
LSU EE 7722 Homework 1 Due: 21 March 2023

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2023/hw01.

If the class account has been set up properly, the code can be built from within Emacs by pressing
F9 when visiting any file in the .../2023/hw01 directory or when in an Emacs shell buffer (which can be

entered using Alt -x shell Enter ). The code can be built from the command line using the command make

-j 4 (assuming .../2023/hw01 is the current directory). Either method runs a makefile that builds all
examples in the directory. It builds three versions of each program, one taking the base name of the main
file, such as hw01, one with the suffix -debug, such as hw01-debug, and one with the suffix -cuda-debug,
such as hw01-cuda-debug. The versions with the -cuda-debug suffix are compiled with host optimization
turned off and CUDA debugging turned on, which facilitates debugging but slows down execution. To debug
CUDA or host (CPU) code use the Cuda version of gdb, cuda-gdb. Note that the -cuda-debug versions
will run much more slowly than the regular versions. The executables with the suffix -debug are compiled
with host optimization turned off but CUDA debugging turned off. Use gdb or cuda-gdb to debug these.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw01. It should produce output
ending with a line something like this 32 3.7 4 16 13.8 2977 1.0 777 35382 ---.

The makefile will compile code for a GPU on the system it was run. Re-run make when moving to a
different system. The Makefile should automatically detect whether the GPU for which the executable was
built matches the GPU on the current system, and re-build if needed.

Background and Reference Material
For this assignment one must be able to write, or at least modify, CUDA kernels. A good reference is the
CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
Focus on Chapter 5 up to and including 5.3 (Memory Hierarchy), but skip 5.2.1 (Thread Block Clusters).
For sample code a good place to start is 2021 Homework 1, and other past assignments given in this
course. The CUDA C used in this assignment is very close to C++20. A good reference for C and C++ is
https://en.cppreference.com/w/.

In the references below some information is provided for specific architectures, either by CC (e.g., 8.0)
or by name (e.g., Ampere). Both the CC 8.0 and CC 8.6 GPUs implement the Ampere architecture, 8.9
GPUs implement Ada Lovelace, and 9.0 implements Hopper. For this assignment only consider CC 8.x and
9.0 GPUs. The compute capability (CC) of the lab GPUs is shown on the system status page.

A solution to these problems requires some understanding of the hardware structure, in particular how
requests are issued to the L1 cache. See Chapter 7 of the Programming Guide for the basics (but not
including the L1 cache), and also Chapter 19 (Compute Capabilities) for some more details.

The hardware is covered in greater depth in the Kernel Profiling Guide,
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html. Focus on Section 3.1 (Metrics
Guide, Hardware Model) and Chapter 9 (Memory Chart). There is no need to read the material on how
metrics are collected and there is no need to run the profiler yourself. The assignment code uses the CUPTI
API to collect data. In class an MP (or SM) was described as having several–usually four–warp schedulers.
The Profiling Guide refers to warp schedulers as sub partitions. For this assignment requests to the L1 cache
are all global requests. Later in the semester we will make shared and maybe local requests, but probably
not texture or surface requests.

Using hw01
The code in hw01.cu contains several kernels that compute the output of part of a transformer neural
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network layer. The hw01 program takes one command-line argument, indicating how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which is the
default). If the argument is negative then the number of blocks will be −aP , where a is the argument value
and P is the number of MPs on the GPU.

Computation Overview
The code in the assignment package is based on the transformer network introduced by Vaswani et al [1]. The
discussion in this section uses some of the notation from that paper. The code in this assignment computes
the following matrix multiplication:

for ( int i_ws = 0; i_ws < d_ws; i_ws++ )

for ( int i_qkv = 0; i_qkv<d_qkv; i_qkv++ )

{

acc_t q = 0;

for ( int i_model = 0; i_model < d_model; i_model++ )

q += w_qkv[ i_qkv * d_model + i_model ]

* h_in[ i_ws * d_model + i_model ];

h_qkv_cpu[ i_ws * d_qkv + i_qkv ] = q;

}

The input matrices are wqkv ∈ Rdqkv×dmodel and hin ∈ Rdmodel×dws , and the output matrix is hqkv ∈
Rdqkv×dws , where dmodel, dqkv, and dws are positive integers. The homework package performs the calculation
at two different sizes, in the smaller one dmodel = 32, dqkv = 96, and dws = 29700. With those sizes matrix
wqkv has 108 rows and 36 columns. Matrix hin is much wider, 36× 29700.

