LSU EE 7722 Homework 1 Due: 28 March 2024

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory . ./hw/gpm/2024/hw01.

If the class account has been set up properly, the code can be built from within Emacs by pressing
when visiting any file in the . ../2024/hw01 directory or when in an Emacs shell buffer (which can be

entered using ’ Alt }-X shell’ Enter ‘) The code can be built from the command line using the command make
-j 4 (assuming .../2024/hwO01 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw01, one with the suffix ~debug, such as hwO1-debug, and one with the suffix ~cuda-debug,
such as hwO1-cuda-debug. The versions with the —cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions
will run much more slowly than the regular versions. The executables with the suffix ~debug are compiled
with host optimization turned off but CUDA debugging turned off. Use gdb or cuda-gdb to debug these.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw01 0 32. It should produce output
ending with a line something like this 32 2566 6.6 27.3 3.8 8.0 4 58 1 2.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
system using a different GPU. The Makefile should automatically detect whether the GPU for which the
executable was built matches the GPU on the current system, and re-build if needed.

Background and Reference Material

For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia. com/cuda/cuda-c-programming-guide/index. htmlf.l
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).

For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.0)
or by name (e.g., Ampere). Both the CC 8.0 and CC 8.6 GPUs implement the Ampere architecture, 8.9
GPUs implement Ada Lovelace, and 9.0 implements Hopper. For this assignment only consider CC 8.x and

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. Some of that material is reviewed in this assignment. For additional
description see Chapter 7 of the Programming Guide for the basics (but not including the L1 cache), and
also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
APT to collect data. In class an SM (or MP) was described as having several-usually four-warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.

Using hw01
The code in hwO1.cu contains several kernels that normalize vectors. The hwO1 program takes up to three

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://en.cppreference.com/w/
https://www.ece.lsu.edu/koppel/gpup/sys-status.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

command-line arguments: ./hwO1 NBLOCKS BLOCKSIZE INPUTSIZE. The first indicates how many blocks to
launch, the second indicates the number of threads per block, and the last indicates the input size.

To make sure it compiled correctly run it with arguments ./hwO1 O 32, that runs the kernels fewer
times (explained below). To run it while working on your solution usually run it as ./hw01.

The first argument is used to specify the number of blocks. When there are zero arguments, ./hw01, or
when the first argument is zero, ./hw0O1 0, the number of blocks is set equal to the number of SMs. When
the first argument is a positive integer, such as ./hwO1 5, the kernels will be launched with that many
blocks, five blocks in the example. When the first argument is a negative integer, such as ./hw01 -5, then
each kernel will be launched with that many blocks per SM. For a GPU with 40 SMs and running with
./hw01 -5, a total of 5 x 40 = 200 blocks will be launched per kernel. Note that there is no guarantee that
five blocks will simultaneously run (be resident on) any SM, for example, if the kernels use lots of shared
memory or registers fewer than five will run (and the others will have to wait).

The second argument specifies the number of warps per block. A positive value indicates the exact
number of warps, for example, ./hw01 -3 4, will run each kernel with a block size of 4 warps (4 x 32 = 128
threads), and also launch 3 blocks per SM.

In many cases one wants to quickly compare the performance with different block sizes. For that omit
the second argument or set it to zero, for example, ./hw01. The program will launch each kernel multiple
times, starting with 1 warp per block, up to 32 warps per block. Also, because the first argument was also
omitted, the number of blocks is set equal to the number of SMs. Run time and other information will be
shown for each launch.

The third argument specifies the input size. If the argument is positive, is specifies the input size in MiB
(220 bytes). For example, ./hw01 0 0 3.6, specifies that the input size should be 3.6 MiB. If the argument
is negative then it specifies the input size in multiples of the L2 cache size. For example, ./hw01 0 0 -0.5
indicates that the input size should be half the size of the L2 cache (and so the input itself will easily fit in
the L2 cache). For this assignment (Homework 1 2024) the default is the L2 cache size, so that the input
and output can both comfortably fit.

