
LSU EE 7722 Homework 3 Solution Due: 1 May 2023
Note: late submissions accepted without penalty until 5 May.

In class we spent much of the semester showing how recent generation GPUs can be used for matrix/
matrix multiplication, though understanding that they were designed for a larger class of computations. In
this assignment we will look at some accelerators designed specifically for machine learning workloads that
are matrix/matrix multiplication. These include Google’s TPU chips (which are used in production) and an
idea proposed in the research literature, Scale-Out Systolic Arrays (SOSA). Both designs use systolic arrays,
of course. As mentioned in class, the computation of matrix/matrix multiplies using systolic arrays requires
far less register reads and writes than the same computation performed on a device that reads operands for
each FMADD instruction from a register file.

For this assignment, and to prepare for the final exam read the following papers. First, read the papers
describing Google’s TPU accelerators, all of which use large systolic arrays. The first paper, Jouppi 17 [3],
describes Google’s first TPU, now called TPUv1. Though TPUv1 is primitive compared to later designs,
the paper does provide more detail, and so will be the basis of some questions in this assignment. The
TPUv1 systolic array was limited to integer arithmetic, limiting its use to inference. Google’s next GPUs
TPUv2 and TPUv3 were designed to handle both inference and training. To support training these chips use
systolic arrays that operate on 16-bit floating-point data, the BF16 (brain-float) format. These are described
in several papers, see [2, 4]. TPUv4i, designed just for inference, is described in a fourth paper [1].

Also read the SOSA paper, [5], in which a design using smaller systolic arrays in proposed. The paper
shows how the lower energy efficiency of the smaller systolic arrays can be overcome by better utilization
when the systolic arrays are appropriately interconnected and a more meaningful metric, according to the
paper, is used.

You should be able to get copies of all of these papers for free on campus. Off campus you might be
asked to pay. Please E-mail me if you have any problems getting a free copy.

Problem 1: Answer the following questions about Google’s TPUs and described by Norman Jouppi and
his many collaborators. Several of the questions below are based on the TPUv1 paper [3]. This paper shows
data bandwidth in units of GiB/s. Be aware that 1 GiB = 230 B. Some of the questions below ask about
the number of clock cycles or to reason about clock cycles with other information provided in GiB/s. To
answer such questions one needs to use the clock frequency, which for TPUv1 is φ = 0.7 GHz.

(a) In TPUv1 how many clock cycles would it take to load one set of weights (one tile) from the off-chip
memory (DDR3 DRAM Chips) into the Weight FIFO? Helpful information is in Figure 1 in [3].

Each weight is 8 bits—one byte—and there are 28+8 of them for a total 64 kiB. The bandwidth between the off-chip weight

DRAM and the TPU chip is 30 GiB/s, and so is the bandwidth between the off-chip interface and the Weight FIFO. The time then

to move 64 kiB of data is

64 kiB

30 GiB/s
= 21.33 × 2−20 s = 21.33 × 2−20 s

0.7 × 109 cyc

s
≈ 1424 cyc

.

(b) The paper explains on page 3 that it takes 256 cycles to load the weight matrix. (That’s not the answer
to the subproblem above.) Suppose the array were 128 × 512. How long would it take to load the weight
matrix from the FIFO?

Weights are loaded one row per clock cycle. The top row of cells reads weights from the weight FIFO, in other rows a cell reads

a weight from the cell above (a cell in row r, column c, reads its weight from the cell in row r − 1, column c). A cell will place the

weight arriving from the cell above into one of its (presumably two) weight buffers. Proceeding in this way weights move down at a

rate of one row per clock cycle. The process stop when weights arrive at the bottom row.

A 128 × 512 array has 128 rows and 512 columns and so it would take 128 cycles to load the weights. That’s assuming the

weight FIFO can provide 512 weights per cycle.

1

https://www.ece.lsu.edu/gp/

(c) Figure 1 shows a bandwidth of 167 GiB/s between the Unified Buffer and the MXU, but off-chip bandwidth
for activations is only 10 GiB/s. Why the imbalance? That is, how is it possible that enough data can be
provided to the MXU from off chip to keep it fed at 256 bytes per cycle?

Call the data arriving to the TPU chip network inputs. A network input is used to compute a hidden layer, and the

hidden layer may be used to compute subsequent hidden layers. Call the output of the last layer the network output. The hidden

layers and network outputs would all be computed by the systolic array. So in effect, data arriving at the TPU would pass through

the systolic array multiple times.

