
LSU EE 7722 Homework 2 Due: 19 April 2021

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2021/hw02.

If the class account has been set up properly, the code can be built from within Emacs by pressing
F9 when visiting any file in the .../2021/hw02 directory or when in an Emacs shell buffer (which can

be entered using Alt -x shell Enter). The code can be built from the command line using the command

make -j 4 (assuming .../2021/hw02 is the current directory). Either method runs a makefile that builds
all examples in the directory. It builds two versions of each program, one taking the base name of the main
file, such as hw02, and one with the suffix -cuda-debug, such as hw02-cuda-debug. The versions with the
-cuda-debug suffix are compiled with host optimization turned off and CUDA debugging turned on, which
facilitates debugging but slows down execution. To debug CUDA or host (CPU) code use cuda-gdb. Note
that the -cuda-debug versions will run much more slowly than the regular versions.

Running make on a clean directory will produce a large amount of output. The make program and the
file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that they only create a
file if it is not present or if its prerequisites have changed. Therefore a second run of make will take much
less time.

Quickly check whether the build is successful with the command ./hw02. It should produce output
ending with a line something like 800 52 48 32 3.6 15.0 401.8 12534 398 +++------------------

----.

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s not
connected to a display. Re-run make when moving to a different system. The Makefile should automatically
detect whether the GPU for which the executable was built matches the GPU on the current system, and
re-build if needed.

Using hw02
The code in hw02.cu contains several kernels that compute the output of a fully-connected neural net layer.
See the problems for a description of the kernels.

The hw02 program takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which is the
default). If the argument is negative then the number of blocks will be −aP , where a is the argument value
and P is the number of MPs on the GPU.

The second argument is the number of threads per block to try to use to launch each kernel. If the
argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual number of
threads used in a launch is the minimum of this argument and the kernel’s maximum. (For example, when
the second argument is 512, but kernel foo has a limit of 256 threads, foo will be launched with 256 threads.)
When the second argument is 0 (zero) then each kernel will be launched multiple times starting with 4 warps,
incrementing by 4 warps until the kernel maximum is reached.

Here are some examples: Run with 256 threads per block: ./hw02 0 256. Run with 512 threads per
block and twice as many blocks as MPs: ./hw02 -2 512. Run with 256 threads per block and 10 blocks:
./hw02 10 256.

DNN Computation
The code in hw02.cu computes the output of a fully connected neural network layer consisting of ni input
neurons per channel, nc input channels, no output neurons per output channel, nm output channels, and nn
batches. The simplified loop nest below performs this computation:
for (int in = 0; in < nn; in++)

for (int im = 0; im < nm; im++)

for (int io = 0; io < no; io++)

for (int ic = 0; ic < nc; ic++)

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html

for (int ii = 0; ii < ni; ii++)

ao[io][im][in] += ai[ii][ic][in] * w[ic][im][ii][io];

In the homework file the code above is near the end of routine layer_init. The output neurons are in
ao, the input neurons are in ai, and weights are in array w. Notice that the loops can be done in any order.
The code in the file shows the re-ordering of the loop used in the solution to Homework 1.

The code sample above assumes that the arrays are multi-dimensional. The arrays used in hw02.cu are
one-dimensional, so the multiple indices shown above must be converted to a single index. This is how the
code is actually written:
pragma omp parallel for

for (int in = 0; in < nn; in++)

for (int im = 0; im < nm; im++)

for (int io = 0; io < no; io++)

{

acc_t ac = 0;

for (int ic = 0; ic < nc; ic++)

for (int ii = 0; ii < ni; ii++)

{

size_t idx_ai = ii + ni * (ic + nc * in);

size_t idx_w = ic + nc * (im + nm * (ii + ni * io));

ac += ai[idx_ai] * w[idx_w];

}

ao[io + no * (im + nm * in)] = ac;

}

In addition to computing indices, the code above uses a local variable, ac, to hold intermediate values
of an ao value being computed. This avoids unnecessary loads and stores.

The data type for the inputs and outputs are acc_t, and the data type for weights are wht_t. Both of
these are defined near the top of the file as float. In most DNN systems the weights would be defined as a
16-bit or smaller type. There is commented out code to use one of two 16-bit types for weights. As the code
is written these will reduce data traffic, but will result in additional instructions since the 16-bit types will
be converted to 32-bit types before use, which is not ideal.

Program Output
Starting a run of hw02 . . .

