
Outline

GPU Microarchitecture Note Set 2—Cores

• Quick Assembly Language Review

• Pipelined Floating-Point Functional Unit (FP FU)

• Typical CPU Statically Scheduled Scalar Core

• Typical CPU Statically Superscalar Core

• Bypass Network (Brief Mention)
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Outline Goals

Goal: Maximize operation throughput of a chip.

Approach:

We start with a target area (or number of gates) and power budget.

Chip will consist of multiple cores.

Find a core design that maximizes. . .

. . . FLOPS per unit area . . .

. . . or FLOPS per unit power.

Then fill chip.

Do this with a target workload in mind.
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Assembly Language Review � Arithmetic Instructions

Assembly Language Review

Assembly Language Examples.

Arithmetic Instructions:

# Integer Instructions

mul r1, r2, r3 # r1 = r2 * r3

add r4, r4, r1 # r4 = r4 + r1

# Floating-Point Instructions

mul.s f1, f2, f3 # f1 = f2 * f3

add.s f4, f4, f1 # f4 = f4 + f1
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Assembly Language Review � Loads and Stores

Assembly Language Examples.

Loads and Stores

ld r1, [r20] # Load: r1 = Mem[r20]. Register r20 holds a memory addr.

ld r2, [r20+4] # Load: r1 = Mem[r20+4]. Use of offset.

add r3, r1, r2

st r3, [r22] # Store: Mem[r22] = r3.
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Pipelined Floating-Point Functional Unit � Description

Pipelined Floating-Point Functional Unit

Performs floating-point arithmetic operations.

It has two inputs for source operands . . .

. . . and an output for the result.

Divided into stages.

Illustrated unit has eight stages.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Operation performed in multiple steps . . .

. . . each step performed by a stage.

An operations starts in stage 1 . . .

. . . after 1 clock cycle it moves to stage 2. . .

. . . et cetera, until it leaves stage 8 with the operation result.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result

t = 0

i3

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Operation performed in multiple steps . . .

. . . each step performed by a stage.

An operations starts in stage 1 . . .

. . . after 1 clock cycle it moves to stage 2. . .

. . . et cetera, until it leaves stage 8 with the operation result.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result

t = 1

i3

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Operation performed in multiple steps . . .

. . . each step performed by a stage.

An operations starts in stage 1 . . .

. . . after 1 clock cycle it moves to stage 2. . .

. . . et cetera, until it leaves stage 8 with the operation result.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result

t = 2

i3

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Operation performed in multiple steps . . .

. . . each step performed by a stage.

An operations starts in stage 1 . . .

. . . after 1 clock cycle it moves to stage 2. . .

. . . et cetera, until it leaves stage 8 with the operation result.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result

t = 7

i3

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Operation performed in multiple steps . . .

. . . each step performed by a stage.

An operations starts in stage 1 . . .

. . . after 1 clock cycle it moves to stage 2. . .

. . . et cetera, until it leaves stage 8 with the operation result.

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result

t = 8

i3

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

Note that operation took eight cycles to perform.

The pipeline latency of the FP unit is 8 cycles.

(Later we’ll learn that the latency of a FP instruction may be longer.)

FP Functional Unit

1 2 3 4 5 6 7 8

Stage Numbers

Operands
Result
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

To fully utilize the pipeline. . .

. . . we need to have all stages occupied.

The prior example didn’t fully utilize pipeline.

To fully utilize it we need an example with more instructions:

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3

i4 : add.s r4, r5, r6 # Note: r5 = 400, r6 = 4 Computes r4 = r5 + r6

i5 : add.s r7, r8, r9

i6 : add.s r10, r11, r12

..

i11: add.s r25, r26, r27

i12: add.s r28, r29, r30 # Note: r29 = 1200, r30 = 12
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

FP Pipeline Being Fully Utilized

FP Functional Unit

1 2 3 4 5 6 7 8

i4i5i6i7i8i9i10i11

i3 : add.s r1, r2, r3 # Note: r2 = 300, r3 = 3 Computes r1 = r2 + r3

i4 : add.s r4, r5, r6 # Note: r5 = 400, r6 = 4 Computes r4 = r5 + r6

i5 : add.s r7, r8, r9

i6 : add.s r10, r11, r12

..

i11: add.s r25, r26, r27

i12: add.s r28, r29, r30 # Note: r29 = 1200, r30 = 12
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Pipelined Floating-Point Functional Unit � Description

Pipelined Operation

FP Pipeline Being Fully Utilized

FP Functional Unit

1 2 3 4 5 6 7 8

i4i5i6i7i8i9i10i11

t = 8 cyc

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i3 : add.s r1, r2, r3 F1 F2 F3 F4 F5 F6 F7 F8

i4 : add.s r4, r5, r6 F1 F2 F3 F4 F5 F6 F7 F8

i5 : add.s r7, r8, r9 F1 F2 F3 F4 F5 F6 F7 F8

i6 : add.s r10, r11, r12 F1 F2 F3 F4 F5 F6 F7 F8

..

i11: add.s r25, r26, r27 F1 F2 F3 F4 F5 F6 F7 F8

i12: add.s r28, r29, r30 F1 F2 F3 F4 F5 F6 F7 F8

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Pipelined Floating-Point Functional Unit � Bandwidth and Throughput

Operation Bandwidth of Pipelined FP Unit

Notice that FP unit produced a result each clock cycle.

Its operation bandwidth is 1 FLOP per cycle or φ FLOPS . . .

. . . where φ is the clock frequency.

(If the clock were 4 MHz then the capability would be 4 MFLOPS.)

2-co-15 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-15



Pipelined Floating-Point Functional Unit � Bandwidth and Throughput

Operation Bandwidth and Operation Throughput

Recall: Bandwidth is best that hardware can do. . .

