
LSU EE 7722 Homework 2 Due: 26 April 2023

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2023/hw02.

If the class account has been set up properly, the code can be built from within Emacs by pressing
F9 when visiting any file in the .../2023/hw02 directory or when in an Emacs shell buffer (which can be

entered using Alt -x shell Enter). The code can be built from the command line using the command make

-j 4 (assuming .../2023/hw02 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw02, one with the suffix -debug, such as hw02-debug, and one with the suffix -cuda-debug,
such as hw02-cuda-debug. The versions with the -cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions
will run much more slowly than the regular versions. The executables with the suffix -debug are compiled
with host optimization turned off but CUDA debugging turned off. Use gdb or cuda-gdb to debug these.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw02. It should produce output
ending with a line something like this 32 4.6 15 100 3 0.0 1014 1.0 4739 0t 1978 +----.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
different system. The Makefile should automatically detect whether the GPU for which the executable was
built matches the GPU on the current system, and re-build if needed.

Background and Reference Material
For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).
For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.0)
or by name (e.g., Ampere). Both the CC 8.0 and CC 8.6 GPUs implement the Ampere architecture, 8.9
GPUs implement Ada Lovelace, and 9.0 implements Hopper. For this assignment only consider CC 8.x and
9.0 GPUs. The compute capability (CC) of the lab GPUs is shown on the system status page.

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. See Chapter 7 of the Programming Guide for the basics (but not
including the L1 cache), and also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
API to collect data. In class an MP (or SM) was described as having several–usually four–warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.

Using The Microbenchmarks
When tuning code it is important that one does not waste time trying to make the code go faster than what

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://en.cppreference.com/w/
https://www.ece.lsu.edu/koppel/gpup/sys-status.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

the hardware can provide. Microbenchmarks can provide data on capabilities that will help one estimate
hardware limits. In the course repo a set of microbenchmarks can be found in the cuda/microbenchmarks

directory. They are compiled in the same way as other code samples. (Say, enter the command gmake.) A
single executable, mb, is used for all of the microbenchmarks.

The mb program can run four microbenchmarks, atomic operations (a), MADD operation latency (o),
memory latency (m), and memory throughput (s). The letters in parentheses indicate the command-line
option to use to run the respective benchmark. For example, to run the memory latency benchmark invoke
mb using the shell command ./mb m. Here is some output:
[cyc2.ece.lsu.edu] % ./mb m

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24214 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 102400 B/SM CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

Using GPU 0

Global Load Latency Microbenchmark (Option ’m’)

CUDA Kernel Resource Usage:

For mb_g:

0 shared, 120 const, 0 loc, 26 regs; 1024 max threads per block.

For mb_ro:

0 shared, 120 const, 0 loc, 26 regs; 1024 max threads per block.

Array size: 67108864 elts. Block size 32 thds.

Kernel mb_g:

---Data Touched--- --------------------Latency---------------------

nbl iter Block Total ns cyc !<--------------500 ns-------------->!

1024 20480 512 kiB 512 MiB 301 758 **********************

1024 10240 256 kiB 256 MiB 303 763 ***********************

512 10240 256 kiB 128 MiB 252 635 *******************

256 10240 256 kiB 64 MiB 117 295 ********

128 10240 256 kiB 32 MiB 109 275 ********

64 10240 256 kiB 16 MiB 111 279 ********

32 10240 256 kiB 8 MiB 111 279 ********

16 10240 256 kiB 4 MiB 114 287 ********

8 10240 256 kiB 2 MiB 118 298 ********

4 10240 256 kiB 1 MiB 118 297 ********

2 10240 256 kiB 512 kiB 129 324 *********

1 10240 256 kiB 256 kiB 129 324 *********

1 10000 128 kiB 128 kiB 125 315 *********

1 10000 64 kiB 64 kiB 20 51 *

1 10000 32 kiB 32 kiB 17 44 *

1 10000 16 kiB 16 kiB 16 40 *

1 10000 8 kiB 8 kiB 15 38 *

1 10000 4 kiB 4 kiB 15 37 *

1 10000 2 kiB 2 kiB 15 37 *

1 10000 1 kiB 1 kiB 14 36 *

1 10000 512 B 512 B 14 36 *

In this case, an exact latency is not provided. Instead memory latency is shown when accessing different
amounts of memory. The values under the Block and Total columns indicate the amount of data accessed,
and the values under the ns and cyc columns indicate the respective latency. Based on this data one can
determine the sizes of the different cache levels, and their latencies. The L1 cache has a latency of about 38
cycles and appears to be between 64 and 128 kibibytes based on the microbenchmarks. (The API reports a

