LSU EE 7722 Homework 2 Due: 12 April 2024

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory . ./hw/gpm/2024/hw02.

If the class account has been set up properly, the code can be built from within Emacs by pressing
when visiting any file in the . ../2024/hw02 directory or when in an Emacs shell buffer (which can be

entered using ’ Alt }-X shell’ Enter ‘) The code can be built from the command line using the command make
-j 4 (assuming .../2024/hw02 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw02, one with the suffix ~debug, such as hw02-debug, and one with the suffix ~cuda-debug,
such as hw02-cuda-debug. The versions with the —cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions
will run much more slowly than the regular versions. The executables with the suffix ~debug are compiled
with host optimization turned off but CUDA debugging turned off. Use gdb or cuda-gdb to debug these.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command . /hw02 0 32. It should produce output
ending with a line something like this 32 2566 6.6 27.3 3.8 8.0 4 58 1 2.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
system using a different GPU. The Makefile should automatically detect whether the GPU for which the
executable was built matches the GPU on the current system, and re-build if needed.

Background and Reference Material

For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia. com/cuda/cuda-c-programming-guide/index. htmlf.l
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).

For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.0)
or by name (e.g., Ampere). Both the CC 8.0 and CC 8.6 GPUs implement the Ampere architecture, 8.9
GPUs implement Ada Lovelace, and 9.0 implements Hopper. For this assignment only consider CC 8.x and

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. Some of that material is reviewed in this assignment. For additional
description see Chapter 7 of the Programming Guide for the basics (but not including the L1 cache), and
also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
APT to collect data. In class an MP (or SM) was described as having several-usually four-warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.

Using hw02
The code in hw02. cu contains several kernels that normalize vectors. The hw02 program takes up to three

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://en.cppreference.com/w/
https://www.ece.lsu.edu/koppel/gpup/sys-status.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

command-line arguments: ./hw02 NBLOCKS BLOCKSIZE INPUTSIZE. The first indicates how many blocks to
launch, the second indicates the number of threads per block, and the last indicates the input size.

To make sure it compiled correctly run it with arguments ./hw02 0 32, that runs the kernels fewer
times (explained below). To run it while working on your solution usually run it as ./hw02.

The first argument is used to specify the number of blocks. When there are zero arguments, ./hw02, or
when the first argument is zero, ./hw02 0, the number of blocks is set equal to the number of SMs. When
the first argument is a positive integer, such as ./hw02 5, the kernels will be launched with that many
blocks, five blocks in the example. When the first argument is a negative integer, such as ./hw02 -5, then
each kernel will be launched with that many blocks per SM. For a GPU with 40 SMs and running with
./hw02 -5, a total of 5 x 40 = 200 blocks will be launched per kernel. Note that there is no guarantee that
five blocks will simultaneously run (be resident on) any SM, for example, if the kernels use lots of shared
memory or registers fewer than five will run (and the others will have to wait).

The second argument specifies the number of warps per block. A positive value indicates the exact
number of warps, for example, . /hw02 -3 4, will run each kernel with a block size of 4 warps (4 x 32 = 128
threads), and also launch 3 blocks per SM.

In many cases one wants to quickly compare the performance with different block sizes. For that omit
the second argument or set it to zero, for example, ./hw02. The program will launch each kernel multiple
times, starting with 1 warps per block, up to 32 warps per block. Also, because the first argument was also
omitted, the number of blocks is set equal to the number of SMs. Run time and other information will be
shown for each launch.

The third argument specifies the input size. If the argument is positive, is specifies the input size in MiB
(220 bytes). For example, ./hw02 0 0 3.6, specifies that the input size should be 3.6 MiB. If the argument
is negative then it specifies the input size in multiples of the L2 cache size. For example, ./hw02 0 0 -0.5
indicates that the input size should be half the size of the L2 cache (and so the input itself will easily fit in
the L2 cache). For this assignment (Homework 1 2024) the default is the L2 cache size, so that the input
and output can both comfortably fit.