. . . Throughput is what you get.

Consider Two Possible Situations:

FP Functional Unit

1 2 3 4 5 6 7 8

i4i5i6i7i8i9i10i11

FP Functional Unit

1 2 3 4 5 6 7 8

i5i7i9i11

Assume that the patterns above persist over time.

The unit on the left is fully utilized.

Bandwidth is 1 FLOP per cycle, throughput is 1 FLOP per cycle.

The unit on the right is half utilized.

Bandwidth is 1 FLOP per cycle, throughput is 0.5 FLOP per cycle.
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Pipelined Floating-Point Functional Unit � Pipeline Execution Diagrams

Correspondence between pipeline execution diagram (text) and illustration.

Illustration below for t = 8.

FP Functional Unit

1 2 3 4 5 6 7 8

i5i7i9i11

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i3 : add.s f1, f2, f3 F1 F2 F3 F4 F5 F6 F7 F8

i4 : xor r4, r5, r6 EX

i5 : add.s f7, f8, f9 F1 F2 F3 F4 F5 F6 F7 F8

i6 : xor r10, r11, r12 EX

i7 : add.s f10, f11, f12 F1 F2 F3 F4 F5 F6 F7 F8

i8 : xor r13, r14, r15 EX

..

i11: add.s f25, f26, f27 F1 F2 F3 F4 F5 F6 F7 F8

i12: xor r28, r29, r30 EX

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Pipelined Floating-Point Functional Unit � Underutilization Causes

Why FP Unit Might Not be Fully Utilized

◦ Not every instruction uses the FP unit.

◦ The operand of a FP instruction is not ready, so it must wait.

◦ The FP instruction itself is late to arrive.

As a result of these situations . . .

. . . throughput will be less than capability.
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Pipelined Floating-Point Functional Unit � Underutilization Causes

Non-Full Utilization Due to Non-FP Instructions

The instructions with even numbers don’t use FP unit.

Note: EX indicates the integer operation stage (just 1 stage needed).

If pattern persists, throughput is 0.5 FLOP per cycle.

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i3 : add.s f1, f2, f3 F1 F2 F3 F4 F5 F6 F7 F8

i4 : xor r4, r5, r6 EX

i5 : add.s f7, f8, f9 F1 F2 F3 F4 F5 F6 F7 F8

i6 : xor r10, r11, r12 EX

..

i11: add.s f25, f26, f27 F1 F2 F3 F4 F5 F6 F7 F8

i12: xor r28, r29, r30 EX

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Possible targets of blame:

◦ The programmer, for not being able to avoid xor instructions.

◦ The problem, which has lots of unavoidable xor instructions.
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Pipelined Floating-Point Functional Unit � Underutilization Causes

Non-Full Utilization Due to “Late” Operands

For some reason, i4’s operands arrive three cycles late.

We will be looking at situations that cause this later in the semester.

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i3 : add.s f1, f2, f3 F1 F2 F3 F4 F5 F6 F7 F8

i4 : add.s f4, f5, f6 F1 F2 F3 F4 F5 F6 F7 F8

i5 : add.s f7, f8, f9 F1 F2 F3 F4 F5 F6 F7 F8

i6 : add.s f10, f11, f12 F1 F2 F3 F4 F5 F6 F7 F8

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Possible targets of blame:

◦ The compiler, for not doing a better job scheduling instructions.

◦ The programmer, for sloppy coding that hindered compiler scheduling.

◦ The hardware, for not having enough registers to enable scheduling.
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Pipelined Floating-Point Functional Unit � Depth, Clock, Power Tradeoffs

Number of Stages (Depth), Clock Frequency, Power

One-Stage FP Unit

Let t1 denote the latency of the 1-stage unit.

The latency is determined by the device technology used . . .

. . . and by the design of the floating-point unit.

The technology determines how fast transistors switch . . .

. . . which in turn is determined by time for electric charge to clear gate junctions.

Device technology is beyond the control of computer engineers.

The logic design of the FP unit determines the number of gates from input to output.

We will assume that this too is beyond our control.

Therefore for us t1 is a constant.
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Pipelined Floating-Point Functional Unit � Depth, Clock, Power Tradeoffs

Construction of n-Stage Pipelined Units

An additional component, called a pipeline latch is inserted between stages.

Let tL denote the time needed for this latch.

The latency of an n-stage unit is then

tn = t1 + (n− 1)tL

and the clock frequency is

φ =

(
tL +

t1
n

)−1

; or when tL �
t1
n

, φ ≈ n

t1
,

assuming that the unit is split perfectly into n pieces.

This doesn’t sound like an improvement, but keep paying attention.
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Pipelined Floating-Point Functional Unit � Depth, Clock, Power Tradeoffs

Operation Bandwidth of n-Stage Units

The operation bandwidth of pipelined units is the same as clock frequency.

Note that bandwidth of the 1-stage unit is 1/t1 FLOPS.

For an n-stage device the operation bandwidth is:

φ =
1

t1/n+ tL
.

If tL = 0, this reduces to n/t1 . . .

. . . meaning we can make the capability as high as we want by choosing n . . .

. . . and pretending that tL = 0 and the unit can be divided perfectly.

Note that by choosing n we are choosing the clock frequency.
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Pipelined Floating-Point Functional Unit � Depth, Clock, Power Tradeoffs

Number of Stages, Clock Frequency, Power

Increasing number of stages increases:

◦ :-) The operation bandwidth (as discussed above).

◦ :-( The area (a cost measure) (for latches and circuit changes).

◦ :-( Power (which is proportional to clock frequency).

Factors that Limit Increase in n

A few years ago: area and efficiency of splitting.

Now: power.
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Pipelined Floating-Point Functional Unit � Summary

Pipelined FP Unit Summary

An n-stage unit takes n cycles to compute 1 operation . . .