2

size of 102 kilobytes.) Similarly the L2 cache latency appears to be about 280 cycles and the size is between
64 and 128 mibibytes. Memory latency appears to be about 760 cycles.

The streaming microbenchmark shows the maximum throughput between various layers under different
circumstances. It is selected with the s option:
[cyc2.ece.lsu.edu] % ./mb s

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24214 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 102400 B/SM CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

Using GPU 0

Streaming Microbenchmark (Option ’s’)

me_n_iter 49 Per Block 6272 kiB, Per Kernel 802816 kiB

l2_n_iter 384 Per Block 49152 kiB, Per Kernel 55248 kiB

l1_n_iter 800 Per Block 32 kiB, Per Kernel 4096 kiB

--Insn-- ------L1 Per SM------- -L2 GB/s-- DRAM

Lv Blk V SPL s /add % SW TW BXW B/cyc GB/s /SM /GPU GB/s

ME 128 1 s0 851 2.5 2 4 1 0.0 3.4 7.5 7.5 966 963

L2 128 1 s0 1317 2.4 7 4 1 0.0 17.3 38.2 38.2 4892 45

L1 128 2 s0 321 1.7 41 8 2 0.0 138.1 326.8 0.1 13 15

L1 128 1 s0 639 2.2 33 4 1 0.0 67.7 164.2 0.1 7 9

L2 128 1 s0 1317 2.4 8 4 1 0.0 17.3 38.2 38.2 4892 43

L2 64 1 s0 677 2.4 8 4 1 0.0 31.9 74.3 74.3 4757 82

L2 2 1 s0 621 2.4 0 4 1 0.0 32.6 81.0 81.0 162 81

L2 1 1 s0 623 2.4 0 4 1 0.0 32.6 80.8 80.8 81 82

L2 1 1 p1 622 2.4 0 4 2 0.0 32.6 80.9 80.9 81 81

L2 1 1 p2 629 2.4 0 4 4 0.0 32.5 80.0 80.0 80 80

L2 1 1 p3 746 2.4 0 8 8 0.0 27.4 67.5 70.1 70 68

L2 128 1 s0 1317 2.4 8 4 1 0.0 17.6 38.2 38.2 4893 45

L1 128 4 s0 320 1.4 34 16 4 0.0 147.3 327.4 0.1 13 13

L1 128 2 s0 320 1.7 41 8 2 0.0 139.0 328.1 0.1 13 15

L1 128 1 s0 639 2.2 33 4 1 0.0 67.7 164.2 0.1 7 7

L1 128 1 p1 644 2.2 33 4 2 0.0 66.7 162.9 0.1 7 7

L1 128 1 p2 644 2.2 33 4 4 0.0 66.6 162.9 0.1 7 7

L1 128 1 p3 640 2.2 33 8 8 0.0 67.1 163.9 0.1 7 8

L1 128 1 s1 641 2.2 33 8 2 1.0 67.1 163.7 0.1 7 7

L1 128 1 s2 1271 2.2 17 16 4 3.0 34.7 82.5 0.0 3 3

L1 128 1 s3 2552 2.2 8 32 8 7.0 17.1 41.1 0.0 2 2

L1 128 1 s4 5136 2.2 4 32 16 15.0 8.4 20.4 0.0 1 3

L1 128 1 s5 10372 2.2 2 32 32 31.0 4.1 10.1 0.0 0 1

Key SPL: Stride or Permute Pattern Lg

s0, sequential pattern (stride 1) within warp.

si, stride 2^i within warp.

pi, Low five bits sequential, 2^i distinct values for others.

