
GPU Microarchitecture Note Set 6—Warps and Branch Divergence

4-cu-1 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-1



Definition

Branch Divergence:

Effect of execution of a branch where for some threads in a warp the branch is taken, and for other(s) it is not taken.

Can slow down execution by a factor of 32 (for a warp size of 32).
lineA: float elt = array[idx]; // All threads execute this insn.

if ( threadIdx.x & 0x1 )

lineB: x = elt + 10; // Executed if threadIdx.x is odd.

else

lineC: x = elt - 10; // Executed if threadIdx.x is even.

lineX: moreStuff; // All threads execute this.

T0, T2, T4, ...

T1, T3, T5, ... lineA

lineB

lineC lineX

Time

Warp
Converged

Full
Efficiency

Warp
Diverged

Half
Efficiency

Warp
Converged

Full
Efficiency

Even threads masked.
Odd threads masked.

4-cu-2 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-2



Background

Warp Review

Group of threads scheduled together as a unit.

A single instruction is fetched for the entire warp.

One set of fetch and decode hardware used for entire warp (32 threads for now).

This reduces hardware cost and energy consumption.

What about branches (and other control transfers)?

4-cu-3 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-3



Hardware

Path [for a warp]:

A PC and a bit vector. The bit vector indicates which threads are part of the path and the PC is the address of the next
instruction to fetch on the path.

Each warp has an active path . . .

. . . and zero or more inactive paths.

The inactive paths are kept in a reconvergence stack.

The warp scheduler operates on warps’ the active paths.

4-cu-4 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-4



Instructions that Affect Active Path and Reconvergence Stack

Summary

SSY: Pushes item on to reconvergence stack.

BRA: May push item on to reconvergence stack.

Instructions to pop stack:

SYNC

BRK, PBRK

foo.S (foo is an ordinary instruction such as FADD, followed by a .S).

4-cu-5 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-5



Simple Example

if ( threadIdx.x & 1 ) { r4 = r1 + 10; } else { r4 = r1 - 10 };

ISETP.NE.AND P1, PT, R3, RZ // Set predicate P1.

SSY ‘(RECONV) // Push (RECONV, all thds) on stack.

@P1 BRA EVEN // Push (EVEN, even thds) on stack.

FADD R4, R1, 10

SYNC // Pop stack, setting PC = EVEN.

EVEN:

FADD R4, R1, -10

SYNC // Pop stack, setting PC = RECONV.

RECONV:

(Note: In code this simple predication would be used.)

4-cu-6 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-6



Execution Timing Under Divergence

T0, T2, T4, ...

T1, T3, T5, ... lineA

lineB

lineC lineX

Time

Warp
Converged

Full
Efficiency

Warp
Diverged

Half
Efficiency

Warp
Converged

Full
Efficiency

Even threads masked.
Odd threads masked.

Goal is to minimize time that warps are diverged.

4-cu-7 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-7



Reconvergence Point

Reconvergence Point [of a branch]:

The closest instruction on all paths starting at the branch. Also known as the post-dominator of the branch.

For the prior example lineX is the reconvergence point.

4-cu-8 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-8



Execution of Simple If / Else

Control Flow Diagram

Reconvergence

Point of A.

A0: // Start of A block.
...
p1 = w > z;
if ( p1 )
{
   B0:
   ...
} else {
  C0:
   ...
}
X0:
...

A0:

B0: C0:

X0:

4-cu-9 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-9



Execution of Simple If / Else

A0:
...
p1 = w > z;
if ( p1 )
{
  B0:
  ...
} else {
 C0:
  ...
}
X0:
...

A0:

B0: C0:

X0:

@p1 bra C0

bra X0

CPU Code:
Take either
one path or
the other.

Execution on CPU

4-cu-10 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-10



Execution of Simple If / Else

Execution on GPU

A0:
...
p1 = w > z;
if ( p1 )
{
  B0:
  ...
} else {
 C0:
  ...
}
X0:
...

A0:

B0: C0:

X0:

@p1 bra C0

ssy X0 Push X0 on stack.
Push C0 on stack.

sync sync

4-cu-11 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-11



Three way if/else.

A
cond

B C

Reconvergence
Point of A and C.

X

D E

A;

// -> SSY X: Push ( X, ACT )

if ( cond ) // -> BRA C: Push (C, ACT & cond)

{

B; // SYNC;

} else {

C;

if ( cond2 ) // -> BRA E; Push (E, ACT & cond2)

D; // SYNC;

else

E; // SYNC;

}

X;

Diagram for case where D and E jump to X.

4-cu-12 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-12



Simple Loop

A

B

C

X

Reconvergence
Point of A and B.

D

for ( A; B; C ) { D; } X;

4-cu-13 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-13



for ( A; B; C ) { if ( cond ) D; else E; } X

for ( A; B; C ) { D; if ( cond ) E; else F; } X

for ( A; B; C ) {

D;

if ( cond1 )

{ E; }

else

{

F;

if ( cond2 ) { G; break; }

}

}

X;

4-cu-14 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-14



Favorable Cases: No gotos, breaks, returns.

4-cu-15 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-15



Handling Warp Divergence

Method used based on nature of code.

Predication

Predication and undiverged branch instruction.

Branches and synchronization points.

4-cu-16 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-16



Implementation of if/else.

Use predication when warp diverged, use branches when warp converged.

/*0090*/ FSETP.LT.AND P0, PT, R7, 0.5, PT;

/*0098*/ @!P0 BRA.U ‘(.L_4);

/*00a0*/ @P0 LD.E R10, [R2+0x4];

/*00a8*/ @P0 FFMA R12, R7, c[0x3][0x4], RZ;

/*00b0*/ @P0 LD.E R11, [R2+0x8];

/*00b8*/ @P0 LD.E R7, [R2+0xc];

/*00c8*/ @P0 FFMA R10, R10, c[0x3][0x8], R12;

/*00d0*/ @P0 FFMA R10, R11, c[0x3][0xc], R10;

/*00d8*/ @P0 FFMA R7, R7, c[0x3][0x10], R10;

/*00e0*/ @P0 BRA.U ‘(.L_5);

.L_4:

/*00e8*/ @!P0 LD.E R11, [R2+0x4];

/*00f0*/ @!P0 FADD R12, R7, c[0x3][0x4];

/*00f8*/ @!P0 LD.E R10, [R2+0x8];

/*0108*/ @!P0 F2F.F32.F32 R12, R12;

/*0110*/ @!P0 LD.E R7, [R2+0xc];

/*0118*/ @!P0 FADD R11, R11, c[0x3][0x8];

/*0120*/ @!P0 FADD R13, R10, c[0x3][0xc];

/*0128*/ @!P0 FADD R10, R12, R11;

/*0130*/ @!P0 FADD R11, R7, c[0x3][0x10];

/*0138*/ @!P0 FADD R7, R10, R13;

/*0148*/ @!P0 FADD R7, R7, R11;

.L_5:

/*0150*/ IADD R10.CC, R8, c[0x0][0x140];

/*0158*/ IADD.X R11, R9, c[0x0][0x144];

4-cu-17 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-17



4-cu-18 EE 7722 Lecture Transparency. Formatted 12:08, 13 April 2020 from lsli06-br-diverg-TeXize. 4-cu-18


