LSU EE 7722 Homework 1 Due: 23 February 2021

Basic Setup
Follow the instructions for class account setup on https://www.ece.lsu.edu/gp/proc.html.
Code for this assignment is in directory ../hw/gpm/2021/hw01.

If the class account has been set up properly, the code can be built from within Emacs by
pressing when visiting any file in the .../2021/hw01 directory or when in an Emacs shell

buffer (which can be entered using X Shell). The code can be built from the command
line using the command make -j 4 (assuming .../2021/hw01 is the current directory). Either
method runs a makefile that builds all examples in the directory. It builds two versions of each
program, one taking the base name of the main file, such as hw01, and one with the suffix -cuda-
debug, such as hwOl-cuda-debug. The versions with the -cuda-debug suffix are compiled with
host optimization turned off and CUDA debugging turned on, which facilitates debugging but slows
down execution. To debug CUDA or host (CPU) code use cuda-gdb. Note that the -~cuda-debug
versions will run much more slowly than the regular versions.

Running make on a clean directory will produce a large amount of output. The make program
and the file it reads, Makefile, are designed to build executables in a lazy fashion, meaning that
they only create a file if it is not present or if its prerequisites have changed. Therefore a second
run of make will take much less time.

Quickly check whether the build is successful with the command ./hwO1. It should produce
output ending with a line something like 800 20 28 32 32 5442 46 1 ++++,

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

Using hw0O1
The code in hwO1.cu contains several kernels that compute the output of a fully-connected neural
net layer. See the problems for a description of the kernels.

The hwO1 program takes three command-line arguments. The first indicates how many blocks
to launch. If the argument is zero then the number of blocks will be set to the number of multipro-
cessors (which is the default). If the argument is negative then the number of blocks will be —aP,
where a is the argument value and P is the number of MPs on the GPU.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, when the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) When the second argument is 0 (zero) or p then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. When p is used additional performance data is shown, which is interesting but it can
slow things down. Note: p does not work on this assignment.

Here are some examples: Run with 256 threads per block: ./hwO1 0 256. Run with 512
threads per block and twice as many blocks as MPs: ./hwO1 -2 512. Run with 256 threads per
block and 10 blocks: ./hw0O1 10 256.

DNN Computation
The code in hwO1.cu computes the output of a fully connected neural network layer consisting of

1

https://www.ece.lsu.edu/gp/
https://www.ece.lsu.edu/gp/proc.html

n,; input neurons per channel, n. input channels, n,, output neurons per output channel, n,, output
channels, and n,, batches. The simplified loop nest below performs this computation:
for (int in = 0; in < nn; in++)
for (int im = 0; im < nm; im++)
for (int io = 0; io < no; io++)
for (int ic = 0; ic < nc; ic++)
for (int ii = 0; ii < ni; ii++)
aol[io] [im] [in] += ail[ii] [ic][in] * wlic] [im] [ii] [io];

In the homework file the code above is near the end of routine layer_init. The output
neurons are in ao, the input neurons are in ai, and weights are in array w. Notice that the loops
can be done in any order. For example, the version below computes the same result:

for (int ic = 0; ic < nc; ic++)
for (int ii = 0; ii < ni; ii++)
for (int in = 0; in < nn; in++)
for (int im = 0; im < nm; im++)
for (int io = 0; io < no; io++)
ao[io] [im] [in] += ailii][ic][in] * wl[ic] [im] [ii] [io];

An important thing to notice is that each element of w is read nn times, each element of ai
is read no*nm times and that each element of ao is read and written ni*nc times. In a good
implementation the re-used values will be found where they are needed (say, in a cache).

The code sample above assumes that the arrays are multi-dimensional. The arrays used in
hwO1.cu are one-dimensional, so the multiple indices shown above must be converted to a single
index. This is how the code is actually written:

pragma omp parallel for
for (int in = 0; in < nn; in++)

for (int im = 0; im < nm; im++)

for (int io = 0; io < no; io++)

{
acc_t ac = 0;
for (int ic = 0; ic < nc; ic++)
for (int ii = 0; ii < ni; ii++)
{
size_t idx_ai = ii + ni * (ic + nc * in);
size_t idx.w =dic + nc * (im + nm * (ii + ni * io));
ac += ail idx_ai] * w[idx_w];
}
aol[io + no * (im + nm * in)] = ac;
}

In addition to computing indices, the code above uses a local variable, ac, to hold intermediate
values of an ao value being computed. This avoids unnecessary loads and stores.