In the time for one input (one row of an input matrix) to arrive 128
10GiB/s ≈ 12 ns plus the time for one network output to be

sent back to the host, another 12 ns, the systolic array can shift in

2
128

10 GiB/s
φ = 2

128

10 GiB/s

0.7 × 109 cyc

s
≈ 16.7

rows. So 16 hidden layers (plus the output layer) would balance the bandwidths under these assumptions. Other factors can increase

the number of times the systolic array is used, such as computing multiple hidden layer channels.

(d) To compute the large layer on Homework 1 and 2 we need to multiply a 1536×512 matrix by a 512×2970
matrix. Roughly how long would that take on TPUv3 (not TPUv1 this time)? Explain any assumptions.

In our homework assignments the 1536× 512 = dqkv × dmodel matrix, wqkv, was for the weights and the 512× 2970 =
dmodel × numm matrix, hin, was the inputs. The problem in the assignment was described as computing hqkv = wqkv × hin,

and so the weights were first. In the TPU systolic arrays the second matrix of the product A×B, is stored in the array (and that

array, B here, is called the weights). So we would need to compute hTin × wT
qkv (the transpose of the input matrices).

With the weight matrix being 1536 × 512 and the TPUv2 systolic array being 128 × 128 the weights need to be broken

into 1536
128 × 512

128 = 12 × 4 = 48 tiles. After a weight tile is loaded, 2970 partial columns of hin (or 2970 partial rows of hTin) are

streamed through the systolic array. That is done for each tile, so a total of 48 × 2970 = 142560 partial columns are streamed

through.

The size of wqkv is 1536 × 512 = 786432 elements. Though in our assignments the elements were floats, 32 bits, lets

assume here that they are 16 bit types, say BF16. Then the total size is 1536 kiB which can very comfortably fit in the 16 MiB of

vector memory in a TPU core. The size of hin and hqkv are a tad above 2.9 MiB and 8.7 MiB, respectively. So the inputs and

outputs can also be comfortably buffered in the vector memory of one core. Since the problem was for TPUv3 we’ll use both cores.

For simplicity we’ll place the first 1485 columns of hin into one core, and the remaining columns in the other.

The papers are not clear on how one core uses two MXUs. It would be trivial if there are two separate simultaneously active

threads, one for each MXU, but such a core would be more like two cores if each thread could read and write every register. Assume

instead that sublane 0 is for one MXU and sublane 1 is for the other and that those 4-D DMA operations can shuffle the two input

streams into a contiguous batch for the vector loads to grab (remembering that a single vector load instruction is executed by the

128 × 8 lanes and sublanes).

First, lets also assume for simplicity that weights for one computation can be loaded while another is being computed. (This

capability was explicitly claimed for TPUv1, but not the others.) With all of these observations and assumptions we can compute the

time it takes to shift in 48 1
42970 partial columns of hin (which the TPU will see as partial rows of hTin). At a clock frequency of

940 MHz that will take

48
1

4
2970 = 35640 cyc = 35640 cyc × s

940 × 106 cyc
= 37.9µs

If each tile is loaded once and weights cannot be loaded during a computation, then the time for loading the tiles is 48
4 128 =

1536 cyc, which would only add a few percent to the execution time.

Problem 2: Yüzügüler et al describe an accelerator in which pods each containing a 32 × 32 systolic array
are interconnected by carefully chosen networks.

(a) The paper notes that the utilization of the systolic arrays depends on both the bisection bandwidth
and the latency of the network connecting the pods to storage for weights, activations, and partial sums.
Suppose that each SM in an Nvidia H100 had a pod with a 32 × 32 systolic array, along with the skewing
and de-skewing hardware. The systolic arrays would read and write data from the H100 L2 cache, and

2

perhaps make use of the L1. What would the utilization of the systolic arrays in this setup be based on the
H100 latency and throughputs shown below collected using the microbenchmarks described in a previous
homework. Be sure to state assumptions made in computing your answer.

A SoSA systolic array reads 32 bytes per cycle. To sustain operation of a systolic array would require also 32 bytes of weights

per cycle in (to load the next tile) and 32 × 2 bytes out, the 16-bit sums. The total amount of data, counting both directions, is

128 bytes per cycle. Based on the microbenchmarks an H100 can sustain about 48 bytes per cycle per SM from the L2 cache, which

would not be enough to sustain 100% utilization. (The benchmark shows 48.6 bytes per cycle but 48 may be the actual number.)