The data type for the inputs and outputs is acc_t, and the data type for weights are wht_t. Both of
these are defined near the top of the file as float. In most DNN systems the weights would be defined as a
16-bit or sometimes even a smaller type.

The code above can be re-written:
for ( int i_sample = 0; i_sample < n_samples; i_sample++ )

for ( int i_word = 0; i_word < n_words; i_word++ )

for ( int i_qkv = 0; i_qkv<d_qkv; i_qkv++ )

{

acc_t q = 0;

for ( int i_model = 0; i_model < d_model; i_model++ )

q += w_qkv[ i_qkv * d_model + i_model ]

* h_in[ ( i_sample * n_words + i_word ) * d_model + i_model ];

h_qkv_cpu[ ( i_sample * n_words + i_word ) * d_qkv + i_qkv ] = q;

}

by splitting the dws dimension into two, nsamples and nwords. The two code fragments are equivalent,
the first is obviously simpler, the second reveals more detail about the hin matrix. The two code fragments
can read and write the same matrices. The solutions for this assignment can use either method of addressing
the arrays.

Kernels and Performance Issues
Kernel qkv_base in the assignment package computes hqkv by dividing its elements evenly between threads.
It can be run with any block and grid size. This kernel performs inefficiently for about two reasons: the
load instructions overwhelm the level-1 (L1) cache ports, and because it is bandwidth limited for the larger
input size.

Consider the inner two loops from qkv_base:
for ( int i = tid; i < n_wq; i += num_threads ) {

const int i_qkv = i % d_qkv;

const int i_word = i / d_qkv;

acc_t q = 0;

for ( int i_model = 0; i_model < d_model; i_model++ )

q += ld.w_qkv_dev[ i_qkv * d_model + i_model ]

2



* ld.h_in_dev[ i_word * d_model + i_model ];

ld.h_qkv_dev[ i_word * d_qkv + i_qkv ] = q;

}

In the innermost loop there are two loads, one for ld.w_qkv_dev and one for ld.h_in_dev. Each load
is executed by all of the threads in a warp, and based on that a request is made to the cache. In the code
above one of the two loads will be to the same address for every thread in a warp when dqkv ≥ 32. (You
should be able to easily work out which load.) For the other load each thread in a warp will be accessing a
different value of the array, and that causes performance problems.

First, there is a limit to the number of different sectors that can be handled without delay for a warp.
A sector is a portion of a cache line, what’s important here is that the size of a sector in NVIDIA devices
is 32 bytes. Recent devices appear to be able to provide four sectors per warp, which is enough data for 32
4-byte elements.

The average number of sectors requested per warp per load instruction is shown in the program output
under the SW column. (This is discussed further in the Program Output section.) For qkv_base that number
is 16. The 16 is an average for the two loads, one requesting just 1 sector, the other requesting 32.

There is a second factor which slows down L1 cache access further. Caches are often split into banks.
Each bank can only handle a specific set of memory addresses, so a request to load from (or write to) an
address must be sent to the bank that can handle that address. The bank to which an address is mapped is
usually specified by a range of bits, say bits at positions 2 through 6, of the address’ binary representation.
If there are four banks then one can look at two bits. For the NVIDIA devices it is possible that bits 6 and
5 determine the bank (because a sector is 32 bytes), where bit 0 is the least-significant bit. For example,
consider addresses A1 = 0110 11002 and A2 = 1000 11002. Because the value of bits 6:5 of A1 are 112 = 310,
it would be mapped to bank 3, and A2 would be mapped bank 0.