Here is a brief description of the column headings. Lv indicates the memory hierarchy level being
targeted: memory, L2 cache, or L1 cache.

Blk indicates how many blocks are participating. In most cases one would want one block per SM to
participate. But for cases where, say, only one block at a time would be busy the rows with Blk equal 1
might be useful.

V indicates the vector length of the item accessed. A 1 is just an ordinary float, 2 is a two-element
vector, and 4 is a four-element vector.

3

SPL describes the access pattern. A value of s0 is a simple sequential pattern where adjacent threads
access adjacent elements. A value of si indicates that thread number τ accesses element number τ2i. So, s0
is sequential, s1 is a stride of 2, etc. A stride of 2i for i > 0 will result in bank conflicts. A value starting
with p is for a permutation pattern. Permutation patterns do not have bank conflicts (assuming element
number x uses bank xmod 32), but within a warp there are 2i distinct values for bits 63:5 of the address for
pattern pi. These patterns show how many tag lookups can be performed per warp without slowing things
down. Based on the results above, up to four.

The /add column shows how many instructions were executed per arithmetic operation. The benchmark
computes a sum using the loaded value. An ideal value is 1 + 1/v where v is the vector length.

The % column shows the instruction issue rate reported by Nvidia’s CUPTI system. A value of 100%
indicates that at each cycle an instruction could be issued by a warp scheduler. Based on the numbers above
it looks like instructions requiring multiple cycles to dispatch, such as loads, make it impossible to reach
100%.

SW shows the number of sectors requested per warp for a memory instruction. Anything above 4 will
likely result in reduced performance. TW shows the number of tag lookups per warp. (Caches manage data
in units of lines. For each cached line a part of the data’s address, called the tag, is stored. When a cache
is checked for data the lookup address is compared to the tags of the cached data. A cache line in the
Nvidia devices of at least CC 7 to 9 is 128 bytes, divided into four 32-byte sectors.) The value under BXW

shows the number of bank conflicts per warp for a load instruction. Anything above 0 will result in reduced
performance.

The B/cyc column shows the data throughput in bytes per SM per cycle. In recent Nvidia devices an
SM has four warp schedulers with a warp size of 32, so that at best 128 threads per cycle can be issued. (In
most cases one instruction.) So, a value of 128 in the B/cyc column means that each thread is getting one
byte per cycle. In the microbenchmark threads are usually loading floats, which are 4 bytes. Also, in recent
devices a load instruction takes four cycles to dispatch. So a value of 128 would indicate that loads are
issuing without delay (beyond their four-cycle dispatch time). An H100, CC 9.0, actually attains about 128
bytes per cycle using scalar loads. This indicates that the scheduler can issue both a load instruction and
an FP32 instruction in the same cycle. (Or it indicates this conclusion is wrong.) For the consumer-grade
CC 8.9 device about half of this peak is attained for scalar loads. Note that for vector loads even a “cheap”
RTX 4090 can execute at about 128 bytes per warp per cycle. That is likely due to the vector load requiring
just four cycle to dispatch, but providing 2 or 4 floats. So, for a 2-element vector, dispatch time would be
4 + 1 = 5 cyc, while the time to read the data eight cycles based on 128 bytes per cycle. So for 2-element
vectors instruction issue stalls waiting for the data.

The GB/s columns show the data throughput. The column under L1 Per SM shows the data throughput
between the L1 cache and the SM registers. The values under the L2 columns show the throughput between
the L1 and L2 caches. Those throughputs are shown per SM and for the entire GPU. Finally, the value under
the DRAM column shows the throughput between the L2 cache and DRAM. In the row targeting memory,
Lv=ME, the throughputs under each GB/s column should all be the same (after accounting for whether they are
per SM or for the whole GPU). For the rows targeting the L2 cache, the throughput under the DRAM column
should be much less than the others (ideally zero). For the rows targeting the L1 cache, the throughput
under L2 should be much smaller than those under L1.