Relying only on L2 the utilization would be 48.6
128 = 37.5% based on throughput.

Since outputs are 16 bits, it would make sense to consider an output-stationary arrangement where partial sums are kept on

an SM, perhaps in shared memory. Then the throughput needed would be 64 bytes per cycle and utilization would be 48.6
64 = 75%

based on throughput.

GPU 0: NVIDIA H100 PCIe @ 1.75 GHz WITH 81089 MiB GLOBAL MEM

GPU 0: L2: 51200 kiB MEM<->L2: 2039.0 GB/s

GPU 0: CC: 9.0 SM: 114 SP-FP32/SM: 128 DP-FP64/SM: 64 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 233472 B/SM CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 25609 SP GFLOPS 12804 DP GFLOPS COMP/COMM: 50.2 SP 50.2 DP

--Insn-- ------L1 Per SM------- -L2 GB/s-- DRAM

Lv Blk V SPL s /add % SW TW BXW B/cyc GB/s /SM /GPU GB/s

ME 114 1 s0 280 2.9 5 4 1 0.0 10.9 17.8 17.8 2025 2023

L2 114 1 s0 503 2.8 18 4 1 0.0 48.6 66.9 66.9 7629 78

L1 114 2 s0 464 1.9 46 8 2 0.0 133.1 225.9 0.1 8 8

L1 114 1 s0 467 2.5 61 4 1 0.0 131.9 224.7 0.1 8 8

L2 114 1 s0 507 2.8 18 4 1 0.0 48.2 66.5 66.5 7581 77

L2 57 1 s0 369 2.8 13 4 1 0.0 54.5 91.3 91.3 5206 99

L2 2 1 s0 561 2.8 0 4 1 0.0 34.7 60.1 60.1 120 60

L2 1 1 s0 513 2.8 0 4 1 0.0 37.6 65.7 65.7 66 66

Kernel mb_g:

---Data Touched--- --------------------Latency---------------------

nbl iter Block Total ns cyc !<--------------500 ns-------------->!

512 20480 512 kiB 256 MiB 394 692 *****************************

512 10240 256 kiB 128 MiB 396 695 ******************************

256 10240 256 kiB 64 MiB 391 686 *****************************

128 10240 256 kiB 32 MiB 147 257 ***********

64 10240 256 kiB 16 MiB 139 244 **********

32 10240 256 kiB 8 MiB 139 244 **********

16 10240 256 kiB 4 MiB 144 252 **********

8 10240 256 kiB 2 MiB 144 252 **********

4 10240 256 kiB 1 MiB 143 251 **********

2 10240 256 kiB 512 kiB 150 263 ***********

1 10240 256 kiB 256 kiB 150 262 ***********

1 10000 128 kiB 128 kiB 37 65 **

1 10000 64 kiB 64 kiB 28 50 **

1 10000 32 kiB 32 kiB 24 42 *

1 10000 16 kiB 16 kiB 22 38 *

1 10000 8 kiB 8 kiB 21 36 *

References:

[1] Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G., Laudon, J., Li, S.,
Ma, P., Ma, X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z., and Patterson, D. Ten lessons

3

from three generations shaped googles TPUv4i : Industrial product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA) (2021), pp. 1–14. http://dx.doi.org/10.
1109/ISCA52012.2021.00010.

[2] Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C., and Patterson, D. A
domain-specific supercomputer for training deep neural networks. Commun. ACM 63, 7 (June 2020),
6778. https://doi.org/10.1145/3360307.

[3] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,
N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J.,
Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu,
J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch,
A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T.,
Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle,
E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (New York, NY, USA, 2017), ISCA ’17, ACM, pp. 1–12. http://doi.acm.org/10.1145/

3079856.3080246.

[4] Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S., Laudon, J., Young, C., Jouppi, N., and Patterson,
D. The design process for google’s training chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021), 56–63.
http://dx.doi.org/10.1109/MM.2021.3058217.

[5] Yüzügüler, A. C., Sönmez, C., Drumond, M., Oh, Y., Falsafi, B., and Frossard, P. Scale-out systolic
arrays. ACM Trans. Archit. Code Optim. 20, 2 (mar 2023). https://doi.org/10.1145/3572917.

4

http://dx.doi.org/10.1109/ISCA52012.2021.00010
http://dx.doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1145/3360307
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://dx.doi.org/10.1109/MM.2021.3058217
https://doi.org/10.1145/3572917

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 2
	Part char 97

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 2
	Part char 97

