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Problem 1: [20 pts] Appearing below is an excerpt from the solution to Homework 4. Many student
submissions called syncthreads once, at position B (see the statement labels on the left-hand side). (Few
student solutions used group_sum to compute the group sums.) The excerpt below calls syncthreads three
times to avoid problems that are sneaky enough to hide when you are testing your code.

__shared__ elt_t ssum[32];

for ( int h = h_start; h < n_l; h += n_threads / grp_size ) {

I0: const size_t idx_vec_start = h * d_l;

const size_t idx_thd_start = idx_vec_start + sub_lane;

elt_t thd_sum = 0;

for ( int i = 0; i < d_l; i += grp_size ) thd_sum += l_in[ idx_thd_start + i ];

I1: const elt_t wp_sum = group_sum(thd_sum,32);

A: __syncthreads(); // Wait until everyone has read ssum.

I2: if ( !lane ) ssum[wp_idx] = wp_sum;

B: __syncthreads(); // Wait until all warps have written ssum.

I3: if ( !wp_idx ) ssum[threadIdx.x] = group_sum( ssum[threadIdx.x], grp_wps );

C: __syncthreads(); // Wait until warp 0 has written ssum.

I4: elt_t vec_sum = ssum[wp_idx];

I5: const elt_t avg = vec_sum / d_l;

for ( int i=0; i<d_l; i+=grp_size ) l_out[idx_thd_start+i]=l_in[idx_thd_start+i]-avg;

}

Appearing below is a timing diagram showing when each of two warps, wp0 and wp1, execute the labeled lines
above. Similar diagrams used in class were intended to show instruction-level effects such as thread dispatch
time and operation latency. But here the diagram shows lines of code (rather than machine instructions) for
the purpose of showing the order of execution, thread dispatch time and operation latency are not part of
this problem. The position of a line, such as I1, indicates when it has completed. Though operation latency
is not part of the problem the impact of syncthreads is. The symbol for a line including syncthreads, such
as A must be shown occurring at the time for all warps. (The reality is a bit more complicated: no warp can
exit a syncthreads until all warps have entered it.)

The two warps run on different schedulers so they can run lines at the same time, such as I0. In the example
below warp wp0 finishes I1 earlier than wp1, but is forced to wait by the call to syncthreads labeled A.

In the diagrams below wp0 and wp1 are part of the same group.

wp0: I0 I1 A I2 B I3 C I4 I5 I0 I1 A I2 B I3 C I4 I5

wp1: I0 I1 A I2 B I3 C I4 I5 I0 I1 A I2 B I3 C I4 I5

Continued on the next page.
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Problem 1, continued: As requested below, show timing examples which can result in incorrect values of
vec_sum, or if that’s not possible explain why the syncthreads is unnecessary. Note: In the original exam
the there was no option to explain why execution would always be correct.

The syncthreads at A is removed (shown by an X). Either explain why execution will always be correct
despite the removal, or complete the timing diagram below to show an execution order that would result in
an incorrect value in vec sum for at least one thread, as a result of the removal.

wp0: I0 I1 X I2 B I3 C I4 I5 I0 I1 X I2 B I3 C I4 I5

wp1:

The syncthreads at B is removed (shown by an X). Either explain why execution will always be correct
despite the removal, or complete the timing diagram below to show an execution order that would result in
an incorrect value in vec sum for at least one thread, as a result of the removal.

wp0: I0 I1 A I2 X I3 C I4 I5 I0 I1 A I2 X I3 C I4 I5

wp1:

The syncthreads at C is removed (shown by an X). Either explain why execution will always be correct
despite the removal, or complete the timing diagram below to show an execution order that would result in
an incorrect value in vec sum for at least one thread, as a result of the removal.

wp0: I0 I1 A I2 B I3 X I4 I5 I0 I1 A I2 B I3 X I4 I5

wp1:
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Problem 2: [50 pts] Appearing below is an excerpt from the solution to Homework 5. The solution is in
the repository and available in HTML form via https://www.ece.lsu.edu/gp/2025/hw05-sol.cu.html.

constexpr uint warp_tile_nrows = tm * m_ht_n;

constexpr uint warp_tile_ncols = tn * m_wd_n;

const int blk_wp_idx = threadIdx.x / wp_sz;

const int C_row_0_offset = ( blk_wp_idx / n_wps_col ) * warp_tile_nrows; // Relative to block tile.

const int C_col_0_offset = ( blk_wp_idx % n_wps_col ) * warp_tile_ncols; // Relative to block tile.

const int n_block_tiles_col = div_ceil( C_ncols, block_tile_ncols );

for ( int i = blockIdx.x; true; i += gridDim.x ) {

// Compute upper-left row and column of section computed by entire block.

const int C_col_0_block = i % n_block_tiles_col * block_tile_ncols;

const int C_row_0_block = i / n_block_tiles_col * block_tile_nrows;

// Compute upper-left row and column of section computed by entire warp.