. . . in other words it has an n-cycle latency.

An n-stage unit can compute an operation each cycle . . .

. . . in other words it has an operation bandwidth of 1 FLOP per cycle.

Operation throughput is limited by external factors such as instruction mix.
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Simple Core � Components

Simple Core

Front
End

FP Functional Unit
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Components

• Front End — Hardware for fetching, decoding, and issuing instructions.

• Register File — A storage device for register values.

• FP Functional Unit

• Control Unit — Hardware sending control signals to other components.
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Simple Core � Components � Front End

Simple Core

Front
End

FP Functional Unit
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Front End

Pipelined, three stages shown.

Input is from instruction cache.

Stage labels: IF, Instruction Fetch; ID, Instruction Decode; RR, Register Read.

2-co-27 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-27



Simple Core � Components � Front End

Front End and Performance

Front
End

FP Functional Unit
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

The front end usually determines instruction bandwidth of core.

A core is called scalar if the front end can fetch ≤ 1 insn per cycle.

A core is called n-way superscalar if the front end can fetch n insns per cycle.

The simple core we are discussing is scalar.

Internal details of front end not covered in this course.
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Simple Core � Components � Control Logic

Front
End

FP Functional Unit
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Control Logic

Purpose

Control logic sends commands to rest of core.

It determines when instructions
must stall (wait).

Details omitted in this course.

Control Logic Cost

For simple core, cost is very low.

For heavy-weight cores, cost is high.
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Simple Core � Components � Integer and FP Pipelines

Integer and FP Pipelines

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

To L2 Cache,
Located Outside
of Core

F1 F2 F3 F4 F5 F6 F7 F8

Simple core also has an integer pipeline.

(Often, the FP pipeline is considered optional).

Each pipeline has its own register file.

Integer instructions can write FP registers (needed for loads from memory).

All instructions pass through front end.

Integer instructions use integer pipeline.
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Simple Core � Components � Integer and FP Pipelines

Integer and FP Pipelines

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

To L2 Cache,
Located Outside
of Core

F1 F2 F3 F4 F5 F6 F7 F8

Simple core also has an integer pipeline.

EX: Execute — Perform the integer operation.

Just takes one cycle.

ME: Memory — Try memory operation (read or write).

In simple cores pipeline will stall until operation completes.

WB: Writeback — Writeback value to register file.

The last FP stage, F8, does a writeback to the FP registers.
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Simple Core � Components � Integer and FP Pipelines

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

To L2 Cache,
Located Outside
of Core

F1 F2 F3 F4 F5 F6 F7 F8

i3

i4

i5

i6

Execution Example

Instruction throughput is 1 insn/cyc.

FP operation throughput is 0.5 op per cyc.

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12

i3 : add.s f1, f2, f3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

i4 : xor r4, r5, r6 IF ID RR EX ME WB

i5 : add.s f7, f8, f9 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

i6 : xor r10, r11, r12 IF ID RR EX ME WB

..

i11: add.s f25, f26, f27 IF ID RR F1 F2 F3 F4 F5 ..

i12: xor r28, r29, r30 IF ID RR EX ME WB

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Simple Core � Components � Integer and FP Pipelines

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD
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dest. reg

NPC

30 2
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PC

+
15:0
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D
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dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

ID-stage signals
shown in purple.

=

format
immed

15:0

Integer and FP Pipelines

More detailed view, not covered in this class.
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Simple Core � Performance

Simple Core and Performance

First, let’s use a better name than simple core:

Statically Scheduled Scalar Core

Increasing Operation and Instruction Bandwidth of Simple Core

The only way to change operation and insn bandwidth. . .

. . . is to increase the number of stages (and therefore clock frequency).

Doing so will increase FLOPS . . .

. . . but at some point will reduce FLOPS per unit area . . .

. . . and FLOPS per unit power.

The Next Step—Superscalar: Multiple Instructions per Cycle
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Superscalar Cores � Definitions

Superscalar Cores

Some Definitions

n-Way Superscalar Core:

A core that has an instruction bandwidth of n instructions per cycle.

FP operation bandwidth ≤ n.

Statically Scheduled Core:

A core in which instructions start execution in program order.
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Superscalar Cores � Example: Two-Way Superscalar Superscalar Cores

Example: Two-Way Superscalar, 1 FP op per cycle

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Insn BW: 2 insn / cyc

FP Op BW: 1 FLOP / cyc

Mem Op BW: 1 Load (64b) / cyc

Int Op BW: 2 insn / cyc

In this example design there are. . .

. . . two integer units. . .

. . . but just one FP unit. . .

. . . and one L1 data cache port.

This organization similar to. . .

. . . 1990’s general purpose CPUs. . .

. . . 2010’s lightweight cores.
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Superscalar Cores � Example: Two-Way Superscalar � Code Execution

Execution Example
Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Insn BW: 2 insn / cyc

FP Op BW: 1 FLOP / cyc

Mem Op BW: 1 Load (64b) / cyc

Int Op BW: 2 insn / cyc

Note that add uses int unit.

For this example:

Insn BW and throughput are 2 insn/cyc.

FP operation throughput is 0.

# Time / Cyc --> 0 1 2 3 4 5

add r1, r2, r3 IF ID RR EX ME WB

add r4, r5, r6 IF ID RR EX ME WB

add r7, r8, r9 IF ID RR EX ME WB

add r10, r11, r12 IF ID RR EX ME WB

add r25, r26, r27 IF ID RR EX ME WB

add r28, r29, r30 IF ID RR EX ME WB

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9
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Superscalar Cores � Example: Two-Way Superscalar � Code Execution

Execution Example Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Insn BW: 2 insn / cyc

FP Op BW: 1 FLOP / cyc

Mem Op BW: 1 Load (64b) / cyc

Int Op BW: 2 insn / cyc

Note that add.s uses FP unit.