Program Output
Detailed output is obtained by running with 0 as the two command-line arguments:

[koppel@grace hwO1]$./hwO1 O O

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24207 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024
GPU 0: SHARED: 49152 B/BL 102400 B/SM CONST: 65536 B # REGS: 65536
GPU O: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP
Using GPU O

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that
the device is of compute capability 8.9 (Ada Lovelace). The MEM<->L2 field shows the off-chip bandwidth. SM
indicates the number of streaming multiprocessors, also just called multiprocessors (MP’s). CC/SM indicates
the number of CUDA cores (single-precision functional units) per SM, DP/SM indicates the number of double-
precision functional units per SM, and TH/BL is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per SM, this does not indicate
whether any particular kernel is using that much shared memory or could use that much. The L1 cache size
is usually the same size or a bit larger than the shared memory size. The same line shows the amount of
constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s

2

one.) The COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. (The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.)

Performance Data

Each kernel is run multiple times, starting with one warp per block, in successive runs increasing the number
of warps per block. A line of performance data is printed for each run. Appearing below is a portion of the
output for an RTX 4090, showing unmodified kernel gkv_base (and that kernel should not be modified) and
kernel gkv_base_w2 with the assignment correctly solved.

Kernel (norm_base<4>). Uses 26 registers. n_1l 1179648 d_1 4

————— L2-Cache----- DRAM
wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP 6 === Util: FP++ Insn-- L2%* ====
1 32 5.4 3.0 1.0 1.0 23 1169 TT7T 292 ——skkkk*k
2 18 5.4 3.1 1.0 1.0 40 2067 134 517 ———kxkxkxkkskkxk
4 13 5.5 3.2 1.0 1.0 59 3020 188 755 +———skskxkkkskkskkkkkkk
8 12 5.6 3.3 1.0 1.0 63 3246 197 810 +————kxkkkkskkskkkokkkkkk
12 12 5.8 3.3 1.0 1.0 64 3302 199 816 +————skskkskkskskkskkkkkxkxk
16 14 5.9 3.3 1.0 1.2 60 3082 149 695 +———skxkkkkkkkkkkkk
24 28 6.2 3.2 1.0 2.5 45 2312 85 334 ——skxkkkkk
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 —kxkkkkxk

The lines below are fictional and are there to explain the bar graph.
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 +++xsckkkkskokkokskskokkokskskokokkokskokokokokskokok ko kskok
32 36 6.4 3.2 1.0 3.1 42 2193 65 264 +++++ttrttrrrttbtb bbbttt bbb

The output above shows the result a kernel, norm_base<4>. (The name shown is how the function was
named, including the template parameter.)

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is not
set to the number of SMs then there would also be a column headed ac, which would show the number of
resident warps per SM. (The number of resident warps per SM is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of SMs, and in such a case
the value in the ac column would match the wp column.)

For a description of the I/el, BXW, N*R, and N*W columns see the Base Code Performance section further
below.

The columns in the L2-Cache group show how much data is moving between the L1 and L2 caches. The
N*R column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
Its value is determined using a measured amount of data and a computed amount of ideal data. (Data is
measured using the NVIDIA CUPTI profiling API.) A value of 1 is ideal, a value of 2 indicates that on
average each element was read twice. The value under the N*W column (normalized amount of data written)
shows how much data moved from L1 to L2, normalized to the ideal amount.

The value under the GB/s in the L2 group shows the measured data throughput between the L1 and
L2 caches (in either direction, but L2 to L1 dominates). The number includes all SMs. The %pk column
shows this L1/L2 data movement as a percentage of peak. The DRAM GB/s column shows the measured data
throughput between the L2 cache and off-chip memory.

The t/ps column shows the measured execution time in microseconds. To the right of t/us is a bar
graph showing how busy three resources are (based on certain assumptions). Three resources are tracked,
FMA (fused multiply/add) instructions, shown with a +, FMA along with load instructions, shown with a
-, and data transfer, shown with a *. The data transfer shown is either L1/L2, indicated with an L2** in
the column heading, or L2/Mem, indicated with a Mem** in the column heading. The right-most position
of a resource’s character indicates what fraction of the time that resource is busy. A resource is being used
100% of the time if its character reaches the rightmost position (the last = in the column heading over the
bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the

3

penultimate line we would say that data transfer is being saturated (also a good thing given the assumptions
made). Those last two lines are fictional. Consider the line for the 12 warp per SM run. The * is a bit more
than halfway to the end. That indicates that L1/L2 data throughput is more than half of the peak possible.
The instruction utilization, -, includes the FMAs, two loads, and one store per element.

