
Summary of Symbols

GPU Microarchitecture Note Set 5—Interval Analysis

Note: based on Hong 09 ISCA [4], Eyerman 09 ToCS [1], Fields 02 ISCA [2], Fields 04 TACO [3].

B Number of threads per block.

G Number of blocks in grid (launch).

N Input size. (Depends on problem.)

Lι Latency of one iteration.

dι Amount of data crossing chip boundary per iteration.

LF 4 cyc Latency of one floating-point operation.

LM 400 cyc Minimum global load latency for loads that hit memory.

L2 Minimum global load latency for loads that hit L2 cache.

ΘM 1 TB/s Off-chip bandwidth.

θM Off-chip throughput during execution of some kernel.

P Number of threads in a launch.

φ 1 GHz Clock frequency of GPU.

ΘIF FP instruction bandwidth.
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Summary of Symbols

ΘIM Load and store instruction bandwidth.

nIF Number of FP instructions executed in interval.

nIM Number of load and store instructions executed in interval.
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Interval Analysis Definitions

Interval Analysis

Interval Analysis:

A method of modeling the execution of code on some device using repeating regions of execution (such as loop bodies).

Interval:

A well-defined region of execution, such as a loop body.

Goal of analysis is to find minimum number of threads, P , . . .

. . . needed to achieve full performance.

The idea is to first compute the latency of an interval, Lι . . .

. . . and then compute the number threads needed to fully utilize . . .

. . . resources such as thread dispatch and off-chip bandwidth.
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Interval Analysis Definitions � Intervals

Intervals

Analysis can use a single interval (considered first). . .

. . . or several intervals (usually separated by barriers).

An interval is well chosen if:

It covers much of a program’s execution time.

Conditions during each interval execution are similar . . .

. . . for example, the number of cache misses is the same in each interval.

A set of intervals, say Lι0 , Lι1 , . . . is well chosen if:

They cover much of a program’s execution time.

Conditions during each execution of Lι0 are similar to each other . . .

. . . conditions during each execution of Lι1 are similar to each other, etc.
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Interval Latency Latency of Interval

Interval Latency

Minimum execution time of interval on device of interest.

Symbol, Lι.

Lι can be . . .

. . . roughly estimated,. . .

. . . carefully estimated, . . .

. . . or measured.

Latency estimated based on a single thread or warp.
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Interval Latency

Example

Illustration of interval and interval latency.

For Code Fragment:

for ( int h=tid; h<N; h += n_threads ) { dout[h] = din[h] + 1; }

A good interval is the loop body for one iteration: dout[h] = din[h] + 1;

Simplified SASS (CC 3.5) for Interval:

.Loop

I0: LD.E R2, [R2];

I1: FADD R7, R2, 1;

I2: ST.E [R4], R7;

I3: BRA .Loop

# Cycles: 0 1 2 3 .. 400 401 402 403 404 405 406 407 408 409 410

wp0: [I0 ] I1 [I2 ] I3

! <---- One Interval ----------------------------------------> !

Interval Latency, L_{\iota}, = 410 cyc

Execution can’t be less than Lι . . .

. . . how many threads, P , will it take to use up off-chip bandwidth . . .

. . . or some other resource.
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Interval Latency

Use of Interval Latency for Code with One Interval, no Barriers

Let N denote the number of times the interval needs to be executed.

For example, operating on an N -element array, Lι computes one element.

Let P denote the number of active threads during the interval.

For example, P = 640 in a launch of 10 blocks of 64 threads.

Then minimum execution time is: t(N,P ) =
N

P
Lι.

Goal of analysis is to find largest P for which minimum is possible.
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Interval Latency � Number of Active Threads

Number of Active Threads

Analysis based on the number of active threads (P ) . . .

. . . which is the product of the number of active blocks and the block size.

In a launch of G blocks of B threads P ≤ BG.

The number of active blocks is determined by a number of factors . . .

. . . such as SM capabilities and shared memory use. (See the CUDA documentation for details.)

In these notes we will assume that B and G are chosen such that all G blocks (BG threads) are active.
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Interval Latency � Illustration of Interval Latency Concept

Illustration of Interval Latency Concept

Kernel below is to operate on N elements.

Interval is one iteration of loop.

Suppose a kernel of G blocks of B threads is launched . . .

. . . on a GPU with M SMs. . .