Program Output
Detailed output is obtained by running with 0 as the two command-line arguments:

[koppel@grace hw02]$./hw02 0 O

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24207 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024
GPU 0: SHARED: 49152 B/BL 102400 B/SM CONST: 65536 B # REGS: 65536
GPU O: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP
Using GPU O

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that
the device is of compute capability 8.9 (Ada Lovelace). The MEM<->L2 field shows the off-chip bandwidth. SM
indicates the number of streaming multiprocessors, also just called multiprocessors (MP’s). CC/SM indicates
the number of CUDA cores (single-precision functional units) per SM, DP/SM indicates the number of double-
precision functional units per SM, and TH/BL is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per SM, this does not indicate
whether any particular kernel is using that much shared memory or could use that much. The L1 cache size
is usually the same size or a bit larger than the shared memory size. The same line shows the amount of
constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s

2

one.) The COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. (The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.)

Performance Data

Each kernel is run multiple times, starting with one warp per MP, in successive runs increasing the number
of warps per MP. A line of performance data is printed for each run. Appearing below is a portion of the
output for an RTX 4090, showing unmodified kernel norm_base.

Kernel (norm_base<4>). Uses 26 registers. n_1 1179648 d_1 4

————— L2-Cache----- DRAM

wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP 6 === Util: FP++ Insn-- L2%% ====
1 32 5.4 3.0 1.0 1.0 23 1169 TT7T 292 ——kkkk%

2 18 5.4 3.1 1.0 1.0 40 2067 134 517 ———kkkxkxkkkkkk

4 13 5.5 3.2 1.0 1.0 59 3020 188 755 +———skkxxkkxkkkk¥kkkxk

8 12 5.6 3.3 1.0 1.0 63 3246 197 810 +————kkkkxkkkkdkkokkkk

12 12 5.8 3.3 1.0 1.0 64 3302 199 816 +————kkkkxkkkkkkkkkkk

16 14 5.9 3.3 1.0 1.2 60 3082 149 695 +———kskxkxkskkskkkkkxk
24 28 6.2 3.2 1.0 2.5 45 2312 85 334 ——xxkkkkkk
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 —s¥k¥**

The lines below are fictional and are there to explain the bar graph.
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 +++xsckkkkskkokokkskskokokokskskokokokkskokoskokokskokok ok kokok
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 +++++tttttrtttbttbbbb bbbt

The output above shows the result a kernel, norm_base<4>. (The name shown is how the function was
named, including the template parameter.)

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is not
set to the number of SMs then there would also be a column headed ac, which would show the number of
resident warps per SM. (The number of resident warps per SM is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of SMs, and in such a case
the value in the ac column would match the wp column.)

For a description of the I/el, BXW, N*R, and N*W columns see the Base Code Performance section further
below.

The columns in the L2-Cache group show how much data is moving between the 1.1 and L2 caches. The
N*R column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
Its value is determined using a measured amount of data and a computed amount of ideal data. (Data is
measured using the NVIDIA CUPTI profiling APIL.) A value of 1 is ideal, a value of 2 indicates that on
average each element was read twice. The value under the N*W column (normalized amount of data written)
shows how much data moved from L1 to L2, normalized to the ideal amount.

The value under the GB/s in the L2 group shows the measured data throughput between the L1 and
L2 caches (in either direction, but L2 to L1 dominates). The number includes all SMs. The %pk column
shows this L1/L2 data movement as a percentage of peak. The DRAM GB/s column shows the measured data
throughput between the L2 cache and off-chip memory.

The t/ps column shows the measured execution time in microseconds. To the right of t/us is a bar
graph showing how busy three resources are (based on certain assumptions). Three resources are tracked,
FMA (fused multiply/add) instructions, shown with a +, FMA along with load instructions, shown with a
-, and data transfer, shown with a *. The data transfer shown is either SM/L2, indicated with an L2** in
the column heading, or L2/Mem, indicated with a Mem#* in the column heading. The right-most position
of a resource’s character indicates what fraction of the time that resource is busy. A resource is being used
100% of the time if its character reaches the rightmost position (the last = in the column heading over the
bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing given the assumptions

3

made). Those last two lines are fictional. Consider the line for the 12 warp per SM run. The * is a bit more
than halfway to the end. That indicates that L1/L2 data throughput is more than half of the peak possible.
The instruction utilization, -, includes the FMAs, two loads, and one store per element.