Assignment Introduction

The code for this assignment normalizes vectors, which for this assignment means subtracting the average
component value from each component. Consider 2 € RY, a d-component vector of real numbers. Let
o, X1, ... Tq—1 denote the d components of vector z. Then a = é Z?;Ol x; is the mean (average) component
value. Vector y € R? is a normalized version of x if y; = x; — a for i € [0, d).

Each kernel is to normalize n_1 vectors of d_1 components, the x vectors are read from 1_in and the y
vectors are written to 1_out. (The letter [is for layer.) The starting point is the base kernel, norm_base, in
which each thread normalizes one vector:

template< int D_L = 0 > __global__ void
norm_base(elt_t* __restrict__ 1_out, const elt_t*
{

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int n_threads = blockDim.x * gridDim.x;

const int d_1 = D_L 7: c_app.d_1;

const int n_1 = c_app.n_1;

_restrict__ 1_in)

for (int h = tid; h < n_l; h += n_threads)

{

elt_t sum = 0;

// The Sum Loop

for (int i = 0; i <d_1l; i++) sum += 1_in[h * d_1 + i];

const elt_t avg = sum / d_1;

// The Norm Loop

for (int i = 0; i <d.l; di++) lout[h *d 1+ i] =1_din[h *xd_.1 + i] - avg;
}

The code will be run for values of d; € 4,8,32,128,1024 and for n; chosen so that the 1_in and 1_out
arrays can both fit in the L2 cache (the default, but input size can be changed from the command line).

Base Code Performance
The base code runs acceptably for d; = 4 and d; = 8, but does horribly for d; > 32:

Kernel (norm_base<4>). Uses 26 registers. n_h 1179648 d_h 4

————— L2-Cache----- DRAM

wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP 0 === Util: FP++ Insn-- L2%* ====
1 33 5.4 3.0 1.0 1.0 22 1149 64 287 ——%kkkkxk

2 19 5.4 3.1 1.0 1.0 39 2029 126 507 ———skkkxk*kkxkkxk

4 12 5.5 3.3 1.0 1.0 62 3192 107 798 +———skxskkxkskkskkkkkkkkxk

8 11 5.6 3.3 1.0 1.0 64 3288 237 821 +————kskkkskkxkkkskkkkkkk

16 14 5.9 3.3 1.0 1.2 56 2913 162 655 +———kskxskxkxkkkkskkk
24 29 6.2 3.2 1.0 2.5 44 2272 44 327 ——kxkkkxk
32 35 6.4 3.2 1.0 3.1 43 2207 66 266 —k*kkkxk

Kernel (norm_group<8,1>). Uses 32 registers. mn_h 589824 d_h 8
————— L2-Cache----- DRAM
wp t/us I/el BXW N*R N*W Ypk GB/s GB/s FP § === Util: FP++ Insn-- L2%* ====

4

1 68 5.3 6.5 1.0 1.0 11 559 462 140 —*xx

2 20 5.3 7.0 1.0 1.0 36 1854 83 464 ———wkkkkkkkk

4 13 5.3 7.1 1.0 1.0 57 2943 185 735 +-——kkkxkxkxkkkkkkkokk
8 156 5.4 7.1 1.0 1.1 49 2547 168 614 ———kkkxxxkskkkkokk

16 71 5.5 6.3 1.0 6.3 37 1929 31 133 —*x*
24 78 5.6 6.3 1.0 6.8 36 1876 28 121 —*x*
32 80 5.8 6.3 1.0 6.9 36 1868 28 118 —*x*

Kernel (norm_base<32>). Uses 48 registers. n_h 147456 d_h 32

----- L2-Cache----- DRAM

wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP @ === Util: FP++ Insn-- L2%* ====
1 149 4.4 24.1 1.0 8.0 22 1136 49 63 *x*

2 156 4.4 24.0 1.0 8.0 21 1088 9 60 **

4 141 4.4 24.3 1.0 8.0 23 1202 17 67 **

8 142 4.5 24.9 1.0 8.0 23 1199 17 67 *xx

16 144 4.6 26.2 1.0 8.0 23 1180 15 66 *xx
24 147 4.7 26.6 1.0 8.0 23 1161 10 64 *xx
32 174 4.8 23.4 3.4 8.0 24 1238 13 b4 *