. . . and we know that G/M blocks per SM are active. . .

. . . then P = BG.

CUDA Code:

for ( int h=tid; h<N; h += n_threads ) dout[h] = din[h] + 1;

Simplified SASS (CC 3.5) for Interval:

LD.E R2, [R2];

FADD R7, R2, 1;

ST.E [R4], R7;

If we somehow conclude Lι = 450 ns . . .

. . . then total execution time ≥ N
BG450 ns.
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Work and Resources � Definitions

Work and Resources

Work [done in an interval]:

Data to be moved (dι), number of instructions to be executed (nιI), or some other effect of instruction execution that uses a finite resource.

The amount of work will be computed per thread, such as dι, . . .

. . . so the total work during the interval for P threads is Pdι.

Resource [needed for work in an interval]:

The thing provided to do a particular kind of work. A resource has bandwidth limitations, such as ΘM for off-chip data bandwidth.

If P threads do Pxι work (for some generic work x). . .

. . . the corresponding resource is occupied for
Pxι
Θx

time.
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Work and Resources � Resources � Data Movement

Resources

Two broad types of resources considered here . . .

. . . data movement and instruction execution (issue and dispatch).

For Data Movement

Need to consider boundary being crossed:

SM to L2 cache: Use Θ2 for bandwidth (and L2 for latency).

L2 cache to DRAM: Use ΘM for bandwidth (and LM for latency).

Note: The value of ΘM is available from NVidia APIs . . .

. . . whereas Θ2, and the latencies must be measured.
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Work and Resources � Resources � Instruction Execution

Instruction Execution

Instruction execution is more tedious to account for because:

Must consider instruction type (such as load/store, 32-bit FP, etc.)

Must guess or count number of instructions of each type.

Instructions (work) vary by GPU generation (though not by much).

Resources vary a great deal by device.

Major Types of Instructions (for these notes anyway):

32-bit FP (non-special): Work: nIF, Bandwidth: ΘIF.

Load/store: Work: nIM, Bandwidth: ΘIM.

5-ia-12 EE 7722 Lecture Transparency. Formatted 11:16, 10 April 2024 from lsli05-iv-TeXize. 5-ia-12



Work and Resources � Resources � Instruction Execution

Instruction Bandwidth Scope

In analysis use chip bandwidth, not SM bandwidth.

Typically memory bandwidths given for whole chip . . .

. . . and instruction bandwidths given for one SM.

For resource consumption, use bandwidth for whole GPU chip.

For example, consider ΘIM (load/store instructions):

In CC 6.0 GP100 devices there are 8 LS units per scheduler, . . .

. . . only two schedulers per SM (four is more common) . . .

. . . 2× 8 = 16 LS units per SM, . . .

. . . and ΘIM = 56× 16 = 896 insn/cyc per chip.
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Work and Resources � Example

Example

Find work and resource usage on a CC 6.1 GP104 device for the following code:

LD.E R2, [R2];

FADD R7, R2, 1;

ST.E [R4], R7;

Data movement:

For a GP104: ΘM = 320 GB/s, Θ2 = 900 GB/s.

One load and one store, each of 4 bytes: dι = 2× 4 B.

Assuming insufficient L2 cache, use of off-chip data resource:
2× 4P B

ΘM
.

Assuming insufficient L1 cache, use of SM/L2 data transfer:
2× 32P B

Θ2
.
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Work and Resources � Example

Example, continued.

LD.E R2, [R2];

FADD R7, R2, 1;

ST.E [R4], R7;

GP104 Characteristics:

CC 6.1, Number of SMs: 20. ΘIM = 20× 32 = 640 insn/cyc, ΘIF = 20× 128 = 2560 insn/cyc.

Instruction Execution:

Two load/instructions: nIM = 2 insn.

One FP instruction: nIF = 1 insn.

Usage of dispatch: P
(
nIM

ΘIM
+ nIF

ΘIF

)
= P

(
2 insn
ΘIM

+ 1 insn
ΘIF

)
= P

(
2

640 + 1
2560

)
cyc.
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Analysis of Intervals Without Barriers

Analysis of Intervals Without Barriers

Consider an interval with time Lι and data use dι . . .

. . . on a system with ΘM . . .

. . . in a launch with P active threads.

Amount of time resource is in use per interval: P dι
ΘM

.

Then: t(P ) ≥

{
N
P Lι if Lι > P dι

ΘM

N dι
ΘM

otherwise.

