
LSU EE 7722 Homework 2 Solution Due: 6 April 2020

Problem 1: As we discussed in class an important factor in GPU performance is the number of
resident warps in an MP (also called an SM). There are several factors that determine the number
of resident warps per MP, including the block size, grid size, the amount of shared memory used
per block, and the number of registers used per thread.

(a) Consider conv_inbuf_block from the Homework 1 solution. This kernel lazily sizes in_buffer
to 2048 elements, which wastes a considerable amount of memory.

Find the number of resident warps per SM on a RTX 2080 if this kernel is launched with a
grid size of 48000 blocks and block size of: 32 threads, 64 threads, 256 threads, and 1024 threads.
Hint: This is an easy problem.

Each block uses 4 × 2048 = 8192 B of shared memory. The RTX 2080 is of CC 7.5, and those devices have

64 kiB = 216 B per SM, and so shared memory limits the number of blocks to no more than b64 kiB/8 kiBc = 8
blocks.

For a block size of 32 threads (or 1 warp) there would be 8 blocks and so 8 warps resident. For 64 threads there

would be 2 × 8 = 16 warps. For 256 threads shared memory would set an upper limit of 8 blocks (or 64 warps) but

CC 7.5 devices can have no more than 32 resident warps, so there would be only 4 blocks resident and so 4 × 8 = 32
resident warps. Similar reasoning applies to the 1024-thread block: there would be one block or 32 warps resident.

(b) What is the maximum value on Dj for kernel conf_wbuf from Homework 2? (Base this on the
kernel, not limits used elsewhere in the file.) Hint: The limit is due to the address space used for w.

Variable App dapp is in the constant address space. For all CUDA devices the address space size is 64 kiB. The

six pointers (h in, etc.) use 6× 8 B, the int 4 B, leaving 216 − 52 = 65484, enough for 16371 floats, and so that is

the maximum value of Dj.
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Problem 2: A GeForce RTX 2080 (TU104) has an off-chip data bandwidth of ΘM = 496.1 GB/s
and a single-precision floating-point bandwidth of ΘIF = 5576 SP GFLOPS, with a multiply/add
counted as one operation.

(a) Find the off-chip data bandwidth, ΘM , and single-precision floating-point bandwidth, ΘIF, for a
Volta V100 GPU and a Pascal P100 GPU. Remember to count a multiply/add as one instruction.

Volta V100: ΘM = 898 GB/s and ΘIF = 80 × 64 × 1.38 GHz = 7065.6 SP GFLOP/s SP GFLOPS.

(That was based on 80 SMs, 64 FP32 units per SM, and a 1.38 GHz clock frequency.) For a P100: ΘM = 549.1 GB/s
and ΘIF = 56× 64× 1.33 GHz = 4766.7 SP GFLOP/s.

(b) Let ΘIT denote the throughput of integer type conversions of size up to 32 bits. (For example,
converting a 32-bit integer to an 8-bit integer.) Find ΘIT the following GPUs: Turing TU104, Volta
V100, and a Pascal P100.

Based on the table in Chapter 5 of the CUDA Programming Guide 10.2, the number of type-conversion functional

units are 16 for all the devices: TU104, V100, P100. The throughputs for each device in instructions per second are:

TU104: ΘIF = 48× 16× 1.81 GHz = 1390× 109 insn/s
V100: ΘIF = 80× 16× 1.38 GHz = 1766× 109 insn/s
P100: ΘIF = 56× 16× 1.33 GHz = 1192× 109 insn/s
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Problem 3: The kernels in hw02.cu compute the same kind of convolution as those from Home-
work 1 but they are compiled for several values of Dj, and they are also compiled for specific block
sizes. Let J indicate the value of Dj (the number of weights) and N indicate the array size (value
of app.array_size). The amount of computation per element (one value of h) in the code is J
multiply/adds, the number of data items read is 2J (counting both the inputs and weights), and
one output element is written. Of course we know that a well-written routine will read fewer than
2JN items. For a large N the number of items read and written per thread will approach 2N .