For this example:

Insn BW and throughput is 2 insn/cyc.

FP operation BW and throughput are 1 FLOP/cyc.

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10

add.s f1, f2, f3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

xor r4, r5, r6 IF ID RR EX ME WB

add.s f7, f8, f9 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

xor r10, r11, r12 IF ID RR EX ME WB

...

add.s f25, f26, f27 IF ID RR F1 F2 F3 F4 F5 ..

xor r28, r29, r30 IF ID RR EX ME WB

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Superscalar Cores � Example: Two-Way Superscalar � Code Execution

Execution Example Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Insn BW: 2 insn / cyc

FP Op BW: 1 FLOP / cyc

Mem Op BW: 1 Load (64b) / cyc

Int Op BW: 2 insn / cyc

A -> indicates. . .

. . . a pipeline stall . . .

. . . indicating insn and those behind it. . .

. . . are stopped.

For this example:

Insn throughput is now 1 insn/cyc.

FP operation BW and throughput are 1 FLOP/cyc.

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10

add.s f1, f2, f3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f4, f5, f6 IF ID -> RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f7, f8, f9 IF -> ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f10, f11, f12 IF -> ID -> RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f13, f14, f15 IF -> ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f16, f17, f18 IF -> ID -> RR F1 F2 F3 F4 F5 F6 F7 F8

...

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Superscalar Cores � Bypass Networks

Bypass Network:

Special connections from FU outputs to FU inputs that expedite the execution of dependent instructions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=30 2
2'b0

PC

15:0

D
 

dstdst

E

Blue bypass used in cycle 3, green bypass used in cycle 4.

# Cycle 0 1 2 3 4 5 6

add r10, r2, r3 IF ID EX ME WB

sub r4, r10, r5 IF ID EX ME WB

xor r6, r7, r10 IF ID EX ME WB
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Superscalar Cores � Bypass Networks

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Bypass Network
Cost is O(n2) 

Performance 
loss due to 
fanout of 2n.

Bypass Network:

Special connections from FU outputs to FU inputs that expedite the execution of
dependent instructions.

The output of each unit connects. . .

. . . to both inputs of each of n units . . .

. . . and so cost of bypass network is O(n2).

In diagram FU output taken from ME and WB stage (because that’s where the data
is).

A bypass network is expensive . . .

. . . because each bypass connection . . .

. . . is 64 bits wide in current systems.

A bypass network is optional . . .

. . . but present in most CPU cores.
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Superscalar Cores � Cost and Performance Issues

Cost and Performance Issues

Front
End

FP Functional Unit
FP
Register
File

Instructions
Arrive from
Instruction Cache

IF ID RR

Control

Int
Unit

L1
Cache

Integer
Register
File
(GPR)

EX ME WB

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Int
Unit

EX ME WB

Control

Bypass Network
Cost is O(n2) 

Performance 
loss due to 
fanout of 2n.

n-way superscalar costs:

Most items cost n× more . . .

. . . which is good if throughput keeps up.

For some units < n would suffice. . .

. . . for example, n/2 L1 cache ports.

Costliest part is bypass network. . .

. . . with its O(n2) cost.
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Superscalar Cores � Typical Superscalar Cores

Typical Superscalar Cores

Four-Way Superscalar

Scalar FP Bandwidth 1-2 Operations per Cycle

Vector FP Bandwidth 4-8 Operations per Cycle

Design Limiters or Why There are No 16-Way Superscalar Cores

Define utilization to be throughput divided by bandwidth.

Reduced front-end utilization as IB increases.

Cost of the bypass network.
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Superscalar Cores � Instruction-Level Parallelism

Instruction-Level Parallelism

Instruction-Level Parallelism (ILP):

The degree to which the execution of instructions in a program written in a serial ISA can be overlapped.

Most ISAs are serial, such as MIPS, Intel 64, SPARC.

Superscalar implementations overlap execution of such instructions . . .

. . . but do so in a way that the results obtained . . .

. . . are the same as one would get with one-at-a-time execution.

An n-way superscalar processor has a bandwidth of n insn/cyc.

The throughput of a program on the n-way processor . . .

. . . is determined by the ILP of the program.
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Superscalar Cores � Instruction-Level Parallelism

Next Steps (after statically scheduled superscalar)

Further Exploitation of ILP:

◦ Dynamic scheduling.

◦ Branch prediction.

These will be defined, but not covered in detail.

For Operation Throughput Improvement

◦ Vector Instructions

For Greater Latency Tolerance

◦ Simultaneous Multithreading (SMT), a.k.a. Hyperthreading
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Superscalar Cores � Instruction-Level Parallelism

For Operation Density Improvement

◦ Single-Instruction Multiple Thread (SIMT)
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Superscalar Cores � Microarchitectural Features

Superscalar Microarchitecture Features

Dynamic Scheduling (A.k.a. out-of-order execution)

An organization in which instructions execute when their operands are ready, not necessarily in program order.

Consumes a lot of power and area.

Increases instruction throughput of certain codes . . .

. . . such as those hitting the L2 cache.

A standard technique in general-purpose CPUs (desktop, laptop, server).

Even so, does not increase maximum practical superscalar width.

Details of dynamic scheduling not covered in this course.
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Dynamically Scheduled Core

Dynamically Scheduled Core
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Dynamically Scheduled Core � Characteristics

Dynamically Scheduled Core Characteristics

Need more stages than statically scheduled cores.

Instruction scheduler consumes a significant amount of energy.

Energy wasted fetching down the wrong path of a predicted branch.
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Dynamically Scheduled Core � Contrasts With Statically Scheduled

Contrast Between Statically and Dynamically Scheduled Cores

Statically Scheduled v. Dynamically Scheduled Core

Static: Relies on compiler to avoid stalls.