Suppose a warp requests data that can be found in four sectors. That’s only good if each sector is
mapped to a different bank. If each sector is mapped to the same bank, say all to bank 0, then it would take
four cycles to issue the requests. That’s in contrast to one cycle when each request is assigned to a different
bank. A bank conflict occurs when two or more requests for a sector made in a cycle are mapped to the same
bank. The number of bank conflicts per warp is shown under the BXW column. Any value greater than zero
will affect performance. For the code above the susceptibility to bank conflicts is determined by the value
of d_model. Values that are a power of 2 are the worst. Kernel qkv_base suffers badly from bank conflicts.

At the top of this section qkv_base was accused of overwhelming level-1 cache ports. That is due to the
number of sectors per warp being greater than four and the number of bank conflicts being much greater
than 0.

A second problem, affecting only the larger input, is the bandwidth limit between the L2 and L1 caches.
Each MP has its own L1 cache, typically about 64 kiB. All MPs share a single L2 cache, 73728 kiB on an
RTX 4090. A crossbar connects the SMs to the L2 cache. For the larger input the crossbar cannot provide
data fast enough and so performance suffers. This is discussed further in the Program Output section.

Program Output
Starting a run of hw01 . . .

[koppel@grace hw01]$ ./hw01

. . . produces the following output:

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: NVIDIA H100 PCIe @ 1.75 GHz WITH 81089 MiB GLOBAL MEM

GPU 0: L2: 51200 kiB MEM<->L2: 2039.0 GB/s

GPU 0: CC: 9.0 MP: 114 CC/MP: 128 DP/MP: 64 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 233472 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 25609 SP GFLOPS 12804 DP GFLOPS COMP/COMM: 50.2 SP 50.2 DP

GPU 1: NVIDIA H100 PCIe @ 1.75 GHz WITH 81089 MiB GLOBAL MEM

GPU 1: L2: 51200 kiB MEM<->L2: 2039.0 GB/s

3



GPU 1: CC: 9.0 MP: 114 CC/MP: 128 DP/MP: 64 TH/BL: 1024

GPU 1: SHARED: 49152 B/BL 233472 B/MP CONST: 65536 B # REGS: 65536

GPU 1: PEAK: 25609 SP GFLOPS 12804 DP GFLOPS COMP/COMM: 50.2 SP 50.2 DP

Using GPU 0

This assignment will only work on GPUs of CC 8 or greater.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that the
device is of compute capability 9.0 (Hopper). The MEM<->L2 field shows the off-chip bandwidth. MP indicates
the number of multiprocessors, also called streaming multiprocessors (SM’s). CC/MP indicates the number
of CUDA cores (single-precision functional units) per MP, DP/MP indicates the number of double-precision
functional units per MP, and TH/BL is the maximum number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not indicate
whether any particular kernel is using that much shared memory or could use that much. The same line
shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s
one.) The COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. (The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.)

Next, the program provides information on the network layers to be tested:

Layer shape 0: smpls=300. wds=99. heads=4. d_q=d_k=d_v=8.

Layer shape 0: d_qkv=96. d_model=32. d_ws=29700

Layer shape 0: w_qkv: 12 kiB h_in: 3712 kiB

Layer shape 1: smpls=30. wds=99. heads=8. d_q=d_k=d_v=64.

Layer shape 1: d_qkv=1536. d_model=512. d_ws=2970

Layer shape 1: w_qkv: 3072 kiB h_in: 5940 kiB

The layers used are specified in the constant array ls near the top of hw01.cu.

The first argument is used to specify the number of blocks. When there are zero arguments, .hw01, or
when the first argument is zero, ./hw01 0, the number of blocks is set equal to the number of MPs. When
the first argument is a positive integer, such as ./hw01 5, the kernels will be launched with that many
blocks, five blocks in the example. When the first argument is a negative integer, such as ./hw01 -5, then
each kernel will be launched with that many blocks per MP. For a GPU with 40 MPs and running with
./hw01 -5, a total of 5× 40 = 200 blocks will be launched per kernel. Note that there is no guarantee that
five blocks will simultaneously run (be resident on) any MP, for example, if the kernels use lots of shared
memory or registers fewer than five will run (and the others will have to wait).