Based on this time is minimized at P = Lι
ΘM

dι
. . .

. . . increasing P further has no benefit.

Bounds can be obtained using other resources . . .

. . . performance is determined by the smallest P .
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Analysis of Intervals Without Barriers � Interval Analysis Assumptions

Interval Analysis Assumptions

Assumption:

A resource can be fully utilized during an interval . . .

. . . without increasing the thread latency above Lι.

In practice thread latency does increase, . . .

. . . and so P is underestimated.

The assumption is closer to reality . . .

. . . when there are more warps per scheduler.

The assumption does not hold when barriers are used . . .

. . . ( see or wait for ) material to be added further below.
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Interval Analysis Overview of Steps

Analysis Steps

Compute Latency (This is the hardest part.)

Use code generated by CUDA toolchain . . .

. . . or based on assumptions about such code . . .

. . . or just measure latency.

Find the minimum number of threads for each kind of work.

The execution time is then N
P Lι.

If Too Slow

Re-code to reduce Lι.

Exploit re-use to reduce data.

Re-code to reduce number of instructions.
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Interval Analysis Overview of Steps � Example: Simple Loop � Interval

Example: Compute Lι for a simple loop.

Compute for a CC 6.1 device with:

8 LS per scheduler, 32 FP32 per scheduler.

LM = 400 cyc and LF = 6 cyc.

.Loop

I0: LD.E R2, [R2]; // tis = 0. tre = L m = 400.

I1: FADD R7, R2, 1; // tis = 400. (R2). tre = 400 + L f = 406.

I2: ST.E [R4], R7; // tis = 406. (R7).

I3: BRA .Loop // tis = 410.

# Cycles: 0 1 2 3 .. 400 401 402 403 404 405 406 407 408 409 410

wp0: [I0 ] I1 [I2 ] I3

Total time: Lι = 410 cyc.
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Example: Resources for simple loop.

Example: Resource usage for the simple loop.

Suppose

The loop operates on a total of N elements.

The loop is to run on a M2200 CC 5.2 device.

ΘM = 88.1 GB/s, φ = 1.04 GHz

Work Performed by Loop:

Data: dι = 2× 4 B = 8 B. (Four bytes for load and store.)

Limit P = 410 cyc 88.1 GB/s
8 B

1
1.04 GHz = 4341.

Load/store instructions (one of each): nIM = 2.

Regular FP instruction (the FADD): nIF = 1.

Control flow: nIC = 1.
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Example: Latency Using Compiled Code

Example, Find Lι for Actual SASS code.

Complete machine language code (SASS) for region:

.L_2: // Note: .L_2 is a line label.

I0 : MOV R2, R6; // tis = 0. tre = 6

I1 : MOV R4, R8; // tis = 1. tre = 7

I2 : LD.E R2, [R2]; // tis = 6 (R2). tre = 406.

I3 : IADD32I R8.CC, R8, 0x4; // tis = 10 (R8). tre = 16

I4 : MOV R5, R9; // tis = 11 tre = 17

I5 : IADD32I R0, R0, 0x1; // tis = 12 tre = 18

I6 : ISETP.GE.AND P0, PT, R0, R11, PT;// tis = 18 (R0) tre = 24

I7 : IADD.X R9, RZ, R9; // tis = 19 tre = 25

I8 : IADD32I R6.CC, R6, 0x4; // tis = 20 tre = 26

I9 : IADD.X R3, RZ, R3; // tis = 26 (CC) tre = 32

I10: FADD R7, R2, 1; // tis = 406 (R2) tre = 412

I11: ST.E [R4], R7; // tis = 412 (R7)

I12: @!P0 BRA ‘(.L_2); // tis = 416 Next iter: 417

# Cycle 0 1 2 ..5 6 7 8 9 10 11 12 .. 18 19 20 .. 26 .. 406 .. 412 413 414 415 416

wp0: I0 I1 [I2 ] I3 I4 I5 I6 I7 I8 I9 I10 [I11 ] I13

Based on analysis above: Lι = 417 cyc . . .