const int C_col_0 = C_col_0_block + C_col_0_offset;

const int C_row_0 = C_row_0_block + C_row_0_offset;

fragment<accumulator, tm, tn, tk, float> tile_C_acc[m_ht_n][m_wd_n];

for ( auto& tca: tile_C_acc ) for ( auto& tcb: tca ) fill_fragment(tcb,0);

for ( ssize_t i_k = 0; i_k < A_ncols; i_k += tk ) {

fragment<matrix_a, tm, tn, tk, ab_elt_t, aorg> tile_a[m_ht_n];

for ( size_t i_ht = 0; i_ht < m_ht_n; i_ht++ )

load_matrix_sync( tile_a[i_ht],

a_ptr + ( C_row_0 + i_ht * tm ) * a_row_stride + i_k * a_col_stride, a_stride );

for ( size_t i_wd = 0; i_wd < m_wd_n; i_wd++ ) {

fragment<matrix_b, tm, tn, tk, ab_elt_t, borg> tile_b;

load_matrix_sync ( tile_b,

b_ptr + i_k * b_row_stride + ( C_col_0 + i_wd * tn ) * b_col_stride, b_stride );

for ( int i_ht = 0; i_ht < m_ht_n; i_ht++ )

mma_sync( tile_C_acc[i_ht][i_wd], tile_a[i_ht], tile_b, tile_C_acc[i_ht][i_wd] );

}}

// Write completed tiles of c to memory.

for ( int i_wd = 0; i_wd < m_wd_n; i_wd++ ) for ( ssize_t i_ht = 0; i_ht < m_ht_n; i_ht++ )

store_matrix_sync

( &ld.CT_dev[ C_row_0 + i_ht * tm + ( C_col_0 + i_wd * tn ) * A_nrows ],

tile_C_acc[i_ht][i_wd], A_nrows, mem_col_major );

}

For this problem executions of the code above on an RTX 4090 are to be analyzed. The characteristics of
the GPU as reported by the code are:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24078 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 102400 B/SM CONST: 65536 B NUM REGS: 65536

GPU 0: SHARED: 49152 B/BL SH RES: 1024 B/BL SH OPT-IN: 101376 B/BL

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

For the analysis of the execution of a run of the mm_hw05 kernel, let B denote the block size, and G denote
the number of blocks launched (the grid size), and assume that G is set to the number of SMs in the device.

Let wt denote the number of columns (width) of C and ht denote the number of rows (height) of C that
can be computed by the tensor core by one call of mma_sync for some input size. Let ww denote the number
of columns (width) of C assigned to a warp, and hw denote the number of rows (height) of C assigned to a
warp. Similarly wb and hb denote the number of columns and rows assigned to a block.
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For the RTX 4090 and A and B matrix elements of type FP16 CUDA allows wt = 16 and ht = 16. (Two
other shapes are possible but won’t be considered for this problem.)

In an execution of mm_hw05 the number of tensor core tiles computed per warp is specified with a width and
height, shown as wd=X ht=Y in the output. This indicates that a warp should compute a portion of C that
is X tensor core tiles wide and Y tensor core tiles high, or hw = Y ht rows by ww = Xwt columns of C.
The values X and Y are parameters to the kernel (in template parameters m_wd_n and m_ht_n). The block
size is also chosen for a kernel, but it is up to the kernel to choose wb and hb. Let B denote the number of
threads in a (CUDA) block and W = B/32 the number of warps. Kernel mm_hw05 will choose wbw and hbw
such that W = wbwhbw. With that choice wb = wbwww and hb = hbwhw. The kernel further restricts both
wbw and hbw to be powers of 2. (This was a problem requirement imposed to simplify assignment of rows
and columns to blocks.) Finally, the kernel chooses wbw and hbw so that wb/hb is the smallest value ≥ 1.
That is, wb = hb is the preferred value.

In one i iteration a block computes a hb × wb portion of C, with each warp computing a hw × ww portion
consisting of wwhw

wtht
tensor core tiles of C (in array tile_C_acc). Let m, n, and k denote the dimensions of

the matrices where A is m×k (rows × columns), B is k×n, and C is m×n. To compute a hw×ww portion
of C a warp executes k/kt iterations of the i_k loop, where kt is the number of columns of the A matrix
(same as rows of B matrix) that can be computed by one call to mma_sync.

A ht × kt portion of the A matrix or a kt × wt portion of the B matrix is loaded from device memory to
registers (we hope) by each call to load_matrix_sync. The code is written so that within an i_k iteration
a warp never loads the same portion twice (unlike some homework solutions).

(a) In terms of the variables, indicate the total amount of memory read from the L2 cache in one i_k

iteration. Assume the L1 cache is of unlimited size but is empty at the beginning of the iteration. Though it
doesn’t mater for this problem, assume L2 is unlimited and that the A and B matrices are in the L2 cache
before execution starts and will remain there.

Amount of memory read in one i k iteration per warp, per block, and total (per grid).
Don’t forget to indicate the unit (elements, bytes).

(b) Recall that the numbers under the N-Rd column in the Homework 5 code output (and similarly labeled
columns in the output of other course code examples) show the amount of memory moving from the L2
cache to SMs normalized to a (not necessarily achievable) minimum, in this case the combined size of the A
and B matrices. A value of 1 is ideal (and impossible with more than one SM), a value of 2 means twice the
minimum amount of data was moved, etc.