Dynamic: Handles insn with unpredictable latencies (loads).
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Dynamically Scheduled Core � Contrasts With Statically Scheduled � Execution of Sequential Memory Access

Sequential Access Code

Code that reads and writes memory sequentially.

Typical sequential access code:

sum = 0;

for ( int i=0; i<1000; i++ ) sum += a[i];

This code will execute well on either a static or dynamic core . . .

. . . when optimized properly.

Because static cores are less costly (in power and area) . . .

. . . the static core is preferred for this code.

To cleanly illustrate static v. dynamic execution . . .

. . . the following slides show execution of unoptimized code.
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Dynamically Scheduled Core � Contrasts With Statically Scheduled � Execution of Sequential Memory Access � Sequential code on Static Sched Core

Execution on:

Statically scheduled implementation with branch prediction.

Not-well-optimized compilation.

LOOP: # 0 1 2 3 4 5 6 FIRST ITERATION

lw r1, 0(r2) IF ID EX ME WB

add r2, r2, 4 IF ID EX ME WB

bne r2, r4, LOOP IF ID -> EX ME WB

add r3, r3, r1 IF ID ----> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 SECOND ITERATION

lw r1, 0(r2) IF ----> ID EX ME WB

add r2, r2, 4 IF ----> ID EX ME WB

bne r2, r4, LOOP IF ----> ID -> EX ME WB

add r3, r3, r1 IF ----> ID ----> EX ME WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 THIRD ITERATION

lw r1, 0(r2) IF ----> ID EX ME WB

Execution throughput: 4
3 insn/cyc or 1

3 element per cycle.
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Dynamically Scheduled Core � Contrasts With Statically Scheduled � Execution of Sequential Memory Access � Sequential code on Dynamic Sched Core

Execution on:

Dynamically scheduled implementation with branch prediction.

Not-well-optimized compilation.

LOOP: # 0 1 2 3 4 5 6 FIRST ITERATION

lw r1, 0(r2) IF ID Q RR EA ME WB

add r2, r2, 4 IF ID Q RR EX WB

bne r2, r4, LOOP IF ID Q RR EX WB

add r3, r3, r1 IF ID Q RR EX WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 SECOND ITERATION

lw r1, 0(r2) IF ID Q RR EA ME WB

add r2, r2, 4 IF ID Q RR EX WB

bne r2, r4, LOOP IF ID Q RR EX WB

add r3, r3, r1 IF ID Q RR EX WB

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 THIRD ITERATION

lw r1, 0(r2) IF ID Q RR EA ME WB

Execution throughput: 4 insn/cyc or 1 element per cycle.
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Dynamically Scheduled Core � Contrasts With Statically Scheduled � Execution of Sequential Memory Access � Comparison of Execution

Comparison of Execution

The dynamic system was 3× faster . . .

. . . because it executed instructions when their data became ready . . .

. . . not necessarily in the order determined by the program.

That sounds good, until you get the energy bill.

If loop had been unrolled and scheduled both static and dynamic cores . . .

. . . would perform equally.
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Code Examples

Code Examples

Sequential Code (From several slides back)

sum = 0;

for ( int i=0; i<1000; i++ ) sum += a[i];

Easy to exploit ILP.

But also easy to parallelize.

Pointer Chasing Code

Obviously Bad Code

for ( Node *node = start; node; node = node->next ) sum += node->data;

Can’t overlap pointer dereference.
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Code Examples

Control Predictability

for ( int i=0; i<1000; i++ )

{

switch ( op[i] ) {

case ADD: a[i] = b[i] + c[i]; break;

case DIV: a[i] = b[i] / c[i]; break;

}

}
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Branch Prediction

Superscalar Microarchitecture Features

Branch Prediction

The prediction of the direction (taken or not taken) and the target of a branch.

A standard technique in CPUs.

Prediction accuracy ≈ 95% for integer codes.

Prediction accuracy ≈ 99.9% for many scientific codes.

Branch prediction not covered in this course. . .

. . . because GPUs don’t need it.
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Vector Instructions � Definitions

Vector Instructions

Vector Instructions:

Instructions that operate on short vectors.

Many instruction sets have vector instructions . . .

. . . often part of an instruction set extension . . .

. . . such as SSE and AVX for Intel . . .

. . . and VIS for Sun and Advanced [tm] SIMD for ARM.

Vector Register:

A register holding multiple values.

Of course, vector instructions operate on vector registers.
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Vector Instructions � Code Examples � Vector Instructions Help

Vector Instruction Example — Favorable Case

Example is for a hypothetical instruction set.

Vector registers are v0-v31.

Each vector register holds four scalars.

Code not using vector instructions.

add.s f1, f2, f3

add.s f4, f5, f6

add.s f7, f8, f9

add.s f10, f11, f12

add.s f13, f14, f15

add.s f16, f17, f18

add.s f19, f20, f21

add.s f22, f23, f24

Code using vector registers.

# Register v2 holds equivalent of { f2, f5, f8, f11}.

2-co-59 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-59



Vector Instructions � Code Examples � Vector Instructions Help

add.vs v1, v2, v3 # Performs 4 adds, same work as first 4 insns above.

add.vs v4, v5, v6
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Vector Instructions � Code Examples � Vector Instructions Don’t Help

Vector Instruction Example — Unfavorable Case

Example is for a hypothetical instruction set.

Can’t make full use of vector insn . . .

. . . because can’t find four of the same operation.

Code not using vector instructions.

add.s f1, f2, f3

add.s f4, f5, f6

mul.s f7, f8, f9

sub.s f10, f11, f12

Code using vector registers.

