LSU EE 7722 Homework 4 Due: 4 May 2020

In class we covered NVIDIA GPUs which are reasonably well suited to DNN (deep neural network)
computations, especially the CC 7.X devices. The NVIDIA GPUs are successful commercial products and
are the result of several generations of refinement and evolution. For that reason we can assume that the
design is effective and that features work as intended for graphics and typical scientific workloads. For
example, we can feel safe concluding that having a large number (2048!) of thread contexts per SM is a good
way of hiding memory latency despite the huge area taken by the registers.

The three papers assigned towards the end of the semester (see the end of this assignment for a complete
reference) describe designs for DNN accelerators of various maturity. The Google TPU described by Jouppi et
al [3] is used in production so we can assume it is effective. It describes a straightforward way of implementing
DNNs and one robust enough to handle production work and certainly devoid of complex ideas that would
add to development time and have a risk of limited effectiveness.

Chen, Elmer, and Sze [1], introduce a CNN dataflow, row stationary, and compare it to some previously
described dataflows. In their comparison methodology they configure implementations of each dataflow by
optimizing modeled energy consumption. The idea is to obtain for comparison high-quality configurations of
each dataflow under similar hardware constraints. The row-stationary dataflow is not revolutionary, but the
equal-footing comparison methodology makes it interesting. Also, the paper is from a project to fabricate a
working DNN accelerator chip, Eyeriss, and so one can expect that the design is workable.

The third paper, by Hegde et al [2], is the most interesting but also describes results which are less likely
to be practical in the end. Their idea is to exploit repeated weights in a filter by computing wi (a1 + a2)
instead of wia; +woas when wy = wo. The ostensible benefit is fewer multiplies and handling fewer weights.
The big question is whether the effort needed to deliver the inputs in the right order to the now unique
weights is greater than the benefits.

Problem 1: Compare the performance of the accelerators described in the three papers above, and for a
GP100 GPU, as described below.

(a) Make the following unfair comparison: Find the peak operation rate, in units of multiply/add (accumu-
late) operations per second, for each of the three accelerator designs. Base this on the number of MADD (or
MAC) units per chip and the clock frequency.

For each device show the peak MADD rate and explain how that was calculated. For UCNN show both
peak MADD and also the peak number of input elements processed per second (which would be the MADD
rate in other devices). In some cases the MADD (or equivalent) rate is provided in the publication. Show
that number, but also calculate it from information provided in the publications, such as the clock frequency.

If a publication describes multiple variations pick a good one, and indicate which one you chose.
(b) Make some effort to compare the number for each device in a fair way. Take into account energy, precision,

and anything else that sounds relevant. For example, one might compare them in terms of computation rate
for a fixed amount of power or computation time for a fixed amount of energy.


https://www.ece.lsu.edu/gp/

Problem 2: The diagram below shows a possible design of a MAC, the elements that make up the Matrix
Multiply Unit. An input activation, labeled Iin, enters on the left and leaves one cycle later on the right,
at the port labeled Io. During calculation partial sums enter at the top (Pin) and exit one cycle later from
the bottom. When new weights are being loaded (for example, when changing input channels) weights enter
from the top and exit from the bottom. In the Google TPU the MACs are arranged into a 256 x 256 array,
and so during calculation an input activation appearing at the input to a leftmost MAC will take 256 cycles
to reach the rightmost MAC. Similarly it will take 256 cycles for a partial sum to reach the bottom, and it
will take 256 cycles to load a new set of weights.

uJ
-
Ll

}
o =

Win Pin

|

(]
o

H
i}

(mul

I

burinp papeo]

Utl
V]
s L
+
\ -uo;,}e/nD/E’J/Y Ej
oI

Loaded when
weights updated.

=
o

Po

-
uJ

1
O

M
0T

Tllustrated below is an array of 4 X 4 mac units, with inputs partially labeled. Connections are shown
for the inputs and partial sums, but not for the weights. The array is used to compute 0[n] [x] += I[n] [i]
* Wil [x].

(@) Show the weights assigned to each MAC. Use wy 2 to indicate W[1] [2].
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(b) Tlustrated below are multiple copies of the array. The first one is for cycle 0, when Iy o is at the upper-left
MAC. The second one is for cycle 1. The others can be labeled with cycles of your choosing. Show the input
element being operated on in each active MAC at each clock cycle when multiplying a 4-element activation
(X =4) with a batch size of 2 for a fully connected layer. Use I, , for input activation element x in batch
n. There is no need to show every cycle if the pattern is obvious.
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(¢) How many cycles will it take to compute an activation of length X < 256 and a batch of size N?

Problem 3: Appearing below is an alternative MAC design in which the activation is not buffered. An
input appearing at the leftmost MAC will be visible to the entire row. Such an organization requires fewer
registers but cannot operate as fast (especially if there are 256 columns!).
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(a) As with the previous problem, show the input element operated on, but only for the first three cycles.
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(b) How many cycles will it take to compute an activation of length X < 256 and a batch of size N?
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