. . . increasing P only slightly to 417 cyc 88.1 GB/s
8 B

1
1.04 GHz = 4416.
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Example: MXV-LCS Kernel � Goals

Hand-Analyze a Matrix/Vector Kernel (MXV-LCS)

Note: MXV-LCS → Matrix × Vector, Load, Compute, Store.

for ( int h=start; h<stop; h += inc )

{

Elt_Type vout[M], vin[N];

for ( int r=0; r<M; r++ ) vout[r] = 0;

for ( int c=0; c<N; c++ ) vin[c] = d_app.d_in[ h * N + c ];

for ( int c=0; c<N; c++ ) for ( int r=0; r<M; r++ ) vout[r] += d_app.matrix[r][c] * vin[c];

for ( int r=0; r<M; r++ ) d_app.d_out[ h * M + r ] = vout[ r ];

}

Goals:

Perform analysis for a CC 5.1 device.

Perform analysis using assumed instructions for code above.

Analyze minimum number of threads for given N and M .

Compare predictions to measurements.

Find square matrix size (N) that requires fewest threads.
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Example: MXV-LCS Kernel � Device Characteristics

Device Characteristics

For CC 5.1:

For CC 7.5:

LF = 4 cyc.

LM = 400 cyc, L2 = 230 cyc.

ΘM = 500 GB/s.

φ = 1.81 GHz.

ΘIF = 64× 48 = 3072 insn/cyc

5-ia-23 EE 7722 Lecture Transparency. Formatted 11:16, 10 April 2024 from lsli05-iv-TeXize. 5-ia-23



Example: MXV-LCS Kernel � Assumed SASS Code

Assumed SASS Code

We expect that the compiler will generate code like this:

L0: LDG.E R16, [R14];

L1: LDG.E R12, [R14+0x4];

L2: LDG.E R11, [R14+0x8];

...

F0: FFMA R13, R16, c[0x3][0x4], RZ;

F1: FFMA R17, R16, c[0x3][0x24], RZ;

F2: FFMA R18, R16, c[0x3][0x44], RZ;

F3: FFMA R19, R16, c[0x3][0x64], RZ;

F4: FFMA R21, R16, c[0x3][0x84], RZ;

F5: FFMA R22, R16, c[0x3][0xa4], RZ;

F6: FFMA R14, R16, c[0x3][0xc4], RZ;

F7: FFMA R15, R16, c[0x3][0xe4], RZ;

F8: FFMA R13, R12, c[0x3][0x8], R13;

...

S0: STG.E [R4], R2;

S1: STG.E [R4+0x4], R14;

S2: STG.E [R4+0x8], R13;
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Example: MXV-LCS Kernel � Estimation of Interval Latency

Estimation of Interval Latency

Possible execution on a 5.1 device.
Time 0 1 2 3 4 .. 7 8 .. 11 ... 400 401 402 403 404 405 406 407 408

wp0: [L0 ][L1 ][L2 ] F0 F1 F2 F3 F4 F5 F6 F7 F8

Accounting only for the load, multiply/add, and store instructions we get

Lι(K0) = LM +MN + 4M

if N ≥ LF and LM ≥ N/4, where K0 is a shorthand name for the modified kernel and its assumed code. For values M = N = 16 and the
latencies above we get

Lι(K0) = 400 + 256 + 64 = 720 cyc.
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Example: MXV-LCS Kernel � Estimation of Interval Latency

Possible execution on a 7.5 device.
Time 0 1 2 3 4 .. 7 8 .. 11 ... 400 401 402 403 .. 400+2N 402+2N ..

wp0: [L0 ][L1 ][L2 ] [F0 ] [F1 ] .. [FN ] [FN+1 ] ..

Accounting only for the load, multiply/add, and store instructions we get

Lι(K0) = LM + 2MN + 4M

if 2N ≥ LF and LM ≥ N/4, where K0 is a shorthand name for the modified kernel and its assumed code. For values M = N = 16 and the
latencies above we get

Lι(K0) = 400 + 512 + 64 = 976 cyc.
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Example: MXV-LCS Kernel � Off-Chip Data Bandwidth Limit

Off-Chip Data Bandwidth Limit

Once the latency for an interval is computed, it is possible to bound the number of threads that can be executed in parallel by using
resource constraints. For example, let dι denote the amount of off-chip data read or written by a thread during one iteration and let ΘM

indicate the off-chip bandwidth. Let P indicate the number of threads in a launch. The amount of data read during the interval is Pdι, the
data throughput would be Pdι

Lι
, solving Pdι

Lι
= ΘM for P yields P = Lι

dι/ΘM
, the number of threads needed to saturate off-chip bandwidth.