For a given value of J and N two lower bounds on execution time can be computed, one
using data bandwidth and the other using FP bandwidth. They are tM (N) = 2N(4 B)/ΘM and
tF (N, J) = NJ/ΘIF. The tM (N) bound is closer to reality for CC 7.X GPUs because it is easy
to predict the amount of data crossing the chip boundary. The tF bound above is much less
realistic because it only counts multiply/add instructions. On CC 3.X to CC 6.X GPUs tM (N) will
underestimate conv_wbuf because the dapp.d_in accesses won’t use an L1 cache. On all GPUs we
have considered tF will be way off because we are only considering multiply/add instructions.

(a) Suppose conv_wbuf and conv_inbuf_block were launched on CC 7.5 (Turing) GPUs.

Which would better approximate conv_wbuf’s run time in a one-block-per-MP launch config-
uration, max{ tM (N), tF (N, J) } or tM (N) + tF (N, J)? Explain.

It would be better approximated by max{ tM (N), tF (N, J) } because the memory accessed performed by one

warp can be overlapped with the computation performed by another. If tF (N, J) > tM (N) we could hope that there

would always be a warp ready to peform multiply adds, even when other warps are awaiting data. If that’s the case (and

if the contribution of other instructions is tiny) execution time is based only on FP throughput.

Which would better approximate conv_inbuf_block’s run time in a one-block-per-MP launch
configuration, max{ tM (N), tF (N, J) } or tM (N) + tF (N, J)? Explain.

Expression tM (N) + tF (N, J) is the better approximation because the syncthreads will force FP operations

to wait for memory accesses and shared memory stores to complete and vice versa. So there is no way to overlap the two

activities.

Suppose now each kernel were launched in a configuration with 4 blocks per MP and the block
size were chosen so that 4 blocks can be resident. (That is, four blocks can be active on one MP at
the same time.) How does that change the answers to the questions above?

Kernel conv inbuf block would benefit because it would now be possible to overlap computation and data

access. While one block in an SM is waiting for data another block in the SM can be computing. Therefore the bound

should be closer to max{ tM (N), tF (N, J) }.
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(b) Suppose t(N, J) = max{ tM (N), tF (N, J) } was a good bound on execution time. A modeled ex-
ecution is called compute-bound when tM (N) < tF (N, J) and data-bound when tM (N) > tF (N, J).
(Those terms are also used for actual executions.)

For a compute-bound execution, effort to increase data bandwidth will have no effect on
execution time, and for a data-bound execution effort to improve execution rate will have no effect.

Using the bounds above find the value of J for which execution is neither compute- nor data-
bound. (Don’t worry about J not being an integer.)

Equating and solving for J yields J = 8ΘIF

ΘM
B. For a T104: J = 8 5576 SP GFLOP/s

486.1 GB/s B = 91.

(c) The bound tF is crude because the kernels execute more than floating-point instructions. Based
on an inspection of the SASS code there is a load instruction for each multiply/add (which makes
sense). For conv_wbuf the load is from global memory, and for conv_inbuf_block the load is from
shared memory.

Find a bound tI(N, J) that accounts for both the multiply/add and the load instructions. Use
class materials and other resources to find the throughput of load and store instructions.

On recent NVidia devices the throughput of memory instructions is 1
4 that of FP32 operations. Let ΘIM denote the

throughput of memory instructions. Then tF (N, J) = NJ(1/ΘIF + 1/ΘIM). For cases in which ΘIM = ΘIF/4
we have tF (N, J) = NJ (1/ΘIF + 4/ΘIF) = 5NJ/ΘIF. That of course is substantially longer.

Use this new bound to find J for which the instruction time bound and data time bound are
equal.

Equating and solving for J yields J = 1.6ΘIF

ΘM
B. For a T104: J = 1.6 5576 SP GFLOP/s

486.1 GB/s B = 18.35.
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