strides, and then calls the matrix multiply routines at various tile sizes:

mm_simple( mmd );

printf ("\nMatrix %d %d %d %d. Duration simple: %.3f ms\n",
dl, d2, d2, 43, dur_simple_s * 1000 );

printf("Stride %d %d %d %d = %d x %d.\n",
sla, s2a, s2b, s3b, slg, s3g );

mm_tiled_do<1,16,1>( mmd );
mm_tiled_do<4,16,4>( mmd );



mm_tiled_do<8,16,8>( mmd );
mm_tiled_do<8,16,16>( mmd );
mm_tiled_do<8,16,32>( mmd );

Note that excerpts are shown above, the actual code includes statements for timing and lots more
comments.

The actual matrix multiplication is done in routine mm_tiledr. Template parameters specify the tile
shape, t1, t2, and t3. As described elsewhere, two different methods are used depending on the value of t3.
When t3 is 8 or larger matrix elements in b and g are accessed as vectors. Otherwise, as plain old scalars.

The unmodified code accesses matrices ap and bp, but treats them as unpadded. Modify the code so
it makes padded access. This can be done by changing certain variables. There is no need to add new
statements, loops, etc.

It might be easier to first get the unpadded code working (the code guarded by if (luse_vec)). When
doing this put a return in mm_do before mm_tiled_do is called for a tile size of 8 or larger.

Finally, modify mm_tiled_do so that the code checking the product correctly accesses data from gp.
Look for the code headed by comment Check Matrix Product. Modify the code assigning hd and any other
code that needs to be changed.

If this problem is solved correctly there should be big improvement in matrices of size 2048 x 2048 and
larger. There will be little gain in the smaller matrices.
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