# v2 holds { f2, f5, X, X } (Two dummy values.)

add.vs v1, v2, v3 # Does 4 adds, but only two are useful.

mul.s v7, v8, v9 # Does 1 mul, but uses vector regs (as if they were scalar).

sub.s v10, v11, v12

:-( Only one fewer instruction. Worth the trouble?
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Vector Instructions � Using Vector Instructions in Your CodeVector Instructions

Using Vector Instructions in Your Code

It’s often hard to find opportunities to use vector instructions.

Compilers can do it . . .

. . . but are often frustrated by unwitting programmers.

More coverage of vector instructions later in the semester . . .

. . . including how not to be one of those programmers.

Benefit of Vector Instructions

Lower cost (compared to scalar functional units.)
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Vector Instructions � Vector Functional Units

Vector Functional Units

Front
End

FP Functional Unit 1
FP
Register
File

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Control

FP Functional Unit n
F1 F2 F3 F4 F5 F6 F7 F8

n-way superscalar front end

Int unit
now shown.

Goal:. . .

. . . want nFLOP/cyc. . .

. . . but don’t need flexibility.

Consider this n-way superscalar core −→

Can execute any mix of n FP ops per cycle. . .

. . . if dependencies cooperate.

Execution of Non-Vector Code on 4-Way Superscalar Core
# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11

add.s f1, f2, f3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f4, f5, f6 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f7, f8, f9 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f10, f11, f12 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f13, f14, f15 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f16, f17, f18 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f19, f20, f21 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8
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Vector Instructions � Vector Functional Units

add.s f22, f23, f24 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8
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Vector Instructions � Vector Functional Units � DefinitionVector Functional Units

Front
End

FP Func Unit Lane 1
FP Regs
Lane 1

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

FP Func Unit Lane n
FP Regs
Lane n

Control

Int unit
not shown.

One insn for
all n lanes.

Vector Functional Unit:

A unit that performs the same operation on multiple sets of operands.

Execution of Code on a Scalar Core with a 4-Lane Vector Unit

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11

add.vs v1, v2, v3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.vs v4, v5, v6 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8
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Vector Instructions � Vector Functional Units � Example: Unsuitable Code

Front
End

FP Functional Unit 1
FP
Register
File

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Control

FP Functional Unit n
F1 F2 F3 F4 F5 F6 F7 F8

n-way superscalar front end

Int unit
now shown.

Unsuitable Vector Code on 4-Way Superscalar
# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11

add.s f1, f2, f3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

add.s f4, f5, f6 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

mul.s f7, f8, f9 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

sub.s f10, f11, f12 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8
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Vector Instructions � Vector Functional Units � Example: Unsuitable Code

Front
End

FP Func Unit Lane 1
FP Regs
Lane 1

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

FP Func Unit Lane n
FP Regs
Lane n

Control

Int unit
not shown.

One insn for
all n lanes.

Unsuitable Vector Code on Scalar Core with a 4-Lane Vector Unit

# Time / Cyc --> 0 1 2 3 4 5 6 7 8 9 10 11 12

add.vs v1, v2, v3 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

mul.s v7, v8, v9 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8

sub.s v10, v11, v12 IF ID RR F1 F2 F3 F4 F5 F6 F7 F8
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Vector Instructions � Vector Unit v. Superscalar Core

Front
End

FP Functional Unit 1
FP
Register
File

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Control

FP Functional Unit n
F1 F2 F3 F4 F5 F6 F7 F8

n-way superscalar front end

Int unit
now shown.

Front
End

FP Func Unit Lane 1
FP Regs
Lane 1

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

FP Func Unit Lane n
FP Regs
Lane n

Control

Connection from each
register to 2 outputs.

Vector Unit v. Superscalar

Hypothetical Configurations to Compare

Both have a FP operation bandwidth of n per cycle.

Both have enough registers for R values.

In superscalar there are R registers.

In vector system there are R/n regs each holding n values.

2-co-68 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-68



Vector Instructions � Vector Unit v. Superscalar Core

Comparison

◦ Front end for superscalar costs n× more.

◦ Superscalar bypass network: O(n2).

◦ Vector bypass network: O(n).

◦ Superscalar reg fanout: R to 2n.

◦ Vector reg fanout: R/n to 2.
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Vector Instructions � Vector Unit v. Superscalar Core

Front
End

FP Functional Unit 1
FP
Register
File

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

IF ID RR

Control

FP Functional Unit n
F1 F2 F3 F4 F5 F6 F7 F8

n-way superscalar front end

Int unit
now shown.

Front
End

FP Func Unit Lane 1
FP Regs
Lane 1

IF ID RR

F1 F2 F3 F4 F5 F6 F7 F8

FP Func Unit Lane n
FP Regs
Lane n

Control

Connection from each
register to 2 outputs.

Vector Unit v. Superscalar

Hardware Limit on Width (n).

Superscalar: O(n2) cost.

Fanout impact on clock frequency. . .

. . . maximum reasonable width ≤ 8.

Vector:

Clock synchronization (reasons not covered in this course).
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Vector Instructions � Vector Units in Current Processors

Vector Units in Current Processors

Intel (i5, i7) Haswell, per core

SSE: Vector Registers (xmm): 16× 128 bits (4 SP, 2 DP).

AVX: Vector Registers (ymm): 16× 256 bits (8 SP, 4 DP).

Eight-Way Superscalar (based on microops, etc.).

Two vector units, and so bandwidth is 2 vector insn / cycle.

Vector latency (including FMA), 5 cycles.
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Vector Instructions � Vector Units in Current Processors

IBM Power9 SMT4, SMT8, per core.

Vector Registers: 32× 128 bits (4 SP, 2 DP, 1 QP).

SMT4: Four-Way Superscalar.

SMT8: Eight-Way Superscalar? Or need two threads to use all hardware?

Same hardware used for vector and scalar instructions. . .