Using hw02
The code in hw02.cu contains several kernels that compute the output of part of a transformer neural network
layer. The hw02 program takes one command-line argument, indicating how many blocks to launch. If the
argument is zero or missing then the number of blocks will be set to the number of multiprocessors (which
is the default). If the argument is negative then the number of blocks will be −aP , where a is the argument
value and P is the number of MPs on the GPU.

Computation Overview
The code in the assignment package is based on the transformer network introduced by Vaswani et al [1]. The
discussion in this section uses some of the notation from that paper. The code in this assignment computes
the following matrix multiplication:

4

for (int i_ws = 0; i_ws < d_ws; i_ws++)

for (int i_qkv = 0; i_qkv<d_qkv; i_qkv++)

{

acc_t q = 0;

for (int i_model = 0; i_model < d_model; i_model++)

q += w_qkv[i_qkv * d_model + i_model]

* h_in[i_ws * d_model + i_model];

h_qkv_cpu[i_ws * d_qkv + i_qkv] = q;

}

The input matrices are wqkv ∈ Rdqkv×dmodel and hin ∈ Rdmodel×dws , and the output matrix is hqkv ∈
Rdqkv×dws , where dmodel, dqkv, and dws are positive integers. The homework package performs the calculation
at two different sizes, in the smaller one dmodel = 32, dqkv = 96, and dws = 29700. With those sizes matrix
wqkv has 108 rows and 36 columns. Matrix hin is much wider, 36× 29700.

The data type for the inputs and outputs is acc_t, and the data type for weights are wht_t. Both of
these are defined near the top of the file as float. In most DNN systems the weights would be defined as a
16-bit or sometimes even a smaller type.

The code above can be re-written:
for (int i_sample = 0; i_sample < n_samples; i_sample++)

for (int i_word = 0; i_word < n_words; i_word++)

for (int i_qkv = 0; i_qkv<d_qkv; i_qkv++)

{

acc_t q = 0;

for (int i_model = 0; i_model < d_model; i_model++)

q += w_qkv[i_qkv * d_model + i_model]

* h_in[(i_sample * n_words + i_word) * d_model + i_model];

h_qkv_cpu[(i_sample * n_words + i_word) * d_qkv + i_qkv] = q;

}

by splitting the dws dimension into two, nsamples and nwords. The two code fragments are equivalent,
the first is obviously simpler, the second reveals more detail about the hin matrix. The two code fragments
can read and write the same matrices. The solutions for this assignment can use either method of addressing
the arrays.

Program Output
Starting a run of hw02 . . .

[koppel@grace hw02]$./hw02

. . . produces the following output:

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA GeForce RTX 4090 @ 2.52 GHz WITH 24214 MiB GLOBAL MEM

GPU 0: L2: 73728 kiB MEM<->L2: 1008.1 GB/s

GPU 0: CC: 8.9 SM: 128 SP-FP32/SM: 128 DP-FP64/SM: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 102400 B/SM CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 41288 SP GFLOPS 645 DP GFLOPS COMP/COMM: 163.8 SP 5.1 DP

Using GPU 0

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates
that the device is of compute capability 8.9 (Ada). The MEM<->L2 field shows the off-chip bandwidth. SM

indicates the number of streaming multiprocessors. CC/SM indicates the number of CUDA cores (single-
precision functional units) per SM, DP/SM indicates the number of double-precision functional units per SM,
and TH/BL is the maximum number of threads per block.

5

The amount of shared memory available is shown per block (B/BL) and per SM, this does not indicate
whether any particular kernel is using that much shared memory or could use that much. The same line
shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s
one.) The COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. (The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.)

Next, the program provides information on the network layers to be tested:

Layer shape 0: smpls=300. wds=99. heads=4. d_q=d_k=d_v=8.

Layer shape 0: d_qkv=96. d_model=32. d_ws=29700

Layer shape 0: w_qkv: 12 kiB h_in: 3712 kiB

Layer shape 1: smpls=30. wds=99. heads=8. d_q=d_k=d_v=64.

Layer shape 1: d_qkv=1536. d_model=512. d_ws=2970

Layer shape 1: w_qkv: 3072 kiB h_in: 5940 kiB

The layers used are specified in the constant array ls near the top of hw02.cu.