[koppel@dmk-laptop hw02]$./hw02

. . . produces the following output:

The first thing printed is information about each GPU connected to the system, followed by a line
showing the chosen GPU:

GPU 0: GeForce RTX 2080 SUPER @ 1.81 GHz WITH 7982 MiB GLOBAL MEM

GPU 0: L2: 4096 kiB MEM<->L2: 496.1 GB/s

GPU 0: CC: 7.5 MP: 48 CC/MP: 64 DP/MP: 2 TH/BL: 1024

GPU 0: SHARED: 49152 B/BL 65536 B/MP CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 5576 SP GFLOPS 174 DP GFLOPS COMP/COMM: 45.0 SP 2.8 DP

Using GPU 0

Most lab computers have two GPUs, please pay attention to the GPU that is actually being used, GPU
0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC indicates that the
device is of compute capability 7.5 (Turing). The MEM<->L2 field shows the off-chip bandwidth. MP indicates
the number of multiprocessors, also called streaming multiprocessors (SM’s). CC/MP indicates the number
of CUDA cores (single-precision functional units) per MP, DP/MP indicates the number of double-precision
functional units per MP, and TH/BL is the maximum number of threads per block.

2

The amount of shared memory available is shown per block (B/BL) and per MP, this does not indicate
whether any particular kernel is using that much shared memory or could use that much. The same line
shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted as one
operation. (Most of the rest of the world counts a multiply-add as two operations, but in this class it’s
one.) The COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. (The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.)

Next, the program provides information on the network layers to be tested:

Layer shape 0: ni=no=28. nc=nm=20. nn=800.

Number elts: activations 896000, weights 313600

Weights size: 1225 kiB L2 cache units: 0.299

Act size one batch : 4480 B L2 cache units: 0.001

Act size all batches: 3584000 B L2 cache units: 0.854

Layer shape 1: ni=no=44. nc=nm=52. nn=800.

Number elts: activations 3660800, weights 5234944

Weights size: 20449 kiB L2 cache units: 4.992

Act size one batch : 18304 B L2 cache units: 0.004

Act size all batches: 14643200 B L2 cache units: 3.491

The layers used are specified in the constant array ls near the top of hw02.cu.

The program can either launch each kernel once, with a particular configuration (number of blocks and
number of threads per block), or it can launch each kernel multiple times, each with a different block size.

When run without arguments or with a 0 as the second argument, such as ./hw02 0 0, the program,
launches each kernel multiple times, starting with 4 warps per block, up to 32 warps per block. Run time
and other information will be shown for each launch.

Performance Data
By default each kernel is multiple times, starting with one warp per MP, and in successive runs increasing
the number of warps per MP. A line of performance data is printed for each run. The output for an RTX
2080 Super appears below. The last two lines of the output were added as an illustration, they are not true
output.

Kernel (dnn_base<ls[0].nn,ls[0].nc,ls[0].ni>):

nn nc ni wp I/op DUse 2Use t/us FP θ === Util: FP++ Insn-- Data** ========

800 20 32 1 3.3 2.8 74.9 2664 123 +-------

800 20 32 2 3.3 2.8 63.2 1550 211 +------------

800 20 32 3 3.3 2.6 55.9 1261 260 ++--------------

800 20 32 4 3.3 2.7 47.8 1089 301 ++-----------------

800 20 32 8 3.3 2.5 32.1 903 363 +++--------------------

800 20 32 12 3.3 2.8 30.0 878 373 *++---------------------

800 20 32 12 3.3 2.8 30.0 878 373 ++---**********************************

800 20 32 12 3.3 2.8 30.0 878 373 ***++++++++++++++++++++++++++++++++++++

The nn, nc, and ni columns show the shape of the network. The values of no and nm aren’t shown, but
no is set to the same value as ni and nm is set to the same value as nc. Column wp shows the number of
warps per block in the run. If the number of blocks in a launch is not set to the number of MPs then there
would be a column headed ac, which would show the number of resident warps per MP. (The number of
resident warps per MP is a multiple of the number of warps per block. By default the number of blocks in
a launch is set equal to the number of MPs, and in such a case the value in the ac column would match the
wp column.)

The t/µs column shows the measured execution time in microseconds. The FP θ column shows off-chip
data throughput based on measured execution time and an assumed amount of data. The assumed amount
of data is actually an absolute minimum: the total size of the input, output, and weight arrays. The value

3

in the FP θ column is correct only if each weight and input, and output crosses the chip boundary exactly
once. (See the description of DUse below.)