. . . SMT4: Two FP vector op per cycle; SMT8: Four FP vector ops per cycle.

Vector latency, ≥ 7 cycles.
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Conventional Multiprocessing and Multithreading � Definitions

Conventional Multiprocessing and Multithreading

Process:

A unit of execution managed by the OS, think of it as a running program.

A process has one address space.

A process can have multiple threads (which share the address space).

Multiprocessing:

A technique in which a core (or chip or node) can be shared by multiple processes, with an OS scheduler starting and stopping
processes to achieve fairness, meet some priority goal, etc.

We will not consider multiple processes.

Multithreading:

A technique in which a single process can have multiple threads of execution, all sharing one address space.
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Conventional Multiprocessing and Multithreading � DefinitionsConventional Multiprocessing and Multithreading

Context:

The information associated with a thread or process, including the values of registers.

In this class context will refer to threads.

The context for a process is larger than the context for a thread.

Context Switch:

The process of changing from one thread to another.
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Conventional Multiprocessing and Multithreading � Types of Multithreading � Software MT

Types of Multithreading

Software Multithreading:

A form of multithreading in which a context switch is performed by software.

Context switch performed by OS or by user code.

Context switch achieved by copying register values to and from stack.

Context switch can take hundreds of cycles:

CPU Context: 32 64-bit integer registers.

32 64-bit control registers.

32 64-bit floating-point registers.

Total amount of data to move: 2× 96× 8 = 1536 B. . .

. . . might require 192 instructions just for data copies.
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Conventional Multiprocessing and Multithreading � Types of Multithreading � Hardware MT

Hardware Multithreading:

A form of multithreading in which CPU core holds multiple contexts . . .

. . . and in which context switch very fast or not needed.

Core has multiple sets of registers, one for each context.

For CPUs, number of contexts is small, two to four.

Usually used with software multithreading.
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Conventional Multiprocessing and Multithreading � MT Benefit

Reasons for Multiple Threads per Core

◦ Want simultaneous progress on multiple activities.

◦ Latency hiding.

Latency Hiding:

Doing useful work while waiting for something to finish.

Term broadly applied:

“Your call is important to us. Please stay on the line ...”

Your attempt to report a problem with your Internet service is delayed . . .

. . . so you switch to physics homework.
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Latency Hiding � Latencies We’d Like to Hide

Latency Hiding

Latencies We’d Like to Hide

500,000.000µs Internet Network Delay

10,000.000µs Disk Access

0.100µs Memory Access (L2 Cache Miss)

0.001µs Instruction Operation Latency (un bypassed)
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Latency Hiding � Latency Hiding of Instruction Events

Latency Hiding of IO Activity

Examples: Disk and network activity.

Easy, because OS already in control. . .

. . . and latencies are long (multiple milliseconds).

Latency Hiding of Instruction Events

Examples: Cache miss (≈ 100 ns), insn-to-insn latency (≈ 10 ns).

Times are too short for software multithreading.

No convenient way to tell OS when to switch.

Neither is a problem for hardware multithreading.
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Simultaneous Multithreading (SMT) � Definition

Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT)

A.k.a. Hyperthreading (Intel).

A multithreading system in which the context switch time is zero.

Multiple contexts, including a PC for each context.

Each cycle, hardware decides which context to use for fetch.

Fetched instruction proceeds down pipeline . . .

. . . next to insns from other contexts.

Consider:

# Single Thread:

T0: 0x1000 add r1, r2, r3 IF ID EX ME WB

T0: 0x1004 sub r4, r5, r6 IF ID EX ME WB
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Simultaneous Multithreading (SMT) � Definition

# Simultaneous Multithreaded

T0: 0x1000 add r1, r2, r3 IF ID EX ME WB

T1: 0x2000 sub r1, r2, r3 IF ID EX ME WB
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Simultaneous Multithreading (SMT) � SMT Hardware

SMT Hardware

Easy to do in a dynamically scheduled system.

Consider the following statically scheduled system:
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Simultaneous Multithreading (SMT) � SMT Hardware

SMT Hardware

Changes for an n-way SMT:

Replace PC with n PCs.

Increase register field by dlog2 ne bits.

Limit squash and other insn events to correct thread.
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Simultaneous Multithreading (SMT) � Thread Selection

Thread Selection

◦ Round Robin

◦ Fewer in flight
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Simultaneous Multithreading (SMT) � Simultaneous Multithreading and CPUs

Simultaneous Multithreading and CPUs

Number of contexts in current CPUs 2-4.

Can hide occasional latencies.

Often benefit of hiding latency . . .

. . . less than problem of multiple threads occupying cache space . . .

. . . that would otherwise be used by just one.
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Vector v. Superscalar v. SMT � Vector Core v. Superscalar Core

Vector Core v. Superscalar Core

(We’ll get back to multithreaded machines right after this.)

Because a superscalar core is more expensive we need to justify its use.

Vector core benefit: less expensive.

Superscalar core benefit: can run non-vectorizable code.

These tradeoffs are clear . . .

. . . because few would deny that non-vectorizable code is common.
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Vector v. Superscalar v. SMT � SMT v. Single Thread

SMT v. Single Thread

Because an SMT is more expensive we need to justify its cost.

Feature of SMT: Can hide latency.

Tough question to answer: is this the best way to hide latency?

Consider

If switching between two threads would hide latency . . .

. . . then maybe the same latency could be hidden by combining threads.

Combining threads is effective if there are enough registers.
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Vector v. Superscalar v. SMT � SMT v. Single Thread � Weak Example for SMT

Weak Example for SMT

Consider two scalar cores, one with 5-way SMT.

# Single-Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T0: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T0: add.s f6, f0, f6 IF ID ----------> RR F1 F2 F3 F4

T0: mul.s f10, f12, f14 IF ----------> ID RR F1 F2 F3 F4

T0: add.s f16, f10, f16 IF ID ----------> RR F1 F2 F3 F4

..