When run without arguments or with a 0 as the first argument, such as ./hw02 0, the program launches
each kernel multiple times, starting with 4 warps per block, up to 32 warps per block. For this assignment
(hw 2) the number of warps per block will always be a power of 2. The number of blocks is set equal to the
number of MPs. Run time and other information will be shown for each launch. If the argument −n then
it will launch with n blocks per MP.

Performance Data
Each kernel is run multiple times, starting with one warp per MP, in successive runs increasing the number
of warps per MP. A line of performance data is printed for each run. The a portion of the output for
an RTX 4090, showing unmodified kernel qkv_base (and that kernel should not be modified) and kernel
qkv_base_w2 with the assignment correctly solved.

Kernel (qkv_base<ls_d_model(layer_specs[0]),1,1,1>), using 39 regs

---Insn---- --L1--- -- L1<->L2 ---

wp /itr % TAc SW BXW N-Rd N-Wr GB/s Imb t/s === Util: FP++ Insn-- ========

4 3.6 17 100 3 0.0 2 1.0 173 0t 108 +-----

8 3.6 30 100 3 0.0 2 1.0 302 0t 59 +----------

16 3.6 31 100 3 0.0 2 1.0 437 0t 40 ++--------------

32 3.7 31 100 3 0.0 1 1.0 460 0t 38 ++---------------

The output above shows the result one kernel, qkv_base each run using layer 0. (The name shown is
how the function was named, including the template parameter.) The number of registers used, 39, is also
shown.

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is
not set to the number of MPs then there would be a column headed ac, which would show the number of
resident warps per MP. (The number of resident warps per MP is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of MPs, and in such a case
the value in the ac column would match the wp column.)

The group of columns under the heading Insn show information about machine (SASS) instructions.
The /iter column shows the measured number of machine instructions divided by the number the expected
number of iterations of the d_model loop: nsamplenwordsdqkvdmodel. For the kernels in this assignment the
number should be greater than 3 (two loads and a multiply/add), the closer to 3 the better. A higher number
might indicate that the compiler is using more instructions than it needs to, perhaps because of the way the
kernel was written. This might slow execution.

The TAc column shows workload balance within a block. A value of 100 is ideal. Lower numbers, such
as 99p, are followed by a letter. The letter indicates the principal cause of the imbalance. A p indicates
predicate-off instructions, and an d indicates warp divergence.

6

The warp scheduler is responsible for choosing a warp with an instruction ready to execute. Sometimes
no such warp can be found. The two major reasons in this assignment are that each warp is waiting for an
operand to arrive and that the memory system is busy and so memory instructions must be stalled. The
number in the % column shows the percentage of time that a warp can be chosen. Let nbody denote the value
in the /iter column and let θ%I denote the value in column %. In terms of these execution time is roughly

proportional to 100nbody/θ
%
I .

For the kernels in this assignment the value of /itr is low enough. If in your solution /itr is much larger,
say 8.1, then you might try looking at your code. For the kernels initially provided with this assignment %

will be less than 10. An ideal value is 100, but the best in the sample solution is 31.

The columns in the L1 group show how efficiently load instructions are issued to the L1 cache. These
were discussed in a prior section. Briefly, SW shows the number of sectors requested per warp for a memory
instruction. Anything above 4 will likely result in reduced performance. The value under BXW shows the
number of bank conflicts per warp for a load instruction. Anything above 0 will result in reduced performance.

The columns in the L1<->L2 group show how much data is moving between the L1 and L2 caches. The
N-Rd column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
A value of 1 is ideal, and will be achieved if each element of the w_qkv and h_in arrays is read exactly once.
A value of 2 indicates that on average each element was read twice. For qkv_base the w_qkv array is read
by every block, and so it is read by every MP. Since for layer 0 w_qkv, at 12 kiB, is smaller than the cache
it is read just once per MP. Accounting only for w_qkv the value of N-Rd would be the number of MPs.
However, each element of h_in is read by one or two MPs (you should be able to work out the reason for
this on your own) and h_in is much larger than w_qkv in layer 0, so overall N-Rd is small, it would be just
1.367 with 128 MPs and assuming each element of h_in were read once. In layer 1 w_qkv is much larger,
3072 kiB, and could not fit in the L1 cache and so it must be re-read, inflating N-Rd.