The second argument specifies the number of warps per block. A positive value indicates the exact
number of warps, for example, ./hw01 -3 4, will run each kernel with a block size of 4 warps (4× 32 = 128
threads), and also launch 3 blocks per MP.

In many cases one wants to quickly compare the performance with different block sizes. For that omit
the second argument or set it to zero, for example, ./hw01. The program will launch each kernel multiple
times, starting with 4 warps per block, up to 32 warps per block. Also, because the first argument was also
omitted, the number of blocks is set equal to the number of MPs. Run time and other information will be
shown for each launch.
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Performance Data
Each kernel is run multiple times, starting with one warp per MP, in successive runs increasing the number
of warps per MP. A line of performance data is printed for each run. Appearing below is a portion of the
output for an RTX 4090, showing unmodified kernel qkv_base (and that kernel should not be modified) and
kernel qkv_base_w2 with the assignment correctly solved.

Kernel (qkv_base<ls_d_model(layer_specs[0])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 2 16 15.2 3 1.0 50 487 *-

2 3.5 3 16 15.3 2 1.0 63 329 **

3 3.5 4 16 15.3 1 1.0 66 256 **-

4 3.5 4 16 15.3 2 1.0 76 245 **-

8 3.5 4 16 15.3 2 1.0 75 236 **-

16 3.5 4 16 15.3 2 1.0 73 237 **-

32 3.5 4 16 15.3 1 1.0 72 237 **-

Kernel (qkv_base_w2<ls_d_model(layer_specs[0])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 5 3 0.0 3 1.0 134 182 ***-

2 3.5 10 3 0.0 2 1.0 225 92 +*****--

3 3.5 14 3 0.0 1 1.0 251 67 +********--

4 3.5 18 3 0.0 2 1.0 347 54 ++*********---

8 3.5 30 3 0.0 2 1.0 561 32 +++***************------

16 3.5 31 3 0.0 2 1.0 558 31 +++****************------

32 3.5 31 3 0.0 1 1.0 557 31 +++****************------

The lines below are fictional and are there to explain the bar graph.

32 3.5 31 3 0.0 1 1.0 557 31 +++***********************************

32 3.5 31 3 0.0 1 1.0 557 31 ++++++++++++++++++++++++++++++++++++++

The output above shows the result for two kernels, qkv_base and qkv_base_w2 each run using layer 0.
(The name shown is how the function was named, including the template parameter.)

Column wp shows the number of warps per block in the run. If the number of blocks in a launch is
not set to the number of MPs then there would be a column headed ac, which would show the number of
resident warps per MP. (The number of resident warps per MP is a multiple of the number of warps per
block. By default the number of blocks in a launch is set equal to the number of MPs, and in such a case
the value in the ac column would match the wp column.)

The group of columns under the heading Insn show information about machine (SASS) instructions.
The /itr column shows the measured number of machine instructions divided by the number the expected
number of iterations of the d_model loop: nsamplenwordsdqkvdmodel. For the kernels in this assignment the
number should be greater than 3 (two loads and a multiply/add), the closer to 3 the better. A higher number
might indicate that the compiler is using more instructions than it needs to, perhaps because of the way the
kernel was written. This might slow execution.

The warp scheduler is responsible for choosing a warp with an instruction ready to execute. Sometimes
no such warp can be found. The two major reasons in this assignment are that each warp is waiting for an
operand to arrive and that the memory system is busy and so memory instructions must be stalled. The
number in the % column shows the percentage of time that a warp can be chosen. Let nbody denote the value
in the /itr column and let θ%I denote the value in column %. In terms of these execution time is roughly

proportional to 100nbody/θ
%
I .