Kernel (norm_base<0>). Uses 40 registers. n_h 4608 d_h 1024

----- L2-Cache----- DRAM

wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP 6 === Util: FP++ Insn-- L2%* ====
1 235 6.524.3 2.0 8.0 16 805 24 40 *

2 228 6.524.2 2.0 8.0 16 829 153 41 *

4 209 6.5 25.2 2.0 8.0 18 905 12 45 *

8 393 6.5 25.9 2.0 8.0 9 480 7 24 *

16 771 6.6 27.1 2.1 8.0 5 247 4 12
24 1166 6.6 28.0 2.4 8.0 3 168 4 8
32 1577 6.7 27.2 3.7 8.0 3 140 3 6

There appears to be two possible culprits: premature writebacks, seen in the N*W column, and bank
conflicts, seen in the BXW column. At d; = 1024 there are additional problems: not every thread has something
to do (workload imbalance), and cache pressure.

Recent NVIDIA devices’ L1 cache have what I'll call a nearly write through policy. In a write through
cache, every write to a cache results in a write to the next layer (L2, say), even if the write hits the cache.
The advantage is that one does not need to keep track of which lines are dirty (holding data different than
the next layer or memory) or clean holding the same data as memory. (It would be more correct to use
the term sector rather than line, but this description is long enough.) In a write back cache, when a store
instruction hits the cache it writes only the cache line (making it dirty), the data is not propagated to the
next level. Dirty cache lines will need to be written to the next layer eventually, usually when the line is
evicted (kicked out because the space is needed). The NVIDIA L1 caches use a nearly write through policy.
On a write hit the line becomes dirty. It will remain dirty for a short time, only a few clock cycles, then it
will be written back. Suppose there is a second write to the same line shortly later. If that second write
occurs after the line is written back, the line will need to be written back a second time. This situation is
called a premature writeback here (it’s not a standard term). If that second write occurs a very short time
after the first the block is written back just once. Consider the N*W column for the d; = 4 case. When there
are fewer warps the amount of written data is ideal (the value in the column is 1.0). When there are more
warps the SM is busier and so those second writes arrive too late, and so the amount of data leaving the
L1 cache is higher than the ideal, reaching 3.1. The NVIDIA caches manage cache lines in units of sectors.
In current devices a sector is 32 bytes. That’s why the high value in the N*W column is 8 (a 32-byte sector
holds 8 4-byte values).

Recall that bank conflicts occur when more than one thread in a warp attempts to load or store the

5

same bank. There are 32 banks, and the bank number required by a load or store is equal to bits 6:2 of the
address. Because elt_t is four bytes, the bank number of access 1_in[idx] is just idx modulo 32. For
example 1_in[4] needs bank 4, 1_in[31] needs bank 31, 1_in[32], needs bank 0, and 1_in[36] needs bank
4. If these were accessed by threads in the same warp (at the same time) there would be a bank conflict on
bank 0. As a result the load would have to be issued twice (assuming there were no further bank conflicts).
A best case is when the loads made by the 32 threads are 1_in[0], 1_in[1], 1_in[2], ..., 1_in[31]. The
worst case is an access like 1_in[0], 1_in[32], 1_in[64], 1_in[96], ..., 1_in[992]. All of these threads
access bank 0, and so the instruction would need to be issued 32 times (rather than once). If the data for
all these threads were in the L1 cache the load would take a painful 32 times longer (4 x 32 = 128 cycles on
recent devices). But, if the load missed the cache then the issue time would still be 128 cycles, but the code
might still need to wait 300 cycles or so for the data to arrive, reducing the impact of bank conflicts. The
number in the BXW column shows the number of bank conflicts. The ideal value is 0, the worst case is 31.

Workload imbalance is not directly shown, but it can be inferred. For the d; = 1024 case there are
n; = 4608 vectors, which works out to 36 vectors per SM on an RTX 4090. Consider the 4-warp case. The
code (by default) will set the number of blocks to the number of SMs, 128 on the RTX 4090. Block 0 starts
with vectors 0 to 127, block 1 starts with vectors 128-255, ..., block 35 operates on vectors 4480 to 4607,
and blocks 36-128 have nothing to do. Launching with just one warp per block keeps all SMs busy on the
first iteration of the h loop, but on the second iteration only the first few blocks will be busy.