The value under the N-Wr column (normalized amount of data written) shows how much data moved
from L1 to L2, normalized to the ideal amount. It is much easier to achieve the ideal here.

The value under Imb shows workload imbalance. A 0 is ideal. A value of 10t indicates that execution
is taking twice as long, 100% longer, based on time measurements. A value of 5i indicates that on block is
using 50% more instructions than the average block.

The value under the GB/s shows the measured rate of data moving between the L1 and L2 caches (in
either direction, but L2 to L1 dominates). The number includes all MPs. (A per MP number is a reasonable
alternative but I can’t keep changing my mind.) This will become a limiting factor for layer 1, but will not
be a problem for layer 0.

The t/µs column shows the measured execution time in microseconds. To the right of t/µs is a bar
graph showing how busy three resources are (based on certain assumptions). Three resources are tracked,
FMA (fused multiply/add) instructions, shown with a +, FMA along with load instructions, shown with a -,
and off-chip data transfer, shown with a *. The right-most position of a resource’s character indicates what
fraction of the time that resource is busy. A resource is being used 100% of the time if its character reaches
the rightmost position (the last = in the column heading over the bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing given the assumptions
made). Those last two lines are fictional. Consider the line for the 16 warp per MP run. The - is a bit more
than halfway to the end. That indicates that instruction throughput is more than half of the peak possible.

The FMA utilization is computed by assuming one multiply/add per loop iteration, or nsamplenwordsdqkvdmodel

FMAs. Then the amount of time it would take to issue that many FMAs is computed. That time is divided
by the measured execution time to get the utilization. The amount of time to issue the FMAs is based on
the GPU being used and should be accurate (up to CC 9.0).

The instruction utilization, -, includes the FMA plus two load instructions per FMA.

7

Problem 1: Modify qkv_hw2_a so that it improves instruction issue utilization by having one thread
compute mw × mh elements, mh rows and mw columns, of the output matrix, hqkv. Doing so requires
reading mwdmodel elements of hin (mw columns, each column having dmodel rows) and mhdmodel elements
of wqkv, and then performing mwmhdmodel multiply/add operations, thus reducing the dispatch time to
[4/mw + 4/mh + 1] cyc for recent NVidia devices counting only load and multiply/add instructions. (Dis-
patch time would be [4 + 4 + 1] cyc if each thread computed one element of hqkv per iteration.) Routine
qkv_base computes mw elements per iteration and has a dispatch time of [4/mw + 4 + 1] cyc cycles.

Template parameter m_wd is already used for the number of columns of hqkv to compute. Use template
parameter m_ht for the number of rows of matrix hqkv to compute. Template parameter m_dp will be used
in the next problem. Assume that these template parameters will only be set to powers of two.

There are two main challenges in solving this problem correctly: distributing work evenly and avoiding
bank conflicts. The impact of bank conflicts can be reduced in part by using vector load instructions (but
those are optional).

Problem 2: Modify qkv_hw2_a or qkv_hw2_b so that it improves workload balance by using md threads
to compute each element of hqkv, where md is the value of template parameter m_dp. The default is m_dp=1,
meaning that each element of hqkv is computed by one thread. In fact, each thread is computing m_ht *

m_wd elements, but that doesn’t change the fact that each element is computed by one thread. Modify one
(or both) of the routines so that each element is computed by md threads. To do so each thread executes
a portion of the i_model loop and then the resulting partial sum is added to the partial sum computed by
the other threads computing the same element of h_qkv.

There are several ways to add together partial sums. Choose a method that is fastest. The easiest is
to use an atomic add. Try using an atomic add initially, but then compare it to a technique using shared
memory or warp shuffles.

References:

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems
(2017), I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, Eds., vol. 30, Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

8

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Problem 1
	Problem 2
	Problem 1
	Problem 2