The data type for the inputs and outputs are acc_t, and the data type for weights are wht_t.
Both of these are defined near the top of the file as float. In most DNN systems the weights
would be defined as a 16-bit or smaller type. There is commented out code to use one of two 16-bit
types for weights. As the code is written these will reduce data traffic, but will result in additional
instructions since the 16-bit types will be converted to 32-bit types before use, which is not ideal.

Program Output

Starting a run of hwO1 ...

[koppel@dmk-laptop hwO1]$./hwO1

... produces the following output:

The first thing printed is information about each GPU connected to the system, followed by a
line showing the chosen GPU:

GPU 0: GeForce RTX 2080 SUPER @ 1.81 GHz WITH 7982 MiB GLOBAL MEM

GPU 0: L2: 4096 kiB MEM<->L2: 496.1 GB/s

GPU 0: CC: 7.5 MP: 48 CC/MP: 64 DP/MP: 2 TH/BL: 1024

GPU O: SHARED: 49152 B/BL 65536 B/MP CONST: 65536 B # REGS: 65536
GPU 0: PEAK: 5576 SP GFLOPS 174 DP GFLOPS COMP/COMM: 45.0 SP 2.8 DP
Using GPU O

Most lab computers have two GPUs, please pay attention to the GPU that is actually being
used, GPU 0 above.

Most fields are self-explanatory. For example, L2 is the size of the level-2 cache and CC
indicates that the device is of compute capability 7.5 (Turing). The MEM<->L2 field shows the off-
chip bandwidth. MP indicates the number of multiprocessors, also called streaming multiprocessors
(SM’s). CC/MP indicates the number of CUDA cores (single-precision functional units) per MP,
DP/MP indicates the number of double-precision functional units per MP, and TH/BL is the maximum
number of threads per block.

The amount of shared memory available is shown per block (B/BL) and per MP, this does not
indicate whether any particular kernel is using that much shared memory or could use that much.
The same line shows the amount of constant memory, and the number of registers available.

The next line, PEAK, shows FP operation bandwidth in which a fused multiply-add is counted
as one operation. (Most of the rest of the world counts a multiply-add as two operations, but in this
class it’s one.) The COMP/COMM line gives the computation to communication ratio in floating-point
operations per floating-point element transfers. (The information above was collected in part using
the runtime library’s cudaGetDeviceProperties function.)

Next, the program provides information on the network layers to be tested:

Layer shape 0: ni=no=28. nc=nm=20. nn=800.
Number elts: activations 896000, weights 313600
Weights size: 1225 kiB L2 cache units: 0.299
Act size one batch : 4480 B L2 cache units: 0.001
Act size all batches: 3584000 B L2 cache units: 0.854
Layer shape 1: ni=no=44. nc=nm=52. nn=800.
Number elts: activations 3660800, weights 5234944
Weights size: 20449 kiB L2 cache units: 4.992
Act size one batch : 18304 B L2 cache units: 0.004
Act size all batches: 14643200 B L2 cache units: 3.491

The layers used are specified in the constant array 1s near the top of hwO1. cu.

The program can either launch each kernel once, with a particular configuration (number of
blocks and number of threads per block), or it can launch each kernel multiple times, each with a
different block size.