For each of the executions below compute what values under N-Rd are expected. If the problem is solved
correctly the estimated values of N-Rd for four-warp configurations should be close to the measured values.
Some of the others will not be close.

Continued on the next page.
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Kernel mm_hw05, 218 regs. Shape 5120 x 2064 x 4096. wd=4 ht=4 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 2.29 29 8 0.9 36 1.0 1622 0t 886 +++--

8 2.29 45 8 1.0 31 1.0 2142 0t 581 ++++----

Compute estimated N-Rd values for the two executions above. Show the expression used to calculate
the estimate -at least once.

Kernel mm_hw05, 128 regs. Shape 5120 x 2064 x 4096. wd=4 ht=2 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 3.18 24 8 0.9 53 1.0 1947 0t 1085 ++---

8 3.18 32 8 1.0 45 1.0 2216 0t 802 +++----

16 3.19 39 8 1.0 37 1.0 2105 1t 706 +++-----

Compute estimated N-Rd values for the two executions above. Show the expression used to calculate
the estimate at least once.

(c) After insertion of __syncthreads() as shown below the values under N-Rd are much closer to the
estimated values. However the execution times are higher. Note: In the original exam the execution times
were described as lower, not higher.

for ( ssize_t i_k = 0; i_k < A_ncols; i_k += tk )

{

__syncthreads();

Explain why the estimates for N-Rd more closely match measured values in the version with syncthreads().
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(d) One way to avoid the overhead of syncthreads() is not to use it as often. Consider

for ( ssize_t i_k = 0; i_k < A_ncols; i_k += tk )

{

if ( i_k % interval == 0 ) __syncthreads();

Estimate a value for variable interval based on the tile shapes and SM characteristics including L1 cache
size.

(e) The two runs below are similar in that they read the same amount of data and have the same execution
efficiency and yet the 2 × 8 run is much faster. The only difference is the number of registers used by the
respective kernels.

Kernel mm_hw05, 234 regs. Shape 5120 x 2064 x 4096. wd=2 ht=8 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 2.54 24 8 0.9 36 1.0 1289 0t 1114 ++--

8 2.54 40 8 1.0 27 1.0 1659 0t 663 +++-----

Kernel mm_hw05, 168 regs. Shape 5120 x 2064 x 4096. wd=8 ht=2 tiles. FP16

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s Imb t/µs === Util: TC++ Insn-- ===========

4 2.54 10 8 0.9 36 1.0 573 1t 2508 +-

8 2.54 19 8 0.9 27 1.0 781 1t 1407 ++--

How could the difference in the number of registers explain why the wd=8 ht=2 runs more slowly than the

wd=2 ht=8 run? Assume that the wd=8 ht=2 kernel would have done better with more registers but the
compiler did not think it had enough registers available. Do not explain why there are fewer registers.
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Problem 3: [30 pts] Park 24 ASPLOS [1] shows how a processor in memory (PIM) system can be used to
overcome the bandwidth-limited nature of the transformer attention mechanism [2] when used for generation.

One interesting question when looking at possible PIM designs is to find break-even points. To compute
score[i] = dot( query, key[i] ) one needs to send query to each GEMV unit (assume column-wise
partitioning). Let m denote the number of GEMV units. A break-even point would be the value of m, call
it me for which the time taken to compute scores on AttAcc would be the same as computing them on a
GPU. Of course, one would only consider AttAcc if m > me.

(a) Compute me for AttAcc and the DGX large as described by Park. For this analysis don’t worry about
where the GEMV are placed, our concern is how many there are. For this analysis assume the data bandwidth
of the DGX system is ΘM = 26.89 TB/s. (See Section 7.1.) For the score calculation use symbol L for the
context length and d for the embedding dimension. The score computation computes an L-element score
array, element i is computed by taking the dot product of the d-component query by the d-component
element i of the key array. (There is one query and L keys.) For this problem assume that there is just one
head.

Indicate the amount of data that would need to move between the DGX and memory when the DGX
computes the score.

Indicate the number of FP operations needed to compute the score by the AttAcc system.

Compute a value of me based on the computation rate of the GEMV units. (See the Homework 6 solution.)
State any assumptions made.

Discuss how the value compares to the values Park uses.

(b) Note that the computation score[i] = dot( query, key[i] ) is done efficiently by AttAcc. Consider
a seemingly similar computation pscores[j,i] = dot( query[j], key[i] ) in which query is an array of
d-element vectors (as key is an array of d-element vectors). As some may have noticed, this is a matrix ×
matrix multiplication. If AttAcc is so much better than a GPU at computing score why isn’t it also better
at matrix multiplication?

Explain why AttAcc would not work for matrix × matrix multiplication. For your answer think about where
query and key might be stored and how that differs from the situation for matrix × vector multiplication
that AttAcc computes for transformer attention scores, and whether that difference is important for
matrix multiplication with the second matrix sized like keys.
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