For the kernels in this assignment the value of /itr is low enough. If in your solution /itr is much larger,
say 8.1, then you might try looking at your code. For the kernels initially provided with this assignment %

will be less than 10. An ideal value is 100, but the best in the sample solution is 31.
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The columns in the L1 group show how efficiently load instructions are issued to the L1 cache. These
were discussed in a prior section. Briefly, SW shows the number of sectors requested per warp for a memory
instruction. Anything above 4 will likely result in reduced performance. The value under BXW shows the
number of bank conflicts per warp for a load instruction. Anything above 0 will result in reduced performance.

The columns in the L1<->L2 group show how much data is moving between the L1 and L2 caches. The
N-Rd column (normalized amount of data read) shows how much data is read, scaled to the ideal amount.
A value of 1 is ideal, and will be achieved if each element of the w_qkv and h_in arrays is read exactly once.
A value of 2 indicates that on average each element was read twice. For qkv_base the w_qkv array is read
by every block, and so it is read by every MP. Since for layer 0 w_qkv, at 12 kiB, is smaller than the cache
it is read just once per MP. Accounting only for w_qkv the value of N-Rd would be the number of MPs.
However, each element of h_in is read by one or two MPs (you should be able to work out the reason for
this on your own) and h_in is much larger than w_qkv in layer 0, so overall N-Rd is small, it would be just
1.367 with 128 MPs and assuming each element of h_in were read once. In layer 1 w_qkv is much larger,
3072 kiB, and could not fit in the L1 cache and so it must be re-read, inflating N-Rd.

The value under the N-Wr column (normalized amount of data written) shows how much data moved
from L1 to L2, normalized to the ideal amount. It is much easier to achieve the ideal here.

The value under the GB/s shows the measured rate of data moving between the L1 and L2 caches (in
either direction, but L2 to L1 dominates). The number includes all MPs. (A per MP number is a reasonable
alternative but I can’t keep changing my mind.) This will become a limiting factor for layer 1, but will not
be a problem for layer 0.

The t/µs column shows the measured execution time in microseconds. To the right of t/µs is a bar
graph showing how busy three resources are (based on certain assumptions). Three resources are tracked,
FMA (fused multiply/add) instructions, shown with a +, FMA along with load instructions, shown with a -,
and off-chip data transfer, shown with a *. The right-most position of a resource’s character indicates what
fraction of the time that resource is busy. A resource is being used 100% of the time if its character reaches
the rightmost position (the last = in the column heading over the bar graph).

That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing given the assumptions
made). Those last two lines are fictional. Consider the line for the 16 warp per MP run. The - is a bit more
than halfway to the end. That indicates that instruction throughput is more than half of the peak possible.

The FMA utilization is computed by assuming one multiply/add per loop iteration, or nsamplenwordsdqkvdmodel

FMAs. Then the amount of time it would take to issue that many FMAs is computed. That time is divided
by the measured execution time to get the utilization. The amount of time to issue the FMAs is based on
the GPU being used and should be accurate (up to CC 9.0).

The instruction utilization, -, includes the FMA plus two load instructions per FMA.
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Problem 1: Initially kernels qkv_base and qkv_base_w2 are identical. Their execution suffers because they
are attempting to load on average 16 sectors per warp. One way of fixing this is by rearranging the weight
array. Call the rearranged weight array w2, its address is ld.w_qkv2_dev. In the unmodified assignment
kernel qkv_w_rearrange writes w2 with an exact copy of the weight array. Modify qkv_w_rarrange so that
it writes w2 with the weight array rearranged so that the loads in qkv_base_w2 use fewer than 16 warps per
load. Modify qkv_base_w2 to correctly use this w2. Note: 2021 Homework 1 was similar.

Make sure that errors are not shown for your code.