Problem 1: One disappointment in the solution to Homework 1 is that when the group size is equal to the
vector length many warps are required to attain good performance. For example, consider:
Kernel norm_group. 18 regs. D_L 8, Group sz 8, Unroll O, n_1 589824 d_1 8

————— L2-Cache----- DRAM
wp Utl t/us I/el BXW N*R N+#W %pk GB/s GB/s FP 6§ === Util: FP++ Insn-- L2%x ====
4 1.00 55 21.1 0.0 1.0 1.0 13 692 B4 173 —***
8 1.00 29 21.1 0.1 1.0 1.0 25 1308 103 327 ——xx¥****
12 1.00 21 21.2 0.1 1.0 1.0 35 1823 140 456 ———sk*kkkkkx
16 1.00 16 21.2 0.2 1.0 1.0 46 2351 183 588 ———kkkxxkkkkkkkk
24 1.00 13 21.4 0.2 1.0 1.0 56 2904 225 726 +———kkxkxkskkskkskkkkk
32 1.00 12 21.5 0.3 1.0 1.0 60 3099 243 775 +———kkskkkkkskkkskkkkkxk

The problem is that when the group size is the same as the vector size (8 in the example above) the i
loops have just one iteration:

for (int h = h_start; h < n_l; h += n_threads / grp_size) {
const size_t idx_vec_start = h * d_1;
const size_t idx_vec_thd_start = idx_vec_start + sub_lane;

elt_t thd_sum = O;
for (int i = 0; i <d.l; i += grp_size)
thd_sum += 1_in[idx_vec_thd_start + i];

const elt_t sum = group_sum(thd_sum,grp_size);
const elt_t avg = sum / d_1;

for (int i = 0; i < d_1l; i += grp_size)
1_out[idx_vec_thd_start + i] = 1_in[idx_vec_thd_start + i] - avg;

}

When the number of iterations of the i loops is large there are two advantages. Let I denote the
number of iterations of the i loops. When [is large the time needed for the code outside the i loops, such as
computing sum/d_1, becomes small in comparison to the time for the i loops. (Put another way, the work
needed to execute the code outside the i loop is done d;/I times, so a larger value of I reduces the amount
of work.) So, for work efficiency we want the group size to be 1, yielding the maximum I = d;.

Recall (from class material) that for code like the i loops the loads will be issued first, then the
computation will follow. So for the first loop if I = 4 the compiler will emit four loads, then perform the
addition afterward:

// hwOl-sol.cu:136 thd_sum += 1_in[idx_vec_thd_start + i];
/*%02d0%*/ LDG.E.CONSTANT R4, [R2.64+-0x8] ;
/*02e0%/ LDG.E.CONSTANT R8, [R2.64+-0x4] ;
/*02£0%/ LDG.E.CONSTANT R10, [R2.64] ;
/*0300%/ LDG.E.CONSTANT R12, [R2.64+0x4] ;

// hwOl-sol.cu:136 thd_sum += 1_in[idx_vec_thd_start + i];
/*0370%/ FADD R5, RZ, R4 ;

/*0380%/ FADD R5, R5, RS ;
/*0390%/ FADD R5, R5, R10 ;
/*03a0%*/ FADD R5, R5, R12 ;

Nvidia GPUs execute LDG instructions (load global memory) by performing a lookup in the L1 cache,
and if the data is not there issuing a request. Execution will proceed to the next instruction without waiting

4

for the data to arrive. Execution only stalls (waits) for the loaded value when an attempt is made to use
it. In the code above the LDG instructions will execute quickly (it will take four cycles per load in recent
devices) whether or not the data is found in the cache. The first instruction to use a loaded value is the
first FADD instruction, using R4 as a source, the same R4 as written by the first LDG. If the data has not yet
arrived in R4 then execution will stall until the data arrives. When the data arrives the first FADD executes
and execution moves to the second FADD, which references the data loaded by the second LDG carried by R8.
Since the second load started four cycles after the first, the second FADD only need wait a few cycles, not the
entire L1 cache miss latency.