For our matrix/vector kernels, dι = 4(M +N) B. Then

P =
(LM +MN + 4M) cyc

1
ΘM

4(M +N) B
.

For N = M (square matrices) we have

P =
(LM +N2 + 4N) cyc

1
ΘM

8N B
=

ΘM

8

(
LM

N
+N + 4

)
cyc

B

for N ≥ LF.
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Example: MXV-LCS Kernel � Off-Chip Data Bandwidth Limit � Size Minimizing Threads

Matrix Size Minimizing Number of Threads

P =
ΘM

8

(
LM

N
+N + 4

)
cyc

B

for N ≥ LF.

Notice that this expression has a minimum at N =
√
LM, or 20 for our default global memory latency. As N shrinks below 20 more and

more threads are needed because each thread is loading less data but the iteration time, Lι, can’t fall below LM. When N grows above
20 the computation time, N2, grows quadratically while data grows linearly, so more threads are needed. Note that ΘM is often given in
GB/s while the latency is given in cycles. Cycles can be converted to seconds by dividing by the clock frequency, often denoted φ. In that
case Lι(K0) = (LM +MN +M) cyc = 1

φ (LM +MN +M) s.
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Example: MXV-LCS Kernel � Instruction Bandwidth Limit

Instruction Bandwidth Limit

Another limiter is instruction throughput. For that one must compute the time needed during an interval to issue the instructions. Let
ΘIF indicate the bandwidth of FP instructions and ΘIM indicate the bandwidth of load and store instructions on a multiprocessor. Let
nIF and nIM indicate the number of instructions of the respective type executed by a thread in the interval. Then the time for Q threads

to issue for one interval is Q( nIF

ΘIF
+ nIM

ΘIM
) and based on this instruction issue limit Q = Lι/

(
nIF

ΘIF
+ nIM

ΘIM

)
. Note that Q is the number of

active threads on a multiprocessor, which is some multiple of the block size.

For K0 we have nIF = MN and nIM = M +N . Substituting these values and Lι gives

Q(K0) =Lι/

(
nIF

ΘIF
+
nIM

ΘIM

)
= (LM +MN + 4M) /

(
MN

ΘIF
+
M +N

ΘIM

)
=
(
LM +N2 + 4N

)
/

(
N2

ΘIF
+

2N

ΘIM

)
= (LM/N +N + 4) /

(
N

ΘIF
+

2

ΘIM

)
=
(
LM/N

2 + 1 + 4/N
)
/

(
1

ΘIF
+

2

NΘIM

)

For large N the interval time is dominated by the N2 instructions so the number of threads is based on FP instruction bandwidth ΘIF.
When N is smaller load latency determines the thread count.
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Example: MXV-LCS Kernel � Comparison with a CC 6.1 Device

Comparison with a CC 6.1 Device

Does the interval analysis above explain the behavior of the mxv_o_lbuf kernel obtained on a CC 6.1 device?

The calculations below show that for a GTX 1080 the iteration latency would be 388.4 ns so to saturate the 320.3 GB/s bandwidth would
require 971.9 threads or just 48.6 threads per SM. To saturate instruction issue assuming only N loads, N stores, and N2 multiply/adds
would require 268.8 threads per SM.

The performance counters show 1.2 instructions per FMA, or a total of 256× 0.2 = 51.2 non-FMA instructions. We’ve already accounted
for 32 loads and stores, so there are just 19 extra instructions. Assume that these add 19 cycles to latency (which means that they are
before the first loads or after the first FMA). Including those extra instructions only slightly changes P and Q.

The execution on the GTX 1080 reaches a peak at 4 wp / SM or 128 thds per SM, which is consistent with this.
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Example: MXV-LCS Kernel � Comparison with a CC 3.5 Device

Comparison with a CC 3.5 Device

A similar analysis for the K20, a CC 3.5 device, finds 118 threads per SM are needed to saturate off-chip bandwidth. That is inconsistent
with observed behavior where a configuration with 4 wps (128 threads) per SM yielded just 1/2 the performance of larger blocks. Inspection
of the SASS code shows that dependent FMA instructions are closer together than LF and so the latency of these instructions is exposed.