Here is sample output when this problem is correctly solved and run on an RTX 4090:
Kernel (qkv_base<ls_d_model(layer_specs[0])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 2 16 15.2 3 1.0 50 487 *-

2 3.5 3 16 15.3 2 1.0 63 329 **

3 3.5 4 16 15.3 1 1.0 66 256 **-

4 3.5 4 16 15.3 2 1.0 76 245 **-

8 3.5 4 16 15.3 2 1.0 75 236 **-

16 3.5 4 16 15.3 2 1.0 73 237 **-

32 3.5 4 16 15.3 1 1.0 72 237 **-

Kernel (qkv_base_w2<ls_d_model(layer_specs[0])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 5 3 0.0 3 1.0 134 182 ***-

2 3.5 10 3 0.0 2 1.0 225 92 +*****--

3 3.5 14 3 0.0 1 1.0 251 67 +********--

4 3.5 18 3 0.0 2 1.0 347 54 ++*********---

8 3.5 30 3 0.0 2 1.0 561 32 +++***************------

16 3.5 31 3 0.0 2 1.0 558 31 +++****************------

32 3.5 31 3 0.0 1 1.0 557 31 +++****************------

Kernel (qkv_base<ls_d_model(layer_specs[1])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.7 2 16 13.3 1044 1.0 741 13035 -

2 3.7 3 16 13.3 1028 1.0 1263 7528 ---

3 3.7 4 16 13.3 1023 1.0 1540 6140 ---

4 3.7 4 16 13.3 1020 1.0 1564 6032 ---

8 3.7 4 16 14.3 1016 1.0 1558 6032 ---

16 3.7 4 16 14.8 1223 1.0 1812 6238 ---

32 3.7 2 16 11.4 3491 1.0 3032 10634 --

Kernel (qkv_base_w2<ls_d_model(layer_specs[1])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 4.6 1 3 0.0 1044 1.0 561 17206 -

2 4.6 3 3 0.0 1028 1.0 1098 8657 --

3 4.6 4 3 0.0 1023 1.0 1431 6611 ---

4 4.6 5 3 0.0 1020 1.0 1939 4865 ----

8 4.6 10 3 0.0 1016 1.0 3799 2473 +-------

16 4.6 15 3 0.0 1014 1.0 5846 1604 *-----------

32 4.6 15 3 0.0 1014 1.0 6016 1558 *-----------
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Problem 2: Even with the previous problem correctly solved, execution will be inefficient for the larger
layer. In the sample output for the previous problem notice that instruction throughput (the % column) is
only 15%. Also notice that N-Rd is 1014 and the L1/L2 traffic reaches a ceiling of about 6000 GB/s. The
problem is that each MP must read the same data about 1000 (one thousand!) times. The problem can be
fixed by changing the assignment of threads to output elements (elements of h_qkv_dev). The idea is that
each time an element of w_qkv is read by an MP, it should be used by multiple threads, not just one. Ideally,
by multiple threads in a warp.

Modify kernels qkv_strip and qkv_strip_w2 so that they achieve this. When this is solved correctly
the value under N-Rd for the larger layer will be lower, as will the number under GB/s. Here is the output
of a correct solution:
Kernel (qkv_strip<ls_d_model(layer_specs[1])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 2 6 4.5 254 1.0 246 9604 --

2 3.5 4 6 4.5 254 1.0 446 5298 ----

3 3.5 7 6 4.5 256 1.0 672 3543 +----

4 3.5 8 6 4.5 260 1.0 788 3063 +-----

8 3.5 9 6 4.7 269 1.0 992 2515 +-------

16 3.5 11 6 4.9 260 1.0 1084 2228 +--------

32 3.5 10 6 4.9 261 1.0 1044 2322 +-------

Kernel (qkv_strip_w2<ls_d_model(layer_specs[1])>):

--Insn-- --L1--- -- L1<->L2 ---

wp /itr % SW BXW N-Rd N-Wr GB/s t/µs === Util: FP++ Insn-- Data** =======

1 3.5 2 3 1.4 265 1.0 248 9933 --

2 3.5 5 3 1.2 267 1.0 479 5178 ----

3 3.5 7 3 1.1 271 1.0 725 3478 +-----

4 3.5 9 3 1.3 262 1.0 914 2669 +------

8 3.5 15 3 1.3 265 1.0 1573 1567 *-----------

16 3.5 22 3 1.5 261 1.0 2224 1092 *+----------------

32 3.5 24 3 1.5 257 1.0 2415 991 *+------------------
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