Let n denote the total number of loads that need to be executed by a thread, and let I denote how
many of those are overlapped (four in the example above), and let Ly, denote load latency (say, L1 miss /L2
hit latency). Then the time needed for the loads (before data throughput approaches saturation) is % Lyy.
Clearly, a larger I is better.

In Homework 1 the norm_group kernel was written to reduce I, thus reducing the benefits described
above. Recall that in doing so other problems were reduced, including premature writebacks, bank conflicts,
and cache pressure.

In this assignment the goal is to recover some of the benefits of larger I by properly unrolling the h loop.
The standard way of unrolling a loop by degree d is to make d copies of the loop body and then simplify the
d copies. The compiler itself won’t do a good job unrolling the h loop for two reasons. First, it will assume
that something done after the group_sum in the original code cannot be moved before group_sum. That will
make it impossible to overlap loads any more than they already are. This first problem is partially solved by
unrolling the h loop body in three part: where thd_sum is computed, where group_sum is called, and finally
where the output elements are written, each unrolled part is in a j loop:

for (int hi = h_start; hi < n_1l; hi += h_inc) {
elt_t thd_sum[unroll_degreel{};

for (int j = 0; j < unroll_degree; j++)
{
int h = hi; // Homework 2: Compute h based on unroll_degree.
const size_t idx_vec_start = h * d_1;
const size_t idx_vec_thd_start = idx_vec_start + sub_lane;

for (int i = 0; i <d.l; i += grp_size)
thd_sum([j] += 1_in[idx_vec_thd_start + i];
}

elt_t avglunroll_degreel];
for (int j = 0; j < unroll_degree; j++) {
elt_t sum = group_sum(thd_sum[j],grp_size);
avgl[jl = sum / d_1;
}

for (int j = 0; j < unroll_degree; j++) {
int h = hi; // Homework 2: Compute h based on unroll_degree.
const size_t idx_vec_start = h * d_1, idx_vec_thd_start = idx_vec_start + sub_lane;[}

for (int i = 0; i <d.l; i += grp_size)
1 _out[idx_vec_thd_start + i] = 1_in[idx_vec_thd_start + i] - avgl[j];

In the code above the first j loop will load unroll_degree sets of 1_in values, and the compiler should
be able to put all of those loads before the FADD instructions (because there is no intervening group_sum).

Note that in the code above h is not computed properly, so though the code has the form of an unrolled
loop it will actually just compute the same output vector unroll_loop times.

If the compiler were to unroll the h loop it would the h values from unroll_degree consecutive it-
erations of the original loop in the unrolled loop. For example, suppose n_threads / grp_size is 1024,
unroll_degree is 4, and h_start is 20000. Then the values of h chosen by the compiler will be 20000,
21024, 22048, and 23072. Those values are not wrong but they are not efficient for several reasons.

First, because n_threads is not a compile-time constant the difference between these h values is not a
compile time constant and the compiler will have to emit arithmetic instructions to compute the address of
each access to 1_in and 1_out. If n_threads/grp_size were a compile-time constant the compiler would
emit instructions to compute just one address and use constant offsets.

A bigger problem with the unrolling described above is that it would bring back the problem of bank
conflicts.

(a) Kernel norm_group_u has starter code for loop unrolling to solve the problem described above. However,
as currently written the code computes the correct results but takes about unroll_degree times as many
instructions to do so. That’s because the hi loop iterates the same way as the h loop in the Homework 2
solution (appearing as norm_group in this assignment), despite the fact that the j loops do unroll_degree
times more work.

So for this assignment modify the hi loop in norm_group_u so that it iterates 1/unroll_degree fewer
times and also compute h correctly in the j loops.

e Avoid increasing the number of bank conflicts. That is, the number of bank conflicts for norm_group_u
should not be higher than that of norm_group for the same d_1 and group size.

e Compute h so that the difference between the values of h in the j loop is a compile-time constant.
(This can be verified by examining the code in the SASS files.)

Here is the output when correctly solved.