T0: add.s f46, f40, f46 Cyc 25-> IF

# Five Thread SMT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T0: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T1: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T2: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T3: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T4: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T0: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T1: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T2: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T3: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T4: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Yay!!! SMT Wins!!!

2-co-88 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-88



Vector v. Superscalar v. SMT � SMT v. Single Thread � Weak Example for SMT

Weak Example for SMT

Reschedule (rearrange) Single-Thread Code

# Single-Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T0: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T0: mul.s f10, f12, f14 IF ID RR F1 F2 F3 F4

T0: mul.s f20, f22, f24 IF ID RR F1 F2 F3 F4

T0: mul.s f30, f32, f34 IF ID RR F1 F2 F3 F4

T0: mul.s f40, f42, f44 IF ID RR F1 F2 F3 F4

T0: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T0: add.s f16, f10, f16 IF ID RR F1 F2 F3 F4

..

T0: add.s f46, f40, f46 IF ID RR F1 F2 F3 F4

# Five Thread SMT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T0: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T1: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T2: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T3: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T4: mul.s f0, f2, f4 IF ID RR F1 F2 F3 F4

T0: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T1: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T2: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T3: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

T4: add.s f6, f0, f6 IF ID RR F1 F2 F3 F4

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Now it’s a tie, assuming that there are enough registers for scheduling.
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Vector v. Superscalar v. SMT � SMT v. Single Thread � Good Example for SMT

Good Example for SMT

A load suffers a cache miss . . .

. . . compiler can’t schedule around that . . .

. . . because misses are rarely predictable . . .

. . . and don’t occur every occurrence.

# Cycle Single Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T0: lw f1, [r2] IF ID RR EX ME WB

T0: lw f11, [r2+4] IF ID RR EX ME -------------> WB

T0: add.s f0, f1, f0 IF ID -> RR -------------> F1 F2 F3 F4

T0: add.s f10, f11, f10 IF -> ID -------------> RR F1 F2 F3 F4

# Cycle Multi Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T0: lw f1, [r2] IF ID RR EX ME WB

T1: lw f11, [r2+4] IF ID RR EX ME -------------> WB

T0: add.s f0, f1, f0 IF ID -> RR F1 F2 F3 F4

T0: sub.s f2, f3, f4 IF -> ID RR F1 F2 F3 F4

Notice that T0 can make progress while T1 waits.
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SIMT � Definition

SIMT

Single-Instruction Multiple Thread (SIMT):

A technique in which threads are managed in groups (called warps) to simplify hardware, all threads in a warp execute the
same instruction (or are masked out) .

SIMT coined by NVIDIA to describe organization of their GPUs.

Hardware similar to vector unit hardware . . .

. . . in the sense that . . .

. . . for the fetch of one instruction . . .

. . . multiple operations are performed.

Software model closer to multicore . . .

. . . in the sense that . . .

. . . programmer works with ordinary scalar registers . . .

. . . and does not need to think about vector registers.

2-co-91 EE 7722 Lecture Transparency. Formatted 11:25, 24 January 2020 from lsli02-cores-TeXize. 2-co-91



SIMT � SIMT Characteristics

SIMT Characteristics

Core holds many threads (thread contexts).

Threads are organized into groups called warps.

As in an ordinary multithreaded system . . .

. . . each thread has its own PC.

Instruction fetch is performed for an entire warp . . .

. . . using the PC of one of the threads in the warp.

This works well when . . .

. . . all of the threads in a warp have the same PC.

If threads have different PC values process must be repeated.
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SIMT � SIMT Thread Dispatch

SIMT Thread Dispatch

Dispatch:

Sending a thread (in this case) to an execution unit.

In other core organizations dispatch was one cycle . . .

. . . but for SIMT can be multiple cycles.
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SIMT � Choice of Type of Core

Choice of Type of Core

Look at these questions:

Type of parallelism?

Number of contextes?

Amount of cache?
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Multicore Chip Organization � Typical Memory Hierarchy

Multicore Chip Organization

Typical Memory Hierarchy

◦ L1 (Level 1) Cache

◦ L2 (Level 2) Cache

◦ DRAM (Main Memory, Physical Memory)
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Multicore Chip Organization � Typical Memory Hierarchy

L1 Cache

First place checked.

Typical latency 1-2 cycles.

Each core has its own L1.
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Multicore Chip Organization � Typical Memory Hierarchy

L2 Cache

Checked on an L1 miss.

Typical latency 10-20 cycles.

Usually all cores on chip share L2.

L2 may be divided into banks.

Sometimes access faster to closer bank.
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Multicore Chip Organization � Typical Memory Hierarchy

DRAM

Holds the ”original” value of address.

Typical latency 100-500 cycles.

Located off chip.

An on-chip memory controller provides access to DRAM.
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Multicore Chip Organization � Typical Mulitcore Chip Organization

Typical Mulitcore Chip Organization

Each core has its own L1 cache.

L2 cache divided into banks.

Memory controllers connect to off-chip memory.

Communication between cores, L2, and MC via an interconnect.
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Interconnect Types

Interconnect Types

Crossbar

Interconnect with a switch for each input/output pair.

Can always connect a free input to a free output.

Latency is O(1).

Cost O(n2).

Ring

Connections form a loop visiting all ports.

Delay is O(n).

Cost is O(n).
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Interconnect Types

Bus

Single shared medium connecting all ports.

Only one pair can communicate at a time.

Latency is O(1).

Cost is O(1).
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Common CPU Chip Organizations

Common CPU Chip Organizations

Heavy Multicore (i7, etc)

Crossbar interconnect.

Manycore (Xeon Phi, Sun Niagara)

Ring interconnect.
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