% Solution Calculations

% For a GTX 1080. SM: 20. Data 320.3 GB/s

% Clock: 1.73 GHz

% Theta_IF = 128

% Theta_IM = 64

% n_IF_1 = 16 * 16 = 256

% n_IM_1 = 16 + 16 = 32

% Extra: 256 * .2 = 51. Assume same thpt as IF

%

% N = 16

% Latency/iter: 400 + N^2 + N = 672 cyc = 388.4 ns

% Latency/iter (correct store II): 400 + N^2 + 2N = 688 cyc = 397.7 ns

% Data/iter: 4(16+16) = 128 B

% Theta_M = 320.3 GB/s

% P = 320.3 GB/s 388.4 ns / 128 B = 971.9

% => 971.9 / 20 = 48.6 thds / SM

% Issue Time Ideal:

% 256/128 + 32 / 64 = 2.5 cyc
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Example: MXV-LCS Kernel � Comparison with a CC 3.5 Device

% Q = 672 / 2.5 = 268.8 thds per SM

% Accounting for 1.2 I/op.

% Latency/iter: 400 + N^2 + N + 19 = 691 cyc = 399.4 ns

% P = 320.3 GB/s 399.4 ns / 128 = 999 = 50 thds / SM

% Issue Time based on 1.2 I/op (which is 51 insn total or 51-32= 19 non l/s)

% (256+19)/128 + 32/64 = 2.648 cyc

% Q = 691 / 2.648 = 261 thds per SM

% For a GTX K20c. SM: 13. Data 208.0 GB/s

% Clock: .71 GHz

% Theta_IF = 128

% Theta_IM = 64

% n_IF_1 = 16 * 16 = 256

% n_IM_1 = 16 + 16 = 32

% Extra: 256 * .2 = 51. Assume same thpt as IF

%

% N = 16

% Latency/iter: 400 + N^2 + N = 672 cyc = 946.5 ns

% Data/iter: 4(16+16) = 128 B

% Theta_M = 208.0 GB/s

% P = 208.0 GB/s 946.5 ns / 128 B = 1538

% => 1538 / 13 = 118

% Issue Time Ideal:
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Example: MXV-LCS Kernel � Comparison with a CC 3.5 Device

% 256/128 + 32 / 64 = 2.5 cyc

% Q = 672 / 2.5 = 268.8 thds per SM

% Issue Time based on 1.2 I/op

% (256+51)/128 + 32/64 = 2.898 cyc

% Q = 672 / 2.898 = 231.8 thds per SM
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Example: MXV-(LC)*S Kernel

Hand-Analyze a Less Efficient Matrix/Vector Kernel (MXV-(LC)*S)

Note: MXV-(LC)*S → Matrix × Vector: Load, Compute, Load, Compute, · · ·, Load, Compute, Store.

__global__ void mxv_o_lbuf() {

const int tid = threadIdx.x + blockIdx.x * blockDim.x, num_threads = blockDim.x * gridDim.x;

for ( int h=tid; h<d_app.num_vecs; h += num_threads ) {

Elt_Type vout[M];

for ( int r=0; r<M; r++ ) vout[r] = 0;

for ( int c=0; c<N; c++ ) {

const Elt_Type vin = d_app.d_in[ h * N + c ];

for ( int r=0; r<M; r++ ) vout[r] += d_app.matrix[r][c] * vin;

}

for ( int r=0; r<M; r++ ) d_app.d_out[ h * M + r ] = vout[ r ];

}}

Assume (unrealistically) that compiler does not schedule (rearrange) instructions.

Difference with MXV-LCS (from previous example):

An input vector component is loaded and used immediately . . .

. . . rather than loading all in local space and then using them.

This exposes load latency (a bad thing) . . .

. . . but reduces the number of registers needed per thread (a good thing?).
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Example: MXV-(LC)*S Kernel � Goals

Goals

Find the minimum number of threads based on data and instruction bandwidth.

We expect that more threads will be needed.

Compare analysis with measured results from a GTX 1080 (CC 6.1).

Determine if savings in number of registers makes up for need for more threads.

5-ia-35 EE 7722 Lecture Transparency. Formatted 11:16, 10 April 2024 from lsli05-iv-TeXize. 5-ia-35



Example: MXV-(LC)*S Kernel � Device Characteristics

Device Characteristics

Use LM = 400 cyc for the latency of a load that misses all caches.

Use L2 = 200 cyc for the latency of a load that hits the level 2 cache.