When run without arguments or with a 0 as the second argument, such as ./hw01 0 0, the
program, launches each kernel multiple times, starting with 4 warps per block, up to 32 warps per

3

block. Run time and other information will be shown for each launch. An excerpt for one kernel
appears below:

Launching with 48 blocks of up to 32 warps.
Kernel (dnn_base<1s[0].nn,1s[0].nc,1s[0].ni>):

nn nc ni wp ac t/us FP 6 GB/s --- Utilization: ++Compute++ **Data*x -—----——
800 20 28 1 1 5423 46 1 ++++
800 20 28 2 2 5411 46 1 ++++
800 20 28 3 3 5411 46 1 ++++
800 20 28 4 4 5413 46 1 ++++
800 20 28 8 8 5410 46 1 ++++
800 20 28 12 12 5422 46 1 ++++
800 20 28 16 16 5415 46 1 ++++
800 20 28 20 20 5409 46 1 ++++
800 20 28 24 24 5411 46 1 ++++
800 20 28 28 28 5408 46 1 ++++
800 20 28 32 32 5410 46 1 ++++

The first three columns show the dnn dimensions, where nn is the number of batches, nc is
the number of input channels, and ni is the number of neurons in an input. For all the networks
simulated the number of output neurons per channel is the same as the number of input neurons per
channel, no=ni, and the number of output channels is the same as the number of input channels,
nm=nc.

The wp column shows the number of warps per block that the kernel was launched with. The
ac column shows the number of warps assigned to an MP (which is the product of the number
of warps per block and the number of active blocks per MP). The number in the ac column is
computed by an NVIDIA API using information about the kernel and the GPU. In the example
above the wp and ac numbers are the same because the number of blocks is the same as the number
of MPs and so there is no way to have more than one block per MP.

The t/ps column shows the measured execution time. The number under FP © is the floating
point throughput based on measured time and an ideal number of floating-point operations. The
number under GB/s is the minimum off-chip bandwidth, computed by dividing the size of the input
and output arrays by the measured execution time.

The stars in last column show data and compute bandwidth utilization. If the stars extend to
the maximum length (shown by the hyphens to the right of Utilization in the column heading)
then either compute or off-chip bandwidth is being saturated (fully utilized).

Note that this number is computed using measured time and an ideal amount of data crossing
the chip boundary.

The compute utilization is based on an assumed number of floating point instructions. The
number of floating point instructions, all multiply-adds, is assumed to be n,n;n.non.,. (Search for
num_ops_£fp in hwO1.cu.) The number of load/store instructions is assumed to be n,n;n:nonm, +
NpMoNmMiNe + NpNoNyy,. (Search for num_ops_1ls in hwO1l.cu.)

The assumption about the number of floating point instructions should reflect the actual
number. The number of load/store instructions is computed assuming that there will be one load
instruction for each element used and that there is one store for each ao written. These reflect the
way the initial code is written. The kernels can be written so that the number of load instructions
is be lower.

Problem 1: InhwO1.cu there are three kernels, to compute the DNN output, dnn_base, dnn_sol_a,J]
and dnn_sol_b. Initially each of these are identical and do not run very efficiently. Improve the
efficiency of dnn_sol_a and dnn_sol_b as described below. The reasons for having three identical
kernels is so that you can compare ideas side-by-side. In addition to these kernels, you may need
to modify the code at the end of routine layer_init.

Initially the kernels are inefficient. Consider the main loop nest:

for (int in = blockIdx.x; in < nn; in += gridDim.x)
for (int im = threadIdx.x; im < nm; im += blockDim.x)
for (int io = 0; io < no; io++)
{
acc_t ac = 0;
for (int ic = 0; ic < nc; ic++)
for (int ii = 0; ii < ni; ii++)
ac +=

ail ii + ni * (ic + nc * in)]
* wl ic + nc * (im + nm * (ii + ni * io0)) 1;

aol[io + no * (im + nm * in)] = ac;

}

This code assigns an input batch to a particular block, and an output channel to a particular
thread. That means that a particular thread will compute all output values (values of io) for
particular output channels (values of im) and particular batches (values of in). This division of
work may be effective if the number of batches (nn) is a multiple of the number of SMs and if the
number of output channels is multiple of the block size. But that’s not the case here.

The code also suffers because access patterns to the arrays do not make efficient use of memory
requests.

In this problem fix these problems. This can be done by re-arranging or re-doing the loop
nests and by changing the layout of the alternative weight array, w2, at the end of layer_init.

	Problem 1