Kernel norm_group. 18 regs. D_L 8, Group sz 8, Unroll O, n_1 589824 d_1 8

————— L2-Cache----- DRAM
wp Utl t/pus I/el BXW N#R N+#W %pk GB/s GB/s FP @ === Util: FP++ Insn-- L2%* ====
4 1.00 54 21.1 0.0 1.0 1.0 13 695 54 174 —*%*x*
8 1.00 29 21.1 0.1 1.0 1.0 25 1310 102 327 ——kkxx***
12 1.00 21 21.2 0.1 1.0 1.0 35 1792 138 448 ———kxxk*kkx
16 1.00 16 21.2 0.2 1.0 1.0 46 2372 184 593 ———skkkkkxkkkkkk
24 1.00 13 21.4 0.3 1.0 1.0 55 2861 224 715 +———skkkkkkskkkkkkkk
32 1.00 12 21.5 0.3 1.0 1.0 60 3121 243 780 +———skkkkkkskskkkkkkskkk

Kernel norm_group_u. 18 regs. D_L 8, Group sz 8, Unroll 1, n_1 589824 d_1 8

————— L2-Cache----- DRAM

wp Utl t/us I/el BXW N*R N*W %pk GB/s GB/s FP @ === Util: FP++ Insn-- L2%* ====
4 1.00 5523.1 0.0 1.0 1.0 13 681 55 170 —**x*

8 1.00 29 23.1 0.1 1.0 1.0 25 1298 101 325 ——s*k***

12 1.00 21 23.2 0.1 1.0 1.0 34 1770 136 442 ——kxxxkkkkx

16 1.00 16 23.2 0.2 1.0 1.0 45 2316 180 579 ———skkkkkkkkkkk

24 1.00 13 23.3 0.3 1.0 1.0 56 2915 226 729 +———kkkkkkkokkkkkkkk
32 1.00 12 23.4 0.3 1.0 1.0 61 3130 242 783 +-——xkkxkkskkkkkkokkk

Kernel norm_group_u. 20 regs. D_L 8, Group sz 8, Unroll 2, n_1 589824 d_1 8

————— L2-Cache---—- DRAM

wp Utl t/pus I/el BXW N+R N#W %pk GB/s GB/s FP @ === Util: FP++ Insn-- L2%* ====
4 1.00 3216.6 0.0 1.0 1.0 23 1191 93 298 ——%kk**x

8 1.00 17 16.6 0.2 1.0 1.0 42 2175 173 544 ———kxkkxkkskkkk

12 1.00 13 16.7 0.2 1.0 1.0 54 2808 215 702 +-—=xkkxkkxkkkkkkk

16 1.00 12 16.7 0.3 1.0 1.0 62 3181 255 795 +———xkkskkxkkkkkkkkk

24 1.00 12 16.8 0.3 1.0 1.0 63 3249 251 812 +-———kkkkkkkkkkkkkkkk

32 1.00 11 16.9 0.3 1.0 1.0 64 3312 269 828 +————xkxxkkkxkkkxkkkkkkk

Kernel norm_group_u. 26 regs. D_L 8, Group sz 8, Unroll 4, n_1 589824 d_1 8

————— L2-Cache----- DRAM
wp Utl t/us I/el BXW N*R N*W %pk GB/s GB/s FP @ === Util: FP++ Insn-- L2%* ====
4 1.00 18 13.3 0.1 1.0 1.0 40 2048 159 512 ———kkxkkkkkkk
8 1.00 12 13.4 0.2 1.0 1.0 59 3037 246 759 +———skkkkkkskkkkkkkskk
12 1.00 12 13.4 0.2 1.0 1.0 63 3243 250 811 +————skkkxskkkokkkskkkkk
16 1.00 12 13.5 0.3 1.0 1.0 63 3240 263 810 +————xxkkkskkkkkskikk*k
24 1.00 11 13.6 0.3 1.0 1.0 65 3343 258 836 +————xkkkkkskkkkkkkkkk
32 1.00 11 13.7 0.3 1.0 1.0 66 3405 266 851 +————xkkkkkkkkkkkkkkkx

In the output pay attention to the number of instructions per iteration (I/el) and the number of bank
conflicts BXW. Output from the unsolved version appears on the next page.