To the right of FP θ is a bar graph showing how busy three resources are (based on certain assumptions).
Three resources are tracked, FMA (fused multiply/add) instructions, shown with a +, FMA along with load
instructions, shown with a -, and off-chip data transfer, shown with a *. The right-most position of a
resource’s character indicates what fraction of the time that resource is busy. A resource is being used 100%
of the time if its character reaches the rightmost position (the last = in the column heading over the bar
graph). That is true in the last line for the FMA resource, and in the penultimate line for the off-chip data
transfer. In the last line we would say that the FP capability is being saturated (a good thing) and in the
penultimate line we would say that data transfer is being saturated (also a good thing given the assumptions
made). Those last two lines are fictional. Consider the line for the 8 warp per MP run. The - is about
halfway to the end. That indicates that instruction throughput is about half of the peak possible.

The FMA utilization is computed by assuming one multiply/add per loop iteration, or nnnonmninc
FMAs. Then the amount of time it would take to issue that many FMAs is computed. That time is divided
by the measured execution time to get the utilization. The amount of time to issue the FMAs is based on the
GPU being used and should be accurate (up to CC 7.5). For the code in this assignment FMA utilization
should be brought closer to 100%.

The instruction utilization, -, includes the FMA plus two load instructions per FMA. Including two load
instructions per FMA is correct for the dnn_base kernel, but is something that can be reduced. Instruction
utilization is much higher than FMA utilization. That’s because on recent NVIDIA devices there are four
FP32 units for each LS unit, so it takes four time as long to dispatch the threads in a warp for a load or store
instruction, than it does for a 32-bit FMA. As a result the time that instruction issue is busy considering
loads is (1 + 4 + 4)/1 = 9 times as long as the time considering must the FMA.

The I/op, DUse, and 2Use columns show measured characteristics of the executing code—if your com-
puter allows it. Otherwise, either the columns will not be present or (until this is fixed) there will be a
non-helpful error message.

(Please report systems on which the columns do not appear.) The I/op column shows the measured
number of instructions, divided by the assumed number of FMA operations. In the example above the value
is 3.3, which is close to our estimate of 3 instructions (one FMA plus two loads). The value under DUse is
the number of bytes crossing the chip boundary divided by the minimum amount of data (the sum of the
size of the input, output, and weight arrays). In the example above the value under DUse is 2.8, meaning on
average each item crosses the chip boundary 2.8 times. The ideal value under DUse of course is 1. The value
under 2Use is the amount of data that moves between the L2 cache and the MPs divided by the minimum.
It should never be lower than DUse. In the example above it is much higher, indicating that the L2 cache is
doing its job of reducing off-chip data transfer.

4

Problem 1: The solution to Homework 1 seemed to achieve good performance based on its self-reported
resource utilization bar graph. But as discussed in the introduction above, the utilization of FMA hardware
is not so good due to those pesky load instructions. (Store instructions also have a lower throughput but
our code doesn’t execute them as often.)

As discussed in class the two-loads-per-FMA assumption is not a lower bound. Because individual
weights and individual inputs are reused it is possible to read them once and use them multiple times.

Load throughput can also be reduced by coaxing the compiler into issuing vector loads. The compiler
will do that if it figures out that it needs to load two or four consecutive values and that the address of the
first value is a multiple of 2 × 4 = 8 B or 4 × 4 = 16 B (meaning the address is a multiple of the size of the
data being loaded). The compiler can tell if it needs to load 2 or 4 consecutive items by examining the loop
nest. It can’t normally tell that the address is aligned, but we can tell the compiler to assume that it is a
multiple of some number using __builtin_assume_aligned. (Look up the use of that on your own.)

(a) Modify kernels dnn_sol_a and dnn_sol_b to reduce the number of loads by re-using loaded values and
using vector loads. To do so the loops will need to be re-done. If needed the weights can be re-organized in
the w2 array. (Initially both w and w2 are the organization found for the Homework 2 solution.)

Any solution that exploits re-use correctly will have to contend with load imbalance issues. This will
ultimately limit the performance of solutions, especially on the smaller of the two networks.

(b) Indicate whether your solution is performing as expected and what is limiting the performance of your
solution. Look at factors such as iteration latency and load imbalance. For load imbalance determine how
many h iterations your code does. Imbalance is bad if 48000 threads perform 2 iterations and on thread
performs 3.

5

	Problem 1
	Part char 97
	Part char 98