Cache pressure can be seen in the N*R column. Note that each element of 1_in is read twice, once when
computing the sum, and a second time to compute 1_out. We would like that second read to hit the L1
cache. For the d; = 4 and d; = 8 cases it looks like it does, since N*R is 1. But for d; = 1024 it looks like
each element of 1_in is read at least twice. That’s because the L1 cache isn’t big enough to hold all the
elements read when computing the sum, so they have to be read a second time. Note that the cache must
be large enough to hold d;B elements, where B is the number of threads per block. Even for the one warp
case (B = 32) the number of elements is 32768 occupying 128 kiB, larger than the L1 on a 4090.

Another factor which can affect performance is instruction efficiency. It doesn’t in the base executions
shown above, but it should be a factor in the solution. Instruction efficiency is the number of instructions per
element (more generally per unit work) shown in column I/el. (Each vector has d; elements, a run of the
kernel operates on n; vectors, for a total of d;n; elements.) Smaller numbers are better. First, lets estimate
a lower bound. The Sum Loop (see the comments in the code above) requires at least two instructions per
element: a load instruction and an add instruction. (For one thing that assumes that the memory address
of 1_in[h*d_1] is computed before the loop starts, and that constant offsets are used in the unrolled loop.)
Here is an excerpt for d; = 4 showing only the load and add instructions (found in hw01.sass):

LDG.E.CONSTANT R6, [R2.64] ;
LDG.E.CONSTANT R8, [R2.64+0x4] ;
LDG.E.CONSTANT R10, [R2.64+0x8] ;
LDG.E.CONSTANT R12, [R2.64+0xc] ;
FADD R5, RZ, R6 ;

FADD R5, R5, R8 ;

FADD R5, R5, R10 ;

FADD R7, R5, R12 ;

The Norm Loop might need another load, a subtract, and a store. It turns out that for the d; = 4
case, a second load is not needed. Also note that for the d; = 4 case sum/d_1 and 1_in[..] - avg are
implemented together using a multiply /add (FFMA) with R7 holding the sum:

FFMA RS9, R7.reuse, -0.25, R6 ;
FFMA R11, R7.reuse, -0.25, R8 ;
FFMA R13, R7.reuse, -0.25, R10 ;
FFMA R15, R7, -0.25, R12 ;

STG.E [R4.64], RO ;

STG.E [R4.64+0x4], R11 ;

STG.E [R4.64+40x8], R13 ;

STG.E [R4.64+0xc], R15 ;

So for the d; = 4 cases a lower bound is just four instructions per element: the LDG, FADD, FFMA, and
STG. The best reported number for d; = 4 is 5.4, accounting for other instructions before and after these
loops, including the instructions to compute the addresses in R2 and R4. Since the number of these other
instructions shouldn’t change with d;, the reported I/elt number goes down with higher d;. For d; = 32 we
reach 4.4, close to our lower bound.

The template parameter D_L is used for d; = 4, d; = 8, and d; = 32, so the code will use a small number
of instructions. (When d; is specified as a template parameter the compiler will know its value and will
perfectly unroll the loop and otherwise optimize the code. When the D_L template parameter is zero the
code gets the value of d; from c_app.d_1, a constant variable set at runtime, and so the compiler won’t
know d;.)

For d; > 32 the template parameter is set to zero. (That was my choice, there is no reason why it could
not be set for d; = 128, etc.) Regardless of whether the D_L template parameter was used for d; = 1024,
there would have to be two loads for each element of 1_in because there are not enough registers to hold
1024 values. (The limit is 255 registers per thread.) This pushes the lower bound up to 5 instructions per
element. The measured number of instructions per element is as low as 6.5 for d; = 1024, which isn’t bad.

Problem 1: Recall that the base kernel suffers from premature writebacks, bank conflicts, workload im-
balance, and cache pressure. In this problem, all of these problems will be fixed! Though not perfectly, in
part because instruction efficiency may be reduced (meaning I/el will be higher). The problems will be
fixed by using a group of grp_size threads to normalize a single vector, rather than one thread as is done
in norm_base. Call the value of grp_size the group size. Suppose that grp_size=2 and d_1=32. Then we
would like each of two threads to compute the sum of 16 elements of one 32-element vector. Fach thread’s
sum will be added together (using pre-written routine group_sum), and finally each thread will normalize
and write the output elements.

If this is done correctly the number of bank conflicts and premature writebacks will be reduced. In fact,
when grp_size=8 a correct solution should eliminate all premature writebacks, and when grp_size=d_1
(for d; < 32) there should be 0 bank conflicts. Increasing the group size should also reduce cache pressure
and workload imbalance.