Use LF = 6 cyc for instruction latency of non-memory instructions.
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Example: MXV-(LC)*S Kernel � Interaction with Level 2 Cache

Interaction with Level 2 Cache

The CUDA C code loads an element and uses it in M FMADD instructions, then loads the next element, etc. Using an element size of 4
bytes and a request or line size of 32 bytes, we would expect that 1

8 of the loads would miss the L2 cache and 7
8 would hit.

W0: [L ] F F .... F [L ] F F .... F

!--- L_m ----> ! -- M -----> !--- L_2 ----> ! -- M ----->

! <-- One occurrence -----> ! <-- 1st of 7 occur.-- -->

! <------------ First of N occurrences ------------------------->
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Example: MXV-(LC)*S Kernel � Interval Time

Interval Time

The time for an iteration accounting for the loads and FMAs would be

Lι(K1) = [LM +M + (L2 +M) + · · ·+ (L2 +M)] + [LM + · · ·

=
1

8
NLM +

7

8
NL2 +NM.

Assuming that the stores issue at one per cycle the total iteration time is

Lι(K1) =
1

8
NLM +

7

8
NL2 +NM +M.
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Example: MXV-(LC)*S Kernel � Data Use Limits

Data Use Limits

The expressions for the amount of data and issue time are the same as those used in the MXV-LCS example.

Considering square matrices N = M :

P = ΘM

(
1
8NLM + 7

8NL2 +N2 +N
)

cyc

8N B

= ΘM

(
1
8LM + 7

8L2 +N + 1
)

cyc

8 B

= 320.8 GB/s

(
1
8400 + 7

8200 + 16 + 1
)

cyc

8 B
= 5609.4

This works out to 280 threads or 8 warps per SM.

That’s substantially more but still easily attainable. That means the compiler can conserve per-thread registers. That doesn’t save
per-block registers because more threads per block are needed.
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Example: mxv-o-per-thd

Example: mxv o per thd

Difference with MXV-(LC)*S:

Each matrix/vector multiplication performed by M threads.

__global__ void mxv_o_per_thd() {

const int tid = threadIdx.x + blockIdx.x * blockDim.x, num_threads = blockDim.x * gridDim.x;

const int start = tid / M; // First vector number computed by this thread.

const int r = tid % M; // Vector element computed by this thread.

for ( int h=start; h<d_app.num_vecs; h += num_threads / M ) {

Elt_Type vout = 0;

for ( int c=0; c<N; c++ ) vout += d_app.matrix[r][c] * d_app.d_in[ h * N + c ];

d_app.d_out[ h * M + r ] = vout;

}}

Goals:

Show the number of threads needed as expressions.

Compare with measured values for a GTX 1080 CC 6.1 GPU.
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Example: mxv-o-per-thd � Interval Latency

Interval Latency

Consider an iteration of the h loop:

Elt_Type vout = 0;

for ( int c=0; c<N; c++ ) vout += d_app.matrix[r][c] * d_app.d_in[ h * N + c ];

d_app.d_out[ h * M + r ] = vout;

Assuming that the c loop is unrolled, there will be N loads followed by N FMA instructions. Notice that the N FMA instructions are
dependent on each other (since they are adding to vout), so the iteration latency includes the load latency plus N FMA latencies, and one
issue time for the store:

Lι = LM +NLF + 1.
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Example: mxv-o-per-thd � Data Limit

Data Limit

Each thread loads 4N B of data, but because M threads are accessing the same data item the contribution of one thread to the amount
of data accessed is

dι = 4(
N

M
+ 1) B,

or 8 B when N = Mand assuming that the L2 cache is effective.

The number of threads to saturate latency is:

P = ΘM
LM +NLF + 1 cyc

8 B

= 320.8 GB/s
(400 + 16× 6 + 1) cyc

8 B
= 11502

This works out to 575 threads per SM or 18 warps per SM (remembering that a 1080 has 20 SMs).

The number of threads is consistent with the data from MXV-LCS in which performance improvement for mxv\_o\_per\_thd starts
leveling off between 16 and 20 warps.

Iter Latency:

L_M + N L_f + 1

400 + 16 6 + 1 = 497 cyc = 287.3 ns

Data: 8 B

P = 320.3 GB/s 287.3 ns / 8 B = 11502 = 575 / SM = 18 wp / SM
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Example: mxv-o-per-thd � Data Limit
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