In the unsolved version:

Kernel norm_group. 18 regs. D_L 8, Group sz 8,

————— L2-Cache-----

wp Utl t/pus I/el BXW N*R N#W %pk GB/s
4 1.00 54 21.1 0.0 1.0 1.0 13 693

8 1.00 29 21.1 0.1 1.0 1.0 26 1321

12 1.00 21 21.2 0.1 1.0 1.0 35 1813
16 1.00 16 21.2 0.2 1.0 1.0 46 2354
24 1.00 13 21.4 0.2 1.0 1.0 56 2895
32 1.00 12 21.5 0.3 1.0 1.0 61 3131

DRAM
GB/s
54
103
139
182
223
241

Kernel norm_group_u. 18 regs. D_L 8, Group sz

————— L2-Cache-----

wp Utl t/ps I/el BXW N*R N*W %pk GB/s
4 1.00 54 21.1 0.0 1.0 1.0 13 695

8 1.00 28 21.1 0.1 1.0 1.0 26 1325

12 1.00 2121.2 0.1 1.0 1.0 35 1814
16 1.00 16 21.2 0.2 1.0 1.0 46 2373
24 1.00 13 21.4 0.2 1.0 1.0 b5 2858
32 1.00 12 21.5 0.3 1.0 1.0 60 3121

DRAM
GB/s
54
103
140
185
220
242

Kernel norm_group_u. 18 regs. D_L 8, Group sz

----- L2-Cache---—--

wp Utl t/pus I/el BXW N+R N*W %pk GB/s
4 1.00 69 31.1 0.0 1.0 1.0 11 544

8 1.00 36 31.1 0.1 1.0 1.0 20 1055

12 1.00 26 31.2 0.1 1.0 1.0 28 1461
16 1.00 20 31.2 0.2 1.0 1.0 37 1927
24 1.00 156 31.4 0.3 1.0 1.0 49 2531
32 1.00 13 31.5 0.4 1.0 1.0 58 3015

DRAM
GB/s
44
82
115
150
199
236

Kernel norm_group_u. 16 regs. D_L 8, Group sz

————— L2-Cache-----

wp Utl t/pus I/el BXW N*R N*W %pk GB/s
4 1.00 98 49.1 0.0 1.0 1.0 7 385

8 1.00 51 49.1 0.1 1.0 1.0 14 743

12 1.00 36 49.2 0.1 1.0 1.0 21 1063
16 1.00 27 49.2 0.2 1.0 1.0 27 1394
24 1.00 20 49.3 0.3 1.0 1.0 37 1912
32 1.00 16 49.4 0.5 1.0 1.0 46 2357

DRAM
GB/s
30
58
82
109
148
190

Unroll O, n_1 589824 d_1 8

FP 0
173
330
453
588
724
783

8,

FP 6
174
331
453
593
714
780

8,

FP 6
136
264
365
482
633
754

8,

FP 0
96
186
266
348
478
589

=== Util: FP++ 1Insn-- L2%% ====
—%okk

——kkokok Kok

—— kR ok ok Kk K

———skokkok ok ok kKR ok
Kok ok kKR oKk Kok K

m— kR KoK KoK KoK KoK K

Unroll 1, n_1 589824 d_1 8

=== Util: FP++ Insn-- L2%*% ====
—kkk

——skkokokok ok

—— =k kKK kKK

—— kKR Kok oKk Kk K

o — kK kKoK kKoK Kok K KoK

o — koK ok Kok R KoK KoK KK oK oK

Unroll 2, n_1 589824 d_1 8

=== Util: FP++ Insn-- L2%* ====
—kk

—skokokokokok

——skokokokok oKk

———sokokoskoksk ook ok

o —kokokokokkok kR Kok ok

o mskokk Kok Kok KKK KK Kok oK

Unroll 4, n_1 589824 d_1 8

=== Util: FP++ Insn-- L2%* ====
—x

kKKK

—skokok oKk ok

——skokokok ook ok

———skokokokokok ook ok

===k kK kK kkkkkk

	Problem 1
	Part char 97

	Problem 1
	Part char 97