(a) In the unmodified assignment file norm_group is nearly identical to norm_base. Modify norm_group so
that it uses a group size of grp_size, where grp_size is the second template parameter. (The first template
parameter is D_L which is set to d; if d; < 32 or to zero if d; > 32.) The value of grp_size will be a power
of 2 from 1 to 32. In your solution take advantage of the fact that d_1 will always be a power of 2 and d_1
will be no larger than grp_size.

Use the provided routine group_sum(VAL,GRP_SIZE), which returns the sum of VAL for all callers in the
group based on the group size. The only difference between norm_base and norm_group in an unmodified
assignment is that group_sum is called:

elt_t thd_sum = 0;

for (int i = 0; i <d_.1l; di++) thd_sum += 1_in[h * d_1 + i];
const elt_t sum = group_sum(thd_sum,1);

const elt_t avg = sum / d_1;

In the code above the group-size argument in to group_sum is 1, so it just returns the thd_sum argument.
In a correct solution the second argument would be changed from 1 to grp_size. Obviously other changes
need to be made so that the vector elements are divided between the threads in a group.

Continued on next page.

When hwO1 is run norm_group is launched for each d; size multiple times, each with a different group
size and block size. The heading shown above the table of results shows the name of the kernel, including
template parameters. It also shows the number of registers (which can be ignored for this assignment), the
number of vectors (n;), and the vector size (d;). In the example below the group sizes are 2 (first table) and
4 (second table). The results are from a correct solution.

Kernel (norm_group<4,2>). Uses 16 registers. n_1 1179648 d_1 4

————— L2-Cache----- DRAM

wp t/us I/el BXW N*R N*W %pk GB/s GB/s FP 6 === Util: FP++ Insn-- L2%* ====
1 956 10.5 1.0 1.0 1.0 8 399 19 100 —*x

2 48 10.5 1.0 1.0 1.0 15 785 44 196 —k**k

4 25 10.6 1.1 1.0 1.0 29 1483 92 371 ——s¥kkokokk

8 15 10.6 1.2 1.0 1.0 50 2603 151 650 +———kkkxkskkkkskkkkxk

12 12 10.7 1.3 1.0 1.0 60 3088 218 770 +-——kxskkkkkskkkkskrkkk

16 12 10.7 1.3 1.0 1.0 61 3151 184 785 +-——s¥xxxkkikkokkkkkx
24 11 10.8 1.3 1.0 1.0 64 3310 107 824 +-———s¥kixxiffkkokkokkkk
32 11 10.9 1.3 1.0 1.0 66 3410 181 852 +-———sxxkfkkkodokkkkkskskk

Kernel (norm_group<4,4>). Uses 18 registers. n_1 1179648 d_l1 4

————— L2-Cache----- DRAM

wp t/us I/el BXW N+R N*W /pk GB/s GB/s FP § === Util: FP++ Insn-- L2%* ====
1 227 19.0 0.0 1.0 1.0 3 167 32 42 *

2 115 19.0 0.0 1.0 1.0 6 329 63 82 *x*

4 50 19.1 0.0 1.0 1.0 15 756 41 189 —kxkkk

8 26 19.1 0.1 1.0 1.0 28 1442 95 360 ——xxkkkkkk

12 19 19.2 0.1 1.0 1.0 38 1954 113 488 ———kkxxkkkkxk

16 15 19.2 0.2 1.0 1.0 49 2540 136 635 +———kkkxskkkkkkokk
24 13 19.4 0.2 1.0 1.0 58 2995 165 749 +———kkkxkkkkkskkkkkkk
32 12 19.5 0.2 1.0 1.0 61 3126 174 782 +———kkskkkkkskkkskkkkkxk

In some cases the norm_group kernel will be launched with a group size of 1. The results in this case
should be the same as norm_base, though they don’t have to be.

(b) Find an expression for the amount of workload imbalance expected on an RTX 4090 based on the number
of vectors (n;), vector sizes (d;), and group sizes (g or grp_size), and block sizes (B or 32 * wp). Try to
write a formula, for example where a value of less than 1 indicates workload imbalance.

	Problem 1
	Part char 97
	Part char 98

	Problem 1
	Part char 97
	Part char 98

